

1 **Title: Transcriptome Analysis Identified *SPP1*+ Monocytes as a Key in
2 Extracellular Matrix Formation in Thrombi**

3 Short title: *SPP1* and ECM formation in thrombi

4

5 Takaya Kitano^{1,2,3}, MD, PhD; Tsutomu Sasaki*², MD, PhD; Takahiro Matsui^{4,5}, MD,
6 PhD; Masaharu Kohara⁵; Kotaro Ogawa², MD, PhD; Kenichi, Todo², MD, PhD; Hajime
7 Nakamura⁶, MD, PhD; Yuri Sugiura¹, MD; Yuki Shimada⁷, MD; Shuhei Okazaki^{2,8},
8 MD, PhD; Junichi Iida⁹, MD, PhD; Kohki Shimazu¹⁰, MD; Eiichi Morii⁵, MD, PhD;
9 Manabu Sakaguchi⁷, MD, PhD; Masami Nishio¹¹, MD, PhD; Masaru Yokoe¹, MD, PhD;
10 Haruhiko Kishima⁶, MD, PhD; Hideki Mochizuki², MD, PhD

11

12 1 Department of Neurology, Toyonaka Municipal Hospital, Osaka, Japan

13 2 Department of Neurology, Osaka University Graduate School of Medicine, Osaka,
14 Japan

15 3 Krembil Research Institute, Toronto Western Hospital, Toronto, Canada

16 4 Department of Immunology and Cell Biology, Osaka University Graduate School of
17 Medicine, Osaka, Japan

18 5 Department of Pathology, Osaka University Graduate School of Medicine, Osaka,
19 Japan

20 6 Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka,
21 Japan

22 7 Department of Neurosurgery, Osaka General Medical Center, Osaka, Japan

23 Department of Pathology, Osaka General Medical Center, Osaka, Japan

24 8 Department of Neurology, Osaka National Hospital, Osaka, Japan

25 9 Department of Neurosurgery, Osaka General Medical Center, Osaka, Japan

26 10 Department of Pathology, Osaka General Medical Center, Osaka, Japan

27 11 Department of Neurosurgery, Toyonaka Municipal Hospital, Osaka, Japan

28

29

30 ***Corresponding:**

31 Tsutomu Sasaki

32 Department of Neurology, Osaka University Graduate School of Medicine, Osaka,
33 Japan

34 sasaki@neurol.med.osaka-u.ac.jp

35

36 **Number of characters in the title: 103**

37 **Number of characters in the short title: 33**

38 **Number of words in the Abstract: 138**

39 **Abstract**

40 Thrombi follow various natural courses. They are known to become harder over time
41 and may persist long-term; some of them can also undergo early spontaneous
42 dissolution and disappearance. Hindering thrombus stability may contribute to the
43 treatment of thrombosis and the prevention of embolisms. However, the detailed
44 mechanisms underlying thrombus maturation remain unknown. Using RNA sequencing,
45 we revealed the transcriptional landscape of thrombi retrieved from the cerebral vessels
46 and identified *SPP1* as a hub gene related to extracellular matrix formation.
47 Immunohistochemistry confirmed the expression of osteopontin in
48 monocytes/macrophages in the thrombi, particularly in older thrombi. Single-cell RNA
49 sequencing of thrombi from the pulmonary artery revealed increased communication
50 between *SPP1*-high monocytes/macrophages and fibroblasts. These data suggest that
51 *SPP1*-high monocytes/macrophages play a crucial role in extracellular matrix formation
52 in thrombi and provide a basis for new antithrombotic therapies targeting thrombus
53 maturation.

54

55 **Teaser (<130 characters with period)**

56 *SPP1*+ monocytes play a key role in thrombus maturation, which can be a potential
57 target for novel antithrombotic therapies.

58

59 **Introduction**

60 Thromboembolic diseases account for 1 in 4 deaths worldwide (1). These diseases can
61 be classified into two groups, based on whether the thrombus is formed under high- or
62 low-pressure systems (2), with intracardiac (cardiac atria) and venous thrombi
63 accounting for most of the latter. Cardiogenic embolism, which can be caused by the
64 embolism of an intracardiac thrombus, is the most severe type of ischemic stroke.
65 Prevention of cardiogenic embolism is of great social interest because the number of
66 patients with atrial fibrillation, the largest risk factor for cardiogenic embolism, is
67 rapidly increasing (3). Venous thrombi primarily form in the lower extremities and can
68 be symptomatic. In some patients, they can embolize the pulmonary artery, which can
69 be fatal. Anticoagulants are primarily used to prevent and treat thromboembolic diseases
70 under low-pressure systems. Anticoagulants can decrease the risk of cardioembolic
71 stroke in patients with atrial fibrillation; however, an approximately 40% stroke risk
72 remains even upon treatment with anticoagulants (4). In addition, patients may
73 experience bleeding complications (5). Therefore, a more effective antithrombotic
74 therapy with a low risk of bleeding is desirable.

75 Thrombi detected in patients can either disappear or persist. More than half
76 (63–89%) of thrombi found in atrial appendages disappear without symptomatic
77 embolic events, while some patients develop cerebral embolism (6-9). Moreover, 35%
78 of surgery-associated venous thrombi resolve spontaneously within 72 hours, while
79 some extend to involve the proximal veins (10, 11). Furthermore, half of pulmonary
80 embolisms resolve within a few weeks, while thrombi persist; chronic thromboembolic
81 pulmonary hypertension (CTEPH) occurs in approximately 5% of patients after
82 pulmonary embolism (11, 12). Recently, dynamic changes occurring in thrombi over

83 time have been noted (13, 14), which are presumably involved in determining the
84 natural course of thrombi. As time passes after a deep venous thrombus is formed, the
85 proportion of red blood cells (RBCs) decreases, and the level of extracellular matrix
86 (ECM) proteins, such as collagen, increases (14). Thrombi can become stiffer and more
87 resistant to thrombolysis over time (15, 16). We have previously reported that older
88 thrombi are more resistant to reperfusion therapy in patients with cerebral embolism
89 (17). Hence, it can be assumed that there are conflicting processes within a formed
90 thrombus: some to make it stiff and stable and others to dissolve it. However, the
91 mechanisms underlying these processes are not completely understood.

92 Here, we report the transcriptional differences between thrombi retrieved from
93 cerebral vessels and peripheral blood. Our data revealed several major processes
94 occurring in the thrombus, including ECM formation and inflammatory and anti-
95 inflammatory responses. We identified *SPP1* as an upregulated hub gene for ECM
96 formation in the thrombus. Furthermore, using single-cell RNA sequencing data, our
97 results suggest that *SPP1*-high monocytes/macrophages (MCs/MPs) are key players in
98 ECM formation in thrombi. Collectively, our data provide a basis for developing new
99 antithrombotic therapies that modify the natural history of thrombi.

100

101 **Results**

102 ***RNA expression in thrombi differs from that in blood***

103 Mechanical thrombectomy is an endovascular surgery procedure that has rapidly
104 developed over the last decade to recanalize occluded cerebral vessels in patients with
105 acute ischemic stroke. In this study, we compared the RNA expression profile in three
106 thrombi retrieved from cerebral vessels via mechanical thrombectomy with that in

107 simultaneously sampled blood (Fig. 1A). All patients were diagnosed with a cardiogenic
108 embolism. The heatmap in Fig. 1B shows a substantial difference in RNA expression
109 between the thrombus and blood. Unbiased clustering detected sample differences (Fig.
110 1C). Compared to that in the blood, a total of 1,121 genes were significantly
111 upregulated and 693 were downregulated in the thrombus (Fig. 1D). The top 20
112 upregulated differentially expressed genes (DEGs) included pro-inflammatory
113 chemokines such as *CXCL8* and *CCL2*, consistent with a previous report (Fig. 1E) (18).
114 We also found that genes related to the ECM, such as *FNI* and *SPP1*, were upregulated
115 in the thrombi.

116

117 ***Gene sets related to ECM were enriched in thrombi***

118 The results of the gene set enrichment analysis are shown in Fig. 2A as network plots.
119 Biological process analysis revealed clusters, such as tissue morphogenesis and ECM
120 organization. Cellular component analysis revealed clusters of ECM, cell adhesion, and
121 mitochondrial components. Molecular function analysis revealed clusters such as
122 chemokine activity, cell adhesion, and ECM constituents. In all analyses, pathways
123 related to the ECM were significantly enriched. Genes related to ECM were highly
124 expressed in thrombi (Supplementary Fig. S1)

125

126 ***Protein-protein interaction (PPI) analysis identified SPP1 as one of the hub genes***

127 Among the 1,121 upregulated DEGs, 1,038 genes were identified in the STRING
128 database after excluding the mitochondrial genes. We then identified 23 hub genes using
129 CytoHubba (Supplementary Fig. S2). Unbiased MCL clustering identified 278 clusters
130 using 963 genes. The top four clusters, which included the most genes among the

131 identified clusters, are visualized in Fig. 2B. Cluster 1 included 55 genes associated
132 with ECM formation. Cluster 2 included 31 genes related to the anti-inflammatory
133 response. Cluster 3 included 26 genes related to the ERBB signaling pathway. Cluster 4
134 included 25 genes related to pro-inflammatory cytokines. Fifteen hub genes were
135 included in the top four clusters.

136 We identified five hub genes (*FN1*, *MMP2*, *IGF1*, *SERPINE1*, and *SPPI*) in
137 the ECM formation cluster, as this cluster included the most genes and pathways related
138 to ECM were highly enriched in the gene set enrichment analysis (Fig. 2A). *FN1*
139 encodes for fibronectin, a glycoprotein involved in cell adhesion, migration, wound
140 healing, and embryonic development. Fibronectin is vital for bleeding control (19).
141 *MMP2* encodes matrix metalloproteinase-2, which is involved in the degradation and
142 remodeling of various ECM components. It was reported that *MMP2* inactivation
143 prevented thrombosis and prolonged bleeding time (20). *IGF-1* (insulin-like growth
144 factor 1) is essential in the insulin signaling pathway and is a key growth factor
145 involved in various processes such as cell proliferation, maturation, differentiation, and
146 survival (21). It also regulates fibroblast growth and extracellular matrix deposition (22).
147 *SERPINE1* encodes plasminogen activator inhibitor-1; its deficiency causes abnormal
148 bleeding (23). *SPPI* encodes osteopontin (OPN), a secreted multifunctional
149 glycoprophoprotein that plays an important role in physiological and
150 pathophysiological processes (24). OPN drives immune responses under ischemic
151 conditions and induces neutrophil and macrophage infiltration (25-27). It was recently
152 reported that OPN is one of the ligands for integrin $\alpha 9\beta 1$, a potential target for
153 preventing arterial thrombosis (28-30). Therefore, we decided to investigate whether
154 OPN is present in thrombi retrieved from cerebral vessels and to determine how OPN is

155 associated with the clinical characteristics of patients who underwent mechanical
156 thrombectomy.

157

158 ***Osteopontin is expressed by monocytes/macrophages in thrombi***

159 We first validated the expression of *SPP1* via RT-qPCR using five pairs of samples,
160 adding two other pairs to the samples used for RNA sequencing. In the thrombi
161 retrieved from the cerebral artery, the expression of *SPP1* and its known receptor
162 (*CD44*) was elevated compared to that in the blood. Additionally, *TIMP1* which is
163 modulated by OPN and related to ECM (31), was also elevated.

164 We then performed immunohistochemical staining of paraffin-embedded
165 thrombus samples using three anti-OPN antibodies. All antibodies validated the
166 presence of OPN in thrombi (Supplementary Fig. S3). All the observed samples were
167 positive for OPN, but the extent varied (Fig. 3B, 3C). In one thrombus, some regions
168 showed strong positivity, whereas others did not (Fig. 3D). We also observed OPN+ cell
169 aggregation (where OPN+ cells were observed as a cluster) when the thrombus was
170 strongly positive for OPN. Thus, we classified the thrombi into OPN-high or OPN-low
171 according to the presence or absence of OPN+ cell aggregation. Double staining
172 revealed that OPN was not expressed by neutrophils that are defined as cells with a
173 lobulated nucleus and positive for neutrophil elastase (Fig. 3E). OPN was mainly
174 expressed by MC/MPs in the thrombi (Fig. 3F).

175

176 ***Osteopontin expression is more observed in older thrombi than in fresh thrombi***

177 Next, we analyzed 66 thrombi retrieved during mechanical thrombectomy for cerebral
178 embolisms (Supplementary Fig. S4). Among the 66 samples, 40 were OPN-high and 26

179 were OPN-low. We then compared the features of the thrombi based on OPN expression.
180 Fresh thrombi were less common among OPN-high samples (46% vs. 3%, $P < 0.001$;
181 Fig. 4A). No significant differences were observed in the proportions of red RBCs,
182 fibrin, or platelets. The density of MCs/MPs was higher in the OPN-high samples (Fig.
183 4B). As the density of MC/MPs is higher in older thrombi than in fresh ones (17, 32),
184 these observations support the idea that OPN-high thrombi tend to be older than OPN-
185 low thrombi.

186

187 ***Osteopontin expression and clinical characteristics***

188 To determine the association between OPN expression in thrombi and the clinical
189 characteristics of patients, we compared patient backgrounds according to OPN
190 expression (Table 1). The proportion of patients with atrial fibrillation was marginally
191 higher (54% vs. 78%, $P = 0.060$), the level of brain natriuretic peptide was marginally
192 higher (82.5 vs. 225 pg/mL, $P = 0.054$), and the cardiothoracic ratio was significantly
193 higher (57% vs. 62%, $P = 0.023$) in patients with OPN-high thrombi. The proportion of
194 stroke subtypes also differed significantly across OPN expression ($P = 0.043$, Fig. 5A);
195 the proportion of cardioembolic stroke was higher among patients with OPN-high
196 thrombi. We then investigated the effect of OPN expression on reperfusion quality.
197 There was no significant difference in the time to reperfusion after arterial puncture
198 across OPN expression levels ($P = 0.26$, Fig. 5B), and no significant difference was
199 observed in the number of passes before successful reperfusion ($P = 0.17$, Fig. 5C).

200

201 ***SPP1-high monocytes/macrophages in thrombi are related to ECM formation***

202 After confirming that *SPP1* was expressed by MC/MPs in stroke thrombi, we

203 investigated whether *SPP1* was also expressed in thrombi retrieved from patients with
204 other thromboembolic diseases and the role of *SPP1*+ MC/MPs in thrombi. We used
205 single-cell RNA sequencing data of thrombi from patients with CTEPH (33) to
206 characterize MCs/MPs that express *SPP1* in the thrombus. After unbiased clustering
207 (Supplementary Fig. S5), we successfully identified MCs/MPs (Fig. 6A, 6B). *SPP1* was
208 mainly expressed by MC/MPs in these samples. Four subclusters of MCs/MPs were
209 identified (Fig. 6C), and *SPP1* was listed as one of the top ten highly expressed genes in
210 subcluster 2 (Fig. 6D). The expression of hub genes identified via PPI analysis is shown
211 in Fig. 6E. *CD68* was highly expressed in subcluster 2, whereas *CXCL8* and *CCL3* were
212 highly expressed in subcluster 1. Gene set enrichment analysis revealed that pathways
213 related to the extracellular matrix are upregulated in subcluster 2 (Fig. 6E, red circle).
214 Pathways related to lysosomes (Fig. 6E, pink and light blue circles) were also
215 upregulated in subcluster 2. In addition, pathways related to inflammation, such as the
216 cellular response to tumor necrosis factor, response to interleukin-1, and chemotaxis,
217 were enriched in subcluster 1 (Supplementary Fig. S6A).

218 To understand the role of subcluster 2 (*SPP1*-high MC/MPs) in thrombus
219 formation, we performed a ligand-receptor interaction analysis using CellChat. Dense
220 communication between MCs/MPs and fibroblasts, which are the major source of ECM,
221 was inferred in the thrombi from patients with CTEPH (Fig. 7A). Among the immune
222 cells found in the thrombus, MCs/MPs in subcluster 2 had the highest number and
223 strength of inferred ligand-receptor interactions as the sender between fibroblasts (Fig.
224 7B). When MCs/MPs were assigned to the sender, the ligand-receptor pairs *SPP1*-
225 *ITGAV_ITGB1*, *SPP1-ITGA8_ITGB1*, and *SPP1-ITGAV_ITGB5* were inferred to be the
226 main communicators between subcluster 2 MCs/MPs and fibroblasts (Fig. 7C, 7D). In

227 addition, ligand-receptor pairs of *PDGFB-PDGFRB* were inferred between subcluster 1
228 MC/MPs and fibroblasts (Supplementary Fig. S6B).

229

230 ***SPP1-high monocytes/macrophages are expanded in murine venous vessel walls after***
231 ***thrombosis induction***

232 As MC/MPs are presumed to migrate into the thrombus through the vessel wall (34), we
233 hypothesized that *SPP1*-high MC/MPs may be present in the vessel wall after
234 thrombosis. We investigated the expression of *SPP1* by MC/MPs in the venous vessel
235 walls of mice with and without deep vein thrombosis (DVT) (Supplementary Fig. S7A–
236 S7D). Our results showed that the subcluster of MC/MPs with high *SPP1* expression
237 was expanded in the DVT group (Supplementary Fig. S7E).

238

239 **Discussion**

240 In this study, we compared RNA expression in thrombi from acute cerebral infarctions
241 with that in simultaneously collected peripheral blood. In addition to pro-inflammatory
242 responses, which have been reported previously (18), our findings revealed an anti-
243 inflammatory response and ECM formation in thrombi. *SPP1* is one of the hub genes
244 upregulated in thrombi, and the expression of its translation product, OPN, was
245 observed particularly in older thrombi retrieved from the cerebral vessels. Furthermore,
246 single-cell RNA sequencing data from thrombi in patients with CTEPH revealed that
247 *SPP1*-high MC/MPs likely contributed to ECM formation. These results elucidate the
248 transcriptional landscape that occurs after thrombus formation and could contribute to
249 the development of new antithrombotic drugs that target thrombus maturation.

250 *SPP1* + macrophages have recently been identified as key cell types promoting

251 tissue fibrosis (35, 36). In line with these reports, the results of gene set enrichment
252 analysis suggest that subcluster 2 MCs/MPs (*SPPI*-high) are related to the ECM in the
253 thrombi of patients with CTEPH. This was supported by the results of our ligand-
254 receptor interaction analysis. Integrin α V, an OPN receptor expressed by fibroblasts, is a
255 key molecule in fibrotic diseases (37, 38). The interaction between OPN and integrins
256 α V β 1 and α V β 5 has been reported to contribute to the adhesion of smooth muscle and
257 fibroadipogenic progenitor cells (36, 39); OPN is also chemotactic for smooth muscle
258 cells (40). Hence, *SPPI*-high MC/MPs may promote ECM formation by recruiting
259 fibroblasts to the thrombus. Nonetheless, our results do not exclude the possibility that
260 other subclusters of MCs/MPs are involved in ECM formation in the thrombus.
261 Subcluster 1 MCs/MPs have been shown to promote fibrogenesis through *PDGFB*-
262 *PDGFRB* interactions. In addition, the *THBS1-CD47* interaction, which has been
263 reported to promote fibrosis (41), was also found in other subclusters. Further
264 investigations are required to clarify the role of heterogeneous MC/MPs in ECM
265 formation in thrombi.

266 OPN+ cells were not evenly distributed throughout the thrombus in thrombi
267 retrieved from cerebral vessels. They were often densely aggregated in certain areas,
268 particularly around the periphery of the thrombus. These aggregations of OPN+ cells
269 are presumed to occur sometime after thrombus formation, as they are less common in
270 fresh thrombi. In DVT, macrophages are presumed to increase migrating from the
271 vascular wall to the thrombus during venous thrombosis (17, 34, 42). The present study
272 showed that *SPPI*-high MC/MPs were expanded in the venous wall after thrombosis
273 induction. Moreover, a recent study revealed that *SPPI*+ macrophages are expanded in
274 the left atrial tissue of patients with persistent atrial fibrillation and could be targets for

275 immunotherapy in atrial fibrillation (43). Therefore, some of the OPN+ MCs/MPs
276 observed in thrombi from patients with cardioembolic stroke may have migrated from
277 the left atrial wall. The observation in the present study that patients without atrial
278 fibrillation had fewer OPN-high thrombi supports this hypothesis. Hence, the migration
279 of OPN+ MCs/MPs may be a potential target for new antithrombotic therapies.

280 Intracardiac thrombi are frequently encountered in clinical practice, and the
281 prevalence of left atrial appendage thrombus formation is estimated to be between 5%
282 and 27% in patients who have not previously received anticoagulant therapy (44).
283 Patients with intracardiac thrombi are at an elevated risk of developing cardiogenic
284 embolisms. Thus, convenient and cost-effective screening methods for intracardiac
285 thrombi are required. Recently, OPN has been recognized as a biomarker for vascular
286 diseases (24). The plasma concentration of OPN was found to be higher in patients with
287 atrial fibrillation than in those without and is correlated with the extent of atrial fibrosis
288 (45). Using unbiased proteomics, Mühlen et al. reported that OPN levels in the urine
289 could be a biomarker for venous thrombosis and pulmonary embolism (46). It was also
290 reported that plasma OPN levels are higher among patients with venous thrombosis than
291 in those without (47). OPN is cleaved by thrombin into two halves. In this study, we
292 showed that cleaved OPN (N-half) was present in a thrombus retrieved from a cerebral
293 vessel. Considering that the presence of cleaved OPN implies a thrombogenic state, the
294 level of OPN, especially cleaved OPN, in the peripheral blood may have potential value
295 as a biomarker to predict intracardiac thrombus and future embolic events in patients
296 with atrial fibrillation.

297 In the present study, thrombi retrieved from the cerebral vessels were found to
298 contain neutrophils, consistent with previous studies (32, 48, 49). However, neutrophils

299 could not be identified in the single-cell RNA sequencing data of thrombi harvested
300 from patients with CTEPH. Experimental findings in a mouse inferior vena cava
301 ligation model indicated that neutrophils are abundant in the initial stages of thrombus
302 formation; however, their proportion decreased over time, with the proportion of
303 MC/MPs increasing later on (50). Therefore, neutrophils may disappear from the
304 CTEPH thrombus with age.

305 This study has several limitations. First, some RNA integrity numbers (RIN)
306 were not sufficiently high in the thrombus samples. RINs in thrombus samples are
307 commonly low, and acellular RINs tend to have lower RNA quantity and quality (51).
308 We chose samples with a relatively high RIN for RNA sequencing and validated the
309 results using qPCR after adding other samples; however, careful interpretation of the
310 results is needed. Second, the sample size of the clinical data may not have been
311 sufficiently large to detect differences in reperfusion quality.

312 In conclusion, transcriptional responses, including ECM formation,
313 inflammatory response, and anti-inflammatory response, were identified in thrombi in
314 this study. Our results collectively suggest that *SPP1* + MC/MPs play a key role in ECM
315 formation in thrombi and may be a potential target for new antithrombotic therapies that
316 modify thrombus maturation.

317

318 **Materials and Methods**

319 ***Sample collection and total RNA isolation***

320 This study was approved by the Institutional Review Board of the Toyonaka Municipal
321 Hospital, and all participants provided written informed consent. The clinical
322 backgrounds of the participants are shown in Supplemental Table S1. Thrombi retrieved

323 from five patients with acute ischemic stroke were stored in RNAlater (Thermo Fisher,
324 Waltham, MA, USA) overnight at 4°C immediately after mechanical thrombectomy.
325 The thrombi were then transferred to a -80°C freezer until subsequent analyses. Whole
326 blood was sampled from the patients via the femoral arterial sheath during the
327 mechanical thrombectomy and stored using a PAXgene RNA blood collection tube
328 (762165, BD Biosciences, San Jose, CA, USA) in a -80°C freezer until the subsequent
329 steps. Total RNA was extracted from each thrombus using a ReliaPrep RNA tissue
330 MiniPrep System (Z6110, Promega, Madison, WI, USA) and from whole blood using a
331 PAXgene Blood RNA Kit (762164, Qiagen, Hilden, Germany) according to the
332 respective manufacturer's instructions.

333

334 ***Library preparation and sequencing***

335 The purity and quantity of the isolated total RNA were assessed using a NanoDrop 2000
336 spectrophotometer (Thermo Fisher). The RIN was assessed using Bioanalyzer 2100
337 (Agilent, Santa Clara, CA, USA). The three thrombus RNA samples with the highest
338 RINs and their paired blood RNA samples were subjected to subsequent analyses. The
339 RINs for the thrombus samples were 8.0, 6.8, and 4.5, and those for the paired blood
340 samples were 7.2, 7.1, and 7.7. The total RNA samples were subjected to library
341 preparation using an Illumina TruSeq stranded Total RNA Library Prep Kit with Ribo-
342 Zero Globin (Illumina, San Diego, CA, USA) according to the manufacturer's protocol.
343 RNA libraries were subjected to 100-bp paired-end sequencing on a NovaSeq 6000
344 system (Illumina) with a median of 40 million reads.

345

346 ***RNA sequencing data processing, mapping, and counting***

347 Sequence quality was assessed using FastQC (v0.12.1, Babraham Bioinformatics), and
348 reads were trimmed using Trimmomatic (v. 0.36) (52). The reads were mapped to
349 GRCh38 using HISAT2 software (ver. 2.2.1) (53). Mapped reads were counted using
350 the feature Counts (v2.0.3) (54). All these procedures were performed on the Galaxy
351 platform (55) and default parameters were used.

352

353 ***Differentially expressed genes and gene set enrichment analysis***

354 DEGs between the thrombi and blood were identified using an integrated browser
355 application, iDEP1.1 (56). Minimal counts of 1.5/million in at least two libraries were
356 set in the preprocessing data interface, and the count data were subjected to a variance-
357 stabilizing transform for clustering. A heat map was generated to include the top 2,000
358 genes. Unsupervised hierarchical clustering was performed using 1-Pearson correlation
359 and average linkage. DEGs were identified using the iDEP built-in DESeq2 package
360 (57) with a threshold of false discovery rate < 0.01 and a minimum absolute value of
361 fold-change > 4.

362 Gene set enrichment analysis was performed using the DEGs defined above to
363 determine the most enriched gene ontology (GO) pathways in terms of biological
364 processes, cellular components, and molecular functions. Genes with a false discovery
365 rate > 0.6 were removed from the pathway analysis. The top 20 pathways were
366 displayed as a network. Nodes were connected if they shared 20% or more genes. All
367 parameters not specified above were left as the default values. Pathway clusters were
368 manually annotated.

369

370 ***Protein-protein interaction (PPI) analysis***

371 The PPIs between all DEGs upregulated in the thrombus, except for mitochondrial
372 genes, were analyzed using the STRING database (v12.0) (58). A minimal interaction
373 score of 0.4 was set as the default. Hub genes were identified using Cytoscape (v3.10.1)
374 software and the CytoHubba plugin (v0.1) (59). DEGs with the highest Matthews
375 Correlation Coefficient scores were considered hub genes. The DEGs were clustered
376 using MCL with a default inflation parameter of 3; GO enrichment analysis was
377 performed on these clusters. Clusters were manually annotated based on the enriched
378 pathways and visualized using Cytoscape software.

379

380 ***Quantitative real-time PCR analysis***

381 We performed RT-qPCR to amplify and detect *SPP1* and its receptor *CD44* from five
382 pairs of thrombus and blood RNA samples, comprising three pairs used for RNA-seq
383 analysis and two additional pairs. First, cDNA was prepared by reverse-transcribing 400
384 pg of total RNA using Superscript III and random primers (Thermo Fisher Scientific).
385 The resulting cDNA was used for real-time PCR analysis using a Platinum SYBR Green
386 qPCR SuperMix (Thermo Fisher Scientific). Next, 100 reverse transcription products
387 and standard plasmids were subjected to real-time PCR analysis (QuantStudio 7 Flex
388 Real-Time PCR System; Applied Biosystems) using human β -actin as an internal
389 control. The following PCR program was used: 10 min of denaturation at 95°C, and
390 then 40 cycles of 95°C for 15 s, 58°C for 30 s, and 72°C for 30 s. The primers used are
391 listed in Supplementary Table S2.

392

393 ***Subjects for the histological analysis of the thrombus***

394 We examined 168 consecutive patients who underwent mechanical thrombectomy for
395 acute ischemic stroke between January 2015 and December 2019 at two tertiary referral
396 hospitals with comprehensive stroke centers in Japan (Osaka University Hospital,
397 Osaka; Osaka General Medical Center, Osaka). Thrombus specimens were available for
398 76 patients. Patients with left ventricular assist devices, atherosclerotic intracranial
399 stenosis, or cerebral artery dissection were excluded. Finally, 66 patients with thrombi
400 retrieved during mechanical thrombectomy for cerebral embolisms were included in this
401 study (Supplementary Fig. S4). Clinical data were also collected from the included
402 patients. The detailed methods for clinical data collection were as previously described
403 (17).

404

405 ***Immunohistochemical staining and histological analysis***

406 Thrombus samples were fixed in 10% neutral-buffered formalin and embedded in
407 paraffin. To identify the presence of osteopontin (OPN), a product of *SPP1*, three
408 primary antibodies were used: mouse monoclonal antibodies (10011, IBL, Gunma,
409 Japan), rabbit polyclonal antibodies (25715-1-AP, Proteintech, Rosemont, IL, USA),
410 and rabbit polyclonal antibodies against the N-terminal region of human OPN (18625,
411 IBL). Immunohistochemical staining was performed using a Roche Ventana BenchMark
412 GX autostainer (Ventana Medical Systems, Tucson, AZ, USA), according to the
413 manufacturer's instructions. We stained human gallbladder and kidney samples as
414 positive controls to determine the optimal antibody concentrations. The stained slides
415 were captured as digital images using a VS200 Slide Scanner (Olympus, Tokyo, Japan).
416 The age, size, and components of the thrombi and the extent of NETosis were evaluated
417 as previously described (17). Thrombus age was evaluated based on hematoxylin and

418 eosin (H&E) staining and positivity for anti-alpha-smooth muscle actin (60). Thrombus
419 size and RBC proportion were measured using H&E staining, fibrin was detected using
420 phosphotungstic acid-hematoxylin staining, and platelets were subjected to
421 immunohistochemical staining for CD42b. The density of MC/MPs was determined via
422 staining for CD163, and the extent of NETosis was determined using H3Cit staining. A
423 thrombus was considered OPN-high when the aggregation of OPN+ cells was observed.
424 In addition, four samples were subjected to double-staining with anti-OPN and anti-
425 neutrophil elastase antibodies or with anti-OPN and anti-CD163 antibodies.

426

427 ***Single-cell RNA sequencing data analysis of CTEPH thrombi***

428 We obtained publicly available single-cell RNA sequencing data of thrombi collected
429 from patients with CTEPH, which were deposited by Rajagopal et al. (PRJNA929967)
430 (33). Filtered matrices were loaded into the R package Seurat (v.5.0) (61), and cells with
431 less than 200 features, more than 9,000 features, less than 300 UMIs, more than 60,000
432 UMIs, or more than 15% mitochondrial gene fractions were removed. Normalization
433 was performed using the R package sctransform (62), followed by the integration
434 workflow of Seurat. Principal component analysis was performed on the integrated data,
435 and the top 30 principal components were used to cluster the cells. The FindNeighbors
436 and FindClusters functions in Seurat were used to identify cell clusters with a resolution
437 of 1.0. The FindAllMarkers function in Seurat was used to identify the markers for each
438 cluster. Clusters were manually annotated using known lineage markers and several
439 clusters were combined as needed. MC/MPs were defined as cells with a high
440 expression of *CD14* or *CD163*. MC/MPs were subjected to subclustering using a
441 resolution of 0.2. DEGs from each subcluster were calculated using the FindAllMarkers

442 function, and the top 10 upregulated genes were used for the DoHeatmap function.
443 Pathway enrichment analysis was performed using the enrichGO function in the R
444 package clusterProfiler (63). We set the adjusting P method to FDR, the threshold to
445 0.05, the minimum gene set size to 10, and the maximum gene set size to 600. Pathways
446 that included fewer than three genes were excluded. The top 40 pathways with the
447 smallest P values were visualized using the Emappplot function. The bound pathways
448 were automatically clustered using the Emappplot function.

449 The receptor-ligand interaction between each subcluster of MCs/MPs and
450 fibroblasts was analyzed using CellChat (v. 2.1) (64). Normalized data were used for
451 each condition, and cell types with fewer than 10 cells were excluded. Interaction
452 strength refers to the probability of communication between a given ligand and receptor.
453 It was calculated as the degree of cooperativity/interactions derived from the law of
454 mass action and the degree to which the ligands and receptors are expressed.

455

456 ***Single-cell RNA sequencing data analysis of cells from murine venous walls***

457 We obtained single-cell RNA sequencing data from cells of the vein wall of a mouse
458 DVT model, which were deposited by Zhou et al. (PRJNA916965) (65). Cells with less
459 than 800 features, more than 8,000 features, less than 1000 UMIs, more than 40,000
460 UMIs, or more than 20% mitochondrial gene fractions were removed from the analysis.
461 Data analysis was performed as above, except that the top 15 principal components
462 were used and that clustering was performed with a resolution of 0.2. Identified
463 MCs/MPs were subjected to subclustering using the top 15 principal components and a
464 resolution of 0.6.

465

466 **Statistical analysis of clinical data**

467 Continuous variables were reported as the median and interquartile range (IQR), while
468 categorical variables were reported as numbers and percentages. Continuous variables
469 were compared using the Wilcoxon rank-sum test. Categorical variables were compared
470 using Fisher's exact test. The cumulative rate of successful reperfusion was evaluated
471 using the Kaplan–Meier method. Statistical significance was set $P < 0.05$. All analyses
472 were performed using SAS Studio software (SAS 9.4; SAS Institute Inc., Cary, NC,
473 USA).

474

475 **References**

- 476 1. A. M. Wendelboe, G. E. Raskob, Global Burden of Thrombosis. *Circulation Research* **118**,
477 1340-1347 (2016).
- 478 2. K. T. Tan, G. Y. H. Lip, Red vs White Thrombi: Treating the Right Clot Is Crucial. *Archives of*
479 *internal medicine* **163**, 2534-2535 (2003).
- 480 3. H. Kamel, J. S. Healey, Cardioembolic Stroke. *Circulation Research* **120**, 514-526 (2017).
- 481 4. R. G. Hart, L. A. Pearce, M. I. Aguilar, Meta-analysis: antithrombotic therapy to prevent stroke
482 in patients who have nonvalvular atrial fibrillation. *Annals of internal medicine* **146**, 857-867
483 (2007).
- 484 5. M. T. Kalathottukaren, C. A. Haynes, J. N. Kizhakkedathu, Approaches to prevent bleeding
485 associated with anticoagulants: current status and recent developments. *Drug Deliv Transl Res* **8**,
486 928-944 (2018).
- 487 6. L. J. Collins, D. I. Silverman, P. S. Douglas, W. J. Manning, Cardioversion of nonrheumatic
488 atrial fibrillation. Reduced thromboembolic complications with 4 weeks of precardioversion
489 anticoagulation are related to atrial thrombus resolution. *Circulation* **92**, 160-163 (1995).
- 490 7. W. A. Jaber, D. L. Prior, M. Thamilarasan, R. A. Grimm, J. D. Thomas, A. L. Klein, C. R. Asher,
491 Efficacy of anticoagulation in resolving left atrial and left atrial appendage thrombi: A
492 transesophageal echocardiographic study. *American heart journal* **140**, 150-156 (2000).
- 493 8. G. Corrado, G. Tadeo, S. Beretta, L. M. Tagliagambe, G. F. Manzillo, M. Spata, M. Santarone,
494 Atrial thrombi resolution after prolonged anticoagulation in patients with atrial fibrillation. *Chest*
495 **115**, 140-143 (1999).
- 496 9. G. Y. Lip, C. Hammerstingl, F. Marin, R. Cappato, I. L. Meng, B. Kirsch, M. van Eickels, A.

497 Cohen, Left atrial thrombus resolution in atrial fibrillation or flutter: Results of a prospective
498 study with rivaroxaban (X-TRA) and a retrospective observational registry providing baseline
499 data (CLOT-AF). *American heart journal* **178**, 126-134 (2016).

500 10. V. V. Kakkar, C. T. Howe, C. Flanc, M. B. Clarke, NATURAL HISTORY OF
501 POSTOPERATIVE DEEP-VEIN THROMBOSIS. *The Lancet* **294**, 230-233 (1969).

502 11. C. Kearon, Natural History of Venous Thromboembolism. *Circulation* **107**, I-22-I-30 (2003).

503 12. A. Ribeiro, P. Lindmarker, H. Johnsson, A. Juhlin-Dannfelt, L. Jorfeldt, Pulmonary embolism:
504 one-year follow-up with echocardiography doppler and five-year survival analysis. *Circulation*
505 **99**, 1325-1330 (1999).

506 13. J. M. Nicklas, A. E. Gordon, P. K. Henke, Resolution of Deep Venous Thrombosis: Proposed
507 Immune Paradigms. *International journal of molecular sciences* **21**, (2020).

508 14. M. Nosaka, Y. Ishida, A. Kimura, T. Kondo, Time-dependent organic changes of intravenous
509 thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age
510 determination. *Forensic Sci Int* **195**, 143-147 (2010).

511 15. H. Xie, K. Kim, S. R. Aglyamov, S. Y. Emelianov, M. O'Donnell, W. F. Weitzel, S. K. Wroblewski,
512 D. D. Myers, T. W. Wakefield, J. M. Rubin, Correspondence of ultrasound elasticity imaging to
513 direct mechanical measurement in aging DVT in rats. *Ultrasound Med Biol* **31**, 1351-1359
514 (2005).

515 16. K. P. Mercado-Shekhar, R. T. Kleven, H. Aponte Rivera, R. Lewis, K. B. Karani, H. J. Vos, T. A.
516 Abruzzo, K. J. Haworth, C. K. Holland, Effect of Clot Stiffness on Recombinant Tissue
517 Plasminogen Activator Lytic Susceptibility in Vitro. *Ultrasound Med Biol* **44**, 2710-2727 (2018).

518 17. T. Kitano, Y. Hori, S. Okazaki, Y. Shimada, T. Iwamoto, H. Kanki, S. Sugiyama, T. Sasaki, H.
519 Nakamura, N. Oyama, T. Hoshi, G. Beck, H. Takai, S. Matsubara, H. Mizuno, H. Nishimura, R.
520 Tamaki, J. Iida, J. Iba, M. Uno, H. Kishima, H. Fushimi, S. Hattori, S. Murayama, E. Morii, M.
521 Sakaguchi, Y. Yagita, T. Shimazu, H. Mochizuki, K. Todo, An Older Thrombus Delays
522 Reperfusion after Mechanical Thrombectomy for Ischemic Stroke. *Thromb Haemost*, (2021).

523 18. R. A. Campbell, A. Vieira-de-Abreu, J. W. Rowley, Z. G. Franks, B. K. Manne, M. T. Rondina, L.
524 W. Kraiss, J. J. Majersik, G. A. Zimmerman, A. S. Weyrich, Clots Are Potent Triggers of
525 Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis. *Arteriosclerosis,
526 thrombosis, and vascular biology* **37**, 1819-1827 (2017).

527 19. Y. Wang, A. Reheman, C. M. Spring, J. Kalantari, A. H. Marshall, A. S. Wolberg, P. L. Gross, J. I.
528 Weitz, M. L. Rand, D. F. Mosher, J. Freedman, H. Ni, Plasma fibronectin supports hemostasis
529 and regulates thrombosis. *J Clin Invest* **124**, 4281-4293 (2014).

530 20. S. Momi, E. Falcinelli, S. Giannini, L. Ruggeri, L. Cecchetti, T. Corazzi, C. Libert, P. Gresele,
531 Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. *The Journal
532 of experimental medicine* **206**, 2365-2379 (2009).

533 21. M. Obradovic, S. Zafirovic, S. Soskic, J. Stanimirovic, A. Trpkovic, D. Jevremovic, E. R.
534 Isenovic, Effects of IGF-1 on the Cardiovascular System. *Curr Pharm Des* **25**, 3715-3725 (2019).

535 22. Y. Yin, Y. Han, C. Shi, Z. Xia, IGF-1 regulates the growth of fibroblasts and extracellular matrix
536 deposition in pelvic organ prolapse. *Open Med (Wars)* **15**, 833-840 (2020).

537 23. W. P. Fay, A. C. Parker, L. R. Condrey, A. D. Shapiro, Human plasminogen activator inhibitor-1
538 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene.
539 *Blood* **90**, 204-208 (1997).

540 24. Z. S. Y. Lok, A. N. Lyle, Osteopontin in Vascular Disease. *Arteriosclerosis, thrombosis, and*
541 *vascular biology* **39**, 613-622 (2019).

542 25. G. S. Lee, H. F. Salazar, G. Joseph, Z. S. Y. Lok, C. M. Caroti, D. Weiss, W. R. Taylor, A. N.
543 Lyle, Osteopontin isoforms differentially promote arteriogenesis in response to ischemia via
544 macrophage accumulation and survival. *Laboratory Investigation* **99**, 331-345 (2019).

545 26. C. L. Duvall, D. Weiss, S. T. Robinson, F. M. F. Alameddine, R. E. Guldberg, W. R. Taylor, The
546 Role of Osteopontin in Recovery from Hind Limb Ischemia. *Arteriosclerosis, thrombosis, and*
547 *vascular biology* **28**, 290-295 (2008).

548 27. A. Koh, A. P. da Silva, A. K. Bansal, M. Bansal, C. Sun, H. Lee, M. Glogauer, J. Sodek, R.
549 Zohar, Role of osteopontin in neutrophil function. *Immunology* **122**, 466-475 (2007).

550 28. N. Dhanesha, M. K. Nayak, P. Doddapattar, M. Jain, G. D. Flora, S. Kon, A. K. Chauhan,
551 Targeting myeloid-cell specific integrin $\alpha 9\beta 1$ inhibits arterial thrombosis in mice. *Blood* **135**,
552 857-861 (2020).

553 29. A. Brill, Integrin $\alpha 9\beta 1$: a new target to fight thrombosis. *Blood* **135**, 787-788 (2020).

554 30. N. Nishimichi, F. Higashikawa, H. H. Kinoh, Y. Tateishi, H. Matsuda, Y. Yokosaki, Polymeric
555 osteopontin employs integrin alpha9beta1 as a receptor and attracts neutrophils by presenting a
556 de novo binding site. *J Biol Chem* **284**, 14769-14776 (2009).

557 31. T. Sabo-Attwood, M. E. Ramos-Nino, M. Eugenia-Ariza, M. B. Macpherson, K. J. Butnor, P. C.
558 Vacek, S. P. McGee, J. C. Clark, C. Steele, B. T. Mossman, Osteopontin modulates inflammation,
559 mucin production, and gene expression signatures after inhalation of asbestos in a murine model
560 of fibrosis. *The American journal of pathology* **178**, 1975-1985 (2011).

561 32. E. Laridan, F. Denorme, L. Desender, O. Francois, T. Andersson, H. Deckmyn, K.
562 Vanhoorelbeke, S. De Meyer, Neutrophil extracellular traps in ischemic stroke thrombi: NETs in
563 Stroke. *Annals of Neurology* **82**, (2017).

564 33. G. Viswanathan, H. F. Kirshner, N. Nazo, S. Ali, A. Ganapathi, I. Cumming, Y. Zhuang, I. Choi,
565 A. Warman, C. Jassal, S. Almeida-Peters, J. Haney, D. Corcoran, Y. R. Yu, S. Rajagopal, Single-
566 Cell Analysis Reveals Distinct Immune and Smooth Muscle Cell Populations that Contribute to
567 Chronic Thromboembolic Pulmonary Hypertension. *Am J Respir Crit Care Med* **207**, 1358-1375
568 (2023).

569 34. C. L. McGuinness, J. Humphries, M. Waltham, K. G. Burnand, M. Collins, A. Smith,
570 Recruitment of labelled monocytes by experimental venous thrombi. *Thromb Haemost* **85**, 1018-
571 1024 (2001).

572 35. K. Hoeft, G. J. L. Schaefer, H. Kim, D. Schumacher, T. Bleckwehl, Q. Long, B. M.
573 Klinkhammer, F. Peisker, L. Koch, J. Nagai, M. Halder, S. Ziegler, E. Liehn, C. Kuppe, J. Kranz,
574 S. Menzel, I. Costa, A. Wahida, P. Boor, R. K. Schneider, S. Hayat, R. Kramann, Platelet-
575 instructed SPP1+ macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent
576 manner. *Cell Reports* **42**, 112131 (2023).

577 36. M. Fu, S. Shu, Z. Peng, X. Liu, X. Chen, Z. Zeng, Y. Yang, H. Cui, R. Zhao, X. Wang, L. Du, M.
578 Wu, W. Feng, J. Song, Single-Cell RNA Sequencing of Coronary Perivascular Adipose Tissue
579 From End-Stage Heart Failure Patients Identifies SPP1(+) Macrophage Subpopulation as a
580 Target for Alleviating Fibrosis. *Arteriosclerosis, thrombosis, and vascular biology* **43**, 2143-2164
581 (2023).

582 37. N. C. Henderson, T. D. Arnold, Y. Katamura, M. M. Giacomini, J. D. Rodriguez, J. H. McCarty,
583 A. Pellicoro, E. Raschperger, C. Betsholtz, P. G. Ruminski, D. W. Griggs, M. J. Prinsen, J. J.
584 Maher, J. P. Iredale, A. Lacy-Hulbert, R. H. Adams, D. Sheppard, Targeting of αv integrin
585 identifies a core molecular pathway that regulates fibrosis in several organs. *Nature Medicine* **19**,
586 1617-1624 (2013).

587 38. I. R. Murray, Z. N. Gonzalez, J. Baily, R. Dobie, R. J. Wallace, A. C. Mackinnon, J. R. Smith, S.
588 N. Greenhalgh, A. I. Thompson, K. P. Conroy, D. W. Griggs, P. G. Ruminski, G. A. Gray, M.
589 Singh, M. A. Campbell, T. J. Kendall, J. Dai, Y. Li, J. P. Iredale, H. Simpson, J. Huard, B. Péault,
590 N. C. Henderson, αv integrins on mesenchymal cells regulate skeletal and cardiac muscle
591 fibrosis. *Nat Commun* **8**, 1118 (2017).

592 39. L. Liaw, M. P. Skinner, E. W. Raines, R. Ross, D. A. Cheresh, S. M. Schwartz, C. M. Giachelli,
593 The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins.
594 Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. *J Clin Invest* **95**,
595 713-724 (1995).

596 40. L. Liaw, M. Almeida, C. E. Hart, S. M. Schwartz, C. M. Giachelli, Osteopontin promotes
597 vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. *Circ
598 Res* **74**, 214-224 (1994).

599 41. G. Wernig, S. Y. Chen, L. Cui, C. Van Neste, J. M. Tsai, N. Kambham, H. Vogel, Y. Natkunam, D.
600 G. Gilliland, G. Nolan, I. L. Weissman, Unifying mechanism for different fibrotic diseases. *Proc
601 Natl Acad Sci U S A* **114**, 4757-4762 (2017).

602 42. E. Furukoji, T. Gi, A. Yamashita, S. Moriguchi-Goto, M. Kojima, C. Sugita, T. Sakae, Y. Sato, T.
603 Hirai, Y. Asada, CD163 macrophage and erythrocyte contents in aspirated deep vein thrombus
604 are associated with the time after onset: a pilot study. *Thrombosis journal* **14**, 46 (2016).

605 43. M. Hulsmans, M. J. Schloss, I. H. Lee, A. Bapat, Y. Iwamoto, C. Vinegoni, A. Paccalet, M.
606 Yamazoe, J. Grune, S. Pabel, N. Momin, H. Seung, N. Kumowski, F. E. Pulous, D. Keller, C.
607 Bening, U. Green, J. K. Lennerz, R. N. Mitchell, A. Lewis, B. Casadei, O. Iborra-Egea, A.
608 Bayes-Genis, S. Sossalla, C. S. Ong, R. N. Pierson, J. C. Aster, D. Rohde, G. R. Wojtkiewicz, R.
609 Weissleder, F. K. Swirski, G. Tellides, G. Tolis, Jr., S. Melnitchouk, D. J. Milan, P. T. Ellinor, K.
610 Naxerova, M. Nahrendorf, Recruited macrophages elicit atrial fibrillation. *Science* **381**, 231-239
611 (2023).

612 44. M. Patel, X. Wei, K. Weigel, Z. M. Gertz, J. Kron, A. A. Robinson, C. R. Trankle, Diagnosis and
613 Treatment of Intracardiac Thrombus. *J Cardiovasc Pharmacol* **78**, 361-371 (2021).

614 45. R. Lin, S. Wu, D. Zhu, M. Qin, X. Liu, Osteopontin induces atrial fibrosis by activating
615 Akt/GSK-3 β /β-catenin pathway and suppressing autophagy. *Life Sciences* **245**, 117328 (2020).

616 46. C. von Zur Mühlen, T. Koeck, E. Schiffer, C. Sackmann, P. Zürbig, I. Hilgendorf, J. Reinöhl, J.
617 Rivera, A. Zirlik, C. Hehrlein, H. Mischak, C. Bode, K. Peter, Urine proteome analysis as a
618 discovery tool in patients with deep vein thrombosis and pulmonary embolism. *Proteomics Clin
619 Appl* **10**, 574-584 (2016).

620 47. A. A. Memon, K. Sundquist, M. PirouziFard, J. L. Elf, K. Strandberg, P. J. Svensson, J.
621 Sundquist, B. Zöller, Identification of novel diagnostic biomarkers for deep venous thrombosis.
622 *Br J Haematol* **181**, 378-385 (2018).

623 48. V. M. Tutino, S. Fricano, A. Chien, T. R. Patel, A. Monteiro, H. H. Rai, A. A. Dmytriw, L. D.
624 Chaves, M. Waqas, E. I. Levy, K. E. Poppenberg, A. H. Siddiqui, Gene expression profiles of
625 ischemic stroke clots retrieved by mechanical thrombectomy are associated with disease etiology.
626 *J Neurointerv Surg*, (2022).

627 49. C. Ducroux, L. Di Meglio, S. Loyau, S. Delbosc, W. Boisseau, C. Deschildre, M. Ben Maacha, R.
628 Blanc, H. Redjem, G. Ciccio, S. Smajda, R. Fahed, J. B. Michel, M. Piotin, L. Salomon, M.
629 Mazighi, B. Ho-Tin-Noe, J. P. Desilles, Thrombus Neutrophil Extracellular Traps Content Impair
630 tPA-Induced Thrombolysis in Acute Ischemic Stroke. *Stroke* **49**, 754-757 (2018).

631 50. M. Nosaka, Y. Ishida, A. Kimura, T. Kondo, Time-dependent appearance of intrathrombus
632 neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application
633 to thrombus age determination. *Int J Legal Med* **123**, 235-240 (2009).

634 51. V. M. Tutino, S. Fricano, K. Frauens, T. R. Patel, A. Monteiro, H. H. Rai, M. Waqas, L. Chaves,
635 K. E. Poppenberg, A. H. Siddiqui, Isolation of RNA from Acute Ischemic Stroke Clots Retrieved
636 by Mechanical Thrombectomy. *Genes (Basel)* **12**, (2021).

637 52. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data.
638 *Bioinformatics* **30**, 2114-2120 (2014).

639 53. D. Kim, B. Langmead, S. L. Salzberg, HISAT: a fast spliced aligner with low memory
640 requirements. *Nature Methods* **12**, 357-360 (2015).

641 54. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning
642 sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2013).

643 55. T. G. Community, The Galaxy platform for accessible, reproducible and collaborative
644 biomedical analyses: 2022 update. *Nucleic Acids Research* **50**, W345-W351 (2022).

645 56. S. X. Ge, E. W. Son, R. Yao, iDEP: an integrated web application for differential expression and
646 pathway analysis of RNA-Seq data. *BMC Bioinformatics* **19**, 534 (2018).

647 57. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-
648 seq data with DESeq2. *Genome Biology* **15**, 550 (2014).

649 58. D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T.
650 Doncheva, J. H. Morris, P. Bork, L. J. Jensen, C. V. Mering, STRING v11: protein-protein
651 association networks with increased coverage, supporting functional discovery in genome-wide
652 experimental datasets. *Nucleic Acids Res* **47**, D607-d613 (2019).

653 59. C. H. Chin, S. H. Chen, H. H. Wu, C. W. Ho, M. T. Ko, C. Y. Lin, cytoHubba: identifying hub
654 objects and sub-networks from complex interactome. *BMC Syst Biol* **8 Suppl 4**, S11 (2014).

655 60. S. Z. Rittersma, A. C. van der Wal, K. T. Koch, J. J. Piek, J. P. Henriques, K. J. Mulder, J. P.
656 Ploegmakers, M. Meesterma, R. J. de Winter, Plaque instability frequently occurs days or
657 weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary
658 percutaneous coronary intervention. *Circulation* **111**, 1160-1165 (2005).

659 61. Y. Hao, T. Stuart, M. H. Kowalski, S. Choudhary, P. Hoffman, A. Hartman, A. Srivastava, G.
660 Molla, S. Madad, C. Fernandez-Granda, R. Satija, Dictionary learning for integrative,
661 multimodal and scalable single-cell analysis. *Nature Biotechnology*, (2023).

662 62. C. Hafemeister, R. Satija, Normalization and variance stabilization of single-cell RNA-seq data
663 using regularized negative binomial regression. *Genome Biology* **20**, 296 (2019).

664 63. G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological
665 themes among gene clusters. *Omics* **16**, 284-287 (2012).

666 64. S. Jin, M. V. Plikus, Q. Nie, CellChat for systematic analysis of cell-cell communication from
667 single-cell and spatially resolved transcriptomics. *bioRxiv*, 2023.2011.2005.565674 (2023).

668 65. E. DeRoo, T. Zhou, H. Yang, A. Stranz, P. Henke, B. Liu, A vein wall cell atlas of murine venous
669 thrombosis determined by single-cell RNA sequencing. *Communications Biology* **6**, 130 (2023).

670

671 **Acknowledgements**

672 **Funding:** This study was supported by JSPS KAKENHI 21K15696 (TK) and the
673 SENSIN Medical Research Foundation 23-1-24 (TS).

674 **Author contributions:**

675 Conceptualization: TK, TS, TM

676 Methodology: TK, TS

677 Investigation: TK, TS, MK, KO, KT, HN, YURS, YUKS, SO, JI, HS, MS, and MN

678 Visualization: TK, TS, TM, MK

679 Supervision: TS, MY, HM

680 Writing—original draft: TK, TS

681 Writing—review & editing: EM, MY, HK, HM

682 **Competing interests:** The authors declare that they have no competing interests.

683 **Data and materials availability:** RNA sequencing data of the thrombi were deposited
684 in the NIH Gene Expression Omnibus with accession ID PRJNA1099305. The clinical
685 data are available upon request.

686

687 **Figure legends**

688 **Fig. 1. Comparison of gene expression profiles between the thrombi and blood. (A)**

689 Summary of the analysis results. DEGs, differentially expressed genes; IHC,

690 immunohistochemistry; PPI, protein-protein interaction. (B) Heatmaps of the gene

691 expression patterns. (C) Unsupervised hierarchical clustering of the samples. (D)

692 Number of upregulated and downregulated genes in the thrombi compared to that in the

693 blood. (E) MA plot of the genes. Genes upregulated in thrombi are shown in red, and

694 genes with the top 20 highest fold-changes are annotated.

695

696 **Fig. 2. Gene set enrichment and protein-protein interaction analysis. (A)** Gene set

697 enrichment analysis results. The top 20 upregulated pathways in each category are

698 visualized. Pathways sharing genes are connected by edges. The width of the edges

699 represents the number of shared genes. The pathways are manually clustered and
700 annotated. (B) Protein-protein interaction network. Genes belonging to the top 4 clusters
701 out of the 963 upregulated genes identified in the STRING database are visualized.
702 Clustering was performed using MCL and each cluster is represented by different colors.
703 The thickness of each edge represents the level of confidence. Hub genes are identified
704 through their Matthews Correlation Coefficients and are highlighted in bold circles.
705 Gene set enrichment analysis results according to each cluster are shown as a table on
706 the right and are arranged according to strength. Cluster annotation was performed
707 manually. FDR, false discovery rate.

708

709 **Fig. 3. Immunohistochemical staining shows the presence of OPN in thrombi.** (A)
710 Gene expression as measured using qPCR. (B-D) Immunohistochemical staining for
711 OPN using rabbit polyclonal antibodies against the N-terminal part of human OPN
712 (18625). Boxed areas are magnified in the panel. Bar = 200 μ m. B, Representative
713 image of a thrombus with strong positivity for OPN. The aggregation of OPN+ cells
714 was observed. C, Thrombus with weak positivity for OPN. D, OPN+ cells unevenly
715 distributed in one thrombus. OPN, osteopontin. (E) Double-staining against neutrophil
716 elastase 1 (purple) and OPN (yellow). Bar = 20 μ m (F) Double-staining against CD163
717 (purple) and OPN (yellow).

718

719 **Fig. 4. Comparison of thrombus features according to OPN expression.** (A) Fresh
720 thrombi are more common among the OPN-low thrombi ($P < 0.001$) than older thrombi.
721 (B) Comparison of thrombus components, CD163+ cell density, and the degree of
722 NETosis. * $P < 0.05$, ** $P < 0.01$.

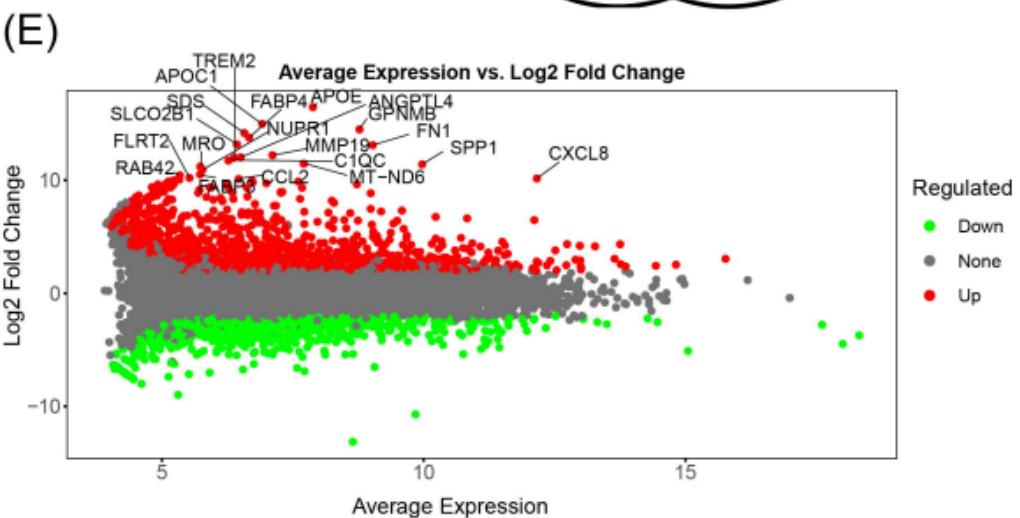
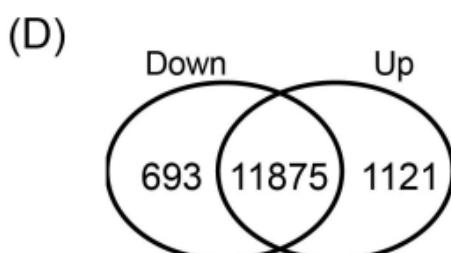
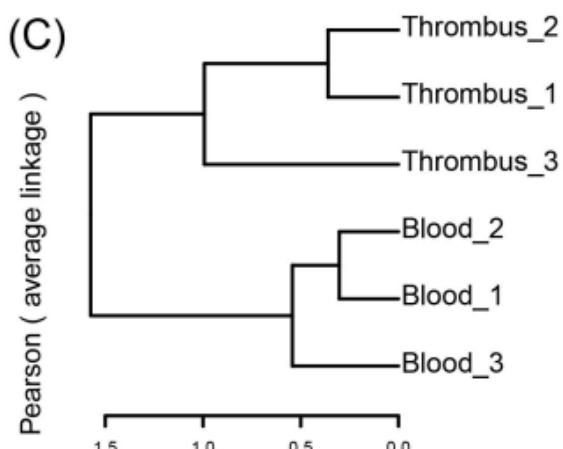
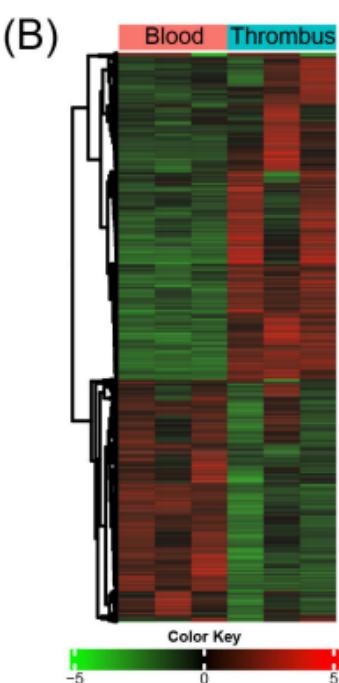
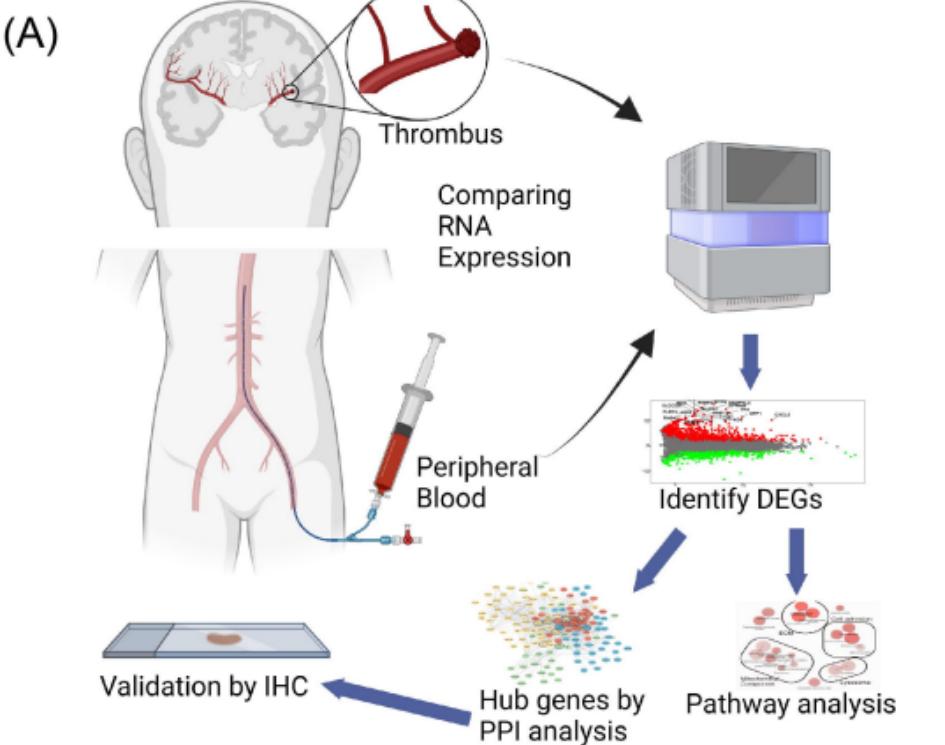
723

724 **Fig 5. Associations between clinical characteristics and OPN expression in the**
725 **thrombus.** (A) Proportion of patients according to stroke subtype. (B) Cumulative rate
726 of successful reperfusion (expanded treatment in cerebral ischemia $\geq 2b$) after puncture.
727 (C) Proportion of the number of passes before successful reperfusion.

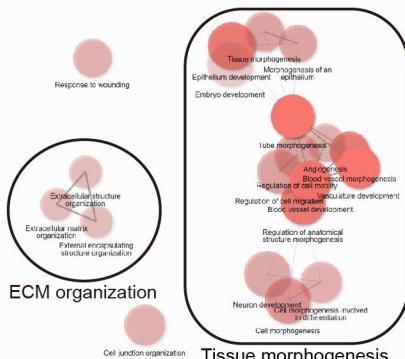
728

729 **Fig. 6. Analysis of single-cell RNA sequencing data of thrombi from patients with**
730 **chronic thromboembolic pulmonary hypertension.** (A) UMAP plot visualizing the
731 cell type and feature plot of the expression of SPP1. (B) Expression of specific marker
732 genes. (C) Subclustering of the MC/MPs. Four subclusters are identified. (D) Heatmap
733 of the top 10 differentially expressed genes according to each subcluster of MC/MPs.
734 SPP1 is highly expressed in subcluster 2. (E) Expression of hub genes identified by the
735 PPI in the thrombus. $*P_{val_adj} < 0.0001$. (F) Gene set enrichment analysis results. The
736 pathways upregulated in subcluster 2 MC/MPs are visualized. Pathways sharing genes
737 are connected by edges, and the width of the edges represents the number of shared
738 genes. Clustering was performed automatically.

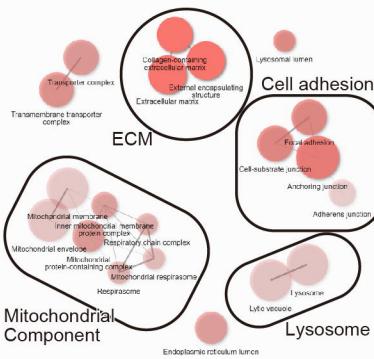
739

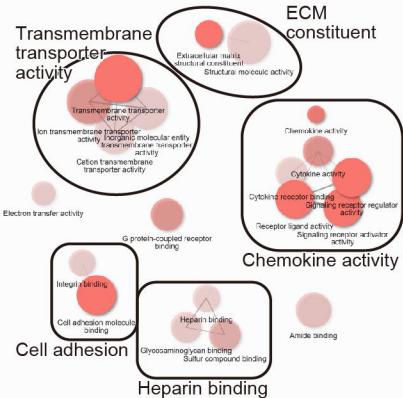





740 **Fig. 7. Ligand-receptor interaction analysis using single-cell RNA sequencing data**
741 **from thrombi of patients with chronic thromboembolic pulmonary hypertension.**
742 (A) Network plots of the inferred numbers and strengths of ligand-receptor interactions.
743 (B) Inferred numbers and strengths of ligand-receptor interactions with fibroblasts
744 according to cluster. Fibroblasts were set as the receiver. (C) Chord diagram to visualize
745 all the inferred ligand-receptor pairs from the MC/MPs subclusters to fibroblasts. (D)
746 Expression of genes in the SPP1 signaling pathway.

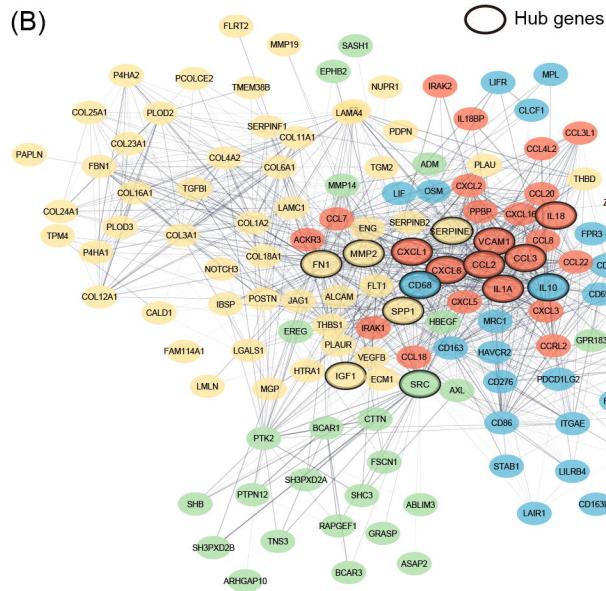
747


Table 1. Background characteristics according to OPN expression in the thrombus.

	OPN low (n = 26)	OPN high (n = 40)	P	miss
Age, yrs	78 (71–83)	79.5 (66–85)	0.80	0
Male	13 (50%)	19 (48%)	1	0
Hypertension	16 (62%)	23 (58%)	0.80	0
Diabetes	5 (19%)	5 (13%)	0.50	0
Dyslipidemia	10 (39%)	14 (35%)	0.80	0
Atrial fibrillation	14 (54%)	31 (78%)	0.060	0
Antiplatelets	8 (31%)	11 (28%)	0.79	0
Anticoagulants	7 (27%)	12 (30%)	1	0
Modified Rankin Scale	0 (0–2)	0.5 (0–2)	0.30	0
NIHSS score	16.5 (12–24)	17.5 (13–22.5)	0.77	0
Leukocyte count, / μ L	8,110 (6,350–11,500)	7,130 (5,280–9,110)	0.097	0
Platelet count, $10^4/\mu$ L	21.5 (19.2–23.8)	18.4 (15.7–22.2)	0.021	0
C-reactive protein, mg/dL	0.16 (0.05–0.40)	0.265 (0.11–1.66)	0.28	0
Fibrinogen, mg/dL	285 (253–374)	321.5 (289–398)	0.35	27
D-dimer, μ g/mL	2.48 (1–4.61)	1.7 (0.8–3.18)	0.194	4
Brain Natriuretic Peptide, pg/mL	82.5 (43–253)	225 (94–555.7)	0.054	21
Cardio-thoracic ratio, %	57 (52–63)	62 (58–65)	0.023	2
ASPECTS	9.5 (7.5–10)	9 (7–10)	0.83	5
Tandem lesion	1 (4%)	2 (5%)	1	0
Hyperdense MCA sign	13 (57%)	20 (59%)	1	9
Susceptibility vessel sign	6 (60%)	6 (75%)	0.64	48
rt-PA administration	10 (39%)	15 (38%)	1	0
Onset-to-puncture time, min	239 (130–383)	187 (105–362)	0.49	0

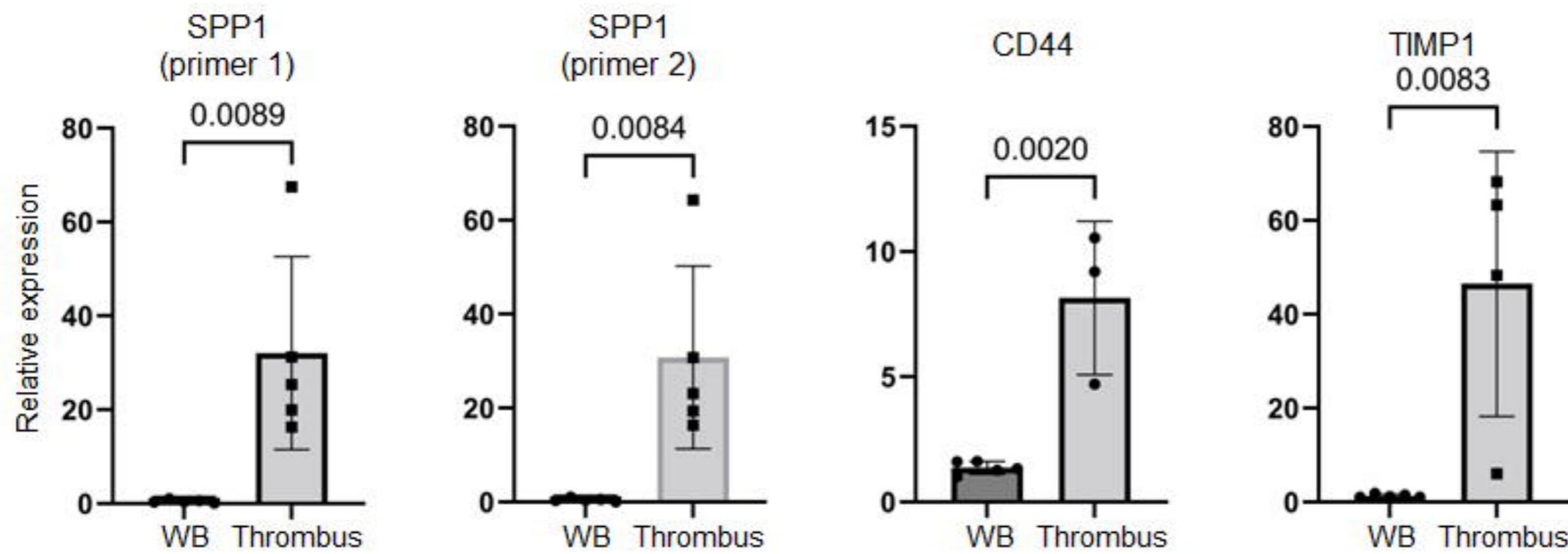

Abbreviations: ASPECTS, Alberta Stroke Program Early CT Score; MCA, middle cerebral artery; NIHSS, National Institute of Health Stroke Scale; OPN, osteopontin; rtPA, recombinant tissue-plasminogen activator


(A) GO: Biological Process

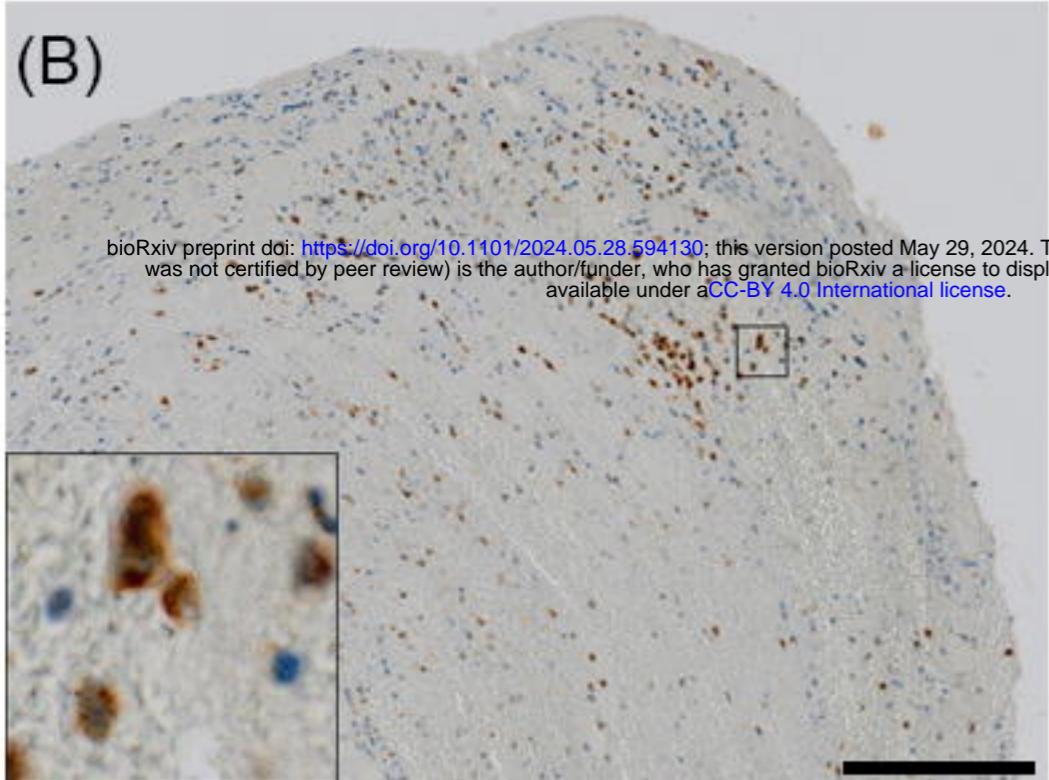

GO: Cellular Component

GO: Molecular Function

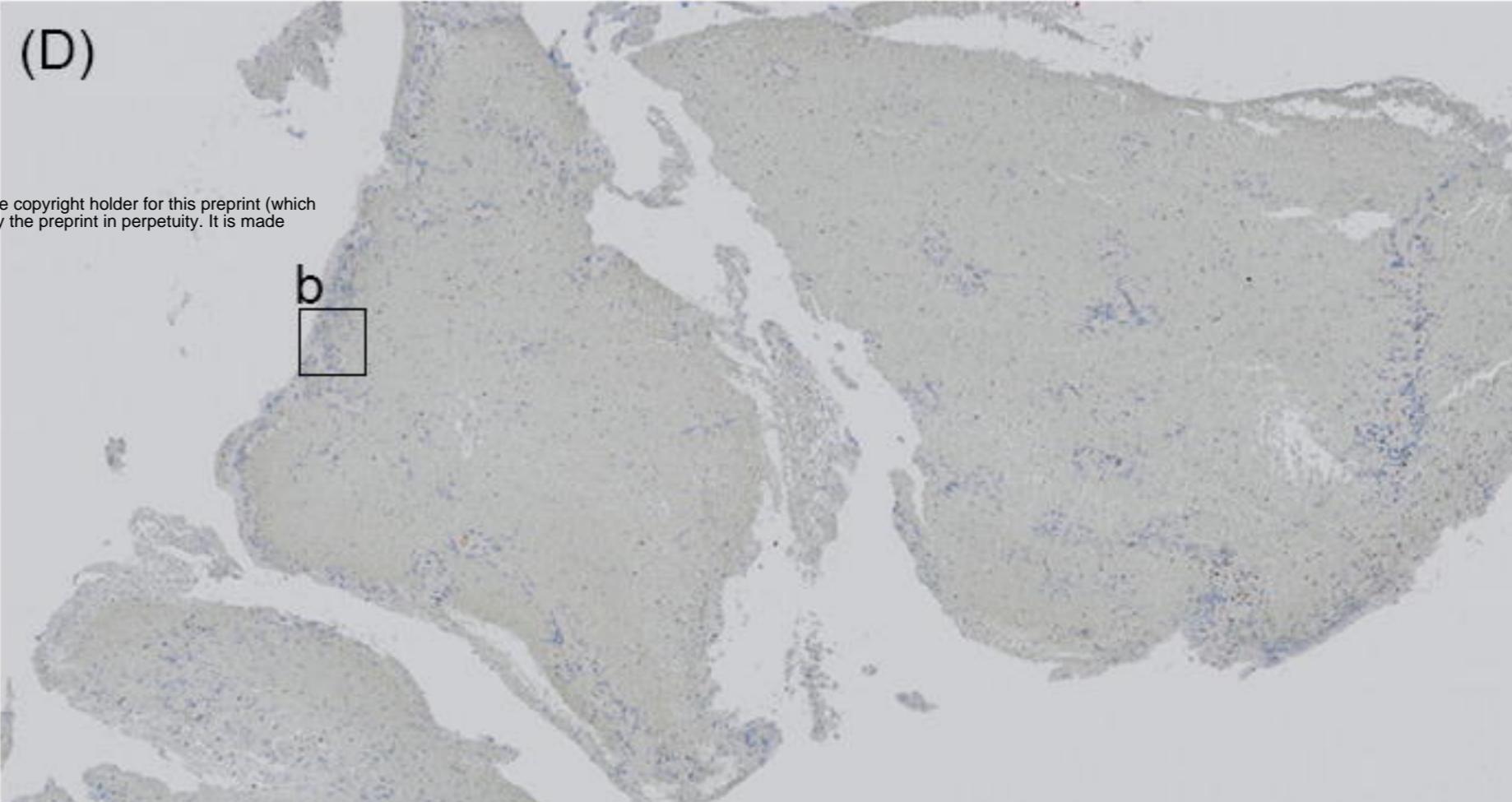
(B)

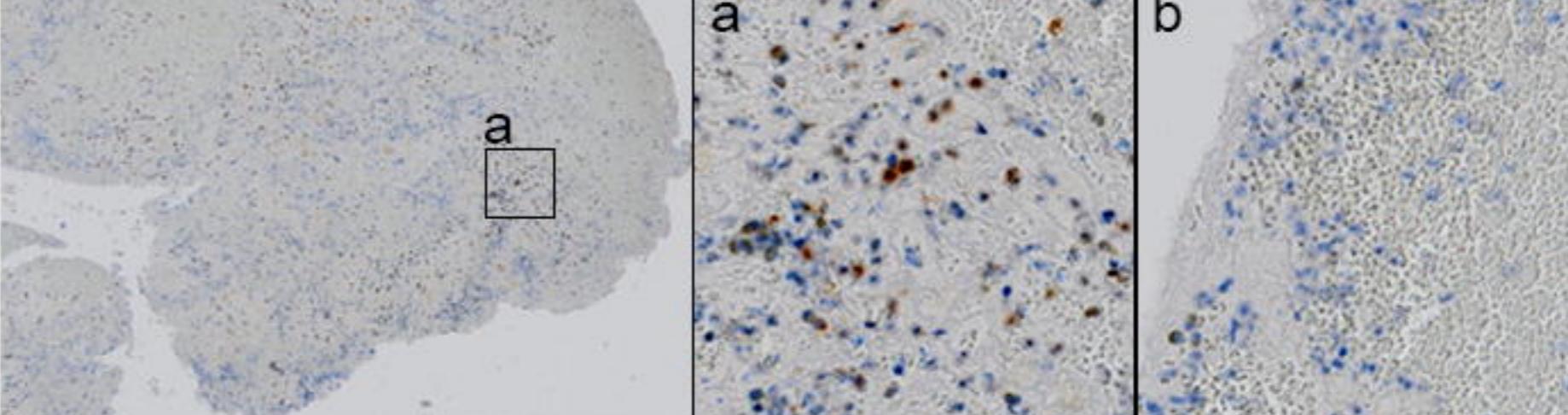
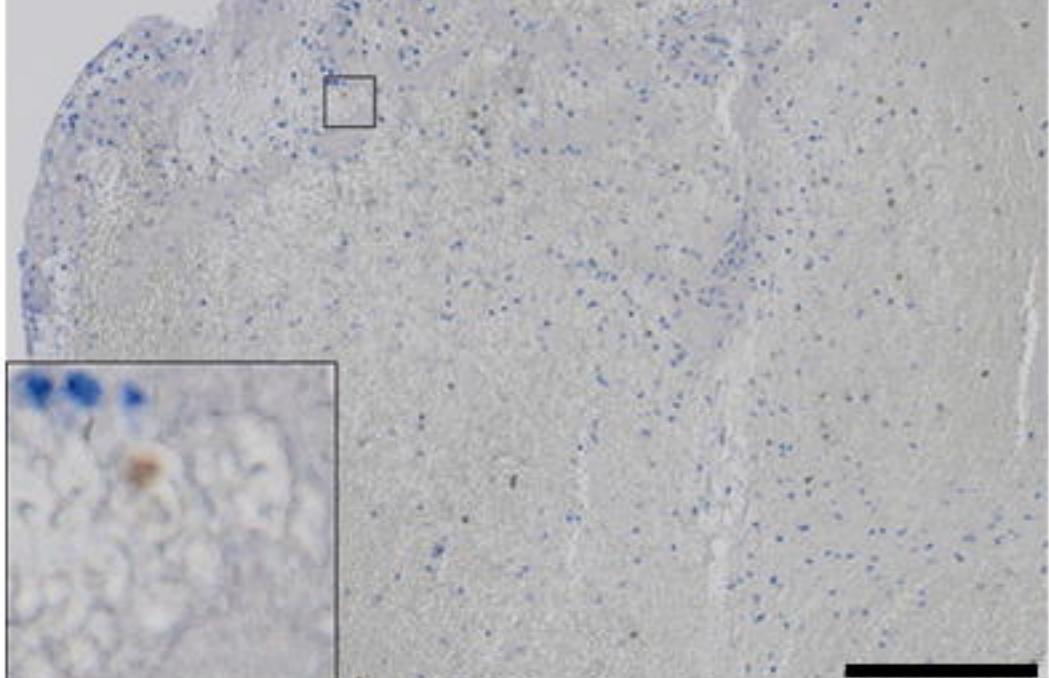

Cluster 1: Extracellular Matrix Formation	n= 55
Gene Ontology	FDR
Biological Process	
Hydrolysis biosynthetic process	0.0056
Urokinase plasminogen activator signaling pathway	0.0082
Regulation of smooth muscle cell-matrix adhesion	0.0113
Extracellular matrix constituent secretion	0.0113
Molecular Function	
Procollagen-lysine 5-dioxogenase activity	0.0178
Procollagen-proline 4-dioxogenase activity	0.0313
Platelet-derived growth factor binding	0.0022
Extracellular matrix structural constituent conferring tensile strength	<0.0001
Cellular Component	
Fibrillar collagen trimer	<0.0001
Serine protease inhibitor complex	0.0139
FCIT collagen trimer	0.0139
Fibrinogen complex	<0.0001

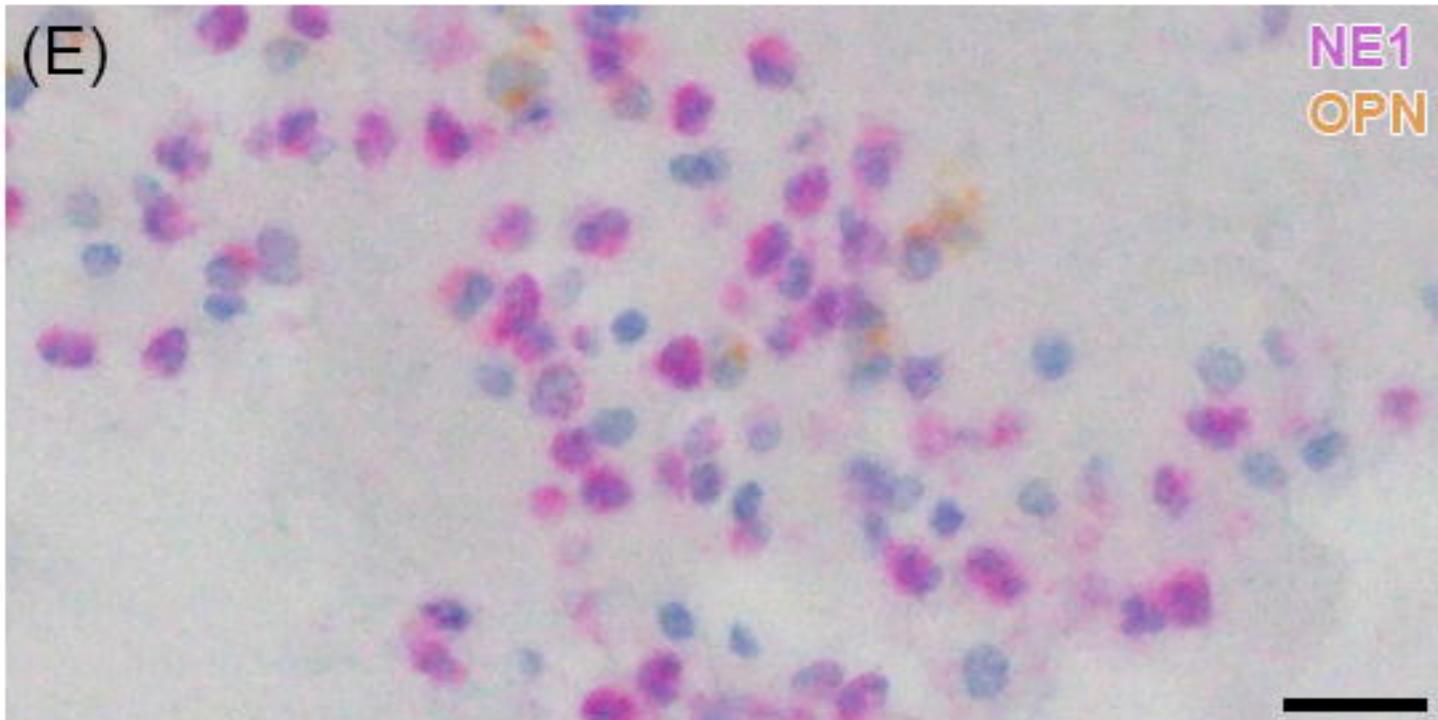
Cluster 2: Anti-inflammation	n=31
Gene Ontology	FDR
Biological Process	
negative regulation of interleukin-18 production	0.0042
negative regulation of myeloid dendritic cell activator	0.0042
negative regulation of interferon- α production	0.0097
oncostatin-M-mediated signaling pathway	0.0122
Molecular Function	
Cargo receptor activity	0.0011
immune receptor activity	0.0077
Cellular Component	
External side of plasma membrane	<0.0001
Side of membrane	<0.0001
Cell surface	<0.0001
Intrinsic component of plasma membrane	0.002

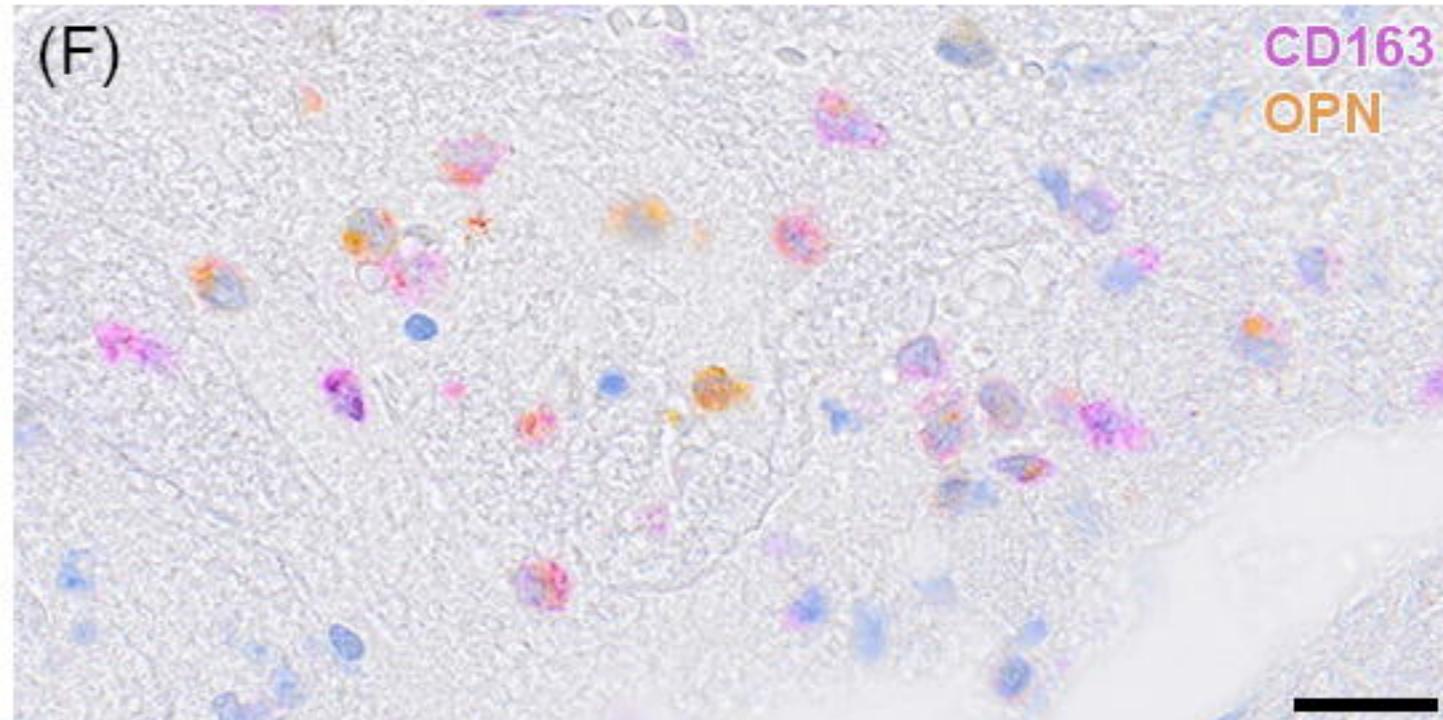

Cluster 3: ERBB signaling pathway	n=26
Gen_ Ontology	FDR
Biological Process	
ERBB2-ERBB4 signaling pathway	0.0091
Regulation of platelet-derived growth factor receptor-beta signaling pathway	0.0146
ERBB2-EGFR signaling pathway	0.0146
Signal complex assembly	0.0146
Molecular Function	
Superoxide-generating NADPH oxidase activator	
activity	0.045
SH2 domain binding	0.0286
Phosphotyrosine residue binding	0.0286
Phosphoprotein binding	0.0286
Cellular Component	
Podosome	<0.0001
Ruffle	0.0254
FACT1 collagen trimer	0.0254
Actin cytoskeleton	<0.0001

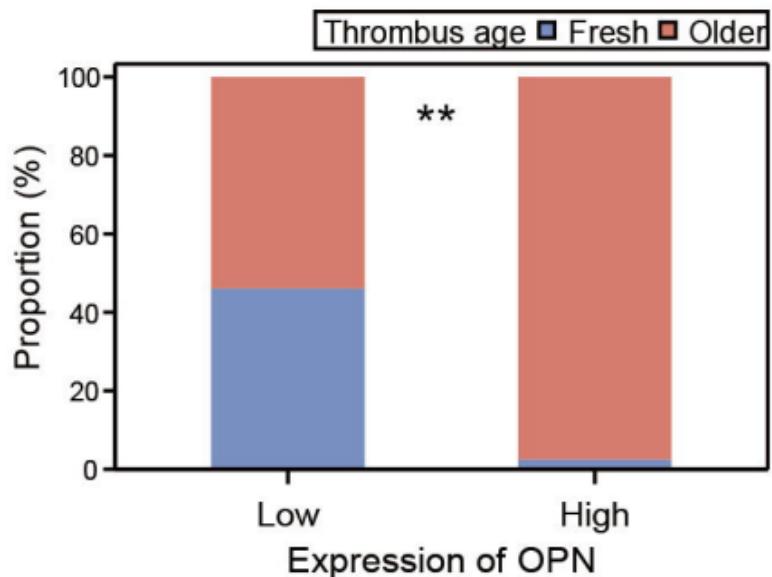
Cluster 4: pro-inflammatory chemotaxis	n=25
Biological Process	GO
Regulation of natural killer cell chemotaxis	<0.0001
Positive regulation of natural killer cell chemotaxis	0.055
Cytoskeletal chemotaxis	<0.0001
Macrophage migration	0.0069
Molecular Function	
Chemokine activity	<0.0001
CXCR chemokine receptor binding	<0.0001
CR2 chemokine receptor binding	0.0141
CR1 chemokine receptor binding	0.0141
Cellular Component	
Extracellular space	<0.0001

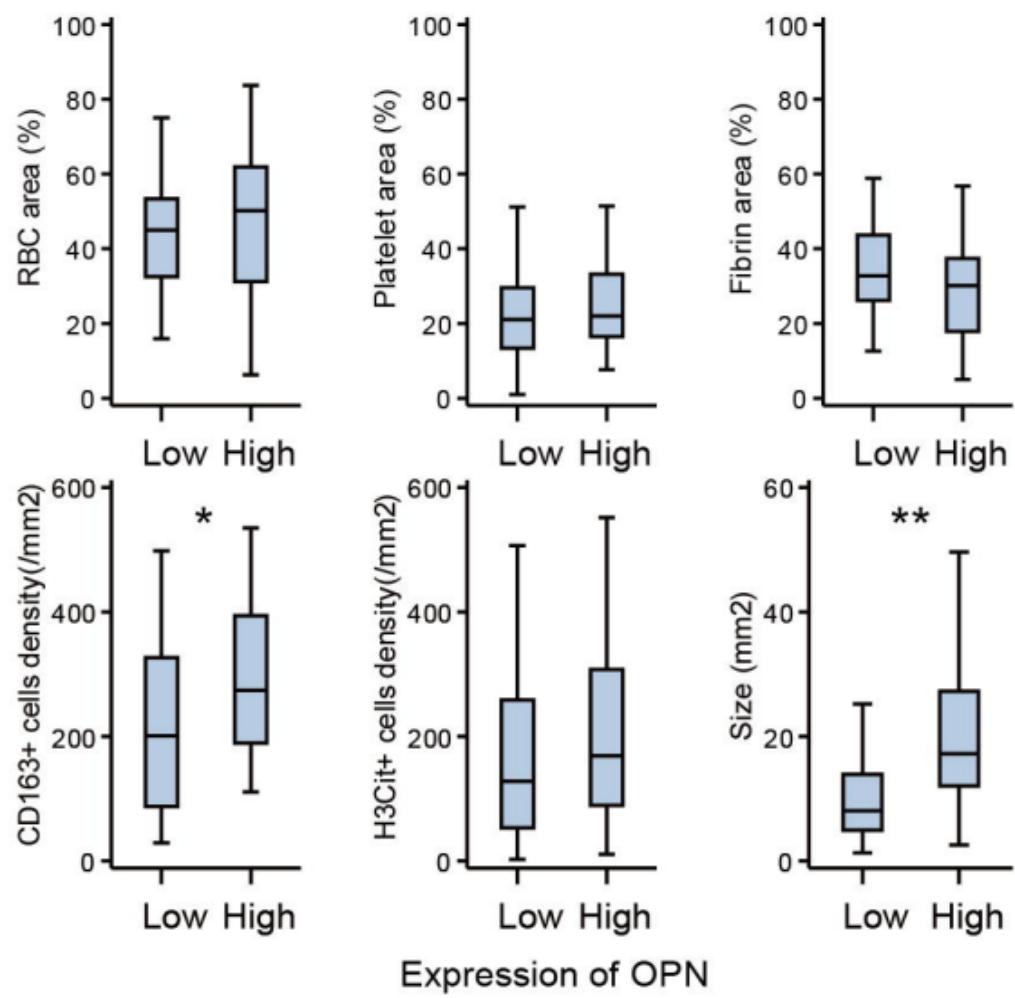

(A)

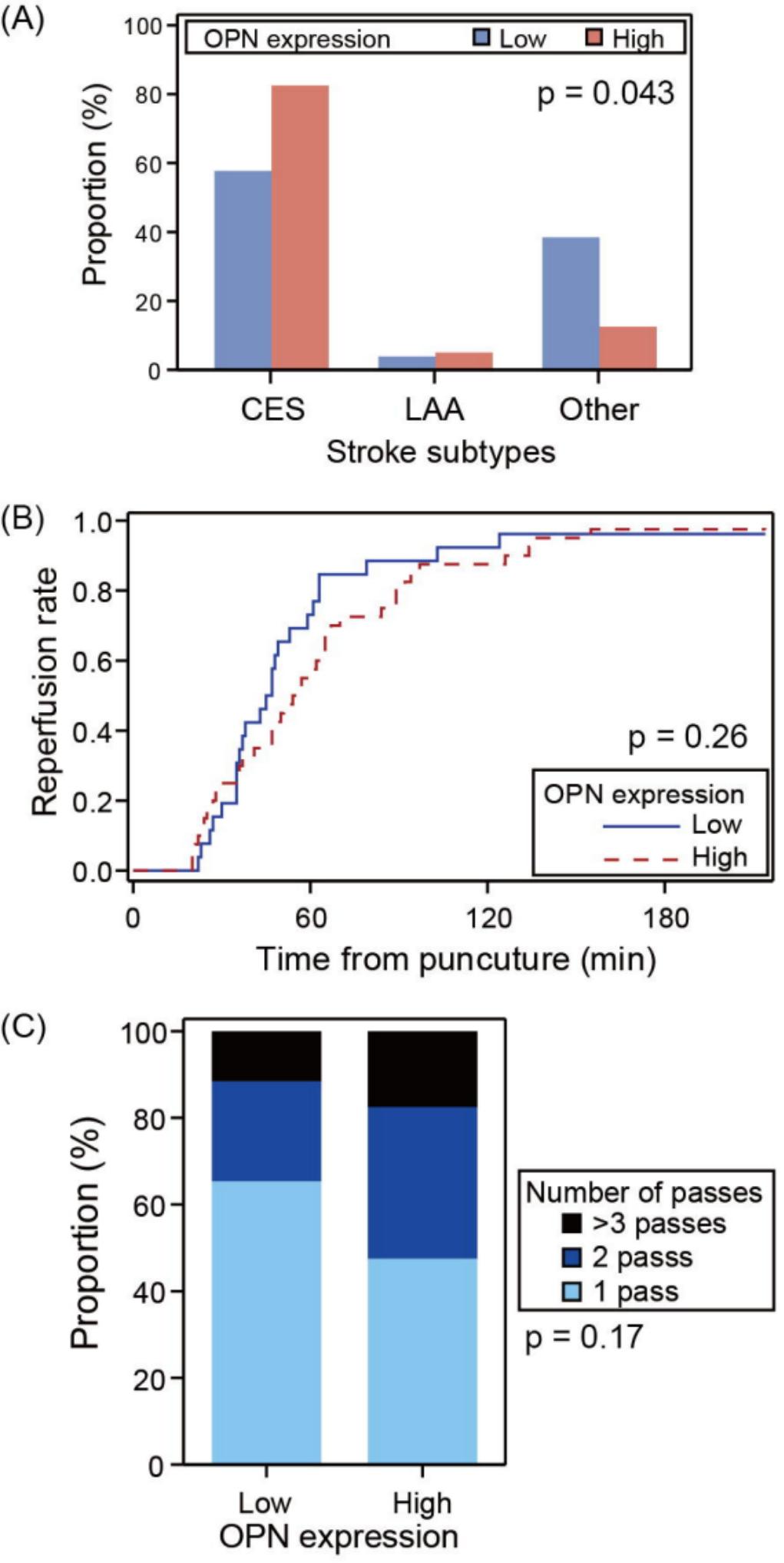


(B)

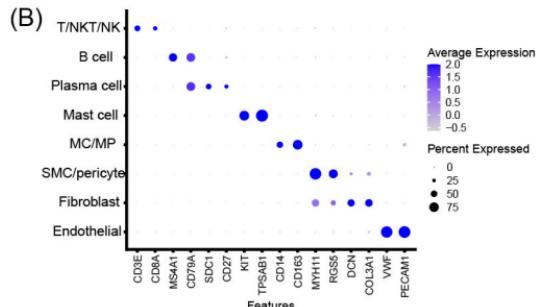
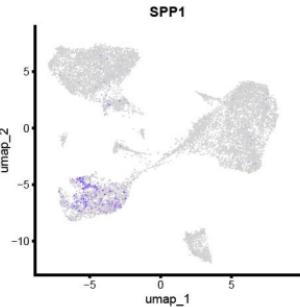
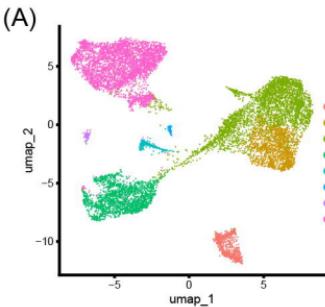

(D)

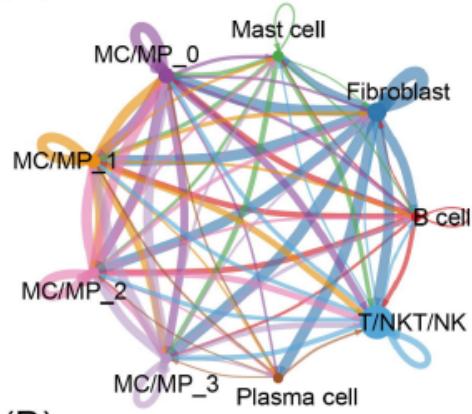

(C)


(E)

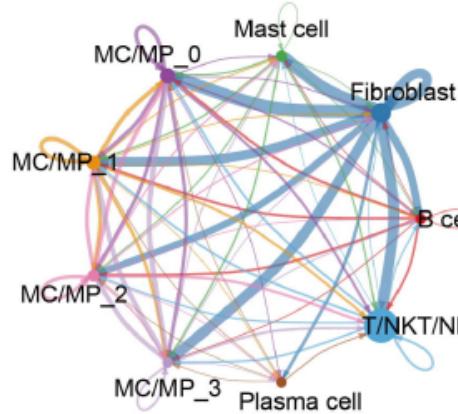
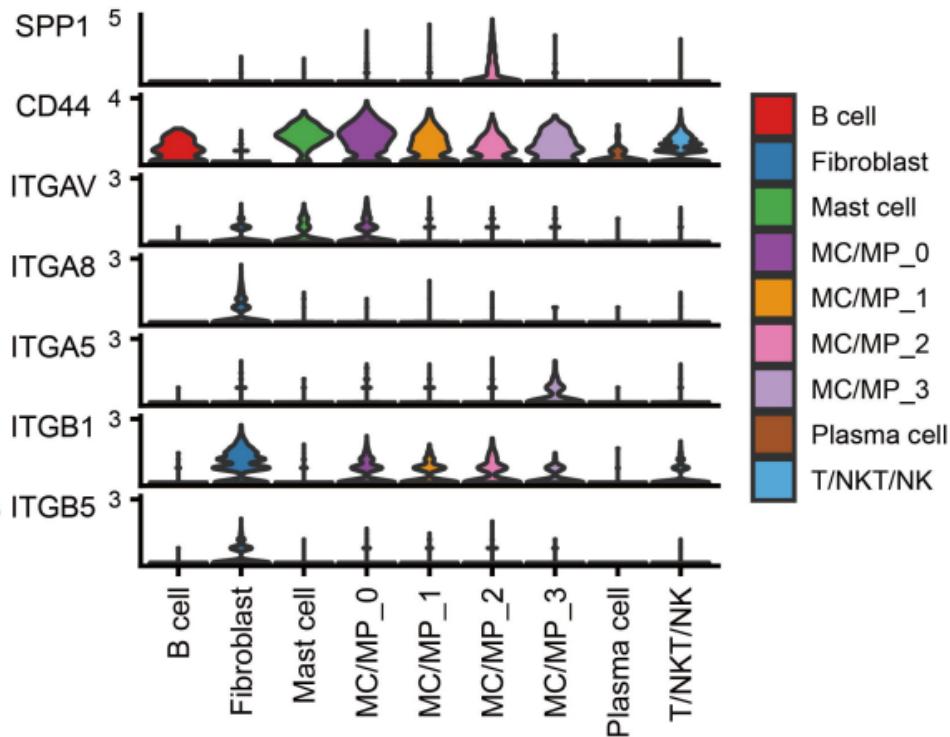
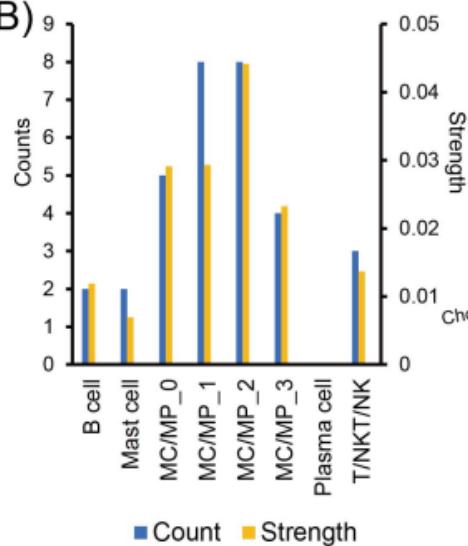
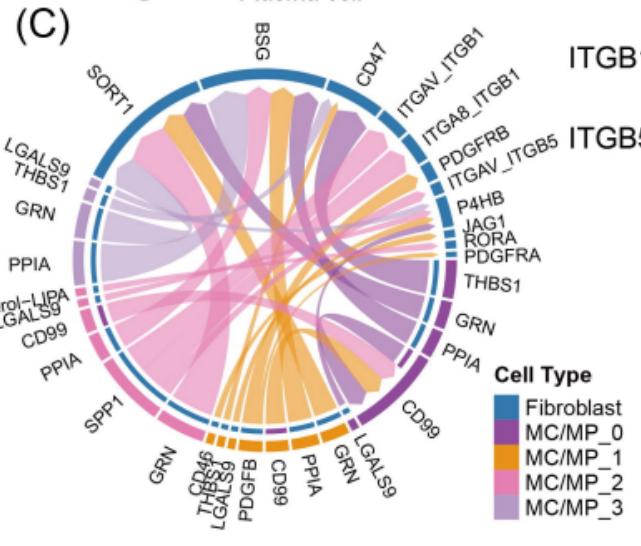

(F)






(A)



(B)

(A) Number of interactions

Interaction strength

(D)**(B)****(C)**