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Abstract
Federated learning (FL) has gained wide popularity as a collaborative learning
paradigm enabling trustworthy AI in sensitive healthcare applications. Never-
theless, the practical implementation of FL presents technical and organizational
challenges, as it generally requires complex communication infrastructures. In
this context, consensus-based learning (CBL) may represent a promising collab-
orative learning alternative, thanks to the ability of combining local knowledge
into a federated decision system, while potentially reducing deployment over-
head. In this work we propose an extensive benchmark of the accuracy and
cost-effectiveness of a panel of FL and CBL methods in a wide range of col-
laborative medical data analysis scenarios. Our results reveal that CBL is a
cost-effective alternative to FL, providing comparable accuracy and significantly
reducing training and communication costs. This study opens a novel perspec-
tive on the deployment of collaborative AI in real-world applications, whereas
the adoption of cost-effective methods is instrumental to achieve sustainability
and democratisation of AI by alleviating the need for extensive computational
resources.
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1 Introduction
The application of artificial intelligence (AI) in the field of biomedicine is witnessing a
rapid expansion. Nonetheless, a significant gap still exists between the developments of
AI for healthcare and their practical deployment in real-world scenarios [1]. While AI
systems hold promises in revolutionizing healthcare, they often fail to achieve model
generalizability when tested on data that differs from the one used for model training
[2], limiting their applicability as clinical tools.

Bias is among the main factors affecting model generalizability since the variabil-
ity observed in hospital data is generally affected by several factors, including local
acquisition protocols and population demographics [3]. Differences between clinical
populations with varying socioeconomic status or demographic characteristics such as
age, and ethnicity can significantly impact AI model performance [4], and potentially
lead to reduced performance when applied to data from underrepresented groups [5, 6].

To mitigate the impact of data bias it is therefore crucial to train models on
datasets providing a complete representation of the natural variability that can
be observed across hospitals, ideally gathered from multiple centers. The classical
paradigm for multi-centric AI development consists of gathering data from different
sites into shared repositories, where model training can be operated [7]. This paradigm,
known as Centralized Learning, is an established setting for the development of AI
in healthcare, as it allows training AI systems on large collections of data, addressing
the problem of data-driven bias [8–11]. However, sharing patient information across
health institutions raises important concerns over data governance and privacy [12].
Current regulations such as the European GDPR [13, 14] or the American CCPA [15]
prescribe important limitations to data sharing practices, with a subsequent impact on
the feasibility of the centralized learning paradigm in real-world applications [12, 16].

The need for using multiple data sources for training AI models while complying
with data protection regulations encourages the adoption of collaborative learning
(CL) strategies, in which the exchange of sensitive information is minimized. CL can
be defined as a machine learning paradigm in which different entities can collabo-
rate and jointly perform an analytical task without the need for sharing the original
data [12, 17, 18]. To this end, CL relies on the sharing of data abstractions, which
can, for instance, take the form of model parameters, global statistics, or predic-
tions. CL is gaining popularity in AI applications due to its appealing promises for
accuracy/privacy trade-off [1, 19].

Federated Learning (FL) [20] has been identified as a key CL paradigm [21], focus-
ing on collaboratively optimizing model parameters across clients, each holding local
datasets (Figure 1, left). In FL, each client shares model parameters partially trained
on the respective local data. A central server aggregates the locally trained parame-
ters to define a global model, which is subsequently re-transmitted to the clients and
used to initialize a new round of partial training. This process is iterated for several
rounds of local training and aggregation, until convergence. The successful integration
of FL in healthcare applications is expected to deliver robust AI-based models that
could handle and exploit data heterogeneity across hospitals while guaranteeing data
governance [21, 22].
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Fig. 1: Training and inference phases for federated learning (FL, on the left) and
consensus-based learning (CBL, on the right). In FL training is performed collab-
oratively to produce a common global model across clients. The global model is
subsequently used for inference on new data instances. CBL instead requires clients
to train a model on the respective local data independently. Inference on new data
instances is performed collaboratively through consensus.

Although FL has significant advantages in security and efficiency, its implemen-
tation in real-world applications is not straightforward and can face technical and
organizational challenges, reflecting the technology’s complexity. For example, per-
forming distributed optimization across different clients requires coordinating the
training process among different entities with varying availability, computational
resources, and readiness level in performing AI tasks, which can be challenging in hos-
pital settings [23]. Moreover, since typical distributed optimization approaches require
multiple rounds of training and parameters exchange across parties, FL is usually
associated with large communication costs and energy consumption [24].

Consensus-based learning (CBL) [25–27] may represent a valid CL alternative to
FL. CBL does not rely on a shared training routine nor on a common model archi-
tecture across parties. Given a testing point, CBL combines the predictions obtained
from the different models independently trained by each client on the local data.
Therefore CBL relies on an off-line routine, in which information is exchanged only at
inference time (Figure 1, right). Although ensembling methods have been widely used
in medical imaging applications such as segmentation and classification tasks [28–38],
their use in multi-centric CL setting is less popular.

Comparing the working schemes of FL and CBL of Figure 1, the main difference
between FL and CBL is that FL relies on collaborative training, while CL on collab-
orative inference. While both paradigms aim for the same goal, the suitability of one
setting over the other in real-world CL applications may vary substantially, as their
deployment comes with different challenges. For example, FL typically requires sev-
eral optimization rounds across clients and the setup of a dedicated communication
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infrastructure across hospitals. On the other hand, CBL requires the sharing of fully
trained models, thus entailing privacy and intellectual property protection challenges.

Bearing in mind the duality between these CL paradigms, when it comes to imple-
menting collaborative frameworks in the real-world we currently lack quantitative
benchmarks illustrating the quality and cost-effectiveness of specific CL settings in
practical applications. To help promoting the implementation of collaborative AI in
future multi-centric studies, in this study we introduce the first comparative analysis
of the capabilities and cost-effectiveness of CBL and FL. The primary contributions
of this work are:

(i) To propose the first extensive head-to-head benchmark of FL and CBL for a
variety of clinical tasks and data modalities.

(ii) To compare a panel of FL and CBL methods from the state-of-the-art, with a
particular focus on approaches suited to cope with data heterogeneity. To this
end, we explore variants of CBL optimally integrating prediction uncertainty in
the decision process.

(iii) To identify heuristics for choosing the most appropriate CL approach based on
the overall ability of each client to perform the specific task.

Our results show that in most of the evaluated benchmarks, CBL is a cost-effective
alternative to FL, achieving comparable accuracy with the advantage of reducing
training and communication costs. Our results open a novel perspective on the deploy-
ment of collaborative AI in the real-world, in which the opportune choice of CL
paradigm and tasks can mitigate the implementation burden of CL.

In Section 2 we present the state of the art in CL and available benchmarks.
Section 3 introduces the study design and the experiments. We discuss our results in
Section 4, while detailing the adopted methodology in Section 5.

2 Collaborative learning benchmarks
Benchmarking is an essential step to assess the reliability of ML methods on specific
tasks and datasets [39]. In healthcare, for example, initiatives such as MedPerf [40] are
focusing on developing comprehensive platforms allowing researchers to test models
on distributed data collections, focusing on medical imaging applications.

In the field of collaborative learning the commonly studied paradigm is FL, which
has been mainly evaluated on publicly available datasets by using as metrics the model
accuracy, convergence speed, and protection against cyber-attacks [12, 41–44], as well
as communication overload and training time [45–47].

A common limitation in available FL benchmarks for healthcare is the partition of
data among clients by artificial heuristics, a practice that often leads to an incorrect
assessment of the actual performance of the methods studied. Works such as the FeTS
challenge [16] and Flamby [48] highlight the importance of using natural partitions
when we benchmark FL. In the FeTS challenge, researchers test different aggregation
strategies for FL on a medical brain tumor segmentation dataset, collected from all
around the world, while FLamby is a platform designed to compare various FL meth-
ods with centralized and locally trained models and allows researchers to add datasets
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or models to the benchmark. In Flamby, a variety of tasks and data typologies are con-
sidered, by including in the benchmark datasets from the literature. These datasets
are split among clients using criteria such as the collection site and the acquisition
method. Because of both their commitment to best representing the true characteris-
tics of data and the focus on medical applications, FLamby and FeTS stand out from
the variety of benchmarks for FL in the literature [41, 42, 49]. However, they also
have two limitations: they do not compare FL with other collaborative paradigms and
they don’t assess the cost-effectiveness of the various methods considered.

While few works benchmark FL in real-world scenarios for healthcare, there is
even less literature on CBL for the same topic. To the best of our knowledge, the only
studies testing CBL as a CL paradigm are Guha et al. (2019) [25], who applied CBL
to publicly available datasets and compared it with centralized and local training, and
Chaudhari et al. (2023) [50], who performed a comparison with FL on the ability to
protect data from cyber-attacks. In the context of medical imaging applications, the
capabilities of different CL paradigms were discussed in Gupta et al. (2023), without,
however, providing any experimental evaluation [51].

Overall, current studies investigating CBL in collaborative healthcare applica-
tions are limited in scope and generalizability. A general reference point that allows
comparison between CBL and FL paradigms while considering the accuracy and
cost-effectiveness of these paradigms is still missing.

3 Results
The following section describes the benchmark’s design, introduces the CL methods
and datasets used in the experiment, and presents the experimental results.

3.1 Study design
In this work, we used 7 different datasets, encompassing 3 tasks and 8 different data
modalities, to benchmark 11 CL methods.

Table 1 illustrates the datasets used for the benchmark. A brief description of each
dataset is available in subsection 5.1 (see Appendix A for more details).

For each dataset, we compared the performances of the following paradigms: FL,
CBL, centralized, and local learning. Local learning refers to the simple training
independently performed by each client using only their local data, and centralized
learning refers to training a model through the union of all the local datasets. The
model obtained through centralized learning (centralized model) represents the upper
limit of model accuracy expected for each dataset, while the model obtained through
local learning (local model) provides the baseline accuracy that a single client could
achieve on its own. Because the model trained with centralized learning sees all the
data during the training, we expect it to generalize better than local models.

Concerning FL methods, our benchmark covers standard aggregation strategies
already used in FL benchmarks for healthcare in the literature [41, 48]. We included
the standard aggregation mechanism proposed in the seminal work of McMahan et al.,
FedAvg [20], along with subsequent approaches aimed at mitigating the impact of
client heterogeneity in the optimization: FedProx,Scaffold, as well as FedAdam,
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Table 1: Datasets used for the benchmark. For each dataset, it is reported the number,
the size of clients’ local datasets, the data modality, and the task along with the
associated metric.

Dataset #Clients Dataset size
per client Data Modality Task

[Metric]

FedProstate 6 [32, 23, 27,
184, 5, 36]

T2 MRI Segmentation
[DiceScore]

FedHeart 4 [303, 261,
46, 130]

Tabular Data Classification
[Accuracy]

FedIXI 3 [311, 181, 74] T1 MRI Segmentation
[DiceScore]

FedISIC 6 [12k, 3.9k, 3.3k,
225, 819, 439]

Dermoscopy
images

Classification
[Accuracy]

FedTCGA
-BRCA

6 [311, 196, 206,
162, 162, 51]

Tabular Data Survival
[C-Index]

FedKiTS 6 [12, 14, 12,
12, 16, 30]

CT Scans Segmentation
[DiceScore]

FeTS 23 4 to 511 (Details
in Appendix A)

T1, T1CE, T2
& FLAIR MRIs

Segmentation
[DiceScore]

Table 2: Collaborative learning (CL) methods evaluated in the benchmark: six meth-
ods for federated learning (FL) and five methods for consensus-based learning (CBL).

Method CL Paradigm Reference
FedAvg FL McMahan et. Al., 2017 [55]
FedProx FL Li et Al., 2018 [52]
scaffold FL Karimireddy et Al., 2020 [53]
FedAdam FL Reddi et Al., 2020 [54]
FedAdagrad FL Reddi et Al., 2020 [54]
FedYogi FL Reddi et Al., 2020 [54]
Avg CBL Guha et Al., 2019 [25]
Mv CBL Safdar et Al., 2021 [56]
Staple CBL Warfield et Al., 2004 [57]
Ube CBL Inspired by Ruta et Gabrys, 2000 [58]
Abe CBL Inspired by Ruta et Gabrys, 2000 [58]

FedYogi, and FedAdagrad [52–54]. Table 2 presents an overview of the 6 FL and
5 CBL methods used in the benchmark.

For CBL methods, we tested several classical fusion strategies to combine the
predictions of local models, such as plain averaging (Avg) and majority voting
(Mv). Moreover, for segmentation tasks, we used Staple, which optimizes consen-
sus through expectation-maximization. Finally, we proposed two CBL methods based
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on decision averaging: uncertainty-based (Ube) and autoencoder-based ensembling
(Abe). Both methods rely on the weighted average of local predictions. For Ube
the weights are estimated by quantifying the uncertainty of the predicted labels.
For Abe the uncertainty was quantified by the reconstruction error on the testing
point of an autoencoder trained on the local dataset. This measure is a proxy for
out-of-distribution detection [59].

Further details on all the methods are available in Section 5.2. Because of the
characteristics of each fusion strategy, not all CBL methods can be applied to every
task. Staple only applies to segmentation tasks, and the Mv aggregation is not
compatible with the regression task of FedTGCA-BRCA.

We analyzed each collaborative method for its accuracy and cost-effectiveness. As
a measure of task accuracy, the dice score, the balanced accuracy, and the C-Index
were used, respectively, for segmentation, classification, and survival tasks, while we
measured the cost-effectiveness by the training time and bandwidth usage. The training
time was estimated as the total time necessary to obtain the collaborative model and
the bandwidth as the total data transferred on the network during the training. We
considered a scenario in which all clients participate in every round of FL training
(no client selection), and we used the same model architecture across clients for each
experiment. The performance of different CL methods was evaluated on the same
cross-validation partitions.

3.2 Benchmark results
Figure 2 shows the mean accuracy, over folds, of each method across datasets grouped
by paradigm: centralized learning, local learning, FL, and CBL. Given FeTS’s large
number of clients (23), only aggregated statistics of the local models’ accuracies are
reported in the figure (see Appendix A for results of each local model). The figure
illustrates that collaborative learning generally outperforms local learning in terms of
accuracy, achieving for some datasets accuracies nearly equivalent to those of central-
ized models, as observed with the FedTGCA-BRCA and FedHeart datasets. However,
Figure 2 also indicates that no single collaborative learning paradigm consistently
outperforms the others across all datasets. For example, for FedIXI (Figure 2e), FL
performs worse than local learning, whereas CBL achieves higher accuracy. Conversely,
for FedKiTS (Figure 2f), FL improves the local model prediction, while CBL degrades
it.

Table 3 contains the summary results of the pair-wise Kruskal-Wallis test used to
evaluate the difference in accuracy performance between FL and CBL methods along
the various datasets. A significant difference was noted only in the FedIXI dataset
(p < 0.05), with CBL performing better than FL. However, this significance did not
hold after applying the Bonferroni correction for multiple comparisons across tasks.

The Friedman test was applied to assess whether there was any statistically sig-
nificant difference among the ranking of the methods in terms of testing accuracy
among datasets, grouped according to the considered tasks (segmentation, regression,
and classification). Significance was assessed by computing the χ2 statistic. We also
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(a) FedProstate (b) FedHeart

(c) FedIsic (d) FedTGCA-BRCA

(e) FedIXI (f) FedKiTS

(g) FETS

Fig. 2: Results obtained by centralized learning (green), local learning (blue), feder-
ated learning (orange), and consensus-based learning (brown) methods. The boxplot
represents the accuracy among test sets for centralized learning, local models, and CL
methods. For FeTS, local accuracy results are aggregated due to the large number of
clients.
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Table 3: Summary of Kruskal-Wallis test used to assess the difference between accu-
racies of federated learning (FL) and consensus-based learning (CBL) methods along
datasets. The only significant difference is observed in FedIXI (p < 0.05), where CBL
is associated with better performances than FL. The statistical significance does not
survive after Bonferroni correction for multiple comparisons across tasks.

Experiment F-statistic P-Value
FedProstate 1.677 0.19
FedHeart 3.377 0.05
FedIxi 6.533 0.01*
FedIsic 2.700 0.10
FedTGCA-BRCA 2.770 0.09
FedKiTS 3.266 0.07
FeTS 1.438 0.23

compared the overall ranking of the methods across all tasks, by however exclud-
ing the method Staple (which applies only to segmentation tasks), and the task
TGCA-BRCA (which does not support Mv as CBL method).

The results in Table 4 confirm that no statistical difference exists among the
rankings of the methods, either when testing the tasks jointly or separately.

Table 4: Summary results for the Friedman test across tasks. No significant difference
between the rankings of federated learning and consensus-based learning methods was
identified across datasets for each specified task.

Task χ2 p-value
Overall 8.039 0.624
Classification 6.07 0.62
Segmentation 8.04 0.73
Survival 7.00 0.42

The numerical evaluation of the cost-effectiveness of CBL and FL, presented in
Table 5, shows that the training of CBL methods is on average 8 to 30 times faster
than the one required by the federated methods since CBL does not require multiple
training rounds. For the same reason, the usage of bandwidth of CBL is from 35 to
120 times lower than for FL.

4 Discussion
Our results show that for typical medical data analysis tasks, CBL leads to perfor-
mances at par with FL, albeit with a fraction of computation cost and bandwidth
occupation. This result entails profound implications for the real-life adoption of AI
in healthcare.
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Table 5: Comparison of training time and bandwidth usage between federated learn-
ing (FL) and consensus-based learning (CBL). For both metrics, CBL is far less costly
than FL.

Training Time [min] Bandwidth [MB]
FL CBL FL Increment FL CBL FL Increment

FedProstate 1.2 · 103 1.1 · 102 ×8 4.0 · 103 1.4 · 102 ×35
FedHeart 0.1 2.0 · 10−2 ×9 3.2 · 101 9.0 · 10−2 ×38

FedIxI 5.5 6.4 · 10−1 ×8 1.5 · 102 3.0 ×50
FedIsic 1.9 · 102 1.0 · 101 ×18 6.8 · 103 1.9 · 102 ×58

FedTCGA 4.5 · 10−1 2 · 10−2 ×26 0.9 5.42 ×36
FedKiTS 5.4 · 101 6.4 · 1.5 · 102 ×30 8.8 · 104 7.4 · 102 ×120

FeTS 3.4 · 104 2.9 · 103 ×12 3.7 · 104 4.5 · 102 ×83

The key advantage of CBL relies on its asynchronous training approach, thus
easing the collaboration among partners, as hospitals simply need to train their local
models or apply existing ones to join the collaboration. Moreover, the withdrawal (or
introduction) of a participant can be simply achieved by removing (or adding) their
local model without the need for complex procedures [60]. The complexity of local
models can also be adapted to the availability of local resources, thus mitigating the
problem of hardware heterogeneity in federated setups [61, 62], and promoting the
adoption of AI in healthcare. In FL, besides tuning the hyperparameters of the local
models, it is also often necessary to tune method-specific hyperparameters, which
increases the task complexity compared to CBL. Using the same hyperparameters on
all FL methods can lead to variability in the accuracy across methods. In contrast,
CBL methods exhibit lower variance among results.

While the generalization properties of CBL may improve by ensembling models
trained on heterogeneous datasets [63, 64], it is known that the distributed optimiza-
tion procedure of FL suffers from data heterogeneity, which causes degradation in
convergence and accuracy [20, 53]. Such difference suggests that adopting CBL could
be beneficial in collaborations among hospitals with heterogeneous data, reflecting for
example varying geographical location or image acquisition techniques.

The CL paradigms presented in the benchmark allow the development of AI tech-
nologies compliant with restrictions on data sharing, albeit with some differences: the
use of CBL requires the sharing of local models, thus possibly impacting the intellec-
tual property (IP) of the model itself. On the other side, several studies are exploring
techniques for FL where clients receive models tailored to their contribution [18],
aiming at resolving related IP.

The analysis addressed in this paper focuses on the cost-effectiveness of CL to
boost the deployment of AI in real-life healthcare applications. However, CL does
not necessarily provide quantifiable privacy guarantees [65, 66]. Cryptographic tools
such as secure aggregation (SA) [67, 68] or multi-party computation (MPC) [68], and
differential privacy (DP) [69] are classical privacy-preserving methodologies proposed
in the FL literature. While SA, MPC, and DP are widely investigated in FL, the
analysis of CBL from a privacy-preserving perspective is less explored. The study
[50] proposes the use of MPC for securely aggregating predictions in CBL, and in
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[27] a preliminary study compares the effectiveness of DP applied to FL and CBL.
These studies show that privacy-preserving techniques can be adopted for CBL, with
a potentially smaller impact on the final model accuracy when compared to FL.

With this work, we hope to raise awareness of the importance of cost-effective CL
in the actual deployment of AI models on medical tasks. Starting from the empirical
results here presented, future works should be devoted to developing quantitative
measures of a CL system’s effectiveness before deploying a collaborative infrastructure.
Such a theory would allow the identification of optimal collaborative paradigms based
on accounting for several aspects, such as client availability, data heterogeneity, and
security requirements. Moreover, in evaluating the cost-effectiveness, estimation of
the CO2 emissions and economic cost of the training would bring added value to the
analysis.

5 Methods
In this section, we detail the datasets and the CL paradigms adopted for our
benchmark.

5.1 Datasets
The benchmark is composed of seven heterogeneous datasets representing real-world
case studies. Five of the datasets (FedHeart, FedIXI, FedISIC, FedTGCA-BRCA,
FedKiTS) have been benchmarked for FL in FLamby [48] and in our work we chose
the network and loss coherently with their work. For FedProstate we used a 3D U-
Net [70], as standard in the literature for segmentation problems, while for FeTS we
trained a centralized model using both a 3D U-Net and a pre-trained SegResNet [71]
as networks, and we used the latter as it achieved better performance. We evaluated
the segmentation tasks by using the dice score (DSC). Further details on the compo-
sition of the datasets, the preprocessing steps, and the training task are provided in
Appendix A.

FedProstate
We obtained this dataset by gathering data from 3 major publicly available datasets
on prostate cancer imaging analysis (Medical Segmentation Decathlon [72], Promise12
[73], ProstateX [74]), and by a clinical dataset from the Guy St. Thomas Hospital,
London, UK. The dataset contains T2-magnetic resonance imaging (MRI) and seg-
mentation masks of the whole prostate. We used the acquisition protocol (MRI with
or without endorectal coil) and the scanner manufacturer as splitting criteria. In this
way, we obtained a dataset with 6 clients: 4 of them we used for the training, and 2
we kept as independent test sets.

FedHeart
Firstly published in a centralized version [75] this dataset contains tabular informa-
tion about 740 patients from 4 hospitals. The dataset is composed of 13 features:
age, sex, chest pain type, resting blood pressure, serum cholesterol, blood sugar, rest-
ing electrocardiographic results, maximum heart rate, exercise-induced angina, ST
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depression induced by exercise, slope of the peak ST segment, number of major ves-
sels, and thalassemia background. In [48] a multi-centric version of the dataset was
proposed by allocating to each of the 4 clients the data from one of the hospitals.
In this benchmark, we trained a fully connected ReLU network to solve the task of
binary classification (presence or not of heart disease), and we used the classification
accuracy as the evaluation metric.

FedIXI
We considered the brain imaging dataset presented in [48]. The dataset comprises
brain T1 MRIs from 566 patients from the IXI dataset [76]. In Flamby the data
was partitioned into 3 groups, based on the 3 hospitals where MRI acquisitions were
performed. The task here considered is brain segmentation based on the training
of a 3D U-Net [70] taking as input the patient’s T1 MRI and returning the brain
segmentation mask. The loss adopted to train the network was the DSC.

FedISIC
The data for the ISIC dataset were originally published by the International Skin
Imaging Collaboration [77], which collects dermoscopy images of different types of
skin cancer. The challenge’s task is skin disease classification among 8 possible classes.
The multi-centric version of this dataset - obtained using as splitting criteria the
imaging acquisition system - is made of 6 clients, and characterized by elevated data
heterogeneity in size, feature, and label distribution. We trained an EfficientNet [78]
to solve the classification task and evaluated it through classification accuracy.

FedTCGA-BRCA
The original TCGA-GDC dataset [79] is a large collection of data from cancer genomic
studies. In [48], they proposed a multi-centric version of TCGA-GDC by consider-
ing tabular data with 39 input features representing the patient’s demographic and
medical condition, and the patient survival probability as a task. The collaboration
is composed of 6 clients, corresponding to the data acquisition site, and we trained a
fully connected LeakyReLU network, using the G-Index as the evaluation metric.

FedKITS
The KiTS dataset contains CT scans and segmentation masks for both the kidney and
the tumor. The original version was proposed for the KiTS19 Challenge [80], and a
collaborative version with 6 clients was defined in [48] based on the hospital producing
the data. As a model, we used a 3D U-Net from the nnU-Net library [81], and the
metric is DSC.

FeTS
This dataset was published in the context of the FeTS Challenge [82]. It is a
multi-modal dataset, using 4 different brain MRI modalities to provide a multi-class
segmentation among the different regions of gliomas. The data is partitioned based
on the 23 data acquisition sites. Clients have variable sizes: the smallest has only 4
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data points, the largest 511. We used a pre-trained SegResNet [71], and we evaluated
it by the average DSC among different classes.

5.2 Collaborative Learning Methods
Let’s consider a collaborative setting with M clients. A dataset D belonging to client
i is composed by data samples Di = {zk,i}Ni

k=1, being Ni the dataset size. We consider
a model f with parameters θ, a loss function L, and we denote the prediction of a
data instance z by h = f(z, θ).

FL is a collaborative paradigm associated with the optimization of a loss
distributed among M clients:

θg = arg min
θ

(L(θ)) s.t. L(θ) :=
M∑

i=1
piLi(θi). (1)

In Eq. (1), the losses of local models (θi) are averaged by using the weights pi, and
the obtained loss is minimized and leads to the global model θg.

To solve the problem (1) different optimization strategies have been proposed in
the past, aiming at mitigating critical distributed optimization challenges induced
for example by the problem of data heterogeneity across clients. We consider here
a comprehensive panel of state-of-the-art optimization approaches, which are at the
core of the FL literature:
• FedAvg[55] is the backbone of FL optimization, and is based on an iterative pro-

cess where, at each optimization round r, clients execute a fixed number of local
stochastic gradient descent steps and send the partially optimized model θr

i to the
server. The server averages the received models according to the weights pi to obtain
a global one, θr+1

g . The global model is then sent to the clients to initialize the next
optimization round.

• FedProx[52] tackles the problem of federated optimization with data heterogeneity
across clients. This approach extends FedAvg by introducing a proximal term to
the local objective function to penalize model drift from the global optimization dur-
ing local training. The proximal term is controlled by a trade-off hyperparameter,
µ. Being r the current round, the optimization problem becomes:

Lr+1
i (θ) := 1

Ni

Ni∑
k=1

L(zk,i, θr
i ) + µ

2 ||θr
i − θr

g||2. (2)

• SCAFFOLD[53] addresses the limitations of FedAvg in scenarios with heteroge-
neous (non-iid) data by utilizing control variates, which effectively reduces variance
and corrects for client-drift in the local updates. To achieve this, SCAFFOLD
maintains a state for each client (client control variate) and the server (server control
variate).

• FedAdam, FedYogi, FedAdagrad[54] are adaptations of Adam[83], Yogi[84],
and Adagrad[85] optimizers, designed to suit FL’s decentralized optimization setup.
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While many additional optimization approaches can be found in the FL literature
[24], they are often based on extensions of the methods here presented, for example
focusing on different federated loss functions [86, 87], aggregation strategies [88–90],
or communication strategies [91, 92].

CBL is a class of machine learning algorithms relying on the well-explored
concept of ensembling [53, 93, 94]. The rationale of CBL consists of obtaining
robust predictions by aggregating decisions obtained by independently trained weak
predictors.

The CBL paradigm is based on a training phase in which M models f(·, θi) are
independently trained on separated data collections Di, by minimizing local objective
functions Li. These models are subsequently collected and, for a given test data z′

at inference time, the predictions hi(z) = f(z, θi) from all the clients’ models are
computed and aggregated by applying an ensembling (or fusion) strategy [95]:

hz′ = ensembling({hi(z′)}|Mi=1). (3)

Typical ensembling methods proposed in the literature are:
Majority voting (Mv) [56], often used in classification tasks, aggregates predic-

tions by selecting the most commonly predicted class among the experts.
Staple [57], which is an expectation-maximization algorithm that, iteratively, first

computes a weighted average of each local prediction, and then assigns a performance
level to each client’s segmentation, which will be used as weights for the next step.

Decision averaging (DA) [58, 96], an approach based on probabilistic princi-
ples: given different datasets D1, . . . DM and relative local models f(·, θ1), . . . f(·, θM ),
ensembling is obtained as as

p(hz′ |D1, . . . , DM ) =
M∑

i=1
f(z′, θi)p(z′ ∈ Di).

Different CBL algorithms can be obtained based on the estimation of the probability
p(z′ ∈ Di), defining the relative weight of the local expert in the definition of the
consensus. In this work, among the possible DA algorithms, we consider the following:
• Average (Avg) approximates p(z′ ∈ Di) as a uniform distribution. While this

strategy can be adopted in all tasks, for classification and segmentation problems
we consider the distribution probability obtained through a softmax function.

• Uncertainty based ensembling (Ube) in which the probability p(z′ ∈ Di) is
approximated as the uncertainty of the local model on the prediction task. Ube
defines averaging weights based on the model uncertainty quantified by the total
element-wise variance at inference time:

pi =
∑
x∈Ω

Var (g(z, θi))[x], (4)

where Ω is the set of voxels in z, Var (·)[x] is the sampling variance estimated from
S stochastic forward passes of the model, computed at voxel x. Through a softmax
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function, we define averaging weights:

wi = σ(pi) = epi∑M
i=0 epi

for i = 1, 2, . . . , M (5)

• Autoencoder based ensembling (Abe) computes a proxy for the probability
p(z′ ∈ Di) by modeling the variability of the local dataset through autoencoders
trained by each client on the respective local dataset. At inference time, weights
are defined as the reconstruction error ei on the testing data point z.

5.3 Experimental Setting
For each dataset in the benchmark, we split local partitions into training and test-
ing. For FeTS and FedProstate, we used respectively a 4-fold and a 5-fold splitting
approach, while for the other datasets, following [48], we ran all the experiments three
times with different seeds. The obtained results are the average among the runs.

For FL, a federated infrastructure was simulated using FedBioMed version 4.11

[97], an open-source framework for federated learning. For each FL method, the final
global model was collected, along with the local models independently trained by each
client. The local models are used to estimate the non-collaborative model performance
and for generating the predictions subsequently aggregated with the CBL methods.
As upper-bound for the comparison, a centralized model has been trained by pooling
together all the local training sets.

To make the comparison as fair as possible, for each dataset we fixed the total
number of training steps to be executed in each experiment. Specifically, a number E
of epochs is defined a priori, corresponding to the number of training epochs executed
by the centralized model. For the local training, each client executes E

M epochs, being
M the number of clients in that configuration. For the federated strategies, we fine-
tuned the number of local SGD steps s executed at each round, while the number of
rounds is defined as follows: R = E · NT /M/B/s, where B is the batch size and NT

is the total number of samples in the training set.
All the experiments were developed in Python, version 3.7.6, using the following

libraries: PyTorch version 2.0.1 [98] and Monai 1.2.0 [99] for the model architecture
and torchio [100] version 0.19.1 with simpleITK [101–103] version 2.2.1 for the medical
images management.
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Appendix A Details on Federated Datasets,
Architectures, and Hyperparameters

A.1 FedProstate
The FedProstate dataset is the federated version of the 3 major publicly available
datasets on prostate cancer imaging analysis, and of 1 private dataset:
• Medical Segmentation Decathlon - Prostate [72] provides 32 prostate MRIs

for training.
• Promise12 [73] consists of 50 training cases obtained with different scanners. Of

those, 27 cases were acquired by using an endorectal coil.
• ProstateX [74] contains prostate MRIs acquired by using two different scanners

(Skyra and Triotim, both from Siemens). Segmentations of 194 cases are available
[104].

• Guy St. Thomas Hospital dataset (King’s College London). This dataset is
composed by 36 MRIs acquired during the clinical routine for patients with prostate
cancer under active surveillance treatment. Images were acquired with a Siemens
Aera scanner and an expert radiologist produced masks of the whole prostate gland.
This dataset is used as an independent test set.

Datasets were split as in Table A1, to define centers characterized by specific
image acquisition properties, thus allowing to obtain heterogeneous image distribu-
tions among centers. The common preprocessing pipeline applied to all the data
comprised of flipping, cropping/padding to the same dimension, and intensity nor-
malization. N4-bias-correction has also been applied to the data from Promise12 to
compensate for the intensity artifacts introduced by the endorectal coil. Figure A1

Table A1: FedProstate Description of the different centers here con-
sidered for the distributed learning scenario, derived by partitioning
the four datasets Decathlon, ProstateX, Promise12, and PrivateDS.

ID #Samples Dataset Subset Selection Splitting Strategy

Local0 32 Decathlon Full Dataset 5-fold CV
Local1 23 Promise12 No Endorectal Coil 5-fold CV
Local2 27 Promise12 Only Endorectal Coil 5-fold CV
Local3 184 ProstateX Only Scanner Skyra 5-fold CV
Local4 5 ProstateX Only Scanner Triotim External test set
Local5 36 PrivateDS Full Dataset External test set

shows an example of the resulting splits.

Architectures and Parameters
The segmentation problem for this dataset was addressed by training a 3D UNet
architecture with residual connections [70]. The training was based on optimizing the
DSC, by using the AdamW optimizer for all experiments [105] but for SCAFFOLD,
for which we used an SGD optimizer. The UNet implementation is available in the
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Fig. A1: Examples of images from the FedProstate dataset showing the heterogeneity
among different clients.

MONAI library2. The hyperparameters used for the training phase are available in
the Table A2

Table A2: FedProstate Hyperparameters and respective values explored during the
tuning phase. Selected value in bold. The selection of dropout value was driven by
the need to use it for the UBE method. In red, the values selected for FedAdam,
FedYogi and FedAdagrad, for which a different tuning was required.

Parameter Values
Learning Rate 0.0001; 0.001; 0.01; 0.1; 1

Batch Size 4, 8, 16
Dropout 0.1,0.3,0.5

Local Steps 10, 15, 20, 25

A.2 FedHeart
The dataset is a collection of tabular data, and the task consists of binary classification
to recognize heart disease. In FLamby [48], a federated version has been proposed by
using as subset selection criteria the hospital that provided the data. There are four

2https://monai.io/index.html
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hospitals (Cleveland’s, Hungarian, Switzerland, and Long Beach), so four clients. The
preprocessing in FLamby has been done by removing missing values and encoding
non-binary categorical variables as dummy variables.

Architectures and Parameters
A fully connected ReLU network with one hidden layer was used as a classification
model. The training was based on optimizing the cross-entropy loss, with an AdamW
optimizer. The details on the hyperparameters used for the centralized and local
training are available in Table A3.

Table A3: FedHeart Hyperparameters and respective values explored during the
tuning phase. Selected value in bold. The selection of dropout value was driven by
the need to use it for the UBE method.

Parameter Values
Learning Rate 0.0001; 0.001; 0.01; 0.1; 1

Batch Size 8; 16; 32; 64
Dropout 0.1; 0.2; 0.3

Local Steps 5; 10; 20
Centralized epochs 10; 50; 100

A.3 FedIXI
The dataset contains T1 and T2 brain MRIs, as well as brain segmentation masks. In
FLamby, the federation is obtained by using the hospital as a subset selection criteria,
comprising three clients. Pre-processing pipeline comprehends volume resizing to 48
× 60 × 48 voxels, and sample-wise intensity normalization.

Architectures and Parameters
The network used as a baseline model for this problem was a 3D UNet [70]. The
training was based on optimizing the DICE Loss, by using the AdamW optimizer.
The details on the hyperparameters used for the centralized and local training are
available in Table A4.

A.4 FedISIC
This dataset represents a skin cancer detection problem through image classification
of CT scans. There are 8 different classes, with high distribution imbalance. Starting
from the data available in the ISIC2019 dataset [77] the authors of FLamby obtained a
federated dataset by allocating to a different client data obtained by using a different
scan, so obtaining 6 different clients for the federation. The applied preprocessing is
described in [106].

18

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.27.596048doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.27.596048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table A4: FedIXI Hyperparameters and respective values explored during the tun-
ing phase. Selected value in bold. The selection of dropout value was driven by the
need to use it for the UBE method.

Parameter Values
Learning Rate 0.0001; 0.001; 0.01; 0.1; 1

Batch Size 2; 4; 6
Dropout 0.1; 0.2; 0.3

Local Steps 5; 10; 20
Centralized epochs 10; 20; 30

Architectures and Parameters
The network used as a baseline model for this problem was EfficientNet [78], as in
FLamby. The training was based on optimizing the weighted focal loss, by using the
AdamW optimizer. The details on the hyperparameters used for the centralized and
local training are available in Table A5. When choosing the batch size, we applied
different values for different local clients to account for the high variance in dataset
dimensions. The final values are Local 0 and Local 1: 128, Local 2: 64, Local 3, Local
4 and Local 5: 32.

Table A5: FedISIC Hyperparameters and respective values explored during the
tuning phase. Selected value in bold. The selection of dropout value was driven by
the need to use it for the UBE method.

Parameter Values
Learning Rate 0.0005; 0.005 0.001;

Batch Size 32; 64; 128; 256
Dropout 0.1; 0.2; 0.3

Local Steps 5; 10; 20
Centralized epochs 50; 100; 150

A.5 FedTCGA-BRCA
This dataset is composed of data from the TCGA-GDC portal, specifically those
belonging to the breast cancer study, which includes features gathered from 1066
patients. The federated version is obtained by splitting the original dataset into 6
subsets, one for each extraction site, grouped into geographic regions. The task consists
of predicting survival outcomes based on the patients’ tabular data, with the event to
predict death. Each patient is defined by 38 features.
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Architectures and Parameters
As a baseline, we used a fully connected LeakyReLU network. The training was based
on optimizing the weighted focal loss, by using the AdamW optimizer. The details on
the hyperparameters used for the centralized and local training are available in Table
A6.

Table A6: FedTCGA-BRCA Hyperparameters and respective values explored dur-
ing the tuning phase. Selected value in bold. The selection of dropout value was
driven by the need to use it for the UBE method.

Parameter Values
Learning Rate 0.1; 0.01; 0.001;

Batch Size 4, 8, 16
Dropout 0.1, 0.2, 0.3

Local Steps 5, 10, 15
Centralized epochs 20, 50, 60

A.6 FedKiTS
The KiTS19 dataset is part of the Kidney Tumor Segmentation Challenge 2019 and
contains CT scans of 210 patients along with the segmentation masks from 79 hospi-
tals. In FLamby, the federated dataset is defined by splitting scans among different
clients based on the providing hospital; they extracted a 6-client federated version
by removing hospitals with less than 10 training samples. The preprocessing pipeline
comprises intensity clipping followed by intensity normalization and resampling of all
the cases to a common voxel spacing.

Architectures and Parameters
As a baseline, following FLamby implementation, a nnUNet [81] was used. The train-
ing was based on the optimization of the DICE Losse, by using the AdamW optimizer.
The details on the hyperparameters used for the centralized and local training are
available in Table A7.

A.7 FeTS
The data are gathered from the FeTS 2022 Challenge. A more specific data description
is available at the url 3. The dataset contains 1251 instances. Following the guidelines,
we used a natural partitioning by the institution, obtaining a federation with 23
clients, for which the dataset size is available in Figure A2.

3https://www.synapse.org/#!Synapse:syn28546456/wiki/617246
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Table A7: FedKiTS Hyperparameters and respective values explored during the
tuning phase. Selected value in bold.

Parameter Values
Learning Rate 0.1; 0.01; 0.001;

Batch Size 2, 4
Dropout 0.1, 0.2, 0.3

Local Steps 30, 50, 100
Centralized epochs 2000, 5000, 8000

Optimizer Adam, AdamW, SGD

For each patient in the study, the following data modalities are available: native
(T1), post-contrast T1-weighted (T1Gd), T2-weighted, and Fluid Attenuated Inver-
sion Recovery (T2-FLAIR) volumes. An example of data for one patient is available
in Figure A3.

Data in this FD are very heterogeneous, being acquired with different clinical
protocols and various scanners from multiple data-contributing institutions.

The task is multi-class 3D image segmentation, and the labels are the GD-
enhancing tumor (ET — label 4), the peritumoral edematous/invaded tissue (ED
— label 2), and the necrotic tumor core (NCR — label 1). We segmented single
sub-regions, not into intersections as was proposed in the FeTS challenge.

Architectures and Parameters
The network used is a SegResNet [71], which takes as input the multi-modal data
and produces a segmentation mask. The model was trained by optimizing a DICE
loss by an AdamW optimizer. As a preprocessing step, each data has been cropped to
a common shape of 240x240x128 and intensity normalization has been applied. The
details on the hyperparameters used for the centralized and local training are available
in Table A8.

Table A8: FeTS Hyperparameters and respective values explored during the tuning
phase. Selected value in bold.

Parameter Values
Learning Rate 0.1; 0.01; 0.001;

Batch Size 1, 2, 4
Dropout 0.1, 0.2, 0.3

Local Steps 1, 6, 20
Centralized epochs 15, 30, 50
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Fig. A2: Distributions of dataset size among all the clients in the FeTS dataset

Results on local clients
Figure A4 shows the average DSC across splits and runs for the FeTS dataset. This
figure completes Figure 2g.

Appendix B Additional results
The Friedman test is a nonparametric method for evaluating the significance of differ-
ences between multiple classification algorithms against multiple datasets, comparing
how well each model ranks (in terms of accuracy) across different datasets. In Section
3.2 we have shown the numerical results of the Friedman test, while in Figure B5 we
show an analysis of the rankings on the various methods. We can read the figure as
the representation of the probability of each method of ranking at a given position
when tested on a dataset. The sparsity of the heatmap qualitatively suggests that
no method emerges above the others to be systematically the best. These results are
consistent with those of the statistical analysis of the p-values.
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Fig. A3: Examples of different modalities for one patient in the FeTS dataset. MASK
represents the segmentation mask, which is used as ground truth for our segmentation
problem.
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