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Genotypic identification of polyclonal plasma cells in plasma cell dyscrasias shows an
aberrant single-cell phenotype with clinical implications

Authors

Matteo Claudio Da Via'*, Francesca Lazzaroni'*, Antonio Matera?, Alessio Marella?, Akhiro Maeda?,
Claudio De Magistris?, Loredana Pettinel, Sonia Fabris?, Stefania Pioggia®, Alfredo Marchettil, Marzia
Barbieri’, Silvia Lonati?, Alessandra Cattaneo®, Marta Tornese3, Margherita Scopetti’, Nayyer
Latifinavid?, Giancarlo Castellano!, Federica Torricelli*, Antonino Neri®>, Cathelijne Fokkema® Tom

Coupedo®, Marta Lionetti?, Francesco Passamonti®?, Niccold Bollit?*

Affiliations

Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122
Milan, ltaly.

Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy.

Flow Cytometry Laboratory, Clinical Pathology Unit, IRCCS Foundation Ca' Granda Ospedale
Maggiore Policlinico, Milan, Italy.

Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio
Emilia, Italy.

> Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy.

Department of Hematology, Erasmus MC Cancer Institute, Erasmus Medical Center,
Rotterdam, the Netherlands.

* These authors contributed equally to this work
# Corresponding author

Correspondence to: Niccolo Bolli, Hematology Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore
Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
niccolo.bolli@unimi.it ; +390255033334

Supplementary Table 2 is available upon request.


https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.26.595470; this version posted May 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

SUMMARY

Multiple Myeloma (MM) is driven by clonal plasma cell (PC)-intrinsic factors and changes in the
tumorigenic microenvironment (TME). To investigate if residual polyclonal PCs (pPCs) are disrupted,
single-cell (sc) RNAseq and sc B-cell receptor analysis were applied in a cohort of 46 samples with PC
dyscrasias and 18 healthy donors (HDs). Out of n=213,074 CD138P* PCs, 42,717 were genotypically
identified as pPCs. Compared to HDs, we detected quantitative and qualitative differences in pPCs of
patients showing immunoparesis, where we showed a pro-inflammatory status, driven by specific
cellular interactions with TME. Finally, we derived a “hPC signature” that, once inferred in the
CoMMpass dataset, was predictive of PFS and OS. Our findings show that genotypic, single-cell

identification of pPCs in PC dyscrasias has relevant pathogenic and clinical implications.
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INTRODUCTION

Multiple myeloma (MM) is a plasma cell (PC) neoplasm whose origin is in the germinal center
of a secondary follicle, in a B-cell undergoing class-switch recombination and somatic
hypermutation upon antigen encounter’?, Initiating somatic events at the genomic level are
thought to be translocations of recurrent oncogenes to the immunoglobulin heavy chain (IGH)
locus, or trisomies of several odd-numbered chromosomes!. The genomically aberrant post-
germinal center B-cell will still migrate to the bone marrow (BM), differentiate into a
(monoclonal) antibody producing PC, and initiate a monoclonal expansion?. These early
events in myeloma development are not recognized at the clinical level. However, an initial
BM expansion of clonal PCs can be easily identified by detecting a monoclonal protein (MP)
with peripheral blood (PB) serum protein electrophoresis. Asymptomatic PC expansions can
be categorized as monoclonal gammopathy of undetermined significance (MGUS) or
smoldering multiple myeloma (SMM) based on the BM monoclonal PC percentage®. MGUS
and SMM are thought to universally precede development of active MM, even when not
recognized. In turn, active MM is a clinically aggressive neoplasm that has caused end-organ
damage or shows surrogate signs of high disease burden with imminent risk of end-organ
damage®, and requires treatment to prolong the patient’s life. Evolution from MGUS to SMM
and MM is paralleled by the acquisition of secondary somatic genomic events, such as gene
mutations, further translocations and copy-number abnormalities (CNAs)®™8. However, the
serial study of MM samples evolved from SMM shows that some cases do not display genomic
changes®0, so that not all clinical progressions can be explained by genomics alone. Indeed,
the tumor microenvironment (TME) plays a clear pathogenic role in MM development!?12,
Clonal PCs have been shown to interact with immune and non-immune microenvironment
cells through aberrant signaling, receiving in turn pro-survival and anti—apoptotic paracrine
stimuli*3>~%. Furthermore, surveillance from immune TME cells has the potential to prevent
progression of asymptomatic stages of clonal PC expansion'’, and is disrupted along its
progression't1>1819 Indeed, animal models show how loss of immune surveillance is causal
to MM development from precursor stages?°. Strategies to restore anti-MM immune function
are a promising treatment approach in relapsed-refractory MM (RRMM) cases, where high-
risk genomic lesions are enriched and response to conventional treatments is poor?:™23, In the

era of novel immunotherapies, having a fit immune system correlates with the quality of
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response, while T-cell exhaustion predicts poor response to T-cell engagers and chimeric
antigen receptor T cells?*28 . Immunoparesis, defined as reduced levels of one or more non-
clonal immunoglobulin classes, is frequent in PC dyscrasias. Its prevalence increases from
MGUS to SMM and MM. In asymptomatic conditions, its presence is prognostic for
evolution®®31, In MM patients, immunoparesis can explain the increased susceptibility to
infection and is associated with an overall®? worse prognosis®!. Clearly, immunoparesis can
only be explained by disruption of polyclonal PCs. Indeed, a reduction in the number of
phenotypically-defined polyclonal PCs has been described along progression of PC dyscrasias.
Less is known about the functional properties of polyclonal PCs (pPCs) in various stages of PC
dyscrasias. Single cell RNA sequencing (scRNAseq) has the potential to dissect the clonal and
polyclonal PC populations, and initial studies have found a different transcriptomic signature
of the two populations33—3°. However, our studies and others 343> have shown that polyclonal
PCs do not always clearly separate from clonal PCs in scRNAseq Uniform Manifold
Approximation and Projection (UMAP) plots, suggesting that a pure transcriptomic approach
fails to accurately identify pPCs. Newer technologies allowing single-cell B-cell receptor (BCR)
genotyping along with transcriptome sequencing of the same single-cell are better suited to
unambiguously identify pPCs. In this paper, we developed an algorithm to unambiguously
identify polyclonal PCs at the single-cell genotypic level. This allowed us to study their
functional properties in MGUS, SMM and MM stage as well as in comparison with normal PCs
from healthy donors (HD), showing they have profoundly deranged functions whose
identification is relevant for understanding disease pathogenesis and has prognostic

implications.
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RESULTS

Landscape of polyclonal plasma cells across stages of PC dyscrasias

We analyzed CD138-purified samples from 7 MGUS, 16 SMM and 23 MM patients. CD138+
samples from HD were sourced locally (n = 1), from collaborators (n = 3), and from publicly
available databases (n = 14)3**3¢, For patients with PC dyscrasias (Table S1), we developed a
workflow (Figure 1A) to leverage single-cell data to genotypically identify clonal vs polyclonal
PCs. The polyclonal nature of the latter group was confirmed by the lack of identity and
hierarchical relationship of the heavy and light chain BCR sequence with the BCR sequence of
clonal PCs of the same patient (Table S2). PCs sharing the same light chain, or substantial
identity with the clonal sequence were excluded from analysis (STAR Methods, Table S2).
Copy-number abnormalities (CNAs) analysis through InferCNV37 confirmed that pPCs of each
individual sample did not share any of the CNAs observed in their cPCs counterparts (Figure
$1,54). After filtering cells using standard quality controls, a total of n=213,074 PCs (n=32,704
from HDs, n= 15,882 from MGUS, n= 55,409 from SMM and n= 109,079 from MM) (Figure 1B)
were used for further analysis. Using this approach, n= 170,357 cells (79,95%) were genotyped
as clonal (cPCs) and n= 42,717 (20.04%) as polyclonal (pPCs). Overall, the frequency of pPCs
was higher for MGUS and decreased in SMM and MM samples. The number of pPCs was n=
3,103 (19.53%) in MGUS, n= 3,291 (5.93%) in SMM, and n= 3,619 (3.31%) in MM (Figure 1B-
C). In the sample space, pPCs from different individuals tended to cluster together. However,
there was a considerable admixture of pPCs and cPCs in the sample space of each patient
(Figure 1D), indicating that transcriptomics alone is likely insufficient to accurately dissect
every pPC from cPCs. The UMAP distribution of cells by disease stage also lacked a clear-cut
picture, even though MM samples tended to differentiate the most from the asymptomatic
ones (Figure 1E). We next looked at canonical PC marker genes. Our analysis confirmed
previous observations, such as the frequent loss of CD2734383% in cPCs, and their uniform
expression of CD38, CD138 and BCMA (TNFRSF17). As expected, oncogenes such as NSD2 and
CCND1/2, and MAF were only expressed in cPCs. Interestingly, we found GPRC5D expression
to be on average lower in pPCs than in cPCs from the same patients (Figure S5A-B) which

might have clinical implications for the risk of infections in anti-GPRC5D T-cell redirecting
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immunotherapies versus anti-BCMA treatment?> (Figure S5C-D). Of note, pPCs frequently
expressed markers usually attributed to cPCs such as IGTB7, CCND3, and this was true for both
pPCs from patients and PCs from HDs (Figure 1F). In summary, these results highlight the
importance of clonotypically identifying cPCs from pPCs in patients with PC dyscrasias. While
canonical marker genes show expected expression patterns, whole-transcriptome analysis

shows that pPCs have a transcriptomic profile that is not clear-cut different from cPCs.

Polyclonal PCs from patients show deregulated expression profiles and an inflammatory
phenotype

To further delineate the phenotype of n=42,717 pPCs, we started the analysis by determining
transcriptomic heterogeneity of pPCs in our cohort of samples, after filtering cells using
standard quality controls (Figure S6A-B). Re-plotting only pPCs from patients and PCs from
HDs, we observed a slight divergence of the two groups, but overall, there was a considerable
overlap of cells from all disease stages (Figure 2A). After creating UMAP plots by clusters and
by patients (Figure S7A-B), we next asked what genes are differentially expressed in the
different clinical categories. Interestingly, pPCs from patients showed a similar pattern,
different from HDs (Figure 2B). The latter group showed overexpression of genes such as
DUSP1, SELK, FKBP2 and GNB2L1, mainly involved in protein folding and protection against
oxidative stress. Conversely, in pPCs from patients we found upregulation of genes usually
associated with inflammation and/or stress conditions, such as the autophagy receptor
SQSTM1, the growth inhibitor GADD45B, and the VIM gene, often upregulated during
epithelial to mesenchymal transition (Figure 2B). When looking at sets of genes implied in
MM pathogenesis, again canonical PC marker genes were not different between pPCs in
patients and HDs. We recognized exclusively genes in pPCS from patients that are not
expressed in HDs such as CTSB, CTSD, OPTN involved in autophagy. Even more interestingly,
we found that only PCs from SMM and MM upregulate the surface integrin ICAM1, implying
that interaction with the TME changes for pPCs in more advanced stages (Figure 2C). We
performed a differential expression (DE) analysis to look at pathway analyses in all possible
1:1 contrast combination (Wilcoxon rank sum test, with padjust Benjamini-Hochberg
correction). Compared to pPCs from HD there was an upregulation of inflammatory pathways

(hallmark TNF o and IFN a response, hallmark oxidative phosphorylation) in pPCs from
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pathological samples, as well as comparing pPCs across disease stages to each other, with the
most clear-cut differences between MGUS and SMM/MM (Figure 3A, Figure S8A-C). In
summary, we showed a climax of increasing inflammatory status from HD to MM (Figure 3B,

Figure S8A-C).

Single-cell transcriptomic correlates of immunoparesis

Production of polyclonal immunoglobulins in patients with plasma cell dyscrasias is impaired
to variable extents. Particularly, reduction in the production of uninvolved immunoglobulins is
seen as a risk factor for progression in asymptomatic conditions3%%, and as a risk factor for
survival and infections in MM, where it also predicts lower response to vaccination***2, Qur
unique dataset allowed us to specifically characterize the transcriptional profiles of pPCs in
samples with and without immunoparesis, defined as the decrease of one or more of the
uninvolved immunoglobulin classes3!. Having shown the presence of strongly enriched
inflammatory pathways in pathological pPCs, we next sought to define their expression profile
in immunoparesis-positive patients.

Of n= 46 samples (n=10,013 pPCs) (Figure 4A), 38 showed immunoparesis. We first observed
that pPCs frequency tended to decline in patients showing immunoparesis (Figure S9A-D),
likely explaining at least in part the decreased production of immunoglobulins. We next
analyzed their gene expression profile. The immunoparesis-negative patients showed the
expression of genes related to NF-KB (i.e. BIRC3), cell adhesion (i.e. CXCR4, SDC1 and PECAM1),
autophagy (i.e. FOS, CST3) and anti-apoptotic (i.e. DYNLL1) pathways. As compared to pPCs in
patients without immunoparesis, pPCs in patients with immunoparesis showed upregulation
of genes related to the interferon pathway (i.e. IRF1, MX1 and ISG15), Unfolded Protein
Response (UPR) (ERN1), cell proliferation and apoptosis (i.e. H3F3B and NOP53), implying a
more deregulated transcriptome (Figure 4B). Then, to explore the functional consequences of
gene expression deregulation we performed DE analysis comparing the immunoparesis status
within the subset of symptomatic patients (n=23). Here, in presence of immunoparesis pPCs
were functionally enriched for interferon related pathways (hallmark IFN o and hallmark IFN

v) and oxidative phosphorylation (Figure 4C-D). Taken together, our results reveal consistent
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changes in expression profiles of pPCs in immunoparesis- positive patients and correlate the

presence of a pro-inflammatory phenotype with decreased immunoglobulin production.

The interactome landscape of immunoparesis in polyclonal PCs

Since progression and persistence of MM malignancy are influenced by the BM TME, and
functional properties of both cPCs and pPCs are clearly dependent on interactions with the
TME, we next investigated the cell-cell interactions between PCs repertoire and TME in the
BM. To gain a first insight into the composition of the TME, we performed scRNA-seq of n=31
paired CD138 positive- CD138 negative cell fractions within our cohort. In total, we integrated
n=171,928 cells into a single dataset and used the MultiNicheNet pipeline*}, a tool that infers
cell-cell interactions based on ligand-receptor expression and on the pathway activation
downstream of the ligand in different cell types. To untangle the complexity of the TME, cPC
n=102,194, pPC n= 7,447, and TME cells n=62,287 were analyzed (Table S3). The TME and the
PCs’ compartment mapped separately in UMAP plots (Figure 5A). Here, we found, n= 148,006
cells of n=23 (n=89,037 cPCs, n=3923 pPCs, n=55,046 TME) characterized by immunoparesis
and n= 23,922 cells from n=8 immunoparesis-negative samples (n= 13,157 cPCs, n= 3,524
pPCs, n= 7,241 TME) (Figure 5B). Splitting the TME data by cell type, n=32,966 T cells, n=3,472
B cells, n=15,261 myeloid cells, n= 6,589 NK cells, n=1,019 dendritic cells and n=2,980 HSCs
were analyzed and no significant differences were observed in the relative composition of the
TME populations (Table S3, Figure $S10) between immunoparesis-positive and immunoparesis-
negative patients (Figure 5B, Table S3, Figure S10). As expected, we found a significant
depletion of pPCs in immunoparesis-positive patients (padjust = 0.004)(Figure S10).

To understand disruption of inter-cellular relationships in this scenario, we first analyzed the
immunoparesis-negative setting. Comparing top-ranked ligand-receptor interactions and
analyzing the downstream targets, pPCs were predicted to be able to send signals to specific
cell compartments such as pPCs, CD8-effector, CD8 memory and progenitor RBC cells (Figure
5C, Figure S11A-B). Mining PCs as senders, of relevance were the CD38: PECAM1 (CD31) cell
interaction -with a role in regulation of cell migration-, and a broad spectrum of interactions
mediating cell adhesion involving ICAM2, ICAM3 and ITGB2 (T lymphocytes), already described

in promoting cell survival processes.**“8 Furthermore, cPCs and pPCs, displayed the ability to
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receive signals from myeloid (DCs, HSCs, monocytes, pDC and Mk progenitor cells,
lymphocytes (CD8 effectory, CD8 memory, NK, progenitor B and MAIT cells), compartments.

In this scenario, immune and inflammatory responses were driven by the specific interaction
of THBS-1 (in monocytes and Mk progenitor cells) with SDC1 (in pPCS) and ITGAG6 (in pPCS), as
well as by the signaling of HMGB-1 (in HSCs, NK, pDCs, MAIT, CD8 cells, progenitor B cells and
monocytes) :SDC1 (in pPCS). In addition, we found the CCL5:SDC1 ligand-receptor interactions
between T cells and cPCs/pPCs, known to be involved in tumor cell migration®. Looking at the
downstream deregulated gene targets, derived by ligand-target correlation, genes implicated
in the autophagy axis and in ER stress (BNIP3, MIT1X, MT2A)*%°! were upregulated as well as
B cell survival pathways regulators (i.e. CD74 and ITGA6)>? (Figure S12A-B). These findings
highlight an active involvement of pPCs in the pro/inflammatory TME in immunoparesis-
negative cell landscape. However, pPCs in this setting maintain their functional role through

autophagy, ER stress regulation and B cell survival pathway activation.

Conversely, cPCs became the main contributor of TME interactions in the immunoparesis-
positive cell landscape, where a significant depletion of pPCs:TME interactions was observed
(Figure 5D, Figure S13A,B). These differences were not simply determined by a depletion of
pPCs since the differential expression analyses are normalized for cell count.

In detail, cPCs and pPCs were characterized by the inflammatory signaling mediated by the
IFITM1:CD81 interaction (pPCs: pPCs, pPCs:CD8 effector/memory cells, Treg:pPCs), that is
involved in IFN-gamma response pathway>3>*. Of note, in this scenario where the interactions
between myeloid compartment and pPCs were significantly depleted, DCs and pDCs were
found to sustain pPCs survival through BAFF-BCMA axis>>™’.

Furthermore, the axis TGFB2:TGFBR1/TGFBR2/ TGFBR3 mediated interactions between cPCs
and CD8 T cells together with TGFB1:ITGB1 (MAIT and NK with pPCs), suggesting a role of PCs
in the immunosuppression of T-cell compartment. Of note, the y-chain cytokine IL-15 was
shown to signal from pPCs in an autocrine manner to pPCs and in a paracrine manner to cPCs
by binding the common cytokine receptor y chain (yc or CD132; encoded by the IL2RG gene)
in the immunoparesis-negative setting. Conversely, in immunoparesis-positive patients, this
cytokine signals from cPCs to cPCs and pPCs through the IL15RA receptor®®®L, Only in this
latter setting, the downstream signalling involves activation of pro-inflammatory pathways.

Furthermore, downstream target genes related to inflammation and interferon pathways
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were upregulated (i.e. IFI16, IFIT3, PLSCR1)%? as well as negative regulators of NF-kB pathway
such as TNFSF10. Conversely, in this setting genes related to autophagy and B cell maintenance
resulted downregulated (i.e. CSTH, BNIP3, MTX1, MT2A)***° (Figure S14A,B). Altogether
these data support the presence of a pro-inflammatory status in immunoparesis-positive
patients, driven by specific cellular interactions that are disrupted in immunoparetic patients

likely impacting pPCs survival and function.

10


https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.26.595470; this version posted May 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Signature analysis allows prediction of survival in independent datasets

The presence of residual PCs has been correlated with prognosis in MM patients3334, Our data
show that even pPCs in patients can be profoundly dysregulated and different from PCs in
HDs. Our unique dataset therefore allowed us to generate a “healthy PC” (hPC) signature
through the union of the differentially expressed genes in the three contrasts of PCs from HD
with pPCs from MGUS, SMM, and MM patients respectively. Importantly, our hPC signature
corrects for the dysregulated expression of pPCs in patients and incorporates a total of n=148
genes (Figure 6A, Table S4) representing genes truly expressed in hPCs only. Then, a specific
immunoparesis signature, composed by n=10 deregulated genes, was derived by comparing
immunoparesis-negative with immunoparesis-positive patients, in asymptomatic and
symptomatic subset (Figure 6B, Table S5).

Applying the hPC signature in our cohort, a gradient could be observed whereby the signature
was enriched in HD, and progressively less represented in pPCs from MGUS, SMM and MMs
cases (Figure 6C, upper panel). The same inference was performed with the immunoparesis
signature which showed an opposite trend, resulting more enriched from MGUS to MMs
(Figure 6C, lower panel). Indeed, the hPCs signature anti-correlated with the signature of
immunoparesis in our pPC dataset, implying that cases enriched for abnormal pPCs have a
lower propensity to produce polyclonal immunoglobulins and might express a more corrupted
phenotype than healthy PCs (R: - 0.29, p.value < 2.2e°%%, Figure 6D).

Finally, we decided to determine if enrichment for the hPC signature could have a clinical
impact within a NDMM population. We hypothesized that in bulk RNAseq generated from
CD138-selected cells part of the signal could be generated by pPCs. We therefore interrogated
the RNAseq data of CoMMpass and ranked patients based on the fractional representation of
the hPCs signature. A simple categorical distinction based on the enrichment of the hPCs
signature above and below the median clearly separated patients based on their survival.
Specifically, the median progression-free survival (PFS) was 3.52 years [95% confidence
interval, 3.13-4.21 years] in patients above the median and 2.16 years [95% confidence
interval, 1.94-2.75 years] in patients below the median (p.value = 0.0006, log-rank test, Figure
6E). Median overall survival (OS) was not reached in patients above the median and was 5.5

years [4.68- not reached years] in patients below the median (p.value < 0.0001, log-rank test,

11


https://doi.org/10.1101/2024.05.26.595470
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.26.595470; this version posted May 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 6F). Based on these results and assuming that the hPCs score might represent a
surrogate of residual functional “polyclonality” within clonal PCs, we could argue that the
maintenance of a normal polyclonal population impact on patient’s survival, potentially

explaining the observed correlation between immunoparesis and prognosis®?.
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DISCUSSION

The TME architecture has long been implicated in initiation and evolution of PC dyscrasias.
pPCs are an obvious component of the TME but have been understudied despite a clear
biological and clinical relevance. Part of this depends on technical issues. For example, pPCs
cannot be separated from cPCs based on isolation with magnetic beads nor with flow-sorting.
In this scenario, we applied a comprehensive approach including sc-RNA sequencing coupled
with BCR genotyping to unambiguously identify pPCs in patients with plasma cell dyscrasias.
To confirm the robustness of our approach, CNA analysis on pPCs and cPCs showed clonal
aneuploidies only in the latter population.

Using this advanced approach, we provide evidence that pPCs would not necessarily be
identified with accuracy based on transcriptomics alone. Indeed, even after removing
immunoglobulin genes, i.e. highly expressed cell-specific genes accounting for a big part of
the transcriptomic diversity between cells, RNAseq alone may not effectively separate clonal
and polyclonal cells3¥34, Our data showing that pPCs did not necessarily segregate away from
cPCs from the same patient in the UMAP space, suggest they are themselves phenotypically
aberrant. This is different from previous studies®*, and can be explained at least in part by the
innovative methodology we employed.

pPCs from patients showed the expected differential expression of canonical marker genes as
compared to cPCs. However, we also convincingly show that GPRC5D expression is natively
lower in pPCs than in cPCs, a finding which may suggest that anti-GPRC5D bi-specific
antibodies may relatively spare pPCs and explain the lower prevalence of infections in such
patients contrary to anti-BCMA antibodies®3.

However, aside from canonical marker gene expression, our data reveal a profoundly
dysregulated transcriptomic landscape of pPCs from patients affected by asymptomatic or
symptomatic PC dyscrasias when compared to BM PCs derived from HDs sourced with a broad
age range. In this setting, pPCs showed upregulation of IFITM1, SQTM1, CTSB, CTSD, OPTN>3>%
markers as well as ICAM1%%%8, implying an upregulation of inflammation, autophagy and
interferon pathways, with a climax from asymptomatic to symptomatic patients . Of note, the
primary purpose of autophagy is to sustain the cellular homeostasis in extreme conditions®’,
such as the ones promoted by oxidative and proteotoxic stress due to an intense production

and secretion of immunoglobulins®®"1. Therefore, autophagy is fundamental for long-lived
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PCs to optimize the protein metabolism and the cell viability’>’® and we believe that this
pathway is exaggerated in the setting of residual pPCs with the BM of patients with PC
dyscrasias. Our findings also have translational implications. pPCs derived from
immunoparesis-positive patients showed upregulation of IRF1, MX1 and ISG15, ERN1, H3F3B
and NOP53 genes suggesting activation of IFNo and IFNy pathways, UPR and cell
proliferation/apoptosis signaling in the suppression of uninvolved immunoglobulins. We
further extended this analysis by looking at intercellular interactions between PCs and the
TME within each patient. Here, we provide evidence of a TME poised for inflammation in
immunoparesis-positive patients. In this scenario, we observed a significant decrease in the
number of interactions of pPCs with other immune cells in the TME. Furthermore, pPCs were
characterized by a pro-inflammatory transcriptome. The interaction between IFITM1 and
CD81 and the activation of the TGFB2:TGFBR1/TGFBR2/TGFBR3 axis that we see in our
patients were indeed shown to be mainly driven by IFN pathways and may affect pPCs survival
and function, including production of IgM and 1gG’4.Furthermore, at the cell-intrinsic level,
our data showed a reduction in expression of authopagy marker genes combined with an
increase of pro-apoptotic genes. Altogether, our findings shed new light on mechanisms of
deregulated pPCs homeostasis leading to immunoparesis in patients affected by PC dyscrasias.
Furthermore, based on previous studies’>”” we speculate that in these conditions the
immune microenvironment could be less competent in antigen-presenting activity as well as
in immunosurveillance, further adding to the complex interrelationships between antibody
production, immunity and tumor progression.

One important question is what the primary cause of an inflamed TME is. Disease
pathogenesis and our data may suggest that cPCs, through perturbed interaction with pPCs
and other cells in the TME, might be responsible. However, it can also be argued that a
perturbed and a pro-inflammatory TME can itself has a primary driver role in PC dyscrasia
development, deranging the normal BM PC transcriptional program and thus promoting the
growth of pre-existing cPCs -harboring initiating genomic lesions- whose proliferative
potential was not expressed until then. The notion that cPCs can progress to an overt MM
without acquiring new genomic events and thus potentially based on microenvironmental
stimuli, is indeed quite substantial?®’® and our data shed some light for the first time on the

type of selection applied from the TME on BM polyclonal PCs.
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Intriguingly, we also identified a specific “healthy” PC signature by comparing PCs from HD
with pPCs of patients rather than to total CD138+ cells, that resulted decreased across disease-
stages and anti-correlated with the immunoparesis signature. Notably, using RNAseq data
from the CoMMpass dataset, patients with an HD signature enrichment over the median
showed a better PFS and OS. These findings emphasize the role of residual functional
“polyclonality” within BM PCs, suggesting that the maintenance of a normal polyclonal
population impacts on patient’s survival and potentially explaining the observed inverse
correlation between immunoparesis and prognosis ’°. In conclusion, our study employs a new
methodology of analysis to gain deep insights into transcriptional landscape of pPCs in PCs
dyscrasias, suggesting they are key players in the TME, and their disruption has biological and

clinical consequences whose understanding may impact research and treatment of MM.
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REAGENTS or RESOURCE
Critical commercial assays
BCR Amplification Kit

Chromium Next GEM Single Cell 5’
Reagent Kits v2
Chromium Next GEM Chip K

Sample Index PCR

Dual Index Kit TT Set A

SPRIselect beads

High Sensitivity D5000 ScreenTape
High Sensitivity D5000 Reagents

Software and algorithms
ggplot2

R

Seurat
InferCNV
MultiNicheNet
ClusterProfiler
DoubletFinder
Harmony
Survival
Survminer

ComplexHeatmap

Antibodies and reagents

EasySep™ CD138 Positive selection
kit Il
Bambanker

RPMI Medium 1640 + GlutaMAX™
Fetal Bovine Serum, FBS
Phosphate buffered saline, PBS
UltraPure™ 0.5M EDTA, pH 8
Ficoll-Paque™ PLUS

Erythrocyte lysing solution

Quant-iT™ PicoGreen™ dsDNA
Assay kit

Visualization softwares

SOURCE

10X Genomics

10X Genomics

10X Genomics
10X Genomics

10X Genomics

SPRIselect Reagent Kit

Agilent
Agilent

CRAN

CRAN

CRAN
Bioconductor
GitHub repository
Bioconductor
GitHub repository
CRAN

CRAN

CRAN

Bioconductor

STEMCELL Technologies

NIPPON Genetics Europe

gibco
gibco
gibco
Invitrogen

Cytiva

Bio-Techne (Cytognos)

Invitrogen

IDENTIFIER

PN-1000253
PN-1000263

PN-2000286
PN-1000190
PN-1000215
Cat# B23318
Cat# 5067-5592
Cat# 5067-5593

v3.4.4
v 4.3.2 (2023-10-31)
v4.4.0

v1.16.0

V1.0.3

v 4.10.0

v2.0.4

v.1.2.0

v3.5-8

v0.4.9

v2.18.0

Cat# 17887A

Cat# BB02

Cat# 61870-010
Cat# A5256701
Cat# 70011-044
Cat# 15575-038
Cat# 17144002
Cat# CYT-BL
Cat# P7589
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lllustrator 2024 Adobe

Photoshop 2024 Adobe

Prism 10 Graphpad v10.1.1
Biorender

Databases

GEO accession number
#GSE193531
GEO accession number
#GSE230705

RESOURCE AVAILABILITY
Lead contact

Further information and requests should be directed and will be fulfilled by the lead contact,

Niccolo Bolli (niccolo.bolli@unimi.it).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The raw data and processed scRNA-seq data, including gene expression matrices and cell
annotations, have been deposited at the European Genome-Phenome Archive (https://ega-
archive.org/) under accession numbers EGAC50000000232.

R script written for the analysis of the single cell datasets is available on

https://gitlab.com/bollilab. SCRNA-seq data and R script required to reanalyze the data

reported in this manuscript, are available from the lead contact request

(niccolo.bolli@unimi.it).

EXPERIMENTAL MODEL AND STUDY PARTECIPANTS DETAILS

Sample selection
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For this study, bone marrow (BM) aspirates from of n= 46 samples, affected by MGUS (n=7),
SMM (n=16) and MM (n=23) were obtained at Fondazione IRCCS Ca' Granda Ospedale
Maggiore Policlinico, Milan (ltaly), according to IMWG criteria (PMID: 25439696 ). Detailed
clinical information for each case is provided in Table S1. The study was conducted in
accordance with the Declaration of Helsinki and approved by the Institutional Review Board
(Ethical Committee # 553 _2022). Written informed consent was obtained from the patients,
as appropriate. All patients were de-identified prior to processing.

One sample from healthy donor (HD) was collected at Fondazione IRCCS Ca' Granda Ospedale
Maggiore Policlinico, Milan (ltaly), as well as (n = 3) from Erasmus MC Cancer Institute,
Rotterdam, (The Netherlands). N=14 (HDs) samples were obtained from publicly available
databases®*3® . In particular, from Boyarsky et al4, a subset with only count derived from the
9 healthy donors was performed (NCBI Gene Expression Omnibus (GEQO) database accession
number #GSE193531). From Duan3® et al., data derived from 5 healthy donors have been used
as control: within this, only counts derived from sorted cell population B
(CD19+/CD138+/CD38+) and cell population D (CD19-/CD38+/CD138+) were used for further
analysis (GEO accession number #GSE230705). The range of HD ages is 25-79 years. The
polyclonal status of the healthy donor collected in our institution was defined through scV(D)J
seq defining the absence of PCs clones with a frequency higher than 5% of the entire PCs

population.

Sample processing

Mononuclear cells (MNCs) were isolated by Ficoll-Paque medium (Cytiva, Cat# 17144002)
density gradient centrifugation. CD138+ BM cell fractions were isolated by immune-magnetic
approach through positive selection with the EasySep™ CD138 Positive selection kit |l
(STEMCELL Technologies, Cat#17887A), after erythrocyte lysis (Cytognos, Cat# CYT-BL),
following manufacturer’s instructions. Cells were counted based on Trypan Blue staining and
the resulting cell suspension was used for downstream applications.

N=8 CD138- samples were cryopreserved in liquid nitrogen using Bambanker (NIPPON

Genetics Europe, Cat. #8B02).
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Thawing of Cells

Cell thawing was conducted following standard protocols. N=8 samples, stored in liquid
nitrogen, were swiftly transferred to a 37°C water bath until the vial contents were fully
dissolved. Subsequently, the content was transferred to a Falcon tube containing pre-warmed

RPMI (Cat# 61870-010) containing 10%FBS (Cat# A5256701), followed by a washing step.

Method details

Single-cell RNA 5’ sequencing library construction and sequencing

Isolated cells from each sample were washed three times with 1X Phosphate-Buffered Saline
(PBS, calcium and magnesium free) containing 0.04% weight/volume FBS (Gibco, Cat# 70011-
044) and manually counted by the Burker chamber. In order to have a desired recovery target
of 9,000 cells, the volume of cells to load was calculated for each sample according to “Cell
Suspension Volume Calculator Table” on Chromium Next GEM Single Cell 5’ v2 protocol
(CG0O00330 Rev E). Then Single-cell 5 RNA-seq libraries were generated using the Chromium
Next GEM Chip K (10X Genomics; PN-2000286) with Master Mix from Chromium Next GEM
Single Cell 5’ Reagent Kits v2 (Dual Index) (10X Genomics; PN-1000263), Single Cell VDJ 5’ Gel
Beads (10X Genomics; PN-1000253) following standard manufacturer’s protocols. Briefly, cell
suspensions were loaded onto the Single Cell K chip followed by gel beads in emulsion (GEM)
generation on the Chromium Controller. Next, GEMs were broken, and pooled fractions were
recovered.

Following the barcoded, full-length cDNA amplification, the cDNA was purified by SPRIselect
Reagent (Cat# B23318) and quantified using Picogreen™ dsDNA assay kit (Cat# P7589) and
quality assessed using High Sensitivity D5000 ScreenTape (Agilent, Cat# 5067-5592) with High
Sensitivity D5000 Reagents (Agilent, Cat# 5067-5593) at the Agilent 4150 TapeStation
machine. Then, lllumina R2 sequence, as well as P5, P7, i5 and i7 sample indexes were added
according to standard protocol procedure (10X Genomics; Library Construction Kit, PN-
1000190 and Dual Index Kit TT Set A, PN-1000215, respectively). Parallelly, BCR Amplification
Kit (10X Genomics; PN-2000253) was used for V(D)) analysis. High Sensitivity D5000
ScreenTape and its reagents were used to assess the library quality, as well as Picogreen™ to
determine libraries concentration. Finally, Generated libraries were combined according to

[llumina specifications and sequenced on a NovaSeq6000 platform (lllumina sequencing
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system) using a 150bp Paired End protocol, targeting approximately 100,000 reads/cell and
15,000 reads/cell for 5’ gene expression and V(D)J enriched libraries, respectively, according

to manufacturer’s recommendations.

CD138+ pre-processing single-cell RNA sequencing analysis
The gene expression (GEX) and V(D)J single-cell RNA-seq data were aligned and quantified

using the Cell Ranger (v 7.1) pipeline (https://www.10xgenomics.com/) against the human

genome GRCh38 (refdata-gex-GRCh38-2020-A and refdata-cellranger-vdj-GRCh38-alts-
ensembl-5.0.0, respectively) using the functions “counts” and “vdj counts” for single- cell
RNAseq and V(D)J deconvolution, respectively. Then, Seurat pipeline (v 4.4.0,) was used to
analyze expression matrices. Low-quality cells defined as mitochondria gene content >5%, or

number of detected genes < 200 or > 3,000 were removed using Seurat pipeline (v 4.4.0,

https://satijalab.org/seurat). In order to avoid cell clustering confounding factors,
immunoglobulin related genes, were removed for downstream analyses. Doublets were
filtered out using DoubletFinder’® (v 2.0.4) with the core statistical parameters (nExp, pN and
pK) determined automatically using recommended settings for each sample. nCounts_RNA,
n_FeatureRNA and percent_MT were checked for each sample and reported in Figure S6 A,
B. An automated cell assignment was applied on previously filtered single-cell which were
projected onto a complete Bone Marrow reference map (v4.4.0,

https://satijalab.org/seurat/articles/multimodal reference _mapping.html)’®. The clonotype

information was incorporated for each cell by matching the barcodes from the single-cell V(D)J
(scVDJ) with those from the single-cell gene expression (scGEX). This process facilitated the

classification of cells as either harboring clonal or polyclonal clonotypes.

Polyclonal cell selection

In order to analyze a clear population of genotypically identified polyclonal plasmacells (PCs),
a strict multistep process was applied: (i) for each patient the dominant clonotype was defined
as the recurrent V(D)) rearrangement within the clonal population; (ii) the nucleotide
sequence of the CDR3 of any non-clonal clonotype (heavy chain and light chain
rearrangement) was blasted against the nucleotide sequence of the dominant V(D))
rearrangement; (iii) all those cells whose the blast analysis return with certain grade of

homology were manually inspected. Cells with a dubious homology (more than 90% as for the
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IGH as for IGK/IGL chain) with the dominant clonotype were removed, as well as cells sharing
only the light chain rearrangement with the dominant clone were considered “light chain
escape derived clones” and categorized within the clonal PCs. (iv) Samples with an higher
degree of homology between cell’s rearrangements underwent to a phylogenetic tree analysis
through the Immcantation pipeline®®8! to exclude any phylogenetic correlation between the
dominant clonotype and other putative polyclonal PCs; (v) Each sample underwent to

inferCNV analysis (https://github.com/broadinstitute/inferCNV, (see detailed methods

below)?” to dissect at transcriptional level the different copy number variants (CNV)
background between the clonal and polyclonal PCs populations. Each sample analysis was
performed using the same healthy donor PCs as normal control (a complete overview of CNVs
is reported Figure S1-S4); (vi) a final list for each sample containing specifically cell barcodes

for polyclonal and clonal PCs were created and used for downstream analysis.

Plasma cells single-cell RNA sequencing analysis

ScRNAseq analysis as performed by Seurat pipeline. Samples were merged in lists based on
their clinical status (HDs, MGUS, SMM and NDMM) and counts normalized. Then, the
integration was performed using the FindTransferAnchors and the IntegrateData functions
with RPCA method. The integrated Seurat object was scaled, and the most variable features
were obtained through the FindVariableFeatures function. Based on these genes the principal
components analysis was performed through runPCA function.

Batch effect correction was applied to PCs using Harmony® (v.1.2.0)-with function
RunHarmony using the origin of the samples as variable for correction. Then, the harmonized
matrix was used to plot uniform manifold approximation and projection (UMAP). For the
polyclonal BM scRNA-seq data set, 30 principal components (PCs) were used for dimensional
reduction and cell clustering. The resolution parameter was 0.1. Differential expression
analysis between different clinical stages were performed using FindMarkers function from
Seurat package (v 4.4.0). Cluster specific markers were identified by FindAlIMarkers and
FindMarkers functions. Violin plots to compare expression across cell types or clinical groups

were made using ViInPlot function in R.
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Functional enrichment analysis was performed with genes by clusterProfiler package®® (v.
4.10.0), for the hallmark gene sets provided by the Molecular Signature Database (MSigDB)
(msigdbr, v.7.5.1).

Wilcox test with pvalueCutoff= 0.1 was applied for all analyses. Figures were plotted by

ggplot2 (v 3.4.4) in R.

Single-cell copy number variation analysis
Copy number alterations (CNAs) were inferred from single cell gene expression data using

inferCNV R package®’ (v 1.16.0, https://github.com/broadinstitute/inferCNV), which

computes gene expression intensities across genomic positions from malignant cells in
comparison to a set of reference cells (for each comparison the same healthy donor have been
used for a total of 4153 normal PCs)

The algorithm was run with the following arguments: cutoff=0.1, HMM_type =‘i3’,
cluster_by_groups=TRUE, denoise=TRUE, HMM =TRUE. CNV-level subpopulations were
determined using analysis_mode = ‘subclusters’, to partition cells into groups having

consistent patterns of CNVs

Single-cell HD signature definition and scoring

HD gene signature defined by a differential gene expression analysis (“wilcoxauc” R function)
between HDs and MGUS, SMM and NDMM. Then, for each contrast only genes significantly
upregualted in HDs (Benjamini—Hochberg adjusted p.value < 0.05, logFoldchange > 0.1) were
retained. Then, we calculated the intersection of deregualted genes within each contrast
though the ComplexHeatmap (v 2.18.0) function make_comb_mat using the “distinct”mode
to compute only those genes specifically deregulated in each contrast.

Then, the Gene signature activity in single cells was estimated using the AddModuleScore
function from Seurat (v 4.4.0), and CompleaxHeatmap. Gene sets used for signature scoring
are listed in Table S4.

To estimate the activity of HD gene expression signature for each sample in the publicly

available MMRF bulk RNA-sequencing dataset (IA17 release, https://research.themmrf.org),

that includes bulk RNA-seq data from the CD138+ fraction derived from NDMM patients.

Survival analysis was performed using survival (v 3.5-8) and survminer (v 0.4.9) packages.
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CD138- pre-processing single-cell RNA sequencing analysis

GEX and V(D)J scRNA-seq data of matched n=31 CD138- samples (n=23 fresh and N=8 frozen)
were aligned and quantified using the Cell Ranger pipeline (v7.1) against the human genome
GRCh38. For GEX data, the reference used was refdata-gex-GRCh38-2020-A, while for V(D))
data, the reference was refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0.

To ensure data quality, cells expressing less than 200 or more than 3000 features, and those
expressing over 5% (fresh samples) and 10% (frozen samples) of mitochondrial genes, were
filtered out using the Seurat pipeline (v4.4.0).

To identify and remove potential doublets, DoubletFinder’® (v2.0.4) was employed with core
statistical parameters (nExp, pN, and pK) determined automatically using recommended
settings for each sample. Filtered single-cell transcriptomes were then projected onto a
comprehensive Bone Marrow reference map using Seurat. Subsequently, cells displaying a
clonal VDJ profile, along with all plasma cells, were omitted from the analysis to ensure the
derivation of uncontaminated samples representing the tumor microenvironment (TME).
All cells derived from the n=31 samples (positive and negative fractions) were integrated

following the FindTransferAnchors and the IntegrateData functions using CCA method.

Cell-cell communication and interaction analysis

Cell-cell communication analysis was performed using the MultiNicheNet package (version
1.0.3)¥® implemented in R, to infer potential interactions between cell types using the
expression of ligands, receptors, and potential targets within signaling pathways. The
MultiNicheNet analysis includes 31 matched samples, it was performed integrating CD138+
cells (comprising both polyclonal and clonal PCs) and CD138- cells for the TME totaling
N=171928 cells. Comparisons were conducted between patients with and without
immunoparesis, following the standard criteria for immunoparesis assessment3!. The default
MultiNicheNet pipeline (https://github.com/saeyslab/multinichenetr) was applied. To
enhance robustness and prevent cluster drop-outs due to low numbers, certain subclusters
were merged to form larger clusters per sample. Specifically, “CD8 Effector_1" and “CD8
Effector 2” were merged into the “CD8_Effector cluster”, “CD8 Memory 1" and “CD8
Memory_2" were merged into “CD8_Memory cluster ”, “cDC2”and “prog_DC” were merged
into “DC cluster”, “prog_B 1” and “prog_B 2” were merged into “prog_B cluster”, and “HSC”,
“LMPP” and “GMP” were merged into “HSC cluster” , “CD14 Mono” and “CD16 Mono” were
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merged into “monocyte cluster”, and “CD56 bright NK” and “NK” were merged into “NK
cluster”.

Clusters were included in the analysis only if a minimum of 4 cells were present in all samples
per condition. gdT cells did not passed this filter, therefore not included in the Multinichenet
analysis. Parameters were chosen carefully: LogFC_threshold was set to “0.5”, empirical_pval
was set to “TRUE”, p_val_threshold was set to “0.05”, p_val_adj was set to “TRUE”,
top_n_target was set to “250”, and prioritization weights were set to default.

All cell-cell interaction analyses and plots were conducted between clonal and polyclonal PC
versus the entire TME. Clonal and polyclonal PCs were prioritized as sender cells, and the
entire TME as receiver cells, and vice versa.

Top 75 ligands per condition were chosen for circos plots visualization and prioritized
interactions for ligand-receptors pseudobulk expression products plots and ligand activity

plots.

Data visualization

All plots were generated using the ggplot2 (v 3.4.4) and ComplexHeatmap (v 2.18.0) packages
in R.

Details on statistical tests used in the different figures and definition of relevant summary

statistics are included in the figure legends.
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FIGURE LEGENDS

Figure 1. Clonal and polyclonal cells identification in patients affected by plasma cell
dyscrasias and healthy donors (HD).

(A) Schematic overview of cohort of samples and workflow of the study.

(B) Donut charts representing the distribution of clonal and polyclonal cells in plasma cell
dyscrasias and healthy donors based on clinical stratification (HD: blue; MGUS: green; SMM:
orange; MM: red). Numerical values are reported in the legend for category. Color legend of
clonal and polyclonal cells as in (B).

(C) The proportions of clonal cells (red) and polyclonal cells (blue) in each sample.

(D) UMAP plot show all clonal (red) and polyclonal (blue) cells, with numerical values.

(E) UMAP representation of as per (D), colors indicate clinical stratification of samples.
Numerical values and percentages are reported in the legend for each category.

(F) Violin plots showing distribution of expression of genes commonly upregulated in patients
plasma cell dyscrasias, along with annotations of the clinical classification (top). Bar above

violin plots summarize clinical type assignments. Color legend as in (B and C).

Figure 2. Polyclonal cell selection and marker genes expression by clinical stages.

(A) UMAP of scRNA-seq data of selected pPCs with colors indicating clinical clusters. Numerical
values are reported in the legend for each category. Color legend of polyclonal cells as in Figure
1C.

(B) Dot plot displaying the top ten marker genes that distinguish each clinical state. The X-axis
lists the clinical category, while the Y lists gene names. Circle size corresponds to the number
of cells in the category expressing the gene of interest, while shade correlates with the level
of expression.

(C) Violin plot showing expression pattern of selected PCs, adhesion/ interaction and

autophagy marker genes across all the clinical stages.
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Figure 3. Transcriptional characterization of pPCs

(A) Cartoon depicting the deregulated expression profiles of pPCs, derived from 1:1 DE
analyses by Wilcoxon test. Circle size corresponds to the number of cells in the category
expressing the gene of interest, while shade correlates with the level of expression. Color code
as in Figure 1C.

(B) Gene set enrichment analysis (GSEA) on the genes ranked by their contribution to hallmark

oxidative phosphorylation, inflammatory and interferon alpha response.

Figure 4. Transcriptomic landscape of immunoparesis

(A) Cartoon showing the pathological subset of patients (MGUS, SMM and MM), for
downstream DE analyses. Color code as in Figure 1C.

(B) Dot plot of top ten marker genes that distinguish immunoparesis-negative and
immunoparesis-positive patients. The X-axis lists the clinical category, while the Y lists gene
names. Circle size corresponds to the number of cells in the category expressing the gene of
interest, while shade correlates with the level of expression. Light blue: immunoparesis-
negative patients, yellow: immunoparesis-positive patients.

(C) DE analysis comparing the immunoparesis-negative and immunoparesis-positive patients
within symptomatic subset of patients, using Wilcoxon rank sum test, with padjust
pBenjamini-Hochberg correction. Color code as in Figure 4B.

(D) Gene set enrichment analysis (GSEA) on the genes ranked by their contribution to hallmark

oxidative phosphorylation, complement, interferon alpha and interferon gamma response

Figure 5. Predicted interactions of PCs with microenvironment
(A) UMAP representation of PCs integrated with TME, colors indicate TME cell types.

(B) UMAP plot of PCs integrated with TME colored according to immunoparesis. Color code
as Figure 4C.
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(C) Circos plots illustrate ligand-receptor Interactions between pPCs (blue), cPCs (red) and
TME, according to immunoparesis clinical status. Ribbon arrows indicate directionality of
communication, from sender to receiver populations, while the arrow's color signifies the
specific sender cell type expressing the ligand. Upper panel: PCs were set as sender. Lower

panel: PCs were set as receiver.

Figure 6. A «hPC» signature analysis allows prediction in independent datasets

(A) HD gene signature defined by a DE analysis between HDs and MGUS, SMM and MM. For
each contrast genes significantly upregualted in HDs (Benjamini—Hochberg adjusted p.value
< 0.05, logFoldchange > 0.1) were retained. Venn diagram to show the intersection of

deregualted genes within each comparison. Color code as Figure 1D.
(B) Immunoparesis gene signature defined by a DE analysis between immunoparesis-negative
and immunoparesis-positive patients. Venn diagram to show the intersection of deregualted

genes. Color code as Figure 4B.

(C) Violin plot showing the inference of HD and immunoparesis signatures in the cohort of

patients. Color code as Figure 1D.

(D) Scatterplot of HD and Immunoparesis signatures: R: - 0.29, p.value < 2.2e1°,

(E, F) Clinical impact of HD signature in CoMMpass RNAseq data. Progression-free survival

(PFS) (E) and overall survival (OS) (F) Kaplan-Meier curves in the cohort of patients.
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Supplementary figure legends

Figure S1-S4. PCs heterogeneity elucidated by inferCNV

InferCNV heatmap demonstrating of clonal (red) and polyclonal (blue) cells of each sample (n=46).

Figure S5. GPRC5D and TNFRSF17 show differential expression in clonal and polyclonal cells

(A, B) Violin plot of GPRC5D and TNFRSF17 gene expression pattern across disease stages
(blue: HDs, green: MGUS, orange: SMM and red: MM)

(C, D) Violin plot of GPRC5D and TNFRSF17 gene expression pattern across disease stages (blue:
HDs, green: MGUS, orange: SMM and red: MM) in clonal (red) and polyclonal (blue) cells.

Figure S6. Quality control and pre-processing of single-cell polyclonal data

(A) Violin plots illustrate distribution of percentage “nCounts_RNA” of each sample divided by HD,
MGUS, SMM and MM

(B) Violin plots representing the distribution of mitochondrial genes percentage per each sample
divided by HD, MGUS, SMM and MM

(C) Violin plots representing “nFeature_RNA” distribution of each sample divided by HD, MGUS,
SMM and MM

Figure S7. Polyclonal plasmacells clustering

(A, B) Uniform Manifold Approximation and Projection (UMAP) representation of cells from the 64

single-cell RNA-seq data, colored by clusters (A) and by patients (B).
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Figure S8. Hallmark analysis of polyclonal plasmacells

(A, B, C) Differential expression analysis showing Wilcoxon enriched hallmarks between HD vs MGUS
(A), HD vs SMM (B) and HD vs MM (C) conditions. Gene-ratio on the y-axis, counts as dot size and

color represent padj values in z-score.

Figure S9. Cell abundance of patients’ plasma cells between immunoparesis conditions

(A, B) Box plot representing patients’ clonal (A) and polyclonal (B) plasmacells distribution across
immunoparesis negative (light-blue) or positive (yellow) patients.
(C, D) Donut plot showing the proportion of immunoparesis negative (light-blue) or positive (yellow)

in patients’ clonal (C) and polyclonal (D) plasmacells and their respective number of cells.

Figure $S10. TME dataset integration and relative cell abundance of BM cell populations

(A) UMAP of integrated CD138- cell fractions of n=31 samples colored by cell types.

(B) The box plot displays the relative abundance of cells within the integrated dataset (TME and
PCs). Cell types are shown on the x-axis, with relative frequency represented on the y-axis in
logarithm. The yellow boxes represent positive immunoparesis condition, while the lightblue boxes
represent negative immunoparesis condition. The asterisk (*) above the "pPCs" label indicates a

padj value of 0.004, determined by the Wilcoxon test with Benjamini-Hochberg adjustment.

Figure S11. Scaled L-R pseudobulk products and ligand activity in PCs in immunoparesis-negative
condition
(A, B) Bubble plots illustrate scaled pseudobulk expression of ligand-receptor pairs specific for
the "immunoparesis negative" condition. Rows represent ligand-receptor interactions, with
sender and receiver cell types indicated respectively. PCs were set as senders in panel A and as
receivers in panel B. Scaled ligand-receptor pseudobulk expression is depicted in the legend. The
size of dots indicates whether a sample contained enough cells (>= 4) to be included in the

differential expression (DE) analysis. On the right side, scaled ligand activity values, calculated
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based on the DE genes of cell type, and represented as normalized z-scores, are computed per
receiver cell type. Higher values indicate greater enrichment of target genes of a specific ligand
among the set of up- or downregulated genes in the "immunoparesis negative" or "positive"
group. Gray color is associated to no DE genes (up or down) for those cell types due to pipeline

parameters (see STAR methods).

Figure S12. Predicted ligand-target interaction and average expression levels of target genes in

pPCs of immunoparesis-negative patients

(A) Heatmap showing predicted ligand-target links and the target regulatory potential behind
ligand activity predictions. The genes shown are the top target genes (columns) of the ligand

(rows) that have contributed to the ligand activity prediction of that interaction.

(B) Dot plot representing the average expression level of a target gene either up or down
regulated in the predicted ligand-target plot. Upregulated genes are shown in red, while
downregulated genes are shown in blue. Genes derive from pPCs L-R-T activity analyses in

immunoparesis-negative condition.

Figure S13. Scaled L-R pseudobulk products and ligand activity in PCs in immunoparesis-positive

condition
(A,B) Bubble plots illustrate scaled pseudobulk expression of ligand-receptor pairs specific for the
"immunoparesis positive" condition. Rows represent ligand-receptor interactions, with sender and
receiver cell types indicated respectively. PCs were set as senders in panel A and as receivers in
panel B. Scaled ligand-receptor pseudobulk expression is depicted in the legend. The size of dots
indicates whether a sample contained enough cells (>= 4) to be included in the differential
expression (DE) analysis. On the right side, scaled ligand activity values, calculated based on the DE
genes of cell type, and represented as normalized z-scores, are computed per receiver cell type.
Higher values indicate greater enrichment of target genes of a specific ligand among the set of up-

or downregulated genes in the "immunoparesis negative" or "positive" group. Gray color is
associated to no DE genes (up or down) for those cell types due to pipeline parameters (see STAR

methods).
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Figure S14. Predicted ligand-target link and average expression levels of target genes in pPCs of

immunoparesis-positive patients

(A) Heatmap showing predicted ligand-target links and the target regulatory potential behind ligand
activity predictions. The genes shown are the top target genes (columns) of the ligand (rows) that

have contributed to the ligand activity prediction of that interaction.

(B) Dot plot representing the average expression level of a target gene either up or down regulated
regulated in the predicted ligand-target plot. Upregulated genes are shown in red, while
downregulated genes are shown in blue. Genes derive from pPCs L-R-T activity analyses in

immunoparesis-positive condition
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