

1 Decoding Salience: A Functional Magnetic 2 Resonance Imaging Investigation of Reward and 3 Contextual Unexpectedness in Memory Encoding 4 and Retrieval 5

6 Yeo-Jin Yi^{ab*}, Michael C. Kreiß^{bc}, Oliver Speck^{bdef}, Emrah Düzel^{†aeg}, Dorothea
7 Hä默er^{†aegh} (†shared last)

8 ^a Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke
9 University, Magdeburg, Germany

10 ^b German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany

11 ^c Division of Nuclear Medicine, Department of Nuclear Medicine, Otto-von-Guericke
12 University, Magdeburg, Germany

13 ^d Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke
14 University, Magdeburg, Germany

15 ^e Center for Behavioral Brain Sciences, Magdeburg, Germany

16 ^f Leibniz Institute for Neurobiology, Magdeburg, Germany

17 ^g Institute of Cognitive Neuroscience, University College London, United Kingdom

18 ^h Department of Psychology, University of Innsbruck, Innsbruck, Austria

19

20 ***Correspondence:**

21 Yeo-Jin Yi

22 yyi@med.ovgu.de

23

24 **Keywords:** fMRI, Reward, Contextual Unexpectedness, Memory, Midbrain,
25 Cognition

26

27 **Abstract**

28 The present study investigated the neuromodulatory substrates of salience
29 processing and its impact on memory encoding and behaviour, with a specific focus
30 on two distinct types of salience: reward and contextual unexpectedness. 46
31 participants performed a novel task paradigm modulating these two aspects
32 independently and allowing for investigating their distinct and interactive effects on
33 memory encoding while undergoing high resolution fMRI. By using advanced image
34 processing techniques tailored to examine midbrain and brainstem nuclei with high
35 precision, our study additionally aimed to elucidate differential activation patterns in
36 subcortical nuclei in response to reward-associated and contextually unexpected
37 stimuli, including distinct pathways involving in particular dopaminergic modulation.
38 We observed a differential involvement of the ventral striatum, substantia nigra and
39 caudate nucleus, as well as a functional specialisation within the subregions of the
40 cingulate cortex for the two salience types. Moreover, distinct subregions within the
41 substantia nigra in processing salience could be identified. Dorsal areas preferentially
42 processed salience related to stimulus processing (of both reward and contextual
43 unexpectedness) versus ventral areas were involved in salience-related memory
44 encoding (for contextual unexpectedness only). These functional specialisations
45 within SN are in line with different projection patterns of dorsal and ventral SN to brain
46 areas supporting attention and memory, respectively. By disentangling stimulus
47 processing and memory encoding related to two salience types, we hope to further
48 consolidate our understanding of neuromodulatory structures' differential as well as
49 interactive roles in modulating behavioural responses to salient events.

51

52

53

54

1 Introduction

55 Neuromodulation influences physiological and cognitive functions including
56 memory, attention, and emotion regulation (1–5). Key systems involve the
57 dopaminergic system (substantia nigra [SN] and ventral tegmental area [VTA]; (4,6)),
58 noradrenergic system (locus coeruleus [LC]; (4)), and serotonergic system (raphe
59 nuclei; (7)). Despite their small volume, the midbrain and brainstem harbour the origins
60 of these systems, projecting to different brain regions and affecting various processes
61 such as attention, working memory, and long-term memory (2,8–16).

62 From animal and human research, it is known that the midbrain and brainstem
63 neuromodulatory systems, especially those responsive to salient events, play a crucial
64 role in memory consolidation (17–23). For instance, evidence from animal studies
65 indicates that it is predominantly the noradrenergic system, and in particular the
66 noradrenergic locus coeruleus in the brainstem, which modulates attention and
67 arousal, enhancing memory retention for novel and aversive events (1,22). On the
68 other hand, dopamine, and in particular the substantia nigra in the midbrain, promotes
69 reward processing and learning, and supports memory encoding for novel or positive
70 events (16,21,23–26). Despite these seemingly straightforward distinctions, animal
71 studies suggest that the separation between noradrenergic and dopaminergic nuclei
72 in processing different types of salience might not be as distinct as previously thought.
73 For example, the processing of novel stimuli, commonly associated with dopaminergic
74 modulation, seems to activate both the locus coeruleus and the substantia nigra, with
75 the latter showing more sustained activity (22). Such co-activations are plausible given
76 the anatomical connections between noradrenergic and dopaminergic cell groups (2).
77 Finally, although perhaps less relevant for functional MRI studies, it is important to
78 consider that neuromodulatory cell groups often release multiple neurotransmitters;

79 for instance, the noradrenergic locus coeruleus also releases dopamine to the
80 hippocampus. Therefore, while fMRI might indicate the involvement of a typically
81 noradrenergic structure, the underlying cognitive effects could be mediated by
82 dopamine (27,28). Taken together, although the influence of event saliency on human
83 memory formation is well recognized, establishing distinct relationships between
84 neuromodulation and enhanced memory for different types of salience such as reward
85 and unexpectedness or novelty in humans is often complicated due to in part
86 overlapping neural substrates (12,21,22,26,29–34). Moreover, the methodological
87 challenges involved in reliably imaging the small neuromodulatory nuclei of the
88 midbrain and brainstem in humans makes it difficult to disentangle and closely inspect
89 the distinct mechanisms (35).

90 In this study, we aimed to understand the neuromodulatory underpinnings of
91 different types of salience, namely contextual unexpectedness and reward, and their
92 effects on memory encoding. We conducted a two-session experiment in order to
93 separately manipulate the salience effect on memory related to contextual
94 unexpectedness and reward association in the same sample. To effectively investigate
95 the role of neuromodulatory midbrain and brainstem structures in processing salience
96 and encoding memories for salient events, we applied a newly developed MRI data
97 processing approach, which specifically enhances spatial precision in assessing
98 brainstem and midbrain activations, increasing the reliability and significance of our
99 findings (36).

100 Our study hypothesises that (1) processing different types of saliences and their
101 memory effects will preferentially rely on distinct neural substrates with reward-
102 associated stimuli relying more on dopaminergic networks and unexpectedness-
103 associated stimuli more on predominantly noradrenaline networks (21). Finally, we

104 expect that (2) episodic memory encoding will be facilitated by both reward- and
105 unexpectedness-associated salience, which will be reflected in the enhanced
106 subsequent memory effects for stimuli linked to salience as well as parallel primary
107 support by dopaminergic and noradrenergic networks, respectively.

108

109

110 **2 Methods**

111 **2.1 Participants**

112 Fifty healthy younger adults (22 males, age range: 18–31 years,
113 $M \pm SD = 23.5 \pm 2.4$) were recruited via the German Center for Neurodegenerative
114 Diseases (DZNE) participant database. MRI eligibility was initially screened via
115 telephone conversations and email. Exclusion criteria included age, history of
116 neurobiological disorders, and the presence of ferromagnetic implants. Each
117 participant was scanned twice as the study compared the effects of two different
118 salience contexts on memory encoding. Three subjects dropped out after the first
119 session due to scheduling issues, thus resulting in a total 47 participants with two scan
120 sessions, i.e. 94 scans. The handling procedures of two-session MRI data are
121 described in detail in the data analysis section (section 2.2.4.) below. All participants
122 provided written informed consent prior to each session. At the end of each
123 experimental visit, they were compensated either 72 Euros or 32 Euros cash
124 depending on the reward context type of the session.

125

126 **2.2 Task design and procedures**

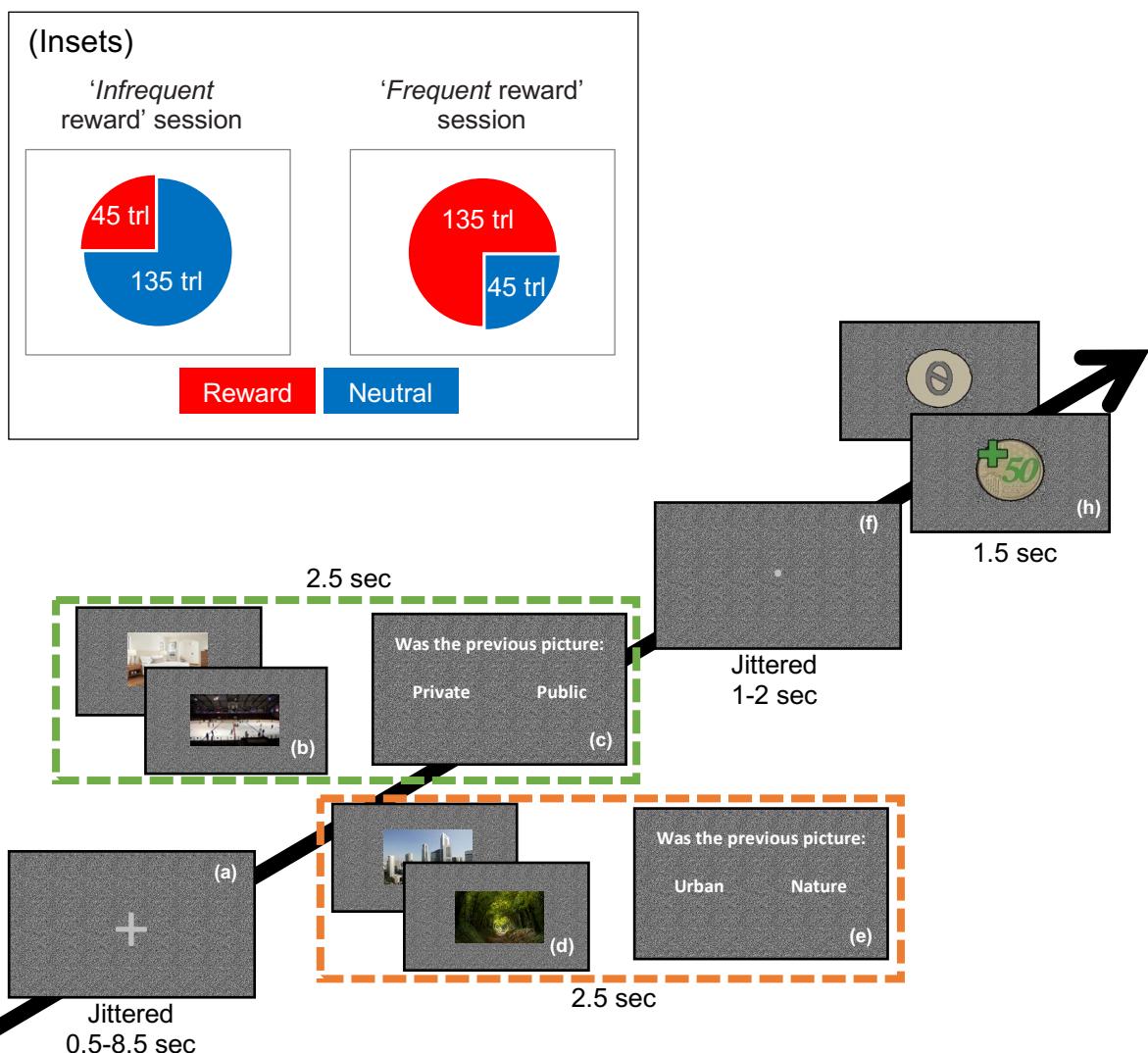
127 **2.2.1 Materials**

128 MATLAB R2015b (Mathworks, Sherborn, MA, USA, 2015) and Cogent toolbox
129 (Cogent Graphics, <http://www.vislab.ucl.ac.uk/CogentGraphics.html> [Accessed May
130 2018]) were employed for paradigm creation and execution. To provide a comparable
131 range of stimulus memorability, scene images were sourced from the Large-scale
132 Image Memorability dataset (LaMem, (37)) and manually screened to exclude: (1)
133 memorability values outside the 0.4–0.6 range as per LaMem; (2) emotional elements
134 such as blood or sexual content; (3) distinctive face-like features; (4) legible text; (5)

135 animals. Post-screening, images were categorised into four subgroups (public indoor,
136 private indoor, urban outdoor, natural outdoor) to allow for four separate stimulus
137 categories associated with reward or no reward outcomes across the two sessions.
138 The luminance level of all stimuli were set at 50% as stimulus brightness is known to
139 affect pupil dilations, which were concurrently recorded but are not reported here.
140 Background stimuli (binary chequered-noise stimuli) were also set at 50% luminance
141 (Figure 1).

142

143 **2.2.2 Task design and procedures**


144 **2.2.2.1 Experimental programme**

145 In our study, we conducted two types of test sessions on separate days within
146 subject to manipulate the reward context, differing in the frequency of reward-
147 associated trials. There were 135 rewarded trials in the 'frequent reward session' and
148 45 in the 'infrequent reward session,' with neutral feedback in the remainder (see
149 Figure 1 inset). For example, in one session a subject might encounter an indoor scene
150 stimulus set consisting of private and public scenes, with either private or public
151 scenes randomly assigned as rewarded, while the other category received neutral
152 feedback. In the alternate session (i.e. the second visit), the subject would be
153 presented with an outdoor scene stimulus set, comprised of nature and urban scenes,
154 and either nature or urban scenes would be randomly assigned as rewarded. Across
155 subjects, the order of indoor and outdoor scenes, as well as which category within
156 each set was designated 'frequent reward' or 'infrequent reward', was randomised.
157 Thus, if private indoor scenes were assigned as 'frequent reward' in one session, the
158 rewarded outdoor scene category in the next session would be 'infrequent'. Subjects
159 were compensated with 50 cents for each rewarded scene. (see also 'Reward task

160 and memory test' and Figure 1 below for more details). The interval between the two
161 visits was a minimum of 1 day and maximum of 29 days ($M=7.33$, $SD=7.56$). By
162 manipulating the presentation frequency of rewards in two separate test sessions, the
163 effect of two salience types, reward and contextual unexpectedness, on the following
164 two aspects can be examined: namely a) whether a stimulus is associated with a
165 reward or a neutral outcome, and b) how frequently a stimulus category is presented
166 in the context of a specific session's reward schedule. In addition, the temporal design
167 of the task was optimized in order to allow for examining functional brain activations
168 to scenes and feedbacks separately. This approach permitted separate assessments
169 of processing salient stimuli as well as the impact of associated feedbacks on memory
170 encoding within the context of different salience types. During each session, functional
171 magnetic resonance imaging (fMRI) as well as structural magnetic resonance imaging
172 (sMRI) was carried out. Pupillometric data were collected simultaneously during fMRI,
173 which will not be reported here.

174

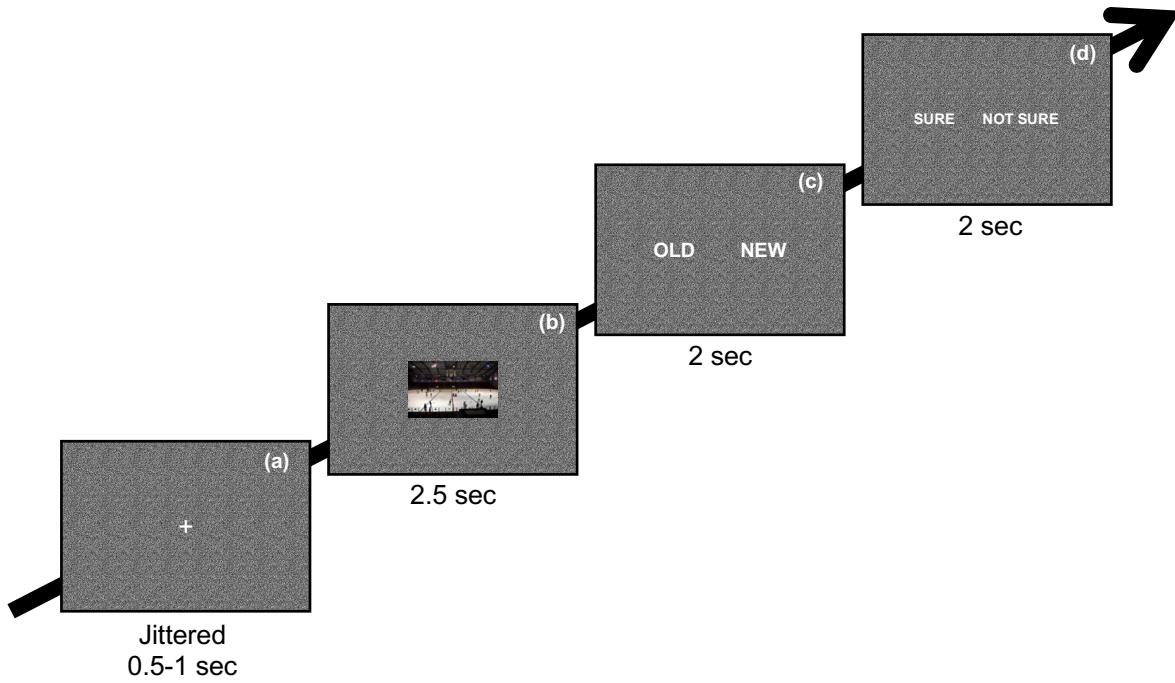
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

Figure 1. Trial Structure. The figure shows the layout of the stimuli on the screen and the sequence within each trial: (a) baseline, *jittered* between 0.5 and 8.5 seconds in duration; (b, d) scenes to be categorised as either indoor or outdoor, each lasting 2.5 seconds; (c, e) categorisation response, lasting 2 seconds regardless of button input; (f) a subsequent baseline, indicated by a dot, *jittered* between 1 and 2 seconds in duration; (h) 1.5-second feedback presentation, differentiated by the preceding baseline screen. Green and orange dashed boxes indicate example stimulus sets for the two test sessions. Jittered intervals between scene stimuli and feedback were included in order to facilitate investigating functional activations to these two timepoints separately. The **insets** indicate the composition of the infrequent and frequent reward sessions, the order of which was likewise randomised.

191 **2.2.2.2 Reward task and memory tests**

192 In the reward task, participants were instructed to sort a picture into two
193 categories per session, one of which was rewarded and one of which was infrequent
194 (Figure 1). All images presented during this encoding task were trial unique. Altogether,
195 in order to distinguish infrequent and frequent as well as rewarded and not rewarded
196 stimuli, four different types of scenes were included across the two sessions: Private
197 or public indoor pictures and urban or nature outdoor pictures (cf. Figure 1). In order
198 to make it easier for participants to differentiate scenes across sessions, one session
199 used indoor scenes, and the other session used outdoor scenes, i.e. indoor and
200 outdoor scenes were never mixed in a session. Within each session, only one scene
201 category (e.g. urban in ‘outdoor session’ or private in ‘indoor session’) was associated
202 with a reward. Reward association of scenes did not change across categories within
203 a session and was deterministic. That is, every incidence of a reward category scene
204 was followed by reward feedback. Which session (‘indoor’ or ‘outdoor’) came first,
205 which scene category was associated with a reward, and of which frequency the
206 reward-associated scenes were presented during the task (‘infrequent’ or ‘frequent
207 reward’ session) were counterbalanced across participants. In this way, no scene
208 category was preferentially associated with a first or second test session or saliency
209 conditions, i.e. frequency or reward, across participants.

210 Each scan session started with 15-minute sMRI data collection, whole-brain T1,
211 high-resolution T2, and fieldmap. Participants did not perform any tasks during this
212 period and were allowed to close their eyes and rest. During the following fMRI scan,
213 participants performed the reward task concurrent with pupillometric data collection
214 (not reported here). After the fMRI scan, a neuromelanin-sensitive structural scan was
215 acquired to assess LC integrity (not reported here).


216

217

218

219

220

221

Figure 2. Incidental memory tests. The layout of the stimulus on the screen and the sequence within a trial: (a) baseline; (b) a scene which were either already seen during the reward task in the scan session or new; (c) an old-new recognition response in which participants were to respond whether they have seen the stimulus or not; (d) a binary confidence rating screen in which participants were to respond whether they are sure of their decision they made in the recognition response.

228 Following the structural scans, participants performed the 'immediate' memory
229 test for approximately 20 minutes outside the scanner (Figure 2). Subsequently, after
230 a break, they performed a 'delayed' memory test, also lasting for about 20 minutes
231 and conducted outside the scanner, at approximately 120 minutes post-reward task.
232 During their second visit, participants were explicitly instructed not to engage in
233 deliberate memorisation of the presented scenes to minimise the strategy effects in
234 memory performance. Each memory test included a total of 176 items: 88 'old' items,
235 randomly selected from those presented during the incidental encoding reward task,
236 and 88 'new' items. The discrepancy in the number of trials between the encoding and
237 recognition tasks was due to a limitation in the availability of new scenes to match the
238 old items. This resulted in the random exclusion of four stimuli per subject presented
239 during encoding from subsequent memory analyses. Among the old items, 66 were
240 from the frequently presented category and 22 from the infrequently presented
241 category. Similarly, the new items were also divided into 66 frequent and 22 infrequent
242 scenes based on their scene category in order to prevent a bias in stimulus category
243 frequency when comparing old and new scenes. Participants indicated whether a
244 stimulus was old or new, as well as how confident they were in their assessment ('sure'
245 or 'not sure') (Figure 2d). Pupillometric recordings (not reported here) were also
246 acquired during the memory tests.

247

248 **2.2.3 Imaging protocols**

249 All images were acquired with a Siemens 3T Biograph mMR scanner (Siemens
250 Healthineers, Erlangen, Germany) using a 24-channel head coil.

251

252 **2.2.3.1 Structural MRI acquisition**

253 Per session, a high-resolution T1-weighted anatomical image (MPRAGE) was
254 acquired to support functional image co-registration (1mm isotropic voxel size, 192
255 slices, TR=2,500ms, TE=4.37ms, TI=1100ms, FOV=256×256×192mm, flip
256 angle[FA]=7°), a coronally oriented T2 image to assess hippocampal subfield volumes
257 (0.4×0.4×2mm voxel size, 29 slices, TR=8020ms, TE=52ms, FOV=175×175×58mm;
258 not reported here), and an axially oriented high-resolution neuromelanin-sensitive T1-
259 weighted multi-echo FLASH sequence to characterise LC integrity (0.6×0.6×3mm
260 voxel size, 48 slices, TR=22ms, TE=5.57ms, TA=4:37, FOV=230×230×144mm,
261 FA=23°; not reported here).

262 **2.2.3.2 Functional MRI acquisition**

263 During the reward task, a T2*-weighted 3D EPI was acquired perpendicularly
264 to the back of the brainstem (2mm isotropic voxel size, 51 slices, TR=3600ms,
265 TE=32ms, FOV=240×240×102mm, FA=80°).

266

267 **2.2.4 Data preprocessing and analysis**

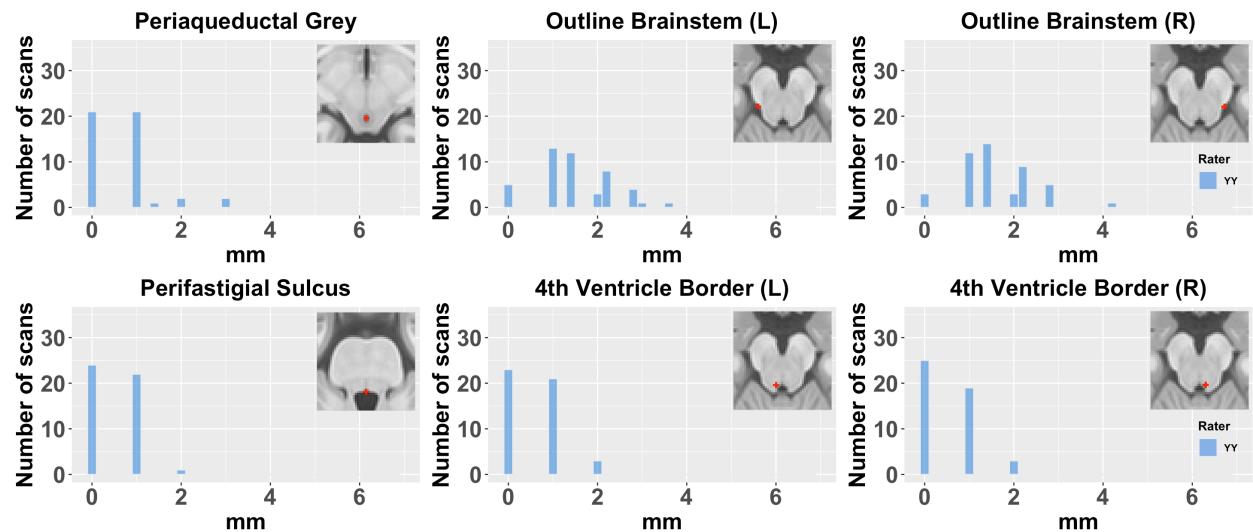
268 **2.2.4.1 sMRI data**

269 Individual T1-weighted whole-brain structural images underwent bias correction
270 using the advanced normalization tool's *N4BiasFieldCorrection* function (ANTs,
271 Version 2.3.1). This correction was necessary to address field-related inhomogeneity
272 in the images, which can hinder the normalisation of the images into the group space.
273 The Montreal Neurological Institute (MNI) template space was used as the group
274 space (38). A study-specific template space was created from these bias-field-
275 corrected structural whole-brain images using *antsMultivariateTemplateConstruction2*
276 function of ANTs (only one of the two T1w images collected per participant was

277 selected) to allow for a more precise normalisation into group space. Parameters for
278 bias correction and template generation are shown in the Supplementary Method 1.

279 **2.2.4.2 fMRI data**

280 For each participant, functional scans from the two sessions underwent
281 separate slice-time correction, and un-warping was performed using the respective
282 field maps with Statistical Parametric Mapping (SPM12, [http://www.fil.ion.ucl.ac.uk](http://www.fil.ion.ucl.ac.uk/spm12.html)
283 /spm12.html) within the MATLAB environment (Version 2015a, MathWorks, Sherborn,
284 MA, USA, 2015) using default parameters. Subsequently, the scans from both
285 sessions were concatenated and realigned using the default parameters of SPM12's
286 *Realign* functions to compare the frequent- and infrequent-reward conditions across
287 sessions. Alignment quality was visually assessed. Functional scans were then
288 smoothed with a 3x3x3mm kernel using SPM12's *Smooth* function, followed by
289 single-subject voxelwise general linear model (GLM) analyses to estimate task-related
290 contrasts in SPM12. Due to technical issues preventing physiological noise
291 parameters from being recorded for 24 datasets, CompCor was applied uniformly
292 during single-subject GLM analyses for consistency. This method has been shown to
293 provide comparable results to regressor-based noise correction (39). The resulting
294 contrast maps were transformed into the structural MNI template space for group
295 analyses using a pipeline combining ANTs and FSL (FMRIB Software Library, Version
296 6.0.4). More details about the pipeline can be found in Supplementary Method 1.


297 **2.2.4.3 Quality assessment of the functional image transformation**

298 To ensure that sufficient spatial precision was achieved in the transformation of
299 individual data to the group space, quality assessments were conducted (YY), as
300 described in Yi et al. (2023). Briefly, anatomical landmarks on the brainstem were
301 delineated on each MNI-transformed mean functional image and compared to the

302 corresponding landmarks on the structural MNI template. The spatial deviations
303 between individual and pre-set landmarks were then calculated per participant and per
304 landmark and were summarised across participants. As can be seen in Figure 3,
305 deviations generally stayed below 2mm indicating sufficient precision in spatial
306 transformations in the midbrain and brainstem.

307

308

309

310 **Figure 3. Histograms of in-plane distances between landmarks defined on the MNI template and**
 311 **single-subject landmarks delineated on MNI-transformed mean functional images.** Each inset in
 312 the corresponding histogram plot indicates its anatomical position on the MNI template. The detailed
 313 procedure for selecting and placing the landmarks, as well as quantifying the distances, is described in
 314 Yi et al.'s (2023) work and Supplementary Method 2. Note that the distances in the Outline Brainstem
 315 landmarks vary, as they were placed anywhere along the outline of the brainstem border. The
 316 mean \pm standard deviation distances for landmarks are as follows: Periaqueductal Grey (0.69 ± 0.76),
 317 Perifastigial Sulcus (0.51 ± 0.55), Left Outline Brainstem (1.53 ± 0.85), Right Outline Brainstem
 318 (1.62 ± 0.82), Left 4th Ventricle Border (0.57 ± 0.62), and Right 4th Ventricle Border (0.53 ± 0.62).
 319

320

321 **2.2.4.4 Masks and significance thresholds used in fMRI analyses**

322 For whole-brain analyses, an inclusive grey matter mask segmented from the
323 structural MNI template using the *Segment* function of SPM12 applied at $p_{\text{uncorr}} < .001$
324 threshold was used. In these analyses, cluster-level significance was determined by
325 applying the False Discovery Rate (FDR) method for multiple comparisons correction
326 within the same $p_{\text{uncorr}} < .001$ significance threshold, as per the approach outlined by
327 Genovese, Lazar, & Nichols (40). An anatomical midbrain and brainstem mask was
328 applied as an inclusive mask at $p_{\text{uncorr}} < .001$ to investigate the small structures in the
329 midbrain and brainstem (41). SN activation was examined with small-volume
330 correction (SVC) with the SN mask extracted from Pauli et al.'s reinforcement learning
331 atlas (42).

332 **2.2.4.5 Behavioural data**

333 Behavioural data were analysed using SPSS (version 29, SPSS Inc., Armonk,
334 NY, USA, 2021). To quantify memory performance under each condition
335 (immediate/delayed tests, reward/neutral outcome, and infrequent/frequent
336 presentation), the D-prime (D') measure was computed. This metric was derived by
337 first calculating the hit rate (H) and false-alarm rate (F) for each condition, with small
338 corrections applied to prevent extreme values as outlined in Hautus (1995):

$$H = \frac{n(\text{Hit}) + 0.5}{n(\text{Hit}) + n(\text{Miss}) + 1} \quad (1)$$

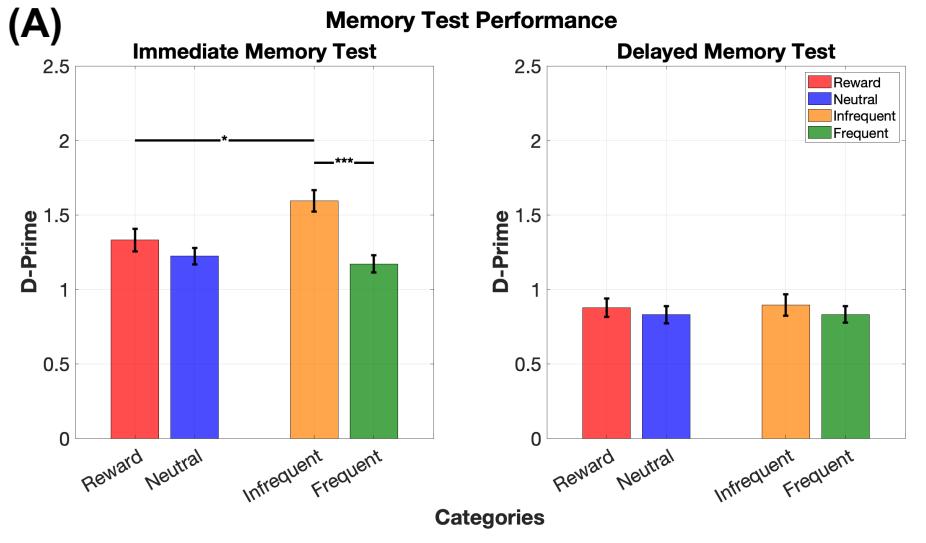
$$F = \frac{n(\text{FalseAlarm}) + 0.5}{n(\text{FalseAlarm}) + n(\text{CorrectRejection}) + 1} \quad (2)$$

339 The D' values were then derived as the difference between the inverse
340 cumulative distribution functions (Φ^{-1}) of the corrected hit and false-alarm rates:

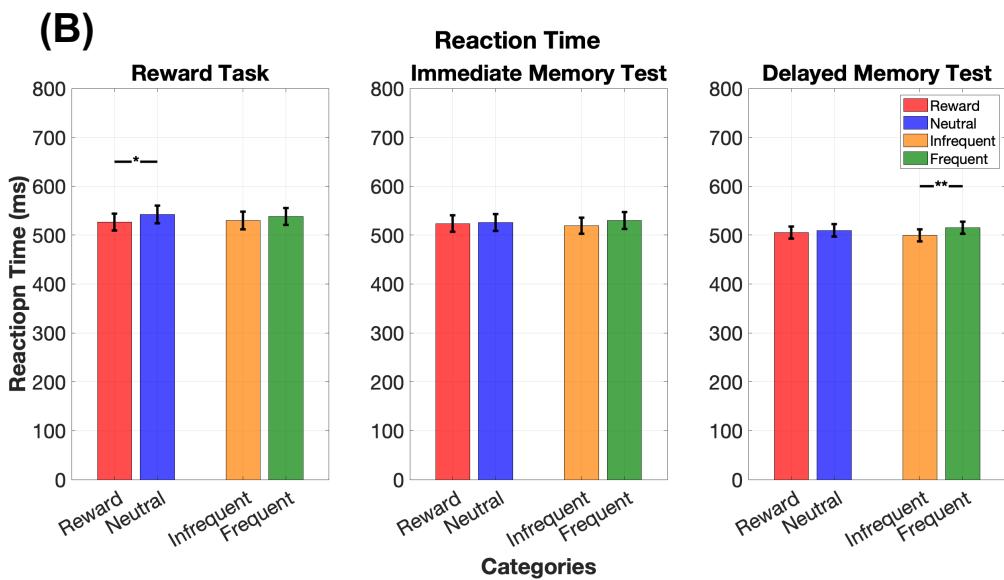
$$D' = \Phi^{-1}(H) - \Phi^{-1}(F). \quad (3)$$

342 **3 Results**

343 As outlined previously, our task was designed to manipulate two distinct
344 aspects of stimulus salience in two separate sessions: (a) the association of a stimulus
345 with a reward versus a neutral outcome, referred to as "reward salience," and (b) the
346 association of a stimulus with a less frequent outcome, referred to as "contextual
347 unexpectedness salience". In the following analyses, we aimed to identify brain
348 regions specifically associated with these two aspects of salience (i.e., reward and
349 contextual unexpectedness). All fMRI GLM results were analysed using SPM12 in the
350 MATLAB environment (version 2021a, Mathworks, Sherborn, MA, USA, 2021). A
351 comprehensive list of all activations, their statistical significance, and their coordinates
352 in Talairach space can be found in Supplementary Table 4 and 5.


353

354 **3.1 Behavioural results**


355 Participants exhibited a high accuracy of categorising the stimulus sets during
356 the reward task in both infrequent and frequent reward sessions, with an average
357 accuracy of 94% ($SD=8\%$). A one-way ANOVA analysis showed no significant
358 difference in categorisation accuracy between the two sessions, $F(1,92)=0.642$,
359 $p=.425$. The results of the two-way ANOVA indicated no significant main effects of
360 contextual unexpectedness (infrequent/frequent; $F[1,184]=1.912$, $p=.168$) or reward
361 (reward/neutral; $F[1,184]=1.576$, $p=.211$) on the categorisation accuracy. In addition,
362 there was no significant interaction between frequency and reward variables,
363 $F(1,184)=2.643$, $p=.106$. Also, there was no significant main effects of delay length
364 (immediate, $F[1,92]=0.024$, $p=.877$; delayed, $F[1,88]=0.069$, $p=.793$), reward (reward,
365 $F[1,88]=0.285$, $p=.595$; neutral, $F[1,88]=0.086$, $p=.690$), and frequency (infrequent, ,

366 $F[1,88]=0.160, p=.690$; frequent, $F[1,88]=0.022, p=.883$) on the memory test
367 performances between the first and the second visit.

368

369
370
371

372
373
374

Figure 4. Memory test performance in immediate and delayed recognition tasks and reaction time (RT) performance during the reward task and immediate and delayed recognition tasks for the two salience manipulations. (A) displays the D' results for the immediate (left) and delayed (right) memory tests, encompassing all trials. Each bar plot from left to right represents the D' values for scenes associated with reward, neutral, infrequently presented (infrequent), and frequently presented (frequent) scenes. (B) represents the RT performance in response to prompts (scene category judgment [e.g., private vs. public] during the reward task and [old vs. new] during recognition memory tests), which were presented following a scene stimulus. In both top and bottom panels, horizontal bars with asterisks denote significant differences between stimulus categories. One asterisk (*) represents $p < 0.05$, and three asterisks (***) represent $p < 0.001$ significance threshold.

375
376
377
378
379
380
381
382
383
384
385

386 **3.1.1 Memory test performance**

387 As outlined above, stimulus categories were counterbalanced across salience
388 conditions. Memory performance across the four stimulus categories, did not differ
389 (urban and nature from the outdoor category and private and public from the indoor
390 category; One-way ANOVA, immediate memory test: $F(3,183)=1.854$, $p=.139$;
391 delayed memory test: $F(3,173)=2.074$, $p=.105$).

392 To assess memory effects related to salience types, a three-factor repeated
393 measures ANOVA was calculated (contextual unexpectedness [infrequent/frequent] \times
394 reward [reward/neutral] \times delay length [immediate/delayed]) on D' . As expected,
395 memory performance was higher for the immediate memory test as compared to the
396 delayed memory test, $F(1,42)=110.183$, $p<.001$, as well as for infrequently presented
397 scenes compared to frequently presented scenes, $F(1,42)=21.954$, $p<.001$. The better
398 memory for infrequently presented scenes is in line with previous studies showing an
399 association between unexpected or contextually salient events and improved
400 recollection performance (von Restorff or isolation effect; 26–28,44–46). Moreover, a
401 significant interaction effect between contextual unexpectedness and delay length
402 factors, $F(1,42)=21.181$, $p<.001$, $\eta_p^2=.335$, indicates that the contextual
403 unexpectedness effect was more pronounced on the immediate memory test. This
404 suggests that the advantage of stimulus salience for memory is most prominent in the
405 short-term and may not persist over longer periods if the stimulus' episodic salience is
406 less pronounced (21,26,31,47).

407 In addition, a three-factor repeated measures ANOVA (contextual
408 unexpectedness [infrequent/frequent] \times reward [reward/neutral] \times delay length
409 [immediate/delayed]) performed on the memory tests' reaction times (RTs) showed
410 faster RT to infrequently presented scenes than to frequently presented scenes,

411 $F(1,42)=6.962$, $p=.012$, suggesting also stronger memory traces for infrequently
412 presented scenes (44,48–51). Similarly, slower RTs during the immediate memory
413 test than delayed memory test were observed, $F(1,42)=25.204$, $p<.001$, which might
414 imply that scenes that had formed stronger memory traces form a more prominent
415 portion of the old responses in the delayed test (51,52). A trend of an interaction
416 between contextual unexpectedness and delay length showed slightly faster RTs for
417 infrequently presented scenes during the delayed memory test than the immediate
418 memory test, while RTs for frequently presented scenes remain unchanged across the
419 two memory tests, $F(1,42)=3.082$, $p=.086$, $\eta_p^2=.068$, no two- or three-way interaction
420 effect among the factors was found. Likewise, this trend in RT performance likely
421 indicates that infrequently presented scenes may have been encoded more robustly
422 (52,53).

423 Unexpectedly, there was no memory effect for reward-associated as compared
424 to neutral scenes, indicating a comparatively weaker memory-relevant effect of reward
425 salience in our setup for combining unexpected and rewarded events, $F(1,42)=2.229$,
426 $p=.143$ (Figure 4). The observed lack of a significant memory enhancement for
427 rewarded compared to non-rewarded scenes could be attributed to several factors,
428 not all of which are mutually exclusive. First, to avoid diverting attention from the
429 unexpectedness of rare stimuli in the infrequent stimulus category, reward feedback
430 was deterministically and not probabilistically related to reward scenes. However,
431 previous research suggests that probabilistic rewards generate larger reward
432 prediction errors (RPEs) (54–56), a potential enhancement to memory effects that our
433 deterministic approach might not have fully captured. Moreover, it has been suggested
434 that associations with rewards have a stronger effect on decision biases, namely, a
435 bias towards approaching stimuli rather than enhancing memory discrimination (57).

436 Specifically, Bowen et al. (57) observed that although reward-associated stimuli
437 can increase hit rates, this did not translate into an increased D' . The authors explain
438 that this phenomenon may arise from reward salience primarily influencing decision-
439 making tendencies, leading to a more liberal response bias towards stimuli associated
440 with rewards during recognition tests. Indeed, in our results, although participants
441 showed better recognition of familiar reward-associated scenes (Supplementary
442 Figure 3C and 3D), this was offset by a larger increase in FA for these scenes
443 (Supplementary Figure 3A and 3B), resulting in no overall change in D' . This result is
444 similar to what was found in Bowen et al. (57), who employed a similar encoding task
445 paradigm (Experiment 1) as this study, and demonstrated that high-reward cues
446 increase hit rates without necessarily enhancing memory discriminability (D'). This
447 suggests that reward motivation affects decision biases rather than memory
448 discrimination. This leads to a more liberal response bias in recognition tests (57),
449 resulting in increased rates of both hits and false alarms (Supplementary Figure 3).
450 Corroborating this, although no significant differences in RTs were observed between
451 frequent and infrequent stimuli during the encoding, RTs were significantly quicker for
452 scenes associated with rewards compared to neutral ones, $F(1,46)=5.448$, $p=.024$.
453 This is in line with prior studies demonstrating faster RTs when approaching reward-
454 associated stimuli ('action vigor'; 56,57).

455 When restricting the analysis to high-confidence trials to assess items with
456 stronger memory traces, results paralleled those observed in the full trial set. There
457 was a main effect of contextual unexpectedness, $F(1,42)=16.740$, $p<.001$, and delay
458 length, $F(1,42)=82.260$, $p<.001$, along with an interaction effect between these factors,
459 $F(1,42)=10.150$, $p=.003$, $\eta_p^2=.195$, further confirming a robust effect of contextual
460 unexpectedness and delay length on memory.

461 To explore the impact of salience types on false alarms (FAs), a three-factor
462 repeated measures ANOVA was conducted. Main effects showed higher FA in
463 delayed than immediate tests, consistent with the generally weaker memory
464 performance on delayed tests, $F(1,42)=16.309$, $p<.001$. However, no significant
465 differences were found for reward or contextual unexpectedness. Significant two-way
466 interactions were observed between delay length and both reward and contextual
467 unexpectedness on FAs (Supplementary Figure 3A and 3B). Specifically, both reward-
468 associated and neutral scenes initially showed similar FAs during the immediate
469 memory tests. However, reward-associated scenes exhibited a sharper increase in
470 FAs compared to neutral scenes with longer delays (Supplementary Figure 3A),
471 $F(1,42)=4.137$, $p=.048$, $\eta_p^2=.090$. In contrast, although there was a trend in the main
472 effect of contextual unexpectedness showing that infrequently presented scenes had
473 lower FAs compared to frequently presented ones, $F(1,42)=3.839$, $p=.057$,
474 infrequently presented scenes showed an increase in FAs in delayed memory tests,
475 while the FAs for frequently presented scenes remained largely unchanged
476 (Supplementary Figure 3B), $F(1,42)=6.995$, $p=.011$, $\eta_p^2=.143$. These results indicate
477 their differential effects of salience types on FA over time. However, no interaction
478 between reward and unexpectedness or any three-way interaction was observed.
479 These interactions suggest that the temporal delay between encoding and recognition
480 modulates FAs in a salience-dependent manner. Yet, there were no significant
481 interactions between reward and unexpectedness, nor any three-way interaction,
482 highlighting that salience types alone may not differentially affect FAs.

483 Regarding hit-rate analyses, as expected, a three-factor repeated measures
484 ANOVA revealed higher hit rates for immediate than delayed memory test,
485 $F(1,42)=108.992$, $p<.001$. A significant main effect of reward was also observed,

486 $F(1,42)=19.829$, $p<.001$, indicating that hit rates were higher for reward-associated
487 scenes than for neutral scenes. Additionally, a smaller, yet significant main effect of
488 contextual unexpectedness was found, $F(1,42)=10.360$, $p=.002$, showing higher hit
489 rates for infrequently presented scenes. As for interaction effects, the interaction
490 between the delay length and reward exhibited a trend (Supplementary Figure 3C),
491 $F(1,42)=3.711$, $p=.061$, $\eta_p^2=.081$, suggesting an initially nonsignificant effect of reward
492 on hit rate in the immediate memory test becoming more pronounced in the delayed
493 memory test. The interaction between delay length and contextual unexpectedness
494 was also significant (Supplementary Figure 3D), $F(1,42)=6.088$, $p=.018$, $\eta_p^2=.127$,
495 indicating that the initial advantage in the hit rate due to contextual unexpectedness
496 during the immediate memory test did not persist into the delayed memory test.

497

498 **3.1.2 Confidence ratings during immediate and delayed memory tests**

499 Binary confidence ratings (0 – ‘not sure’, 1 – ‘sure’) were averaged within each
500 of the four conditions (contextual unexpectedness [infrequent/frequent] \times reward
501 [reward/neutral]) and separately for correct (hit and correct rejection) and incorrect (FA
502 and miss) trials on the memory tests. Two three-factor repeated measures ANOVA
503 found that, in *correct trials*, confidence ratings were higher to infrequently presented
504 items than frequently presented items, $F(1,42)=31.261$, $p<.001$, and higher in
505 immediate memory test than delayed memory test, $F(1,42)=23.410$, $p<.001$. However,
506 no significant reward effect was found, and there was no interaction effect across all
507 variables. In *incorrect trials*, only immediate memory tests showed higher confidence
508 ratings than delayed memory tests, $F(1,42)=6.686$, $p=.013$. This effect in delay length
509 (immediate/delayed) suggests a possible recency effect, where participants may feel

510 more confident about their answers in an immediate memory test because the
511 information is still relatively fresh in their minds, even if they are incorrect (60).

512

513 In summary, our findings align with the von Restorff effect (26–28,44–46),
514 showing that varying contextual unexpectedness as a form of salience manipulation
515 consistently influences memory performance. Specifically, scenes categorised as
516 ‘infrequently presented’ were better remembered than those in the ‘frequently
517 presented’ category. This effect was particularly pronounced in immediate memory
518 tests, where the impact of contextual manipulation was more present, as the encoding
519 context is comparatively more recent and most similar to the retrieval context
520 27/05/2024 18:34:00. Furthermore, faster RTs associated with ‘infrequently presented’
521 scenes during memory tests may indicate stronger memory traces for these infrequent
522 stimuli, an effect that was especially marked in delayed memory tests.

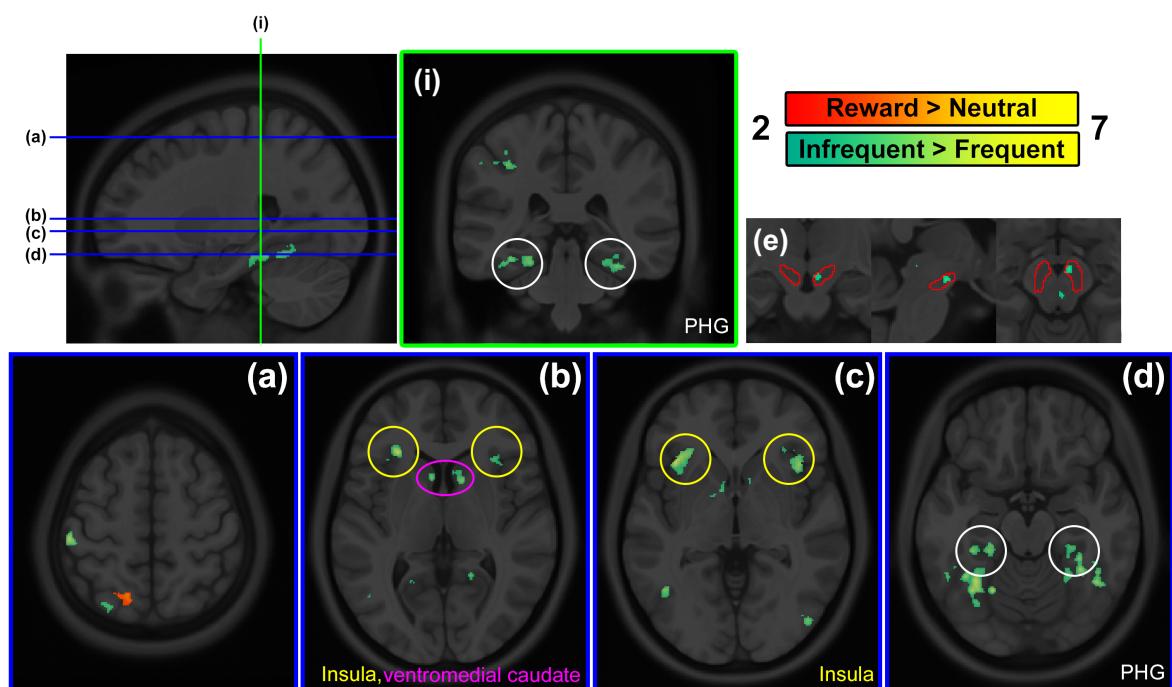
523 Contrary to expectations, reward-associated scenes did not show enhanced
524 memory effects compared to neutral scenes. This could be due to a) the use of
525 deterministic feedback resulting in a potentially weaker reward manipulation, and b)
526 reward associations having a more significant impact on decision biases than memory
527 discrimination (57). It is important to note that this does not imply reward associations
528 had no effect on a differential processing of rewarded versus non-rewarded stimuli.
529 Indeed, we observed shorter RTs to reward-associated scenes during encoding, in
530 line with previous studies that observed faster RTs towards reward-associated stimuli
531 (58,59). Moreover, although the ratio of hits to FAs remained unchanged between
532 rewarded and neutral scenes, scenes from the reward-associated category were more
533 frequently classified as ‘old’ during memory tests compared to neutral scenes. This

534 suggests a greater inclination to perceive reward-associated stimuli as familiar, again
535 indicating reward-influenced decision biases.

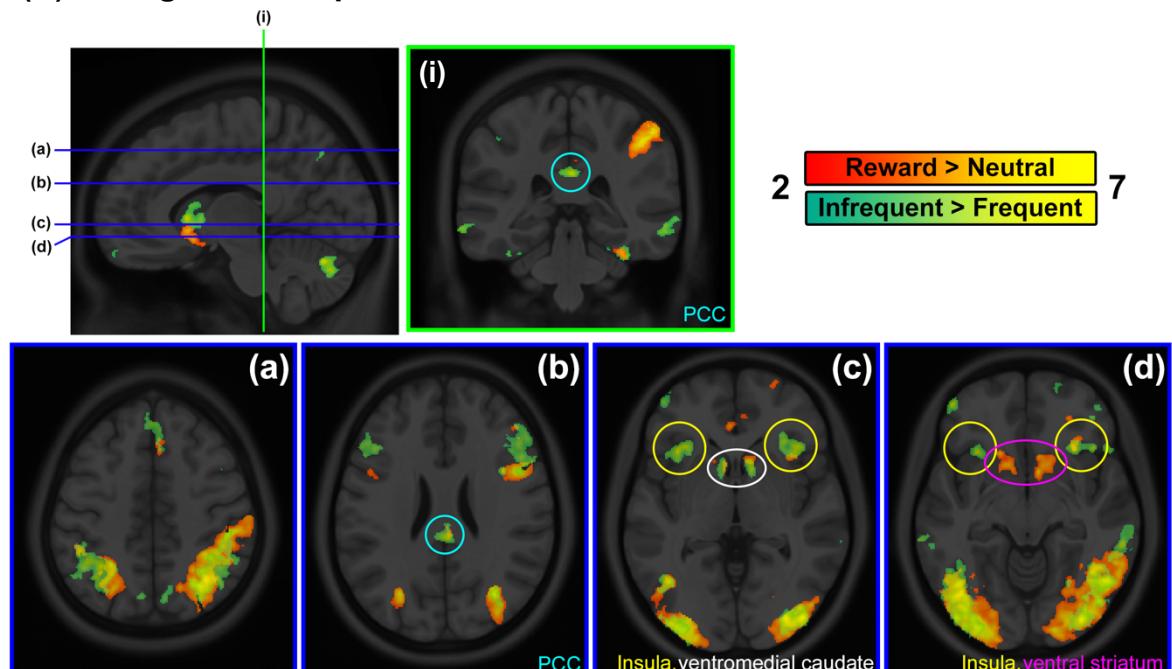
536 While our results suggest a stronger effect of contextual unexpectedness on
537 memory processes, reward associations therefore still yielded expected effects for
538 rewarded stimuli, albeit more in the domain of affecting decision biases and RTs in
539 favour of reward-associated stimuli. These differential effects of saliency
540 manipulations, reward and contextual unexpectedness, are interesting in their own
541 regard. However, they also pose challenges in directly comparing their impact within
542 our experimental paradigm. In the following we therefore focus in particular on a
543 qualitative rather than a quantitative comparison of brain processes underlying the two
544 salience manipulations.

545

546 **3.2 fMRI results**


547 In examining the fMRI data, we aim to assess whether two types of salience,
548 as defined by reward and contextual unexpectedness, elicits differential activation,
549 particularly within the midbrain and brainstem regions. Drawing from previous
550 research involving both human and animal subjects, we hypothesised that reward-
551 associated salience and memory would engage midbrain dopaminergic nuclei SN and
552 VTA (63), subcortical areas such as the nucleus accumbens (64), amygdala (65,66),
553 and other components of basal ganglia such as caudate and putamen (67), and
554 cortical areas such as insular cortex (68,69) and orbitofrontal cortex (67,70). On the
555 other hand, infrequent or contextually unexpected events would preferentially engage
556 brainstem nuclei, such as the locus coeruleus (71,72). However, co-activation of the
557 SN and VTA (10,31,73) may also occur. We further predicted that subcortical and
558 cortical areas from the salience network, including amygdala (65,66), the inferior,

559 medial, and superior frontal gyri (65,74–76), the temporoparietal cortex (65,77), and
560 the anterior cingulate cortex (ACC; 67,70) would be additionally engaged during the
561 processing and memory encoding of unexpected events.


562

563 For a detailed information on the model specifications and GLM contrasts
564 utilised in our fMRI analyses, please refer to Supplementary Tables 1, 2, and 3, which
565 outline predictor properties, contrast coding, and control predictors employed in the
566 first-level models as described in sections 3.2.1 to 3.2.3. Also, a comprehensive list of
567 fMRI activations can be found in Supplementary Table 4 and 5.

568 (A) During *stimulus* presentation

588 (B) During *feedback* presentation

608 **Figure 5. fMRI results from the infrequently versus frequently presented categories and the**

609 **reward versus neutral categories.** All activations were found with significance threshold of $p_{uncorr} < .001$

610 and was FDR-controlled except for small-volume correction (SVC) analysis, which was examined with

611 significance threshold of $p_{uncorr} < .001$ but not FDR-controlled. **(A) Activations during scene**

612 **presentation:** For activations during **reward-associated scene presentation**, axial slice (a) shows

613 activation in the left superior parietal lobule compared to neutral trials. For activations during

614 **infrequently presented scene presentation**, axial slice (b) and (c) demonstrate bilateral activation in

615 the anterior caudate and insula, respectively, while axial slice (d) and coronal slice (i) display bilateral

616 activation in the parahippocampal gyrus (PHG) compared to frequently presented scenes. Insets (e)

617 show the right *dorsal* SN activation (SN mask used for SVC is delineated with red lines. $X=6$, $y=-14$, $z=-$
618 14 ; $Z_E=4.15$; $p_{FWEc}<0.05$, $k_E=29$). **(B) Activations during feedback presentation:** Axial slice (a) shows
619 bilateral medial superior frontal cortex; (c) shows bilateral ventromedial caudate and insula activation;
620 and axial slice (b) and coronal slice (i) show bilateral posterior cingulate cortex (PCC) activation in
621 **infrequently presented feedbacks** compared to frequently presented feedbacks. In **reward-**
622 **associated feedbacks** compared to neutral feedbacks, activation profiles mostly overlap, except, as
623 seen in the axial slice (d) and sagittal slice, a bilateral ventral striatum activation is observed in
624 comparison to bilateral ventromedial caudate activation in infrequently presented versus frequently
625 presented feedbacks contrast.

626

627

628

629 **3.2.1 Infrequently presented trials vs. frequently presented trials**

630 **3.2.1.1 Scene presentation timepoint**

631 As can be seen in Figure 5A (in green to yellow shade), bilateral insular cortex,
632 bilateral parahippocampal gyrus (PHG), bilateral ventromedial caudate (the head of
633 caudate), bilateral inferior parietal lobe, right ACC were more engaged during scenes
634 from the infrequently presented scene categories. As also outlined above, the insular
635 cortex, inferior parietal lobe, and ACC are known components of the salience detection
636 and attentional modulation network (78–81). In addition, the observed bilateral
637 ventromedial caudate activation may suggest inputs from the SN, as supported by
638 histology and connectivity studies (82).

639 Using the inclusive midbrain and brainstem mask to focus specifically on
640 neuromodulatory nuclei in the brainstem, we furthermore observed higher right SN
641 activation for infrequently presented scenes in the midbrain (small-volume corrected
642 [SVC], $x=6$, $y=-14$, $z=-14$; $Z_E=4.15$; $p_{\text{FWEc}}<0.05$, $k_E=29$, Figure 5A, the top right figure
643 set). This is well in line with studies showing higher SN activations to novel or
644 unexpected events (31,83,84). On the other hand, no significant activation was
645 observed in the brainstem.

646 **3.2.1.2 Feedback presentation timepoint**

647 During feedback presentation, several regions showed significant activation,
648 including the insular cortex, inferior parietal lobule, ventromedial caudate, and
649 posterior cingulate cortex (PCC) among others (see Figure 5B). These activated
650 regions are reported to be associated with several cognitive functions such as
651 attentional control (78,85), and reward processing (86,87). No significant activation
652 was observed in the midbrain and brainstem.

653

654 Taken together, the processing of unexpected stimuli appears to be partly
655 supported by the dopaminergic system. This is evidenced by the activation of SN,
656 typically linked to dopamine, together with likely target regions such as the
657 ventromedial caudate. The higher activations in cortical areas such as ACC, PCC, and
658 insular cortex were expected as these structures are part of the salience network (66).

659

660 **3.2.2 Reward trials vs. neutral trials**

661 **3.2.2.1 Scene presentation timepoint**

662 On the whole-brain level, the left superior parietal lobe showed stronger
663 activation for reward-associated scenes (Figure 5A, in red to yellow shade). No
664 significant cluster was found in the midbrain and brainstem.

665 **3.2.2.2 Feedback presentation timepoint**

666 On the whole-brain level, bilateral middle occipital lobes, bilateral anterior
667 insular cortex, bilateral ACC, bilateral nucleus accumbens, bilateral ventromedial
668 caudate, right middle cingulate cortex (MCC), and left inferior temporal lobe (ITL)
669 showed stronger activation for reward feedback as compared to neutral feedback
670 (Figure 5B in red to yellow shade). This activation pattern in anterior insular cortex,
671 ACC, ventromedial caudate, and nucleus accumbens is corroborated by previous
672 studies that investigated attentional control and reward assessment (78,79,88–90).

673 It should be noted that, as mentioned in the memory test performance of
674 reward-associated scenes (item 3.1.1), the absence of activation in midbrain regions
675 associated with reward salience, such as the SN or VTA during feedback might be
676 attributed to the absence of RPEs. As our task aimed at orthogonally modulating
677 reward salience and contextual unexpectedness, reward feedbacks were
678 deterministically followed by reward-associated scenes, resulting in reward processing

679 without prediction errors. These weaker reward-related responses may have resulted
680 in weaker responses in these areas typically implicated in reward processing
681 (55,91,92).

682 A comprehensive list of activation clusters and statistical results of each cluster
683 from this contrast can be found in the Supplementary Table 4.

684

685 **3.2.3 Subsequent memory effects**

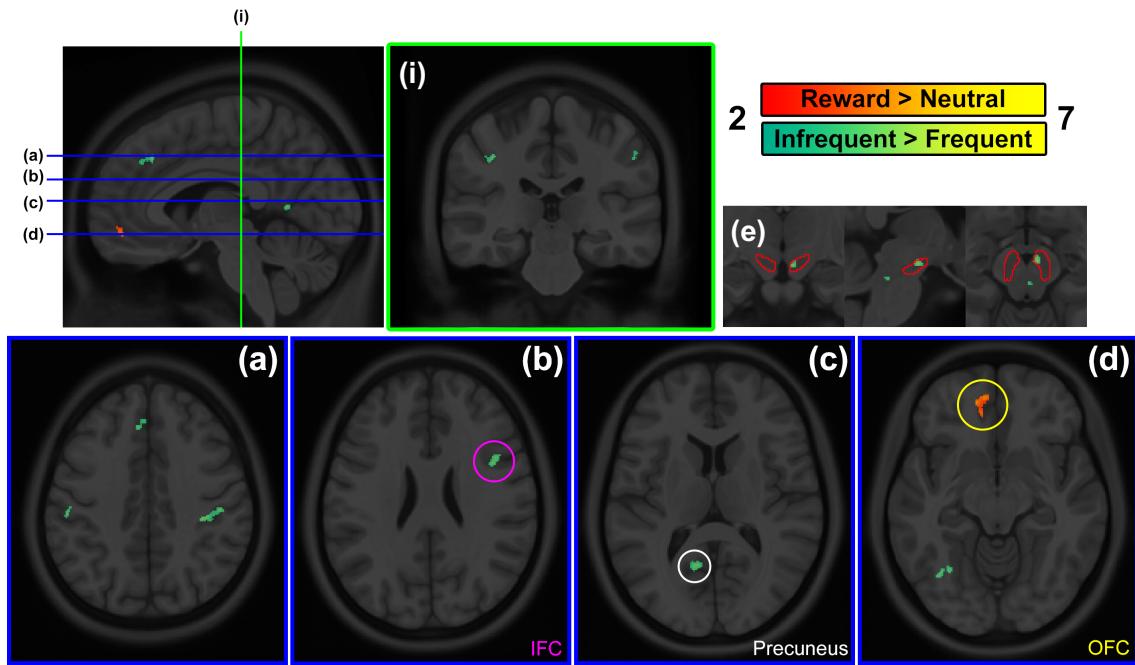
686 In the subsequent-memory analysis, only hits, i.e., items correctly identified as
687 old, were included from both immediate and delayed memory tests, which were pooled
688 together. To isolate the effect of the two saliency types on memory encoding, scene
689 stimulus presentation timepoints were analysed. This approach minimises potential
690 confounding variability introduced by reward feedback, which, while informative, is
691 already anticipated by subjects due to pre-task conditioning. Details of the GLM model
692 predictors and contrast coding configuration regarding the analyses included in this
693 item are delineated in Supplementary Table 2 and 3. We will first assess which areas
694 are more activated for remembered salient scenes compared to remembered non-
695 salient scenes, to investigate which brain areas distinguish stimulus salience during
696 memory encoding (3.2.3.1 and 3.2.3.2). This will be followed by a $2 \times 2 \times 2$ comparison
697 of the two salience effects on memory, where we will examine the joint effects of
698 reward and contextual salience on memory enhancement (3.2.3.3, cf. Supplementary
699 Table 5). Finally, we examined memory-specific processes separately for each salient
700 stimulus category by contrasting remembered and forgotten scenes within each type,
701 aiming to identify brain areas that support the memory formation for salient stimuli, the
702 results of which can be found in Supplementary Results 3 and Supplementary Figure
703 5.

704

705 **3.2.3.1 Subsequently remembered infrequently presented vs**
706 **frequently presented scenes**

707 During the scene presentation, subsequently remembered *infrequently*
708 *presented* scenes as compared to remembered *frequently presented* scenes showed
709 greater activation in the left calcarine sulcus, left precuneus, bilateral postcentral gyrus,
710 right inferior frontal cortex, left inferior parietal lobe, left fusiform gyrus, and left superior
711 medial frontal cortex (Figure 6). This supports the idea that these areas, which are
712 involved in visual and semantic processing (calcarine sulcus and inferior parietal lobe:
713 (93,94)), retrieval and integration of memory (precuneus: (95)), and attentional control
714 and monitoring of memory processes (the inferior frontal gyrus and superior medial
715 frontal gyrus: (96)), are more engaged during the encoding and retrieval of the salient,
716 infrequently presented scenes. Importantly, a significant activation in the right dorsal
717 SN was found for these better remembered infrequently presented scenes, suggesting
718 that the encoding of scenes associated with unexpectedness-related salience is likely
719 associated with dopaminergic activity in the SN (SVC; $x=6$, $y=-15$, $z=-14$; $Z_E=4.15$;
720 $p_{FWEc}<0.05$, $k_E=31$).

721 The activation of frontal and parietal regions might indicate an additional
722 involvement in enhanced visual processing and attention, in line with prior research
723 implicating these regions in memory tasks and visual perception (97–99).


724

725 **3.2.3.2 Subsequently remembered reward-associated vs neutral**
726 **scenes**

727 When comparing reward-associated scenes that are subsequently
728 remembered versus subsequently remembered neutral scenes, only the left
729 orbitofrontal cortex was more activated (Figure 6). This suggests that the reward-

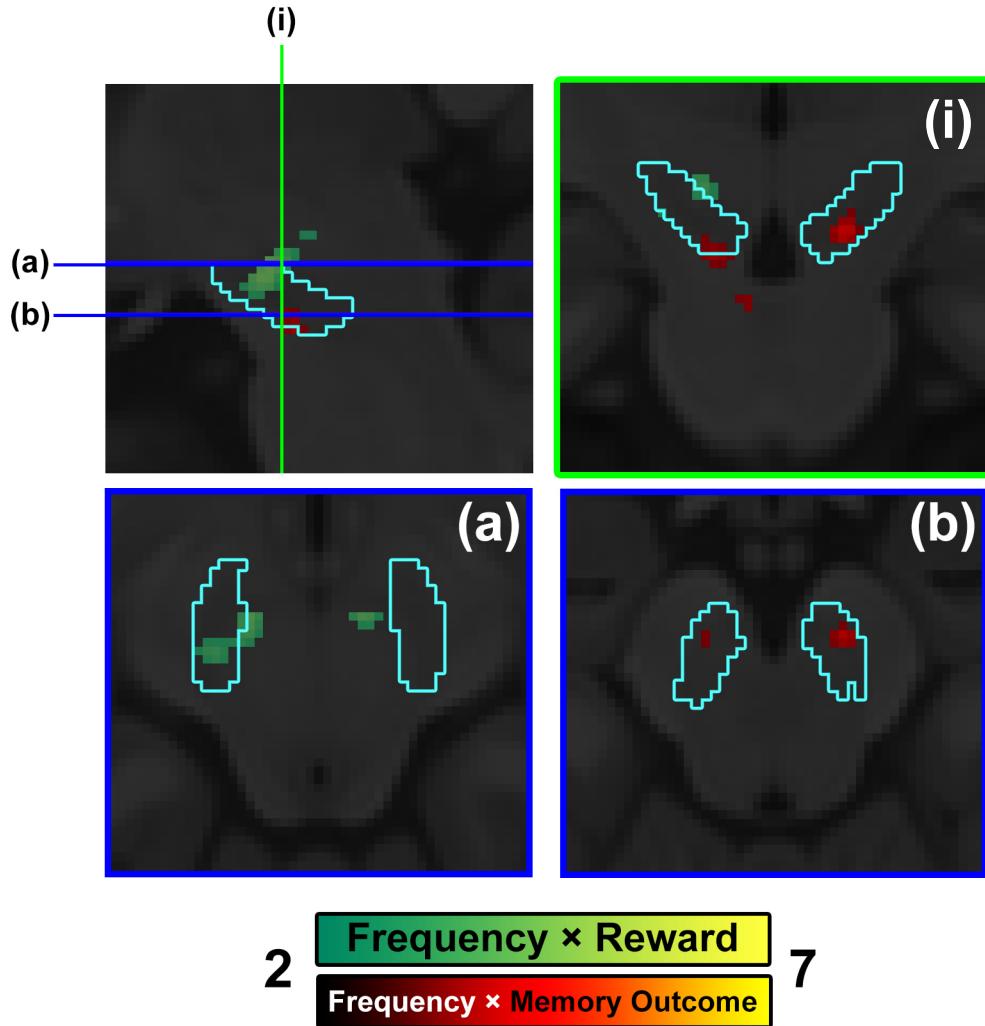
730 related information was better encoded and consolidated, which led to better retrieval
731 of the memory during the recognition phase of the task. This could be related to the
732 role of the region in evaluating the reward value of stimuli and guiding behaviour
733 accordingly (70,100).

734

735
736
737 **Figure 6. fMRI results from the infrequent versus frequent scenes and the reward versus neutral**
738 **scenes in the subsequently remembered scenes.** All activations were found with significance
739 threshold of $p_{\text{uncorr}} < .001$ and was FDR-controlled except SVC analysis, which was examined with
740 significance threshold of $p_{\text{uncorr}} < .001$ but not FDR-controlled. In subsequently remembered
741 **infrequently presented scenes compared to frequently presented scenes**, coronal slice (i) and
742 axial slice (a) shows activations in bilateral postcentral gyrus and left superior frontal cortex (SFC); axial
743 slice (b) shows right IFC; (c) shows left precuneus; and (d) shows left calcarine sulcus. On the other
744 hand, **during the presentation of subsequently remembered reward-associated compared to**
745 **subsequently remembered neutral scenes**, left orbitofrontal cortex (OFC) showed significant
746 activation, as seen in sagittal slice and axial slice (d). As shown in insets (e), an SVC analysis on this
747 contrast found right dorsal SN activation for **subsequently remembered infrequently presented**
748 **scenes compared to frequently presented scenes** (SN mask used for SVC is delineated with red
749 lines. $X=6, y=-15, z=-14; Z_E=4.15; p_{\text{FWEc}} < 0.05, k_E=31$).

750

751


752 **3.2.3.3. Interaction among contextual unexpectedness, reward, and**
753 **memory**

754 In our examination of the mechanisms supporting the effect of contextual
755 unexpectedness and reward on memory, we sought to understand how the different
756 types of salience interact with each other to influence memory. To this end, we
757 conducted a full factorial ANOVA focused on these three factors, contextual
758 unexpectedness (infrequent > frequent), reward (reward > neutral), and memory
759 outcome (remembered > forgotten) (Supplementary Table 2). Intriguingly, our analysis
760 did not reveal any significant cortical activations for all inspected two- and three-way
761 interaction pairs. However, an interesting dissociation in SN engagement was
762 observed upon applying the inclusive midbrain and brainstem mask to inspect
763 specifically on neuromodulatory nuclei in the brainstem. The left dorsal SN showed
764 higher activation for infrequent and rewarded scenes, independent of memory
765 outcome (SVC; [cluster 1: $x=-8, y=-14, z=-13; Z_E=4.51; p_{FWEc}<0.05, k_E=52$], [cluster 2:
766 $x=-12, y=-19, z=-10; Z_E=3.83; p_{FWEc}<0.05, k_E=35$]), while the bilateral ventral SN was
767 more activated for subsequently remembered infrequently presented scenes,
768 independent of reward (SVC; [right: $x=-7, y=-18, z=-19; Z_E=3.75; p_{FWEc}=0.06, k_E=13$],
769 [left: $x=8, y=-17, z=-16; Z_E=3.93; p_{FWEc}<0.05, k_E=23$]; Figure 7). No significant
770 supracluster activation, either cortical or subcortical, was found in the three-way
771 interaction among frequency, reward, and memory outcome.

772 This subcortical emphasis in the SN highlights its important role in modulating
773 the interactions between the salience of stimuli and their successful memory encoding.
774 The significant activation observed within the right dorsal and ventral segments of the
775 SN further implies the functional differentiation within the SN in encoding salience,
776 aligning with documented functional heterogeneity that suggests a differentiated role

777 of these SN subregions in modulating cognitive processes under varying reward
778 conditions (101). These findings may indicate a specific dopaminergic mechanism
779 within the SN that preferentially responds to the confluence of unexpectedness and
780 reward, and their combined effect on successful encoding (102,103).

781

782

783 **Figure 7. fMRI results from three-factor factorial ANOVA analysis testing positive interaction**
 784 **among contextual unexpectedness, reward, and memory.** All activations were found with
 785 significance threshold of $p_{\text{uncorr}} < .001$ within the inclusive brainstem mask and was not FDR-controlled.
 786 In the activation observed in the **positive interaction between Frequency (contextual**
 787 **unexpectedness) and Reward factors**, two clusters of activations in the left dorsal SN were found in
 788 an SVC analysis (sagittal, coronal, and axial slice [a]; [cluster 1: $x = -8, y = -14, z = -13; Z_E = 4.51; p_{\text{FWEc}} < 0.05$,
 789 $k_E = 52$], [cluster 2: $x = -12, y = -19, z = -10; Z_E = 3.83; p_{\text{FWEc}} < 0.05, k_E = 35$]). In the **positive interaction**
 790 **between Frequency and Memory outcome factors**, bilateral activations in ventral SN were found in
 791 an SVC analysis (sagittal, coronal, and axial slice [b]; [right: $x = -7, y = -18, z = -19; Z_E = 3.75; p_{\text{FWEc}} = 0.06$,
 792 $k_E = 13$], [left: $x = 8, y = -17, z = -16; Z_E = 3.93; p_{\text{FWEc}} < 0.05, k_E = 23$]). SN mask used for SVC is delineated with
 793 cyan lines.
 794

795

796 **4 Discussion**

797

798 In the present study, we aimed to investigate the impact of two types of salience,
799 reward and contextual unexpectedness, in a 2-by-2 design on stimulus processing
800 and incidental memory. As neuromodulatory nuclei of the midbrain and brainstem are
801 important modulators of salience-related processing, we utilised high-resolution, high-
802 precision fMRI recordings and analyses to investigate in particular the role of small
803 subcortical nuclei in processing these two distinct types of salience.

804 Our behavioural findings revealed distinct effects of the two salience types on
805 memory encoding and decision biases. Specifically, in line with the 'von Restorff effect'
806 or isolation effect, which postulates better memory for contextually salient or
807 unexpected events (33,34,44–46,104), memory performance was significantly
808 enhanced for frequently presented scenes. This effect was particularly evident during
809 immediate tests compared to delayed tests, suggesting that the advantage of stimulus
810 salience may not persist over longer periods (21,26,31,47). Memory effects related to
811 contextual unexpectedness were further confirmed by higher confidence ratings for
812 infrequently presented items than for frequently presented items, in particular on
813 immediate memory tests.

814 In contrast to the better subsequent memory for contextually unexpected
815 scenes, scenes from reward-associated stimulus categories were not better
816 remembered than those from neutral categories. However, reward associations still
817 produced the typical reward-associated behavioural effects by affecting decision
818 biases and RTs in favour of reward-associated stimuli. Specifically, we observed faster
819 RTs for reward-associated scenes during the encoding task, along with heightened hit

820 and FA responses to these scenes during memory tests, in line with previous reports
821 of reward influencing 'response vigor' and decision biases (57–59).

822 Taken together, the behavioural results of our study suggest that contextual
823 unexpectedness has a greater impact on memory processes as compared to reward
824 association. Nevertheless, reward associations yielded expected effects, primarily
825 manifesting in decision biases and response times favouring reward-associated
826 stimuli. When comparing brain activations across the two salience types, these
827 qualitative differences in associated processes thus need to be considered. We
828 therefore focused on a qualitative rather than quantitative comparison of the brain
829 mechanisms behind the two saliency modifications.

830

831 **4.1. Distinct Brain Activation Patterns: Reward vs. Contextual 832 Unexpectedness**

833 In line with our expectations, distinct activation patterns for the two salience
834 types were observed. For the reward versus neutral contrast, these were most notable
835 at the feedback timepoints. In contrast, for the infrequent versus frequent scene stimuli,
836 effects were pronounced both during the scene and feedback presentations. Given
837 the deterministic association of stimulus categories with feedback, a stronger reward
838 effect might have been expected already at the scene timepoints, consistent with
839 studies showing reward cue effects (69). Nonetheless, feedback valence effects have
840 been observed to persist even if feedbacks do not carry new information or are
841 expected (105), suggesting that the mere exposure to desired or non-desired
842 feedbacks remains emotionally and attentionally relevant, even without any new
843 informational value.

844 Reward-associated feedbacks activated the nucleus accumbens, a central
845 structure in the reward circuitry vital for processing reward, motivation, and
846 reinforcement learning (106,107). Conversely, infrequently presented as compared to
847 frequently presented scenes were most prominently accompanied by activations in the
848 dorsal SN, insula, anterior caudate, and PHG. The anterior caudate, critical for
849 integrating actions and outcomes (108–110), plays a critical role in enhancing visuo-
850 motor associative learning, driven by phasic bursts of dopaminergic activity in
851 response to unexpected events (110,111). This activity persists until the association
852 is fully learned, maintaining elevated synaptic weights in caudate neurons as long as
853 behavior is linked with the stimuli. Over time, as the learning consolidates, this activity
854 gradually decreases (111). The larger activation for infrequently presented compared
855 to frequently presented scenes is likely due to ongoing associative learning with
856 infrequently appearing associations, whereas the frequent counterparts, having been
857 sufficiently learned, show decreased activity levels. The PHG likely contributes to
858 processing and encoding of contextually unexpected scene stimuli as it is known to be
859 involved in novel information detection and encoding (112,113) and the processing of
860 contextual associations (114) as well as the perception of visual scenes itself (115).
861 Consistent with this finding, improved memory test performance, as indicated by D' ,
862 was observed in particular for contextually unexpected, or infrequent, stimuli.

863 Contrary to our expectations, we did not find the noradrenergic locus coeruleus
864 to be involved in the processing of unexpected stimuli, despite our data acquisition
865 protocols and analysis methods being specifically chosen to facilitate the identification
866 of activations in small brainstem and midbrain nuclei. Given the smaller volume of the
867 locus coeruleus compared to the SN, it is conceivable that larger sample sizes or
868 longer acquisition durations than those included in our study would have been

869 necessary. Nonetheless, our study was able to identify activations in subregions of the
870 SN, which in volume are more similar to the locus coeruleus. Alternatively, it is possible
871 that the paradigm employed was not ideally suited to evoke detectable changes in
872 locus coeruleus activity given this sample size. As locus coeruleus imaging studies in
873 humans are still sparse (35), it remains unclear whether results from animal studies
874 suggesting an involvement of the LC in processing novelty or rewards (116) are easily
875 translatable to the human domain. Indeed, a recent study observed larger LC
876 activations during negative events and associated subsequently remembered stimuli,
877 suggesting that negative stimulus valence might have stronger effects than
878 unexpectedness (117). These limitations highlight the need for further, targeted
879 research employing imaging with high signal-to-noise ratios in the brainstem and
880 midbrain, and cognitive tasks with more robust manipulations of unexpectedness and
881 valence.

882 Finally, our study suggests potential functional specialisations within the
883 cingulate cortex for processing various salience types: MCC to reward, PCC to
884 unexpectedness, and ACC to both (cf. Figures 5). This pattern might suggest distinct
885 pathways and resource allocation strategies, contingent on salience type. The PCC
886 and precuneus might have supported increased attention allocation to contextually
887 unexpected events (118,119). Moreover, the co-activation of the insula and the ACC,
888 both components of the salience network, appears to support processing of both
889 reward and contextual unexpectedness (66,81,120,121).

890

891 **4.2. Subcortical Modulation of Salience via SN and Its Effect on Memory**
892 **Encoding**

Intriguingly, we observed a distinction between the dorsal and ventral SN related to processing stimulus salience and the memory encoding of salient stimuli, respectively. Specifically, activations within the dorsal SN supported the processing of stimulus salience, as indicated by higher activity for infrequent compared to frequent scenes (cf. Figures 5, 7, and 8), as well as the interaction of infrequent larger than frequent and reward larger than neutral scenes (cf. Figure 8). Conversely, the bilateral ventral SN showed greater activation in processing salient (infrequent) scenes that were subsequently remembered (cf. Figure 8).

This distinction is in line with the evidence from studies documenting anatomical and functional heterogeneity within the human SN (101,103,106), revealing a complex network whereby the dopaminergic system, through distinct subregions of the SN, navigates the confluence of various types of salience to modulate behaviour and memory processes. Specifically, the dorsal SN predominantly projects to striatal areas, which in turn modulate executive and attentional functions, while the ventral SN extends projections to the hippocampus and amygdala, which are crucial for encoding salient events into memory (106). This distinction aligns with our observation of the dorsal SN's involvement in processing salience related to reward or unexpectedness, and prior studies showing its role in visuo-motor-related learning (101). On the other hand, the strong connectivity of the ventral SN to cortical areas such as the caudate, cingulate, and insula (101,106) in addition to hippocampus and amygdala might in turn explain its role in mediating the effects of unexpectedness on memory outcomes.

914 In summary, our behavioural results suggest distinct effects of reward- and
915 unexpectedness-related salience, manifesting respectively as response biases and
916 enhanced memory. At the same time, we were able to identify distinct brain networks
917 associated with different types of salience, as well as networks involved in processing

918 salience and modulating memory encoding. Reward- and unexpectedness-related
919 brain networks largely overlapped with the expected reward and salience networks (cf.
920 Figure 5, Supplementary Tables 4 and 5, Supplementary Results 3). An interesting
921 distinction was observed within the cingulate cortex: The posterior regions were
922 predominantly involved in unexpected-related salience, while the anterior regions
923 engaged in both reward- and unexpectedness-related salience. Although the expected
924 distinction between the SN and locus coeruleus in supporting reward and contextual
925 unexpectedness, respectively, could not be verified in this study, we confirmed the
926 functional implications of anatomical subregions within the SN. Processing stimulus
927 salience, regardless of the type, preferentially engaged the dorsal SN, while salience-
928 associated memory encoding appeared to be more supported by the ventral SN.

929

930 **4.3. Limitations and Considerations for Future Research**

931 This study is not without its limitations. Given the 100% reward allocation with
932 the reward-associated category, our reward manipulation was likely to have been
933 predictable, which could have tempered our reward-associated salience effect by
934 reducing the influence of prediction errors. Rouhani et al.'s work provides an intricate
935 understanding of this dynamic; they found that cues associated with higher RPEs at
936 the moment of cue presentation were better remembered as learning progressed (122).
937 In their experiment, they were able to dissociate the effects of cue values and RPEs
938 on memory, establishing that an RPE signal is essential for the mnemonic
939 enhancement of cue events (122). As our study's intention was to disentangle the
940 neural correlates of two salience types, a deterministic association between the reward
941 and its respective category was necessary to create a reward anticipation effect that
942 could be contrasted with the inherently unpredictable nature of contextually

943 unexpected events. This affected our ability to investigate RPE-dependent effects.
944 Future studies focusing on midbrain and brainstem function should systematically alter
945 stimulus and reward expectedness in order to compare reward, prediction error and
946 frequency effects.

947 Lastly, given our aim to compare two different types of salience associated with
948 dopaminergic and noradrenergic modulation, reward and contextual unexpectedness,
949 our task necessarily resulted in differential behavioural correlates of salience. While
950 infrequently presented stimuli, in line with von Restorff effect (26–28,44–46), primarily
951 elicited an enhanced memory effect, reward associations reward associations
952 predominantly affected response biases. This made a comparison of the extent of
953 salience manipulations difficult, limiting us to a qualitative comparison. Nonetheless,
954 even in the absence of comparable behavioural memory effects, activity patterns for
955 successfully encoded scenes across reward-associated and infrequently presented
956 scenes significantly overlapped (Jaccard Index = 0.5807; overlapping activations
957 indicated by white outlines in Supplementary Figure 5). This suggests that comparable
958 networks for memory encoding across salience types might be recruited.
959 Simultaneously, whether similar response bias effects could be observed in relation to
960 contextually unexpected stimuli remains questionable, as response bias modulation
961 appears to be more specifically linked to reward associations (57). Nevertheless,
962 future studies should also aim to allow for a comparison of more quantitative aspects
963 of different types of salience and their effects on brainstem or midbrain function. This
964 could, for example, be achieved by including additional measures of arousal, such as
965 pupillometry or skin conductance charges, if behavioural correlates cannot be equated.

966

967 **5 Conclusion**

968 In conclusion, our study delineates both unique and overlapping networks
969 involved in the processing and memory encoding of contextual unexpectedness-
970 related and reward-related salience. Utilising an MRI analysis pipeline optimised for
971 enhanced spatial precision in assessing the neuromodulatory structures in the
972 midbrain and brainstem, we observed differential engagement of regions traditionally
973 associated with dopaminergic modulation in processing distinct types of salience.
974 Future studies, perhaps focusing on probabilistic reward schemes or a wider array of
975 events such as negative or shocking incidents, can further consolidate our
976 understanding of not only neuromodulatory structures' differential involvement but also
977 their interactive roles in modulating responses to salient events.

978

979

980 **5. References**

- 981 1. Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-
982 norepinephrine system in optimal performance. *J Comp Neurol.* 2005 Dec
983 5;493(1):99–110.
- 984 2. Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. *Nat Rev
985 Neurosci.* 2009 Mar;10(3):211–23.
- 986 3. Schultz W. Behavioral dopamine signals. *Trends Neurosci.* 2007 May;30(5):203–
987 10.
- 988 4. Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system:
989 modulation of behavioral state and state-dependent cognitive processes. *Brain
990 Res Rev.* 2003 Apr;42(1):33–84.
- 991 5. Robbins TW, Arnsten AFT. The Neuropsychopharmacology of Fronto-Executive
992 Function: Monoaminergic Modulation. *Annu Rev Neurosci.* 2009 Jun
993 1;32(1):267–87.
- 994 6. Schultz W. Neuronal Reward and Decision Signals: From Theories to Data.
995 *Physiol Rev.* 2015 Jul;95(3):853–951.
- 996 7. Blier P, El Mansari M. Serotonin and beyond: therapeutics for major depression.
997 *Philos Trans R Soc B Biol Sci.* 2013 Apr 5;368(1615):20120536.
- 998 8. Arnsten AFT. Catecholamine Influences on Dorsolateral Prefrontal Cortical
999 Networks. *Biol Psychiatry.* 2011 Jun;69(12):e89–99.
- 1000 9. Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of
1001 wakefulness/arousal. *Sleep Med Rev.* 2012 Apr;16(2):187–97.
- 1002 10. Düzel E, Bunzeck N, Guitart-Masip M, Düzel S. NOvelty-related Motivation of
1003 Anticipation and exploration by Dopamine (NOMAD): Implications for healthy
1004 aging. *Neurosci Biobehav Rev.* 2010 Apr;34(5):660–9.
- 1005 11. Hä默er D, Callaghan MF, Hopkins A, Kosciessa J, Betts M, Cardenas-Blanco
1006 A, et al. Locus coeruleus integrity in old age is selectively related to memories
1007 linked with salient negative events. *Proc Natl Acad Sci.* 2018 Feb
1008 27;115(9):2228–33.
- 1009 12. Lisman JE, Grace AA. The Hippocampal-VTA Loop: Controlling the Entry of
1010 Information into Long-Term Memory. *Neuron.* 2005 Jun;46(5):703–13.
- 1011 13. Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G. Linking
1012 Context with Reward: A Functional Circuit from Hippocampal CA3 to Ventral
1013 Tegmental Area. *Science.* 2011 Jul 15;333(6040):353–7.
- 1014 14. Samson Y, Wu JJ, Friedman AH, Davis JN. Catecholaminergic innervation of the
1015 hippocampus in the cynomolgus monkey. *J Comp Neurol.* 1990 Aug
1016 8;298(2):250–63.

1017 15. Schott BH, Sellner DB, Lauer CJ, Habib R, Frey JU, Guderian S, et al. Activation
1018 of Midbrain Structures by Associative Novelty and the Formation of Explicit
1019 Memory in Humans. *Learn Mem.* 2004 Jul;11(4):383–7.

1020 16. Shohamy D, Adcock RA. Dopamine and adaptive memory. *Trends Cogn Sci.*
1021 2010 Oct;14(10):464–72.

1022 17. Aston-Jones G, Cohen JD. AN INTEGRATIVE THEORY OF LOCUS
1023 COERULEUS-NOREPINEPHRINE FUNCTION: Adaptive Gain and Optimal
1024 Performance. *Annu Rev Neurosci.* 2005 Jul 21;28(1):403–50.

1025 18. Doya K. Modulators of decision making. *Nat Neurosci.* 2008 Apr;11(4):410–6.

1026 19. Grace AA. Dysregulation of the dopamine system in the pathophysiology of
1027 schizophrenia and depression. *Nat Rev Neurosci.* 2016 Aug;17(8):524–32.

1028 20. McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RAM, et al.
1029 Serotonergic versus Nonserotonergic Dorsal Raphe Projection Neurons:
1030 Differential Participation in Reward Circuitry. *Cell Rep.* 2014 Sep;8(6):1857–69.

1031 21. Schomaker J, Meeter M. Short- and long-lasting consequences of novelty,
1032 deviance and surprise on brain and cognition. *Neurosci Biobehav Rev.* 2015
1033 Aug;55:268–79.

1034 22. Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe
1035 M, et al. Locus coeruleus and dopaminergic consolidation of everyday memory.
1036 *Nature.* 2016 Sep;537(7620):357–62.

1037 23. O'Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RGM. Dopaminergic
1038 modulation of the persistence of one-trial hippocampus-dependent memory.
1039 *Learn Mem.* 2006 Nov;13(6):760–9.

1040 24. Froemke RC. Plasticity of Cortical Excitatory-Inhibitory Balance. *Annu Rev*
1041 *Neurosci.* 2015 Jul 8;38(1):195–219.

1042 25. Lisman J, Grace AA, Duzel E. A neoHebbian framework for episodic memory;
1043 role of dopamine-dependent late LTP. *Trends Neurosci.* 2011 Oct;34(10):536–47.

1044 26. Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L. Novelty and
1045 Dopaminergic Modulation of Memory Persistence: A Tale of Two Systems.
1046 *Trends Neurosci.* 2019 Feb;42(2):102–14.

1047 27. Yamasaki M, Takeuchi T. Locus Coeruleus and Dopamine-Dependent Memory
1048 Consolidation. *Neural Plast.* 2017;2017:1–15.

1049 28. Devoto P, Flore G, Saba P, Fa M, Gessa GL. Stimulation of the locus coeruleus
1050 elicits noradrenaline and dopamine release in the medial prefrontal and parietal
1051 cortex. *J Neurochem.* 2005 Jan;92(2):368–74.

1052 29. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JDE. Reward-
1053 Motivated Learning: Mesolimbic Activation Precedes Memory Formation. *Neuron.*
1054 2006 May;50(3):507–17.

1055 30. Barto A, Mirolli M, Baldassarre G. Novelty or Surprise? *Front Psychol* [Internet].
1056 2013 [cited 2023 Feb 7];4. Available from:
1057 <http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00907/abstract>

1058 31. Bunzeck N, Düzel E. Absolute Coding of Stimulus Novelty in the Human
1059 Substantia Nigra/VTA. *Neuron*. 2006 Aug;51(3):369–79.

1060 32. Ikemoto S. Dopamine reward circuitry: Two projection systems from the ventral
1061 midbrain to the nucleus accumbens–olfactory tubercle complex. *Brain Res Rev*.
1062 2007 Nov;56(1):27–78.

1063 33. Kafkas A, Montaldi D. Striatal and midbrain connectivity with the hippocampus
1064 selectively boosts memory for contextual novelty. *Hippocampus*. 2015
1065 Nov;25(11):1262–73.

1066 34. Wittmann BC, Bunzeck N, Dolan RJ, Düzel E. Anticipation of novelty recruits
1067 reward system and hippocampus while promoting recollection. *NeuroImage*.
1068 2007 Oct;38(1):194–202.

1069 35. Liu KY, Marijatta F, Hä默er D, Acosta-Cabronero J, Düzel E, Howard RJ.
1070 Magnetic resonance imaging of the human locus coeruleus: A systematic review.
1071 *Neurosci Biobehav Rev*. 2017 Dec;83:325–55.

1072 36. Yi YJ, Lüsebrink F, Ludwig M, Maaß A, Ziegler G, Yakupov R, et al. It is the locus
1073 coeruleus! Or... is it?: a proposition for analyses and reporting standards for
1074 structural and functional magnetic resonance imaging of the noradrenergic locus
1075 coeruleus. *Neurobiol Aging*. 2023 Sep;129:137–48.

1076 37. Khosla A, Raju AS, Torralba A, Oliva A. Understanding and Predicting Image
1077 Memorability at a Large Scale. In: 2015 IEEE International Conference on
1078 Computer Vision (ICCV) [Internet]. Santiago, Chile: IEEE; 2015 [cited 2023 Jun
1079 21]. p. 2390–8. Available from: <http://ieeexplore.ieee.org/document/7410632/>

1080 38. Fonov V, Evans AC, Botteron K, Almlí CR, McKinstry RC, Collins DL. Unbiased
1081 average age-appropriate atlases for pediatric studies. *NeuroImage*. 2011
1082 Jan;54(1):313–27.

1083 39. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction
1084 method (CompCor) for BOLD and perfusion based fMRI. *NeuroImage*. 2007
1085 Aug;37(1):90–101.

1086 40. Genovese CR, Lazar NA, Nichols T. Thresholding of Statistical Maps in
1087 Functional Neuroimaging Using the False Discovery Rate. *NeuroImage*. 2002
1088 Apr;15(4):870–8.

1089 41. Beissner F, Baudrexel S. Investigating the human brainstem with structural and
1090 functional MRI. *Front Hum Neurosci*. 2014;

1091 42. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of
1092 human subcortical brain nuclei. *Sci Data*. 2018 Apr 17;5(1):180063.

1093 43. Hautus MJ. Corrections for extreme proportions and their biasing effects on
1094 estimated values of d' . *Behav Res Methods Instrum Comput.* 1995 Mar;27(1):46–
1095 51.

1096 44. Kafkas A, Montaldi D. How do memory systems detect and respond to novelty?
1097 *Neurosci Lett.* 2018 Jul;680:60–8.

1098 45. Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal cortex:
1099 reflexive reorienting, motor inhibition, and action updating: Cognitive control and
1100 right ventrolateral PFC. *Ann N Y Acad Sci.* 2011 Apr;1224(1):40–62.

1101 46. von Restorff H. Über die Wirkung von Bereichsbildungen im Spurenfeld. *Psychol
1102 Forsch.* 1933;18:299–342.

1103 47. Verschueren B, Kleinberg B, Theocharidou K. RT-based memory detection: Item
1104 saliency effects in the single-probe and the multiple-probe protocol. *J Appl Res
1105 Mem Cogn.* 2015 Mar;4(1):59–65.

1106 48. Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal–Temporal Circuitry for
1107 Episodic Encoding and Subsequent Memory. *J Neurosci.* 2000 Aug
1108 15;20(16):6173–80.

1109 49. Kormi-Nouri R, Nilsson LG, Ohta N. The Blackwell Publishing, Ltd. novelty effect:
1110 Support for the Novelty-Encoding Hypothesis. *Scand J Psychol.* 2005;

1111 50. Ranganath C, Rainer G. Neural mechanisms for detecting and remembering
1112 novel events. *Nat Rev Neurosci.* 2003 Mar;4(3):193–202.

1113 51. Gimbel SI, Brewer JB. Reaction time, memory strength, and fMRI activity during
1114 memory retrieval: Hippocampus and default network are differentially responsive
1115 during recollection and familiarity judgments. *Cogn Neurosci.* 2011 Jan
1116 27;2(1):19–26.

1117 52. Dewhurst SA, Holmes SJ, Brandt KR, Dean GM. Measuring the speed of the
1118 conscious components of recognition memory: Remembering is faster than
1119 knowing. *Conscious Cogn.* 2006 Mar;15(1):147–62.

1120 53. Gimbel SI, Brewer JB. Reaction time, memory strength, and fMRI activity during
1121 memory retrieval: Hippocampus and default network are differentially responsive
1122 during recollection and familiarity judgments. *Cogn Neurosci.* 2011 Jan
1123 27;2(1):19–26.

1124 54. Rouhani N, Norman KA, Niv Y. Dissociable effects of surprising rewards on
1125 learning and memory. *J Exp Psychol Learn Mem Cogn.* 2018 Sep;44(9):1430–
1126 43.

1127 55. Schultz W, Dayan P, Montague PR. A Neural Substrate of Prediction and Reward.
1128 *Science.* 1997 Mar 14;275(5306):1593–9.

1129 56. Wimmer GE, Braun EK, Daw ND, Shohamy D. Episodic Memory Encoding
1130 Interferes with Reward Learning and Decreases Striatal Prediction Errors. *J
1131 Neurosci*. 2014 Nov 5;34(45):14901–12.

1132 57. Bowen HJ, Marchesi ML, Kensinger EA. Reward motivation influences response
1133 bias on a recognition memory task. *Cognition*. 2020 Oct;203:104337.

1134 58. Beierholm U, Guitart-Masip M, Economides M, Chowdhury R, Düzel E, Dolan R,
1135 et al. Dopamine Modulates Reward-Related Vigor. *Neuropsychopharmacology*.
1136 2013 Jul;38(8):1495–503.

1137 59. Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJM, Dayan P, Dolan RJ, et al.
1138 Action Dominates Valence in Anticipatory Representations in the Human Striatum
1139 and Dopaminergic Midbrain. *J Neurosci*. 2011 May 25;31(21):7867–75.

1140 60. Atkinson RC, Shiffrin RM. HUMAN MEMORY: A PROPOSED SYSTEM AND ITS
1141 CONTROL PROCESSES. In: *Human Memory* [Internet]. Elsevier; 1968 [cited
1142 2023 Jun 22]. p. 7–113. Available from: <https://linkinghub.elsevier.com/retrieve/pii/B9780121210502500065>

1144 61. Staudigl T, Hanslmayr S. Theta Oscillations at Encoding Mediate the Context-
1145 Dependent Nature of Human Episodic Memory. *Curr Biol*. 2013 Jun;23(12):1101–
1146 6.

1147 62. Tulving E, Thomson DM. Encoding specificity and retrieval processes in episodic
1148 memory. *Psychol Rev*. 1973 Sep;80(5):352–73.

1149 63. Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, Düzel E. Reward-
1150 Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced
1151 Hippocampus- Dependent Long-Term Memory Formation. *Neuron*. 2005
1152 Feb;45(3):459–67.

1153 64. Guitart-Masip M, Bunzeck N, Stephan KE, Dolan RJ, Duzel E. Contextual Novelty
1154 Changes Reward Representations in the Striatum. *J Neurosci*. 2010 Feb
1155 3;30(5):1721–6.

1156 65. Kiehl KA, Laurens KR, Duty TL, Forster BB, Liddle PF. An Event-Related fMRI
1157 Study of Visual and Auditory Oddball Tasks. *J Psychophysiol*. 2001
1158 Oct;15(4):221–40.

1159 66. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al.
1160 Dissociable Intrinsic Connectivity Networks for Salience Processing and
1161 Executive Control. *J Neurosci*. 2007 Feb 28;27(9):2349–56.

1162 67. Hollerman JR, Tremblay L, Schultz W. Involvement of basal ganglia and
1163 orbitofrontal cortex in goal-directed behavior. In: *Progress in Brain Research*
1164 [Internet]. Elsevier; 2000 [cited 2023 Feb 3]. p. 193–215. Available from:
1165 <https://linkinghub.elsevier.com/retrieve/pii/S0079612300260159>

1166 68. Liu X, Hairston J, Schrier M, Fan J. Common and distinct networks underlying
1167 reward valence and processing stages: A meta-analysis of functional
1168 neuroimaging studies. *Neurosci Biobehav Rev*. 2011 Apr;35(5):1219–36.

1169 69. Samanez-Larkin GR, Gibbs SEB, Khanna K, Nielsen L, Carstensen LL, Knutson
1170 B. Anticipation of monetary gain but not loss in healthy older adults. *Nat Neurosci.*
1171 2007 Jun;10(6):787–91.

1172 70. Rolls ET. The Orbitofrontal Cortex and Reward. *Cereb Cortex.* 2000 Mar
1173 1;10(3):284–94.

1174 71. Krebs RM, Park HRP, Bombeke K, Boehler CN. Modulation of locus coeruleus
1175 activity by novel oddball stimuli. *Brain Imaging Behav.* 2018 Apr;12(2):577–84.

1176 72. Sara SJ, Vankov A, Hervé A. Locus Coeruleus-evoked Responses in Behaving
1177 Rats: A Clue to the Role of Noradrenaline in Memory. *Brain Res Bull.*
1178 1994;35:457–65.

1179 73. Rigoli F, Friston KJ, Dolan RJ. Neural processes mediating contextual influences
1180 on human choice behaviour. *Nat Commun.* 2016 Aug 18;7(1):12416.

1181 74. Daffner KR, Mesulam MM, Scinto LFM, Acar D, Calvo V, Faust R, et al. The
1182 central role of the prefrontal cortex in directing attention to novel events. *Brain.*
1183 2000 May;123(5):927–39.

1184 75. Hawco C, Lepage M. Overlapping patterns of neural activity for different forms of
1185 novelty in fMRI. *Front Hum Neurosci [Internet].* 2014 Sep 8 [cited 2023 Feb 3];8.
1186 Available from:
1187 <http://journal.frontiersin.org/article/10.3389/fnhum.2014.00699/abstract>

1188 76. Kirino E, Belger A, Goldman-Rakic P, McCarthy G. Prefrontal Activation Evoked
1189 by Infrequent Target and Novel Stimuli in a Visual Target Detection Task: An
1190 Event-Related Functional Magnetic Resonance Imaging Study. *J Neurosci.* 2000
1191 Sep 1;20(17):6612–8.

1192 77. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention
1193 in the brain. *Nat Rev Neurosci.* 2002 Mar 1;3(3):201–15.

1194 78. Gogolla N. The insular cortex. *Curr Biol.* 2017 Jun;27(12):R580–6.

1195 79. Kafkas A, Montaldi D. Two separate, but interacting, neural systems for familiarity
1196 and novelty detection: A dual-route mechanism: Familiarity and Novelty Detection
1197 Processes. *Hippocampus.* 2014 May;24(5):516–27.

1198 80. Shuman M, Kanwisher N. Numerical Magnitude in the Human Parietal Lobe:
1199 Tests of Representational Generality and Domain Specificity. *Neuron.* 2004 Oct
1200 28;44(557–569).

1201 81. Uddin LQ. Salience processing and insular cortical function and dysfunction. *Nat
1202 Rev Neurosci.* 2015 Jan;16(1):55–61.

1203 82. Haber SN. The primate basal ganglia: parallel and integrative networks. *J Chem
1204 Neuroanat.* 2003 Dec;26(4):317–30.

1205 83. Kamiński J, Mamelak AN, Birch K, Mosher CP, Tagliati M, Rutishauser U.
1206 Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict

1207 Success of Declarative Memory Formation. *Curr Biol.* 2018 May;28(9):1333-
1208 1343.e4.

1209 84. Mikell CB, Sheehy JP, Youngerman BE, McGovern RA, Wojtasiewicz TJ, Chan
1210 AK, et al. Features and timing of the response of single neurons to novelty in the
1211 substantia nigra. *Brain Res.* 2014 Jan;1542:79-84.

1212 85. D'Esposito M, Postle BR, Ballard D, Lease J. Maintenance versus Manipulation
1213 of Information Held in Working Memory: An Event-Related fMRI Study. *Brain*
1214 *Cogn.* 1999 Oct;41(1):66-86.

1215 86. Jastorff J, Clavagnier S, Gergely G, Orban GA. Neural Mechanisms of
1216 Understanding Rational Actions: Middle Temporal Gyrus Activation by Contextual
1217 Violation. *Cereb Cortex.* 2011 Feb;21(2):318-29.

1218 87. Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB. Dose-Dependent
1219 Decrease of Activation in Bilateral Amygdala and Insula by Lorazepam During
1220 Emotion Processing. *Arch Gen Psychiatry.* 2005 Mar 1;62(3):282.

1221 88. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, et al. Dorsal anterior
1222 cingulate cortex: A role in reward-based decision making. *Proc Natl Acad Sci.*
1223 2002 Jan 8;99(1):523-8.

1224 89. Domic-Siede M, Irani M, Valdés J, Perrone-Bertolotti M, Ossandón T. Theta
1225 activity from frontopolar cortex, mid-cingulate cortex and anterior cingulate cortex
1226 shows different roles in cognitive planning performance. *NeuroImage.* 2021
1227 Feb;226:117557.

1228 90. Shenhav A, Cohen JD, Botvinick MM. Dorsal anterior cingulate cortex and the
1229 value of control. *Nat Neurosci.* 2016 Oct;19(10):1286-91.

1230 91. Jang AI, Nassar MR, Dillon DG, Frank MJ. Positive reward prediction errors
1231 during decision-making strengthen memory encoding. *Nat Hum Behav.* 2019 May
1232 6;3(7):719-32.

1233 92. Stanek JK, Dickerson KC, Chiew KS, Clement NJ, Adcock RA. Expected Reward
1234 Value and Reward Uncertainty Have Temporally Dissociable Effects on Memory
1235 Formation. *J Cogn Neurosci.* 2019 Oct;31(10):1443-54.

1236 93. Klein I, Paradis AL, Poline JB, Kosslyn SM, Le Bihan D. Transient Activity in the
1237 Human Calcarine Cortex During Visual-Mental Imagery: An Event-Related fMRI
1238 Study. *J Cogn Neurosci.* 2000 Nov 1;12(Supplement 2):15-23.

1239 94. Wojciulik E, Kanwisher N. The Generality of Parietal Involvement in Visual
1240 Attention. *Neuron.* 1999 Aug;23(4):747-64.

1241 95. Cabeza R, Ciaramelli E, Olson IR, Moscovitch M. The parietal cortex and episodic
1242 memory: an attentional account. *Nat Rev Neurosci.* 2008 Aug;9(8):613-25.

1243 96. Blumenfeld RS, Ranganath C. Prefrontal Cortex and Long-Term Memory
1244 Encoding: An Integrative Review of Findings from Neuropsychology and
1245 Neuroimaging. *The Neuroscientist.* 2007 Jun;13(3):280-91.

1246 97. Grill-Spector K, Weiner KS. The functional architecture of the ventral temporal
1247 cortex and its role in categorization. *Nat Rev Neurosci*. 2014 Aug;15(8):536–48.

1248 98. Hoffman KL, Logothetis NK. Cortical mechanisms of sensory learning and object
1249 recognition. *Philos Trans R Soc B Biol Sci*. 2009 Feb 12;364(1515):321–9.

1250 99. Meyer T, Olson CR. Statistical learning of visual transitions in monkey
1251 inferotemporal cortex. *Proc Natl Acad Sci*. 2011 Nov 29;108(48):19401–6.

1252 100. Kringelbach M, Rolls ET. The functional neuroanatomy of the human orbitofrontal
1253 cortex: evidence from neuroimaging and neuropsychology. *Prog Neurobiol*. 2004
1254 Apr;72(5):341–72.

1255 101. Zhang Y, Larcher KMH, Misic B, Dagher A. Anatomical and functional
1256 organization of the human substantia nigra and its connections. *eLife*. 2017 Aug
1257 21;6:e26653.

1258 102. Krebs RM, Heipertz D, Schuetze H, Duzel E. Novelty increases the mesolimbic
1259 functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA)
1260 during reward anticipation: Evidence from high-resolution fMRI. *NeuroImage*.
1261 2011 Sep;58(2):647–55.

1262 103. Wittmann BC, Schott BH, Guderian S, Frey JU, Heinze HJ, Düzel E. Reward-
1263 Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced
1264 Hippocampus- Dependent Long-Term Memory Formation. *Neuron*. 2005
1265 Feb;45(3):459–67.

1266 104. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JDE. Reward-
1267 Motivated Learning: Mesolimbic Activation Precedes Memory Formation. *Neuron*.
1268 2006 May;50(3):507–17.

1269 105. Hä默er D, Schwartenbeck P, Gallagher M, FitzGerald THB, Düzel E, Dolan
1270 RJ. Older adults fail to form stable task representations during model-based
1271 reversal inference. *Neurobiol Aging*. 2019 Feb;74:90–100.

1272 106. Haber SN, Knutson B. The Reward Circuit: Linking Primate Anatomy and Human
1273 Imaging. *Neuropsychopharmacology*. 2010 Jan;35(1):4–26.

1274 107. O'Doherty JP. Reward representations and reward-related learning in the human
1275 brain: insights from neuroimaging. *Curr Opin Neurobiol*. 2004 Dec;14(6):769–76.

1276 108. Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate
1277 nucleus. *Prog Neurobiol*. 2008 Nov;86(3):141–55.

1278 109. Graybiel AM. Habits, Rituals, and the Evaluative Brain. *Annu Rev Neurosci*. 2008
1279 Jul 1;31(1):359–87.

1280 110. Yanike M, Ferrera VP. Representation of Outcome Risk and Action in the Anterior
1281 Caudate Nucleus. *J Neurosci*. 2014 Feb 26;34(9):3279–90.

1282 111. Williams ZM, Eskandar EN. Selective enhancement of associative learning by
1283 microstimulation of the anterior caudate. *Nat Neurosci*. 2006 Apr;9(4):562–8.

1284 112. Pihlajamaki M, Tanila H, Kononen M, Hanninen T, Hamalainen A, Soininen H, et
1285 al. Visual presentation of novel objects and new spatial arrangements of objects
1286 differentially activates the medial temporal lobe subareas in humans. *Eur J
1287 Neurosci.* 2004 Apr;19(7):1939–49.

1288 113. Kaplan R, Horner AJ, Bandettini PA, Doeller CF, Burgess N. Human hippocampal
1289 processing of environmental novelty during spatial navigation: Human
1290 Hippocampal Processing Of Environmental Novelty. *Hippocampus.* 2014
1291 Jul;24(7):740–50.

1292 114. Aminoff E, Gronau N, Bar M. The Parahippocampal Cortex Mediates Spatial and
1293 Nonspatial Associations. *Cereb Cortex.* 2007 Jul 1;17(7):1493–503.

1294 115. Baumann O, Mattingley JB. Functional Organization of the Parahippocampal
1295 Cortex: Dissociable Roles for Context Representations and the Perception of
1296 Visual Scenes. *J Neurosci.* 2016 Feb 24;36(8):2536–42.

1297 116. Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe
1298 M, et al. Locus coeruleus and dopaminergic consolidation of everyday memory.
1299 *Nature.* 2016 Sep;537(7620):357–62.

1300 117. Ludwig M, Hammerer D, Lüsebrink F, Düzel E. Interrogating the role of the
1301 noradrenergic locus coeruleus in memory encoding in aging: Neuroimaging /
1302 Optimal neuroimaging measures for early detection. *Alzheimers Dement.* 2020
1303 Dec;16(S5):e044039.

1304 118. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain
1305 Connectivity Related to Working Memory Performance. *J Neurosci.* 2006 Dec
1306 20;26(51):13338–43.

1307 119. McCoy AN, Crowley JC, Haghishian G, Dean HL, Platt ML. Saccade Reward
1308 Signals in Posterior Cingulate Cortex. *Neuron.* 2003 Dec;40(5):1031–40.

1309 120. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model
1310 of insula function. *Brain Struct Funct.* 2010 Jun;214(5–6):655–67.

1311 121. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex
1312 in switching between central-executive and default-mode networks. *Proc Natl
1313 Acad Sci.* 2008 Aug 26;105(34):12569–74.

1314 122. Rouhani N, Niv Y. Signed and unsigned reward prediction errors dynamically
1315 enhance learning and memory. *eLife.* 2021 Mar 4;10:e61077.

1316