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Abstract

While it is well-established that UV radiation threatens genomic integrity, the precise mechanisms by

which cells orchestrate DNA damage response and repair within the context of 3D genome

architecture remain unclear. Here, we address this gap by investigating the UV-induced reorganization

of the 3D genome and its critical role in mediating damage response. Employing temporal maps of

contact matrices and transcriptional pro�les, we illustrate the immediate and holistic changes in

genome architecture post-irradiation, emphasizing the signi�cance of this recon�guration for e�ective

DNA repair processes. We demonstrate that UV radiation triggers a comprehensive restructuring of

the 3D genome structure at all levels, including loops, topologically associating domains and

compartments. Through the analysis of DNA damage and excision repair maps, we uncover a

correlation between genome folding, gene regulation, damage formation probability, and repair

e�cacy. We show that adaptive reorganization of the 3D genome is a key mediator of the damage

response, providing new insights into the complex interplay of genomic structure and cellular defense

mechanisms against UV-induced damage, thereby advancing our understanding of cellular resilience.
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Introduction

Ultraviolet (UV) radiation, an ever-present environmental hazard, poses a substantial threat to

genomic stability and cellular homeostasis. Upon UV exposure, a cascade of events unfolds, including

the formation of the most prevalent DNA lesions like cyclobutane-pyrimidine dimers (CPD) and

pyrimidine-pyrimidone adducts (6-4PP), capable of disrupting crucial DNA processes [1,2].

Concurrently, UV radiation activates the intricate DNA damage response (DDR) network, spanning cell

cycle arrest, in�ammation, and apoptosis [3,4]. If not well-orchestrated, it results in genetic mutations,

and genome instability, elevating the risk of malignancies and diseases [5,6]. Nucleotide excision

repair (NER) stands as the primary mechanism for rectifying UV-induced DNA damage [7,8], and, the

development of genome-wide techniques has provided invaluable tools for studying the repair events

of UV-induced lesions and assessing the susceptibility of the genome to such bulky adducts [9,10].

Understanding various architectural features of genome structure, including chromosome territories,

compartments, and topologically associating domains (TADs), and their temporal dynamics, along with

the in�uence of DNA damage repair mechanisms, is vital to deciphering the DDR machinery. Previous

research in the �eld of radiation-induced DNA damage has primarily focused on the impacts of

ionizing radiation on genome structure, particularly X-rays, which delivers a higher energy dose to the

chromatin �bres compared to UV. Studies on genome folding have shown that ionizing radiation

exposure can cause changes in the spatial organization of the genome upon the formation of

chromosomal translocations and double-stranded breaks (DSB). Because of this, most of the

experiments evaluated how DSBs cause in�ammation and how they are repaired in a 3D genome

context [11,12,13,14,15]. It has been reported that, increased TAD strength and insulating e�cacy at

boundaries occurs after X-ray exposure, and consistent across cell types [16]. As proven by the lack of

TAD boundary strengthening observed in ATM-de�cient �broblasts, this suggests an elevation in

interaction density due to the ATM kinase’s involvement in modulating the Cohesin complex and

facilitating the recruitment of CTCF proteins, in concordance with the TADs span γ-H2AX foci

[16,17,18]. Also, e�cient repair of DSBs has been reported through chromatin compartmentalization,

which mediates the clustering of damaged foci [19]. While these studies have provided crucial insights

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.27.595922doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.27.595922
http://creativecommons.org/licenses/by/4.0/


into the structural changes within the genome following translocation-triggering DSBs, a notable gap

persists in understanding how these insights extend to UV-induced DNA damage. Unlike DSBs after

ionizing radiation, UV-induced damage primarily results in the formation of pervasive bulky adducts

along the genome that needs NER machinery to remove short single-stranded segment that contains

the lesion.

Accordingly, we sought to answer the key questions remaining elusive so far for UV radiation: (I) Is UV

exposure alone su�cient to induce 3D changes, and does genome folding lead to a more compacted

or decompected structure under UV stress?; (II) Do active and inactive compartments of the genome

adjust with DDR-mediated transcriptional regulation?; (III) Do the TAD strengthening and boundary

insulation correlate with NER e�ciency?; (IV) Do the formation or loss of chromatin loops contribute to

the facilitation of transcriptional regulation and/or accessibility for NER machinery?; (V) Does the

alteration in 3D genome topology play a role in mediating transcriptional regulation for immediate

early genes involved in the UV response, such as well-known AP-1 members JUN and FOS?

[20,21,22,23]

Our research endeavors to �ll the gaps in understanding and complete this intriguing picture by using

both high-resolution contact maps and RNA-Seq to �nd out how UV radiation a�ects both the

transcriptional regulation and the three-dimensional structure of the genome (Fig. 1 a). We exposed

cells to UV radiation (254 nm, 20 J/m2) and collected samples at various recovery time points (12

minutes, 30 minutes, and 60 minutes) to comprehensively study the interplay between 3D genome

reorganization, gene regulation, and DNA damage and repair. Additionally, we utilized Damage-

Seq[10] data collected right after UV exposure and XR-Seq[9] data from 12 minutes later to get a full

picture of the dynamic processes that control UV-induced DNA damage and repair. Using single-

nucleotide resolution XR-Seq and Damage-Seq maps, we were able to track the temporal changes in

DNA repair mechanisms and study the exact locations and types of UV-caused DNA damage.

Furthermore, we follow a deductive analysis with respect to hierarchical organization of the genome

at di�erent scales. Employing a multi-omics and four-dimensional (4D) methodology enabled us to

gain a better understanding of how UV radiation a�ects the 3D organization of the genome and how

this a�ects gene regulation, expression, and DNA repair processes, as well as damage formation in
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terms of physical and biological relevance. In this study, we show an immediate and holistic response

of genome maintenance to UV exposure and ongoing structural reorganization.
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Results

UV exposure favors short-to-mid range interactions

We conducted Hi-C sequencing before and at 12, 30, and 60 minutes post-UV exposure, ensuring

ample sequencing depth for subsequent comparative analysis (Fig. 1 a, Supp. Table1). As calculated

(see Methods), all Hi-C samples exhibited su�cient coverage for analysis at a 10 kb resolution. Also,

we carried out RNA-Sequencing under identical treatment conditions as Hi-C sequencing, as well as

our previously generated XR-Seq and Damage-Seq datasets [24].

One notable observation from the contact maps is the clear decrease in contact frequency as genomic

separation increases, a phenomenon often termed distance-dependent decay [25,26]. Such

distinctions in characteristics have previously been associated with variances in biological processes,

such as di�erentiation in cell types and cell cycle stages [27]. To understand the underlying changes in

the chromosome conformation dynamics, we calculated the contact frequencies with respect to

genomic separation (Fig. 1 b). In distance decay analysis, the non-UV sample exhibited di�erent

characteristics. A trend is valid for short-to-mid range interactions (< 1Mb), favoring higher frequency

for UV-exposed samples. Yet, for long-range (1 Mb ~ 10 Mb) interactions, non-UV sample propose

higher frequency. We computed the slope by employing central di�erences within each distribution,

revealing that the rate of change varies between long, and short-to-mid range interactions. We also �t

power-law distributions to obtain α exponents for each sample to show how quickly the decay occurs,

and the non-UV sample proposed the largest value, di�erentiating from the UV-exposed samples, and

showing the rapid loss of the tail of the distribution for the non-UV sample. The magnitudes of α

values follow the time-course trend, meaning that short-to-mid range interactions are getting stronger

by time after UV irradiation.

To better identify the speci�c ranges of genomic separation in frequency change occurs, we have

calculated the fold changes of the distance-dependent decay for each UV-exposed sample compared

to the non-UV control (Fig. 1 c). Compared to the non-UV sample, UV radiation promptly favors short-

to-mid range interactions in a timely manner. This shows, short-range interactions (<100Kb) are
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primarily favored in 12 minutes, and the highest frequency of mid range interactions (100Kb ~ 1Mb)

are seen in 30, and 60 minutes. These results might be related to the initial local compaction in the

�rst 12 minutes after the UV and following at the latter time points of 30 and 60 minutes, relatively

relieved, yet still more compact chromosome conformation compared to non-UV.

UV stress strengthens intra-compartment interactions

The genome is partitioned into distinct spatial compartments, such that stretches of active chromatin

tend to lie in one compartment, called the A compartment, and stretches of inactive chromatin tend

to lie in the other, called the B compartment[25,26,28]. Chromosome regions with similar

compartment pro�les have a higher tendency to interact with each other. Speci�cally, active regions

have a greater frequency of contact with other active regions, whereas inactive regions are likely to

have more frequent interactions with other inactive regions. Accordingly, we have identi�ed

compartments with the principal eigenvector of the contact matrix of non-UV sample, by stratifying

genomic regions into 50 percentiles with similar values of the eigenvector (Fig. 1 e, see Methods).

Consequently, we assessed the strength of the compartments and determined that the most powerful

interactions within the compartments take place 12 minutes after the UV exposure, followed by

similar strength between 30, and 60 minutes, in which all of the UV-exposed samples showed high

compartment strengths (Fig. 1 d, see Methods). To accompany this �nding, we wanted to elucidate

which compartments are majorly di�erentiated with respect to contact strength after UV exposure.

We found that interactions within compartments showed an immediate increase, predominantly

within active A compartments, while interactions between A and B compartments showed an

immediate decrease at 12 minutes, when compared to non-UV sample (Fig. 1 f). However, this trend is

partially followed at 30, and 60 minutes, due to the strength of interactions within B compartments

returned to similar levels of non-UV sample. We also evaluated the interaction strength changes at the

top 20% compartmental groups, for A and B (Fig. 1 g). Intra A-A interactions post-UV showed the most

increase with elevated levels. In contrast, Intra B-B interactions showed an increase at 12 minutes, but

followed with reduced levels of interactions at 30, and 60 minutes. Also, a trend can be seen with inter

A-B interactions, where levels of interactions decreased after UV exposure, in contrast to immediate

increase in intra-compartment interactions.
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Figure 1:  The immediate e�ect of UV in chromatin conformation and ongoing alterations in the �rst hour. a.

Experimental datasets used in the study. For both lesion types (6-4PPs, CPDs), XR-Seq captures the previous repair

events, while Damage-Seq captures lesions’ locations on the genome. b. Decay plot on 10kb resolution (on log10-log10

scale) and its slope computed with central di�erences. Decay parameters (α exponents) of �tted powerlaw distrubutions

for each sample. c. Decay fold-changes normalized with non-UV control. d. Saddle strength of the samples, where the x-

axis shows the increasing extent of the compartment percentiles. y-axis show normalized contact strength of (AA+BB) /

(AB+BA). (Methods) e. Saddle-plot of the non-UV sample (100kb resolution) shows interaction intensity with respect to

each compartment percentiles. f. Saddle-plot with normalized contact intensities of post-UV samples, relative to the

non-UV sample. g.. Top 20% compartments normalized interaction intensity comparison. Red connectors point out the

means.
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Highest dynamicity of compartmentalization is present within

transcription regulatory genes

Chromatin compartment pro�les and interaction topology within active and inactive compartments

are in�uenced by shifts in gene expression during cell di�erentiation [29], senescence [30,31,32] or in

stress conditions [33,34]. To understand the relationship between compartment pro�les and DDR-

mediated transcriptional regulation, we sought to perform an exploratory analysis between RNA-Seq

and Hi-C datasets.

Accordingly, we performed a correlation analysis between compartment pro�les among time points

(Fig. 2 a). To pinpoint sets of genes exhibiting varying expression levels over time, we �rst conducted a

time series analysis (referred to as TS analysis afterward) to obtain di�erentially expressed genes

(DEGs) that show signi�cant di�erences across the time points (Supp. Table 3). We employed

expression pro�le clustering to organize these genes into clusters based on their time-course

expression patterns (Supp. Table 4). Each DEG is assigned to a cluster by maximizing the conditional

probability, using the maximum a posteriori rule[35] (See Methods). This approach yielded clusters

representing di�erent patterns and levels of gene expression changes over time (Fig. 2 b).

Concurrently, we applied eigenvector decomposition to each contact matrix of time points to derive

principal eigenvectors, enabling the identi�cation of A and B compartments. We factorized the

genomic bins (100kb bins) into factors with similar eigenvector values, denoted as B1, B0, A0, or A1.

Each genomic bin, linked to its corresponding factor, was then intersected with genes from each

cluster. For each pair of time points, we conducted polychoric factor correlation on the factors

associated with the intersected regions. In general, factor analysis showed higher correlations (~0.90-

0.95) within the UV-exposed samples across the three time points, while the correlations remained

consistently lower (~0.80-0.85) for UV-exposed samples compared to the non-UV control sample (Fig.

2 c). This observation suggests that, compartmentalization changes between pre/post-UV are

associated with the expression level di�erences, implying structural reorganizational e�ect on post-

UV gene regulation. To assess the signi�cance of these correlations, we utilized bootstrapping, which

involved randomly selecting an equal number of genomic bins multiple times from the dataset. We

then performed polychoric factor correlation on these selected regions between the time points. By
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comparing the observed correlation from the actual data with the distribution of correlations

obtained from bootstrapping, we generated empirical p-values. These p-values indicate whether the

observed correlation between conditions signi�cantly deviates from the correlation expected based

on the bootstrapped distribution.

Furthermore, we have performed gene set over-representation analysis on the DEG clusters to obtain

the enriched terms for biological pathways and molecular signatures. Accordingly, we have manually

selected 5 clusters primarily based on the presence of enrichment terms for Gene Ontology Biological

Process (GO-BP) [36] and The Molecular Signatures DB Hallmarks [37] (MSigDB Hallmarks) (Fig. 2 b, c,

d, Supp. Table5). Overall, enrichment of these clusters revealed that under UV stress, genes related to

positive transcription regulation are down-regulated, and genes on translation and repair/cell death-

related pathways are up-regulated (Fig. 2 b,d). For clusters 1,2,5 and 8, we have observed that factor

correlation is signi�cantly lower for comparisons of all of the UV-exposed samples against non-UV

while showing a consistent pattern in parallel with the changes in the expression pro�les. Remarkably,

cluster 2 exhibited notable variability in factor correlations across each time point comparison,

implying a dynamic behavior. The gene set involved in positive transcriptional regulation experiences

repression immediately after UV exposure, which suggests overall transcriptional repression during

DNA damage response.
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Figure 2:  Correlation analysis of compartment pro�les under UV stress a. Schematic illustrates the process

applying factor correlations on the compartment pro�les overlapped with di�erential gene expression patterns. b.

Raincloud plots show expression pro�les of each DEG cluster with respect to time points. Red connectors point out the

means. c. Heatmaps show compartment pro�les correlation between timepoints per cluster. Asterisk signs show the 2-

tailed p-values (* <= 0.1, ** <= 0.01). Lower and upper bounds of con�dence interval (95%) of bootstrapped (expected)

distribution are presented with L and U. d. Barplots show signi�cantly enriched terms (Adjusted p-value < 0.05) for each

DEG cluster in GO-BP and MSigDB Hallmarks databases. x-axis shows signi�cance (-log10adjusted p-values), y-axis shows

the enriched term
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Immediate TAD boundary strengthening after UV exposure

A topologically associated domain (TAD) is a genomic segment where DNA sequences have a higher

propensity to interact with each other compared to sequences outside the domain, where these

domains are demarcated by boundaries [38]. As per the existing theory regarding TAD formation,

genome regions are dynamically gathered within TADs via loop extrusion facilitated by the cohesin

complex until an insulator protein like CTCF obstructs the extrusion process [39,40,41,42]. However,

the potential consequences of UV damage on TAD boundaries remain unknown. To evaluate the

impact of UV on TADs, we identi�ed the boundaries of TADs and measured the strength of each

boundary, indicating the degree of separation between TADs.

We found that boundary strengthening takes place at each time point after UV exposure compared to

the non-UV sample (Fig. 3 a). This shows that the ratio of outgoing interactions from TADs to within

TAD interactions is signi�cantly decreasing, proposing a model in which TAD boundaries are more

open and accessible with increased insulation in 3D setting. While there is a signi�cant increase (p<1e-

4) in boundray strengths between pre/post-UV samples, there is no signi�cant di�erence in mean

boundary strengths among UV-exposed samples (Fig. 3 a). Following this, we revealed the ratio the

boundaries are preserved across time points and found that most of the boundaries are preserved

across transitions (Fig. 3 b). We also found that a smaller number of boundaries are non-preserved,

with a trend that after each transition, the number of non-preserved boundaries decreases, with the

highest occurring at the transition to 12 minutes. The term “non-preserved boundaries” refers to

regions not identi�ed algorithmically due to their weak boundary characteristics in the tested sample

(see Methods).

To better characterize these transitions, we calculated the change in the boundary strength of the

preserved boundaries. Among the transitions between the time points, the largest positive change

was observed right after the UV exposure, in the �rst 12 minutes (Fig. 3 c). The transition from 12 to

30 minutes showed a slight decrease in boundary strengths, followed by a relative consistency at the

30 to 60-minute transition. This immediate e�ect proposes that, similar to boundary preservation, the

highest boundary strengthening response is seen in early post-UV. Between 30 and 60 minutes, the

boundary strengths remained consistent.
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E�cient UV repair in TADs is correlated with boundary strength

Since the boundaries are proposed to be more open in 3D setting with respect to boundary strength

after UV exposure, we aimed to investigate repair in TADs to see whether such characteristic is

favored for normalized repair levels of CPDs and 6-4PPs, on the regions within TADs, boundaries and

�anking regions. We scored TADs as the ratio of two numbers, within-TAD intensity to between-TAD

intensity, as previously described [43]. We grouped TADs into quartiles with respect to their strengths

(Fig. 3 d) and projected normalized and averaged repair levels at these regions (Fig. 3 e). Overall,

boundaries showed enriched repair levels. For both CPDs and 6-4PPs, the highest repair levels are

associated with the TADs that are in the top quartile (Q4), which also have enriched intra-TAD repair

levels compared to �anking regions. Interestingly, as the TAD strength decreases, intra-TAD repair

levels decrease compared to �anks (Q2 and Q1). Relative to 6-4PP, CPD repair is more a�ected by the

TAD boundary strength, which in line with the fact that CPD repair e�ciency is relatively more prone

to chromatin factors [10,44]. We questioned whether repair levels change with the increasing TAD

size. In general, average repair levels of both damage types show a negative correlation, with CPDs

showing a higher negative correlation (r: -0.351, p-val: 3.518e-82) compared to 6-4PPs (r: -0.193, p-val:

6.947e-25) (Fig. 3 f). Accordingly, we speculate that the negative correlation between repair levels and

increasing TAD size might be related to the repair events initiating at the boundaries and possibly

lowered the probability of accessibility for repair elements along a longer TAD.

Loose boundaries have low UV damage sensitivity and repair

To see if boundaries provide an accessibility zone for repair elements, we wanted to compare damage

response in the preserved and non-preserved boundaries. To understand the interaction change

surrounding boundaries, we averaged the on-diagonal pile-ups centering the boundaries, comparing

contact maps of 12 minutes to non-UV (Fig. 3 g). It is clear that TADs spanning both preserved and

non-preserved boundaries have elevated within-TAD intensities. However, between-TAD intensities

decline relative to within-TAD intensities for TADs spanning preserved boundaries, providing higher

accessibility to boundaries. For TADs spanning non-preserved boundaries, we see an elevated

intensity of the interactions between TAD, resulting in a less accessible zone for non-preserved
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boundary regions and possibly leading to a structure where adjacent TADs merge. Accordingly, we

have obtained publicly available fold-over-input data for nontreated HeLa-S3 CTCF ChIP-Seq

(ENCSR000AOA) to compare occupancy at boundaries. Non-preserved boundary regions showed

lower levels of CTCF occupancy at minute 0, proposing a lower potential to insulate TADs and after

under UV radiation, possibly leading to acute loss of boundary characteristics for certain TADs.

Interestingly, TADs spanning preserved boundaries showed higher damage sensitivity. Furthermore,

we wanted to understand the contrast in the repair levels between the boundary states. Overall, we

have observed a lower e�ciency in repairing lesions at non-preserved boundary sites. In contrast,

elevated repair levels have been noted for both CPDs and 6-4PPs at the preserved boundaries, with

CPDs exhibiting a particularly higher e�ciency. Thus, we observe that higher insulation e�ciency of

strong boundaries post-UV correlates with greater repair e�ciency, in contrast to their weaker

counterparts.
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Figure 3:  TADs & boundaries show changes post-UV in accordance with repair and damage pro�les. a. Mean

boundary strength is increased post-UV, with 12 minutes being the highest. (Mann-Whitney U-test, **** means p-value

<= 1e-04) Red line connectors point out the means. b. Number of boundary states per transition across time points. c.

Ridgeline plots show a comparison of boundary strength changes per preserved boundary set at each transition. d.

TADs were grouped by their strengths into quartiles. e. Normalized repair levels are plotted with respect to TADs

grouped by their strengths, CPDs (Left), and 6-4PPs (Right). f. Normalized repair levels are plotted with respect to TADs

sizes, CPDs (Left) and 6-4PPs (Right), Pearson correlation p-values < 0.001. g. The top row shows a pile-up analysis of

aggregated and averaged on-diagonal snippets centered at boundaries. The bottom rows show normalized repair levels

(XR-Seq) and damage sensitivities (Damage-Seq) of both lesion types, CTCF ChIP-Seq (nontreated HeLa-S3) fold over

input data, and insulation scores. Columns are separated with respect to preserved and non-preserved boundaries of

the �rst 12 minutes of transition post-UV.

CTCF-dependent loops are enriched post-UV

Enriched contact frequency peaks that appear as distinct points in mammalian contact maps are a

common characteristic, and they propose signi�cant interactions [26]. These points represent ‘loops’,

and may manifest individually or as components of grids, often found at domain corners. Accordingly,

chromatin loops are considered the primary mechanism of enhancer-promoter interactions facilitated

upon cohesin-mediated loop extrusion accompanied with barrier elements [45,46,47]. A chromatin

loop consists of a pair of proximal regions, referred as loop anchors. For all time points, we have

identi�ed chromatin loops and created the intersection sets for loops and their anchors (Fig. 4 a). We

have observed that the number of anchors common in all samples (51.0%) exceeds the proportion of

loops common in all samples (31.6%), indicating that certain shared anchors are involved in forming

di�erent loops over time after UV-exposure.

For each timepoint transition, we separated loops and anchors into two categories: common and

speci�c loops and anchors. The separation tolerates a range for a ±50kb, meaning neighboring

regions are taken into account when determining overlap. Speci�c loops to a time point indicate a

gain or loss of contact strength relative to the transition, as identi�ed by their signi�cant enrichment

in only one of the contact matrices (see Methods). Accordingly, we wanted to understand the number

of loop/anchor di�erences between transitions (Fig. 4 b). After UV exposure, we have seen the

number of loops has decreased at 12 minutes. At 30 minutes, we have seen the highest number of
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speci�c anchors, leading to the highest number of speci�c loops. This phenomenon did not continue

with 60 minutes, by losing most of the speci�c loops that had been acquired at 30 minutes. We have

also seen the number of common loops increase with respect to each transition post-UV.

Hereinafter, we have concentrated on the comparison of non-UV sample and the �rst time point of 12

minutes to see the primary e�ects of UV exposure on loops. CTCF is the predominant protein

concentrated at loop anchors when arranged in a convergent orientation [48]. Consequently, we

aimed to understand the paired orientation of CTCF (Fig. 4 c), while also considering the presence of

single and non-CTCF motifs on the corresponding loop anchors. The initial observation was that

common loops had anchors with a higher percentage of convergent orientation, which is the most

favored orientation for paired motifs. Also, we have seen that loop anchors that are speci�c to the

non-UV Control sample do not possess the CTCF binding motif, with the highest percentage of 49.1%

among the three groups, which declined to 39.1% after UV exposure. This implies that certain

transitory loops are lost under stress conditions, and loops are formed through CTCF, among other

barrier elements, when exposed to UV. Furthermore, we did not detect signi�cant di�erences in loop

widths among the 303kb, 325kb, and 320kb categories for common, control-speci�c, and 12min-

speci�c loops (medians of 230kb, 230kb, and 240kb, respectively), nor did we observe any substantial

di�erences in composition (Fig. 4 d).

With pile-up analysis, we have compared normalized enrichment by averaging o�-diagonal contact

matrix snippets centered at loop anchors (Fig. 4 e). We have seen clear enrichment gain and loss after

UV exposure to speci�c loops. Enrichment scores of pile-ups are calculated with the corner scores

(center-to-corner ratios).

We further focused on understanding repair levels at speci�c loops (Fig. 4 f). To do so, we grouped

speci�c loops into quartiles based on their loop strength scores (see Methods). In all comparison

groups, we consistently observed that loop anchors exhibited higher repair activity compared to the

�anks and the loop body. Additionally, we noted that loops with the lowest strength displayed higher

normalized repair levels across all groups. Also, speci�c loops in the non-UV Control sample, meaning

loops that decreased enrichment after UV, showed higher repair levels for both lesion types.
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However, loops formed post-UV through loop extrusion (12min speci�c) showed lower repair levels in

general.

To identify potential factors of transcriptional regulation with respect to speci�c loop anchors for non-

UV and 12 minutes post-UV, we performed di�erential enrichment at these regions using

transcription factor (TF) ChIP-Seq data available on the Unibind database [49] (Fig. 4 g). For anchors

speci�c to non-UV Control sample, indicating loops that lost strength after UV exposure, we see a

signi�cant enrichment for TFs, such as the JUN family, a well-known protein for response to UV

radiation, increasing cells’ survival capabilities. Besides JUN, the enriched TFs of the non-UV control-

speci�c anchor set were enriched with FOS and FOSL2, members of the AP-1 transcription factor. This

suggests that the potential binding of these TFs is correlated with a decrease in loop strength and

higher repair levels. On the other hand, speci�c anchors to 12 minutes showed signi�cance only for

potential CTCF binding, suggesting that the loops are formed through loop extrusion, which is in line

with the Fig. 4 c.

Furthermore, we aimed to investigate whether the transcriptional regulation of genes exhibiting

signi�cant changes in expression over time was associated with di�erential looping. Accordingly, we

revisited time series analysis (TS), and identi�ed the top 20 genes based on TS analysis signi�cance,

that either gained or lost a new chromatin loop at any of the timepoints. We collected the loop

anchors containing the transcription start sites (TSS) for the genes of interest (canonical transcript per

gene selected with the MANE project[50]) for each time point. Accordingly, we have analyzed

di�erential looping patterns to better characterize expression changes (Fig. 4 h). We observed that

complementary looping patterns associated with changes in expression were present for the selected

genes. For instance, in the case of the UV-induced immediate early gene JUN, it shows signi�cantly

high expression levels at 30 and 60 minutes post-UV. Correspondingly, as pointed on the Hi-C

matrices, there is a progressively increasing interaction intensity, particularly notable at 30 and 60

minutes post-UV. In this interaction, one anchor involves JUN, while the other anchor corresponds to

an enhancer region with an activation function (Fig. 4 i). The facilitative role of the 3D genome in

transcriptional regulation is also relevant in this context following UV exposure.
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Figure 4:  Loops & anchors show di�erential characteristics post-UV. a. Venn diagrams show the percentages of

common and speci�c anchors and loops. b. Stacked bar plots show the number of common and speci�c anchors for

each transition. c. For the non-UV and 12-minute common and speci�c anchors, pie charts show CTCF presence and

orientation, and d. loop size distributions across size ranges. e. For the non-UV and 12-minute common and speci�c

anchors, o�-diagonal pile-up analysis shows intensity change centered at the loop anchors. Corner numbers correspond

to center-to-corner ratios. f. Loops are grouped into quartiles based on loop strengths (Methods). Repair levels (y-axis)
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are plotted along �anking regions and loop regions. Red dashed lines show average repair levels in the associated set. g.

Unibind di�erential enrichment analysis with respect to speci�c anchors of non-UV Control sample, and 12 minutes,

separately. Signi�cance shows -log10 p-values. h. Top 20 genes exhibiting signi�cant changes in their time-course

expression pro�les with di�erential looping patterns. i. Grouped Hi-C and RNA-Seq genome tracks, with CTCF, and

histone markers for JUN locus. Blue and red colors for histone markers signify activation and repression function,

respectively. Only JUN is written on genes track for simplicity. Green vertical line shows JUN TSS, and red vertical line

shows the corresponding looping region.

Graph neural network segregates genome with respect to 3D

dynamics

Our objective was to investigate the facilitative aspects of 3D genome dynamics. To do so, we

centered our investigation on the transition from the non-UV control to 12 minutes, using it as a

pivotal reference point. This approach enabled us to gain deeper insights into the impact of

immediate early genes post-UV exposure and to better align our analysis with repair and damage

maps. Up to this point, our analysis has primarily been hierarchical and exploratory, emphasizing

genome architectures identi�ed through prede�ned rules. However, recognizing the highly dynamic

nature of genome folding, especially under genotoxic conditions, we acknowledge the necessity of

studying regions that exhibit di�erentiation in higher-order dimensions, rather than relying solely on

monotonic metrics like insulation scores or a set of kernels. As a result, we have chosen to leverage

Graph Neural Network (GNN) methodology to search into topological alterations between pre-UV and

post-UV states, with a particular focus on the initial repair response.

GNNs have been started to utilized in the context of Hi-C, such as for multi-omics integration

[51,52,53], 3D genome reconstruction [54], contact matrix imputation [55], identifying di�erential

point-wise interactions [56], and for the double-stranded break (DSB) prediction [57]. Accordingly,

we’re utilizing graph representation learning to exploit the inherent relational characteristics of Hi-C

interactions, which are e�ectively captured in a graph structure.

In essence, our task involves determining whether a graph derived from one contact matrix (referred

to as the “query graph”) is preserved within another graph (referred to as the “target graph”)

generated from a di�erent contact matrix. We aim to identify regions (genomic coordinates) centering
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the topology change by quantifying deviations in subgraph isomorphism using a GNN (Fig. 5 a). This

involves measuring the extent of violation (topology change) of a query graph compared to its paired

target graph [58]. Accordingly, we aim to segregate genomic bins into distinct clusters based on

topology change characteristics (Fig. 5 c) and gain insights into the intersection of 3D genome

alterations and DNA damage/repair processes.

To create a violation landscape for the GNN’s learning process by simulating varying levels of 3D

genome topology changes, we preprocessed data from the 4D Nucleome megamap of merged

replicates of non-treated HeLa-S3 cells, and curated a graph dataset. (Fig. 5 a, Methods). Within the

graph dataset, the Hi-C contacts are represented as edge features, while the central node and linear

distances are encoded as node features. To facilitate the training of the subgraph prediction function

aimed at discerning di�erentiation in genome topology, we created both positive and negative pairs

consisting of target and query graphs. Positive pairs consist of target and query graphs centered on

the same genomic bin, while negative pairs are sampled from two distinct graphs centered on

di�erent genomic bins. This sampling approach ensures lower violation scores for similar topologies

and higher violation scores for di�erent topologies. This process involves training a 3-layered Graph

Neural Network (GNN) to derive graph-level embeddings for both the target and corresponding query

graphs. These embeddings are subsequently utilized to compute violation scores (magnitude of

topology change) for each pair of target and query graphs. Following that, these scores serve as input

to train a comparator, which learns to discern between low and high violation score labels by

determining an appropriate threshold.

To infer changes in genome topology between non-UV and 12 minutes post-UV, we preprocess the

contact matrices and employ a sliding window operation akin to insulation score calculation (Fig. 5 b).

At each window (genomic bin), we generated larger target and smaller query graphs central to the

same genomic bin from contact matrices to compare. These graphs are constructed using the

adjacencies and interaction intensities within the sliding window and the same encoding methodology

as in the training phase. We measured the violation of queries to corresponding targets with the

embeddings obtained from GNN and aggregated violation scores genome-wide. By employing this

approach, we capture various topological changes, including both the gain or loss of contacts, as well

as di�erences in the strength levels of preserved contacts (Fig. 5 c).
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Subsequently, we categorize genomic bins (10kb resolution) into four groups, referred to as

“comparisons,” based on the level (either Low or High) and direction of the violation observed

between non-UV and 12 minutes post-UV. With this methodology, we evaluated 88.28% of the

genome, excluding blacklisted, balance-masked bins and sparsely interacting regions. The proportions

of bins included in comparisons 1, 2, 3, and 4 were 19.79%, 15.15%, 12.35%, and 40.99%, respectively.

Accordingly, we merged consecutive genomic bins with the same comparison group label and used

central coordinates afterward. For each comparison, we computed the average of on-diagonal

snippets from the corresponding contact matrix, thus assessing the normalized contact intensity

around the central genomic bin (Fig. 5 c). Initially, we observed that Comparison 4, the largest group

with low violation scores in both directions between non-UV and 12 minutes post-UV, exhibited the

least dynamicity observed over expected contact intensities. Comparison 1 suggested open and

possibly accessible regions in 3D setting, between highly intense short-range interactions in which a

high level of violation is present for both directions of the comparison. Between Comparisons 2 and 3,

we have seen an interesting contrast between aggregated snippets. In the central regions of

Comparison 2, we observed below-expected interactions for closer linear distances to the center,

while the surrounding areas exhibited above-expected intensities. On the contrary, Comparison 3

displayed an inverse trend, characterized by above-expected intensities for closer linear distances to

the center and below-expected intensities in the surrounding regions. This observation suggests that

the direction of comparison, coupled with the di�erentiation between Low and High levels of violation

scores, contributed to a sense of relative symmetry in the analysis while also delineating distinct

architectural features.
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Figure 5:  Analysis of genome folding with GNN shows di�erent topologies post-UV. a. Schematic illustrating the

work�ow for the preprocessing steps of contact matrices, dataset generation/graph encoding, and generating di�erent

3D genome topologies to create a violation landscape for GNN training. ** b. Schematic illustrating the inference

work�ow for the violation scores (topology change) from two contact matrices to be compared using the sliding window

operation. c. With violation scores (Low or High) and the direction of the comparison, the genome is segregated into

four groups. Central coordinates in the on-diagonal pile-ups are scored regions. Pile-ups show ± 500kb �anking regions.

Black square patches show target (±250kb) and query (±200kb) regions for the generated graphs, respectively.
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Genome undergoes dynamic and relative convulsions favoring repair

e�ciency post-UV

We aimed to understand the di�erence in contact intensities within the comparisons in accordance

with repair e�ciency and damage pro�les. Repair e�ciency is normalized repair levels with damage

sensitivity and respective nucleotide distribution frequency simulations (see Methods). Accordingly,

we divided the 12-minute pile-ups into non-UV, generating divide-ups to compare time points at each

transition. Again, divide-ups of 4 comparisons yielded di�erent characteristics, in line with violation

scores and direction of comparison (Fig. 6 a). In Comparison 1, at the �rst transition post-UV, central

regions exhibited an increase in contact strength with surrounding regions while simultaneously

experiencing a decrease in strength for contacts traversing these regions. This characterization was

accompanied by high repair e�ciency for CPDs being relatively enriched in the evaluated region and

were also high on the �anking sites. This favors the hypothesis that these regions bring surrounding

regions into close proximity while being accessible themselves, proposing an open and hub-like

pro�le in 3D setting post-UV. On the other hand, Comparison 4, which had the lowest violation scores

indicating minimal change in genome topology, showed the lowest repair e�ciency.

Additionally, we have noted symmetry in the division patterns for Comparisons 2 and 3 and in the

repair pro�les. We observed that in Comparison 2, central regions with intensities below the expected

level demonstrated an increase in strength for both pairwise and surrounding interactions. This

observation suggests a transformation into a compact hub following UV exposure. Conversely, in

Comparison 3, central regions with intensities above the expected level demonstrated decreased

strength for pairwise and surrounding interactions. Furthermore, pro�les of repair e�ciency for

�anking regions exhibited di�erences between Comparisons 2 and 3, albeit with a notable degree of

symmetry within the evaluated regions. Notably, the repair of both lesions exhibited symmetry, which

is particularly evident in CPD repair. Additionally, in Comparison 4, we noted the lowest sensitivity to

damage, a �nding markedly distinct from the other three comparisons. This observation suggests that

lower levels of damage correspond to reduced di�erentiation in genome topology.
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In any of the comparisons, we observed a small amount of relative recovery in pixel intensity at the

transition from 12 minutes to 30 minutes post-UV exposure. However, we did not observe any

discernible di�erence in the transition from 30 minutes to 60 minutes post-UV.

We also sought to assess the absolute changes in pixel intensity on the divide-ups. We have collected

pixel intensities within the GNN evaluated regions on divide-ups, obtained distributions of fold

changes on log2 scale without direction, and performed kernel density estimations (Fig. 6 b).

Remarkably, we observed that Comparison 4, characterized by the lowest violation scores (lowest

topology change), exhibited the lowest pixel intensity changes, favoring the GNN algorithm’s

expressive capabilities. We have also observed Comparison 3 is associated with the highest intensity

change.

We were especially intrigued by the symmetry observed between Comparisons 2 and 3. Since, in

these regions, contrasting 3D genome topologies were associated with compaction and

decompaction, respectively for lower and higher repair e�ciency. Consequently, we investigated

transcription factor binding and leveraged the Unibind experimental data for di�erential enrichment

analysis. We retained only those transcription factors (TFs) whose expression changes were signi�cant

in the TS analysis and kept TFs supported by at least 10 individual experiments (Fig. 6 c). Our analysis

revealed that decompacted regions evaluated within Comparison 3 exhibited remarkably high levels

of enrichment for JUN-family members, with JUNB being highest in mean signi�cance and FOS, and

ATF3, indicative of AP-1 member enrichment [59,60,61]. These TFs displayed very high signi�cance

levels in the TS analysis, with a notable increase in expression fold-change after the �rst-hour post-UV.

Conversely, compacting regions evaluated within Comparison 2 displayed low but signi�cant

enrichment levels for only CTCF and REST. We have not seen any other TF enrichment at Comparison

2 sites, and we also observed signi�cant enrichment of CTCF and REST in Comparison 3. We have also

evaluated the TFs that are insigni�cant in the TS analysis (Fig. 6 d). The most signi�cant enrichment

was FOSL2, which is another AP-1 member. Overall, we have seen lower signi�cance levels than the

TFs that are signi�cant in TS analysis (Fig. 6 c,d).

Furthermore, we sought to explore how the enrichment of pathways associated with the di�erential

gene expression correlates with 3D characteristics of comparisons (Supp. Table7). To accomplish this,
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we individually identi�ed di�erentially expressed genes (DEGs) in the analysis between 12 minutes to

non-UV, 30 minutes to non-UV, and 60 minutes to non-UV. We overlapped the bins containing TSS

regions of the DEGs in comparison groups separately and conducted gene set over-representation

analysis. Accordingly, we wanted to understand signalling pathways that are enriched in Comparison

3, so we included the NCI-Nature Pathway Interaction Database in the analysis [62]. We have observed

that “AP-1 transcription network” was signi�cantly enriched, especially for 60 minutes mark post-UV,

and included DEGs such as down-regulated NR3C1, and up-regulated FOSL1, FOSB, ATF3, and JUNB

(Fig. 6 e). We have also seen that the “UV Response Down” term, which implies genes that are down-

regulated post-UV, was only enriched with the DEGs in Comparison 3 and “UV Response Up” only in

Comparison 1. Interestingly, we have identi�ed “EGF receptor (ErbB1) signaling pathway”, including

down-regulated EGFR, and STAT3 (Fig. 6 e).

Additionally, we wanted to understand the enriched pathways in the comparisons with the high

genome topology change (Comparison 1,2,3 combined) in contrast to the low genome topology

change (Comparison 4), so we kept only the unique enrichment terms (Fig. 6 f, Supp. Table8). For the

genes belonging to the high genome topology change, we have observed enriched terms such as

“TNF-alpha signaling via NF-κB” being the most signi�cant, “TGF-beta Signalling” and “Apoptosis” at the

60-minute mark, and “DNA Repair” with the most enrichment at the initial 12 minutes post-UV.

However, we have not seen any related hallmarks within the enriched terms unique to low genome

topology change.
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Figure 6:  Analysis of genome folding shows di�erential topologies post-UV. a. Top row shows divide-ups of 12

minutes to the non-UV sample. The bottom rows show repair and damage pro�les, followed by divide-ups of 30 to 12

and 60 to 30-minute transitions. b. Density plots show the absolute intensity changes on the pixel distributions where

the pixels’ are located in the target graph region of the corresponding divide-up. Common normalization ensures each

area under corresponding density sums to 1. c. Unibind di�erential enrichment analysis for the central sites of Comp. 3

and Comp. 2 for the TFs that their expression is signi�cantly changed. TFs are ordered with respect to the mean

signi�cance of the corresponding experiment sets. Signi�cance shows -log10 p-values. d. Unibind di�erential enrichment

analysis for the central sites of Comp. 3 for the TFs that their expression is stable across time points. e. Gene set

overrepresentation analysis conducted on Comp. 3 associated DEGS with respect to time points reveals the signi�cance

of pathways in a timely manner. Dashed lines show the signi�cance cuto� (p.adj < 0.05). f. Unique and enriched terms

for High genome topology change (Left), and Low genome topology change (Right). Dashed lines show signi�cance

cuto� (p.adj < 0.05)
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Discussion

Recent e�orts demonstrated the maintenance of genomic stability within the framework of higher-

order chromatin organization [11,12,13,14,16,19]. Indeed, ionizing radiation and other genotoxic

agents that primarily form DBSs and trigger translocations cause the 3D genome to play a role in DNA

repair mechanisms. Understanding the facilitative role of the 3D genome in e�ciently excising bulky

adducts is crucial, particularly within the context of our cellular resilience against the most prevalent

form of damaging radiation in the electromagnetic spectrum: UV radiation. However, post-UV

organizational changes in the 3D genome and its interplay with nucleotide excision repair (NER) and

transcriptional regulation have not been studied.

In this study, our focus was particularly on the earliest time points following UV radiation exposure to

better characterize the interplay between DNA damage response and the 3D genome. Accordingly, we

have generated the contact maps upon UV exposure and performed hierarchical 3D genome analysis.

We have demonstrated that UV radiation can induce alterations across all levels of higher-order

chromatin organization, initiating an ongoing structural reorganization with certain characteristics

that are reminiscent of those seen post-IR. We also observed decreased distal interactions following

UV exposure, consistent with �ndings observed after X-ray irradiation across various cell types,

including �broblasts [16]. Concurrently, we observed an elevation in interaction intensity within

compartments and a decrease in inter-compartment interactions following UV exposure, similar to

the response seen in DSB-related scenarios across di�erent cell types [14,16]. The loss of distal

interactions and increased compartmentalization strength may be potential indicators of a generic

response to radiation-induced genotoxic stress.

In our investigation of TADs, we noted a strengthening of boundaries following UV exposure, similar

to increased domain insulation seen in X-ray irradiation on di�erent cell types [16]. However, there

was also a minor loss of boundaries post-UV. We hypothesize that this loss may be attributed to a

physical phenomenon wherein UV radiation induces resonance within the TADs, causing vibration and

potentially straining boundary endurance, particularly regarding insulation capabilities. Additionally,

we observed increased levels of UV-induced photoproducts in the preserved boundaries, which are
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likely to be located in highly organized structures where there is little room for physical vibration.

Disabled physical elasticity may have led to higher levels of UV energy-induced DNA lesions, such as

CPD and 6-4PP. It is plausible to infer that boundaries that can be lost are more resistant to damage

possibly because of their less organized structures and more room for absorbing the UV energy.

However, those DNA lesions cannot be e�ciently repaired. Conversely, if boundaries are preserved

and TADs are better insulated, higher damage rates may occur, yet they are more e�ciently repaired.

Notably, boundaries emerge as crucial sites as they become more accessible, facilitating repair

processes.

The �ndings prompted us to delve deeper into how higher-order chromatin organization in�uences

the accessibility of the NER machinery. Consequently, we propose a model suggesting that local

decompaction of the 3D genome enhances accessibility, potentially easing the recognition and

excision of lesions. This model is supported by multiple lines of evidence spanning various levels of 3D

genome organization. Our observations indicate elevated repair levels at domain boundaries with

increased insulation, indicating these regions as potential repair hotspots. Conversely, domains with

low insulation or lost boundaries exhibit nominal repair, with repair levels negatively correlated with

domain length. We also noted chromatin loops displaying the highest strength appear to correlate

with lower repair levels. Additionally, we categorized genomic bins based on their chromatin folding

dynamics post-UV exposure, revealing a distinct relationship between local compaction/decompaction

of the 3D genome and repair e�ciency. Regions exhibiting high local decompaction (Comparison 3)

demonstrated higher repair levels, while those with local compaction (Comparison 2) displayed lower

repair levels. Furthermore, Comparison 1 identi�ed regions acting as repair hubs, particularly for CPD

repair. These hubs signify segments of the genome that come into close spatial proximity, facilitating

open accessibility for damage recognition within the 3D genome context. Notably, as known within

the NER machinery, CPDs and 6-4PPs exhibit di�erent recognition and repair rates. While CPDs are

poorly recognized by XPC alone, 6-4PPs are e�ciently recognized by XPC-RAD23B, a crucial initiator of

global-genome nucleotide excision repair [63]. Our observations at the 12-minute mark post-UV

exposure highlight the divergence in damage recognition between CPDs and 6-4PPs, with the 6-4PPs

displaying a more disoriented structure conducive to e�cient recognition. Given these insights,
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focusing on CPD repair o�ers a more convenient framework for elucidating the facilitative roles of the

3D genome within the proposed model of decompaction and damage recognition.

After UV-induced DNA damage, besides facilitating e�cient DNA repair, the genome must reorganize

in accordance with transcriptional regulation upon genotoxic stress. Accordingly, UV radiation can

impact cellular responses through the activation of various signaling pathways involving immediate

early genes like AP-1 (Activator Protein-1) subunits, such as JUN and FOS family. For instance, AP-1 is

important for in�ammation induced by tumor necrosis factor alpha (TNF-α) signalling, which we found

as the most signi�cant hallmark in the time-course expression analysis. JUN and FOS protects cells

from UV‐induced cell death and cooperates with NF‐κB to prevent apoptosis induced by TNF-α [64].

Both JUN and FOS are involved in regulating cell cycle progression and apoptosis following UV

exposure. One key �nding is that, loop anchors that lost interaction strength post-UV signi�es the

potential binding of transcription factor JUN and FOS. This was also accompanied by SMAD3 that is

also important for TFG-beta signalling in the context of AP-1. In the GNN analysis, Comparison 2 might

suggest that post-UV related gain of contact intensity at these regions might be regulated with loop

extrusion, leading to denser and more strict structures. On the other hand, central regions of

Comparison 3 showed highly signi�cant enrichment for FOS, JUN-family proteins along with FOSL-2,

and ATF3, suggesting potential AP-1 activity that is well-known after UV radiation [20,65]. On the other

hand, we see NR3C1 TF enrichment at Comparison 3 sites, while its expression is downregulated. This

potentially shows lower binding at Comparison 3 sites, and limited e�ect on AP-1 transrepression

[66,67].
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Figure 7:  Post-UV 3D genome facilitates UV-induced DNA damage response.

Overall, our study sheds light on the intricate interplay between UV-induced DNA damage, higher-

order chromatin organization, and transcriptional regulation. We demonstrate that UV radiation

induces signi�cant alterations across various levels of chromatin organization, reminiscent of

responses seen after ionizing radiation. Notably, we observe changes in distal interactions,

compartmentalization dynamics, and TAD boundaries, which may serve as indicators of the cellular

response to genotoxic stress. Our �ndings suggest that the 3D genome architecture plays a crucial

role in facilitating e�cient DNA repair, particularly through the modulation of accessibility for repair

machinery. Furthermore, our investigation into the role of AP-1 subunits, such as JUN and FOS,

highlights their involvement in orchestrating cellular responses to UV radiation. Moving forward, our

research will focus on generating additional genomic datasets, including JUN/FOS and CTCF ChIP-seq

post-UV, to further validate and re�ne our proposed model. By integrating these datasets with our

existing data, we aim to gain deeper insights into the intricate mechanisms underlying higher-order

chromatin reorganization and the DNA damage response.
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Conclusion

Our study represents the �rst comprehensive analysis of a unique multi-omics dataset, examining

how the 3D genome orchestrates the response to UV-induced DNA damage. Speci�cally, we focused

on the earliest time points within the �rst hour following UV exposure to follow immediate e�ects.

Using a multi-omics integrative approach, we investigated deeply sequenced Hi-C and RNA-seq

datasets, aligning them with XR-Seq and Damage-Seq datasets from our previous study [24]. We

conducted a comprehensive analysis, employing hierarchical and exploratory methods to investigate

genome architectures. Additionally, we utilized a deep learning approach to uncover the mechanisms

underlying UV-exposed genome folding. Moreover, we explored the intricate interplay among 3D

chromatin structure, transcriptional regulation, and DNA damage and repair processes. This

comprehensive approach shed light on the pivotal role of genome folding in the immediate response

to UV damage.
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Methods

Cell culture and exposure of human cells to UV

HeLa-S3 cells were maintained in Dulbeco’s modi�ed Eagle’s medium (PAN-P04-03500) supplemented

with 10% (v/v) heat-inactivated fetal bovine serum (PAN-P30-3304), 100 U/ml penicillin/streptomycin

(PAN-P06-07100), 2 mM L-glutamine (PAN-P04-80100) and 1x MEM non-essential amino acid (Gibco

11140-35) solution. Cells were maintained at 37 °C with 5% CO2. Cells were grown to 80% con�uence

in 150-mm tissue culture dishes. UV treatment has been applied as described. [9] Brie�y, culture

medium was �rst discarded, and 15 ml of 1× PBS (PAN-P04-036503) per dish were used to wash the

cells and discarded. With the cover o�, cells were placed under a germicidal lamp emitting 254-nm UV

(1 J/m2/s) for 20 s, then added 20 ml of DMEM to the tissue culture dish, and incubated the cells at 37

°C for the recovery time points of 12, 30 and 60 minutes. Digital UVX Radiometer (UVP 97001601) was

used to ensure that the cells were exposed to the desired UV dosage, and for reproducibility. Cells

were immediately followed by Hi-C or RNA-Seq library preperation.

Hi-C Library Preparation and Sequencing

Hi-C library was generated using the Phase Genomics Proximo Human Kit version 4.0. Cells were

cross-linked for 15 minutes at room temperature with end-over-end mixing. Crosslinking reaction was

terminated with quenching solution for 20 minutes at room temperature again with end-over-end

mixing. Quenched cells were rinsed once with 1X Chromatin Rinse Bu�er (CRB). A low-speed spin was

used to remove the supernatant and the pellet containing the nuclear fraction of the lysate was

washed with 1X CRB. After removing 1X CRB wash, the pellet was resuspended in 100 µL Proximo

Lysis Bu�er 2 and incubated at 65°C for 15 minutes. Chromatin was bound to Recovery Beads for 10

minutes at room temperature, placed on a magnetic stand, and washed with 200 µL of 1X CRB.

Chromatin bound on beads was resuspended in 150 µL of Proximo fragmentation mix and incubated

for 1 hour at 37°C. Reaction was cooled to 12°C and incubated with 2.5 µL of �nishing enzyme for 30

minutes. Following the addition of 6 µL of Stop Solution, the beads were washed with 1X CRB and

resuspended in 95 µL of Proximo Ligation Bu�er supplemented with 5 µL of Proximity ligation
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enzyme. Proximity ligation reaction was incubated at room temperature for 4 hours with end-over-

end mixing. To this volume, 5 µL of Reverse Crosslinks enzyme was added and the reaction incubated

at 65°C for 1 hour. After reversing crosslinks, the free DNA was puri�ed with Recovery Beads and Hi-C

junctions were bound to streptavidin beads and washed to remove unbound DNA. Washed beads

were used to prepare paired-end deep sequencing libraries using the Proximo Library preparation

reagents. The libraries were sequenced on Illumina NovaSeq 6000 platform with PE150 reads.

Hi-C Data Preprocessing

After preprocessing and quality control of FASTQ �les with fastp[68], raw sequencing reads were

aligned to human genome (GRCh38, Gencode v35). The data was processed using the Juicer v.1.6

pipeline (Supp. Table1). [69] Only chr1:22 and chrX were processed, and proceeded to downstream

analysis. We used Juicer’s calculate_map_resolution.sh script to determine the maximum data

resolution for each sample, �nding that 10kb is the highest resolution available across all samples.

This resolution was determined based on the criterion that the number of bins with more than 1000

contacts should constitute at least 80% of the total number of bins. Accordingly, .hic �les that were

generated with Juicer have been converted .mcool format with hicConvertFormat subprogram of

HiCExplorer to be utilized for downstream analysis. [70] To make samples comparable and remove

systematic bias, contact matrices were iteratively corrected with ICE [71] algorithm implementation

with balance subprogram within cooler version 0.9.2[72], while keeping only cis-interactions (intra-

chromosomal), �ltering bins that are in blacklisted regions [73], ignoring �rst 2 diagonals, and using

variance convergence threshold of 1e-05. We have obtained distance-dependent decay of interaction

counts at 10kb resolution for each Hi-C sample, using “expected_cis” function of cooltools version

0.5.4 [74], and focused on interactions up to a linear distance of 10mb. We have utilized powerlaw

version 1.5.0 [75] to obtain decay parameters for the hyper-tailed distrubutions.

Compartment Analysis

To obtain eigenvectors for compartment pro�les using eigen decomposition, we have utilized

“eigs_cis” function of cooltools version 0.5.4 [74], at 100kb matrix resolution. For phasing between A

and B pro�les, we have tested POLR2A TF ChIP-seq (ENCSR000BGO), RNA-Seq, and GC content to
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assign bins to correct compartments, in which higher correlation associates to correct eigenvector for

compartments. We have generated merged RNA-Seq tracks for each sample using “bamCoverage”

function in deepTools version 3.5.4 [76] using BPM normalization, in order to test correlation for

eigenvectors. With all of the phasing tracks, principal eigenvector were the one with highest

correlation among �rst three eigenvectors (Supp. Table2). 

Accordingly, 100kb bins were grouped into 50 percentiles based on 1st eigenvector. Saddle plots have

been calculated with “saddle” function of cooltools considering the observed interactions normalized

by expected, in which top left corners corresponds to B compartments, while bottom right corners

correspond to A compartments. We have quanti�ed the compartment strength using the

“saddle_strength” function of cooltools, which computes the ratio between (AA+BB) and (AB+BA), by

comparing the observed/expected values. With respect to saddle plots, compartment strength

corresponds to comparing the ratio of values in the upper left and lower right corners to those in the

lower left and upper right corners in the plot with an increasing extent. Thus, compartmentalization

strength is calculated by assessing the relative enrichment of interactions within the same

compartment (AA+BB) compared to interactions between di�erent compartments (AB+BA).

Accordingly, we have used this metric to compare degree of segregation between active and inactive

chromatin regions between Hi-C samples.

In order to analyze compartment correlations between timepoints with respect to RNA-Seq data, we

have obtained 1st eigenvectors for each Hi-C sample and assigned 100kb bins to factors of A1, A0, B0

and B1. Accordingly, for each gene in each cluster that we have obtained from clustering analysis, we

have overlapped the compartment factors (100kb bins) to associated genic regions using “overlap”

function in bioframe version 0.4.1 [77]. For each pair of sample correlation given the cluster, we have

performed polychoric correlation with “polychoric_correlation” function in RyStats version 0.5.0 with

respect to compartment factors. To perform bootstrapping, we have randomly picked 100kb bins

depending on the number of bins on the original overlap to genes for each cluster and sample-pair

comparison, 1000 times. Accordingly, we have compared original correlation to the correlation values

in the bootstrapped distrubution (expected correlation) to generate two-tailed p-values.

Boundary and TADs Analysis
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In order to identify boundaries to see how genome is segmented into distinct domains, we have

utilized “insulation” function in cooltools version 0.5.4 [74]. Brie�y, insulation pro�les have been

calculated for each bin at 10kb resolution using the sliding window with the size of 500kb. Insulation

pro�les indicate speci�c sites with reduced scores, indicating decreased contact frequencies between

adjacent genomic regions, and often these sites represent boundaries [78]. Accordingly, strongly

insulating regions have been identi�ed as boundaries, and boundary strength is calculated using peak

prominence method on the minima of the insulation pro�les.

To obtain preserved and non-preserved boundaries between each timepoint transition, we have

identi�ed boundaries for each Hi-C sample. Boundaries were considered to be preserved with a

tolerated range of ± 10kb. Subsequently, by merging consecutive boundaries and excluding

excessively long domains (>1.5mb), we have compiled a set of coordinates delineating topologically

associating domains (TADs). Contact matrix snippets for pile-up analysis (aka. Aggregate Peak

Analysis) plots were piled-up with coolpuppy version 1.1.0 [79] for boundaries on-diagonal.

We have calculated domain scores (TAD strength) as described [43]. Brie�y, a domain score is the ratio

of within-TAD intensity to between-TAD intensity on the rescaled contact matrix snippets spanning

each TAD and �anking regions. Rescaled contact matrix snippets for TADs have been obtained with

coolpuppy version 1.1.0 [79].

Chromatin Loop Analysis

Chromatin loops were identi�ed using the “dots” function within cooltools version 0.5.4 [74], operating

at a resolution of 10kb. In summary, default kernels were applied as per cooltools recommendations

for the resolution, which included the donut kernel as described in Rao et. al [26], along with vertical

and horizontal kernels to mitigate the identi�cation of stripes as loops, and a lower-left kernel to

prevent the misidenti�cation of pixels at domain corners as loops. Loops with a false discovery rate

(FDR) value greater than 0.1, adjusted for multiple hypothesis testing using the Benjamini-Hochberg

method, were �ltered out, retaining only signi�cantly enriched pixels for each sample.
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During each transition between time points, we identi�ed loops and their associated anchors that are

shared within a permissible range of ± 50kb, categorizing them as common loops or anchors.

Accordingly, loops falling outside this range are deemed speci�c to a particular time point in the

transition, suggesting potential enrichment or loss of interaction strength relative to transition.

We have obtained CTCF binding sites using the Bioconducter package CTCF [80], and utilized

“ctcf_orientation.py” accessible under CTCF_orientation to obtain CTCF orientation on the loop

anchors. Also, we have utilized “LoopWidth_piechart.py” accessible under LoopWidth to obtain

categorized loop lengths.

O�-diagonal snippets of the loops were piled-up with coolpuppy version 1.1.0 [79], with a �ank of

100kb, generating a 21x21 matrix, in which central pixel corresponds to the interaction of the loop

anchors. Corners scores of o�-diagonal pile-ups are calculated with the ratio of the central pixel

intensity to the mean pixel intensity of the 6x6 matrix on the associated corner (aka. Peak to Corner

scores). To calculate loop strength scores for an individual loop, we have used the ratio of central pixel

intensity to the mean intensity of remaining pixels, and assigned a loop score to each individual loop

(aka. Peak to Mean score).

Genome tracks of Hi-C, RNA-Seq, CTCF levels and related histone markers are visualized with Figeno

version 1.0.5 [81]. CTCF, H3K27me3, H3K4me3, H3K4me1, H3K27ac, and H3K9ac data were obtained

from ENCODE [82] data portal with the following identi�ers: ENCSR000AOA, ENCSR000APB,

ENCSR000AOF, ENCSR000APW, ENCSR000AOC, and ENCSR000AOH.

GNN Work�ows for Detecting Regions Centering Topology Change

from Contact Maps

For training phase of the graph neural network (GNN) model in order to learn a subgraph-

isomorphism violation landscape for Hi-C contact di�erentiations, we have preprocessed megamap at

10kb resolution of Hi-C experiments done on HeLa-S3 with merged replicates (4DN data portal:

4DNESCMX7L58) [83,84]. Brie�y, we have iteratively corrected the contact matrix with ICE[71]

algorithm implementation with balance subprogram within cooler version 0.9.2[72], as we described
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in Hi-C data preprocessing. Accordingly, we have obtained observed over expected matrices per

chromosome arm using “_make_cis_obsexp_fetcher” function in cooltools version 0.5.4 [74].

Followingly, we have preprocessed Hi-C contacts per matrix using quantiles information with

“QuantileTransformer” function in Scikit-learn version 1.3.0 into 1000 quantiles with Uniform

distrubution, with the aim of making di�erent datasets comparable, thus transforming contacts into 0

to 1 range.

To generate a graph dataset for training, we randomly selected a bin and constructed a graph from

the 51x51 matrix where the selected bin is the central bin, corresponding to 250kb �anking regions at

a resolution of 10kb, totalling to 510kb regions. We have decided on such linear distance to

understand local topology change in 3D, in accordance to distance-dependent decay comparisons

between non-UV to post-UV 12 minutes sample in which short-to-mid range interactions are

particularly favored post-UV. We iterated through this process until the total number of generated

graphs reached 10% of the total available bins per matrix. Furthermore, we have encoded node

features in a graph into two categories; central node or non-central node, and relative linear distances

scaled on the distance to central node to ensure non-central nodes have unique identities.

Accordingly, transformed Hi-C contacts were assigned as the edge features.

For the training process, we constructed positive and negative target/query pairs as mini-batches,

while ensuring central nodes are preserved. Positive pairs were generated by randomly selecting a

graph and sampling a target graph from the available bins, followed by sampling a query graph from

the selected target graph. Conversely, negative pairs were generated by randomly selecting two

graphs, ensuring that they are central to di�erent genomic bins. A target graph was then sampled

from one of the selected graphs, while a query graph was sampled from the other ensuring number

of nodes are smaller. By employing a target graph sampling strategy that encompasses a varying

number of nodes within the range of (31, 51], we aim to train our model to generalize more e�ectively

for contact maps with varying/nominal interaction coverage. This methodology enables the model to

adeptly adapt to various graph sizes, enhancing its capability to navigate scenarios where contact

maps might lack extensive coverage, while disregarding areas with sparse interactions.
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We opted for a model design featuring 3 GNN layers, a choice informed by the observation that the

diameter of query graphs approximates 3 in our Hi-C samples. This decision ensures that the model’s

architecture aligns well with the inherent structure and complexity of the graphs, facilitating e�ective

information propagation and feature extraction across the network. For the choice of GNN operator,

we adopted Graph Isomorphism Network (GIN) [85] with a slight modi�cation described by Hu et al.

[86], in order to incorporate edge features into message-passing between nodes, referred as “GINE”.

We chose to adopt the subgraph prediction function for training from the Neuromatch [58] algorithm

because of its demonstrated capability to capture subgraph relations in the embedding space by

enforcing the order embedding constraint. Brie�y, the function evaluates whether a target graph

node’s embedding has a k-hop neighborhood that is subgraph isomorphic to the k-hop neighborhood

of a center node in the query graph, based on the embeddings of these nodes. It achieves this by

minimizing the max margin loss, ensuring that positive pairs exhibit embeddings where the query

node’s elements are less than or equal to the corresponding elements in the target node’s

embedding. Conversely, for negative pairs, the violation of the subgraph constraint must exceed a

certain margin in order to have zero loss. Furthermore, we also propagate amount of violation of

target and query pairs to a classi�er, referred to as the comparator, with the aim of learning a

threshold for distinguishing between “Low” and “High” scores.

Therefore, we aimed to compare non-UV and 12min Hi-C samples (10kb bin resolution), considering

this as the initial transition after UV-exposure and a reference point aligned with the timepoint of XR-

Seq, to learn about altering topologies and immediate early response. To infer, we applied identical

preprocessing steps to both of these contact maps as those used for the 4DN megamap, also

disregarding blacklisted, balance-masked and sparsely interacting regions. Accordingly, diverging from

the graph dataset generation process during the training phase, we have generated target and query

pairs using a sliding window approach, with the strict number of node constraints, tolerating

maximum node number of 41, and 51 for query and target, respectively. Therefore, we have acquired

violation scores for each 10kb bin genome-wide, and learned the labels for distinguishing between

“High” and “Low” scores.

GNN model has been implemented with Pytorch version 2.0.1 [87] and Pytorch Geometric version

2.3.1 [88]. Training and inference work�ows were implemented with Pytorch Lightning version 2.0.6 in
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order to optimize distributed data parallel strategy for multi-processing. The model has been trained

on Nvidia A100 in Sabanci University’s ToSUN HPC with Slurm Workload Manager.

Transcription-factor di�erential enrichment analysis

We have performed di�erential enrichment analysis for TF binding using Unibind work�ow [49].

Unibind is a database containing experimentally derived transcription factor binding sites (TFBSs)

speci�c to various cell types or tissues, obtained from ChIP-seq experiments. Brie�y, we have

obtained Unibind’s LOLA database hg38_robust_UniBind_LOLA.RDS v3, from the corresponding

Zenodo repository. In order to perform di�erential enrichment, we have preprocessed genomic

coordinates in bed format, and ran LOLA version 1.32.0 [89] for enrichment calculation and statistical

signi�cance. We have only kept the experiment sets that their enrichments are signi�cant (p-value <

0.05). And also, we have only kept the transcription factors that are supported by at least 10 individual

experiment sets.

RNA-Seq Library Preparation and Sequencing

RNA isolation was carried out using Genezol RNA isolation reagent (Geneaid GZR100) following the

manufacturer’s instructions. A total amount of 0.4 μg RNA per sample was used as input material for

the RNA sample preparations. Sequencing libraries were generated using NEBNext® UltraTM RNA

Library Prep Kit for Illumina® (NEB, USA) following manufacturer’s recommendations and index codes

were added to attribute sequences to each sample. Brie�y, mRNA was puri�ed from total RNA using

poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under

elevated temperature in NEBNext First Strand Synthesis Reaction Bu�er (5X). First strand cDNA was

synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second

strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. The

remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After

adenylation of 3’ ends of DNA fragments, NEBNext Adaptor with hairpin loop structure were ligated to

prepare for hybridization. In order to select cDNA fragments of preferentially 250~300bp in length, the

library fragments were puri�ed with AMPure XP system (Beckman Coulter, Beverly, USA). Then PCR

was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X)
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Primer. At last, PCR products were puri�ed (AMPure XP system) and library quality was assessed on

the Agilent Bioanalyzer 2100 system.

The clustering of the index-coded samples was performed on a cBot Cluster Generation System using

TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer’s instructions. After cluster

generation, the libraries were sequenced on an Illumina Novaseq 6000 platform and 150bp paired-

end reads were generated.

RNA-Seq Data Preprocessing

After preprocessing and quality control of FASTQ �les with fastp[68], raw sequencing reads have been

aligned to human genome (GRCh38, Gencode v35) and its corresponding annotation �le, with STAR

aligner version 2.7.6a [doi:10/f4h523] with arguments –genomeLoad NoSharedMemory –quantMode

TranscriptomeSAM –twopassMode Basic –outSAMtype BAM SortedByCoordinate. Followingly,

transcripts (transcripts per million) were quanti�ed using Salmon version 1.6.0[90].

Gene Expression and Time-Series Analysis

Transcript-level abundance, estimated counts and transcript lengths, were imported with

Bioconducter package tximport version 1.28.0[91] to be utilized for downstream analysis. Di�erential

gene expression analysis was conducted with Bioconducter package DESeq2 version 1.40.2 [92]. Pre-

�ltering was applied to the data sets to �lter low read counts in which genes with low number of reads

were removed from the analysis. The read counts across the samples were normalised using the

DESeq method, based on median ratio of gene counts. In order to perform time series analysis,

likelihood ratio test was utilized with the full model on the time point factor, and the reduced model

on the intercept. Resulting genes were �ltered statistically (adjusted p-value ≤ 0.05) to obtain

di�erentially expressed genes over time.

Clustering and Gene Set Over-Representation Analysis

Clustering of the genes with respect to time-series analysis was performed with Bioconducter package

coseq version 1.24.0[35]. DESeq normalized counts were used as input to coseq, without further
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normalization within coseq internally. Arcsine transformation was applied to expression matrix, and

co-expression analysis of the di�erentially expressed genes were performed with Normal mixture

model. Genes that were uniquely assigned to clusters with maximum conditional probability (min: 0.9)

were retained for cluster visualization and over-representation analysis per each cluster.

Statistically enriched (adjusted p-value ≤ 0.05) terms of Gene Ontology Biological Process [36] and The

Molecular Signatures DB Hallmarks [37], on genes assigned to each co-expression cluster were

identi�ed using Bioconducter package clusterPro�ler version 4.8.1.[93] Over-representation analysis

for each cluster was based on the background of the total di�entially expressed genes with respect to

time factor, obtained from the likelihood ratio test. For gene sets created in the chromatin loop and

GNN comparison analysis in Python, we have used “enrichr” function in GSEApy Python package

version 1.0.6 [94] to perform over-representation analysis while also using NCI-Nature PID database

[62].

XR-Seq and Damage-Seq Data Preprocessing and Simulation

Raw XR-Seq and Damage-Seq reads were accessed under SRA PRJNA608124. We have processed the

raw reads with XR-Seq and Damage-Seq Snakemake work�ow version 0.7, that is accessible under xr-

ds-seq-snakemake [24], with Snakemake version 7.32.4 [95]. Brie�y, adapter sequences

(TGGAATTCTCGGGTGCCAAGGAACTCCAGTNNNNNNACGATCTCGTATGCCGTCTTCTGCTTG) were

trimmed from 3′ ends of raw XR-seq reads, and adapter sequences

(GACTGGTTCCAATTGAAAGTGCTCTTCCGATCT) were trimmed from 5′ ends of raw Damage-seq reads

using cutadapt version 4.1 [96]. Then, trimmed reads were aligned to human genome GRCh38 using

Bowtie2 version 2.4.1 [97]. Resulting bam �les were converted to bed using bedtools version 2.29.0

[98]. Also, aligned reads were sorted and duplicated regions were removed. Accordingly, we have

processed the XR-Seq and Damage-Seq data for the exact repair and damage site coordinates,

mapped to 1kb intervals on human genome, and performed Counts Per Million (CPM) normalization.

We have also generated synthetic NGS reads from the input DNA sequencing of HeLa-S3

(SRA:PRJNA608124) using NGS read simulator Boquila version 0.6.0 [99]. Brie�y, the simulation tool

Boquila randomly picks genomic regions to ensure that the chosen pseudo-reads match the
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nucleotide frequency of the provided NGS dataset. Accordingly, we have generated synthetic XR-Seq

and Damage-Seq datasets, and utilized in order to have an expected background for repair and

damage maps genome-wide with respect to dimer frequency. We have also performed CPM

normalization for synthetic reads on 1kb intervals. Normalized “Repair levels” and “Damage sensitivity”

are calculated with the normalization of original XR-Seq and Damage-Seq datasets to their

correponding synthetic datasets. Furthermore, “Repair e�ciency” is calculated using “Repair levels”

normalized with “Damage sensitivity”.

Software

We conducted our analyses using the Python language version 3.11.0 and R language version 4.3.1

with Bioconductor version 3.17. The manuscript was written and edited collaboratively on GitHub

using Manubot.[100] Plots were generated with seaborn version 0.13.0[101], and �gures were

arranged on the open-source vector graphics software Inkscape.
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