10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.595117; this version posted June 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Fibroblasts carrying intermediate C9orf72 hexanucleotide
repeat expansions from INPH patients show impaired energy
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Abstract

Long C9orf72 hexanucleotide repeat expansions (C9-HRE) are the most common genetic
cause of frontotemporal dementia (FTD), a group of neurodegenerative syndromes leading
to cognitive dysfunction and frontal and temporal atrophy. FTD is a potential comorbidity of
idiopathic normal pressure hydrocephalus (iNPH) and carrying the C9-HRE can modify the
age-of-onset in INPH patients. While intermediate-length C9-HRE (<30 repeats) are often
considered non-pathogenic, the exact pathological cutoff is unclear. In this study, we
assessed whether fibroblasts from INPH patients carrying intermediate C9-HRE display
C9-HRE-associated pathological hallmarks and changes in cellular function. C9-HRE-
associated RNA foci were not detected in the intermediate carriers. The number of p62-
positive puncta was significantly increased only in long C9-HRE catrrier fibroblasts, in line
with p62-positive intracellular inclusions observed in a brain biopsy from the patient. Specific
parameters of mitochondrial respiration were significantly reduced in both the long and
intermediate C9-HRE carrier fibroblasts. Fibroblasts from the intermediate C9-HRE carriers
showed upregulated glycolytic activity, possibly to counteract the reduced mitochondrial
respiration, which could not be observed in the long C9-HRE carriers. In conclusion, these
data suggest that while the long C9-HRE leads to more severe cellular pathologies than

intermediate C9-HRE, the latter might predispose cells to pathological changes.

Keywords: Frontotemporal dementia, idiopathic normal pressure hydrocephalus, C9orf72,

p62, mitochondrial respiration, glycolysis
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1 Background

Frontotemporal dementia (FTD) is a progressive early-onset (<65 years) neurodegenerative
disorder, characterized by degeneration in the frontal and temporal lobes of the brain.
Behavioral variant frontotemporal dementia (bvFTD) is the most common clinical subtype of
FTD. Approximately half of the FTD cases are caused by mutations in different genes,
including MAPT (microtubule associated protein tau) and GRN (progranulin), or by long
GGGGCC hexanucleotide repeat expansions in C9orf72 (C9-HRE), the most common
genetic cause underlying both familial and sporadic FTD and amyotrophic lateral sclerosis
(ALS) [1-7]. In the affected individuals, the C9-HRE length can reach several hundreds or

thousands of copies.

Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disease characterized
by a group of three clinical findings (Hakim’s triad), which are gait disturbances, cognitive
impairment, and urinary incontinence [8]. The patients might show all or some features of
the triad and can additionally display impaired frontal executive function [9] and enlarged
ventricles in clinical imaging [10,11]. Similar to bvFTD, iNPH can present symptoms such as
decline in executive function, psychomotor slowness, and behavioral and personality
changes [12]. In fact, even though the most common comorbidities of INPH are
hypertension, Alzheimer’s disease (AD), and vascular dementia [10,13], FTD has also been
described as a comorbidity for INPH [10,14]. Interestingly, long C9-HRE can modify the age-

of-onset in INPH patients as shown in a cohort of Finnish INPH patients [15].

While C9-HRE with intermediate repeat lengths of less than 30 typically do not cause FTD
and are often considered non-pathogenic [16], there is some evidence that they could be
associated with ALS and other neurodegenerative diseases. Two meta-analyses have found

an association between intermediate repeats of 24-30 and ALS, and the authors suggest
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that repeats of 24 or longer should be considered pathogenic [17,18]. For shorter
expansions, the results are contradictory. A study in Finnish patients found that carrying
intermediate-length alleles increases the risk of ALS when one of the alleles has =17
repeats [19], but this could not be observed in a larger study [20]. A significant association
between clinically diagnosed Parkinson’s disease (PD) and the intermediate C9-HRE has
been reported [21]. This association, however, could not be corroborated in a cohort of
autopsy-confirmed PD cases [22]. Moreover, a possible association between the
intermediate C9-HRE and atypical Parkinsonian syndromes has been suggested in a few
studies containing a small number of patients [23,24]. Cali et al. [25] assessed whether the
intermediate C9-HRE could be a genetic risk factor for corticobasal degeneration (CBD), a
neurodegenerative disease in the FTD spectrum that shares similarities with PD but displays
tau protein brain pathology. They found that the number of individuals with the intermediate

C9-HRE was significantly higher among CBD cases as compared to controls.

The main pathological mechanisms associated with the long C9-HRE are gain-of-toxic
function through accumulation of RNA foci and production of dipeptide repeat (DPR)
proteins (poly-GP, poly-GA, poly-GR, poly-PA, and poly-PR) and loss-of-function due to
haploinsufficiency leading to reduced C9orf72 mRNA and protein levels [26—29]. While
these pathological hallmarks are specific for the long C9-HRE, additional hallmarks have
also been detected in the CNS of FTD and ALS patients with and without the C9-HRE, such
as intracellular inclusions formed by the accumulated TAR DNA-binding protein-43 (TDP-
43) or sequestosome 1 (p62/SQSTM1, hereafter p62) [30—-34]. Data on pathological
changes in the intermediate C9-HRE carriers are sparse. It has been reported that the
intermediate C9-HRE does not lead to the formation of RNA foci or DPR proteins.
Furthermore, increased C9orf72 mRNA and protein levels were detected in patients and

CRISPR/cas9 knock-in iPSC-derived neural progenitor cells carrying intermediate C9-HRE
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[25]. In the same study, the authors showed that C9orf72 overexpression in HelLa cells
expressing a single copy of long C9-HRE affected autophagic function by promoting
autophagy under nutrient-rich conditions while impairing autophagy during starvation-
induced stress. Current data also suggest that both C9-HRE-associated gain-of-toxic-
function and loss-of-function can impair mitochondrial function. Defective autophagy and
production of DPR proteins may affect the energy metabolism of cells. Mitophagy, a special
form of autophagy, is responsible for the elimination of damaged mitochondria [35] and the
failure in this mitochondrial quality control mechanism can lead to mitochondrial dysfunction,
which has been described in both FTD and ALS [36]. Moreover, impaired mitochondrial
function has been reported in iPSC-derived motor neurons of patients carrying the C9-HRE

[37].

While research on FTD and ALS-related pathologies has naturally focused mostly on
neurons in FTD and ALS patient brain and iPSC-derived neurons, there are some studies
showing that peripheral cells can also display distinct pathologies related to the C9-HRE
and in general to ALS and FTD. RNA foci and poly-GP and poly-GA proteins have been
detected in skeletal muscle biopsies from ALS patients carrying the C9-HRE [38]. iPSC-
derived myocytes from C9-HRE-carrying ALS patients displayed RNA foci and expressed
the poly-GR protein [39,40]. RNA foci have also been previously described in C9-HRE-
carrying ALS or FTD patient-derived skin fibroblasts by us and others [41,42]. Other cellular
pathologies have also been previously observed in fibroblasts. For example, increased
levels of p62 and LC3Il have been detected in C9-HRE-carrying ALS/FTD patient-derived
fibroblasts, suggesting defective autophagy under stress conditions [43]. In our previous
study, we observed p62 accumulation but no changes in basal or induced autophagy in both
C9-HRE-carrying and non-carrying FTD patient fibroblasts [42]. Moreover, fibroblasts from

patients with sporadic ALS and ALS patients carrying mutations in VCP, SOD1, or TARDBP
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genes have been reported to display impaired mitochondrial function [44-46]. Work by us
and others in fibroblasts from ALS and FTD patients carrying the C9-HRE also showed
mitochondrial dysfunction [47]. Taken together, these studies show that cells other than
neurons, such as skin fibroblasts, can display some of the pathological hallmarks and altered
cellular functions connected to the C9-HRE. These patient-derived cells might therefore be
suitable for testing the effects of therapeutic interventions targeting specific pathways or in

biomarker research in the future.

Based on these current data, we aimed to assess whether the intermediate C9-HRE have
effects on cellular pathologies and function similar to those previously observed in the long
C9-HRE carriers. To this end, we focused on characterizing skin fibroblasts from iINPH
patients carrying intermediate C9-HRE. This is of particular interest as the pathogenic cutoff
of the intermediate repeat length has been under debate and the cellular effects of the

intermediate repeats have not been studied in much detail previously.

2 Material and Methods

2.1 Study subjects, skin biopsies, ethical permits, and genotyping

Skin punch biopsies were obtained at Neuro Center, Neurology, Kuopio University Hospital,
Kuopio, Finland. Five iNPH patients, of whom four were intermediate carriers (10 to 23
repeats) of the C9-HRE and one long C9-HRE carrier (>60 repeats), as well as two FTD
patients carrying the long C9-HRE, and three age-matched healthy controls were included
in the study cohort. Both males and females were included in the cohort. Only one long C9-
HRE-carrying iNPH patient could be included because these patients are rare. The C9-HRE
carriership status in these individuals was confirmed from blood samples by repeat-primed
PCR [20]. Brain biopsy samples from the iNPH patients had been previously assessed and

p62-positive inclusions were found in one of the intermediate C9-HRE carriers and the long


https://doi.org/10.1101/2024.05.28.595117
http://creativecommons.org/licenses/by-nc-nd/4.0/

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.595117; this version posted June 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

C9-HRE carrier. All the participants gave a written informed consent. The study was
performed according to the Declaration of Helsinki. The research protocol has been
approved by the Research Ethics Committee of the Northern Savo Hospital District,
(currently: Medical Research Ethics Committee of Wellbeing Services County of North Savo)
Kuopio, Finland (ethical permits 16/2013, 254/2015 and 276/2016). Skin biopsy samples

were pseudonymized and handled using code numbers.

2.2 Culturing and treatments of fibroblasts

Fibroblasts were obtained from skin biopsy samples as described previously [42]. The
fibroblasts were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM, 21980032, Gibco)
with 20% heat inactivated fetal bovine serum (FBS, 10270106, Gibco), 1x MEM Non-
Essential Amino Acids (11140050, Thermo Fisher) and 100 U/ml penicillin and 100 pg/ml

streptomycin (15140122, Thermo Fisher) (= fibroblast medium) at +37°C and 5% CO2.

For autophagy induction, cells were treated with 200 nM of Torin 1 (4247, Tocris) for 24h.
To assess basal autophagy, cells were treated with 300 nM bafilomycin Al (BafAl, B1793,
Sigma-Aldrich) for 6 h to block the late phase of autophagy. To block protein degradation
through the ubiquitin-proteasome system (UPS), 10 uM lactacystin (Enzo Life Sciences)
was used for 16h [48]. Dimethyl sulfoxide (DMSO, D2650, Sigma-Aldrich) was used as a

vehicle control.

2.3 Immunocytochemistry

For immunocytochemistry, glass coverslips were coated with 0.3% gelatine for 30 min at
+37°C in 24 well plates. Fibroblasts were plated at a density of 20,000 cells/well in a 24 well
plate and fixed after 24 h in 4% paraformaldehyde (PFA, 28908, Thermo Scientific) for 10
min at room temperature (RT). Cells were permeabilized with 0.1% Triton X-100 (X100,

Sigma-Aldrich) for 10 min at RT and blocked for 30 min at RT in 1% bovine serum albumin

7
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(BSA, A9647, Sigma-Aldrich). For overnight incubation at +4°C the following primary
antibodies were used: anti-TDP-43 (1:100, 10782-2-AP, Proteintech), anti-phospho-TDP-43
(1:200, CAC-TIP-PTD-M01, CosmoBio) and anti-p62 (1:200; sc-28359, Santa Cruz). The
coverslips were incubated for 1 h at RT with one of the following secondary antibodies:
goat anti-rabbit Alexa Fluor® 488 (1:500, A-11008, Invitrogen) was used for TDP-43,
goat anti-mouse Alexa Fluor® 488 (1:500, A-11029, Invitrogen) for phospho-TDP-43 and
goat anti-mouse Alexa Fluor® 568 (1:500 A11004, Invitrogen) for p62. Coverslips were
mounted with Vectashield Vibrance antifade mounting medium containing 4',6-diamidino-2-
phenylindole (DAPI) (H-1800, Vector Laboratories) for immunocytochemistry with p62 or,
for immunocytochemistry with TDP-43 and phospho-TDP-43, with a 1:1 mix of mounting
medium with DAPI and Vectashield Vibrance antifade mounting medium with TRITC-
Phalloidin (H-1600, Vector Laboratories). Images were taken with an Olympus BX51

microscope and analyzed with ImageJ (version 1.52 p, Fiji, NIH).

2.4 Immunohistochemistry

From the INPH patients, right frontal cortical brain biopsy was obtained during insertion of
the ventricular catheter for CSF shunt. Cortical biopsies were collected using biopsy forceps
or a needle prior to the insertion of an intraventricular catheter for 24-hour monitoring of
intracranial pressure or shunting. The biopsies were fixed in buffered formalin and
embedded in paraffin. The resulting 7-um sections were processed using standard
techniques, including deparaffinization and rehydration. All sections were then stained using
haematoxylin-eosin (H&E) and immunohistochemical methods. After pretreatment, the
sections were blocked using normal goat serum for 30 minutes to reduce non-specific
reactions. Epitopes were then unmasked and p62 antibody (1:1000, 610832, BD
Biosciences) was added to the sections, which were incubated overnight at 4°C. The next

day, the sections were incubated with a biotinylated secondary antibody and then with a

8
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streptavidin enzyme conjugate (85-8943, LABSA Zymed Laboratories) at room temperature
for 30 minutes to visualize the reaction products. Immunostained sections were
counterstained with Harris’ haematoxylin, dehydrated, and mounted in DePex (BDH
Chemicals, Hull, UK). An experienced neuropathologist evaluated all sections using light

microscopy. p62 immunohistochemistry was classified as present or absent.

2.5 Fluorescence in situ hybridization (FISH)

FISH was performed using a protocol based on a previous publication [29], with some
modifications. Cells on gelatine-coated coverslips were fixed with 4% PFA in diethyl
pyrocarbonate (DEPC)-PBS, permeabilized with 0.2% Triton X-100/DEPC-PBS, washed
twice with DEPC-PBS and then incubated twice for two minutes in 70% ethanol and once in
100% ethanol for 2 minutes. This was followed by incubation in hybridization buffer (10%
dextran sulfate, 50% formamide, 50 mM sodium phosphate buffer (pH 7), 2 x SSC) at 55°C
for 30 min. Prior to use, the locked nucleic acid (LNA) probe TYE™ 563-(CCCCGG)s3
(Exiqon; recognizing the expanded G4C: repeats) and the TYE™ 563-(CAG)s negative
control probe (Exigon) were denatured at 80°C for 5 min and diluted to 40 nM with
hybridization buffer. The hybridization of the samples with either probe was performed in a
light-protected chamber at +55°C for 3 h. Confocal images were acquired with LSM800

(Zeiss) microscope.

2.6 p62 puncta analysis

Immunocytochemistry was performed with the p62 antibody and DAPI as described above.
For p62 puncta analysis, the number of cells per image was calculated using DAPI images
and p62 images were converted into binary images and puncta of a defined size were used

for further analysis. Images of cells stained without primary antibody were used for
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background subtraction and thresholding. The mean size of p62 positive puncta was
calculated per image and mean number of p62 positive puncta per cell was calculated by
dividing the number of puncta per image with the number of cells per image. The intensity
was quantified as sum intensity and then normalized to the puncta size as described

previously [42].

2.7 Protein extraction from cells and Western blotting

Proteins were extracted in lysis buffer (10 mM Tris-HCI, 2 mM EDTA, 1% SDS) containing
protease and phosphatase inhibitor (1862209 and 1862495, Thermo Scientific). To measure
protein concentration, bicinchoninic acid assay (BCA, 23225, Thermo Scientific) and a plate
reader (Infinite® M200, Tecan Group Ltd.) were used. Eight ug of protein were loaded on
sodium dodecy! sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) gels (NUPAGE
Novex 4-12% Bis-Tris mini or midi, NP0335 or WG1402BOX, Invitrogen) and run for 1 h 40
min at 100 V. With a Trans-Blot® TurboTM Transfer System (Bio-Rad, 25 V, 1.0 A, 30 min),
proteins were transferred on 0.2 um polyvinylidene fluoride (PVDF) membranes (1704157,
Bio-Rad). Unspecific binding was blocked with 5% non-fat dry milk or bovine serum albumin
(BSA A9647, Sigma-Aldrich) in 1 x Tris-buffered saline with 0.1% Tween 20 (93773, Sigma-
Aldrich) (TBST) for 1 h at RT. The protein bands were detected by incubating the membrane
with primary antibodies (see below) overnight at +4°C and horse radish peroxidase-
conjugated secondary antibodies (1:5000, NA934 or NA931, GE Healthcare) for 1 h at RT.
Proteins were detected with enhanced chemiluminescence (ECL) detection reagents
(RPN2236 or RPN2235, Amersham Biosciences, GE Healthcare,) and ChemiDoc™ XRS+
System (Bio-Rad). Intensities of the detected protein bands were quantified with Image
Lab™ software (6.0.1, Bio-Rad). Membranes were stripped with stripping buffer (21063,
Thermo Scientific) for 10 min at RT, washed in 1 x TBST and re-probed with other

antibodies. The following primary antibodies were used: anti-pULK1Ser757 (1:1000, #

10
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14202S, Cell Signaling Technology), anti-ULK1 (1:1000, #8054, Cell Signaling Technology),
anti-C9orf72 (1:500, 22637-1-AP, Proteintech), anti-SQSTM1/p62 (#5114, 1:1000, Cell
Signaling Technology), anti-LC3B (1:3000, ab51520, Abcam), anti-poly-ubiquitinated
proteins (FK1, 1:1000, BML-PW8805-0500, Enzo Life Sciences), anti-TDP-43 (1:1000,
10782-2-AP, Proteintech), anti-phospho-TDP-43 (1:1000, TIP-PTD-P02, CosmoBio) and
anti-beta-actin (1:1000, ab8226, Abcam). The data are shown as median + interquartile
range or mean + standard error of the mean (SEM). The protein levels were normalized to
the levels of B-actin in the same sample and this ratio was set to 100 in (vehicle-treated)
control cells. The protein levels are shown as % compared to those in vehicle-treated control

cells (set to 100%).

2.8 Energy metabolism (mitochondrial respiration and glycolysis)

For the experiments on the energy metabolism, fibroblasts were plated (5000 cells/well) in
uncoated Seahorse XF96 Cell Culture Microplates (101085-004, Agilent) with 8 wells per
cell line in each experiment. For normalization of the data, cells were stained with Vybrant™
DyeCycle™ Green Stain (5 uM, V35004, Thermo Fisher) after completing the Cell Mito
Stress Test or Glycolysis Stress Test. Images were acquired with 4x objective from
brightfield and the IncuCyte® S3 (Essen BioScience). IncuCyte® software (v2019B) was
used to count the number of cells per well in the green fluorescence channel. Parameters
were calculated using the Wave 2.6.0 software (Agilent) and results were normalized to the

number of cells counted per well

2.8.1 Mito Stress Test

Mito Stress Test was performed 48 h after plating using assay parameters provided by
Agilent. On the day of the experiment, medium was changed to Seahorse XF DMEM

medium (103575-100, Agilent) supplemented with 10 mM Seahorse XF glucose solution,

11


https://doi.org/10.1101/2024.05.28.595117
http://creativecommons.org/licenses/by-nc-nd/4.0/

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.595117; this version posted June 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2 mM Seahorse XF L-glutamine solution and 1 mM Seahorse XF pyruvate solution (103577-
100, 103579-100 and 103578-100, all from Agilent) and cells were kept in a CO: free
incubator for 45 min prior to starting the Cell Mito Stress Test. The following final
concentrations of electron transport chain modulators were used: 2 uM carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP), 1 uM oligomycin and a mixture of 1 uM
antimycin A and 1 uM rotenone (C2920, 75351, A8674 and R8875, all from Sigma-Aldrich).
With a Seahorse XFe96 analyzer (Agilent), changes in oxygen consumption rate (OCR) in
response to injections were detected. First, basal respiration is measured and then
oligomycin, which blocks complex V (ATP synthase), is added. The subsequent decrease
in OCR is linked to cellular ATP production. Adding the uncoupling agent FCCP leads to a
collapse of the proton gradient, causing uninhibited electron flow through the ETC and
oxygen consumption by complex IV reaches the maximum. With the OCR following FCCP
injection (maximal respiration), also the spare capacity can be calculated, which indicates
the cell’s ability to respond to an increased energy demand. The mitochondrial respiration
is shut down completely with the injection of rotenone and antimycin A (they block
complexes | and lll, respectively), allowing the calculation of nonmitochondrial respiration

driven by processes outside the mitochondria [49].

2.8.2 Glycolysis Stress Test

Glycolysis Stress Test was performed 48 h after plating using assay parameters provided
by Agilent. On the day of the experiment, medium was changed to Seahorse XF DMEM
medium (103575-100, Agilent) supplemented with 2 mM Seahorse XF L-glutamine solution
(103579-100, Agilent) and cells were kept in a COz2 free incubator for 1 h prior to starting the
Glycolysis Stress Test. For the experiments, the following final concentrations were used:

glucose 10 mM (103577-100, Agilent), oligomycin 1 uM (75351, Sigma-Aldrich) and 50 mM
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2-Deoxy-D-glucose (2-DG, D6134-5G, Sigma-Aldrich). Changes in extracellular acidification
rate (ECAR) in response to injections were detected with Seahorse XFe96 analyzer
(Agilent). Prior to the assay, the cells were kept in glucose-free medium. Before the first
injection, the non-glycolytic acidification is measured, since at this point the cells do not
perform glycolysis because the medium does not contain glucose. The first injection adds a
saturating amount of glucose and by measuring the ECAR, the rate of glycolysis under basal
conditions is assessed. The next injection, oligomycin, inhibits the mitochondrial ATP
production, so energy production is shifted to glycolysis. The increase in ECAR following
this shift shows the maximal glycolytic capacity from which the glycolytic reserve can also
be calculated. The final injection of 2-DG inhibits glycolysis by competitive binding to glucose
hexokinase. The decrease in ECAR following this injection, confirms that the changes in

ECAR observed during the experiment are due to glycolysis

2.9 RNA extraction and global RNA sequencing
Total RNA was isolated (11828665001, Roche Molecular Systems, Inc.) according to the
manufacturer’s instructions and RNA concentrations were measured using NanoDropTM

One (Thermo Scientific).

Bulk RNA sequencing (RNA-seq) was performed using RNA extracted as described above.
Library preparation and RNA sequencing was conducted by Novogene (UK) Company
Limited. In brief, mMRNA enrichment was performed with oligo(dT) bead pulldown, from
where pulldown material was subjected to fragmentation, followed by reverse transcription,
second strand synthesis, A-tailing, and sequencing adaptor ligation. The final amplified and

size-selected library comprised of 250-300 bp insert cDNA. The paired-end, 150 bp
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sequencing was executed with an Illumina high-throughput sequencing platform.

Sequencing yielded 20.8-28.1 million sequenced fragments per sample.

The 150 nt pair-end RNA-seq reads were quality controlled using FastQC (version 0.11.7)
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed with
Trimmomatic (version 0.39) [50] to remove Illumina sequencing adapters and poor quality
read ends, using the following essential settings: ILLUMINACLIP:2:30:10:2:true,
SLIDINGWINDOW:4:10, LEADING:3, TRAILING:3, MINLEN:50. Reads aligning to
mitochondrial DNA, ribosomal RNA or phiX174 genome, or composed of a single nucleotide,
were removed using STAR (version 2.7.9a) [51]. The remaining reads were aligned to the
Gencode human transcriptome version 38 (for genome version hg38) using STAR (version
2.7.9a) [51] with essential non-default settings: --seedSearchStarttmax 12, --
alignSJoverhangMin 15, --outFilterMultimapNmax 100, --outFilterMismatchNmax 33, --
outFilterMatchNminOverLread 0, --outFilterScoreMinOverLread 0.3, and --outFilterType
BySJout. The unstranded, uniquely mapping, gene-wise counts for primary alignments were
collected in R (version 4.1.0) using Rsubread:feature Counts (version 2.8.1) [52], totaling in
17.0 to 22.6 million per sample. After normalization, using
varianceStabilizingTransformation (from DESeq2 version 1.34.0), the data were subjected
to sample-level quality control: no obvious batch effects were identified. Differentially
expressed genes (DEGSs) between experimental groups were identified in R (version 4.2.0)
using DESeq2 (version 1.36.0) [53] by employing Wald statistic and IfcShrink for FC

shrinkage (type=“apegim”, version 1.18.0) [54].
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2.10 Statistical analyses and presentation of data

Data are shown, depending on their distribution, as mean + SEM or median * interquartile
range as indicated in the figure legends. Statistical analyses were performed using
GraphPad Prism9 (version 9.0.0). Normal distribution was tested with the Shapiro-Wilk test.
One-way ANOVA (normal distribution) or Kruskal-Wallis test (non-normal distribution) was
performed for data with more than two groups and no other variables (i.e., no treatment with
Torin 1, Lactacystin, Bafilomycin Al, or Tunicamycin). If a significant difference was
observed after the initial ANOVA, this was followed by Tukey's multiple comparison test (for
normally distributed data) or Dunn’s multiple comparison test (for not normally distributed
data). Two-way ANOVA was performed for data with more than two groups and an additional
variable (i.e., treatment with treatment with Torin 1, Lactacystin, Bafilomycin Al, or
Tunicamycin). If a significant difference was observed after the initial ANOVA, this was
followed by Tukey's multiple comparison test. p values < 0.05 were considered statistically
significant and only significant p values (assessed with the post hoc tests) are indicated in

the graphs.

Graphs were drawn using the GraphPad Prism software (version 9.0.0). For Western blot,
three independent experiments with cells plated at different passages were considered
biological replicates. In the Seahorse assays, results from plating of cells from different
passages were considered biological replicates. For quantification of immunofluorescence
data (p62), individual pictures, each containing several cells, taken from different areas in
the same coverslip were considered biological replicates. The number of n indicated in the

figure legends describes the number of biological replicates according to these definitions.
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3 Results

3.1 Fibroblasts from intermediate C9-HRE-carrying iNPH patients show unchanged
C9orf72 expression and do not display RNA foci
In this study, we have utilized a cohort of skin fibroblasts obtained from three healthy
controlindividuals and four intermediate C9-HRE-carrying and one long C9-HRE-carrying
INPH patient, who later developed ALS during follow-up. It has been suggested in previous
studies that the C9-HRE leads to decreased C9orf72 mRNA and protein levels due to
haploinsufficiency [28,55]. We therefore first assessed C9orf72 mRNA and protein
expression in global RNA sequencing data and protein samples from the fibroblasts of
controls and iINPH patients carrying different lengths of the C9-HRE. The mRNA levels were
similar in the intermediate or long C9-HRE-carrying iNPH patients to those in controls (Fig.
1 a). Moreover, no significant differences in C9orf72 protein levels were observed between
the controls and intermediate or long C9-HRE carriers, even though there was a trend
towards increased levels in the intermediate carriers (p = 0.1663) (Fig. 1 b and c). These
findings suggest that the intermediate or long C9-HRE-carrying INPH patient-derived

fibroblasts do not display signs of C9orf72 haploinsufficiency on the mRNA or protein level.

The presence of RNA foci in fibroblasts, cortex, spinal cord, and iPSC-derived skeletal
myocytes has been previously described in C9-HRE carriers with ALS and FTD
[5,40,41,56].In our previous study, the C9-HRE-carrying FTD patient-derived skin fibroblasts
were found to express RNA foci but none of the DPR proteins were detected [42]. Here,
FISH analysis indicated that fibroblasts from intermediate C9-HRE-carrying iNPH patients
did not display RNA foci but those from the long C9-HRE carrier INPH patient did (Fig. 1 d),

which is in line with previous results [42,56-58].
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from RNA sequencing data from the fibroblasts of healthy controls (Con) and intermediate
(C9 int) and long (C9 long) C9-HRE carriers shows similar levels in all groups. b)
Representative Western blot images of fibroblast cell lysates from a control (Con), iNPH
patient with intermediate C9-HRE (C9 int), and iNPH patient with long C9-HRE (C9 long).
The blots were probed with antibodies against C9orf72 and -actin (loading control used for
normalization). ¢) Quantification of the C9orf72 protein levels from the Western blot images.
Data are shown as the mean of three separate experiments (=independent platings of cells
in different passages) + SEM. Two-way ANOVA, followed by Tukey’s multiple comparison
test, was performed. d) Representative images of FISH analysis, revealing RNA foci (red)
in the fibroblasts of the C9-HRE long carrier. The intermediate C9-HRE carriers do not show

any RNA foci. DAPI (blue) was used to stain the nuclei.

3.2 Fibroblasts of the long but not intermediate C9-HRE-carrying iNPH patient
display increased number of p62-positive puncta and do not show alterations in
basal or induced autophagy

Since accumulation of p62 has been previously described in the brain of INPH patients [59]

and FTD patients carrying the C9-HRE [30], we examined whether the fibroblasts from iNPH

patients showed aggregation of p62. No cytoplasmic inclusions of p62 in the intermediate
or long C9-HRE-carrying fibroblasts could be observed (Fig. 2 a), but quantitative analysis
of the number of p62-positive puncta revealed a significant increase in the long C9-HRE-
carrying iNPH patient fibroblasts compared both to the healthy controls and the intermediate

C9-HRE carriers. We also observed a trend towards increased number of puncta in the

fibroblasts from the intermediate C9-HRE-carrying iNPH patients compared to healthy

controls, but this was not statistically significant (p=0.1563) (Fig. 2 b). Area (Fig. 2 c) or
intensity (Fig. 2 d) of the p62-positive puncta did not differ between any of the groups. RNA

sequencing data showed that the p62 mMRNA levels were not significantly changed between
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the three groups, indicating that p62 transcription was unaltered (Fig. 2 e). Staining of brain
biopsy samples from the same INPH patients indicated the presence of p62 intracellular
inclusions in the long C9-HRE carrier and in the intermediate C9-HRE carrier with the
highest number of repeats (23 repeats) (Fig. 2 f)

As p62 is one of the key receptors targeting cargo to the autophagosomes and also itself a
substrate for autophagosomal degradation, the increased number of p62-positive puncta
could suggest alterations in autophagosomal activity in the INPH fibroblasts. Moreover, it
has been shown that in cortical brain biopsies from iINPH patients, non-fused autophagic
vacuoles are more numerous in neuronal somas than in healthy individuals, further implying
potentially defective autophagic function [60]. Impaired autophagic function has also been
suggested to contribute to the pathogenesis of several other neurodegenerative diseases,
including ALS [61]. When autophagy is induced, phosphatidylethanolamine is conjugated to
cytosolic LC3BI, which subsequently forms autophagosomal membrane-bound LC3BII.
Thus, an increased LC3BII/LC3BI ratio can be used as an indicator of autophagy induction
[62].

To first assess basal autophagy in the iINPH fibroblasts, the fibroblasts were treated with
BafA1l, blocking the late stages of the autophagosomal degradation by inhibiting the fusion
of autophagosomes with lysosomes [62—64]. Analysis of the protein levels of LC3BI, LC3BlIl,
and p62 using Western blot, showed a significant increase in the LCBII levels (Fig. 3 a and
f) and LC3BII/LC3BI ratio (Fig. 3 d) after the treatment in all fibroblasts. However, no
differences in this increase were observed between control and iINPH patient fibroblasts with
intermediate or long C9-HRE, suggesting normal basal autophagy in all the iNPH patient-
derived fibroblasts. LCBI or p62 levels were similar in all fibroblasts under basal conditions

(DMSO) and they remained unchanged with BafAl treatment (Fig. 3 a, ¢, and e).
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Pharmacological induction of autophagy may uncover defects in autophagy even when the
basal autophagy is not impaired [65]. To examine this, we induced autophagy with Torin 1
and assessed the protein levels of the autophagy-associated proteins ULK1, phospho-ULK1
(p-ULK1-Ser757), LC3BI and Il, and p62, and also TDP-43 (Fig. 3 b and g-n). ULK1 levels
were similar in all the fibroblasts in basal conditions (DMSO) and after Torin 1 treatment
(Fig. 3 b and i). As expected, treatment with Torin 1 significantly decreased the p-ULK1-
Ser757 levels (Fig. 3 b and h) and the ratio of p-ULK1-Ser757 to ULK1, indicating induction
of autophagy. However, no differences could be observed between the fibroblasts from
iINPH patients carrying the intermediate or long C9-HRE and healthy controls (Fig. 3 b and
g). Treatment with Torin 1 did not affect the LC3BII levels (Fig. 3 b and 1), but significantly
decreased the LC3BI levels (Fig. 3 b and m), leading to a significantly increased LCBII to
LC3BI ratio. Again, no differences were observed between the iNPH patient and control
fibroblasts (Fig 3. b and k), suggesting that iINPH patient-derived fibroblasts can respond
normally to an autophagy-inducing stimulus. TDP-43 levels were similar in all the fibroblasts
and remained unaltered after Torin 1 treatment (Fig. 3 b and n). No TDP-43 C-terminal
fragments were detected in any of the fibroblasts (Fig. 3 b). Taken together, modulating
different phases of the autophagosomal degradation pathway indicate that the INPH

fibroblasts do not show deficits in autophagy.
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Fig. 2 Number of p62-positive puncta is increased in fibroblasts from long but not
intermediate C9-HRE carriers a) Representative fluorescence microscopy images of
staining with anti-p62 antibody (red) in fibroblasts of a control individual, an iINPH patient
with intermediate C9-HRE, and an iNPH patient with long C9-HRE. Nuclei were stained with
DAPI (blue). b) Quantification of number of p62 puncta. ¢) Quantification of mean area of
p62 puncta. d) Quantification of intensity of p62 puncta. Data are shown as mean + SEM
and one-way ANOVA, followed by Tukey's multiple comparison test, was performed for all
data sets. Only p values that were significant in the post hoc test are indicated in the graphs.
Number of images analyzed: n = 15 for control; n = 20 iNPH with intermediate C9-HRE; and
n =5 iNPH with long C9-HRE. Data were obtained from one experiment and each datapoint
represents one image. **p<0.01, **p<0.001. e) Quantification of MRNA levels of
p62/SQSTM1 from RNA sequencing data from healthy controls (Con) and intermediate (C9
int) and long (C9 long) C9-HRE carriers indicates no significant changes between the
groups. f) Representative microscopy images of p62-positive inclusions (brown) in patient
brain biopsies of one intermediate C9-HRE carrier (upper image) and the long C9-HRE

carrier (lower image). Nuclei were stained with Haematoxylin (blue).
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Fig. 3 INPH patient-derived fibroblasts display unaltered basal autophagy and
response to an autophagy-inducing stimulus a) Representative Western blot images
from fibroblast cell lysates probed with LC3B, p62 and B-actin (loading control for
normalization) antibodies. To block the autophagosomal flux and fusion of autophagosomes
with lysosomes, fibroblasts were treated with 300 nM bafilomycin (BafAl) for 6 h. DMSO
was used as a vehicle control. b) Representative Western blot images of p-ULK1-Ser757,
ULK1, p62, LC3BI and Il, TDP-43, and B-actin from fibroblast cell lysates. Cells were treated
with 200 nM Torin 1 overnight to induce autophagy. DMSO was used as a vehicle control.
c-f) Treatment with BafAl [c) Quantification of p62. d) Ratio of LC3BII/I. e) Quantification of
LC3BI. f) Quantification of LC3BII.] g-n) Treatment with Torin 1 [g) Ratio of p-ULK1-
Ser757/ULK1. h) Quantification of p-ULK1-Ser757. i) Quantification of ULKL. j)
Quantification of p62. k) Ratio of LC3BIl/I. |) Quantification of LC3BIl. m) Quantification of
LC3BI. n) Quantification of TDP-43]. Data are shown as the mean of three separate
experiments (=independent platings of cells in different passages) + SEM. Two-way
ANOVA, followed by Tukey's multiple comparison test, was performed for all data sets. Only
p values that were significant in the post hoc test are indicated in the graph. n = 9 control; n
= 12 iNPH with intermediate C9-HRE; and n = 3 iNPH with long C9-HRE. *p < 0.05, **p

<0.01, **p 0.001, ****p < 0.0001.

3.3 Fibroblasts from intermediate or long C9-HRE-carrying iNPH patients display
unaltered proteasomal activity and subcellular localization and phosphorylation
of TDP-43

Not only impaired autophagy but also defects in UPS have been suggested to contribute to

pathological protein aggregation in neurodegenerative diseases. To assess UPS function in

INPH fibroblasts, we blocked the UPS with the proteasomal inhibitor lactacystin and
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examined the levels of poly-ubiquitinated proteins, as well as TDP-43 and p-TDP-43, which
typically show pathological accumulation in FTD brain [40]. As expected, lactacystin
treatment significantly increased the level of poly-ubiquitinated proteins, but there were no
differences between healthy control and iINPH patient-derived fibroblasts (Fig. 4 b and c).
The levels of p-TDP-43 (Fig. 4 b and d) and TDP-43 (Fig. 4 b and e) were also similar in
healthy controls and iNPH patient-derived fibroblasts and treatment with lactacystin did not
affect their levels. Thus, also the p-TDP-43/TDP-43 ratio remained unaltered (Fig. 4 f).
According to RNA sequencing, there were no significant differences in the TARDBP mRNA

levels between the three groups (Fig. 4 a).

The RNA-binding protein TDP-43 can shuttle between the nucleus and cytoplasm [66] and
cytoplasmic accumulation has been observed in the CNS of ALS and FTD patients carrying
the C9-HRE [31]. We therefore wanted to assess whether changes in subcellular localization
of TDP-43 and p-TDP-43 could be observed. TDP-43 was strongly localized in the nucleus
in all fibroblasts with no discernible differences between the groups (Fig. 4 g). p-TDP-43
showed both nuclear and cytoplasmic subcellular localization (Fig. 4 h) but there were no
apparent differences between iNPH patient-derived fibroblasts and controls. No cytoplasmic
inclusion bodies containing TDP-43 or p-TDP-43 were observed in any of the fibroblasts

(Fig. 4 g and h).
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Fig. 4 Levels or subcellular localization of TDP-43 and p-TDP-43 are not affected in
iINPH patient-derived fibroblasts a) Quantification of TARDBP mRNA levels from RNA
sequencing data from healthy controls (Con) and intermediate (C9 int) and long (C9 long)
C9-HRE carriers shows similar levels in intermediate C9 HRE carriers and controls. b)
Representative Western blot images from fibroblast cell lysates probed with antibodies
against poly-ubiquitinated (Poly-Ub.) proteins, p-TDP-43, TDP-43, and B-actin (loading
control for normalization) antibodies. Cells were treated with 10 uM lactacystin for 16 h to
block protein degradation through the UPS. DMSO was used as a vehicle control. ¢)
Quantification of Poly-Ub. proteins. d) Quantification of p-TDP-43. e) Quantification of TDP-
43. f) Ratio of p-TDP-43/TDP-43. Data are shown as the mean of three separate
experiments (=independent platings of cells in different passages) + SEM. Two-way
ANOVA, followed by Tukey's multiple comparison test, was performed. Only p values that
were significant in the post hoc test are indicated in the graphs. n = 9 control; n = 12 iINPH
with intermediate C9-HRE; and n = 3 iNPH with long C9-HRE. ***p < 0.001. Q)
Representative fluorescence microscopy images of staining with anti-TDP-43 antibody
(green) and Phalloidin (red) in fibroblasts of control (left column), INPH patient with
intermediate C9-HRE (middle column), and iNPH patient with long C9-HRE (right column).
Neither changes in subcellular localization nor formation of TDP-43-positive inclusions could
be observed. h) Representative fluorescence microscopy images of staining with anti-p-
TDP-43 antibody (green) and Phalloidin (red) in fibroblasts of control (left column), iINPH
patient with intermediate C9-HRE (middle column), and iNPH patient with long C9-HRE
(right column). Neither changes in subcellular localization nor formation of p-TDP-43 positive

inclusions could be observed. Images were taken from one experiment.
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3.4 iINPH patient-derived fibroblasts carrying intermediate and long C9-HRE show
altered energy metabolism
Mitochondrial respiration and glycolysis are the main energy-producing pathways in cells
and impaired energy metabolism has been described in several neurodegenerative
diseases, including AD, PD, ALS, and FTD [67,68]. To assess mitochondrial function, we
examined energy metabolism of the fibroblasts related to oxidative phosphorylation by
measuring changes in OCR after treatment with different ETC modulators in control and
iINPH fibroblasts (Fig. 5 a). A significant reduction in the basal respiration in INPH fibroblasts
carrying the long C9-HRE compared to controls could be observed (Fig. 5 b) with a similar,
but non-significant, trend (p=0.079) in the intermediate C9-HRE carrier iNPH patient
fibroblasts. Moreover, respiration linked to ATP production (Fig. 5 e) was significantly
reduced in the fibroblasts of the intermediate C9-HRE carriers and an even stronger
reduction could be observed in the fibroblasts with the long C9-HRE, suggesting impaired
mitochondrial function. Also, non-mitochondrial respiration (Fig. 5 g) was significantly
reduced in the fibroblasts with the long C9-HRE, which, together with the observed deficits
in the other components of the mitochondrial respiratory chain, might indicate an overall
decrease in the energy metabolism of fibroblasts with the long C9-HRE. Maximal respiration
(Fig. 5 c¢), spare capacity (Fig. 5 d), and proton leak (Fig. 5 f) were similar in iINPH patient-

derived fibroblasts and controls.

To assess glycolytic function, we investigated changes in ECAR after treatment with glucose
and oligomycin in control, intermediate, and long C9-HRE iNPH fibroblasts (Fig. 6 a).
Interestingly, a significant increase in glycolysis could be observed in the fibroblasts of the
intermediate C9-HRE-carrying iNPH patients as compared to control fibroblasts. The
difference compared to the long C9-HRE iNPH fibroblasts did not reach statistical

significance (p=0.994) and there was no significant difference in glycolytic activity between
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the long C9-HRE carrier and the controls (Fig. 6 b). However, the glycolytic capacity of the
iINPH fibroblasts from the long C9-HRE carrier was significantly decreased when compared
to the intermediate C9-HRE carriers (Fig. 6 ¢). There was also a trend towards a decreased
glycolytic reserve in the long C9-HRE-carrying iNPH patient fibroblasts when compared to
control fibroblasts, but this decrease did not reach statistical significance (p=0.0633).
Interestingly, similar results were obtained in the fibroblasts from FTD patients carrying the
long C9-HRE. In these cells, glycolysis and glycolytic capacity were significantly reduced

compared to intermediate C9-HRE carriers with INPH (Supplementary Fig. 1).
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Fig. 5 Mitochondrial respiration is impaired in iNPH patient-derived fibroblasts from
both intermediate and long C9-HRE carriers Using the Cell Mito Stress Test, several
parameters of mitochondrial function were assessed. a) Example of Cell Mito Stress Test in
fibroblasts of one control individual, one iINPH patient with intermediate C9-HRE, and one
INPH patients with long C9-HRE fibroblast line. b) Quantification of basal respiration. c)
Quantification of maximal respiration. d) Quantification of spare capacity. e) Quantification
of ATP production. f) Quantification of proton leak. g) Quantification of non-mitochondrial
respiration. Data are shown as the mean £ SEM, and one-way ANOVA, followed by Tukey's
multiple comparison test, was performed (b-e). Data are shown as median + interquartile
range and Kruskal-Wallis, followed by Dunn’s multiple comparison test, was performed (f,
g). Only p values that were significant in the post hoc test are indicated in the graphs. n =9
control; n =12 iNPH with intermediate C9-HRE; and n = 3 iNPH with long C9-HRE for
maximal respiration and spare capacity and n = 21 control; n = 28 iINPH with intermediate
C9-HRE; and n = 7 iNPH with long C9-HRE for other parameters. *p <0.05; **p <0.01.
Abbreviations: FCCP, cyanide-4-(trifluoromethoxy)phenylhydrazone; OCR, oxygen

consumption rate.
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s05  Fig. 6 Glycolysis is differently affected in intermediate and long C9-HRE-carrying
s06 INPH patient-derived fibroblasts Using the Cell Glycolysis Stress Test, several
597  parameters of glycolysis were assessed. a) Example of Cell Glycolysis Stress Test in
s08  fibroblasts of one control individual, one intermediate C9-HRE carrier INPH patient, and one

590 long C9-HRE iNPH patient fibroblast line. b) Quantification of glycolysis. ¢) Quantification of
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glycolytic capacity. d) Quantification of glycolytic reserve. Data are shown as mean + SEM,
and one-way ANOVA, followed by Tukey's multiple comparison test, was performed (b, d).
Data are shown as median % interquartile range and Kruskal-Wallis, followed by Dunn’s
multiple comparison test, was performed (c). Only p values that were significant in the post
hoc test are indicated in the graphs. n = 12 control; n = 16 iNPH with intermediate C9-HRE;
and n = 4 iINPH with long C9-HRE from four separate experiments. *p <0.05; **p <0.01.

Abbreviations: 2-DG; 2-deoxy-D-glucose ECAR, extracellular acidification rate

3.5 Intermediate C9-HRE-carrying fibroblasts show only moderate gene expression
changes as compared to healthy control fibroblasts
To assess potential gene expression changes in the intermediate C9-HRE-carrying
fibroblasts, global RNA sequencing analysis was performed. Only 32 DEGs were identified
and of these 16 were downregulated and 16 upregulated in the intermediate C9-HRE-
carrying fibroblasts as compared to control fibroblasts (Fig. 7 and Supplementary Fig. 2).
This analysis did not reveal specific gene expression changes related to autophagy, UPS,
or mitochondrial energy metabolism, except for the upregulation of CTP1C. This gene
encodes carnitine palmitoyltransferase 1C protein, which regulates the beta-oxidation and
transport of long-chain fatty acids into mitochondria, and thus may play a role in the
regulation of energy homeostasis related to ATP and NADPH production. Such function for
CTP1C has been described e.g. in cancer [69]. One previous report on brain transcriptome
data has shown decreased expression of CPT1C in the cerebellum but not the frontal cortex

of patients with the C9-HRE [70].
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Fig. 7 Differentially expressed genes in intermediate C9-HRE-carrying iNPH patient-
derived fibroblasts compared to healthy control fibroblasts Volcano plot showing the
differentially expressed genes (DEGS). Altogether 16 genes were significantly upregulated
and 16 significantly downregulated in the fibroblasts from the intermediate C9-HRE-carrying

INPH patients as compared to those from healthy controls.
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4 Discussion

In this study, our aim was to assess whether carrying the intermediate C9-HRE leads to the
development of cellular pathologies similar to those with long C9-HRE and whether it affects
cellular functions related to protein degradation and energy metabolism in skin biopsy-

derived fibroblasts of INPH patients.

Haploinsufficiency is one of the mechanisms associated with the C9-HRE, indicated by
decreased levels of C9orf72 mRNA and protein expression, which have been observed in
patient CNS and also in the periphery, for example in lymphocytes and blood [5,7,55]. Here,
we did not find significant changes in C9orf72 mRNA or protein levels in the intermediate
carriers or the long C9-HRE carrier, which is in line with our previous results in fibroblasts
from long C9-HRE-carrying FTD patients [42], suggesting that fibroblasts with intermediate
or long C9-HRE do not display haploinsufficiency. Increased C9orf72 expression has been
observed in the brain tissue of intermediate C9-HRE carriers [25], but in the present study,
only a trend towards increased C9orf72 protein levels could be observed in the intermediate

C9-HRE fibroblasts.

Nuclear RNA foci, a C9-HRE-associated gain-of-toxic-function hallmark, were observed in
the fibroblasts of the long C9-HRE carrier but not the intermediate carriers. This is in
agreement with previous publications on fibroblasts from C9-HRE carriers suggesting that
carriers of intermediate repeats shorter than 30 do not develop this pathology [42,56]. Data
from patients with corticobasal degeneration carrying intermediate C9-HRE further support

this finding as no RNA foci could be found in the brain or spinal cord of these patients [25].

A trend towards an increased number of p62-positive puncta in the fibroblasts of the
intermediate C9-HRE carriers was observed in the present study, but this was not

statistically significant. In contrast, fibroblasts of the long C9-HRE carrier, showed a
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significant increase in the number of p62-containing puncta, in line with our previous study
in the fibroblasts of FTD patients carrying the long C9-HRE, which showed a significant
increase in number, size, and intensity of p62-containing vesicles [42]. p62-containing
inclusion bodies were not detected in this or our previous study. p62 pathology is observed
in the brain of FTD spectrum patients and the DPR proteins have been shown to co-localize
in p62-positive inclusions in the brains of C9-HRE carriers [26]. Interestingly, p62 brain
pathology has been previously observed in an INPH patient in a case report [59] and also in
brain biopsies from the patient with the long C9-HRE and in one of the intermediate C9-HRE
carriers in this study. These results indicate that similarly to the brain, although not forming
intracellular inclusions, skin fibroblasts, especially from the long C9-HRE carriers, show
accumulation of the p62 protein. This could suggest impaired protein degradation via the
autophagosomal or proteasomal pathway, as p62 can undergo degradation through either

of these pathways.

However, in detailed analyses of the protein degradation pathways, we did not observe
changes in the basal or induced autophagy in the fibroblasts of the intermediate or long C9-
HRE carriers, which is in line with our previous work on FTD patient-derived fibroblasts,
where no changes in the autophagosomal pathway were observed [42]. The finding of
unaltered autophagy also agrees with the unchanged C9orf72 protein levels in the C9-HRE-
carrying fibroblasts. Regulation of autophagy by the C9orf72 protein isoform A has been
suggested in several studies but it is still controversial whether the reduction of the C9orf72
protein levels leads to increased or decreased autophagy in different cell types
[28,43,48,63,65,71-75]. The unaltered UPS function in the C9-HRE intermediate or long
carriers is also in accordance with our previously published results on FTD patient-derived
fibroblasts [42,76,77]. These results indicating normal function of the autophagosomal and

proteasomal pathways further suggest that impaired degradation of the p62 protein does
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not likely cause the observed accumulation of p62 vesicles in the C9-HRE-carrying
fibroblasts. Increased levels of p62, without significant changes in LC3 II/LC3-I turnover,
have been observed in iIPSC-motor neurons of ALS and FTD patients [78], pointing towards
other possible underlying mechanisms than autophagy. One alternative mechanism could
be increased transcription of the p62 mRNA [79-81]. Our RNA sequencing data, however,
suggested that the p62 mMRNA levels do not significantly differ between the healthy controls
and iNPH patient-derived fibroblasts carrying either intermediate or long C9-HRE, rendering
the mechanism underlying the accumulation of the p62-positive vesicles elusive. Moreover,
we did not observe TDP-43 or p-TDP-43 mislocalization or aggregation, and their levels
were similar and not affected by proteasomal inhibition in healthy control and iINPH patient-
derived fibroblasts carrying either intermediate or long C9-HRE. Some previous studies
have reported hyperphosphorylation and altered subcellular localization of TDP-43 in patient
fibroblasts carrying C9-HRE or other mutations or after proteasomal inhibition using MG132
[82—-84]. These studies suggest that significant changes in TDP-43 and p-TDP-43

localization, levels, or aggregation might be dependent on the prevailing stress condition.

Pathological alterations in mitochondria have been observed in neurons from cortical brain
biopsies of INPH patients, indicated by altered numbers of mitochondria-endoplasmic
reticulum contact sites [60] and changes in mitochondrial morphology [85]. Mitochondrial
dysfunction in iINPH-patient derived fibroblasts has not been studied before but has been
observed in the fibroblasts of FTD and ALS patients carrying the C9-HRE [42,47]. Here, we
detected altered mitochondrial function in fibroblasts from both intermediate and long C9-
HRE-carriers compared to healthy controls. Basal respiration was significantly reduced in
the long C9-HRE carrier with a similar trend in the intermediate C9-HRE carriers. Respiration
linked to ATP production was significantly reduced in both intermediate and long C9-HRE

carriers, similarly to our previous study in long C9-HRE-carrying FTD patient-derived
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fibroblasts [42]. The detected decrease in non-mitochondrial respiration in the long C9-HRE
carrier INPH fibroblasts could indicate an overall reduction in the energy metabolism of these
cells. 1t is interesting to note that the intermediate C9-HRE -carriers showed some
impairments in mitochondrial function, although these appeared milder than those in the

long C9-HRE carriers.

In the intermediate C9-HRE carriers, the global RNA sequencing showed upregulation of
one gene related to mitochondrial function, the CTP1C gene, which encodes for the carnitine
palmitoyltransferase 1C protein (CPT-1C). A study in iPSC-derived microglia [86] has shown
that TREM2 activation and subsequent increase in different acyl carnitine species increases
mitochondrial function, whereas treatment with the CPT-1 inhibitor etomoxir abolished this
effect. This observation suggests that upregulation CPT-1 might improve mitochondrial
function. Thus, the increased expression of CTP1C observed in our study in the intermediate
C9-HRE carriers might be an attempt of the cells to potentially alleviate the impaired

mitochondrial function.

Surprisingly, glycolysis, the other major source of ATP for energy production, was
significantly increased in the fibroblasts of intermediate C9-HRE carriers when compared to
controls. This might represent a potential compensatory mechanism to counteract the
impaired mitochondrial respiration. This idea could be supported by the previous findings
showing that fibroblasts from ALS patients carrying the superoxide dismutase 1 mutation
(SOD1) as well as neuronal NSC-34 cells expressing mutant SOD1 have reduced
mitochondrial respiration but upregulated glycolysis to better meet the ATP demand [45,87].
Moreover, in a study using mouse embryonic fibroblasts isolated from C9orf72 knockout
mice, a significant increase in glycolytic activity could be observed [88]. A similar increase
in glycolytic activity could not be observed in the long C9-HRE carrier fibroblasts and they,

in fact, showed reduced glycolytic capacity, suggesting that they cannot respond to an
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increased energy demand as well as the fibroblasts from intermediate C9-HRE carriers and
healthy controls. This might contribute to a more pronounced deficit in the overall energy
metabolism, involving impairments in both mitochondrial respiration and glycolysis in the
long C9-HRE-carrying iNPH fibroblasts. In line with these findings, we also observed
similarly impaired glycolytic function in the fibroblasts of FTD patients carrying the long C9-
HRE, further underlining the more severely impaired energy production in fibroblasts
carrying the long C9-HRE. The findings that the intermediate C9-HRE-carrying fibroblasts
do not show evident cell pathologies or drastic functional deficits in the protein degradation
pathways or energy metabolism are in concordance with the gene expression data, showing
only modestly altered gene expression as compared to the healthy control fibroblasts. Thus,
based on these results and current data in the literature, it appears that the intermediate C9-
HREs are not highly pathogenic, but might predispose cells for the development of cellular

pathologies or deficient protein degradation or energy metabolism under stress conditions.

5 Conclusions

The results from the present study demonstrate that iINPH patient-derived fibroblasts
carrying the intermediate C9-HRE do not express RNA foci. Neither they nor the long C9-
HRE show haploinsufficiency. While the fibroblasts carrying the long C9-HRE exhibit
accumulation of p62-positive vesicles, in line with p62-positive inclusions detected in a brain
biopsy from the same patient, we did not detect any alterations in the proteasomal or
autophagosomal pathways. This suggests that other, yet unknown mechanisms could be
responsible for p62 accumulation in the fibroblasts. Nevertheless, these findings indicate
that the skin fibroblasts may show similar cell pathologies to those in the brain of the long

C9-HRE carriers. The energy metabolism, especially the mitochondrial respiration, is
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impaired in fibroblasts from both the intermediate and long C9-HRE carriers, but this
impairment is more severe in the long C9-HRE-carrying fibroblasts. Taken together, our data
suggest that in addition to brain cells, skin fibroblasts can be utilized to investigate some of
the underlying disease mechanisms and cell pathologies related to the C9-HRE. The skin
fibroblasts might also prove useful and more easily accessible and manageable patient-
derived cells for future biomarker discovery and drug testing compared to, for instance, the

iPSC-based brain cells.

List of abbreviations

Alphabetical:

ALS: amyotrophic lateral sclerosis

ATP: Adenosine triphosphate

BafAl: bafilomycin Al

BSA: bovine serum albumin

bvFTD: behavioral variant frontotemporal dementia

C9 HRE: hexanucleotide repeat expansion in the C9orf72 gene

CNS: central nervous system

DEPC: diethyl pyrocarbonate

ETC: electron transport chain

FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

FISH: Fluorescence in situ hybridization
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FTD: Frontotemporal dementia

GRN: Granulin

IMDM: Iscove’s Modified Dulbecco’s Medium

iINPH: idiopathic normal pressure hydrocephalus

iPSC: induced pluripotent stem cells

LC3B: Microtubule-associated protein 1 light chain-3 B

MAPT: microtubule-associated protein tau

OCR: oxygen consumption rate

p62: sequestosome-1/ ubiquitin-binding protein p62

PFA: paraformaldehyde

SOD1: Superoxide dismutase 1

TARDBP: TAR DNA binding protein

TBST: Tris-buffered saline with 0.1% Tween 20

TDP-43: TAR DNA-binding protein-43

UPS: ubiquitin-proteasome system

VCP: valosin-containing protein
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Supplementary Fig. 1 Fibroblasts derived from iNPH and FTD patients show similar
impairments in glycolysis Using the Cell Glycolysis Stress Test, several parameters of
glycolysis were assessed. a) Glycolysis and b) glycolytic capacity in two long C9-HRE
carriers with FTD are similarly impaired as in the long C9-HRE carrier with iNPH. c) The
long C9-HRE-carrying FTD and iPNH patients also show a mild, but non-significant trend
towards decreased glycolytic reserve. Data are shown as mean = SEM, and one-way
ANOVA, followed by Tukey's multiple comparison test, was performed Only p values that

were significant in the post hoc test are indicated in the graphs. n = 12 control; n = 16 iNPH
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1179 with intermediate C9-HRE; n = 4 iNPH with long C9-HRE; n = 8 FTD with long C9-HRE. *p
1180  <0.05; **p <0.01, ***p <0.001. Abbreviations: ECAR, extracellular acidification rate.
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1182 Supplementary Fig. 2 Differentially expressed genes in fibroblasts from healthy
1183  controls and intermediate and long C9-HRE-carrying iNPH patients In total, 32
1184  differentially expressed genes (DEGs) with statistically significant expressional changes
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1185 were identified. Of these 16 were upregulated and 16 downregulated in the intermediate
1186  C9-HRE carrier (C9 int) compared to healthy control (Con) fibroblasts. Data from one long
1187 C9-HRE carrier (C9 long) fibroblasts are shown in the boxplots but not included in the

1188 Statistical analyses.

1189
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