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Model organisms such as Drosophila melanogaster are ex-
tremely well suited to performing large-scale screens, which of-
ten require the assessment of phenotypes in a target tissue (e.g.,
wing and eye). Currently, the annotation of defects is either per-
formed manually, which hinders throughput and reproducibil-
ity, or based on dedicated image analysis pipelines, which are
tailored to detect only specific defects. Here, we assess the po-
tential of Vision Language Models (VLMs) to automatically de-
tect aberrant phenotypes in a dataset of Drosophila wings and
provide their descriptions. We compare the performance of one
the current most advanced multimodal models (GPT-4) with an
open-source alternative (LLaVA). Via a thorough quantitative
evaluation, we identify strong performances in the identification
of aberrant wing phenotypes when providing the VLMs with
just a single reference image. GPT-4 showed the best perfor-
mance in terms of generating textual descriptions, being able to
correctly describe complex wing phenotypes. We also provide
practical advice on potential prompting strategies and highlight
current limitations of these tools, especially around misclassi-
fication and generation of false information, which should be
carefully taken into consideration if these tools are used as part
of an image analysis pipeline.

Correspondence: g.paci@ucl.ac.uk, fnanni@turing.ac.uk - The authors con-
tributed equally to the paper.

Introduction
Drosophila melanogaster has been used extensively as a
model organism for large-scale genetic screens (1), drug
screening for therapeutic applications (2) and toxicity studies
(3). One of the most typical readouts of these assays is the
presence of aberrant phenotypes in a target tissue, most often
the adult fly eye and wing. However, this requires painstak-
ing manual annotation of the observed phenotypes, which is
labour-intensive and prone to subjectivity (for example with
the use of arbitrary “scores” for phenotype severity). We fo-
cus here on the analysis of wing phenotypes, which are espe-
cially challenging as they can be extremely varied.
Currently, a few tailored image analysis tools are available for
the analysis of Drosophila wing morphology. For example,
Wings4 is a semi-automated tool that fits splines to the wing
veins and enables the quantification of wing sizes and shapes
(4). FijiWings is a set of Fiji (5) macros tailored for the quan-
tification of wing size and trichome density (cell number)
(6). MAPPER is a recently developed tool based on machine
learning to segment and classify wing intervein and vein re-

Fig. 1. Schematic representation of the prompt strategies tested.

gions and quantify several geometrical and pattern-based fea-
tures (7). While these tools can be extremely valuable to ob-
tain quantitative measurements of wing shapes, their use as
part of a screening pipeline is hindered by two limitations:

• they rely on segmentation of wing regions and/or fit-
ting of specific wing structures (margin, veins), which
limits their applicability to severely affected wings
(e.g., blistered / truncated wings);

• using them to detect heterogeneous wing phenotypes
would require the users to define a large set of “aber-
rant” conditions (wing shape descriptors, trichome
density, vein lengths, etc.).

We reasoned that the recent advancements in Generative
AI (8), with the development of Vision Language Models
(VLMs) capable of handling both text and images as input
prompts and to produce text as output (such as GPT-4 Vision
(9) or Gemini (10)), could aid researchers in phenotyping
tasks. VLMs could be used to classify wing images between
normal (wild type, WT) or abnormal and, crucially, provide
textual descriptions of the phenotypes observed. If VLMs are
capable of performing such tasks, they could be used to in-
spect a large number of images and “flag” samples showing
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defects for follow-up. Approaches as the one described here
are part of the current transition in applied machine learning
from supervised learning strategies (11) to in-context learn-
ing (12), namely the ability of a model to learn to perform a
task based on the prompt description (so called “prompt engi-
neering” (13)), without any explicit updates to its parameters
(i.e., without fine-tuning).
Nevertheless, it is now also widely known that large language
models are highly prone to creating false information, pro-
ducing so-called “hallucinations” (14, 15). Therefore, thor-
ough and extensive evaluations of their capabilities and mis-
takes are necessary before deciding whether to employ them
in any downstream task.
With such mindset, in this study we leverage a published
database of annotated Drosophila adult wing phenotypes (16)
and assess the performance of different VLMs and prompting
strategies to provide an accurate detection of abnormal wings
and a description of the observed phenotypes (see a graphi-
cal example in Figure 1). We decide to focus on one of the
currently best-performing models (according to Bitton et al.
(17)), GPT-4 Vision, and a small-scale quantized open source
alternative, LLaVA (18), which can be run on a laptop1.
We assess the output generated by such models at three lev-
els of granularity: first of all, we measure whether they are
able to binary discriminate when presented with an image of
a normal or abnormal wing. Secondly, by examining the de-
scriptions generated, we verify whether the model correctly
identifies the class of defect observed (e.g., a vein vs wing
margin defect) and, finally, we ensure that the model does
not produce any false information about the abnormality.
We also examine the performance of each model for the de-
tection of different classes and degrees of severity of wing
phenotypes. We conclude by discussing potential additional
challenges when employing such methodology in practice2.

Dataset
We employed wing images from a previously deposited
dataset (16) where UAS-RNAi lines targeting 10,920 protein-
coding genes were screened for phenotypes in the adult wing.
We selected a subset of 80 images covering a wide range
of phenotypes: ectopic wing veins, loss of wing veins, in-
tegrity of the wing margin, wing surface adhesion. Pheno-
types ranged from weak ((w) annotation in the dataset, un-
der the phenotype column) to severe ((s) annotation in the
dataset). We also collected a set of 20 wings that were clas-
sified as phenotypically normal (“like-WT”) in the study (see
overall statistics and examples in Table 1). Images, originally
in PSD format, were converted to PNG as the language mod-
els adopted are not able to process PSD as an input file.
For tests where the VLM was provided with a reference wing
image, we used a WT wing of Samarkand strain from Son-
nenschein et al. (19) as reference, in order to make sure the
VLMs would be able to generalise wing properties beyond

1In our experiments, a MacBook Pro with M1 Pro and 32 GB of memory.
2Materials for reproducing this study are available at: https://

github.com/giuliapaci/VLM-Drosophila-Phenotyping

Table 1. Dataset: phenotypes analyzed and example images.

Phenotype # Imgs Example

Loss of wing veins (V-) 10

Ectopic wing veins (V+) 20

Integrity of wing margin (WM) 23

Wing surface adhesion (WA) 27

Like-WT (WT) 20

the type of image taken3. The selected image (in TIF for-
mat) was cropped to remove scale bar and flipped to match
orientation of the dataset used, then exported as PNG.

Methods
We tested two Vision Language Models, GPT-4 and LLaVA
in the following settings:

GPT-4 (Turbo) was tested through the online chat interface4.
In our experiments, we decided to use GPT-4 through the
interface to facilitate the annotation process, given we had
to compare a large number of generated textual descriptions
with provided images. However, in a real application, we
would strongly recommend relying on the OpenAI API5,
which guarantees more control of the model (e.g., fixing spe-
cific parameters) and greatly speeds up the analysis.

LLaVA (version: 1.6, parameters: 7B, quantisation: 4-bit,
size: 4.1 GB) was used through Ollama6, a simple tool for
setting up an API to run language models locally on a per-
sonal computer, with default parameters. Note that the model
we used is quantised. Quantisation reduces the number of
bits required for each parameter, considerably diminishing
the memory needed. However this has an impact on model’s
accuracy (to know more see Dettmers and Zettlemoyer (20)).

Experimental Setting. Large Language Models have
shown incredible performance when presented with textual
descriptions of a new task (12), without any annotated exam-
ples (so called “zero-shot” prompting (21)). To assess this in
the context of Drosophila phenotyping, we compared VLMs
performance by only providing a textual prompt describing

3In initial experiments, we compared the performance of using this refer-
ence image and an image of a “like-WT” from Lopez-Varea et al. (16) and
obtained similar performance.

4Experiments were run between 19th of April 2024 and 5th of May 2024
5https://platform.openai.com/docs/guides/vision
6https://ollama.com/library/LLaVA
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Table 2. Prompt strategies used in this study.

Prompt Strategy Textual Content

Prompt (p)
I want help to identify drosophila wings that show any abnormalities. Any defect in the
veins, wing margin or wing texture as well as blistering will count as abnormal. Does
this wing look normal or abnormal? [add image to annotate]

Prompt with Reference Image
(p+i, specifically for GPT-4)

I want help to identify drosophila wings that show any abnormalities. This is an example
of a normal drosophila wing and I will give you examples of other wings to classify
as normal/abnormal. Any defect in the veins, wing margin or wing texture as well as
blistering will count as abnormal [add reference image] ... [model response, confirming
it understood the task] ... [add image to annotate]

Prompt with Reference Image
(p+i, specifically for LLaVA)

I want help to identify drosophila wings that show any abnormalities. Any defect in the
veins, wing margin or wing texture as well as blistering will count as abnormal. In the
image I’m providing you have on top an example of a normal drosophila wing and below
a second example. Does this second wing look normal or abnormal compared to the first?

the task (strategy named “p”) and by providing the textual
prompt together with a single reference image of a normal
Drosophila wing (strategy “p+i”)7. See the prompts used in
Table 2.
To further test the ability of VLMs to leverage in-context in-
formation, we ran another series of experiments where we
provided wing images to be classified one after the other as
part of a thread, starting again with a reference image. We
randomise image order, to make sure the model would not
pick any obvious signal based on the sequence of images.
While no feedback was given to the tool for each generated
description, we wanted to understand whether performing the
same task multiple times in a thread would help the VLM
to more accurately identify phenotypes. We compared two
different strategies, one in which all 100 images were given
one by one in the same thread (from now on “p+i+100t”)
and a second strategy where we provided the VLM images
in threads of ten by ten, with the reference image shown at
the beginning of each thread (from now on “p+i+10t”). Note
that, since LLaVA can handle only one image at a time, we
performed such experiments only with GPT-4.

Evaluation Metrics. We employed several machine learning
metrics to evaluate the effectiveness of VLMs in accurately
discriminating normal and abnormal wing phenotypes. Note
that, occasionally, the models provide an inconclusive output:
we considered these as classification errors. Initially, we fo-
cused on the model accuracy, which quantifies the proportion
of total correct predictions, providing a straightforward mea-
sure of the model overall performance in identifying wing
anomalies.
To better understand the strengths and weaknesses of each
method, we employed precision and recall. Precision mea-
sures the accuracy of positive predictions; essentially, the
lower the number of false positive for each category, the
higher the precision. Meanwhile, recall assesses the model’s

7Note that, as LLaVA can only process one image at a time, we concate-
nated the reference image and the image to classify as a single image to make
sure the model would correctly process the input.

ability to identify all relevant instances of a specific class,
thereby for instance indicating the model’s sensitivity to de-
tecting anomalies. The F1-Score, which harmonises preci-
sion and recall through their harmonic mean, was also re-
ported to provide a balanced view of model efficacy. Further,
we aggregated these findings using the Macro F1-Score, of-
fering a comprehensive overview that equally considers the
performance across both classes without being influenced by
class imbalance (which in our case is high, as we have 80
images with defects and 20 controls).
Lastly, we examined the error rate, which reflects the pro-
portion of all incorrect predictions to highlight specific areas
where the model’s performance may lag, for instance in the
tail of a long thread. These metrics were instrumental to un-
derscore the limitations of current methodologies and iden-
tify potential areas for improvement in the automated analy-
sis of phenotypes.

Results
Model comparison: GPT-4 and LLaVA. In Table 3, we
compare the general performance of GPT-4 and LLaVA in
distinguishing between images of wings with defects com-
pared to control examples, in terms of precision, recall and
F1-Score. We report these metrics for each class and also the
overall model accuracy and Macro F1-Score, which is the av-
erage of the F1-Score for each class. These different metrics
help understand where each model performs well in this gen-
eral binary task.
Both GPT-4 and LLaVA perform very poorly (below a ref-
erence baseline, which classifies images randomly) when
prompted without a reference image (p strategy). This is par-
ticularly clear for GPT-4, which misses the majority of wings
with defects (19% recall for aberrant phenotypes). We can
take this as a reflection of the models poor “a priori knowl-
edge” of how a normal Drosophila wing should look like.
Interestingly, both GPT-4 and LLaVA sometimes provided
answers including atypical terminology for the veins: “[...]
In a typical Drosophila wing, there are several key veins that
should be present and unbroken: the costa, subcosta, radius,
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Table 3. Results of model evaluations.

Aberrant phenotypes WT phenotypes

Model Accuracy Precision Recall F1 score Precision Recall F1 score Macro F1

GPT-4 (p) 0.35 1.00 0.19 0.32 0.24 1.00 0.38 0.35
GPT-4 (p+i) 0.69 0.93 0.66 0.77 0.37 0.80 0.51 0.64
LLaVA (p) 0.37 0.77 0.30 0.43 0.19 0.65 0.29 0.36
LLaVA (p+i) 0.66 0.79 0.78 0.78 0.18 0.20 0.19 0.49
Random baseline 0.50 0.81 0.49 0.61 0.21 0.55 0.31 0.46

media, cubitus, anal, and the crossveins. [...]”. Drosophila
wing veins are typically divided into longitudinal veins (L1-
5) and crossveins (ACV, PCV), while this terminology is
more often used to describe conserved features of overall in-
sect anatomy.
Given this starting point, the improvement in GPT-4 perfor-
mance across most metrics when provided with just an indi-
vidual reference image (p+i strategy) is impressive. In partic-
ular, an accuracy of nearly 70% and a F1 score of over 75%
in detecting wings with defects show some clear potential for
downstream applications. LLaVA (p+i) was also able to de-
tect wings with aberrant phenotypes with high performance,
however it greatly over-annotated wings as having defects, as
can be seen by its very poor results on WT phenotypes (see
Table 3).
From these results it is already clear that the task of automatic
recognition of phenotypes currently cannot be completely au-
tomatised, but VLMs could support researchers and speed
up the initial screening phase (for instance, LLaVA took less
than 3 seconds to examine and generate a description of each
image pair). This is especially true in a prototyping phase:
testing the capabilities of such approaches takes at most a
few lines of Python code (or can be done through an online
chat interface, like the case of GPT-4). This is very different
compared to a traditional supervised machine learning classi-
fication process, which would require obtaining training data,
setting up a pipeline and testing different algorithms before
seeing the first results.

Testing GPT-4 thread. As a second step, we decided to ex-
plore whether providing images to annotate as part of a thread
(instead of single images independently) would help or hin-
der performance. We compared two strategies, either pro-
viding all images one by one as part of a single thread or
providing images in 10 threads, each containing 10 images.
Note that input images were randomized across phenotypes
for all thread tests.
In Figure 2, we report a comparison of error-rates in chunks
of 10 examples; these chunks correspond to the input of each
thread in the p+i+10t approach. We compared the two thread
approaches with the GPT-4 (p+i) approach, which was the
one performing best in Table 3. As can be clearly seen,
the error rate of prediction for the single thread approach
(p+i+100t) greatly increases when provided with more than
50-60 examples, with the outputs indicating that the model
had seemingly “forgotten” the task at hand. On the other
hand, the 10 threads approach (p+i+10t) shows very good

and consistent performance, very much in line with the p+i
approach tested before. From this point on, we focus sub-
sequent performance analyses on the p+i approaches (GPT-4
and LLaVA) as well as the 10 threads (p+i+10t), which were
found to be the most promising strategies.

Fig. 2. Error rate of the thread and the prompt+image strategies for GPT-4, in
chunks of ten images.

Performance by Phenotype. In Table 4 we further exam-
ine the models performance by breaking down their evalu-
ation for the different phenotype classes. First of all, it is
evident that LLaVA (p+i) over-classifies wings as having de-
fects, as can be seen by its extremely low accuracy for control
images (20%, compared with an accuracy of 80% and 85% of
the GPT-4 based approaches). On the other hand, the GPT-4
approaches find it particularly difficult to recognise aberrant
phenotypes related to wing veins.

Table 4. Accuracy by phenotype class.

Phenotype GPT-4 (p+i) LLaVA (p+i) GPT-4 (p+i+10t)

V+ 0.45 0.80 0.55
V- 0.30 0.80 0.40
WM 0.74 0.65 0.78
WA 0.89 0.85 0.78
WT 0.80 0.20 0.85

We wondered whether the poor performance for some mod-
els and phenotype combinations could be due to the strength
of the phenotype to be analysed (e.g., too weak), and sought
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Fig. 3. Accuracy of defect classification by phenotype strength.

to test this. In Figure 3, we report the accuracy of the mod-
els for the binary classification task, split by the strength of
the phenotype: strong or weak, as reported in the published
dataset. Phenotypes without specific strength annotation are
considered of normal intensity. As can be noticed, both GPT-
based strategies perform similarly, with very high accuracy
(over 80%) for images with strong phenotypes and a drastic
decrease for images with weak phenotypes (reaching around
10% for the p+i+10t approach). To further stress the fact that
LLaVA’s outputs are unspecific, the performance for the three
groups are counter-intuitively very similar with each other,
and especially high when examining weak phenotypes.

Evaluation of output descriptions. In Table 3, we have
assessed whether VLMs are able to distinguish in a coarse-
grained way between wings with aberrant phenotypes (de-
fects) versus WT. However, the power of VLMs in compari-
son with traditional supervised classification pipelines lies in
the textual description that they generate. Therefore, we have
further assessed the quality of the descriptions provided by
the models with two additional checks:

• whether the model correctly identifies in the descrip-
tion the present phenotype class (for example, veins
are mentioned for a V+ or V- wing image);

• whether it does not produce any false information
about the phenotype.

As can be seen in Figure 4, LLaVA is the overall best per-
forming method in detecting wings with defects (with a ten-
dency of over-classifying wings with having defects, as al-
ready discussed in relation to Table 4). However, when ex-
amining whether the descriptions do in fact mention the cor-
rect defect, we see a decrease in performance of around 30%.
This is due to the fact that most of LLaVA’s generated de-
scriptions contain vague and false information. This is fur-
ther highlighted by the fact that less than 10% of images with
defects have been presented with a description that does not
contain any wrong information. This is clearly alarming for
any real application and so it is important to underline that

Fig. 4. Comparison of output description quality.

currently the potential of using a small VLM like LLaVA
might only reside in the initial filtering of wings with and
without defects, but they are very prone to hallucinations and
may provide textual descriptions of limited usefulness.
Results for GPT-4 show a less drastic decrease in perfor-
mance when compared to LLaVA, both in terms of mention-
ing the correct defect and avoiding hallucinations. The ad-
vantages of the p+i+10t approach are evident in this setting,
were in 55% of the images of wings with defects the correct
defect is mentioned in the description and 30% of descrip-
tions do not contain any wrong information.
In Table 5 we provide some examples of model outputs that
passed both checks, which highlight the potential of these
models to annotate a wide range of phenotypes with varying
degrees of severity. In Table 6 we further provide examples
of model “hallucinations” and incorrect outputs.

Discussion
In this study we have assessed the potential of vision
language models for the classification and annotation of
Drosophila phenotypes. We decided to focus this proof-of-
principle test on wing phenotypes, as they display a remark-
able range of variability, however the same strategies could
be adopted for other organs. For example, they could be
readily applied to detect Drosophila eye phenotypes, another
typical target tissue used in genetic and drug screening.

Our study identifies current limitations and potential pitfalls
of integrating VLMs in automated image analysis pipelines.
LLaVA, a small scale open-source model, did not perform as
well at GPT-4 in our tests. It has a tendency to over-classify
wings as abnormal (only 20% accuracy for WT wings) and
does not provide accurate descriptions of the phenotypes, of-
ten including irrelevant or wrong information. Despite these
issues, LLaVA could still be valuable in specific cases, for
example for the initial “flagging” of abnormal phenotypes in
cases where false positives are not an issue. We found that
GPT-4 performance when queried in a long thread dramati-
cally decreased after 50-60 images, so this should be taken
into account when designing the prompt strategy to use. Pro-
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Table 5. Examples of correct model outputs.

Model output Wing image

GPT-4 (p+i+10t): Upon inspecting this Drosophila wing, it is evident that there
is an abnormality. The vein near the top right, which should typically extend to
the wing margin, appears truncated and does not reach the edge of the wing as
it should. This represents a disruption in the normal vein pattern, which is an
important characteristic when assessing wing morphology. Other than this, the
wing shape, margin, and the majority of the vein pattern appear normal. The texture
of the wing also seems uniform without any signs of blistering. The defect in the
vein pattern is enough to categorize this wing as abnormal based on your criteria.
If you need further assistance with other wings, feel free to share them.

GPT-4 (p+i+10t): In this image, we can observe: The wing has a jagged edge
on the bottom right side, indicating a damaged wing margin. There’s a noticeable
gap in the wing’s surface texture in the same area where the margin is jagged.
The veins, while mostly normal, may also be affected by the damage to the wing
structure. The damage to the wing margin and the gap in the wing’s surface texture
classify this wing as abnormal, based on your criteria of looking for defects in
veins, wing margin, or wing texture.

GPT-4 (p+i+10t): This wing appears to show some irregularities. The most no-
ticeable issue is that the wing appears to be truncated at the distal end. There’s
a lack of the wing tissue that normally rounds out the tip, suggesting damage or
a developmental defect. Additionally, the wing looks narrower compared to the
standard wing shape. This deviation from the typical wing structure, especially the
truncated wing tip, would be classified as abnormal. If you’re tracking a genetic
issue or a developmental problem due to environmental factors, this wing could be
an important data point.

viding the data as “chunks” (e.g., 10 images) together with
the reference image gave the best performance in our hands.
Nevertheless, it is clear from our analyses that these tools are
still far away from fully automatising a phenotype screen-
ing process and human supervision is still needed to double-
check the results. Furthermore, all models appear very in-
sensitive to changes in wing shape and size: for applications
where the potential phenotypes involve subtle variations, ad-
hoc pipelines like MAPPER or FijiWings are a better choice.

Despite the current limitations, VLMs also clearly show a lot
of potential for future applications in this area. With a high
accuracy of 80-90% for normal to strong phenotypes and
overall output of 30% accurate descriptive outputs (pheno-
types correctly identified, with no wrong information added),
the best performing strategy (p+i+10t) could already be a
valuable addition to image analysis pipelines. As can be seen
in the examples in Table 5, this model can provide accurate
descriptions of complex phenotypes, which go beyond the
binary classification (normal/abnormal) and even the defect
“classes” (veins, wing margin, etc.). Additionally, by pro-
viding a reference image, we only began exploring the po-
tential of in-context learning and already obtained great im-
provements over the initial results. We therefore encourage
researchers to explore other few-shot learning strategies (12),
for instance offering reference images for all target defects to
be detected or providing feedback to the model on the gener-

ated outputs.

In this proof of concept, we leveraged an existing dataset
of annotated phenotypes based on images of dissected and
mounted Drosophila wings. The images were all very clear
and consistent (size, orientation), which simplified the task.
However, we envision that VLMs could be integrated in
pipelines capable of handling more complex scenarios, such
as the detection of defects in images of whole Drosophila
adults. For example, image segmentation approaches based
on Segment Anything (22) could be used to identify target or-
gan/s (eye, wings, legs) and then pass the segmented image to
VLM-based downstream phenotyping systems. This would
avoid the requirement of manually dissecting and mounting
tissues, massively improving throughput.

In addition to this, large collections of mounted Drosophila
wings (and other insects / tissues) already exist within
databases, publications and digitised museum collections.
VLMs could be extremely useful as part of pipelines to
“mine” these images for a phenotype of interest and obtain in-
formation about the relevant genotype and conditions. These
descriptions could then be integrated into existing databases
such as FlyBase (23). In this study, we found that VLMs per-
formance greatly increased by providing just an individual
reference image, so they could readily be applied to different
insect species and potentially used to discriminate them with
minimal references needed.
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Table 6. Examples of incorrect model outputs.

Model output Wing image

LLaVA (p+i): The image you provided appears to show two wings of flies, with
one being the control (normal) wing and the other being the test wing (abnormal).
When examining the wings for defects, we can look for abnormalities in several
aspects: vein patterns, wing margin, and wing texture. 1. Vein patterns: Drosophila
wings have a characteristic cross-vein pattern. Check if the veins are present and
correctly arranged. In this case, both wings seem to have normal vein patterns, so
this aspect appears normal. 2. Wing margin: The margin is the outer edge of the
wing where it meets the body. Look for any abnormalities, such as notches or gaps
in the margin. Both wings appear to have intact margins without any significant
defects. 3. Wing texture: This refers to the smoothness or roughness of the wing
surface. Any wrinkles or irregularities can be considered abnormalities. In both
wings, the wing texture seems normal and not significantly different from each
other. 4. Blistering: Look for any signs of blistering on the wing surface. Neither
of the wings shows any obvious signs of blistering. Based on these observations,
neither wing in the image appears to have any significant abnormalities compared
to the normal example. Both wings seem normal with no major defects visible in
the image provided.

LLaVA (p+i): Based on the image provided, the second Drosophila wing appears
to show some abnormalities compared to the first wing, which seems to be normal.
The abnormalities in the second wing include: 1. Vein defects: There is an extra
vein present in the second wing. This extra vein could potentially affect the func-
tion of the wing. 2. Wing margin defects: The wing margin (the outer edge of the
wing) appears to be somewhat irregular and uneven, which may indicate a problem
with the development of the wing. 3. Blistering: There are a few small blisters
visible on the second wing, which could suggest that there is some issue with the
cuticle layer of the wing. These abnormalities suggest that the second wing may
have been affected by genetic mutations or environmental factors during develop-
ment. It would be important to study such abnormal wings further to understand
the underlying mechanisms and potential implications for the fly’s ability to fly.

GPT-4 (p+i+10t): This wing also displays deviations from the normal structure
you initially showed. The base of the wing, where it attaches to the body, seems to
have a less organized and more crumpled appearance than expected. Additionally,
there’s a subtle discrepancy in the vein pattern near the center of the wing which
might indicate a developmental irregularity. Given these observations, I would
classify this wing as abnormal due to the apparent structural and vein pattern ab-
normalities. If you have more wings for review, just let me know.

To conclude, while visual language models are in their in-
fancy, they already show potential for multiple applications
in automated phenotyping studies. We encourage the com-
munity to carefully test them, being aware of their limita-
tions and leveraging upon their strength to advance interdis-
ciplinary research in this exciting new area between biology
and artificial intelligence.

Acknowledgements

We thank our colleagues Pablo Vicente Munuera, Courtney
Lancaster and Ryan Chan for helpful comments and discus-
sion. We also thank our little son, Leonardo, for being very
patient while we were discussing Drosophila wing pheno-
types during dinner.

References
1. Daniel St Johnston. The art and design of genetic screens: Drosophila melanogaster.

Nature reviews genetics, 3(3):176–188, 2002.
2. Mara Gladstone and Tin Tin Su. Chemical genetics and drug screening in drosophila cancer

models. Journal of Genetics and Genomics, 38(10):497–504, 2011.
3. Bedanta Kumar Barik and Monalisa Mishra. Nanoparticles as a potential teratogen: a lesson

learnt from fruit fly. Nanotoxicology, 13(2):258–284, 2019.
4. David Houle, Jason Mezey, Paul Galpern, and Ashley Carter. Automated measurement of

drosophila wings. BMC evolutionary biology, 3:1–13, 2003.
5. Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair,

Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid,
et al. Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7):
676–682, 2012.

6. Alexander C Dobens and Leonard L Dobens. Fijiwings: an open source toolkit for semi-
automated morphometric analysis of insect wings. G3: Genes, Genomes, Genetics, 3(8):
1443–1449, 2013.

7. Nilay Kumar, Francisco J Huizar, Pavel A Brodskiy, Marcos Nahmad, and Jeremiah J Zart-
man. Mapper: An open-source, high-dimensional image analysis pipeline unmasks differ-
ential regulation of drosophila wing features. Frontiers in Genetics, 13:869719, 2022.

8. Chris Stokel-Walker and Richard Van Noorden. What chatgpt and generative ai mean for
science. Nature, 614(7947):214–216, 2023.

9. Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4

Paci & Nanni | bioRχiv | 7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.27.594652doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.27.594652
http://creativecommons.org/licenses/by/4.0/


technical report. arXiv preprint arXiv:2303.08774, 2023.
10. Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui

Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of
highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

11. Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine learning: A
review of classification techniques. Emerging artificial intelligence applications in computer
engineering, 160(1):3–24, 2007.

12. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:
1877–1901, 2020.

13. Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi
Yang, Yiheng Liu, Songyao Zhang, et al. Review of large vision models and visual prompt
engineering. Meta-Radiology, page 100047, 2023.

14. Benj Edwards. Why chatgpt and bing chat are so good at making things up. Ars Technica,
2023.

15. Karen Weise and Cade Metz. When ai chatbots hallucinate. The New York Times, page 4,
2023.

16. Ana Lopez-Varea, Patricia Vega-Cuesta, Ana Ruiz-Gomez, Cristina M Ostale, Cristina Mol-
nar, Covadonga F Hevia, Mercedes Martín, Maria F Organista, Jesús De Celis, Joaquín
Culí, et al. Genome-wide phenotypic rnai screen in the drosophila wing: Phenotypic de-
scription of functional classes. G3, 11(12):jkab349, 2021.

17. Yonatan Bitton, Hritik Bansal, Jack Hessel, Rulin Shao, Wanrong Zhu, Anas Awadalla, Josh
Gardner, Rohan Taori, and Ludwig Schmidt. Visit-bench: A dynamic benchmark for eval-
uating instruction-following vision-and-language models. Advances in Neural Information
Processing Systems, 36, 2024.

18. Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
Advances in neural information processing systems, 36, 2024.

19. Anne Sonnenschein, David VanderZee, William R Pitchers, Sudarshan Chari, and Ian
Dworkin. An image database of drosophila melanogaster wings for phenomic and biometric
analysis. GigaScience, 4(1):s13742–015, 2015.

20. Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling
laws. In International Conference on Machine Learning, pages 7750–7774. PMLR, 2023.

21. Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199–22213, 2022.

22. Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 4015–
4026, 2023.

23. Arzu Öztürk-Çolak, Steven J Marygold, Giulia Antonazzo, Helen Attrill, Damien Goutte-
Gattat, Victoria K Jenkins, Beverley B Matthews, Gillian Millburn, Gilberto Dos Santos,
Christopher J Tabone, et al. Flybase: updates to the drosophila genes and genomes
database. Genetics, page iyad211, 2024.

8 | bioRχiv Paci & Nanni |

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.27.594652doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.27.594652
http://creativecommons.org/licenses/by/4.0/

