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2 

Abstract  27 
 28 
  The present study investigated the neuromodulatory substrates of salience 29 

processing and its impact on memory encoding and behaviour, with a specific focus 30 

on two distinct types of salience: reward and contextual unexpectedness. 46 31 

participants performed a novel task paradigm modulating these two aspects 32 

independently and allowing for investigating their distinct and interactive effects on 33 

memory encoding while undergoing high resolution fMRI. By using advanced image 34 

processing techniques tailored to examine midbrain and brainstem nuclei with high 35 

precision, our study additionally aimed to elucidate differential activation patterns in 36 

subcortical nuclei in response to reward-associated and contextually unexpected 37 

stimuli, including distinct pathways involving in particular dopaminergic modulation. 38 

We observed a differential involvement of the ventral striatum, substantia nigra and 39 

caudate nucleus, as well as a functional specialisation within the subregions of the 40 

cingulate cortex for the two salience types. Moreover, distinct subregions within the 41 

substantia nigra in processing salience could be identified. Dorsal areas preferentially 42 

processed salience related to stimulus processing (of both reward and contextual 43 

unexpectedness) versus ventral areas were involved in salience-related memory 44 

encoding (for contextual unexpectedness only). These functional specialisations 45 

within SN are in line with different projection patterns of dorsal and ventral SN to brain 46 

areas supporting attention and memory, respectively. By disentangling stimulus 47 

processing and memory encoding related to two salience types, we hope to further 48 

consolidate our understanding of neuromodulatory structures' differential as well as 49 

interactive roles in modulating behavioural responses to salient events. 50 

 51 
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 53 
1 Introduction 54 

Neuromodulation influences physiological and cognitive functions including 55 

memory, attention, and emotion regulation (1–5). Key systems involve the 56 

dopaminergic system (substantia nigra [SN] and ventral tegmental area [VTA]; (4,6)), 57 

noradrenergic system (locus coeruleus [LC]; (4)), and serotonergic system (raphe 58 

nuclei; (7)). Despite their small volume, the midbrain and brainstem harbour the origins 59 

of these systems, projecting to different brain regions and affecting various processes 60 

such as attention, working memory, and long-term memory (2,8–16). 61 

From animal and human research, it is known that the midbrain and brainstem 62 

neuromodulatory systems, especially those responsive to salient events, play a crucial 63 

role in memory consolidation (17–23). For instance, evidence from animal studies 64 

indicates that it is predominantly the noradrenergic system, and in particular the 65 

noradrenergic locus coeruleus in the brainstem, which modulates attention and 66 

arousal, enhancing memory retention for novel and aversive events (1,22). On the 67 

other hand, dopamine, and in particular the substantia nigra in the midbrain, promotes 68 

reward processing and learning, and supports memory encoding for novel or positive 69 

events (16,21,23–26). Despite these seemingly straightforward distinctions, animal 70 

studies suggest that the separation between noradrenergic and dopaminergic nuclei 71 

in processing different types of salience might not be as distinct as previously thought. 72 

For example, the processing of novel stimuli, commonly associated with dopaminergic 73 

modulation, seems to activate both the locus coeruleus and the substantia nigra, with 74 

the latter showing more sustained activity (22). Such co-activations are plausible given 75 

the anatomical connections between noradrenergic and dopaminergic cell groups (2). 76 

Finally, although perhaps less relevant for functional MRI studies, it is important to 77 

consider that neuromodulatory cell groups often release multiple neurotransmitters; 78 
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for instance, the noradrenergic locus coeruleus also releases dopamine to the 79 

hippocampus. Therefore, while fMRI might indicate the involvement of a typically 80 

noradrenergic structure, the underlying cognitive effects could be mediated by 81 

dopamine (27,28). Taken together, although the influence of event saliency on human 82 

memory formation is well recognized, establishing distinct relationships between 83 

neuromodulation and enhanced memory for different types of salience such as reward 84 

and unexpectedness or novelty in humans is often complicated due to in part 85 

overlapping neural substrates (12,21,22,26,29–34). Moreover, the methodological 86 

challenges involved in reliably imaging the small neuromodulatory nuclei of the 87 

midbrain and brainstem in humans makes it difficult to disentangle and closely inspect 88 

the distinct mechanisms (35). 89 

In this study, we aimed to understand the neuromodulatory underpinnings of 90 

different types of salience, namely contextual unexpectedness and reward, and their 91 

effects on memory encoding. We conducted a two-session experiment in order to 92 

separately manipulate the salience effect on memory related to contextual 93 

unexpectedness and reward association in the same sample. To effectively investigate 94 

the role of neuromodulatory midbrain and brainstem structures in processing salience 95 

and encoding memories for salient events, we applied a newly developed MRI data 96 

processing approach, which specifically enhances spatial precision in assessing 97 

brainstem and midbrain activations, increasing the reliability and significance of our 98 

findings (36). 99 

Our study hypothesises that (1) processing different types of saliences and their 100 

memory effects will preferentially rely on distinct neural substrates with reward-101 

associated stimuli relying more on dopaminergic networks and unexpectedness-102 

associated stimuli more on predominantly noradrenaline networks (21). Finally, we 103 
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expect that (2) episodic memory encoding will be facilitated by both reward- and 104 

unexpectedness-associated salience, which will be reflected in the enhanced 105 

subsequent memory effects for stimuli linked to salience as well as parallel primary 106 

support by dopaminergic and noradrenergic networks, respectively. 107 

 108 

  109 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.27.596071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.27.596071
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

6 

2 Methods  110 

2.1 Participants  111 

Fifty healthy younger adults (22 males, age range: 18−31 years, 112 

M±SD=23.5±2.4) were recruited via the German Center for Neurodegenerative 113 

Diseases (DZNE) participant database. MRI eligibility was initially screened via 114 

telephone conversations and email. Exclusion criteria included age, history of 115 

neurobiological disorders, and the presence of ferromagnetic implants. Each 116 

participant was scanned twice as the study compared the effects of two different 117 

salience contexts on memory encoding. Three subjects dropped out after the first 118 

session due to scheduling issues, thus resulting in a total 47 participants with two scan 119 

sessions, i.e. 94 scans. The handling procedures of two-session MRI data are 120 

described in detail in the data analysis section (section 2.2.4.) below. All participants 121 

provided written informed consent prior to each session. At the end of each 122 

experimental visit, they were compensated either 72 Euros or 32 Euros cash 123 

depending on the reward context type of the session. 124 

 125 

2.2 Task design and procedures 126 

2.2.1 Materials 127 

MATLAB R2015b (Mathworks, Sherborn, MA, USA, 2015) and Cogent toolbox 128 

(Cogent Graphics, http://www.vislab.ucl.ac.uk/CogentGraphics.html [Accessed May 129 

2018]) were employed for paradigm creation and execution. To provide a comparable 130 

range of stimulus memorability, scene images were sourced from the Large-scale 131 

Image Memorability dataset (LaMem, (37)) and manually screened to exclude: (1) 132 

memorability values outside the 0.4-0.6 range as per LaMem; (2) emotional elements 133 

such as blood or sexual content; (3) distinctive face-like features; (4) legible text; (5) 134 
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animals. Post-screening, images were categorised into four subgroups (public indoor, 135 

private indoor, urban outdoor, natural outdoor) to allow for four separate stimulus 136 

categories associated with reward or no reward outcomes across the two sessions. 137 

The luminance level of all stimuli were set at 50% as stimulus brightness is known to 138 

affect pupil dilations, which were concurrently recorded but are not reported here. 139 

Background stimuli (binary chequered-noise stimuli) were also set at 50% luminance 140 

(Figure 1). 141 

 142 

2.2.2 Task design and procedures  143 

2.2.2.1 Experimental programme 144 

In our study, we conducted two types of test sessions on separate days within 145 

subject to manipulate the reward context, differing in the frequency of reward-146 

associated trials. There were 135 rewarded trials in the ‘frequent reward session’ and 147 

45 in the ‘infrequent reward session,’ with neutral feedback in the remainder (see 148 

Figure 1 inset). For example, in one session a subject might encounter an indoor scene 149 

stimulus set consisting of private and public scenes, with either private or public 150 

scenes randomly assigned as rewarded, while the other category received neutral 151 

feedback. In the alternate session (i.e. the second visit), the subject would be 152 

presented with an outdoor scene stimulus set, comprised of nature and urban scenes, 153 

and either nature or urban scenes would be randomly assigned as rewarded. Across 154 

subjects, the order of indoor and outdoor scenes, as well as which category within 155 

each set was designated 'frequent reward' or 'infrequent reward', was randomised. 156 

Thus, if private indoor scenes were assigned as 'frequent reward' in one session, the 157 

rewarded outdoor scene category in the next session would be 'infrequent'. Subjects 158 

were compensated with 50 cents for each rewarded scene. (see also ‘Reward task 159 
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and memory test’ and Figure 1 below for more details). The interval between the two 160 

visits was a minimum of 1 day and maximum of 29 days (M=7.33, SD=7.56). By 161 

manipulating the presentation frequency of rewards in two separate test sessions, the 162 

effect of two salience types, reward and contextual unexpectedness, on the following 163 

two aspects can be examined: namely a) whether a stimulus is associated with a 164 

reward or a neutral outcome, and b) how frequently a stimulus category is presented 165 

in the context of a specific session's reward schedule. In addition, the temporal design 166 

of the task was optimized in order to allow for examining functional brain activations 167 

to scenes and feedbacks separately. This approach permitted separate assessments 168 

of processing salient stimuli as well as the impact of associated feedbacks on memory 169 

encoding within the context of different salience types. During each session, functional 170 

magnetic resonance imaging (fMRI) as well as structural magnetic resonance imaging 171 

(sMRI) was carried out. Pupillometric data were collected simultaneously during fMRI, 172 

which will not be reported here. 173 

  174 
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 175 

 176 

 177 

 178 

 179 

Figure 1. Trial Structure. The figure shows the layout of the stimuli on the screen and the 180 
sequence within each trial: (a) baseline, jittered between 0.5 and 8.5 seconds in duration; (b, d) 181 
scenes to be categorised as either indoor or outdoor, each lasting 2.5 seconds; (c, e) 182 
categorisation response, lasting 2 seconds regardless of button input; (f) a subsequent baseline, 183 
indicated by a dot, jittered between 1 and 2 seconds in duration; (h) 1.5-second feedback 184 
presentation, differentiated by the preceding baseline screen. Green and orange dashed boxes 185 
indicate example stimulus sets for the two test sessions. Jittered intervals between scene stimuli 186 
and feedback were included in order to facilitate investigating functional activations to these two 187 
timepoints separately. The insets indicate the composition of the infrequent and frequent reward 188 
sessions, the order of which was likewise randomised. 189 
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2.2.2.2 Reward task and memory tests 191 

In the reward task, participants were instructed to sort a picture into two 192 

categories per session, one of which was rewarded and one of which was infrequent 193 

(Figure 1). All images presented during this encoding task were trial unique. Altogether, 194 

in order to distinguish infrequent and frequent as well as rewarded and not rewarded 195 

stimuli, four different types of scenes were included across the two sessions: Private 196 

or public indoor pictures and urban or nature outdoor pictures (cf. Figure 1). In order 197 

to make it easier for participants to differentiate scenes across sessions, one session 198 

used indoor scenes, and the other session used outdoor scenes, i.e. indoor and 199 

outdoor scenes were never mixed in a session. Within each session, only one scene 200 

category (e.g. urban in ‘outdoor session’ or private in ‘indoor session’) was associated 201 

with a reward. Reward association of scenes did not change across categories within 202 

a session and was deterministic. That is, every incidence of a reward category scene 203 

was followed by reward feedback. Which session (‘indoor’ or ‘outdoor’) came first, 204 

which scene category was associated with a reward, and of which frequency the 205 

reward-associated scenes were presented during the task (‘infrequent’ or ‘frequent 206 

reward’ session) were counterbalanced across participants. In this way, no scene 207 

category was preferentially associated with a first or second test session or saliency 208 

conditions, i.e. frequency or reward, across participants. 209 

Each scan session started with 15-minute sMRI data collection, whole-brain T1, 210 

high-resolution T2, and fieldmap. Participants did not perform any tasks during this 211 

period and were allowed to close their eyes and rest. During the following fMRI scan, 212 

participants performed the reward task concurrent with pupillometric data collection 213 

(not reported here). After the fMRI scan, a neuromelanin-sensitive structural scan was 214 

acquired to assess LC integrity (not reported here).  215 

(g) 
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 216 

 217 
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 219 

 220 

Figure 2. Incidental memory tests. The layout of the stimulus on the screen and the sequence 221 
within a trial: (a) baseline; (b) a scene which were either already seen during the reward task in 222 
the scan session or new; (c) an old-new recognition response in which participants were to respond 223 
whether they have seen the stimulus or not; (d) a binary confidence rating screen in which 224 
participants were to respond whether they are sure of their decision they made in the recognition 225 
response. 226 
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Following the structural scans, participants performed the ‘immediate’ memory 228 

test for approximately 20 minutes outside the scanner (Figure 2). Subsequently, after 229 

a break, they performed a 'delayed' memory test, also lasting for about 20 minutes 230 

and conducted outside the scanner, at approximately 120 minutes post-reward task. 231 

During their second visit, participants were explicitly instructed not to engage in 232 

deliberate memorisation of the presented scenes to minimise the strategy effects in 233 

memory performance. Each memory test included a total of 176 items: 88 'old' items, 234 

randomly selected from those presented during the incidental encoding reward task, 235 

and 88 'new' items. The discrepancy in the number of trials between the encoding and 236 

recognition tasks was due to a limitation in the availability of new scenes to match the 237 

old items. This resulted in the random exclusion of four stimuli per subject presented 238 

during encoding from subsequent memory analyses. Among the old items, 66 were 239 

from the frequently presented category and 22 from the infrequently presented 240 

category. Similarly, the new items were also divided into 66 frequent and 22 infrequent 241 

scenes based on their scene category in order to prevent a bias in stimulus category 242 

frequency when comparing old and new scenes. Participants indicated whether a 243 

stimulus was old or new, as well as how confident they were in their assessment (‘sure’ 244 

or ‘not sure’) (Figure 2d). Pupillometric recordings (not reported here) were also 245 

acquired during the memory tests. 246 

 247 

2.2.3 Imaging protocols  248 

All images were acquired with a Siemens 3T Biograph mMR scanner (Siemens 249 

Healthineers, Erlangen, Germany) using a 24-channel head coil. 250 

 251 

2.2.3.1 Structural MRI acquisition  252 
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Per session, a high-resolution T1-weighted anatomical image (MPRAGE) was 253 

acquired to support functional image co-registration (1mm isotropic voxel size, 192 254 

slices, TR=2,500ms, TE=4.37ms, TI=1100ms, FOV=256×256×192mm, flip 255 

angle[FA]=7°), a coronally oriented T2 image to assess hippocampal subfield volumes 256 

(0.4×0.4×2mm voxel size, 29 slices, TR=8020ms, TE=52ms, FOV=175×175×58mm; 257 

not reported here), and an axially oriented high-resolution neuromelanin-sensitive T1-258 

weighted multi-echo FLASH sequence to characterise LC integrity (0.6×0.6×3mm 259 

voxel size, 48 slices, TR=22ms, TE=5.57ms, TA=4:37, FOV=230×230×144mm, 260 

FA=23°; not reported here). 261 

2.2.3.2 Functional MRI acquisition 262 

During the reward task, a T2*-weighted 3D EPI was acquired perpendicularly 263 

to the back of the brainstem (2mm isotropic voxel size, 51 slices, TR=3600ms, 264 

TE=32ms, FOV=240×240×102mm, FA=80°). 265 

 266 

2.2.4 Data preprocessing and analysis 267 

2.2.4.1 sMRI data 268 

Individual T1-weighted whole-brain structural images underwent bias correction 269 

using the advanced normalization tool’s N4BiasFieldCorrection function (ANTs, 270 

Version 2.3.1). This correction was necessary to address field-related inhomogeneity 271 

in the images, which can hinder the normalisation of the images into the group space. 272 

The Montreal Neurological Institute (MNI) template space was used as the group 273 

space (38). A study-specific template space was created from these bias-field-274 

corrected structural whole-brain images using antsMultivariateTemplateConstruction2 275 

function of ANTs (only one of the two T1w images collected per participant was 276 
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selected) to allow for a more precise normalisation into group space. Parameters for 277 

bias correction and template generation are shown in the Supplementary Method 1. 278 

2.2.4.2 fMRI data 279 

For each participant, functional scans from the two sessions underwent 280 

separate slice-time correction, and un-warping was performed using the respective 281 

field maps with Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk 282 

/spm12.html) within the MATLAB environment (Version 2015a, MathWorks, Sherborn, 283 

MA, USA, 2015) using default parameters. Subsequently, the scans from both 284 

sessions were concatenated and realigned using the default parameters of SPM12's 285 

Realign functions to compare the frequent- and infrequent-reward conditions across 286 

sessions. Alignment quality was visually assessed. Functional scans were then 287 

smoothed with a 3x3x3mm kernel using SPM12’s Smoothe function, followed by 288 

single-subject voxelwise general linear model (GLM) analyses to estimate task-related 289 

contrasts in SPM12. Due to technical issues preventing physiological noise 290 

parameters from being recorded for 24 datasets, CompCor was applied uniformly 291 

during single-subject GLM analyses for consistency. This method has been shown to 292 

provide comparable results to regressor-based noise correction (39). The resulting 293 

contrast maps were transformed into the structural MNI template space for group 294 

analyses using a pipeline combining ANTs and FSL (FMRIB Software Library, Version 295 

6.0.4). More details about the pipeline can be found in Supplementary Method 1.  296 

2.2.4.3 Quality assessment of the functional image transformation 297 

To ensure that sufficient spatial precision was achieved in the transformation of 298 

individual data to the group space, quality assessments were conducted (YY), as 299 

described in Yi et al. (2023). Briefly, anatomical landmarks on the brainstem were 300 

delineated on each MNI-transformed mean functional image and compared to the 301 
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corresponding landmarks on the structural MNI template. The spatial deviations 302 

between individual and pre-set landmarks were then calculated per participant and per 303 

landmark and were summarised across participants. As can be seen in Figure 3, 304 

deviations generally stayed below 2mm indicating sufficient precision in spatial 305 

transformations in the midbrain and brainstem.  306 

  307 
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 308 

 309 

Figure 3. Histograms of in-plane distances between landmarks defined on the MNI template and 310 
single-subject landmarks delineated on MNI-transformed mean functional images. Each inset in 311 
the corresponding histogram plot indicates its anatomical position on the MNI template. The detailed 312 
procedure for selecting and placing the landmarks, as well as quantifying the distances, is described in 313 
Yi et al.'s (2023) work and Supplementary Method 2. Note that the distances in the Outline Brainstem 314 
landmarks vary, as they were placed anywhere along the outline of the brainstem border. The 315 
mean±standard deviation distances for landmarks are as follows: Periaqueductal Grey (0.69±0.76), 316 
Perifastigial Sulcus (0.51±0.55), Left Outline Brainstem (1.53±0.85), Right Outline Brainstem 317 
(1.62±0.82), Left 4th Ventricle Border (0.57±0.62), and Right 4th Ventricle Border (0.53±0.62).  318 

 319 

  320 
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2.2.4.4 Masks and significance thresholds used in fMRI analyses 321 

For whole-brain analyses, an inclusive grey matter mask segmented from the 322 

structural MNI template using the Segment function of SPM12 applied at puncorr<.001 323 

threshold was used. In these analyses, cluster-level significance was determined by 324 

applying the False Discovery Rate (FDR) method for multiple comparisons correction 325 

within the same puncorr<.001 significance threshold, as per the approach outlined by 326 

Genovese, Lazar, & Nichols (40). An anatomical midbrain and brainstem mask was 327 

applied as an inclusive mask at puncorr<.001 to investigate the small structures in the 328 

midbrain and brainstem (41). SN activation was examined with small-volume 329 

correction (SVC) with the SN mask extracted from Pauli et al.’s reinforcement learning 330 

atlas (42). 331 

2.2.4.5 Behavioural data 332 

Behavioural data were analysed using SPSS (version 29, SPSS Inc., Armonk, 333 

NY, USA, 2021). To quantify memory performance under each condition 334 

(immediate/delayed tests, reward/neutral outcome, and infrequent/frequent 335 

presentation), the D-prime (D’) measure was computed. This metric was derived by 336 

first calculating the hit rate (H) and false-alarm rate (F) for each condition, with small 337 

corrections applied to prevent extreme values as outlined in Hautus (1995):  338 

 𝐻 =	
𝑛(𝐻𝑖𝑡) + 0.5

𝑛(𝐻𝑖𝑡) + 𝑛(𝑀𝑖𝑠𝑠) + 1 (1) 

 𝐹 = 	
𝑛(𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚) + 0.5

𝑛(𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚) + 𝑛(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛) + 1 (2) 

The D' values were then derived as the difference between the inverse 339 

cumulative distribution functions (Φ!") of the corrected hit and false-alarm rates: 340 

 𝐷# = Φ!"(𝐻) − Φ!"(𝐹). (3) 

 341 
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3 Results  342 

As outlined previously, our task was designed to manipulate two distinct 343 

aspects of stimulus salience in two separate sessions: (a) the association of a stimulus 344 

with a reward versus a neutral outcome, referred to as "reward salience," and (b) the 345 

association of a stimulus with a less frequent outcome, referred to as "contextual 346 

unexpectedness salience". In the following analyses, we aimed to identify brain 347 

regions specifically associated with these two aspects of salience (i.e., reward and 348 

contextual unexpectedness). All fMRI GLM results were analysed using SPM12 in the 349 

MATLAB environment (version 2021a, Mathworks, Sherborn, MA, USA, 2021). A 350 

comprehensive list of all activations, their statistical significance, and their coordinates 351 

in Talairach space can be found in Supplementary Table 4 and 5. 352 

 353 

3.1 Behavioural results 354 

 Participants exhibited a high accuracy of categorising the stimulus sets during 355 

the reward task in both infrequent and frequent reward sessions, with an average 356 

accuracy of 94% (SD=8%). A one-way ANOVA analysis showed no significant 357 

difference in categorisation accuracy between the two sessions, F(1,92)=0.642, 358 

p=.425. The results of the two-way ANOVA indicated no significant main effects of 359 

contextual unexpectedness (infrequent/frequent; F[1,184]=1.912, p=.168) or reward 360 

(reward/neutral; F[1,184]=1.576, p=.211) on the categorisation accuracy. In addition, 361 

there was no significant interaction between frequency and reward variables, 362 

F(1,184)=2.643, p=.106. Also, there was no significant main effects of delay length 363 

(immediate, F[1,92]=0.024, p=.877; delayed, F[1,88]=0.069, p=.793), reward (reward, 364 

F[1,88]=0.285, p=.595; neutral, F[1,88]=0.086, p=.690), and frequency (infrequent, , 365 
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F[1,88]=0.160, p=.690; frequent, F[1,88]=0.022, p=.883) on the memory test 366 

performances between the first and the second visit. 367 

  368 
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 369 
 370 
 371 

 372 
 373 
 374 
Figure 4. Memory test performance in immediate and delayed recognition tasks and reaction 375 
time (RT) performance during the reward task and immediate and delayed recognition tasks for 376 
the two salience manipulations. (A) displays the D’ results for the immediate (left) and delayed (right) 377 
memory tests, encompassing all trials. Each bar plot from left to right represents the D’ values for 378 
scenes associated with reward, neutral, infrequently presented (infrequent), and frequently presented 379 
(frequent) scenes. (B) represents the RT performance in response to prompts (scene category 380 
judgment [e.g., private vs. public] during the reward task and [old vs. new] during recognition memory 381 
tests), which were presented following a scene stimulus. In both top and bottom panels, horizontal bars 382 
with asterisks denote significant differences between stimulus categories. One asterisk (*) represents 383 
p<0.05, and three asterisks (***) represent p<0.001 significance threshold.  384 
  385 
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3.1.1 Memory test performance 386 

As outlined above, stimulus categories were counterbalanced across salience 387 

conditions. Memory performance across the four stimulus categories, did not differ 388 

(urban and nature from the outdoor category and private and public from the indoor 389 

category; One-way ANOVA, immediate memory test: F(3,183)=1.854, p=.139; 390 

delayed memory test: F(3,173)=2.074, p=.105). 391 

To assess memory effects related to salience types, a three-factor repeated 392 

measures ANOVA was calculated (contextual unexpectedness [infrequent/frequent] × 393 

reward [reward/neutral] × delay length [immediate/delayed]) on D’. As expected, 394 

memory performance was higher for the immediate memory test as compared to the 395 

delayed memory test, F(1,42)=110.183, p<.001, as well as for infrequently presented 396 

scenes compared to frequently presented scenes, F(1,42)=21.954, p<.001. The better 397 

memory for infrequently presented scenes is in line with previous studies showing an 398 

association between unexpected or contextually salient events and improved 399 

recollection performance (von Restorff or isolation effect; 26–28,44–46). Moreover, a 400 

significant interaction effect between contextual unexpectedness and delay length 401 

factors, F(1,42)=21.181, p<.001, ηp2=.335, indicates that the contextual 402 

unexpectedness effect was more pronounced on the immediate memory test. This 403 

suggests that the advantage of stimulus salience for memory is most prominent in the 404 

short-term and may not persist over longer periods if the stimulus’ episodic salience is 405 

less pronounced (21,26,31,47).  406 

In addition, a three-factor repeated measures ANOVA (contextual 407 

unexpectedness [infrequent/frequent] × reward [reward/neutral] × delay length 408 

[immediate/delayed]) performed on the memory tests’ reaction times (RTs) showed 409 

faster RT to infrequently presented scenes than to frequently presented scenes, 410 
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F(1,42)=6.962, p=.012, suggesting also stronger memory traces for infrequently 411 

presented scenes (44,48–51). Similarly, slower RTs during the immediate memory 412 

test than delayed memory test were observed, F(1,42)=25.204, p<.001, which might 413 

imply that scenes that had formed stronger memory traces form a more prominent 414 

portion of the old responses in the delayed test (51,52). A trend of an interaction 415 

between contextual unexpectedness and delay length showed slightly faster RTs for 416 

infrequently presented scenes during the delayed memory test than the immediate 417 

memory test, while RTs for frequently presented scenes remain unchanged across the 418 

two memory tests, F(1,42)=3.082, p=.086, ηp2=.068, no two- or three-way interaction 419 

effect among the factors was found. Likewise, this trend in RT performance likely 420 

indicates that infrequently presented scenes may have been encoded more robustly 421 

(52,53). 422 

Unexpectedly, there was no memory effect for reward-associated as compared 423 

to neutral scenes, indicating a comparatively weaker memory-relevant effect of reward 424 

salience in our setup for combining unexpected and rewarded events, F(1,42)=2.229, 425 

p=.143 (Figure 4). The observed lack of a significant memory enhancement for 426 

rewarded compared to non-rewarded scenes could be attributed to several factors, 427 

not all of which are mutually exclusive. First, to avoid diverting attention from the 428 

unexpectedness of rare stimuli in the infrequent stimulus category, reward feedback 429 

was deterministically and not probabilistically related to reward scenes. However, 430 

previous research suggests that probabilistic rewards generate larger reward 431 

prediction errors (RPEs) (54–56), a potential enhancement to memory effects that our 432 

deterministic approach might not have fully captured. Moreover, it has been suggested 433 

that associations with rewards have a stronger effect on decision biases, namely, a 434 

bias towards approaching stimuli rather than enhancing memory discrimination (57). 435 
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Specifically, Bowen et al. (57) observed that although reward-associated stimuli 436 

can increase hit rates, this did not translate into an increased D’. The authors explain 437 

that this phenomenon may arise from reward salience primarily influencing decision-438 

making tendencies, leading to a more liberal response bias towards stimuli associated 439 

with rewards during recognition tests. Indeed, in our results, although participants 440 

showed better recognition of familiar reward-associated scenes (Supplementary 441 

Figure 3C and 3D), this was offset by a larger increase in FA for these scenes 442 

(Supplementary Figure 3A and 3B), resulting in no overall change in D’. This result is 443 

similar to what was found in Bowen et al. (57), who employed a similar encoding task 444 

paradigm (Experiment 1) as this study, and demonstrated that high-reward cues 445 

increase hit rates without necessarily enhancing memory discriminability (D’). This 446 

suggests that reward motivation affects decision biases rather than memory 447 

discrimination. This leads to a more liberal response bias in recognition tests (57), 448 

resulting in increased rates of both hits and false alarms (Supplementary Figure 3). 449 

Corroborating this, although no significant differences in RTs were observed between 450 

frequent and infrequent stimuli during the encoding, RTs were significantly quicker for 451 

scenes associated with rewards compared to neutral ones, F(1,46)=5.448, p=.024. 452 

This is in line with prior studies demonstrating faster RTs when approaching reward-453 

associated stimuli (‘action vigor’; 56,57). 454 

When restricting the analysis to high-confidence trials to assess items with 455 

stronger memory traces, results paralleled those observed in the full trial set. There 456 

was a main effect of contextual unexpectedness, F(1,42)=16.740, p<.001, and delay 457 

length, F(1,42)=82.260, p<.001, along with an interaction effect between these factors, 458 

F(1,42)=10.150, p=.003, ηp2=.195, further confirming a robust effect of contextual 459 

unexpectedness and delay length on memory. 460 
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To explore the impact of salience types on false alarms (FAs), a three-factor 461 

repeated measures ANOVA was conducted. Main effects showed higher FA in 462 

delayed than immediate tests, consistent with the generally weaker memory 463 

performance on delayed tests, F(1,42)=16.309, p<.001. However, no significant 464 

differences were found for reward or contextual unexpectedness. Significant two-way 465 

interactions were observed between delay length and both reward and contextual 466 

unexpectedness on FAs (Supplementary Figure 3A and 3B). Specifically, both reward-467 

associated and neutral scenes initially showed similar FAs during the immediate 468 

memory tests. However, reward-associated scenes exhibited a sharper increase in 469 

FAs compared to neutral scenes with longer delays (Supplementary Figure 3A), 470 

F(1,42)=4.137, p=.048, ηp2=.090. In contrast, although there was a trend in the main 471 

effect of contextual unexpectedness showing that infrequently presented scenes had 472 

lower FAs compared to frequently presented ones, F(1,42)=3.839, p=.057, 473 

infrequently presented scenes showed an increase in FAs in delayed memory tests, 474 

while the FAs for frequently presented scenes remained largely unchanged 475 

(Supplementary Figure 3B), F(1,42)=6.995, p=.011, ηp2=.143. These results indicate 476 

their differential effects of salience types on FA over time. However, no interaction 477 

between reward and unexpectedness or any three-way interaction was observed. 478 

These interactions suggest that the temporal delay between encoding and recognition 479 

modulates FAs in a salience-dependent manner. Yet, there were no significant 480 

interactions between reward and unexpectedness, nor any three-way interaction, 481 

highlighting that salience types alone may not differentially affect FAs. 482 

Regarding hit-rate analyses, as expected, a three-factor repeated measures 483 

ANOVA revealed higher hit rates for immediate than delayed memory test, 484 

F(1,42)=108.992, p<.001. A significant main effect of reward was also observed, 485 



 
 

25 

F(1,42)=19.829, p<.001, indicating that hit rates were higher for reward-associated 486 

scenes than for neutral scenes. Additionally, a smaller, yet significant main effect of 487 

contextual unexpectedness was found, F(1,42)=10.360, p=.002, showing higher hit 488 

rates for infrequently presented scenes. As for interaction effects, the interaction 489 

between the delay length and reward exhibited a trend (Supplementary Figure 3C), 490 

F(1,42)=3.711, p=.061, ηp2=.081, suggesting an initially nonsignificant effect of reward 491 

on hit rate in the immediate memory test becoming more pronounced in the delayed 492 

memory test. The interaction between delay length and contextual unexpectedness 493 

was also significant (Supplementary Figure 3D), F(1,42)=6.088, p=.018, ηp2=.127, 494 

indicating that the initial advantage in the hit rate due to contextual unexpectedness 495 

during the immediate memory test did not persist into the delayed memory test.  496 

  497 

3.1.2 Confidence ratings during immediate and delayed memory tests 498 

Binary confidence ratings (0 – ‘not sure’, 1 – ‘sure’) were averaged within each 499 

of the four conditions (contextual unexpectedness [infrequent/frequent] × reward 500 

[reward/neutral]) and separately for correct (hit and correct rejection) and incorrect (FA 501 

and miss) trials on the memory tests. Two three-factor repeated measures ANOVA 502 

found that, in correct trials, confidence ratings were higher to infrequently presented 503 

items than frequently presented items, F(1,42)=31.261, p<.001, and higher in 504 

immediate memory test than delayed memory test, F(1,42)=23.410, p<.001. However, 505 

no significant reward effect was found, and there was no interaction effect across all 506 

variables. In incorrect trials, only immediate memory tests showed higher confidence 507 

ratings than delayed memory tests, F(1,42)=6.686, p=.013. This effect in delay length 508 

(immediate/delayed) suggests a possible recency effect, where participants may feel 509 
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more confident about their answers in an immediate memory test because the 510 

information is still relatively fresh in their minds, even if they are incorrect (60). 511 

 512 

In summary, our findings align with the von Restorff effect (26–28,44–46), 513 

showing that varying contextual unexpectedness as a form of salience manipulation 514 

consistently influences memory performance. Specifically, scenes categorised as 515 

‘infrequently presented’ were better remembered than those in the ‘frequently 516 

presented’ category This effect was particularly pronounced in immediate memory 517 

tests, where the impact of contextual manipulation was more present, as the encoding 518 

context is comparatively more recent and most similar to the retrieval context 519 

27/05/2024 18:34:00. Furthermore, faster RTs associated with ‘infrequently presented’ 520 

scenes during memory tests may indicate stronger memory traces for these infrequent 521 

stimuli, an effect that was especially marked in delayed memory tests.  522 

Contrary to expectations, reward-associated scenes did not show enhanced 523 

memory effects compared to neutral scenes. This could be due to a) the use of 524 

deterministic feedback resulting in a potentially weaker reward manipulation, and b) 525 

reward associations having a more significant impact on decision biases than memory 526 

discrimination (57). It is important to note that this does not imply reward associations 527 

had no effect on a differential processing of rewarded versus non-rewarded stimuli. 528 

Indeed, we observed shorter RTs to reward-associated scenes during encoding, in 529 

line with previous studies that observed faster RTs towards reward-associated stimuli 530 

(58,59). Moreover, although the ratio of hits to FAs remained unchanged between 531 

rewarded and neutral scenes, scenes from the reward-associated category were more 532 

frequently classified as ‘old’ during memory tests compared to neutral scenes. This 533 
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suggests a greater inclination to perceive reward-associated stimuli as familiar, again 534 

indicating reward-influenced decision biases. 535 

While our results suggest a stronger effect of contextual unexpectedness on 536 

memory processes, reward associations therefore still yielded expected effects for 537 

rewarded stimuli, albeit more in the domain of affecting decision biases and RTs in 538 

favour of reward-associated stimuli. These differential effects of saliency 539 

manipulations, reward and contextual unexpectedness, are interesting in their own 540 

regard. However, they also pose challenges in directly comparing their impact within 541 

our experimental paradigm. In the following we therefore focus in particular on a 542 

qualitative rather than a quantitative comparison of brain processes underlying the two 543 

salience manipulations.  544 

 545 

3.2 fMRI results 546 

 In examining the fMRI data, we aim to assess whether two types of salience, 547 

as defined by reward and contextual unexpectedness, elicits differential activation, 548 

particularly within the midbrain and brainstem regions. Drawing from previous 549 

research involving both human and animal subjects, we hypothesised that reward-550 

associated salience and memory would engage midbrain dopaminergic nuclei SN and 551 

VTA (63), subcortical areas such as the nucleus accumbens (64), amygdala (65,66), 552 

and other components of basal ganglia such as caudate and putamen (67), and 553 

cortical areas such as insular cortex (68,69) and orbitofrontal cortex (67,70). On the 554 

other hand, infrequent or contextually unexpected events would preferentially engage 555 

brainstem nuclei, such as the locus coeruleus (71,72). However, co-activation of the 556 

SN and VTA (10,31,73) may also occur. We further predicted that subcortical and 557 

cortical areas from the salience network, including amygdala (65,66), the inferior, 558 
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medial, and superior frontal gyri (65,74–76), the temporoparietal cortex (65,77), and 559 

the anterior cingulate cortex (ACC; 67,70) would be additionally engaged during the 560 

processing and memory encoding of unexpected events. 561 

 562 

For a detailed information on the model specifications and GLM contrasts 563 

utilised in our fMRI analyses, please refer to Supplementary Tables 1, 2, and 3, which 564 

outline predictor properties, contrast coding, and control predictors employed in the 565 

first-level models as described in sections 3.2.1 to 3.2.3. Also, a comprehensive list of 566 

fMRI activations can be found in Supplementary Table 4 and 5. 567 
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(B) During feedback presentation 

(A) During stimulus presentation  568 
 569 
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Figure 5. fMRI results from the infrequently versus frequently presented categories and the 608 
reward versus neutral categories. All activations were found with significance threshold of puncorr<.001 609 
and was FDR-controlled except for small-volume correction (SVC) analysis, which was examined with 610 
significance threshold of puncorr<.001 but not FDR-controlled. (A) Activations during scene 611 
presentation:  For activations during reward-associated scene presentation, axial slice (a) shows 612 
activation in the left superior parietal lobule compared to neutral trials. For activations during 613 
infrequently presented scene presentation, axial slice (b) and (c) demonstrate bilateral activation in 614 
the anterior caudate and insula, respectively, while axial slice (d) and coronal slice (i) display bilateral 615 
activation in the parahippocampal gyrus (PHG) compared to frequently presented scenes. Insets (e) 616 

(e) 

(i) 

(i) 
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show the right dorsal SN activation (SN mask used for SVC is delineated with red lines. X=6, y=-14, z=-617 
14; ZE=4.15; pFWEc<0.05, kE=29). (B) Activations during feedback presentation: Axial slice (a) shows 618 
bilateral medial superior frontal cortex; (c) shows bilateral ventromedial caudate and insula activation; 619 
and axial slice (b) and coronal slice (i) show bilateral posterior cingulate cortex (PCC) activation in 620 
infrequently presented feedbacks compared to frequently presented feedbacks. In reward-621 
associated feedbacks compared to neutral feedbacks, activation profiles mostly overlap, except, as 622 
seen in the axial slice (d) and sagittal slice, a bilateral ventral striatum activation is observed in 623 
comparison to bilateral ventromedial caudate activation in infrequently presented versus frequently 624 
presented feedbacks contrast. 625 
 626 

 627 

  628 
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3.2.1 Infrequently presented trials vs. frequently presented trials 629 

3.2.1.1 Scene presentation timepoint 630 

As can be seen in Figure 5A (in green to yellow shade), bilateral insular cortex, 631 

bilateral parahippocampal gyrus (PHG), bilateral ventromedial caudate (the head of 632 

caudate), bilateral inferior parietal lobe, right ACC were more engaged during scenes 633 

from the infrequently presented scene categories. As also outlined above, the insular 634 

cortex, inferior parietal lobe, and ACC are known components of the salience detection 635 

and attentional modulation network (78–81). In addition, the observed bilateral 636 

ventromedial caudate activation may suggest inputs from the SN, as supported by 637 

histology and connectivity studies (82).  638 

Using the inclusive midbrain and brainstem mask to focus specifically on 639 

neuromodulatory nuclei in the brainstem, we furthermore observed higher right SN 640 

activation for infrequently presented scenes in the midbrain (small-volume corrected 641 

[SVC], x=6, y=-14, z=-14; ZE=4.15; pFWEc<0.05, kE=29, Figure 5A, the top right figure 642 

set). This is well in line with studies showing higher SN activations to novel or 643 

unexpected events (31,83,84). On the other hand, no significant activation was 644 

observed in the brainstem. 645 

3.2.1.2 Feedback presentation timepoint 646 

During feedback presentation, several regions showed significant activation, 647 

including the insular cortex, inferior parietal lobule, ventromedial caudate, and 648 

posterior cingulate cortex (PCC) among others (see Figure 5B). These activated 649 

regions are reported to be associated with several cognitive functions such as 650 

attentional control (78,85), and reward processing (86,87). No significant activation 651 

was observed in the midbrain and brainstem. 652 

 653 
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Taken together, the processing of unexpected stimuli appears to be partly 654 

supported by the dopaminergic system. This is evidenced by the activation of SN, 655 

typically linked to dopamine, together with likely target regions such as the 656 

ventromedial caudate. The higher activations in cortical areas such as ACC, PCC, and 657 

insular cortex were expected as these structures are part of the salience network (66).  658 

 659 

3.2.2 Reward trials vs. neutral trials 660 

3.2.2.1 Scene presentation timepoint 661 

On the whole-brain level, the left superior parietal lobe showed stronger 662 

activation for reward-associated scenes (Figure 5A, in red to yellow shade). No 663 

significant cluster was found in the midbrain and brainstem.  664 

3.2.2.2 Feedback presentation timepoint 665 

On the whole-brain level, bilateral middle occipital lobes, bilateral anterior 666 

insular cortex, bilateral ACC, bilateral nucleus accumbens, bilateral ventromedial 667 

caudate, right middle cingulate cortex (MCC), and left inferior temporal lobe (ITL) 668 

showed stronger activation for reward feedback as compared to neutral feedback 669 

(Figure 5B in red to yellow shade). This activation pattern in anterior insular cortex, 670 

ACC, ventromedial caudate, and nucleus accumbens is corroborated by previous 671 

studies that investigated attentional control and reward assessment (78,79,88–90).  672 

It should be noted that, as mentioned in the memory test performance of 673 

reward-associated scenes (item 3.1.1), the absence of activation in midbrain regions 674 

associated with reward salience, such as the SN or VTA during feedback might be 675 

attributed to the absence of RPEs. As our task aimed at orthogonally modulating 676 

reward salience and contextual unexpectedness, reward feedbacks were 677 

deterministically followed by reward-associated scenes, resulting in reward processing 678 
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without prediction errors. These weaker reward-related responses may have resulted 679 

in weaker responses in these areas typically implicated in reward processing 680 

(55,91,92). 681 

A comprehensive list of activation clusters and statistical results of each cluster 682 

from this contrast can be found in the Supplementary Table 4.  683 

 684 
3.2.3 Subsequent memory effects 685 

In the subsequent-memory analysis, only hits, i.e., items correctly identified as 686 

old, were included from both immediate and delayed memory tests, which were pooled 687 

together. To isolate the effect of the two saliency types on memory encoding, scene 688 

stimulus presentation timepoints were analysed. This approach minimises potential 689 

confounding variability introduced by reward feedback, which, while informative, is 690 

already anticipated by subjects due to pre-task conditioning. Details of the GLM model 691 

predictors and contrast coding configuration regarding the analyses included in this 692 

item are delineated in Supplementary Table 2 and 3. We will first assess which areas 693 

are more activated for remembered salient scenes compared to remembered non-694 

salient scenes, to investigate which brain areas distinguish stimulus salience during 695 

memory encoding (3.2.3.1 and 3.2.3.2). This will be followed by a 2´2´2  comparison 696 

of the two salience effects on memory, where we will examine the joint effects of 697 

reward and contextual salience on memory enhancement (3.2.3.3, cf. Supplementary 698 

Table 5). Finally, we examined memory-specific processes separately for each salient 699 

stimulus category by contrasting remembered and forgotten scenes within each type, 700 

aiming to identify brain areas that support the memory formation for salient stimuli, the 701 

results of which can be found in Supplementary Results 3 and Supplementary Figure 702 

5. 703 

 704 
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3.2.3.1 Subsequently remembered infrequently presented vs 705 

frequently presented scenes 706 

During the scene presentation, subsequently remembered infrequently 707 

presented scenes as compared to remembered frequently presented scenes showed 708 

greater activation in the left calcarine sulcus, left precuneus, bilateral postcentral gyrus, 709 

right inferior frontal cortex, left inferior parietal lobe, left fusiform gyrus, and left superior 710 

medial frontal cortex (Figure 6). This supports the idea that these areas, which are 711 

involved in visual and semantic processing (calcarine sulcus and inferior parietal lobe: 712 

(93,94)), retrieval and integration of memory (precuneus: (95)), and attentional control 713 

and monitoring of memory processes (the inferior frontal gyrus and superior medial 714 

frontal gyrus: (96)), are more engaged during the encoding and retrieval of the salient, 715 

infrequently presented scenes. Importantly, a significant activation in the right dorsal 716 

SN was found for these better remembered infrequently presented scenes, suggesting 717 

that the encoding of scenes associated with unexpectedness-related salience is likely 718 

associated with dopaminergic activity in the SN (SVC; x=6, y=-15, z=-14; ZE=4.15; 719 

pFWEc<0.05, kE=31). 720 

The activation of frontal and parietal regions might indicate an additional 721 

involvement in enhanced visual processing and attention, in line with prior research 722 

implicating these regions in memory tasks and visual perception (97–99).  723 

 724 

3.2.3.2 Subsequently remembered reward-associated vs neutral 725 

scenes 726 

When comparing reward-associated scenes that are subsequently 727 

remembered versus subsequently remembered neutral scenes, only the left 728 

orbitofrontal cortex was more activated (Figure 6). This suggests that the reward-729 
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related information was better encoded and consolidated, which led to better retrieval 730 

of the memory during the recognition phase of the task. This could be related to the 731 

role of the region in evaluating the reward value of stimuli and guiding behaviour 732 

accordingly (70,100). 733 

  734 
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 735 
 736 
Figure 6. fMRI results from the infrequent versus frequent scenes and the reward versus neutral 737 
scenes in the subsequently remembered scenes. All activations were found with significance 738 
threshold of puncorr<.001 and was FDR-controlled except SVC analysis, which was examined with 739 
significance threshold of puncorr<.001 but not FDR-controlled. In subsequently remembered 740 
infrequently presented scenes compared to frequently presented scenes, coronal slice (i) and 741 
axial slice (a) shows activations in bilateral postcentral gyrus and left superior frontal cortex (SFC); axial 742 
slice (b) shows right IFC; (c) shows left precuneus; and (d) shows left calcarine sulcus. On the other 743 
hand, during the presentation of subsequently remembered reward-associated compared to 744 
subsequently remembered neutral scenes, left orbitofrontal cortex (OFC) showed significant 745 
activation, as seen in sagittal slice and axial slice (d). As shown in insets (e), an SVC analysis on this 746 
contrast found right dorsal SN activation for subsequently remembered infrequently presented 747 
scenes compared to frequently presented scenes (SN mask used for SVC is delineated with red 748 
lines. X=6, y=-15, z=-14; ZE=4.15; pFWEc<0.05, kE=31). 749 

 750 

  751 

(e) 

(i) 
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3.2.3.3. Interaction among contextual unexpectedness, reward, and 752 

memory 753 

In our examination of the mechanisms supporting the effect of contextual 754 

unexpectedness and reward on memory, we sought to understand how the different 755 

types of salience interact with each other to influence memory. To this end, we 756 

conducted a full factorial ANOVA focused on these three factors, contextual 757 

unexpectedness (infrequent > frequent), reward (reward > neutral), and memory 758 

outcome (remembered > forgotten) (Supplementary Table 2). Intriguingly, our analysis 759 

did not reveal any significant cortical activations for all inspected two- and three-way 760 

interaction pairs. However, an interesting dissociation in SN engagement was 761 

observed upon applying the inclusive midbrain and brainstem mask to inspect 762 

specifically on neuromodulatory nuclei in the brainstem. The left dorsal SN showed 763 

higher activation for infrequent and rewarded scenes, independent of memory 764 

outcome (SVC; [cluster 1: x=-8, y=-14, z=-13; ZE=4.51; pFWEc<0.05, kE=52], [cluster 2: 765 

x=-12, y=-19, z=-10; ZE=3.83; pFWEc<0.05, kE=35]), while the bilateral ventral SN was 766 

more activated for subsequently remembered infrequently presented scenes, 767 

independent of reward (SVC; [right: x=-7, y=-18, z=-19; ZE=3.75; pFWEc=0.06, kE=13], 768 

[left: x=8, y=-17, z=-16; ZE=3.93; pFWEc<0.05, kE=23]; Figure 7). No significant 769 

supracluster activation, either cortical or subcortical, was found in the three-way 770 

interaction among frequency, reward, and memory outcome. 771 

This subcortical emphasis in the SN highlights its important role in modulating 772 

the interactions between the salience of stimuli and their successful memory encoding. 773 

The significant activation observed within the right dorsal and ventral segments of the 774 

SN further implies the functional differentiation within the SN in encoding salience, 775 

aligning with documented functional heterogeneity that suggests a differentiated role 776 
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of these SN subregions in modulating cognitive processes under varying reward 777 

conditions (101). These findings may indicate a specific dopaminergic mechanism 778 

within the SN that preferentially responds to the confluence of unexpectedness and 779 

reward, and their combined effect on successful encoding (102,103). 780 

  781 
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 782 

Figure 7. fMRI results from three-factor factorial ANOVA analysis testing positive interaction 783 
among contextual unexpectedness, reward, and memory. All activations were found with 784 
significance threshold of puncorr<.001 within the inclusive brainstem mask and was not FDR-controlled. 785 
In the activation observed in the positive interaction between Frequency (contextual 786 
unexpectedness) and Reward factors, two clusters of activations in the left dorsal SN were found in 787 
an SVC analysis (sagittal, coronal, and axial slice [a]; [cluster 1: x=-8, y=-14, z=-13; ZE=4.51; pFWEc<0.05, 788 
kE=52], [cluster 2: x=-12, y=-19, z=-10; ZE=3.83; pFWEc<0.05, kE=35]). In the positive interaction 789 
between Frequency and Memory outcome factors, bilateral activations in ventral SN were found in 790 
an SVC analysis (sagittal, coronal, and axial slice [b]; [right: x=-7, y=-18, z=-19; ZE=3.75; pFWEc=0.06, 791 
kE=13], [left: x=8, y=-17, z=-16; ZE=3.93; pFWEc<0.05, kE=23]). SN mask used for SVC is delineated with 792 
cyan lines.  793 

  794 

 795 

(i) 
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4 Discussion  796 

 797 

In the present study, we aimed to investigate the impact of two types of salience, 798 

reward and contextual unexpectedness, in a 2-by-2 design on stimulus processing 799 

and incidental memory. As neuromodulatory nuclei of the midbrain and brainstem are 800 

important modulators of salience-related processing, we utilised high-resolution, high-801 

precision fMRI recordings and analyses to investigate in particular the role of small 802 

subcortical nuclei in processing these two distinct types of salience. 803 

Our behavioural findings revealed distinct effects of the two salience types on 804 

memory encoding and decision biases. Specifically, in line with the ‘von Restorff effect’ 805 

or isolation effect, which postulates better memory for contextually salient or 806 

unexpected events (33,34,44–46,104), memory performance was significantly 807 

enhanced for frequently presented scenes. This effect was particularly evident during 808 

immediate tests compared to delayed tests, suggesting that the advantage of stimulus 809 

salience may not persist over longer periods (21,26,31,47). Memory effects related to 810 

contextual unexpectedness were further confirmed by higher confidence ratings for 811 

infrequently presented items than for frequently presented items, in particular on 812 

immediate memory tests. 813 

 In contrast to the better subsequent memory for contextually unexpected 814 

scenes, scenes from reward-associated stimulus categories were not better 815 

remembered than those from neutral categories. However, reward associations still 816 

produced the typical reward-associated behavioural effects by affecting decision 817 

biases and RTs in favour of reward-associated stimuli. Specifically, we observed faster 818 

RTs for reward-associated scenes during the encoding task, along with heightened hit 819 
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and FA responses to these scenes during memory tests, in line with previous reports 820 

of reward influencing ‘response vigor’ and decision biases (57–59).  821 

Taken together, the behavioural results of our study suggest that contextual 822 

unexpectedness has a greater impact on memory processes as compared to reward 823 

association. Nevertheless, reward associations yielded expected effects, primarily 824 

manifesting in decision biases and response times favouring reward-associated 825 

stimuli. When comparing brain activations across the two salience types, these 826 

qualitative differences in associated processes thus need to be considered. We 827 

therefore focused on a qualitative rather than quantitative comparison of the brain 828 

mechanisms behind the two saliency modifications. 829 

 830 

4.1. Distinct Brain Activation Patterns: Reward vs. Contextual 831 

Unexpectedness 832 

In line with our expectations, distinct activation patterns for the two salience 833 

types were observed. For the reward versus neutral contrast, these were most notable 834 

at the feedback timepoints. In contrast, for the infrequent versus frequent scene stimuli, 835 

effects were pronounced both during the scene and feedback presentations. Given 836 

the deterministic association of stimulus categories with feedback, a stronger reward 837 

effect might have been expected already at the scene timepoints, consistent with 838 

studies showing reward cue effects (69). Nonetheless, feedback valence effects have 839 

been observed to persist even if feedbacks do not carry new information or are 840 

expected (105), suggesting that the mere exposure to desired or non-desired 841 

feedbacks remains emotionally and attentionally relevant, even without any new 842 

informational value.  843 
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Reward-associated feedbacks activated the nucleus accumbens, a central 844 

structure in the reward circuitry vital for processing reward, motivation, and 845 

reinforcement learning (106,107). Conversely, infrequently presented as compared to 846 

frequently presented scenes were most prominently accompanied by activations in the 847 

dorsal SN, insula, anterior caudate, and PHG. The anterior caudate, critical for 848 

integrating actions and outcomes (108–110), plays a critical role in enhancing visuo-849 

motor associative learning, driven by phasic bursts of dopaminergic activity in 850 

response to unexpected events (110,111). This activity persists until the association 851 

is fully learned, maintaining elevated synaptic weights in caudate neurons as long as 852 

behavior is linked with the stimuli. Over time, as the learning consolidates, this activity 853 

gradually decreases (111). The larger activation for infrequently presented compared 854 

to frequently presented scenes is likely due to ongoing associative learning with 855 

infrequently appearing associations, whereas the frequent counterparts, having been 856 

sufficiently learned, show decreased activity levels. The PHG likely contributes to 857 

processing and encoding of contextually unexpected scene stimuli as it is known to be 858 

involved in novel information detection and encoding (112,113) and the processing of 859 

contextual associations (114) as well as the perception of visual scenes itself (115). 860 

Consistent with this finding, improved memory test performance, as indicated by D’, 861 

was observed in particular for contextually unexpected, or infrequent, stimuli. 862 

 Contrary to our expectations, we did not find the noradrenergic locus coeruleus 863 

to be involved in the processing of unexpected stimuli, despite our data acquisition 864 

protocols and analysis methods being specifically chosen to facilitate the identification 865 

of activations in small brainstem and midbrain nuclei. Given the smaller volume of the 866 

locus coeruleus compared to the SN, it is conceivable that larger sample sizes or 867 

longer acquisition durations than those included in our study would have been 868 
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necessary. Nonetheless, our study was able to identify activations in subregions of the 869 

SN, which in volume are more similar to the locus coeruleus. Alternatively, it is possible 870 

that the paradigm employed was not ideally suited to evoke detectable changes in 871 

locus coeruleus activity given this sample size. As locus coeruleus imaging studies in 872 

humans are still sparse (35), it remains unclear whether results from animal studies 873 

suggesting an involvement of the LC in processing novelty or rewards (116) are easily 874 

translatable to the human domain. Indeed, a recent study observed larger LC 875 

activations during negative events and associated subsequently remembered stimuli, 876 

suggesting that negative stimulus valence might have stronger effects than 877 

unexpectedness (117). These limitations highlight the need for further, targeted 878 

research employing imaging with high signal-to-noise ratios in the brainstem and 879 

midbrain, and cognitive tasks with more robust manipulations of unexpectedness and 880 

valence. 881 

Finally, our study suggests potential functional specialisations within the 882 

cingulate cortex for processing various salience types: MCC to reward, PCC to 883 

unexpectedness, and ACC to both (cf. Figures 5). This pattern might suggest distinct 884 

pathways and resource allocation strategies, contingent on salience type. The PCC 885 

and precuneus might have supported increased attention allocation to contextually 886 

unexpected events (118,119). Moreover, the co-activation of the insula and the ACC, 887 

both components of the salience network, appears to support processing of both 888 

reward and contextual unexpectedness (66,81,120,121). 889 

 890 

4.2. Subcortical Modulation of Salience via SN and Its Effect on Memory 891 

Encoding 892 
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Intriguingly, we observed a distinction between the dorsal and ventral SN 893 

related to processing stimulus salience and the memory encoding of salient stimuli, 894 

respectively. Specifically, activations within the dorsal SN supported the processing of 895 

stimulus salience, as indicated by higher activity for infrequent compared to frequent 896 

scenes (cf. Figures 5, 7, and 8), as well as the interaction of infrequent larger than 897 

frequent and reward larger than neutral scenes (cf. Figure 8). Conversely, the bilateral 898 

ventral SN showed greater activation in processing salient (infrequent) scenes that 899 

were subsequently remembered (cf. Figure 8).  900 

This distinction is in line with the evidence from studies documenting anatomical 901 

and functional heterogeneity within the human SN (101,103,106), revealing a complex 902 

network whereby the dopaminergic system, through distinct subregions of the SN, 903 

navigates the confluence of various types of salience to modulate behaviour and 904 

memory processes. Specifically, the dorsal SN predominantly projects to striatal areas, 905 

which in turn modulate executive and attentional functions, while the ventral SN 906 

extends projections to the hippocampus and amygdala, which are crucial for encoding 907 

salient events into memory (106). This distinction aligns with our observation of the 908 

dorsal SN’s involvement in processing salience related to reward or unexpectedness, 909 

and prior studies showing its role in visuo-motor-related learning (101). On the other 910 

hand, the strong connectivity of the ventral SN to cortical areas such as the caudate, 911 

cingulate, and insula (101,106) in addition to hippocampus and amygdala might in turn 912 

explain its role in mediating the effects of unexpectedness on memory outcomes. 913 

In summary, our behavioural results suggest distinct effects of reward- and 914 

unexpectedness-related salience, manifesting respectively as response biases and 915 

enhanced memory. At the same time, we were able to identify distinct brain networks 916 

associated with different types of salience, as well as networks involved in processing 917 
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salience and modulating memory encoding. Reward- and unexpectedness-related 918 

brain networks largely overlapped with the expected reward and salience networks (cf. 919 

Figure 5, Supplementary Tables 4 and 5, Supplementary Results 3). An interesting 920 

distinction was observed within the cingulate cortex: The posterior regions were 921 

predominantly involved in unexpected-related salience, while the anterior regions 922 

engaged in both reward- and unexpectedness-related salience. Although the expected 923 

distinction between the SN and locus coeruleus in supporting reward and contextual 924 

unexpectedness, respectively, could not be verified in this study, we confirmed the 925 

functional implications of anatomical subregions within the SN. Processing stimulus 926 

salience, regardless of the type, preferentially engaged the dorsal SN, while salience-927 

associated memory encoding appeared to be more supported by the ventral SN. 928 

 929 

4.3. Limitations and Considerations for Future Research 930 

This study is not without its limitations. Given the 100% reward allocation with 931 

the reward-associated category, our reward manipulation was likely to have been 932 

predictable, which could have tempered our reward-associated salience effect by 933 

reducing the influence of prediction errors. Rouhani et al.'s work provides an intricate 934 

understanding of this dynamic; they found that cues associated with higher RPEs at 935 

the moment of cue presentation were better remembered as learning progressed (122). 936 

In their experiment, they were able to dissociate the effects of cue values and RPEs 937 

on memory, establishing that an RPE signal is essential for the mnemonic 938 

enhancement of cue events (122). As our study's intention was to disentangle the 939 

neural correlates of two salience types, a deterministic association between the reward 940 

and its respective category was necessary to create a reward anticipation effect that 941 

could be contrasted with the inherently unpredictable nature of contextually 942 
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unexpected events. This affected our ability to investigate RPE-dependent effects. 943 

Future studies focusing on midbrain and brainstem function should systematically alter 944 

stimulus and reward expectedness in order to compare reward, prediction error and 945 

frequency effects.  946 

Lastly, given our aim to compare two different types of salience associated with 947 

dopaminergic and noradrenergic modulation, reward and contextual unexpectedness, 948 

our task necessarily resulted in differential behavioural correlates of salience. While 949 

infrequently presented stimuli, in line with von Restorff effect (26–28,44–46), primarily 950 

elicited an enhanced memory effect, reward associations reward associations 951 

predominantly affected response biases. This made a comparison of the extent of 952 

salience manipulations difficult, limiting us to a qualitative comparison. Nonetheless, 953 

even in the absence of comparable behavioural memory effects, activity patterns for 954 

successfully encoded scenes across reward-associated and infrequently presented 955 

scenes significantly overlapped (Jaccard Index = 0.5807; overlapping activations 956 

indicated by white outlines in Supplementary Figure 5). This suggests that comparable 957 

networks for memory encoding across salience types might be recruited. 958 

Simultaneously, whether similar response bias effects could be observed in relation to 959 

contextually unexpected stimuli remains questionable, as response bias modulation 960 

appears to be more specifically linked to reward associations (57). Nevertheless, 961 

future studies should also aim to allow for a comparison of more quantitative aspects 962 

of different types of salience and their effects on brainstem or midbrain function. This 963 

could, for example, be achieved by including additional measures of arousal, such as 964 

pupillometry or skin conductance charges, if behavioural correlates cannot be equated. 965 

 966 

5 Conclusion 967 
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In conclusion, our study delineates both unique and overlapping networks 968 

involved in the processing and memory encoding of contextual unexpectedness-969 

related and reward-related salience. Utilising an MRI analysis pipeline optimised for 970 

enhanced spatial precision in assessing the neuromodulatory structures in the 971 

midbrain and brainstem, we observed differential engagement of regions traditionally 972 

associated with dopaminergic modulation in processing distinct types of salience. 973 

Future studies, perhaps focusing on probabilistic reward schemes or a wider array of 974 

events such as negative or shocking incidents, can further consolidate our 975 

understanding of not only neuromodulatory structures' differential involvement but also 976 

their interactive roles in modulating responses to salient events.  977 

 978 

  979 
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