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Abstract1

MicroRNAS (miRNAs) are short non-coding RNAs that can repress mRNA translation to regu-2

late protein synthesis. During their maturation, multiple types of pre-miRNAs compete for a3

shared pool of the enzyme Dicer. It is unknown how this competition for a shared resource in-4

fluences the relative expression of mature miRNAs. We study this process in a computational5

model of pre-miRNA maturation, fitted to in vitro Drosophila S2 cell data. We find that those6

pre-miRNAs which efficiently interact with Dicer outcompete other pre-miRNAs, when Dicer7

is scarce. To test our model predictions, we re-analysed previously published ex vivo mouse8

striatum data with reduced Dicer1 expression. We calculated a proxy measure for pre-miRNA9

affinity to TRBP (a protein which loads pre-miRNAs to Dicer). This measure well-predicted ma-10

ture miRNA levels in the data, validating our assumptions. We used this as a basis to test the11

the model’s predictions through further analysis of the data. We found that pre-miRNAs with12

strong TRBP association are over-represented in competition conditions, consistent with the13

modelling. Finally using further simulations, we discovered that pre-miRNAs with low matu-14

ration rates can affect the mature miRNA pool via competition among pre-miRNAs. Overall,15

this work presents evidence of pre-miRNA competition regulating the composition of mature16

miRNAs.17

Introduction18

MicroRNAs (miRNAs) are small non-coding RNAs that inhibit protein translation via the RNA-19

induced gene silencing complex (RISC). MiRNAs are synthesised in the nucleus by RNA poly-20

merase II/III as primary-miRNAs (pri-miRNAs), which are then cleaved by Drosha/DGCR8 to21

form precursor miRNas (Results; Figure 1 A). Pre-miRNAs are exported into the cytosol via22

Exportin-5 and transported to sites of local inhibition of protein translation, such as neuronal23
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dendrites, where they are loaded onto Dicer, which cleaves the characteristic hairpin-loop24

structure to produce mature miRNA. The double-stranded miRNA is then loaded onto Arg-25

onaut proteins (Ago), which finish the maturation by ejecting the passenger strand to leave a26

single-stranded miRNA bound to Ago. The Ago-bound miRNA can subsequently undergo com-27

plementary base-pairing with target mRNAs and trigger RISC assembly, leading to silencing28

of protein translation.29

MiRNAs are of particular importance in regulating gene expression in dendrites due to the30

size and morphology of neurons. For example, in a cortical pyramidal neuron, the soma is31

typically around 20µm in length, whereas some dendrites can extend hundreds of micrometres32

[1] and when considering the entire dendritic arborisation, the total length of dendrite for a33

single neuron can reach tens of millimetres [1,2]. Given these large distances, it seems likely34

that neurons must use local mechanisms to control the spatial pattern of protein expression,35

rather than orchestrating control completely from the nucleus. Control and maintenance of36

dendritic pools of mRNA transcripts offer an elegant solution to highly localised and highly37

specific translational control of the post-synaptic proteome via RNA-induced gene silencing by38

miRNAs [3]. MiRNAs therefore play an important role in synaptic function and plasticity in39

the brain.40

Competition is a recurring theme at all levels of biology, from competition between species41

and individual organisms to the competition for resources on the molecular level within the42

cell. Competition effects in biosynthesis has been heavily studied using computational mod-43

els (reviewed by [4]). Early studies on prokaryotic transcription highlighted key parameters44

governing competition between sigma factors for RNA polymerases [5,6]. Mauri and Klumpp’s45

(2014) model in particular was structurally similar to the model of competitive miRNA matu-46

ration we study here. Other studies examined the role of competition in protein translation,47

for example due to limited availability of ribosomes or tRNAs [7–9]. Several computational48

modelling studies have also explored the effects of competition between miRNAs and mR-49

NAs [10–13], consistent with in vitro experiments [14]. Collectively these insights are of great50

importance for synthetic biology applications, where expression of exogeneous genes can put51

strain on endogeneous biosynthesis machinery [15–17]. For example, miRNA-mRNA competi-52

tion can affect noise in synthetic gene circuits [18]. In tissues with high pre-miRNA expression53

levels, such as the brain, where up to 70% of known miRNAs have been detected [19], it is54

reasonable to assume that a large number of pre-miRNAs with different Dicer affinities and55

maturation efficiencies are competing for a limited amount of available Dicer. If this is the56

case, pre-miRNA competition for Dicer may indirectly regulate the composition of the mature57

miRNA pool.58
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For competition to be meaningful, individual components of a system must display distinct59

and diverse attributes. Among pre-miRNAs, both sequence and structural characteristics60

have been linked to the efficiency of maturation. Tsutsumi et al. (2011) [20] showed that61

Drosophila Dicer1 is more efficient at cleaving pre-miRNAs with a large loop size in vitro. Work62

by Luo et al. in HEK293T cells expressing recombinant Dicer also showed a preference of Dicer63

towards pre-miRNAs with a large loop structure and strong binding in the stem region [21],64

suggesting that loop size may also play a role in regulating pre-miRNA association in vivo. More65

recently, Lee et al. (2023) [22] identified a conserved sequence motif, the GYM motif, which is66

recognised by the human Dicer1 double-stranded RNA binding domain and is associated with67

highly efficient cleavage of specific pre-miRNAs. These are all provide different advantages for68

select pre-miRNAs in maturation and might drive an over-representation of specific mature69

miRNAs in conditions with reduced Dicer availability.70

As discussed above, miRNA competition has been studied before, but most studies have71

focused on the competition between mature miRNAs, or miRNAs and non-coding competing72

endogenous RNAs, for the same mRNA targets (see [23–25] for some examples). To our knowl-73

edge, competition between different pre-miRNA species for proteins in the miRNA maturation74

pathway has not been reported previously. Here, we present a simple computational model of75

pre-miRNA maturation and pre-miRNA competition for Dicer based on mass-action kinetics76

(Results; Figure 1B). The model predicts that pre-miRNAs with both a high rate of association77

with Dicer and efficient dicing rates have a competitive advantage over other pre-miRNAs in78

systems with both abundant and severely reduced Dicer. Based on our model predictions,79

we identify pre-miRNA competition for Dicer in vivo from previously published experimental80

data [22]. Our work highlights the non-specific effects of pre-miRNA competition for Dicer on81

the global miRNA pool.82

Results83

MiRNAs with a fast association rate to Dicer display robust maturation84

levels in competitive conditions.85

We designed a minimal model of pre-miRNA maturation (Figure 1B) that could account for the86

dynamics of mature miRNA production in previously published in vitro time series data [20]87

(See Methods). To summarise the model briefly, a pool of pre-miRNA can reversibly bind88

with free Dicer, then go through a subsequent maturation step, resulting in the conversion89

of pre-miRNA to mature miRNA and the release of Dicer back to the free pool. Alternatively,90
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pre-miRNA could irreversibly bind with Dicer forming a stalled complex. We initialised the91

model with pre-miRNA and Dicer only.92

In neurons, pre-miRNA maturation can take place hundreds of µm from the soma where93

transcription and initial maturation from pri-miRNA to pre-miRNA takes place (Results; Figure94

1A). Experimental data has shown that mRNA transcripts can be transported across dendrites95

in bursts of speeds from 0.5-5 µms-1 between short pauses of being stationary [26,27]. Under96

the assumption that pre-miRNAs are transported at a similar rate in a similar fashion to97

mRNAs we decided to omit pre-miRNA replenishing from our model.98

During a 60 minute simulation of the model (Figure 1C), the concentration of free Dicer99

and pre-miRNA drops over time while the concentration of pre-miRNA complexed with Dicer100

increases, along with mature miRNA and stalled pre-miRNA and Dicer. At the end of the101

simulation, no free pre-miRNA remains and the mature miRNA concentration has reached102

a plateau. To better understand the system, a model with a single miRNA modelled on the103

reaction dynamics of wild-type let-7 [20] was used to vary reaction rates, Dicer concentration104

(Figure 1D) and initial pre-miRNA concentration (Figure 1E). The model was allowed to run105

until a steady state was achieved, after which the mature miRNA concentration was extracted106

and plotted against the reaction rates and Dicer or intial pre-miRNA concentration respec-107

tively. As expected, increasing the association rate (ka) leads to an increase in final mature108

miRNA concentration, with the reverse seen for the stalling rates (kc). Due to an abundance109

of Dicer in the system, increasing Dicer concentration does not lead to an increase in miRNA110

concentration (Figure 1D), as the theoretical maximum miRNA concentration is reached at111

a low level. Increasing the rate of dissociation (kb) or dicing rate (kd) did not significantly112

change the final mature miRNA, suggesting that these reaction steps do not individually sig-113

nificantly alter the reaction dynamics of the system. When varying pre-miRNA concentrations114

instead of Dicer a similar pattern is seen for each varied reaction rate, with increased mature115

miRNA with increased reaction rate for species where association rate (ka) was varied. Some116

increase was also seen at low stalling rate (kb) and high pre-miRNA concentrations. We also117

observed modest increases in mature miRNA with increased pre-miRNA for species with vary-118

ing dissociation and dicing rates (kb and kd), highlighting that pre-miRNA availability is more119

important in determining the final miRNA concentration than dissociation and dicing rate or120

Dicer availability (Figure 1E).121
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Fig. 1: MicroRNA maturation in the neuron and model design

A MiRNA maturation and function in the neuron. MiRNA is synthesised in the nucleus as pri-miRNA
by RNApol II/III as a long single-stranded RNA molecule with a central hairpin loop. Pri-miRNA is then
cleaved by the Drosha/DGCR8 complex to release the hairpin loop as pre-miRNA. Pre-miRNA is then
transported out of the nucleus into the cytosol by the Exportin-5 complex. In the cytosol, pre-miRNA can
be transported into dendrites where Dicer, assisted by e.g. TRBP, binds pre-miRNA. Dicer cleaves the pre-
miRNA by the loop structure and double-stranded mature miRNA can then be loaded into Argonaute
proteins, where the passenger strand is ejected and the remaining single-stranded miRNA can form
complimentary base-pair binding with target mRNA for targeted repression of local protein translation.
B Model diagram of pre-miRNA maturation. In the computational model, pre-miRNA (P ) can associate
with Dicer (D) to form a transient Dicer-pre-miRNA complex (PD) with rate ka. The Dicer-pre-miRNA
complex can either deteriorate back to free pre-miRNA and Dicer at rate kb, or go through pre-miRNA
maturation at rate kd to form free Dicer and mature miRNA (M ). Alternatively, free pre-miRNA and Dicer
can associate to form a stalled complex of Dicer-pre-miRNA (S) at rate kc, which permanently binds pre-
miRNA and Dicer in the system. C Dynamics of species concentration in the model. As time increases,
the concentration of free Dicer ([D]) and pre-miRNA ([P]) reduces while the concentration of mature
miRNA ([M]) and stalled pre-miRNA and Dicer ([S]) increases. The transient pre-miRNA Dicer complex
[PD] is highly unstable and does not accumulate in the system. Parameter values for this simulation
are given in Table 1. D Effects of varying Dicer concentration and reaction rates on miRNA
concentration at steady state. Reaction rates were scaled from 10-2 to 102 times the value
obtained from data fitting (recorded in Table 1; wild-type parameters used, indicated by red
dot) while Dicer concentration was varied from 0.01 nM to 15 nM. Increasing reaction rate for
association (ka) leads to an increase in mature miRNA concentration at steady state, whereas
increasing stalling (kc) leads to a decrease. No effect is seen when changing dissociation (kb)
or dicing (kd) rates. The effects of varying Dicer concentrations in the system are only notable
at very low Dicer concentrations, where mature miRNA concentration at steady state reduces,
confirming that there is an abundance of Dicer available in the system used by [20]. E Effects
of varying reaction rates and initial pre-miRNA concentration ([P0]) at steady state. Reaction
rates were scaled as for D and initial pre-miRNA concentration varied between 0 and 5 nM. As
in D, increasing ka increases the amount of mature miRNA, whereas increasing kc leads to a
decrease at steady state. Increasing the pre-miRNA concentration modestly increases mature
miRNA regardless of variation in dissociation (kb) or dicing (kd) rates. Red dots represent
default values obtained from optimisation and used in C.

122

123

Next, we used this model in a set of simulation experiments to investigate how multiple124

different pre-miRNA types might compete for a shared pool of Dicer. There are over 1900125

types of mature human miRNAs recorded in miRBase [28], the online repository of identified126
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miRNAs. While miRNAs are highly localised, many different miRNA species may still compete127

for a shared Dicer pool. The expression levels of these miRNAs vary substantially [29], implying128

that they have heterogeneous Dicer affinities and maturation rates.129

In our model, four distinct reaction rates can affect pre-miRNA maturation: association130

to Dicer (ka), dissociation from Dicer without maturing (kb), irreversible association to Dicer131

leading to a stalled complex (kc), and maturation through dicing (kd). This allowed us to dissect132

the role of each stage in pre-miRNA maturation by varying each reaction rate independently.133

To achieve this, we designed 8 theoretical species of pre-miRNA (Figure 2A). We increased134

each parameter value in turn either 10-fold (high) or 20-fold (2x high) from the optimised135

values to investigate what characteristics can be expected to confer advantages in competitive136

environments. As the actual concentration of Dicer in a cellular environment is unknown, we137

ran a series of simulations with 1nM of each pre-miRNA species present and a range of 0.01 to138

8 nM Dicer available until a steady state was reached (Figure 2C-H). In order to reach steady139

state for each condition and each pre-miRNA, the simulation was run for 3000 minutes and140

the mature miRNA concentration at the end of the simulation used. Since there was 8 nM141

total pre-miRNA, we should expect to see competition effects emerge at Dicer concentrations142

between 0–8 nM. The exact conditions for competition also depends on the particular set of143

pre-miRNA binding affinities.144

In a competitive environment with a single Dicer pool, high rates of association (ka) leads145

to a higher amount of mature miRNA (Figure 2C). This is also true in the absence of compe-146

tition (Figure 2E), however in competitive regimes, when Dicer concentration is low, slightly147

higher levels of pre-miRNAs with fast association rates reach the mature state compared to148

pre-miRNAs with high rates of dicing or maturation (kd). When investigating fold-change from149

the simulation with 8 nM Dicer, a high rate of association (ka) is also highly advantageous both150

in presence and absence of competition (Figure 2D and F), though not as resistant to compe-151

tition as pre-miRNAs with a high stalling rate (kc). In contrast, pre-miRNAs with a high dicing152

rate (kd) and high level of stalling (kc) are almost equally sensitive to a drop in fold change than153

pre-miRNAs with high association rates (Figure 2D and H), despite a high dicing rate being154

highly advantageous in pre-miRNA maturation (Figure 2C-F). When Dicer is available in abun-155

dance and competition is negligible, a high association rate (ka) also leads to a higher rate of156

pre-miRNA maturation than a high dicing rate (kd, Figure 2G). This suggests that pre-miRNAs157

with features that promote Dicer association provide both a competitive advantage in envi-158

ronments with reduced Dicer availability and reach the highest level of maturation efficiency.159

This general effect is preserved over a range of pre-miRNA concentrations in the system. When160

varying the total initial pre-miRNA in the system by scaling all pre-miRNAs simultaneously be-161
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tween 0 and 5 nM, pre-miRNAs with high association rates (ka remain highly expressed (Figure162

2B). In contrast, increasing the amount of initial pre-miRNA in the system leads to a notable163

decrease in pre-miRNAs with a high dissociation rate (kb; Figure 2B), confirming that they164

are most sensitive to competition effects between miRNAs. This non-monotonic dependence165

of low-Dicer-affinity miRNAs to global pre-miRNA abundance is an interesting prediction of166

the model.167

Fig. 2: Competition effects between multiple pre-miRNA species
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A Competition diagram. Each reaction rate was increased 10-fold (high) or 20-fold (2x high) per pre-
miRNA species.B Effects of varying initial pre-miRNA in the system on competition. The pre-miRNA
concentration for each species was varied uniformly along with Dicer concentration. Each simulation
was run until steady state was reached and the fold change in mature miRNA for each species calculated
on the condition with 5 nM initial pre-miRNA (40 nM total pre-miRNA in the system) and 15 nM Dicer.
Increasing Dicer leads to a general increase in fold change for each pre-miRNA, however an increase in
pre-miRNA concentration leads to a decrease in fold change among pre-miRNAs with fast dissociation
rates (high kb and 2x high kb). C-D Effects of varying Dicer availability on final mature miRNA
concentration in the presence (C) and absence (D) of competition. E-F Effects of varying Dicer
availability on miRNA maturation fold change, as calculated based on 8n M Dicer availability
in the presence (E) and absence (F) of competition. G Final mature miRNA concentration at 10
nM Dicer availability. H Minimum Dicer needed to reach 0.5 fold-change for each pre-miRNA
species in the presence and absence of competition. Final mature miRNA concentration ob-
tained at steady state.

168

169

Signatures of pre-miRNA competition for Dicer in experimental data170

To test whether any evidence of pre-miRNA competition effects can be detected in experimental171

data, we next investigated the characteristics of miRNA sequences from the YAC128 mouse172

model of Huntington’s disease where Dicer1 mRNA expression levels in the YAC128 mice (ex-173

pressing transgenic human HTT with 100-120 glutamine repeats) have been reported to be174

reduced by half compared to wild-type mice (which express native mouse Htt only) (Figure175

4D), while mRNA expression levels of proteins in the pri-miRNA processing machinery or pre-176

miRNA export were unaffected [30]. We hypothesised that, since Dicer expression was reduced177

in the Huntington’s model, there should be stronger competition between the pre-miRNAs in178

that scenario, compared to wild-type animals where Dicer was more abundant. Our strat-179

egy was as follows. Our simulation results above predicted that pre-miRNAs with stronger180

Dicer affinity should out-compete those with low Dicer affinity. Therefore, we aimed to iden-181

tify some proxy measure that correlates with Dicer affinity, calculate that quantity for each182

pri-miRNA, and ask if it is predictive of the fold-change in mature miRNA expression in the183

Huntington model relative to wild-type. The specific prediction was that high-Dicer-affinity184

miRNAs should show a lower fold-drop in expression than low-Dicer-affinity miRNAs (red line185

in Figure 3C). In contrast, a lack of competition for Dicer should result in a flat fold-change in186

miRNA expression, independent of Dicer affinity (dashed blue line in Figure 3C).187

We used the miRNA sequencing data from 12-month old YAC128 and wild-type mice pro-188

duced in Lee et al. (2011) [30] to look for pre-miRNA features that might influence maturation.189

The RNA-loading complex (RLC) protein TRBP has been shown to promote efficient loading and190

processing of pre-miRNAs in crowded environments [31], as well as promoting cleavage of the191

hairpin loop at the correct site and strand selection during loading onto Ago proteins [32]192
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(Figure 3A). Additionally Takahashi et al. (2018) [33] showed that TRBP preferentially binds193

pre-miRNAs with a strong base-pair binding probability (BPP) in the stem region, where the194

mature miRNA sequence is located. Therefore, we considered a strong TRBP association to195

promote pre-miRNA association to Dicer (parameter ka) and therefore promote maturation196

efficiency (parameter kd), while antagonising dissociation (parameter kb) and stalling (param-197

eter kc, see Figure 3B). We hypothesised that if high BPP leads to high Dicer association, and198

competition effects are present in pre-miRNA maturation, we would see a positive correlation199

between the fold change of miRNA expression following Dicer reduction and BPP (Figure 3C),200

as predicted by the efficient maturation of fast associating pre-miRNAs in Figure 1B and C.201

Conversely, if high BPP did not increase Dicer association or no competition is present in pre-202

miRNA maturation in vivo we would expect no correlation between fold change levels and BPP203

(Figure 3C).204

Fig. 3: Strategy for identifying competition in experimental data

A Role of TRBP in pre-miRNA maturation. TRBP forms a complex with Dicer where it aids in recognition
and loading of pre-miRNA onto the catalytic site of Dicer (i) in crowded environments [34]. TRBP also
aids in determining the appropriate cleavage site (ii) and influences strand selction by Ago (iii) [32]. B
Proposed effects of TRBP on model parameters. TRBP association corresponds to boosted association
rate ka and cleavage rate kd, while the dissociation rate kb and stalling rate kc is moderately reduced.
C Predicted effects in data. If competition effects are present, we expect that a fast association rate (ka)
should have the biggest effect. A strong base-pair binding probability (BPP) in the stem region should
be associated with stronger TRBP binding and therefore more efficient Dicer loading. We can calculate
base-pair binding probabilities for sequenced miRNAs based on available structures and correlate BPP
with miRNA expression levels in the wild-type and reduced Dicer1 (YAC128) mice respectively. We expect
a positive correlation between BPP and miRNA expression if pre-miRNAs with high BPP have
a competitive advantage in miRNA maturation (i; red solid line), with a stronger correlation
in the YAC128 mice where Dicer1 expression is reduced. If no competition is present, or fast
Dicer association is not providing a significant advantage in miRNA maturation, we expect no
relationship between BPP and miRNA expression (ii; blue dotted line).

205
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206

We decided to use BPP for each pre-miRNA in Lee et al. (2011) [30] as a measure of TRBP207

association and therefore indirect association to Dicer. To find the BPP, the miRNA registry208

miRBase [28] was automatically scraped for structure information. For each miRNA, the ma-209

ture sequence was extracted along with the published base pair bonds. The 5’ and 3’ strands210

were then aligned using RNACofold [35] and the BPP for the published bonds were extracted211

(see Figure 4A for the processing pipeline). The BPP for each base was then plotted against212

base position to provide an estimate of the stem structure (Figure 4B-C). To investigate whether213

BPP had any relation to miRNA expression levels, we took the area under the curve (AUC) as214

a single measurement and used Pearson’s correlation measure to investigate the relationship215

between AUC and the miRNA expression level of wild-type and YAC128 mice (Figure 4E-F).216

In wild-type mice with normal Dicer1 mRNA expression, there was a positive correlation217

with the log10 expression level of mature miRNAs (r=0.34283, p<0.01; Figure 4E). In the218

YAC128 mice with significantly reduced Dicer1 mRNA expression (Figure 4D, [30]), the corre-219

lation was also positive (r=0.43718, p < 0.001; Figure 4F). The fact that miRNA expression was220

positively correlated with BPP in these two independent datasets demonstrates the validity of221

our strategy for using BPP as a proxy measure for pre-miRNA affinity to Dicer.222

To test if the relationship between the log10(Expression) and BPP was significantly steeper223

in the YAC128 than in the wild-type mice, we calculated the t-score for the regression slopes224

as follows:225

t =
βWT − βY AC128√

SEβWT
+ SEβY AC128

(1)

where βWT and βYAC128 are the estimated regression slopes for wild-type and YAC128 mice226

respectively, and SEβWT and SEβYAC128 are the relevant standard errors for the estimated slopes.227

For our model fit, the calculated slopes were 1.49±0.449 and 1.89±0.427 for wild-type and228

YAC128 mice respectively. These produced a t-score of t=-2.720971 with df=84, leading to a229

p-value of p=0.00791. Thus, the YAC128 mice had a significantly steeper positive association230

between log10(Expression) and BPP than the wild-type mice, is indicative of competition effects231

partly driving the shift in miRNA expression in the YAC128 mouse model of Huntington’s232

disease.233

Following Dicer reduction in our model, the fold-change for all miRNAs eventually decreased234

(Figure 2D). When we looked at the relationship between the fold-change of YAC128 and wild-235

type mice we saw an overall reduction for most miRNAs, consistent with our model predictions.236

However, a positive correlation between fold-change and high AUC persisted (r=0.2458, p<0.05;237

Figure 4G). Consequently, pre-miRNAs with high BPP in the stem region are not as strongly238
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affected by reduction in Dicer levels, providing further evidence for competition effects between239

pre-miRNA for Dicer affecting the composition of the pool of mature miRNA.240

Fig. 4: Analysis of pre-miRNA structures suggest maturation advantage of pre-miRNAs

with strong associations to Dicer in an HD mouse model
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A Bioinformatics approach. Pre-miRNA hairpin structures were obtained from mirBase [28] and the
mature sequence with recorded base pair bonds extracted. Mature 5’ and 3’ sequences were then aligned
using RNACofold v. 2.4.13 from the ViennaRNA 2.0 package [35]. The base pair binding probability
(BPP) was then extracted for the recorded base pair bonds. Where no base pair bond was recorded the
mean BPP for the ith 5’ nucleotide was used. B Subset of base pair binding probabilities. Black solid line
represents mean base pair binding probabilities across analysed miRNAs, with shaded area representing
standard error of the mean. Red dashed line represents an example miRNA (let-7g) with higher mean
BPP, blue dotted line an example miRNA (miR-511) with lower than mean BPP. Position on x-axis denotes
nucleotide position, with negative numbers referring to position on the 5’ strand and positive numbers
position on the 3’ strand. The centre arbitrarily assigned 0 corresponds to the cleavage site. C Base
pair binding probabilities of mature miRNA sequences. Graphical representation of subset of the mean
base pair binding probabilities of all miRNAs (black) and an example miRNA with higher (let-7g, red)
and lower (miR-511, blue) mean BPP. D Dicer1 mRNA expression in wild-type and YAC128 mice at 5
months and 12 months of age as determined by qPCR. P**<0.01 as determined by Mann-Whitney U-test,
error bars represent standard deviation. Figure adapted from [30]. E-F Pearson correlation of miRNA
expression in 12 month old wild-type (E) and YAC128 (F) mice with BPP area under curve (AUC). G
Pearson correlation of fold change between 12 month old YAC128 and wild-type miRNA expression with
BPP AUC. In E-G solid line represents least squares linear regression, with shaded area calculated from
the standard error of the intercept and gradient. In G outliers above fold change 4 were removed.

241

242

Effects of differential pre-miRNA expression on global miRNA composi-243

tion244

In the previous simulations (Figure 2) we studied the effects of pre-miRNA competition for245

Dicer by varying Dicer concentration from low, scarce regimes to high, abundant regimes. In246

those simulations all eight pre-miRNA species initially had equal concentration, and differed247

only in their reaction kinetics. However, in real cells different pre-miRNA types likely have248

different abundances. This heterogeneity may have knock-on effect on Dicer competition. For249

example if one pre-miRNA is highly upregulated, then it may sequester more Dicer, leaving250

less Dicer free for other pre-miRNA types.251

To investigate whether and how differential pre-miRNA expression could effect the global252

mature miRNA pool via Dicer competition, we returned to the same computational model used253

previously and successively ‘overexpressed’ (Figure 5A-B) or ‘knocked out’ (Figure 5C-D) each254

of our eight simulated pre-miRNAs in turn, by changing the initial pre-miRNA concentration to255

either 5 nM (overexpression) or 0 nM (knockout). We then ran our model with 1.55 nM available256

Dicer, chosen as a condition with notable competition (Figure 2C-F, G), and calculated the fold257

change between the mature miRNA expression in conditions with increased or knocked-down258

pre-miRNAs compared to the same conditions where all pre-miRNAs were expressed equally259

at an initial concentration of 1nM.260
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Fig. 5: Effects of pre-miRNA increase and removal on global miRNA population

Effects on miRNA maturation in the absence (B, D) and presence (A, C) of competition following increase
(5nM pre-miRNA, A-B) and removal (0nM, C-D) of specific pre-miRNAs in a system with 1.55nM available
Dicer. Final concentration of mature miRNA obtained at steady state.

261

262

The simulation results are summarised in the four matrices shown in Figure 5. For a263

given matrix, each row corresponds to a single simulation run where a particular pre-miRNA264

concentration was either increased (panels A, B) or knocked out (panels C, D). The left two265

matrices (panels A, C) show results with 1.55 nM Dicer – encouraging competition – whereas266

the right two matrices (panels B, D) are the same simulations but with abundant Dicer and267

no competition, as a control comparison. The number and colour of each matrix element268

indicates the fold-change in mature miRNA expression for each of the eight species (matrix269

columns).270

As expected, increasing the pre-miRNA concentration of a given species always increased its271

mature miRNA expression (red diagonals with values > 1 in Figure 5A, B). Similarly, knocking272

out a pre-miRNA species lead to zero mature miRNA expression (blue diagonals with values273

= 0 in Figure 5C, D).274

Following increase of specific miRNAs, there was a broad trend of a reduction in mature275
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miRNA of all other species in the system in a competitive environment, while the increased276

pre-miRNAs were all upregulated (Figure 5A). The degree of upregulation was not homoge-277

neous between the different miRNAs, and when compared with upregulated pre-miRNAs in278

the absence of competition (Figure 5B) it is interesting to note that only pre-miRNAs with a fast279

association rate (ka) was more efficiently matured in the absence of competition when over-280

expressed. Increasing or decreasing the initial amount of pre-miRNAs with high kc appears281

to have strong effects on other pre-miRNAs in the system. While these pre-miRNAs are not282

highly represented among mature miRNAs (Figure 2C), their broad effects on other miRNAs283

in Figure 5A suggest that they play an indirect role in regulating the composition of mature284

miRNAs through competition for Dicer. These effects are largely mirrored following removal of285

each initial pre-miRNA (Figure 5C). Overall, these results demonstrate that change in expres-286

sion levels of one type of pre-miRNA species can have heterogeneous knock-on effects on the287

expression of other miRNAs, in regimes where Dicer is scarce.288

Discussion289

Modelling studies in the last few decades have discovered key principles underlying compe-290

tition for resources during during gene expression and protein translation , with multiple291

models that investigate miRNA competition for mRNA targets [12,23–25,36–38] These models292

provide insights into the regulation of miRNA-mediated gene silencing by exploring factors293

that determine target specificity and affinity, allowing inferences to be made on protein ex-294

pression levels. In contrast, our model does not directly concern target-specific silencing,295

instead we were interested in understanding the role of pre-miRNA competition for Dicer dur-296

ing maturation and its effect on the global miRNA population. Based on the YAC128 model297

of Huntington’s disease, reduction of Dicer1 expression in vivo leads to a significantly altered298

composition of the global miRNA pool in the brain [30]. The YAC128 mouse model is also299

known to display a significantly altered gene expression in the brain, as determined by mRNA300

sequencing [39]. While the change in mRNA expression in the YAC128 mouse model might be301

a result of aberrant splicing activity [40, 41], tissue-specific knockdown of Dicer reveals the302

importance of miRNAs in regulating gene expression levels (see [42] and [43] for brain-specific303

examples). Additionally, Dicer expression is known to be reduced in Alzheimer’s disease [44],304

where changes in the miRNA transcriptome has been linked to changes in mRNA expression305

through complex networks [45]. Similar links between miRNA expression profiles and the306

mRNA transcriptome has been made in cancer ( [46–48] and others) and liver failure [49].307

Dicer is also reduced during ageing [44,50], where the miRNA transcriptome is also known to308
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be altered [51,52], highlighting the need for understanding the role of pre-miRNA competition309

for Dicer.310

Here, we have presented a simple model of pre-miRNA competition for a limited Dicer avail-311

ability during miRNA maturation. In models of competition between multiple hypothetical312

species of pre-miRNA, we found that high association rates provides a competitive advantage313

in conditions with reduced Dicer availability. We also found empirical evidence of competition314

effects partially regulating the composition of neuronal miRNAs in the YAC128 model of Hunt-315

ington’s disease. Finally, we found that certain pre-miRNAs are more sensitive to changes in316

Dicer availability in conditions with increased or removed pre-miRNAs.317

We showed that a strong association with Dicer (high ka) is beneficial both in increasing the318

miRNA maturation efficiency, but also provides a competitive advantage following reductions319

in Dicer availability (Figure 2). Based on the work of Takahashi et al. [33] we reasoned that320

pre-miRNAs with high BPP in the stem region would preferentially associate with TRBP and321

in turn more efficiently be loaded onto Dicer [31]. As the expression of Dicer, but not other322

components of the pre-miRNA maturation pathway, was significantly reduced at the mRNA323

level in the 12-month old YAC128 mice [30] we decided to use this as an existing model of324

Dicer competition in vivo.325

We investigated the relationship between miRNA expression in the YAC128 Huntington’s326

mouse model [30] and BPP in the stem region. We identified a weakly positive but statistically327

significant positive correlation between higher expressing miRNAs and BPP in both the wild-328

type and YAC128 mice; though the slope of the association was significantly stronger in the329

YAC128 mice (Figure 4). These results provide proof-of-principle for our assumption that TRBP330

BPP is a valid proxy measure for Dicer affinity. We also found a weakly positive correlation331

in the fold change between YAC128 and wild-type mice. This shows that pre-miRNAs with332

a high BPP, and therefore higher TRBP association (and consequently more efficient Dicer333

loading and maturation), are less affected by reduction in available Dicer. These results are334

important because they show that competition for Dicer in part regulate the composition of335

the global miRNA pool. They also suggest that competition effects might play a role for the336

disruption of the miRNA expression profile in Huntington’s disease.337

The degree of competition can not only be affected by Dicer availability, but also by differen-338

tial expression of the various pre-miRNAs. We investigated this by either increasing or remov-339

ing specific pre-miRNAs (mimicking up-regulation or knock-out experiments) and assessing340

the changes in the global mature miRNA pool in the presence or absence of competition (Figure341

5). We found that pre-miRNAs with fast stalling rates were strongly affected other pre-miRNAs342

when over-expressed. These effects were mirrored following removal of pre-miRNAs from the343
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system.344

What might be the functional benefit of pre-miRNA competition? In evolutionary terms,345

MiRNAs are phylogenetically stable once they emerge. Novel miRNAs are rarely lost in de-346

scendants after arising [53]. MiRNAs are also continuously emerging and undergo changes347

in sequence specificity and increase sequence diversification [53]. Taken together, these sug-348

gest that competition for pre-miRNA maturation is not detrimental and could even be positive.349

The selective effect of pre-miRNA expression following changes in availability of pre-miRNAs350

with either fast dissociation or stalling rates (Figure 5) indicate that, while these inefficiently351

matured pre-miRNAs are not highly represented among mature miRNAs (Figure 2C, E, G),352

they do play an important role in shaping the composition of mature miRNAs. Competition353

between pre-miRNAs for Dicer might therefore help stabilise and fine-tune the mature miRNA354

expression.355

As with all models, there are limitations with our model. First, the permanently stalled356

pre-miRNA Dicer complex, which can neither dissociate nor complete miRNA maturation, is357

not biologically plausible. While useful to account for the ceiling effect after around 40% of358

wild-type pre-miRNA are diced [20] (Figure 6A), there is no evidence of pre-miRNA and Dicer359

being removed together from the pre-miRNA maturation pathway in vivo. Nevertheless, our360

model is a single, well-mixed compartment observed for 1 hour when fitted to data. It is not361

unreasonable to consider the stalling a prolonged, but temporary, interruption to the pre-362

miRNA maturation process, for example by strong but misaligned association with a subset of363

pre-miRNAs within a species. In a more strongly biological model version, this term could be364

exchanged to e.g. dynamic pre-miRNA availability, spatial constraints, or including active and365

inactive Dicer states. Second, our model has a fixed initial concentration of pre-miRNA, and366

therefore does not take into account pre-miRNA production or transportation rates. However,367

we do not expect this to affect our conclusions, because these processes likely happen on a368

longer timescale of hours–days, whereas our simulations were over tens of minutes and later369

snapshots at steady state.370

In conclusion, we have presented a simple model of pre-miRNA maturation capable of repli-371

cating experimental data. We used our model to dissect pre-miRNA characteristics that influ-372

ence maturation, and based on our model predictions formed a testable hypothesis for identi-373

fying pre-miRNA competition for Dicer in experimental data. Through bioinformatic analysis374

we then found evidence of pre-miRNA competition in vivo. Finally, we uncovered a possible in-375

direct regulatory role of lowly expressed miRNAs as directors of the global miRNA composition376

through pre-miRNA competition effects.377
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Methods378

Software379

All simulations and bioinformatics were performed in Python v3.9 if not otherwise indicated380

in the text. Ordinary differential equations (ODEs) were solved with the scipy integrate [54]381

library using the LSODA solver [55, 56], except for simulations in Figure ??B and D where382

the Runge-Kutta method of order 5(4) [57, 58] was used instead to reduce numerical er-383

rors in solving. All code used in this paper is available from https://github.com/SofiaRaak/384

Dicer-miRNA-dynamics-model.385

Model design386

We designed our initial model (Results; Figure 1B) to replicate the in vitro test-conditions387

described in Tsutsumi et al. (2011) [20], where 1nM pre-miRNA was incubated with 5nM388

recombinant Drosophila Dicer1 for 60 minutes and pre-miRNA maturation tracked by gel shift389

to determine the fraction of diced miRNA (Figure 6). Based on this, we included a set amount390

of pre-miRNA and Dicer in the model at the start of each simulation (Figure 6A). The pre-391

miRNA was then allowed to associate with Dicer to form a pre-miRNA-Dicer complex, which392

could either dissociate or go through a maturation step to form mature miRNA and release the393

Dicer again to re-join the pool. Alternatively, the pre-miRNA could irreversibly form a complex394

with Dicer to form a stalled, permanently sequestered pre-miRNA-Dicer species. While not395

necessarily biologically intuitive, this term was added to the model to account for the dynamics396

of pre-miRNA maturation in the experimental data.397

We mathematically described our model as a series of ordinary differential equations (ODEs),398

where the left hand side describes the change in concentration for each species in the system399

and the right hand side describes the interactions and reactions that increase or decrease the400

concentration for each species:401

d[Pi]

dt
= kbi [PDi]− (kai + kci)[Pi][D] (2)

d[PDi]

dt
= kai

[Pi][D]− (kbi + kdi
)[PDi] (3)

d[D]

dt
= (kbi + kdi

)[PDi]− (kai
+ kci)[Pi][D] (4)
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d[Si]

dt
= kci [Pi][D] (5)

d[Mi]

dt
= kdi [PDi] (6)

where Pi represents the concentrations of free pre-miRNA of species i, D represents free402

Dicer, PDi represents pre-miRNA bound to Dicer, Si represents stalled pre-miRNA-Dicer com-403

plex and Mi represents mature miRNA concentration (all in nM). The reaction rates kai-di rep-404

resent the reaction rates for pre-miRNA-Dicer association, dissociation, stalling and dicing405

respectively, see table 1. The model was then fitted to experimental data.406

Although dissociation constants are often more interpretable than reaction rates, in multi-407

reaction systems, especially those with sinks like the model we present, knowledge of the408

dissociation constant for the reactants in any given bimolecular reaction does not necessarily409

imply knowledge of the resulting steady-state concentration of the product. As a consequence,410

in this study we chose to describe the model in terms of its more elementary reaction rates.411

Fitting model to data412

In order to fit the parameters of the model to experimental data initial parameter values were413

specified and the system of ODEs solved and output compared to the experimental data in414

Tsutsumi et al [20]. We constrained the ratio of the ka and kb reaction rates to match Tsutsumi415

et al’s [20] reported Kd values for both WT (Kd = 25.4 nM) and short loop mutants (Kd = 147.7416

nM) but fit all other parameters. The difference between the model output and experimental417

data was then quantified as the sum squared error (SSE) between the simulation time series418

and the experimental data time series and fed into the CMA-ES [59] optimiser, iteratively419

updating the parameter values and repeating the process until a good fit was achieved (see420

fig 6). The optimised parameter values for both wild-type (WT) and mutant (short-loop; SL)421

miRNA are shown in table 1, along with initial concentrations of pre-miRNA (P0) and Dicer422

(D0). In all subsequent simulations, the WT parameters were used as a foundation for the423

different pre-miRNA species.424
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Tab. 1: Parameter values used in model
Symbol Parameter Value Source

kaWT Pre-miRNA association rate, wild-type 0.0053 s-1nM-1 Optimisation, [20]
kaSL Pre-miRNA association rate, short-loop 0.0020 s-1nM-1 Optimisation, [20]
kbWT Pre-miRNA dissociation rate, wild-type 0.1340 s-1 Optimisation, [20]
kbSL Pre-miRNA dissociation rate, short-loop 0.2902 s-1 Optimisation, [20]
kcWT Pre-miRNA stalling rate, wild-type 0.0122 s-1nM-1 Optimisation
kcSL Pre-miRNA stalling rate, short-loop 0.0343 s-1nM-1 Optimisation
kdWT Pre-miRNA dicing rate, wild-type 10439 s-1 Optimisation
kdSL Pre-miRNA dicing rate, short-loop 0.0707 s-1 Optimisation
P0 Initial pre-miRNA concentration 1nM [20]
D0 Initial Dicer concentration 5nM [20]

Fig. 6: Optimisation of reaction rates in computational model
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A Optimisation flow for fitting computational model to experimental data from [20]. The fraction of diced
miRNA at specific time points in the model was compared to experimental data and the error calculated
as the sum of squares (SSE) of the difference between the experimental data and data generated by the
model. The error was then fed back into the optimisation algorithm CMA-ES [59] and reaction rates
adjusted before output was compared again. The procedure was repeated for both wild-type (long-loop)
and mutant (short-loop) pre-miRNAs until the error was maximally minimised. B Reproduced wild-type
experimental data from model optimisation. C Reproduced short-loop experimental data from model
optimisation. Parameter values obtained from optimisation are recorded in Table 1.

425

426

Bioinformatics427

All miRNA expression data used in bioinformatics are available in [30]. Briefly, miRNAs present428

in expression data from wild-type and YAC128 mice were identified in miRBase [28] and their429

pre-miRNA structure recorded. MiRNAs that were not found in miRBase or that did not have430

a pre-miRNA structure were excluded. From the pre-miRNA structure, the mature sequences431

were isolated and their base pair bonds recorded. The mature sequences were then aligned432

with RNACofold v. 2.4.13 [35] and the base pair binding probability (BPP) for the recorded433

base pair bonds were extracted. In the absence of a recorded base pair bond, the mean BPP434

was chosen (Results; Figure 4A). The BPP was then plotted against the nucleotide position435

to create a BPP curve (Results; Figure 4B). As a single measure of BPP, the area under the436

curve was taken and plotted either against the log10(miRNA Expression) or the fold-change in437

miRNA expression between wild-type and YAC128 mice (Results; Figure 4).438
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