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Genotypic identification of polyclonal plasma cells in plasma cell dyscrasias shows an 

aberrant single-cell phenotype with clinical implications  
 
 
Authors 
 
Ma#eo Claudio Da Vià1*, Francesca Lazzaroni1*, Antonio Matera2, Alessio Marella2, Akhiro Maeda1, 

Claudio De Magistris1, Loredana Pe=ne1, Sonia Fabris1, Stefania Pioggia1, Alfredo Marche=1, Marzia 

Barbieri1, Silvia LonaC2, Alessandra Ca#aneo3, Marta Tornese3, Margherita Scope=1, Nayyer 

LaCfinavid2, Giancarlo Castellano1, Federica Torricelli4, Antonino Neri5, Cathelijne Fokkema6, Tom 

Coupedo6, Marta Lione=2, Francesco PassamonC1,2, Niccolò Bolli1,2# 

 
 
 
Affilia-ons 
 
 

1 Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 
Milan, Italy.  

 
2 Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy.   

  
3 Flow Cytometry Laboratory, Clinical Pathology Unit, IRCCS Foundation Ca' Granda Ospedale 

Maggiore Policlinico, Milan, Italy.  
 

4 Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio 
Emilia, Italy.   

 
5 Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy. 

 
6 Department of Hematology, Erasmus MC Cancer Institute, Erasmus Medical Center, 

Rotterdam, the Netherlands. 
 
 
 
* These authors contributed equally to this work 
#  Corresponding author 
 

Correspondence to: Niccolò Bolli, Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore 

Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.   

niccolo.bolli@unimi.it ; +390255033334  

Supplementary Table 2 is available upon request. 
 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.26.595470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 
 
 
SUMMARY 
 
MulCple Myeloma (MM) is driven by clonal plasma cell (PC)-intrinsic factors and changes in the 

tumorigenic microenvironment (TME). To invesCgate if residual polyclonal PCs (pPCs) are disrupted, 

single-cell (sc) RNAseq and sc B-cell receptor analysis were applied in a cohort of 46 samples with PC 

dyscrasias and 18 healthy donors (HDs). Out of n=213,074 CD138pos PCs, 42,717 were genotypically 

idenCfied as pPCs. Compared to HDs, we detected quanCtaCve and qualitaCve differences in pPCs of 

paCents showing immunoparesis, where we showed a pro-inflammatory status, driven by specific 

cellular interacCons with TME. Finally, we derived a “hPC signature” that, once inferred in the 

CoMMpass dataset, was predicCve of PFS and OS. Our findings show that genotypic, single-cell 

idenCficaCon of pPCs in PC dyscrasias has relevant pathogenic and clinical implicaCons. 
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INTRODUCTION  
 
Mul(ple myeloma (MM) is a plasma cell (PC) neoplasm whose origin is in the germinal center 

of a secondary follicle, in a B-cell undergoing class-switch recombina(on and soma(c 

hypermuta(on upon an(gen encounter1,2. Ini(a(ng soma(c events at the genomic level are 

thought to be transloca(ons of recurrent oncogenes to the immunoglobulin heavy chain (IGH) 

locus, or trisomies of several odd-numbered chromosomes1. The genomically aberrant post-

germinal center B-cell will s(ll migrate to the bone marrow (BM), differen(ate into a 

(monoclonal) an(body producing PC, and ini(ate a monoclonal expansion2. These early 

events in myeloma development are not recognized at the clinical level. However, an ini(al 

BM expansion of clonal PCs can be easily iden(fied by detec(ng a monoclonal protein (MP) 

with peripheral blood (PB) serum protein electrophoresis. Asymptoma(c PC expansions can 

be categorized as monoclonal gammopathy of undetermined significance (MGUS) or 

smoldering mul(ple myeloma (SMM) based on the BM monoclonal PC percentage3–5. MGUS 

and SMM are thought to universally precede development of ac(ve MM, even when not 

recognized. In turn, ac(ve MM is a clinically aggressive neoplasm that has caused end-organ 

damage or shows surrogate signs of high disease burden with imminent risk of end-organ 

damage5, and requires treatment to prolong the pa(ent’s life. Evolu(on from MGUS to SMM 

and MM is paralleled by the acquisi(on of secondary soma(c genomic events, such as gene 

muta(ons, further transloca(ons and copy-number abnormali(es (CNAs)6–8. However, the 

serial study of MM samples evolved from SMM shows that some cases do not display genomic 

changes9,10, so that not all clinical progressions can be explained by genomics alone. Indeed, 

the tumor microenvironment (TME) plays a clear pathogenic role in MM development11,12. 

Clonal PCs have been shown to interact with immune and non-immune microenvironment 

cells through aberrant signaling, receiving in turn pro-survival and an(—apopto(c paracrine 

s(muli13–16. Furthermore, surveillance from immune TME cells has the poten(al to prevent 

progression of asymptoma(c stages of clonal PC expansion17, and is disrupted along its 

progression11,15,18,19. Indeed, animal models show how loss of immune surveillance is causal 

to MM development from precursor stages20. Strategies to restore an(-MM immune func(on 

are a promising treatment approach in relapsed-refractory MM (RRMM) cases, where high-

risk genomic lesions are enriched and response to conven(onal treatments is poor21–23. In the 

era of novel immunotherapies, having a fit immune system correlates with the quality of 
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response, while T-cell exhaus(on predicts poor response to T-cell engagers and chimeric 

an(gen receptor T cells24–28 . Immunoparesis, defined as reduced levels of one or more non-

clonal immunoglobulin classes, is frequent in PC dyscrasias. Its prevalence increases from 

MGUS to SMM and MM. In asymptoma(c condi(ons, its presence is prognos(c for 

evolu(on29–31.  In MM pa(ents, immunoparesis can explain the increased suscep(bility to 

infec(on and is associated with an overall32 worse prognosis31. Clearly, immunoparesis can 

only be explained by disrup(on of polyclonal PCs. Indeed, a reduc(on in the number of 

phenotypically-defined polyclonal PCs has been described along progression of PC dyscrasias. 

Less is known about the func(onal proper(es of polyclonal PCs (pPCs) in various stages of PC 

dyscrasias. Single cell RNA sequencing (scRNAseq) has the poten(al to dissect the clonal and 

polyclonal PC popula(ons, and ini(al studies have found a different transcriptomic signature 

of the two popula(ons33–35. However, our studies and others 34,35 have shown that polyclonal 

PCs do not always clearly separate from clonal PCs in scRNAseq Uniform Manifold 

Approxima(on and Projec(on (UMAP) plots, sugges(ng that a pure transcriptomic approach 

fails to accurately iden(fy pPCs. Newer technologies allowing single-cell B-cell receptor (BCR) 

genotyping along with transcriptome sequencing of the same single-cell are beZer suited to 

unambiguously iden(fy pPCs. In this paper, we developed an algorithm to unambiguously 

iden(fy polyclonal PCs at the single-cell genotypic level. This allowed us to study their 

func(onal proper(es in MGUS, SMM and MM stage as well as in comparison with normal PCs 

from healthy donors (HD), showing they have profoundly deranged func(ons whose 

iden(fica(on is relevant for understanding disease pathogenesis and has prognos(c 

implica(ons. 
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RESULTS 
 
 
Landscape of polyclonal plasma cells across stages of PC dyscrasias 
 
We analyzed CD138-purified samples from 7 MGUS, 16 SMM and 23 MM pa(ents. CD138+ 

samples from HD were sourced locally (n = 1), from collaborators (n = 3), and from publicly 

available databases (n = 14)34,36. For pa(ents with PC dyscrasias (Table S1), we developed a 

workflow (Figure 1A) to leverage single-cell data to genotypically iden(fy clonal vs polyclonal 

PCs. The polyclonal nature of the laZer group was confirmed by the lack of iden(ty and 

hierarchical rela(onship of the heavy and light chain BCR sequence with the BCR sequence of 

clonal PCs of the same pa(ent (Table S2). PCs sharing the same light chain, or substan(al 

iden(ty with the clonal sequence were excluded from analysis (STAR Methods, Table S2). 

Copy-number abnormali(es (CNAs) analysis through InferCNV37 confirmed that pPCs of each 

individual sample did not share any of the CNAs observed in their cPCs counterparts (Figure 

S1,S4). Aeer filtering cells using standard quality controls, a total of n= 213,074 PCs (n=32,704 

from HDs, n= 15,882 from MGUS, n= 55,409 from SMM and n= 109,079 from MM) (Figure 1B) 

were used for further analysis. Using this approach, n= 170,357 cells (79,95%) were genotyped 

as clonal (cPCs) and n= 42,717 (20.04%) as polyclonal (pPCs). Overall, the frequency of pPCs 

was higher for MGUS and decreased in SMM and MM samples. The number of pPCs was n= 

3,103 (19.53%) in MGUS, n= 3,291 (5.93%) in SMM, and n= 3,619 (3.31%) in MM (Figure 1B-

C). In the sample space, pPCs from different individuals tended to cluster together. However, 

there was a considerable admixture of pPCs and cPCs in the sample space of each pa(ent 

(Figure 1D), indica(ng that transcriptomics alone is likely insufficient to accurately dissect 

every pPC from cPCs. The UMAP distribu(on of cells by disease stage also lacked a clear-cut 

picture, even though MM samples tended to differen(ate the most from the asymptoma(c 

ones (Figure 1E). We next looked at canonical PC marker genes. Our analysis confirmed 

previous observa(ons, such as the frequent loss of CD2734,38,39 in cPCs, and their uniform 

expression of CD38, CD138 and BCMA (TNFRSF17). As expected, oncogenes such as NSD2 and 

CCND1/2, and MAF were only expressed in cPCs. Interes(ngly, we found GPRC5D expression 

to be on average lower in pPCs than in cPCs from the same pa(ents (Figure S5A-B) which 

might have clinical implica(ons for the risk of infec(ons in an(-GPRC5D T-cell redirec(ng 
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immunotherapies versus an(-BCMA treatment25 (Figure S5C-D). Of note, pPCs frequently 

expressed markers usually aZributed to cPCs such as IGTB7, CCND3, and this was true for both 

pPCs from pa(ents and PCs from HDs (Figure 1F). In summary, these results highlight the 

importance of clonotypically iden(fying cPCs from pPCs in pa(ents with PC dyscrasias. While 

canonical marker genes show expected expression paZerns, whole-transcriptome analysis 

shows that pPCs have a transcriptomic profile that is not clear-cut different from cPCs. 

 
Polyclonal PCs from pa-ents show deregulated expression profiles and an inflammatory 
phenotype 
 
 
To further delineate the phenotype of n= 42,717 pPCs, we started the analysis by determining 

transcriptomic heterogeneity of pPCs in our cohort of samples, aeer filtering cells using 

standard quality controls (Figure S6A-B). Re-plokng only pPCs from pa(ents and PCs from 

HDs, we observed a slight divergence of the two groups, but overall, there was a considerable 

overlap of cells from all disease stages (Figure 2A). Aeer crea(ng UMAP plots by clusters and 

by pa(ents (Figure S7A-B), we next asked what genes are differen(ally expressed in the 

different clinical categories. Interes(ngly, pPCs from pa(ents showed a similar paZern, 

different from HDs (Figure 2B). The laZer group showed overexpression of genes such as 

DUSP1, SELK, FKBP2 and GNB2L1, mainly involved in protein folding and protec(on against 

oxida(ve stress. Conversely, in pPCs from pa(ents we found upregula(on of genes usually 

associated with inflamma(on and/or stress condi(ons, such as the autophagy receptor 

SQSTM1, the growth inhibitor GADD45B, and the VIM gene, oeen upregulated during 

epithelial to mesenchymal transi(on (Figure 2B). When looking at sets of genes implied in 

MM pathogenesis, again canonical PC marker genes were not different between pPCs in 

pa(ents and HDs. We recognized exclusively genes in pPCS from pa(ents that are not 

expressed in HDs such as CTSB, CTSD, OPTN involved in autophagy. Even more interes(ngly, 

we found that only PCs from SMM and MM upregulate the surface integrin ICAM1, implying 

that interac(on with the TME changes for pPCs in more advanced stages (Figure 2C). We 

performed a differen(al expression (DE) analysis to look at pathway analyses in all possible 

1:1 contrast combina(on (Wilcoxon rank sum test, with padjust Benjamini-Hochberg 

correc(on). Compared to pPCs from HD there was an upregula(on of inflammatory pathways 

(hallmark TNF a and IFN a  response, hallmark oxida(ve phosphoryla(on) in pPCs from 
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pathological samples, as well as comparing pPCs across disease stages to each other, with the 

most clear-cut differences between MGUS and SMM/MM (Figure 3A, Figure S8A-C). In 

summary, we showed a climax of increasing inflammatory status from HD to MM (Figure 3B, 

Figure S8A-C). 

 
 
Single-cell transcriptomic correlates of immunoparesis 
 
 
Produc(on of polyclonal immunoglobulins in pa(ents with plasma cell dyscrasias is impaired 

to variable extents. Par(cularly, reduc(on in the produc(on of uninvolved immunoglobulins is 

seen as a risk factor for progression in asymptoma(c condi(ons31,40, and as a risk factor for 

survival and infec(ons in MM, where it also predicts lower response to vaccina(on41,42. Our 

unique dataset allowed us to specifically characterize the transcrip(onal profiles of pPCs in 

samples with and without immunoparesis, defined as the decrease of one or more of the 

uninvolved immunoglobulin classes31. Having shown the presence of strongly enriched 

inflammatory pathways in pathological pPCs, we next sought to define their expression profile 

in immunoparesis-posi(ve pa(ents.  

Of n= 46 samples (n=10,013 pPCs) (Figure 4A), 38 showed immunoparesis. We first observed 

that pPCs frequency tended to decline in pa(ents showing immunoparesis (Figure S9A-D), 

likely explaining at least in part the decreased produc(on of immunoglobulins. We next 

analyzed their gene expression profile. The immunoparesis-nega(ve pa(ents showed the 

expression of genes related to NF-KB (i.e. BIRC3), cell adhesion (i.e. CXCR4, SDC1 and PECAM1), 

autophagy (i.e. FOS, CST3) and an(-apopto(c (i.e. DYNLL1) pathways. As compared to pPCs in 

pa(ents without immunoparesis, pPCs in pa(ents with immunoparesis showed upregula(on 

of genes related to the interferon pathway (i.e. IRF1, MX1 and ISG15), Unfolded Protein 

Response (UPR) (ERN1), cell prolifera(on and apoptosis (i.e. H3F3B and NOP53), implying a 

more deregulated transcriptome (Figure 4B). Then, to explore the func(onal consequences of 

gene expression deregula(on we performed DE analysis comparing the immunoparesis status 

within the subset of symptoma(c pa(ents (n=23). Here, in presence of immunoparesis pPCs 

were func(onally enriched for interferon related pathways (hallmark IFN a and hallmark IFN 

g) and oxida(ve phosphoryla(on (Figure 4C-D). Taken together, our results reveal consistent 
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changes in expression profiles of pPCs in immunoparesis- posi(ve pa(ents and correlate the 

presence of a pro-inflammatory phenotype with decreased immunoglobulin produc(on. 

 
 
The interactome landscape of immunoparesis in polyclonal PCs 
 

Since progression and persistence of MM malignancy are influenced by the BM TME, and 

func(onal proper(es of both cPCs and pPCs are clearly dependent on interac(ons with the 

TME, we next inves(gated the cell-cell interac(ons between PCs repertoire and TME in the 

BM. To gain a first insight into the composi(on of the TME, we performed scRNA-seq of n=31 

paired CD138 posi(ve- CD138 nega(ve cell frac(ons within our cohort. In total, we integrated 

n= 171,928 cells into a single dataset and used the Mul(NicheNet pipeline43, a tool that infers 

cell-cell interac(ons based on ligand-receptor expression and on the pathway ac(va(on 

downstream of the ligand in different cell types. To untangle the complexity of the TME, cPC  

n= 102,194, pPC n= 7,447, and TME cells n=62,287 were analyzed (Table S3). The TME and the 

PCs’ compartment mapped separately in UMAP plots (Figure 5A). Here, we found, n= 148,006 

cells of n=23 (n=89,037 cPCs, n=3923 pPCs, n=55,046 TME) characterized by immunoparesis 

and n= 23,922 cells from n=8 immunoparesis-nega(ve samples (n= 13,157 cPCs, n= 3,524 

pPCs, n= 7,241 TME) (Figure 5B). Splikng the TME data by cell type, n=32,966 T cells, n=3,472 

B cells, n=15,261 myeloid cells, n= 6,589 NK cells, n=1,019 dendri(c cells and  n=2,980 HSCs 

were analyzed and no significant differences were observed in the rela(ve composi(on of the 

TME popula(ons (Table S3, Figure S10) between immunoparesis-posi(ve and immunoparesis-

nega(ve pa(ents (Figure 5B, Table S3, Figure S10). As expected, we found a significant 

deple(on of pPCs in immunoparesis-posi(ve pa(ents (padjust = 0.004)(Figure S10). 

To understand disrup(on of inter-cellular rela(onships in this scenario, we first analyzed the 

immunoparesis-nega(ve sekng. Comparing top-ranked ligand-receptor interac(ons and 

analyzing the downstream targets, pPCs were predicted to be able to send signals to specific 

cell compartments such as pPCs, CD8-effector, CD8 memory and progenitor RBC cells (Figure 

5C, Figure S11A-B). Mining PCs as senders, of relevance were the CD38: PECAM1 (CD31) cell 

interac(on -with a role in regula(on of cell migra(on-, and a broad spectrum of interac(ons 

media(ng cell adhesion involving ICAM2, ICAM3 and ITGB2 (T lymphocytes), already described 

in promo(ng cell survival processes.44–48 Furthermore, cPCs and pPCs, displayed the ability to 
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receive signals from myeloid (DCs, HSCs, monocytes, pDC and Mk progenitor cells, 

lymphocytes (CD8 effectory, CD8 memory, NK, progenitor B  and MAIT cells), compartments. 

In this scenario, immune and inflammatory responses were driven by the specific interac(on 

of THBS-1 (in monocytes and Mk progenitor cells) with SDC1 (in pPCS) and ITGA6 (in pPCS), as 

well as by the signaling of HMGB-1 (in HSCs, NK, pDCs, MAIT, CD8 cells, progenitor B cells and 

monocytes) :SDC1 (in pPCS). In addi(on, we found the CCL5:SDC1 ligand-receptor interac(ons 

between T cells and cPCs/pPCs, known to be involved in tumor cell migra(on49. Looking at the 

downstream deregulated gene targets, derived by ligand-target correla(on, genes implicated 

in the autophagy axis and in ER stress (BNIP3, MT1X, MT2A)50,51 were upregulated as well as 

B cell survival pathways regulators (i.e. CD74 and ITGA6)52 (Figure S12A-B). These findings 

highlight an ac(ve involvement of pPCs in the pro/inflammatory TME in immunoparesis-

nega(ve cell landscape. However, pPCs in this sekng maintain their func(onal role through 

autophagy, ER stress regula(on and B cell survival pathway ac(va(on. 

 

Conversely, cPCs became the main contributor of TME interac(ons in the immunoparesis-

posi(ve cell landscape, where a significant deple(on of pPCs:TME interac(ons was observed 

(Figure 5D, Figure S13A,B).  These differences were not simply determined by a deple(on of 

pPCs since the differen(al expression analyses are normalized for cell count. 

In detail, cPCs and pPCs were characterized by the inflammatory signaling mediated by the 

IFITM1:CD81 interac(on (pPCs: pPCs, pPCs:CD8 effector/memory cells, Treg:pPCs), that is 

involved in IFN-gamma response pathway53,54. Of note, in this scenario where the interac(ons 

between myeloid compartment and pPCs were significantly depleted, DCs and pDCs were 

found to sustain pPCs survival through BAFF-BCMA axis55–57. 

Furthermore, the axis TGFB2:TGFBR1/TGFBR2/ TGFBR3 mediated interac(ons between cPCs 

and CD8 T cells together with TGFB1:ITGB1 (MAIT and NK with pPCs), sugges(ng a role of PCs 

in the immunosuppression of T-cell compartment. Of note, the g-chain cytokine IL-15 was 

shown to signal from pPCs in an autocrine manner to pPCs and in a paracrine manner to cPCs 

by binding the common cytokine receptor γ chain (γc or CD132; encoded by the IL2RG gene) 

in the immunoparesis-nega(ve sekng. Conversely, in immunoparesis-posi(ve pa(ents, this 

cytokine signals from cPCs to cPCs and pPCs through the IL15RA receptor58–61. Only in this 

laZer sekng, the downstream signalling involves ac(va(on of pro-inflammatory pathways. 

Furthermore, downstream target genes related to inflamma(on and interferon pathways 
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were upregulated (i.e. IFI16, IFIT3, PLSCR1)62 as well as nega(ve regulators of NF-kB pathway 

such as TNFSF10. Conversely, in this sekng genes related to autophagy and B cell maintenance 

resulted downregulated (i.e. CSTH, BNIP3, MTX1, MT2A)34,50  (Figure S14A,B). Altogether 

these data support the presence of a pro-inflammatory status in immunoparesis-posi(ve 

pa(ents, driven by specific cellular interac(ons that are disrupted in immunopare(c pa(ents 

likely impac(ng pPCs survival and func(on.   
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Signature analysis allows predic-on of survival in independent datasets 
 
The presence of residual PCs has been correlated with prognosis in MM pa(ents33,34. Our data 

show that even pPCs in pa(ents can be profoundly dysregulated and different from PCs in 

HDs. Our unique dataset therefore allowed us to generate a “healthy PC” (hPC) signature 

through the union of the differen(ally expressed genes in the three contrasts of PCs from HD 

with pPCs from MGUS, SMM, and MM pa(ents respec(vely. Importantly, our hPC signature 

corrects for the dysregulated expression of pPCs in pa(ents and incorporates a total of n=148 

genes (Figure 6A, Table S4) represen(ng genes truly expressed in hPCs only. Then, a specific 

immunoparesis signature, composed by n=10 deregulated genes, was derived by comparing 

immunoparesis-nega(ve with immunoparesis-posi(ve pa(ents, in asymptoma(c and 

symptoma(c subset (Figure 6B, Table S5). 

Applying the hPC signature in our cohort, a gradient could be observed whereby the signature 

was enriched in HD, and progressively less represented in pPCs from MGUS, SMM and MMs 

cases (Figure 6C, upper panel). The same inference was performed with the immunoparesis 

signature which showed an opposite trend, resul(ng more enriched from MGUS to MMs 

(Figure 6C, lower panel). Indeed, the hPCs signature an(-correlated with the signature of 

immunoparesis in our pPC dataset, implying that cases enriched for abnormal pPCs have a 

lower propensity to produce polyclonal immunoglobulins and might express a more corrupted 

phenotype than healthy PCs (R: - 0.29, p.value < 2.2e-16 , Figure 6D). 

Finally, we decided to determine if enrichment for the hPC signature could have a clinical 

impact within a NDMM popula(on. We hypothesized that in bulk RNAseq generated from 

CD138-selected cells part of the signal could be generated by pPCs. We therefore interrogated 

the RNAseq data of CoMMpass and ranked pa(ents based on the frac(onal representa(on of 

the hPCs signature. A simple categorical dis(nc(on based on the enrichment of the hPCs 

signature above and below the median clearly separated pa(ents based on their survival. 

Specifically, the median progression-free survival (PFS) was 3.52 years [95% confidence 

interval, 3.13-4.21 years] in pa(ents above the median and 2.16 years [95% confidence 

interval , 1.94-2.75 years] in pa(ents below the median (p.value = 0.0006, log-rank test, Figure 

6E). Median overall survival (OS) was not reached in pa(ents above the median and was 5.5 

years [4.68- not reached years] in pa(ents below the median (p.value < 0.0001, log-rank test, 
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Figure 6F). Based on these results and assuming that the hPCs score might represent a 

surrogate of residual func(onal “polyclonality” within clonal PCs, we could argue that the 

maintenance of a normal polyclonal popula(on impact on pa(ent’s survival, poten(ally 

explaining the observed correla(on between immunoparesis and prognosis42. 

 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.26.595470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

DISCUSSION 
 
The TME architecture has long been implicated in ini(a(on and evolu(on of PC dyscrasias. 

pPCs are an obvious component of the TME but have been understudied despite a clear 

biological and clinical relevance. Part of this depends on technical issues. For example, pPCs 

cannot be separated from cPCs based on isola(on with magne(c beads nor with flow-sor(ng. 

In this scenario, we applied a comprehensive approach including sc-RNA sequencing coupled 

with BCR genotyping to unambiguously iden(fy pPCs in pa(ents with plasma cell dyscrasias. 

To confirm the robustness of our approach, CNA analysis on pPCs and cPCs showed clonal 

aneuploidies only in the laZer popula(on. 

Using this advanced approach, we provide evidence that pPCs would not necessarily be 

iden(fied with accuracy based on transcriptomics alone. Indeed, even aeer removing 

immunoglobulin genes, i.e. highly expressed cell-specific genes accoun(ng for a big part of 

the transcriptomic diversity between cells, RNAseq alone may not effec(vely separate clonal 

and polyclonal cells33,34. Our data showing that pPCs did not necessarily segregate away from 

cPCs from the same pa(ent in the UMAP space, suggest they are themselves phenotypically 

aberrant. This is different from previous studies34, and can be explained at least in part by the 

innova(ve methodology we employed. 

pPCs from pa(ents showed the expected differen(al expression of canonical marker genes as 

compared to cPCs. However, we also convincingly show that GPRC5D expression is na(vely 

lower in pPCs than in cPCs, a finding which may suggest that an(-GPRC5D bi-specific 

an(bodies may rela(vely spare pPCs and explain the lower prevalence of infec(ons in such 

pa(ents contrary to an(-BCMA an(bodies63.  

However, aside from canonical marker gene expression, our data reveal a profoundly 

dysregulated transcriptomic landscape of pPCs from pa(ents affected by asymptoma(c or 

symptoma(c PC dyscrasias when compared to BM PCs derived from HDs sourced with a broad 

age range. In this sekng, pPCs showed upregula(on of IFITM1, SQTM1, CTSB, CTSD, OPTN53,54 

markers as well as ICAM164–68, implying an upregula(on of inflamma(on, autophagy and 

interferon pathways, with a climax from asymptoma(c to symptoma(c pa(ents . Of note, the 

primary purpose of autophagy is to sustain the cellular homeostasis in extreme condi(ons69, 

such as the ones promoted by oxida(ve and proteotoxic stress due to an intense produc(on 

and secre(on of immunoglobulins69–71. Therefore, autophagy is fundamental for long-lived 
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PCs to op(mize the protein metabolism and the cell viability70–73 and we believe that this 

pathway is exaggerated in the sekng of residual pPCs with the BM of pa(ents with PC 

dyscrasias. Our findings also have transla(onal implica(ons. pPCs derived from 

immunoparesis-posi(ve pa(ents showed upregula(on of IRF1, MX1 and ISG15, ERN1, H3F3B 

and NOP53 genes sugges(ng ac(va(on of IFNa and IFNg pathways, UPR and cell 

prolifera(on/apoptosis signaling in the suppression of uninvolved immunoglobulins. We 

further extended this analysis by looking at intercellular interac(ons between PCs and the 

TME within each pa(ent. Here, we provide evidence of a TME poised for inflamma(on in 

immunoparesis-posi(ve pa(ents. In this scenario, we observed a significant decrease in the 

number of interac(ons of pPCs with other immune cells in the TME. Furthermore, pPCs were 

characterized by a pro-inflammatory transcriptome. The interac(on between IFITM1 and 

CD81 and the ac(va(on of the TGFB2:TGFBR1/TGFBR2/TGFBR3 axis that we see in our 

pa(ents were indeed shown to be mainly driven by IFN pathways and may affect pPCs survival 

and func(on, including produc(on of IgM and IgG74.Furthermore, at the cell-intrinsic level, 

our data showed a reduc(on in expression of authopagy marker genes combined with an 

increase of pro-apopto(c genes. Altogether, our findings shed new light on mechanisms of 

deregulated pPCs homeostasis leading to immunoparesis in pa(ents affected by PC dyscrasias. 

Furthermore, based on previous studies75–77  we speculate that in these condi(ons the 

immune microenvironment could be less competent in an(gen-presen(ng ac(vity as well as 

in immunosurveillance, further adding to the complex interrela(onships between an(body 

produc(on, immunity and tumor progression.  

One important ques(on is what the primary cause of an inflamed TME is. Disease 

pathogenesis and our data may suggest that cPCs, through perturbed interac(on with pPCs 

and other cells in the TME, might be responsible. However, it can also be argued that a 

perturbed and a pro-inflammatory TME can itself has a primary driver role in PC dyscrasia 

development, deranging the normal BM PC transcrip(onal program and thus promo(ng the 

growth of pre-exis(ng cPCs -harboring ini(a(ng genomic lesions- whose prolifera(ve 

poten(al was not expressed un(l then. The no(on that cPCs can progress to an overt MM 

without acquiring new genomic events and thus poten(ally based on microenvironmental 

s(muli, is indeed quite substan(al20,73 and our data shed some light for the first (me on the 

type of selec(on applied from the TME on BM polyclonal PCs. 
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Intriguingly, we also iden(fied a specific “healthy” PC signature by comparing PCs from HD 

with pPCs of pa(ents rather than to total CD138+ cells, that resulted decreased across disease-

stages and an(-correlated with the immunoparesis signature. Notably, using RNAseq data 

from the CoMMpass dataset, pa(ents with an HD signature enrichment over the median 

showed a beZer PFS and OS. These findings emphasize the role of residual func(onal 

“polyclonality” within BM PCs, sugges(ng that the maintenance of a normal polyclonal 

popula(on impacts on pa(ent’s survival and poten(ally explaining the observed inverse 

correla(on between immunoparesis and prognosis 75. In conclusion, our study employs a new 

methodology of analysis to gain deep insights into transcrip(onal landscape of pPCs in PCs 

dyscrasias, sugges(ng they are key players in the TME, and their disrup(on has biological and 

clinical consequences whose understanding may impact research and treatment of MM. 
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REAGENTS or RESOURCE SOURCE IDENTIFIER 

Critical commercial assays 

BCR Amplification Kit 10X Genomics PN-1000253 

Chromium Next GEM Single Cell 5’ 
Reagent Kits v2 

10X Genomics PN-1000263 

Chromium Next GEM Chip K 10X Genomics PN-2000286 

Sample Index PCR 10X Genomics PN-1000190 

Dual Index Kit TT Set A 10X Genomics PN-1000215 

SPRIselect beads SPRIselect Reagent Kit Cat# B23318 

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592 

High Sensitivity D5000 Reagents Agilent Cat# 5067-5593 

   

Software and algorithms 

ggplot2 CRAN v 3.4.4 

R CRAN v 4.3.2 (2023-10-31) 

Seurat CRAN v 4.4.0 

InferCNV Bioconductor V 1.16.0 

MultiNicheNet GitHub repository V 1.0.3 

ClusterProfiler Bioconductor v 4.10.0 

DoubletFinder GitHub repository v 2.0.4 

Harmony CRAN v.1.2.0 

Survival CRAN v 3.5-8 

Survminer CRAN v 0.4.9 

ComplexHeatmap Bioconductor v 2.18.0 

   

Antibodies and reagents 

EasySepä CD138 Positive selection 
kit II 

STEMCELL Technologies Cat# 17887A 

Bambanker  NIPPON Genetics Europe Cat# BB02 

RPMI Medium 1640 + GlutaMAXä gibco Cat# 61870-010 

Fetal Bovine Serum, FBS gibco Cat# A5256701 

Phosphate buffered saline, PBS gibco Cat# 70011-044 

UltraPureä 0.5M EDTA, pH 8 Invitrogen Cat# 15575-038 

Ficoll-Paqueä PLUS Cytiva Cat# 17144002 

Erythrocyte lysing solution Bio-Techne (Cytognos) Cat# CYT-BL 

Quant-iTä PicoGreenä dsDNA 
Assay kit 

Invitrogen Cat# P7589 
   

Visualization softwares  
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RESOURCE AVAILABILITY 
Lead contact 

Further informa(on and requests should be directed and will be fulfilled by the lead contact, 

Niccolò Bolli (niccolo.bolli@unimi.it). 

 

 
Materials availability 

This study did not generate new unique reagents. 

 

 
 
 
Data and code availability 

The raw data and processed scRNA-seq data, including gene expression matrices and cell 

annota(ons, have been deposited at the European Genome-Phenome Archive (hZps://ega-

archive.org/) under accession numbers EGAC50000000232. 

R script wriZen for the analysis of the single cell datasets is available on 

hZps://gitlab.com/bollilab. ScRNA-seq data and R script required to reanalyze the data 

reported in this manuscript, are available from the lead contact request 

(niccolo.bolli@unimi.it). 

 

EXPERIMENTAL MODEL AND STUDY PARTECIPANTS DETAILS  
 
Sample selec-on  
 
 

Illustrator 2024 Adobe 
 

Photoshop 2024 Adobe 
 

Prism 10 Graphpad v 10.1.1 

Biorender   

Databases 

GEO accession number 
#GSE193531 

  

GEO accession number 
#GSE230705 
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For this study, bone marrow (BM)  aspirates from of n= 46 samples, affected by MGUS (n=7), 

SMM (n=16)  and MM (n=23) were obtained at Fondazione IRCCS Ca' Granda Ospedale 

Maggiore Policlinico, Milan (Italy), according to IMWG criteria (PMID: 25439696 ). Detailed 

clinical informa(on for each case is provided in Table S1. The study was conducted in 

accordance with the Declara(on of Helsinki and approved by the Ins(tu(onal Review Board 

(Ethical CommiZee # 553_2022). WriZen informed consent was obtained from the pa(ents, 

as appropriate. All pa(ents were de-iden(fied prior to processing. 

One sample from healthy donor (HD) was collected at Fondazione IRCCS Ca' Granda Ospedale 

Maggiore Policlinico, Milan (Italy), as well as (n = 3) from Erasmus MC Cancer Ins(tute, 

RoZerdam, (The Netherlands).  N=14 (HDs) samples were obtained from publicly available 

databases34,36 . In par(cular, from Boyarsky et al34, a subset with only count derived from the 

9 healthy donors was performed (NCBI Gene Expression Omnibus (GEO) database accession 

number #GSE193531). From Duan36 et al., data derived from 5 healthy donors have been used 

as control: within this, only counts derived from sorted cell popula(on B 

(CD19+/CD138+/CD38+) and cell popula(on D (CD19-/CD38+/CD138+) were used for further 

analysis (GEO accession number #GSE230705). The range of HD ages is 25-79 years. The 

polyclonal status of the healthy donor collected in our ins(tu(on was defined through scV(D)J 

seq defining the absence of PCs clones with a frequency higher than 5% of the en(re PCs 

popula(on. 

 

Sample processing 

Mononuclear cells (MNCs) were isolated by Ficoll-Paque medium (Cy(va, Cat# 17144002) 

density gradient centrifuga(on. CD138+ BM cell frac(ons were isolated by immune-magne(c 

approach through posi(ve selec(on with the EasySepä CD138 Posi(ve selec(on kit II 

(STEMCELL Technologies, Cat#17887A), aeer erythrocyte lysis (Cytognos, Cat# CYT-BL), 

following manufacturer’s instruc(ons. Cells were counted based on Trypan Blue staining and 

the resul(ng cell suspension was used for downstream applica(ons. 

N=8 CD138- samples were cryopreserved in liquid nitrogen using Bambanker (NIPPON 

Gene(cs Europe, Cat. #BB02). 
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Thawing of Cells 

Cell thawing was conducted following standard protocols. N=8 samples, stored in liquid 

nitrogen, were swiely transferred to a 37°C water bath un(l the vial contents were fully 

dissolved. Subsequently, the content was transferred to a Falcon tube containing pre-warmed 

RPMI (Cat# 61870-010) containing 10%FBS (Cat# A5256701), followed by a washing step. 

 

Method details 

Single-cell RNA 5’ sequencing library construc-on and sequencing 

Isolated cells from each sample were washed three (mes with 1X Phosphate-Buffered Saline 

(PBS, calcium and magnesium free) containing 0.04% weight/volume FBS (Gibco, Cat# 70011-

044) and manually counted by the Burker chamber. In order to have a desired recovery target 

of 9,000 cells, the volume of cells to load was calculated for each sample according to “Cell 

Suspension Volume Calculator Table” on Chromium Next GEM Single Cell 5’ v2 protocol 

(CG000330 Rev E). Then Single-cell 5ʹ RNA-seq libraries were generated using the Chromium 

Next GEM Chip K (10X Genomics; PN-2000286) with Master Mix from Chromium Next GEM 

Single Cell 5’ Reagent Kits v2 (Dual Index) (10X Genomics; PN-1000263), Single Cell VDJ 5’ Gel 

Beads (10X Genomics; PN-1000253) following standard manufacturer’s protocols. Briefly, cell 

suspensions were loaded onto the Single Cell K chip followed by gel beads in emulsion (GEM) 

genera(on on the Chromium Controller. Next, GEMs were broken, and pooled frac(ons were 

recovered. 

Following the barcoded, full-length cDNA amplifica(on, the cDNA was purified by SPRIselect 

Reagent (Cat# B23318) and quan(fied using Picogreenä dsDNA assay kit (Cat# P7589) and 

quality assessed using High Sensi(vity D5000 ScreenTape (Agilent, Cat# 5067-5592) with High 

Sensi(vity D5000 Reagents (Agilent, Cat# 5067-5593) at the Agilent 4150 TapeSta(on 

machine. Then, Illumina R2 sequence, as well as P5, P7, i5 and i7 sample indexes were added 

according to standard protocol procedure (10X Genomics; Library Construc(on Kit, PN-

1000190 and Dual Index Kit TT Set A, PN-1000215, respec(vely). Parallelly, BCR Amplifica(on 

Kit (10X Genomics; PN-2000253) was used for V(D)J analysis. High Sensi(vity D5000 

ScreenTape and its reagents were used to assess the library quality, as well as Picogreenä to 

determine libraries concentra(on. Finally, Generated libraries were combined according to 

Illumina specifica(ons and sequenced on a NovaSeq6000 pla�orm (Illumina sequencing 
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system) using a 150bp Paired End protocol, targe(ng approximately 100,000 reads/cell and 

15,000 reads/cell for 5’ gene expression and V(D)J enriched libraries, respec(vely, according 

to manufacturer’s recommenda(ons. 

 

CD138+ pre-processing single-cell RNA sequencing analysis 

The gene expression (GEX) and V(D)J single-cell RNA-seq data were aligned and quan(fied 

using the Cell Ranger (v 7.1) pipeline (hZps://www.10xgenomics.com/) against the human 

genome GRCh38 (refdata-gex-GRCh38-2020-A and refdata-cellranger-vdj-GRCh38-alts-

ensembl-5.0.0, respec(vely) using the func(ons “counts” and “vdj counts” for single- cell 

RNAseq and V(D)J deconvolu(on, respec(vely.  Then, Seurat pipeline (v 4.4.0,) was used to 

analyze expression matrices. Low-quality cells defined as mitochondria gene content >5%, or 

number of detected genes < 200 or > 3,000 were removed using Seurat pipeline (v 4.4.0, 

hZps://sa(jalab.org/seurat). In order to avoid cell clustering confounding factors, 

immunoglobulin related genes, were removed for downstream analyses. Doublets were 

filtered out using DoubletFinder78 (v 2.0.4) with the core sta(s(cal parameters (nExp, pN and 

pK) determined automa(cally using recommended sekngs for each sample. nCounts_RNA, 

n_FeatureRNA and percent_MT were checked for each sample and reported in Figure S6 A, 

B. An automated cell assignment was applied on previously filtered single-cell which  were 

projected onto a complete Bone Marrow reference map (v4.4.0, 

hZps://sa(jalab.org/seurat/ar(cles/mul(modal_reference_mapping.html)79. The clonotype 

informa(on was incorporated for each cell by matching the barcodes from the single-cell V(D)J 

(scVDJ) with those from the single-cell gene expression (scGEX). This process facilitated the 

classifica(on of cells as either harboring clonal or polyclonal clonotypes. 

 

Polyclonal cell selec-on  

In order to analyze a clear popula(on of genotypically iden(fied polyclonal plasmacells (PCs), 

a strict mul(step process was applied: (i) for each pa(ent the dominant clonotype was defined 

as the recurrent V(D)J rearrangement within the clonal popula(on; (ii) the nucleo(de 

sequence of the CDR3 of any non-clonal clonotype (heavy chain and light chain 

rearrangement) was blasted against the nucleo(de sequence of the dominant V(D)J 

rearrangement; (iii) all those cells whose the blast analysis return with certain grade of 

homology were manually inspected. Cells with a dubious homology (more than 90% as for the 
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IGH as for IGK/IGL chain) with the dominant clonotype were removed, as well as cells sharing 

only the light chain rearrangement with the dominant clone were considered “light chain 

escape derived clones” and categorized within the clonal PCs. (iv) Samples with an higher 

degree of homology between cell’s rearrangements underwent to a phylogene(c tree analysis 

through the Immcanta(on pipeline80,81 to exclude any phylogene(c correla(on between the 

dominant clonotype and other puta(ve polyclonal PCs; (v) Each sample underwent to 

inferCNV analysis (hZps://github.com/broadins(tute/inferCNV,  (see detailed methods 

below)37  to dissect at transcrip(onal level the different copy number variants  (CNV) 

background between the clonal and polyclonal PCs popula(ons. Each sample analysis was 

performed using the same healthy donor PCs as normal control (a complete overview of CNVs 

is reported Figure S1-S4); (vi) a final list for each sample containing specifically cell barcodes 

for polyclonal and clonal PCs were created and used for downstream analysis. 

 

Plasma cells single-cell RNA sequencing analysis 

 

ScRNAseq analysis as performed by Seurat pipeline. Samples were merged in lists based on 

their clinical status (HDs, MGUS, SMM and NDMM) and counts normalized.  Then, the 

integra(on was performed using the FindTransferAnchors and the IntegrateData func(ons 

with RPCA method. The integrated Seurat object was scaled, and the most variable features 

were obtained through the FindVariableFeatures func(on. Based on these genes the principal 

components analysis was performed through runPCA func(on.  

Batch effect correc(on was applied to PCs using Harmony82 (v.1.2.0) with func(on 

RunHarmony using the origin of the samples as variable for correc(on. Then, the harmonized 

matrix was used to plot uniform manifold approxima(on and projec(on (UMAP). For the 

polyclonal BM scRNA-seq data set, 30 principal components (PCs) were used for dimensional 

reduc(on and cell clustering. The resolu(on parameter was 0.1. Differen(al expression 

analysis between different clinical stages were performed using FindMarkers func(on from 

Seurat package (v 4.4.0).  Cluster specific markers were iden(fied by FindAllMarkers and 

FindMarkers func(ons. Violin plots to compare expression across cell types or clinical groups 

were made using VlnPlot func(on in R. 
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Func(onal enrichment analysis was performed with genes by clusterProfiler package83 (v. 

4.10.0), for the hallmark gene sets provided by the Molecular Signature Database (MSigDB) 

(msigdbr, v.7.5.1). 

Wilcox test with pvalueCutoff= 0.1 was applied for all analyses. Figures were ploZed by 

ggplot2 (v 3.4.4) in R. 

 

Single-cell copy number varia-on analysis 

Copy number altera(ons (CNAs)  were inferred from single cell gene expression data using 

inferCNV R package37 (v 1.16.0, hZps://github.com/broadins(tute/inferCNV), which 

computes gene expression intensi(es across genomic posi(ons from malignant cells in 

comparison to a set of reference cells (for each comparison the same healthy donor have been 

used for a total of 4153 normal PCs) 

The algorithm was run with the following arguments: cutoff=0.1, HMM_type = ‘i3’, 

cluster_by_groups=TRUE, denoise=TRUE, HMM = TRUE. CNV-level subpopula(ons were 

determined using analysis_mode = ‘subclusters’, to par((on cells into groups having 

consistent paZerns of CNVs 

 

Single-cell HD signature defini-on and scoring  

HD gene signature defined by a differen(al gene expression analysis (“wilcoxauc” R func(on) 

between HDs and MGUS, SMM and NDMM. Then, for each contrast only genes significantly 

upregualted in HDs (Benjamini—Hochberg adjusted p.value < 0.05, logFoldchange > 0.1) were 

retained. Then, we calculated the intersec(on of deregualted genes within each contrast 

though the ComplexHeatmap (v 2.18.0) func(on make_comb_mat using the “dis(nct”mode 

to compute only those genes specifically deregulated in each contrast.  

Then, the Gene signature ac(vity in single cells was es(mated using the AddModuleScore 

func(on from Seurat (v 4.4.0), and CompleaxHeatmap. Gene sets used for signature scoring 

are listed in Table S4.  

To es(mate the ac(vity of HD gene expression signature for each sample in the publicly 

available MMRF bulk RNA-sequencing dataset (IA17 release, hZps://research.themmrf.org), 

that includes bulk RNA-seq data from the CD138+ frac(on derived from NDMM pa(ents. 

Survival analysis was performed using survival (v 3.5-8) and survminer (v 0.4.9) packages. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.26.595470doi: bioRxiv preprint 

https://github.com/broadinstitute/inferCNV
https://research.themmrf.org/
https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

CD138- pre-processing single-cell RNA sequencing analysis 

GEX and V(D)J scRNA-seq data of matched n=31 CD138- samples (n=23 fresh and N=8 frozen) 

were aligned and quan(fied using the Cell Ranger pipeline (v7.1) against the human genome 

GRCh38. For GEX data, the reference used was refdata-gex-GRCh38-2020-A, while for V(D)J 

data, the reference was refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0. 

To ensure data quality, cells expressing less than 200 or more than 3000 features, and those 

expressing over 5% (fresh samples) and 10% (frozen samples) of mitochondrial genes, were 

filtered out using the Seurat pipeline (v4.4.0).  

To iden(fy and remove poten(al doublets, DoubletFinder78 (v2.0.4) was employed with core 

sta(s(cal parameters (nExp, pN, and pK) determined automa(cally using recommended 

sekngs for each sample. Filtered single-cell transcriptomes were then projected onto a 

comprehensive Bone Marrow reference map using Seurat. Subsequently, cells displaying a 

clonal VDJ profile, along with all plasma cells, were omiZed from the analysis to ensure the 

deriva(on of uncontaminated samples represen(ng the tumor microenvironment (TME). 

All cells derived from the n=31 samples (posi(ve and nega(ve frac(ons) were integrated 

following the FindTransferAnchors and the IntegrateData func(ons using CCA method. 

 

Cell-cell communica-on and interac-on analysis  

Cell-cell  communica(on analysis was performed using the Mul(NicheNet package (version 

1.0.3)43  implemented in R,  to infer poten(al interac(ons between cell types using the 

expression of ligands, receptors, and poten(al targets within signaling pathways. The 

Mul(NicheNet analysis includes 31 matched samples, it was performed integra(ng CD138+ 

cells (comprising both polyclonal and clonal PCs) and CD138- cells for the TME totaling 

N=171928 cells. Comparisons were conducted between pa(ents with and without 

immunoparesis, following the standard criteria for immunoparesis assessment31. The default 

Mul(NicheNet pipeline (hZps://github.com/saeyslab/mul(nichenetr) was applied. To 

enhance robustness and prevent cluster drop-outs due to low numbers, certain subclusters 

were merged to form larger clusters per sample. Specifically, “CD8 Effector_1” and “CD8 

Effector_2” were merged into the “CD8_Effector cluster”, “CD8 Memory_1” and “CD8 

Memory_2” were merged into “CD8_Memory cluster ”, “cDC2”and “prog_DC” were merged 

into “DC cluster”, “prog_B 1” and “prog_B 2”  were merged into “prog_B cluster”, and “HSC”, 

“LMPP” and “GMP” were merged into “HSC cluster” , “CD14 Mono” and “CD16 Mono” were 
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merged into “monocyte cluster”, and “CD56 bright NK” and “NK” were merged into “NK 

cluster”.  

Clusters were included in the analysis only if a minimum of 4 cells were present in all samples 

per condi(on. gdT cells did not passed this filter, therefore not included in the Mul(nichenet 

analysis. Parameters were chosen carefully: LogFC_threshold was set to “0.5”, empirical_pval 

was set to “TRUE”, p_val_threshold was set to “0.05”, p_val_adj was set to “TRUE”, 

top_n_target was set to “250”, and priori(za(on weights were set to default.  

All cell-cell interac(on analyses and plots were conducted between clonal and polyclonal PC 

versus the en(re TME. Clonal and polyclonal PCs were priori(zed as sender cells, and the 

en(re TME as receiver cells, and vice versa.  

Top 75 ligands per condi(on were chosen for circos plots visualiza(on and priori(zed 

interac(ons for ligand-receptors pseudobulk expression products plots and ligand ac(vity 

plots.   

 

Data visualiza-on 

All plots were generated using the ggplot2 (v 3.4.4) and ComplexHeatmap (v 2.18.0) packages 

in R.   

Details on sta(s(cal tests used in the different figures and defini(on of relevant summary 

sta(s(cs are included in the figure legends. 
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FIGURE LEGENDS 

 
Figure 1.  Clonal and polyclonal cells iden-fica-on in pa-ents affected by plasma cell 

dyscrasias and healthy donors (HD). 

(A) Schema(c overview of cohort of samples and workflow of the study. 

(B) Donut charts represen(ng the distribu(on of clonal and polyclonal cells in plasma cell 

dyscrasias and healthy donors based on clinical stra(fica(on (HD: blue; MGUS:  green; SMM: 

orange; MM: red). Numerical values are reported in the legend for category. Color legend of 

clonal and polyclonal cells as in (B).  

(C) The propor(ons of clonal cells (red) and polyclonal cells (blue) in each sample. 

(D) UMAP plot show all clonal (red) and polyclonal (blue) cells, with numerical values. 

(E) UMAP representa(on of as per (D), colors indicate clinical stra(fica(on of samples. 

Numerical values and percentages are reported in the legend for each category. 

(F) Violin plots showing distribu(on of expression of genes commonly upregulated in pa(ents 

plasma cell dyscrasias, along with annota(ons of the clinical classifica(on (top). Bar above 

violin plots summarize clinical type assignments. Color legend as in (B and C). 

 

 

Figure 2.  Polyclonal cell selec-on and marker genes expression by clinical stages. 

(A) UMAP of scRNA-seq data of selected pPCs with colors indica(ng clinical clusters. Numerical 

values are reported in the legend for each category. Color legend of polyclonal cells as in Figure 

1C.  

(B) Dot plot displaying the top ten marker genes that dis(nguish each clinical state.  The X-axis 

lists the clinical category, while the Y lists gene names. Circle size corresponds to the number 

of cells in the category expressing the gene of interest, while shade correlates with the level 

of expression. 

(C) Violin plot showing expression paZern of selected PCs, adhesion/ interac(on and 

autophagy marker genes across all the clinical stages. 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2024. ; https://doi.org/10.1101/2024.05.26.595470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

 

Figure 3.  Transcrip-onal characteriza-on of pPCs 

 

(A) Cartoon depic(ng the deregulated expression profiles of pPCs, derived from 1:1 DE 

analyses by Wilcoxon test. Circle size corresponds to the number of cells in the category 

expressing the gene of interest, while shade correlates with the level of expression. Color code 

as in Figure 1C. 

(B) Gene set enrichment analysis (GSEA) on the genes ranked by their contribu(on to hallmark 

oxida(ve phosphoryla(on, inflammatory and interferon alpha response. 

 

 
 
Figure 4. Transcriptomic landscape of immunoparesis 
 

(A) Cartoon showing the pathological subset of pa(ents (MGUS, SMM and MM), for 

downstream DE analyses. Color code as in Figure 1C. 

(B) Dot plot of top ten marker genes that dis(nguish immunoparesis-nega(ve and 

immunoparesis-posi(ve pa(ents.  The X-axis lists the clinical category, while the Y lists gene 

names. Circle size corresponds to the number of cells in the category expressing the gene of 

interest, while shade correlates with the level of expression. Light blue: immunoparesis- 

nega(ve pa(ents, yellow: immunoparesis-posi(ve pa(ents. 

(C) DE analysis comparing the immunoparesis-nega(ve and immunoparesis-posi(ve pa(ents   

within symptoma(c subset of pa(ents, using Wilcoxon rank sum test, with padjust 

pBenjamini-Hochberg correc(on.  Color code as in Figure 4B. 

(D) Gene set enrichment analysis (GSEA) on the genes ranked by their contribu(on to hallmark 

oxida(ve phosphoryla(on, complement, interferon alpha and interferon gamma response 

 
Figure 5. Predicted interac-ons of PCs with microenvironment 
 
(A) UMAP representa(on of PCs integrated with TME, colors indicate TME cell types.  
 
(B) UMAP plot of PCs integrated with TME colored according to immunoparesis. Color code 
as Figure 4C. 
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(C)  Circos plots illustrate ligand-receptor Interac(ons between pPCs (blue), cPCs (red) and 

TME, according to immunoparesis clinical status. Ribbon arrows indicate direc(onality of 

communica(on, from sender to receiver popula(ons, while the arrow's color signifies the 

specific sender cell type expressing the ligand. Upper panel: PCs were set as sender. Lower 

panel: PCs were set as receiver. 

 
 
 
 
Figure 6. A «hPC» signature analysis allows predic-on in independent datasets 
 
 
(A) HD gene signature defined by a DE analysis between HDs and MGUS, SMM and MM. For 

each contrast genes significantly upregualted in HDs (Benjamini—Hochberg adjusted p.value 

< 0.05, logFoldchange > 0.1) were retained. Venn diagram to show the intersec(on of 

deregualted genes within each comparison. Color code as Figure 1D.  

 

(B) Immunoparesis gene signature defined by a DE analysis between immunoparesis-nega(ve 

and immunoparesis-posi(ve pa(ents. Venn diagram to show the intersec(on of deregualted 

genes. Color code as Figure 4B.  

 

(C) Violin plot showing the inference of HD and immunoparesis signatures in the cohort of 

pa(ents.  Color code as Figure 1D.   

 

(D) ScaZerplot of HD and Immunoparesis signatures:  R: - 0.29, p.value < 2.2e-16 . 

 

(E, F) Clinical impact of HD signature in CoMMpass RNAseq data. Progression-free survival 

(PFS) (E) and overall survival (OS) (F) Kaplan-Meier curves in the cohort of pa(ents. 
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Supplementary figure legends 
 
 
 
Figure S1-S4. PCs heterogeneity elucidated by inferCNV  

InferCNV heatmap demonstra3ng of clonal (red) and polyclonal (blue) cells of each sample (n=46).  

 

 
Figure S5. GPRC5D and  TNFRSF17 show differenHal expression in clonal and polyclonal cells 
 

(A, B ) Violin plot of GPRC5D and TNFRSF17 gene expression paKern across disease stages 

(blue: HDs, green: MGUS, orange: SMM and red: MM)  

 

(C, D) Violin plot of GPRC5D and TNFRSF17 gene expression paKern across disease stages (blue: 

HDs, green: MGUS, orange: SMM and red: MM) in clonal (red) and polyclonal (blue) cells. 

 

 
 
Figure S6. Quality control and pre-processing of single-cell polyclonal  data 
 

(A) Violin plots illustrate distribu3on of percentage “nCounts_RNA”  of each sample divided by HD, 

MGUS, SMM and MM 

(B) Violin plots represen3ng the distribu3on of mitochondrial genes percentage per each sample 

divided by HD, MGUS, SMM and MM 

(C) Violin plots represen3ng “nFeature_RNA” distribu3on of each sample divided by HD, MGUS, 

SMM and MM 

 
 
 

Figure S7. Polyclonal plasmacells clustering  

(A, B) Uniform Manifold Approximation and Projection (UMAP) representation of cells from the 64 

single-cell RNA-seq data, colored by clusters (A) and by patients (B). 
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Figure S8. Hallmark analysis of polyclonal plasmacells  

(A, B, C) Differen3al expression analysis showing Wilcoxon enriched hallmarks between HD vs MGUS 

(A), HD vs SMM (B) and HD vs MM (C) condi3ons. Gene-ra3o on the y-axis, counts as dot size and 

color represent padj values in z-score. 

 
 
Figure S9. Cell abundance of paHents’ plasma cells between immunoparesis condiHons 
 
(A, B) Box plot represen3ng pa3ents’ clonal (A) and polyclonal (B) plasmacells distribu3on across 

immunoparesis nega3ve (light-blue) or posi3ve (yellow) pa3ents. 

(C, D) Donut plot showing the propor3on of immunoparesis nega3ve (light-blue) or posi3ve (yellow) 

in pa3ents’ clonal (C ) and polyclonal (D) plasmacells and their respec3ve number of cells. 

 
 
 

Figure S10. TME dataset integration and relative cell abundance of BM cell populations 

(A)  UMAP of integrated CD138- cell fractions of n=31 samples colored by cell types.  

(B) The box plot displays the relative abundance of cells within the integrated dataset (TME and 

PCs). Cell types are shown on the x-axis, with relative frequency represented on the y-axis in 

logarithm. The yellow boxes represent positive immunoparesis condition, while the lightblue boxes 

represent negative immunoparesis condition. The asterisk (*) above the "pPCs" label indicates a 

padj value of 0.004, determined by the Wilcoxon test with Benjamini-Hochberg adjustment. 

 
 
Figure S11. Scaled L-R pseudobulk products and ligand acHvity in PCs in immunoparesis-negaHve 

condiHon 

(A, B) Bubble plots illustrate scaled pseudobulk expression of ligand-receptor pairs specific for 

the "immunoparesis nega3ve" condi3on. Rows represent ligand-receptor interac3ons, with 

sender and receiver cell types indicated respec3vely. PCs were set as senders in panel A and as 

receivers in panel B. Scaled ligand-receptor pseudobulk expression is depicted in the legend. The 

size of dots indicates whether a sample contained enough cells (>= 4) to be included in the 

differen3al expression (DE) analysis. On the right side, scaled ligand ac3vity values, calculated 
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based on the DE genes of cell type, and represented as normalized z-scores, are computed per 

receiver cell type. Higher values indicate greater enrichment of target genes of a specific ligand 

among the set of up- or downregulated genes in the "immunoparesis nega3ve" or "posi3ve" 

group. Gray color is associated to no DE genes (up or down) for those cell types due to pipeline 

parameters (see STAR methods). 

 
 
Figure S12. Predicted ligand-target interacHon and average expression levels of target genes in 

pPCs of immunoparesis-negaHve paHents 

 

(A) Heatmap showing predicted ligand-target links and the target regulatory poten3al behind 

ligand ac3vity predic3ons. The genes shown are the top target genes (columns) of the ligand 

(rows) that have contributed to the ligand ac3vity predic3on of that interac3on.  

 

(B) Dot plot represen3ng the average expression level of a target gene either up or down 

regulated in the predicted ligand-target plot. Upregulated genes are shown in red, while 

downregulated genes are shown in blue. Genes derive from pPCs L-R-T ac3vity analyses in 

immunoparesis-nega3ve condi3on. 

 

 
 
Figure S13. Scaled L-R pseudobulk products and ligand acHvity in PCs in immunoparesis-posiHve 

condiHon 

(A,B) Bubble plots illustrate scaled pseudobulk expression of ligand-receptor pairs specific for the 

"immunoparesis posi3ve" condi3on. Rows represent ligand-receptor interac3ons, with sender and 

receiver cell types indicated respec3vely. PCs were set as senders in panel A and as receivers in 

panel B. Scaled ligand-receptor pseudobulk expression is depicted in the legend. The size of dots 

indicates whether a sample contained enough cells (>= 4) to be included in the differen3al 

expression (DE) analysis. On the right side, scaled ligand ac3vity values, calculated based on the DE 

genes of cell type, and represented as normalized z-scores, are computed per receiver cell type. 

Higher values indicate greater enrichment of target genes of a specific ligand among the set of up- 

or downregulated genes in the "immunoparesis nega3ve" or "posi3ve" group. Gray color is 

associated to no DE genes (up or down) for those cell types due to pipeline parameters (see STAR 

methods). 
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Figure S14. Predicted ligand-target link and average expression levels of target genes in pPCs of 

immunoparesis-posiHve paHents 

 

(A) Heatmap showing predicted ligand-target links and the target regulatory poten3al behind ligand 

ac3vity predic3ons. The genes shown are the top target genes (columns) of the ligand (rows) that 

have contributed to the ligand ac3vity predic3on of that interac3on.  

 

(B) Dot plot represen3ng the average expression level of a target gene either up or down regulated 

regulated in the predicted ligand-target plot. Upregulated genes are shown in red, while 

downregulated genes are shown in blue. Genes derive from pPCs L-R-T ac3vity analyses in 

immunoparesis-posi3ve condi3on 
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