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Significance 

Although bodily signals are known to influence perception and behavior, little is known about 

the underlying neurophysiological mechanisms. Here, we show that perception of the 

heartbeat is anticorrelated with phase synchrony of frontal delta oscillations, and that 

modulating these oscillations with transcranial electric stimulation influences heartbeat 

perception. Our results suggest that delta oscillations play a key role in processing bodily 

signals, with potential implications for theories of emotions and clinical neuroscience. 

 

Abstract 

The ability to accurately perceive one’s own bodily signals, such as the heartbeat, plays a vital 

role in physical and mental health. However, the neurophysiological mechanisms underlying 

this ability, termed interoception, are not fully understood. Converging evidence suggests that 

cardiac rhythms are linked to frontal brain activity, particularly oscillations in the delta (0.5 – 4 

Hz) band, but their causal relationship remained elusive. Using amplitude-modulated 

transcranial alternating current stimulation (AM-tACS), a method to enhance or suppress brain 

oscillations in a phase-specific manner, we investigated whether frontal delta oscillations are 

causally linked to heartbeat perception. We found that enhancement of delta phase synchrony 
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suppressed heartbeat detection accuracy, while suppression of delta phase synchrony 

enhanced heartbeat detection accuracy. These findings suggest that frontal delta oscillations 

play a critical role in heartbeat perception, paving the way for causal investigations of 

interoception and potential clinical applications. 

 

Introduction 

Interoception refers to the sense by which individuals perceive the physiological state of their 

body, such as satiation, hydration, respiration, and the heartbeat (1). It was found that accurate 

interoception is essential for the effective regulation of physiological processes, ensuring that 

the body's response to environmental challenges is appropriate. For instance, accurate 

perception of hydration leads to appropriate fluid intake, which in turn maintains body function 

(2). Moreover, the integrity of interoception ensures that cardiovascular, metabolic, and other 

physiological states can be adjusted to the individual’s current and future requirements (3, 4). 

In turn, dysfunctions in interoception were found in a range of mental health conditions 

including anxiety (5), depression (6), panic disorder (7), eating disorders (8), and substance 

use disorders (9).  

 

Similarly to sensorimotor processes, interoception forms a perception-action loop (10). 

Interoceptive signals, originating from sensory receptors within internal organs, reflect 

information about physiological states that is integrated with other information in the insular 

and anterior cingulate cortices (1, 4, 11). Efferent signals are then generated in the form of 

behavioral responses (e.g., eating or drinking) or autonomic adjustments (e.g., increasing 

heart rate). This bidirectional interplay ensures an adaptive response to both perturbations of 

the body state and environmental demands (10, 12). 

 

It was found that the interaction between brain and body is intrinsically rhythmic, spanning over 

a wide range of frequencies (13). For instance, the gastric basal rhythm oscillates at about 

0.05 Hz, respiration at about 0.25 Hz, and the heartbeat at about 1 Hz. Although the link 

between these rhythms and those of the brain is unclear, there is increasing evidence of both 

afferent and efferent forms of temporal locking in the sense of entrainment (14-19). Moreover, 

several studies found various links between frontal delta oscillations (FDOs, 0.5 – 4 Hz) and 

autonomic functions (20), such as an anticorrelation between frontal delta power and the heart 

rate (18). At the same time, it was found that cardiac activity can modulate FDOs (19, 21). 

These results suggest that FDOs play an important role in the bidirectional coupling between 

the brain and the heart. However, it is not clear how this coupling relates to heartbeat 
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perception. Since brain responses related to self-generated sensory input are typically 

suppressed (22-24), we hypothesized that phase synchrony of FDOs are causally and 

negatively linked to heartbeat-evoked potentials (HEPs) and heartbeat perception. 

 

To test this hypothesis, we invited healthy human volunteers (N = 24) to perform an established 

heartbeat detection task (11) while electroencephalography (EEG) was recorded (Fig. 1). In 

this task, participants had to indicate whether an auditory tone sequence was presented early 

or late relative to the heartbeat. To differentiate EEG signals related to auditory processing, 

participants also performed an auditory tone detection task in which they were asked to 

indicate deviant tones within a tone sequence. 

 

Assessing the entrainment of brain oscillations by interoceptive signals such as the heartbeat 

comes with methodological challenges. By aligning their high- or low-excitability phases with 

rhythmic input, brain oscillations constitute an efficient mechanism for filtering of predictable 

sensory signals (25, 26). Typically, this phenomenon is studied by comparing the phase of 

brain oscillations at the time of enhanced and suppressed sensory input (26, 27). However, 

due to heartbeat-locked artifacts in the EEG (28-30), the phase of delta oscillations relative to 

the heartbeat is difficult to assess directly. Instead, since coordinated entrainment of brain 

oscillations manifests in network synchrony (31), we chose to assess delta phase synchrony 

between brain regions by computing the phase lag index (PLI) to mitigate the influence of 

cardiac artifacts (32). Subsequently, we applied amplitude-modulated transcranial alternating 

current stimulation (AM-tACS), a frequency-tuned form of non-invasive brain stimulation to 

enhance or suppress brain oscillations (33), to the frontal cortex either early or late relative to 

(perception of) the heartbeat. We expected that AM-tACS results in phase-dependent 

enhancement and suppression of delta phase synchrony in the identified network causing an 

increase and decrease in heartbeat detection accuracy. 
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Figure 1. Experimental paradigm. (A) Electroencephalography (EEG) and electrocardiography (ECG) 

were recorded while auditory stimuli were delivered through a pair of earphones. To modulate delta 

phase synchrony, amplitude-modulated transcranial alternating current stimulation (AM-tACS) was 

applied to the frontal cortex. Parameters of AM-tACS comprised an 8 kHz carrier frequency, an envelope 

frequency corresponding to the heart rate, and a stimulation intensity adjusted to avoid any 

somatosensory perception, up to ± 10 mA. (B) During the heartbeat detection task (11), participants (N 

= 24) were asked to assess whether their heartbeat was early or late relative to the sequence of pure 

tones. During the tone detection task, participants were asked to assess whether the sequence of pure 

tones contained a deviant tone. Auditory stimuli were identical across tasks, and trials of each task were 

mixed such that they were performed in a pseudorandomized order. (C) In absence of AM-tACS, pure 

tones were played either early with the perceived heartbeat, (~250 ms after ECG R-peak) or late (~750 

ms after ECG R-peak). Auditory stimuli consisted of a sequence of normal (800 Hz) tones, in some trials 

containing a deviant (780 Hz) tone. To identify the network of delta oscillations linked to heartbeat 

perception, a network-based permutation test was used to assess where the phase lag index (PLI) was 

higher during incorrect than during correct responses in the heartbeat detection task. (D) Participants 

performed the same tasks in the presence of AM-tACS, which was applied early or late relative to 

(perception of) the heartbeat. We show only one cycle of AM-tACS for illustrative purposes, although it 

was applied (and adjusted to the heartbeat) continuously. Stimulation artifact source separation (SASS) 

was used for stimulation artifact removal from EEG signals. Finally, modulation of delta phase synchrony 

in the network previously identified was correlated with the modulation of heartbeat detection accuracy. 
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Results 

Frontal delta phase synchrony is associated with heartbeat perception 

We found that delta phase synchrony was associated with heartbeat detection accuracy in a 

network of frontal brain regions (Fig. 2A), which exhibited higher PLI during incorrect than 

during correct responses (t(23) = 1.61, p = 0.044, network-based permutation test), confirming 

that delta phase synchrony was negatively associated with heartbeat detection accuracy. We 

also assessed whether PLI in the identified network was larger during the tone detection task 

than during the heartbeat detection task (Fig. 2B). No such difference was found (t(23) = 0.281, 

p = 0.623, permutation test), demonstrating that increased delta phase synchrony was 

associated with decreased heartbeat perception but not tone perception. Correspondingly, a 

two-way ANOVA revealed an interaction between task (heartbeat or tone detection) and 

response (correct or incorrect) with respect to frontal delta synchrony (F(1,23) = 5.90, p = 

0.0233). We also assessed whether differences in oscillatory synchrony between incorrect and 

correct responses were restricted to the delta band by performing the network-based 

permutation test for the theta (4 – 8 Hz), alpha (8 – 15 Hz), beta (15 – 30 Hz), and gamma (30 

– 45 Hz) bands. No differences in synchrony between incorrect and correct responses were 

found in these frequency bands. Cluster-based permutation testing did not reveal any 

difference in delta amplitude between correct and incorrect responses. 

 

We next assessed whether PLI in the identified network was associated with HEP amplitude 

in any brain region. We found an anticorrelation between PLI (calculated over the entire trial 

duration) and HEP amplitude in central, parietal, and occipital areas from 255 to 595 ms after 

the ECG R-peak (p < 0.05, cluster-based permutation test) (Fig. 2D and 2E). The strength of 

this anticorrelation strongly increased when HEP amplitudes were averaged across significant 

sensors and timepoints (r = -0.604, p = 0.0018) (Fig. 2F). To further confirm that delta phase 

synchrony was associated with heartbeat perception and not tone perception, we assessed 

whether PLI in the identified network was associated with auditory evoked potential (AEP) 

amplitude. Cluster-based permutation testing did not reveal any correlation between PLI and 

AEP amplitude. 

 

We also assessed whether evoked responses in the delta frequency range activity might 

explain our findings. In addition to endogenous frontal delta oscillations, heartbeat-evoked 

activity, as well as auditory-evoked activity, were observable during our task. We found that 

frontal delta synchrony, particularly its difference between incorrect and correct responses, 
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was not accounted for by evoked responses. Neither was it accounted for by ocular artifacts 

(Fig. S1). 

 

 

 

Figure 2. Increased frontal delta phase synchrony is associated with reduced heartbeat 
perception and reduced heartbeat-evoked potential. (A) Phase synchrony of delta oscillations 

recorded over frontal brain areas was associated with heartbeat detection. (B) Delta phase synchrony 

was larger during incorrect than during correct responses in the heartbeat detection task. No difference 

in delta phase synchrony between the heartbeat and tone detection tasks was found. (C) An interaction 

between task (heartbeat or tone detection) and response (correct or incorrect) was found with respect 

to frontal delta synchrony. (D) Delta phase synchrony was anticorrelated with the amplitude of the 

heartbeat-evoked potential (HEP) in several clusters of central, parietal, and occipital EEG electrodes. 

(E) The anticorrelation between delta phase synchrony and HEP amplitude was found between 255 and 

595 ms after the ECG R-peak. (F) When averaged over significant electrodes and timepoints, delta 

phase synchrony was strongly anticorrelated with the HEP amplitude. 
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Transcranial alternating current stimulation modulates frontal delta phase 
synchrony and heartbeat perception 

We first assessed whether the timing of AM-tACS relative to the ECG R-peak influenced 

heartbeat perception (Fig. 3A). We found that heartbeat detection accuracy during late AM-

tACS (66.0 ± 14.7 %) was lower (t(24) = -2.06, p = 0.0256) than during early AM-tACS (69.2 ± 

15.7 %). Before assessing delta oscillations recorded in the presence of AM-tACS, we 

confirmed that electric stimulation artifacts were successfully attenuated by SASS (Fig. S1). 

We found that the change in delta phase synchrony across delay conditions predicted (r = -

0.411, p = 0.0231) the change in heartbeat detection accuracy (Fig. 3B). Thus, an increase in 

delta phase synchrony led to a decrease in heartbeat detection accuracy, and vice-versa. 

Cluster-based permutation testing did not reveal any difference in delta amplitude between 

AM-tACS delay conditions. 

 

To exclude that physiological and behavioral effects of AM-tACS are related to neural 

processing of the auditory stimulus, we performed the same analyses for the tone detection 

task. We found that tone detection accuracy during out of phase AM-tACS (49.7 ± 5.51 %) was 

comparable to (t(24) = 0.391, p = 0.650) tone detection accuracy during early AM-tACS (48.9 

± 7.11 %). No relationship (r = -0.209, p = 0.164) between the change in synchrony and the 

change in accuracy across delay conditions was found (Fig. 3C). 

 

While we find a link between changes in frontal delta synchrony and changes in heartbeat 

detection accuracy due to AM-tACS (Fig. 3B), we did not find a difference in frontal delta 

synchrony between late and early AM-tACS conditions. We reasoned that this might result 

from a variability in the optimal phase difference between AM-tACS and frontal delta 

oscillations to enhance (or suppress) frontal delta synchrony. Indeed, we find that this optimal 

phase difference varies across participants (Fig. S4). We also find that this phase difference 

varies across participants within both the early and late AM-tACS conditions (Fig. S3). 
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Figure 3. Amplitude-modulated transcranial alternating current stimulation (AM-tACS) 
suppresses heartbeat detection accuracy by enhancing frontal delta phase synchrony. (A) When 

AM-tACS was applied out of phase with the heartbeat, heartbeat detection accuracy was lower than 

when AM-tACS was applied early relative to the heartbeat. No differential effect on tone detection 

accuracy was found. (B) The modulation of delta phase synchrony in the target network (Fig. 2) was 

anticorrelated with the modulation of heartbeat detection accuracy, such that an enhancement of delta 

phase synchrony caused a suppression of heartbeat detection accuracy. (C) No relationship between 

the modulation of delta phase synchrony and tone detection accuracy was found. 

 

Discussion 

Our findings indicate that FDOs suppress heartbeat-evoked brain activity, attenuating 

perception of the heartbeat. While previous studies have found that processing of visual (17, 

34-36), auditory (37), and somatosensory (38-41) stimuli depends on the timing of stimulus 

presentation relative to the heartbeat, the underlying mechanism remained unknown. Our 

findings suggest that such heart cycle dependent modulations of perception may be mediated 

by FDOs, consistent with the notion that they might reflect unconscious predictions of bodily 

signals such as the heartbeat (40, 42-44). Importantly, our findings suggest that this theoretical 

concept is amenable to experimental investigation using phase-specific brain stimulation. 

Future studies should also investigate whether our findings can be generalized to the 

processing of other interoceptive signals beyond heartbeat (20), and how manipulation of 

these interoceptive signals affects FDOs (45). 

 

Causal modulation of FDOs via AM-tACS offers an approach to verify their functional relevance 

for heartbeat perception and could be applied to experimentally test basic theories of emotion, 

which make competing predictions about the causal role of interoception. The James-Lange 

theory posits that we feel emotions in response to bodily signals (46). In contrast, the Cannon-

Bard theory argues that bodily signals and emotional experiences occur simultaneously but 
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independently (47). Meanwhile, the Schachter-Singer theory suggests that emotions arise from 

a combination of bodily signals and cognitive appraisal (48). By selectively manipulating the 

processing of bodily signals using AM-tACS, it might be possible to experimentally test these 

competing basic theories. 

 

Finally, our results suggest that AM-tACS could be used to better understand whether 

alterations in interoception are causally related to symptoms of a range of health conditions. 

For instance, it has been proposed that altered interoceptive processing is a primary cause of 

anxiety and depression (5, 6), in addition to other psychiatric disorders (49). Dysfunctions of 

interoception have also been linked to a range of other brain disorders with somatic symptoms 

such as chronic pain (50), obesity (51), and chronic stress (52). Beyond disentangling the 

causal relationship between interoception and other aspects of these disorders, our approach 

might facilitate new avenues of treatment. 

 

However, several methodological limitations of tACS should be addressed to reduce variability 

of stimulation effects across clinical applications (53-56). Effect variability may result from inter-

individual anatomical differences, which should be considered in the design of personalized 

stimulation montages (55). Importantly, effects of tACS also depend on the brain state during 

stimulation (57-59). We found that AM-tACS enhanced and suppressed FDOs in a phase-

dependent manner. While this mechanism has been documented elsewhere for other brain 

oscillations (33, 60-63), its utilization in clinical practice remains a challenge. To selectively 

enhance or suppress a brain oscillation using this mechanism, electric stimulation artifacts in 

simultaneously recorded EEG must be sufficiently attenuated to extract single-trial phase 

information and continually adapt tACS to the oscillation in real-time (33, 64, 65). Furthermore, 

the phase difference between tACS and the oscillation must be personalized to achieve the 

desired enhancement or suppression effect (33, 61, 63, 66). Finally, poor focality and depth of 

transcranial electric stimulation (54, 67, 68) limit the capacity of tACS to selectively modulate 

subregions of the frontal brain mediating interoception. Recently developed techniques 

employing interfering electric (69-71) or magnetic (72) fields may alleviate these issues while 

remaining compatible with the stimulation artifact rejection approaches employed here (33, 64, 

65). These technical advances may enable more refined investigations of the causal link 

between FDOs, interoception, and brain (dys)function. 
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Methods 

Participants 

In total, 25 participants (14 female, 11 male, 26 ± 5 years of age) were invited to participate 

in the study and provided written informed consent in accordance with the ethics committee 

of the Charité – Universitätsmedizin Berlin (EA1/077/18). One participant was excluded due 

to exceedingly high heartbeat detection accuracy (> 90%) in all conditions. 

 

Electroencephalography 

Electroencephalograph (EEG) was recorded from the scalp according to the international 10 – 

20 system using a NeurOne system (Bittium Corp., Oulu, Finland). For all recordings, the 

amplifier was set to DC-mode with a dynamic range of +/-430 mV, a resolution of 51 nV/bit, 

and a range of 24 bit. Data were sampled at 2 kHz. The impedance for all sensors was kept 

below 10 kΩ. Otherwise, the sensors were marked for interpolation. 

 

Electrocardiography 

Electrocardiography (ECG) was recorded from an auxiliary bipolar channel along with EEG 

data. Electrodes were placed under the left and right infraclavicular fossa. The EEG system 

sent the ECG data to a real-time computer via a real-time UDP stream, where it was further 

processed to control AM-tACS and auditory stimuli. 

 

Transcranial alternating current stimulation 

Amplitude-modulated transcranial alternating current stimulation (AM-tACS) was delivered to 

the scalp with a current of up to ± 10 mA and a carrier signal frequency of 8 kHz using a 

Digitimer DS5 (Digitimer Ltd, UK). The amplitude of AM-tACS was adjusted individually for 

each participant to the maximal level that remained below the threshold for somatosensory 

perception. Two circular rubber electrodes (34 mm diameter, 2mm thickness) were used with 

conductive ten20 paste (Weaver & Co, Aurora, CO, USA) to apply AM-tACS to the scalp. 

Rubber electrodes delivering AM-tACS were centered on positions Fpz and Cz of the 

international 10-20 system. The electric stimulator was controlled by an SDG 2042X signal 

generator (Siglent, NL), which applied amplitude-modulation to the carrier signal depending on 

an input voltage signal received from the Speedgoat Performance Real-Time Target Machine 

(Speedgoat GmbH, CH). The real-time target machine adjusted the phase of amplitude 
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envelope to the ECG signal in real-time, such that its maximum was either early (~250 ms after 

ECG R-peak) or late (~750 ms after ECG R-peak) with (perception of) the heartbeat. 

 

Auditory stimuli 

Auditory stimulation consisted of a sequence of pure tones of 100 ms duration delivered 

through earphones at a 60 dB level. Tones were played either early (~250 ms after ECG R-

peak) or late (~750 ms after ECG R-peak) relative to the heartbeat. The timing of early and 

late tones was chosen to match that of a prior study implementing the same paradigm, but with 

pulse measurements from the finger (11). In that study, early tones were played < 150 ms after 

the pulse wave, whereas late tones were played ~500 ms after the pulse wave. Our timing was 

subsequently chosen based on evidence that the pulse wave arrives at the finger ~250 ms 

after the ECG R-peak (73). Normal tones had a frequency of 800 Hz, whereas deviant tones 

had a frequency of 785 Hz. 

 

Behavioral tasks 

Participants carried out randomized trials of a heartbeat detection task and a tone detection 

task. For sensory stimulation parameters, see the previous section. Throughout each 10-

second trial of either task, they were presented with a series of tones, which was triggered by 

their own heartbeat. In 50% of trials, the tones were played early relative to the perceived 

heartbeat (~250 ms after ECG R-peak). In the remaining 50%, the tones were played late 

relative to the perceived heartbeat (~750 ms after ECG R-peak). Additionally, in 50% of the 

trials, the tone sequence contained a deviant tone. In the heartbeat detection task, we 

manipulated attention by presenting study participants with a heart symbol in the middle of the 

screen. At the end of each trial, they were asked to indicate whether the tones were early or 

late relative to the heartbeat, and how confident they were about their response (by selecting 

1,2,3, or 4). Throughout the tone detection task, we directed them to attend to the pitch of the 

tones by showing them a musical note symbol in the middle of the screen. At the end of each 

trial, they were asked to indicate whether the tone sequence contained a deviant tone, and 

how confident they were about their response (by selecting 1,2,3, or 4). To compute heartbeat 

and tone detection accuracy, responses were weighted by their confidence. 

 

Stimulation artifact source separation 

Following (64), we removed the AM-tACS artifact from bandpass-filtered (0.5 – 4 Hz) EEG 

data using SASS. First, we computed the sensor covariance matrix A in the presence of AM-
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tACS, as well as the sensor covariance matrix B in absence of AM-tACS. Subsequently, a 

source separation matrix W was computed by joint diagonalization of A and B: 𝐖𝐖 =  �
𝐰𝐰1T

⋮
𝐰𝐰nT

�   

where   𝐀𝐀𝐰𝐰i = λi𝐁𝐁𝐁𝐁I   and   λi = 𝐰𝐰i
T𝐀𝐀𝐰𝐰i

𝐰𝐰i
T𝐁𝐁𝐰𝐰i

. The wi were ordered from greatest to least 𝛌𝛌I, which 

represented the ratio of artifact power to brain signal power (noise-to-signal ratio) in each 

component. Finally, the matrix P was constructed as 𝐏𝐏 = 𝐖𝐖−1𝐒𝐒𝐒𝐒, where 𝐒𝐒 =  �
0

⋱
1
�, 

with zeros on the diagonal representing artifact components that were removed from the data. 

To remove AM-tACS artifacts, the sensor-space data were then multiplied by P. To select the 

number of components to reject (zeros in S), �𝐁𝐁 − 𝐏𝐏𝐏𝐏𝐏𝐏𝐓𝐓�2 was minimized, resulting in 20.0 ± 

11.1 rejected components. 

 

Electroencephalography data processing 

To compute the HEP in absence of AM-tACS, EEG data were filtered from 0.5 - 30 Hz using a 

finite impulse response filter. Epochs were then extracted around the ECG R-peak, and the 

signal was averaged over epochs. To compute delta phase, EEG data were filtered from 0.5 – 

4 Hz using a finite impulse response filter of order 1321 (corresponding to 6.61 seconds). For 

data recorded in the presence of AM-tACS, SASS was then applied to suppress the electric 

stimulation artifact (see previous section). Subsequently, the Hilbert transform was applied to 

the data, and the angle of the analytic signal was taken to obtain the phase of delta activity. 

To assess long-range delta phase synchrony, the phase lag index was computed between 

each pair of channels (32). MNE-Python (74), NumPy (75), and SciPy (76) were used for all 

analyses. To remove delta-band activity linked to heartbeat-evoked potentials (HEP) and 

auditory-evoked potentials (AEP) (Fig. S1), a template subtraction procedure was employed. 

First, the HEP and AEP were computed from – 500 ms to 1000 ms around the ECG R-peak 

and tone onset, respectively. Then, the template HEP and AEP were subtracted from EEG 

signals at each instance of the ECG R-peak and tone onset, respectively. To remove delta-

band activity linked to ocular artifacts, a regression-based approach was employed (77). First, 

a virtual EOG channel was computed as the difference between signals from EEG electrodes 

Fp1 and Fp2. Then, linear regression was used to remove the resulting EOG signal from EEG 

signals. 

 

Statistics 
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To identify the network of delta oscillations whose synchrony differed across correct and 

incorrect responses in the heartbeat detection task, network-based statistics were employed 

(78). First, a threshold was computed as the 95th percentile of all entries in the connectivity 

(PLI) matrix averaged across epochs and participants. Second, the largest connected 

component (network) was identified from the averaged and thresholded connectivity matrix. 

To assess statistical significance of synchrony in this network, the PLI was averaged within the 

network for each participant and condition (correct or incorrect responses in the heartbeat 

detection task). From this, a t-statistic was computed for the network. A permutation test was 

then used to compute a p-value for the network by shuffling the condition labels across trials 

within each participant and recomputing the t-statistic 10,000 times. To identify clusters across 

time and space where HEP amplitude correlated with delta phase synchrony in the identified 

network, a cluster-based permutation test was used (79). To obtain a test statistic, Pearson’s 

r was computed across participants between PLI in the network and HEP amplitudes at each 

point in time and space. In each permutation, PLI in the network was shuffled across 

participants. To assess opposition of the phase difference between AM-tACS and frontal delta 

oscillations across early and late AM-tACS conditions (Fig. S3), we employed the phase 

opposition sum (80). To assess phase-dependent modulation of frontal delta synchrony by 

AM-tACS (Fig. S4), we fit a sine function to the single-trial data using non-linear least-squares 

optimization. To assess significance of the phase opposition sum or amplitude of phase-

dependent modulation within each participant, we employed a permutation test. The labels 

(condition or AM-tACS-delta phase difference) were permuted across trials, and the test 

statistic was recomputed 10,000 times. 
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