

1 **The intestinal microbiome and *Cetobacterium somerae* inhibit viral
2 infection through TLR2-type I IFN signaling axis in zebrafish**

3 Hui Liang¹, Ming Li,¹ Jie Chen,¹ Wenhao Zhou,¹ Dongmei Xia,^{1,2} Qianwen Ding,³
4 Yalin Yang,³ Zhen Zhang,³ Chao Ran,^{3,*} Zhigang Zhou^{1,*}

5 ¹Sino-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed
6 Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China

7 ²Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty
8 of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium

9 ³Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural
10 Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences,
11 Beijing 100081, China

12 ***Correspondence:** ranchao@caas.cn, zhouzhigang03@caas.cn

13

14 **ABSTRACT**

15 Accumulated evidences demonstrate that intestinal microbiome can inhibit viral
16 infection. However, our knowledge of the signaling pathways and specific commensal
17 microbes that mediate the antiviral response is limited. Here, a rhabdoviral infection
18 model in zebrafish allows us to investigate the modes of action of
19 microbiome-mediated antiviral effect. We observed that antibiotics-treated and
20 germ-free zebrafish exhibited greater viral infection. Mechanistically, depletion of the
21 intestinal microbiome alters TLR2-Myd88 signaling, and blunts neutrophil response
22 and type I interferon (IFN) production. Moreover, a single commensal bacterium,
23 *Cetobacterium somerae*, recapitulated TLR2- and type I IFN-dependent antiviral
24 effect of the microbiome in gnotobiotic zebrafish, and *C. somerae* exopolysaccharides
25 (CsEPS) was the effector molecule that engaged TLR2 to mediate antiviral function.
26 Together, our results suggest a conserved role of intestinal microbiome in regulating
27 type I IFN response among vertebrates, and reveal that the intestinal microbiome
28 inhibits viral infection through a CsEPS-TLR2-type I IFN signaling axis in zebrafish.

29

30 **KEYWORDS:** intestinal microbiota, antiviral innate immunity, zebrafish

31 INTRODUCTION

32 Vertebrates harbor a large number of commensal bacteria in the intestine. The
33 intestinal microbiota play an important role in the health and disease of host, both
34 locally and systemically (1, 2). During the past decade, accumulated evidences shed
35 light on the regulatory role of intestinal microbiota in viral infection (3–5). The
36 microbiota can either stimulate or inhibit viral infection, depending on the viruses
37 investigated (5, 6). Notably, intestinal microbiota has been shown to limit mammalian
38 infection of different viruses (7–12). The underlying mechanism was associated with
39 commensal bacteria-mediated priming of type I interferon (IFN) response in a number
40 of studies (8–11). Till now, studies about the influence of intestinal microbiota on
41 viral infection are mainly conducted in mammalian model. Recent work demonstrated
42 that intestinal microbiota improved resistance of chicken against nephropathogenic
43 infectious bronchitis virus (12), suggesting a conserved role of microbiota in
44 regulating viral infection. However, the influence of commensal bacteria on viral
45 infection in lower vertebrates is largely unknown. Furthermore, despite the advances
46 in this field, our knowledge about the identity of specific commensal bacteria that
47 primes the antiviral immunity and the underlying molecular mechanism is still limited
48 (2, 13).

49 Zebrafish have emerged as a powerful animal model for study of
50 vertebrate-microbiota interactions (14). Gnotobiotic zebrafish revealed evolutionarily
51 conserved responses to the gut microbiota compared with mice (15). Studies using
52 gnotobiotic zebrafish have given rise to important insights into the assembly and
53 function of vertebrate microbiome (14, 16–20). Zebrafish possess innate and adaptive
54 immune system similar to that of mammals, and rely solely on innate immunity at
55 least within 3 weeks of its life (21). Similar with mammals, virus-induced IFNs are
56 key components of antiviral immunity in zebrafish. The type I IFNs in zebrafish
57 comprise IFNΦ1-4, which are divided into two groups: I (IFNΦ1 and Φ4) and II
58 (IFNΦ2 and Φ3), and are recognized by different heterodimeric receptors:

59 CRFB1/CRFB5 and CRFB2/CRFB5, respectively (22–25). Spring viremia of carp
60 virus (SVCV) is an aquatic single stranded RNA virus that belongs to *Rhabdoviridae*
61 family (26). Zebrafish are susceptible to SVCV, and zebrafish-SVCV infection model
62 has been widely used to study the regulation of antiviral innate immunity in vertebrate
63 (27–29).

64 In this study, we investigated the impact of intestinal microbiome on SVCV
65 infection in zebrafish. We observed that oral antibiotics-treated and germ-free
66 zebrafish exhibited greater viral infection by SVCV, supporting a conserved
67 inhibitory effect of microbiome on viral infection in this lower vertebrate model.
68 These phenotypes were attributable to microbiome-mediated priming of type I IFNs
69 response, and neutrophils were the immune cells mediating the antiviral function of
70 microbiome. The microbiota-mediated effect relied on toll-like receptor 2
71 (TLR2)-Myd88 signaling pathway. Moreover, we identified a specific commensal
72 bacterium dictating the antiviral effect of the microbiome. Indeed, colonization of GF
73 zebrafish with the commensal bacterial species, *Cetobacterium somerae* (*C. somerae*),
74 inhibited SVCV infection in a mode involving TLR2-type I IFN signaling and
75 neutrophils. We also determined that the exopolysaccharides of *C. somerae* are the
76 effector component that engages TLR2 to inhibit viral infection.

77 RESULTS

78 **Depletion of the intestinal microbiota modulates the resistance of zebrafish 79 against SVCV infection**

80 We feed adult zebrafish control feed or feed supplemented with antibiotics cocktail
81 (ABX) for 2 weeks to deplete the microbiota. Then zebrafish were challenged by
82 SVCV through intraperitoneal injection. The mortality rate was observed and
83 documented for 10 days post infection. The mortality of ABX group was significantly
84 higher than control (Fig. 1A). Furthermore, viral replication was measured by *q*PCR
85 analysis of the transcript of SVCV N protein in infected animal tissues. Consistent
86 with the mortality rate, viral replication in liver, spleen, and kidney of zebrafish at 1
87 and 2 days post infection was higher in ABX-treated fish compared with control fish
88 (Fig. 1B). Together, these results indicate that the intestinal microbiota regulates
89 antiviral resistance of zebrafish.

90 To confirm a role for intestinal microbiota in modulating SVCV infection, we
91 further conducted experiments in gnotobiotic zebrafish model. Germ-free (GF)
92 zebrafish, conventional zebrafish, and GF zebrafish colonized by microbiota from
93 conventionally raised adult zebrafish at 4 dpf (conventionalized) were challenged by
94 SVCV at 7 dpf, and the mortality was monitored (Fig. 1C). The results showed that
95 the mortality of germ free group was higher than both conventional or
96 conventionalized counterparts (Fig. 1D), which confirms the antiviral effect of
97 microbiota in zebrafish.

98 **Intestinal microbiota depletion impairs the type I IFN response to SVCV 99 infection**

100 To investigate the potential mechanism of the antiviral effect of microbiota, we firstly
101 evaluated the type I IFN response in germ-free versus conventionalized zebrafish. The
102 results showed that the expression of IFN Φ 1 and IFN Φ 3 was higher in
103 conventionalized zebrafish compared with germ free counterparts (Fig. 2A). We also
104 investigated the type I IFN response in adult zebrafish fed control diet or diet
105 supplemented with antibiotics. Consistently with the results in gnotobiotic fish, adult

106 zebrafish with depleted microbiota exhibited impaired expression of IFN Φ 1 and
107 IFN Φ 3 in liver, spleen, and kidney at 1 and 2 days post SVCV infection (Fig. 2, B and
108 C). To eliminate potential confounding effect of viral replication on IFN response, we
109 treated adult zebrafish with poly(I:C) by intraperitoneal injection. We found similar
110 impairment of IFN Φ 1 and IFN Φ 3 expression in antibiotics fed zebrafish compared
111 with control at 1 and 2 days post poly(I:C) inoculation (fig. S1). The concordance of
112 finding in different experimental models indicated that the microbiota plays an
113 important role in stimulation of type I IFN response in zebrafish post viral infection.

114 To investigate whether the protective effect of microbiota against viral infection is
115 mediated through type I IFN signaling, we knocked down receptors for all type I IFNs
116 with vivo-morpholino directed to CRFB1 and CRFB2, and infected GF and
117 conventionalized control or CRFB1+2 morphant fish with SVCV. Viral replication in
118 gnotobiotic zebrafish was evaluated by *q*PCR analysis of SVCV N protein mRNA at
119 48 hpi (Fig. 1C). The results showed that CRFB1+2 knockdown abrogated the
120 antiviral effect of microbiota as manifested by both viral replication and mortality
121 (Fig. 2, D to F, fig. S2, A and B), indicating that the antiviral effect of intestinal
122 microbiota depends on type I IFN response in zebrafish. In addition to type I IFN,
123 other types of IFNs were also reported to contribute to the protection effect of
124 microbiota against viral infection in some studies (7, 13). To investigate the potential
125 involvement of type II and IV IFNs (30) in the microbiota-mediated effect, we
126 detected the expression of IFN γ , IFN γ rel, IFN ν in GF and conventionalized zebrafish
127 post SVCV infection. We found that there was no difference in the expression of type
128 II and IV IFNs between GF zebrafish and the microbiota-colonized counterparts at 24
129 and 48 hpi (fig. S3), suggesting that the microbiota-mediated protective effect on viral
130 infection does not involve type II and IV IFN response. We also separately knocked
131 down CRFB1 and CRFB2 to evaluate the relative contribution of group I and II type I
132 IFNs to the antiviral effect of microbiota. The results showed that knocking down
133 CRFB1 blocked the effect of microbiota, while CRFB2 knockdown made no
134 difference (Fig. 2, G to I, fig. S2, C and D). This suggests that the antiviral effect of
135 microbiota is mainly dependent on group I IFN. Group 1 IFN includes IFN Φ 1 and

136 IFN Φ 4, but IFN Φ 4 had little activity (31), indicating that IFN Φ 1 is the key interferon
137 that mediates the antiviral effect of microbiota in zebrafish. Therefore, we mainly
138 detected the expression of IFN Φ 1 in the following experiments.

139 **Microbiota-mediated antiviral effect depends on neutrophil response**

140 We then studied the cellular immunity involved in the antiviral effect of microbiota.
141 At the larval stage of zebrafish, cellular immunity only consists of myeloid cells, and
142 neutrophils and macrophages are the main effector cells. Therefore, we firstly
143 assessed neutrophil recruitment and activation in GF and conventionalized *Tg*
144 (*mpx:EGFP*) zebrafish post SVCV infection. The results showed that there was a
145 marginal increase of neutrophil numbers in GF fish after viral infection. In contrast,
146 the number was significantly increased in conventionalized counterparts, indicating
147 that the intestinal microbiota enhances the neutrophil response post viral infection
148 (Fig. 3, A and B). Similarly, we conducted experiments in *Tg* (*mpeg1:EGFP*)
149 zebrafish to assess macrophage activation. The results showed that both GF and
150 conventionalized zebrafish exhibited a similar increase of the macrophage numbers
151 post viral infection (Fig. 3, C and D), indicating that the intestinal microbiota is
152 dispensable for macrophage activation in response to viral infection.

153 Furthermore, we investigated the role of immune cells in the microbiota-mediated
154 antiviral effect. Firstly, we blocked myelopoiesis by knocking down *Spi1b*, resulting
155 in reduction of both neutrophil and macrophage populations. *Spi1b* knockdown
156 blocked the antiviral effect of microbiota (Fig. 3E), indicating that the protective
157 effect of microbiota against viral infection depends on the function of myeloid cells.
158 Knockdown or mutation of *Csf3r* affected neutrophil populations in zebrafish larvae
159 (31, 32), and *Irf8* is critical for macrophage development in zebrafish (33). To
160 distinguish the roles of the two leukocyte types, we attempted to deplete neutrophils
161 and macrophages by knocking down *Csf3r* and *Irf8*, respectively (fig. S4). We found
162 that *Csf3r* knockdown blocked the protective effect of microbiota against viral
163 infection, while *Irf8* knockdown showed no effect (Fig. 3F). We hypothesized that
164 neutrophils played a role in IFN production. Indeed, *Spi1b* and *Csf3r* knockdown
165 abrogated the effect of microbiota to stimulate IFN Φ 1 expression post viral infection

166 (Fig. 3G), indicating that the stimulatory effect of microbiome on type I IFN response
167 was mediated by neutrophils. Together, these data are consistent with the results of
168 neutrophil/macrophage activation in conventionalized versus GF zebrafish after viral
169 infection, supporting that the intestinal microbiota-mediated restrictive effect on viral
170 infection depends on neutrophils, but not macrophages.

171 **The intestinal microbiota signals through TLR2-Myd88 to limit viral infection**

172 We further studied whether specific PRR(s) mediated the antiviral effect of
173 microbiota. We found that Myd88 knockdown abrogated the protective effect of
174 microbiota against viral infection (Fig. 4A, fig. S5). Myd88 is the adaptor protein of
175 multiple TLRs (34). We hypothesized that specific TLR(s) recognized the
176 microbiota-derived signals and triggered the antiviral response to limit SVCV
177 infection. We used vivo morpholinos to knock down one of five TLRs (TLR2, TLR3,
178 TLR4ba, TLR7, TLR9), and infected GF and conventionalized control or
179 TLR-morphant zebrafish with SVCV. The results showed that knockdown of TLR3,
180 TLR4ba, TLR7 and TLR9 did not impair the protective effect of microbiota against
181 viral infection (Fig. 4B). In contrast, the microbiome-mediated reduction of viral
182 infection was abrogated in TLR2-knockdowned zebrafish (Fig. 4, C to E), suggesting
183 a specific role of TLR2 in recognizing the microbiota-derived ligand(s) that stimulate
184 antiviral response. Together, these data indicate that the intestinal microbiota requires
185 TLR2-Myd88 signaling to restrict viral infection in zebrafish.

186 Furthermore, we evaluated the role of TLR2-Myd88 signaling in
187 microbiota-mediated effect on type I IFN response. We found that knockdown of
188 TLR2 and Myd88, but not any of the other TLRs, abrogated the effect of microbiota
189 to stimulate IFN Φ 1 expression post viral infection (Fig. 4, F and G). We also found
190 that conventionalized zebrafish stimulated IFN Φ 1 expression compared with GF
191 counterparts in response to poly(I:C) treatment, and TLR2/Myd88 knockdown
192 abrogated the effect (fig. S6), suggesting that TLR2-Myd88 signaling-mediated action
193 of microbiome enhances canonical type I IFN signaling pathway against RNA viruses,
194 and this mode of action is not limited to SVCV infection. To define whether
195 TLR2-Myd88 signaling contributed to the microbiome-mediated neutrophil response,

196 we used vivo-morpholinos to knock down TLR2 and Myd88 in *Tg (mpx:EGFP)*
197 zebrafish and enumerated the neutrophil numbers in GF and conventionalized control
198 or TLR2/Myd88 morphants after SVCV infection. Interestingly, we observed that
199 TLR2 and Myd88 knockdown blocked microbiota-mediated increase of neutrophil
200 numbers post viral infection (Fig. 4, H and I). Together, these results suggest that the
201 microbiome-dependent immune cue(s) engage TLR2 to enhance neutrophil and type I
202 IFN response in zebrafish post SVCV challenge, which culminated in restriction of
203 viral infection.

204 ***C. somerae* mono-colonization recapitulates the antiviral effect of the intestinal
205 microbiome**

206 We next investigated whether specific bacterial taxa mediated the antiviral effect of
207 the microbiome. We tested this idea by evaluating whether a single antibiotic was
208 required or dispensable for the effect in increasing the susceptibility to viral infection.
209 We feed adult zebrafish with antibiotics cocktail including neomycin (Neo),
210 vancomycin (Vanco), ampicillin (Amp), and metronidazole (Metro) or with each
211 antibiotic singly. Two additional single antibiotic treatments Clindamycin (CLI, an
212 antibiotic especially efficient against anaerobic bacteria) and Nalidixic acid (NAL, an
213 antibiotic predominantly targeting gram-negative bacteria) were also included.
214 Zebrafish were fed for 2 weeks and challenged with SVCV through intraperitoneal
215 injection. The mortality of zebrafish was consistently increased by antibiotics cocktail
216 (Fig. 5, A and B). Interestingly, Metro and CLI treatment led to increased mortality
217 similar to the cocktail group, suggesting that the two antibiotics depleted key bacterial
218 taxa responsible for the antiviral function (Fig. 5, A and B). In contrast, Neo group
219 showed similar mortality with control, suggesting that the bacterial taxa eliminated by
220 Neo were dispensable (Fig. 5, A and B). Consistently, GF zebrafish colonized with
221 microbiota from control and Neo group of fish showed lower viral infection compared
222 with GF control, while colonization with microbiota from Metro and CLI group of
223 fish had no effect (Fig. 5C). Therefore, we carried out 16S rRNA gene sequencing on
224 the intestinal contents collected from control fish and those fed antibiotics cocktail,
225 Metro, CLI, or Neo at 0 dpi. Amp, Vanco, and NAL treatment exhibited a partial

226 suppressive effect in resistance against viral infection and thus were not included in
227 the sequencing.

228 The 16S rRNA gene sequencing result clearly showed that the abundance of
229 *Cetobacterium* was correlated with the protective effect of the microbiota. Indeed,
230 *Cetobacterium* was depleted in ABX, Metro and CLI groups with high mortality,
231 while its abundance was high in the control and Neo groups (Fig. 5, D and E, fig. S7).
232 We mono-colonized germ-free zebrafish with *C. somerae* isolated from the intestine
233 of zebrafish and challenged the gnotobiotic fish with SVCV. Remarkably,
234 colonization of *C. somerae* reduced SVCV infection compared with GF control (Fig.
235 5F). In comparison, mono-colonization of *Aeromonas veronii* and *Plesiomonas*
236 *shigelloides*, two other commensal bacterial strains isolated from the intestine of
237 zebrafish, did not inhibit viral infection (Fig. 5F), thus controlling for any
238 non-specific effects due to bacterial colonization. Furthermore, we tested the effect of
239 *C. somerae* in adult zebrafish. Results showed that *C. somerae* reduced the mortality
240 of zebrafish after SVCV infection (fig. S8).

241 We hypothesized that *Cetobacterium* inhibited SVCV infection by stimulating
242 neutrophil-dependent type I IFN response. Indeed, *C. somerae* colonization enhanced
243 neutrophil response and IFN Φ 1 expression versus GF control following SVCV
244 infection, while *Aeromonas veronii* and *Plesiomonas shigelloides* did not have the
245 effects (Fig. 5, G to I). Consistently, the antiviral function of *C. somerae* was
246 abrogated by CRFB1+2 knockdown as well as Csf3r knockdown-mediated neutrophil
247 depletion (Fig. 5, J and K). Moreover, we found that the protective effect of *C.*
248 *somerae* required TLR2-Myd88 signaling, as the bacterium-mediated reduction of
249 viral replication was blocked by TLR2 and Myd88 knockdown (Fig. 5L). Thus, *C.*
250 *somerae* restricted SVCV infection by a mode that mirrored the microbiome,
251 indicating a key role of this bacterial taxon in the microbiome-mediated function.

252 **The exopolysaccharides of *C. somerae* signals through TLR2 to mediate antiviral
253 effect**

254 To identify the bacterial components responsible for the antiviral effect, we treated
255 GF zebrafish with cell free supernatant or cell lysate of *C. somerae* and then

256 challenged them with SVCV (Fig. 6A). Both the cell free supernatant and cell lysate
257 reduced viral infection (Fig. 6, B and C). Next, both the cell free supernatant and cell
258 lysate were separated using a 3 kDa centrifugal filter. We tested the function of both
259 the upper retentate (macromolecules) and the lower liquid filtrate (small-molecule
260 compounds) in GF zebrafish. Intriguingly, treatment of GF zebrafish with the
261 retentate rather than the filtrate reduced viral infection, indicating that the effector(s)
262 are macromolecule(s) (Fig. 6, B and C). Furthermore, the antiviral function of both
263 cell free supernatant and cell lysate was maintained following proteinase K treatment,
264 suggesting that the effector(s) are not protein(s) and probably are polysaccharide(s)
265 (Fig. 6, B and C).

266 We observed that *C. somerae* contained a capsule structure by capsular staining (fig.
267 S9A). Capsular polysaccharides (CPS) have been reported to mediate antiviral effect
268 of commensal *Bacteroides* in mammals (2). We extracted the CPS from *C. somerae*,
269 and found that *C. somerae* CPS (CsCPS) exhibited significant antiviral activity (fig.
270 S9B). However, the antiviral effect of CPS was maintained in TLR2 morphant
271 zebrafish, suggesting that CPS was not the key effector responsible for *C.*
272 *somerae*-mediated function (Fig. 6D). We also excluded peptidoglycan as the effector
273 by lysozyme treatment of cell lysate (fig. S10). Furthermore, we isolated LPS of *C.*
274 *somerae* and found that the LPS exhibited no antiviral function (fig. S11). We then
275 hypothesized that exopolysaccharides secreted in the supernatant were the main
276 antiviral effector. Indeed, the antiviral effect of cell lysate was maintained in TLR2
277 morphant zebrafish, while the effect of cell free supernatant was abrogated by TLR2
278 knockdown (Fig. 6, E and F). We then extracted exopolysaccharides from cell free
279 supernatant of *C. somerae* and found that *C. somerae* exopolysaccharides (CsEPS)
280 had significant antiviral activity (Fig. 6G). Intriguingly, the antiviral effect of CsEPS
281 was blocked by TRL2 and Myd88 knockdown (Fig. 6H), supporting that
282 exopolysaccharides were the *C. somerae*-derived TLR2 ligand that played a key role
283 in the *in vivo* antiviral function. The antiviral effect of CsEPS was abrogated in
284 CRFB1+2 morphant zebrafish (Fig. 6H), which was also consistent with *C. somerae*
285 mono-colonization result. Together, these results demonstrate that a single commensal

286 bacterial molecule limits viral infection in a mode resembling the whole microbiota,
287 suggesting a CsEPS-TLR2-type I IFN signaling axis in mediating the antiviral effect
288 of microbiome in zebrafish.

289 **DISCUSSION**

290 We have revealed a previously unknown role of the intestinal microbiome in
291 promoting type I IFN antiviral response in zebrafish. Our results are consistent with
292 previous reports of commensal regulation of type I IFN response in mammalian viral
293 infection models (8–11), suggesting a conserved role of commensal bacteria in
294 regulating type I IFNs and viral infection among vertebrates. Notably, type II and III
295 IFNs were reported to be involved in the antiviral effect of microbiome in some
296 studies (7, 13). Type III IFNs have not been identified in teleost (23, 25). Recently,
297 type IV IFN has been identified in zebrafish and other vertebrates, which also
298 possesses antiviral activity (30). However, we observed no difference in the
299 expression of type II and IV IFNs between GF and conventionalized zebrafish after
300 SVCV infection, excluding the involvement of other IFN types in the antiviral effect
301 of microbiome. Previous studies demonstrated that the microbiome regulates type I
302 IFN production under steady state conditions (2, 36). However, in our analysis,
303 differences in the expression of type I IFN genes were not observed between
304 conventionalized zebrafish and the GF controls at steady state, probably due to that
305 the *qPCR* method we used was not sensitive enough to detect the differences.

306 Our results showed that neutrophils mediated the antiviral effect of microbiome in
307 zebrafish. Depletion of neutrophils also abrogated the microbiota-mediated
308 stimulation of IFNΦ1 expression. Neutrophils are the main IFN-producing leukocyte
309 in zebrafish upon Chikungunya virus (CHIKV) infection (31). In our study, we have
310 no direct evidence to support that neutrophils were the IFN-producing cells after viral
311 infection. It is also possible that neutrophils are not the main IFN producer, but
312 stimulate the IFN production by other cells. We also observed that the expression of
313 *mpx* (marker gene for neutrophils) was lower in the ABX group versus control at 1

314 and 2 days post SVCV infection or poly(I:C) treatment in adult zebrafish, while no
315 difference was observed for the expression of *mpeg1* (marker gene for macrophages)
316 (fig. S12). This suggested that the microbiome contributed to the activation of
317 neutrophils, but not macrophages, in adult zebrafish post viral infection, which is
318 consistent with the results in gnotobiotic zebrafish. Previous studies in mammalian
319 model revealed that macrophages and pDCs were the effector immune cells that
320 mediate the antiviral effect of microbiome (13, 37). The discrepancy might be due to
321 species-specific interaction of microbiome and immune cells that mediate the innate
322 antiviral immunity.

323 Previous studies have suggested the contribution of microbe-associated molecular
324 pattern (MAMPs) in priming of the antiviral immunity by intestinal microbiome.
325 Ichinohe et al. found that rectal inoculation of agonists of TLR4, TLR3, TLR9, and to
326 a lesser extent TLR2, rescued the antiviral immunity against influenza in ABX-treated
327 mice (38). Zhang et al. reported that bacterial flagellin inhibited rotavirus infection in
328 mice, which involved TLR5 and NOD-like receptor C4 (NLRC4) (1). However, these
329 studies used canonical PRR agonists, and did not uncover the PRR signaling and
330 identity of specific commensal microbes that mediate the priming of antiviral
331 immunity by the microbiome. Diamond's group demonstrated that restriction of
332 CHIKV dissemination by the microbiome requires TLR7-Myd88 signaling in pDCs,
333 but whether the identified bacterial species (*Clostridium scindens*) and its derived
334 metabolite (the secondary bile acid deoxycholic acid) engage TLR7 to mediate the
335 antiviral effect was not determined (12). In another study, Stefan et al. found that
336 *Bacteroides fragilis* and its OM-associated polysaccharide A induce IFN- β via
337 TLR4-TRIF signaling, which at least in part mediates the regulatory effect of
338 microbiome on natural resistance to viral infection (2). The results in our study
339 provided novel insights into the identity of specific commensal bacteria that primes
340 the antiviral immunity as well as the underlying signaling pathway. We found that the
341 microbiota-mediated antiviral effect relied on TLR2-Myd88 signaling, and further
342 revealed that the commensal bacterium *C. somerae* played a major role in the
343 TLR2-Myd88 dependent priming of the innate antiviral immunity via its

344 exopolysaccharides. It is intriguing that TLR2 activation by a gram negative
345 bacterium primed antiviral immunity, as TLR2 is a canonical PRR for peptidoglycan.
346 The sequencing result showed considerable abundance of *Staphylococcus* in the
347 microbiota of zebrafish, but its relative abundance was not correlated with the
348 antiviral effect of the microbiome. It might be that the *Cetobacterium*
349 exopolysaccharides is a more potent agonist of TLR2 in zebrafish compared with
350 peptidoglycan, or that *Cetobacterium* produces relatively higher amount of
351 exopolysaccharides, which resulted in its dictating effect in priming TLR2-mediated
352 antiviral immunity. Consistent with our results, previous study in gnotobiotic
353 zebrafish demonstrated that TLR2 was essential for the regulation of microbiota on
354 *myd88* transcription and intestinal immunity (17), which highlighted the key role of
355 TLR2 in mediating the immunomodulatory effect of microbiome in zebrafish.

356 Co-evolution brings about a triangular relationship of host, microbiome, and
357 viruses (3, 4). Differential mechanisms have been reported to mediate the antiviral
358 effect of microbiome, including both immune-dependent or -independent actions (39).
359 In particular, priming of type I IFN response was implicated as the underlying
360 mechanism in a number of studies (8–11). However, few studies have revealed
361 immune cells and signaling pathways that link the microbiome to type I IFN response.
362 Our data reveal that the microbiome primes type I IFN response through a pathway
363 that requires neutrophils and TLR2-Myd88 signaling. Although the mechanisms
364 involve different immune cells and TLRs compared with those in mammalian model
365 (2, 13), the underlying consistency suggests an evolutionally conserved function of
366 the microbiome in regulation of type I IFN response and thus natural resistance
367 against viral infection in lower vertebrates. Considering the advantages of zebrafish as
368 an animal model, the conserved function suggests that gnotobiotic zebrafish can be
369 used as a model to study the molecular foundations of the triangular interactions of
370 host, microbiome, and virus, or as a screening platform for potential
371 microbiome-derived antiviral molecules.

372

373 **MATERIALS AND METHODS**

374 **Zebrafish husbandry**

375 This study was approved by the Feed Research Institute of the Chinese Academy of
376 Agricultural Sciences Animal Care Committee under the auspices of the China
377 Council for Animal Care (Assurance No. 2015-AF-FRI-CAAS-003). Zebrafish were
378 raised in a circulating water system under a 14 h/10 h light/dark cycle at 28°C and fed
379 two times per day as previously described (40). Experiments were performed using
380 the wild-type AB zebrafish strain. When necessary, transgenic line *Tg (mpx:EGFP)*
381 and *Tg (mpeg1:EGFP)* were used for immune cell visualization.

382 **Antibiotics feeding**

383 For antibiotics feeding experiment, adult AB zebrafish (two months old) were fed
384 with antibiotic cocktail-supplemented feed for 14 days. The antibiotic cocktail
385 contains ampicillin (Amp, 0.5 mg/kg), metronidazole (Metro, 0.5 mg/kg), neomycin
386 (Neo, 0.5 mg/kg), and vancomycin (Van, 0.25 mg/kg). For single antibiotic feeding,
387 zebrafish were fed with a single antibiotic of the cocktail or clindamycin (CLI, 0.11
388 mg/kg), nalidixic acid (NAL, 0.33 mg/kg). Antibiotics were purchased from
389 Sigma-Aldrich. Ingredients and proximate composition of diets for zebrafish are shown
390 in table S1.

391 **Germ-free (GF) zebrafish and treatment**

392 Germ-free zebrafish were prepared following established protocols as described
393 previously (41). Zebrafish larvae were hatched from their chorions at 3 dpf with 30
394 fish per bottle. The transfer of gut microbiota from adult zebrafish to germ-free
395 zebrafish was performed as previously described (42). For mono-association, *C.*
396 *somerae* XMX-1 was incubated anaerobically in Gifu Anaerobic Medium (GAM)
397 broth at 28°C for 12 h, while *Aeromonas veronii* XMX-5 and *Plesiomonas*
398 *shigelloides* were cultured in Luria-Bertani (LB) broth at 37°C for 18 h. Then, the

399 bacterial cells were harvested by centrifugation (7000 g for 10 min at 4°C). The
400 collected bacterial cells were washed three times with distilled PBS. GF zebrafish
401 were colonized at 4 dpf with a single bacterium at a final concentration of 10⁵
402 CFU/mL.

403 **Viral infection**

404 Epithelioma papulosumcyprini (EPC) cells and SVCV (ATCC: VR-1390) were
405 presented by professor Jun-Fa Yuan (Huazhong agricultural university, Wuhan, Hubei,
406 China). SVCV was propagated in EPC cells as previously described (43). TCID₅₀/mL
407 was calculated according to the Reed and Muench method (44).

408 Adult zebrafish (two months old) was acclimatized to 22°C and were i.p. injected
409 with SVCV (2.5 × 10⁵ 50% tissue culture-infective dose [TCID₅₀]/ml) at 10
410 µL/individual. The liver, spleen, and kidney of zebrafish were collected 24 h and 48 h
411 after injection. Mortality was recorded for 10 days. Germ-free, conventional,
412 conventionalized, or mono-associated zebrafish were infected with SVCV at 7 dpf by
413 bath immersion at a concentration of 10⁶ TCID₅₀/mL. The infection was conducted at
414 25°C. Larval zebrafish were harvested at 9 dpf for qPCR or fluorescence analysis.
415 Mortality was recorded for 96 hours after infection when necessary.

416 **Confocal microscopy**

417 Images were captured by using a confocal ZEISS LSM 980 with the Airyscan2
418 super-resolution mode (Tsinghua University, China). For live-imaging, zebrafish
419 larvae were anesthetized with 0.16 mg/mL of tricaine in embryo medium and
420 mounted in 1.2% low-melting agarose on a cover slip with extra embryo medium
421 sealed inside vacuum grease to prevent evaporation. Imaging was performed on a
422 single z plane at 0.5 s intervals for 20-30 min. The images of *Tg (mpx:EGFP)*
423 zebrafish were processed and reconstructed by Imaris 9.0.1 64-bit version (Bitplane,
424 Switzerland), and neutrophils were enumerated by the same software. For images of
425 *Tg (mpeg1:EGFP)* zebrafish, fluorescence intensity was calculated through Image J.

426 Average floourescence intensity = The total fluorescence intensity in this area
427 /Regional area.

428 **Gut microbiota analysis**

429 At the end of the 2□week feeding trial, the gut contents of adult zebrafish were
430 collected 4 h post the last feeding. The gut contents were collected under aseptic
431 conditions. Each gut content sample was pooled from 6 fish. Bacteria DNA was
432 extracted using the Fast DNA SPIN Kit for Soil (MP Biomedicals). The 16S V3–V4
433 region was amplified by using the primers as follows, 338F:
434 5'□ACTCCTACGGGAGGCAGCA□3' and 806R:
435 5'□GGACTTACHVGGGTWTCTAAT□3'. 16S rRNA gene sequencing was conducted
436 at Biomarker Technologies using the illumina novaseq. 6000 platform (Illumina).
437 Data analysis was performed using BMKCloud (www.biocloud.net). Microbiota
438 sequencing data in this study are available from the National Center for
439 Biotechnology Information (NCBI) under accession number PRJNA1115092.

440 **Morpholino knockdown**

441 The MOs used in this study are all vivo-morpholino. Vivo-morpholino
442 oligonucleotides (MO) were designed and synthesized by Gene-Tools (Philomath,
443 OR). The sequences of MO used in this study are listed in table S2. MO was added to
444 GZM at 4 dpf at 50-100 nM, except for Spi1b MOs, Csf3r MO, and Irf8 MO, which
445 was added at 1 dpf. For Spi1b, two targeting MOs were simultaneously added to
446 GZM at 1 dpf at concentrations indicated in table S2. For all the MOs treatment,
447 zebrafish larvae were treated with MO throughout the following experimental period.

448 **Preparation and fractionation of cell free supernatant and cell lysate
449 of *C. somerae***

450 *C. somerae* XMX-1 was grown in GAM broth at 28°C for 12 h. Cell free supernatant
451 (CFS) was obtained by centrifugation (7000 g, 10 min) and filtration through a 0.22

452 μ m filter (Millipore, Darmstadt, Germany). The bacterial cell pellets were washed
453 three times with phosphate buffer (50 mM, pH 7.0) and resuspended in same volume
454 of phosphate buffer. The filtered samples were incubated for 10 min on ice and were
455 then subjected to sonication (300 W, with a pulse on/off ratio of 1 second on and 1
456 second off, for a total duration of 10 minutes). Sonicated bacterial sample was
457 centrifuged at 7000 g for 5 min, and the supernatant was filtered aseptically through a
458 0.22 μ m filter to obtain cell lysate of *C. somerae*. The cell free supernatant or cell
459 lysate was separated by using a 3 kDa cutoff filter. Both the upper retentate and the
460 lower filtrate were collected for bioassay. For experiments using proteinase K, CFS or
461 cell lysate was incubated with protease K at 65°C for 2 h before inactivating the
462 enzyme at 99°C for 30 min. All relevant bacterial samples were added to GF zebrafish
463 at 4 dpf by immersion.

464 **Purification of polysaccharides from *Cetobacterium somerae***

465 Capsular polysaccharides were extracted from bacterial cell pellets of *C. somerae* by
466 using a commercial CPS extraction kit (Genmed Scientifics Inc., USA). Bacterial
467 exopolysaccharides purification was carried out according to the instruction manual of
468 the commercial kit (Genmed Scientifics Inc., USA). Briefly, bacterial cells were
469 swabbed from GAM agar plates, resuspended in salt-based media, and incubated for
470 four hours at 25°C. Bacterial culture were centrifuged at 10000 g for 20 minutes. The
471 supernatant was recovered and was then filtered using a 0.22 μ m filter and
472 concentrated through an Amicon Ultra centrifuge filter with a 100 kDa molecular
473 weight cutoff. The filtered sample was treated with DNase, RNase and proteinase K,
474 respectively. Samples were extracted with Tris-saturated phenol-chloroform and
475 precipitated by cold-ethanol.

476 **Western blotting**

477 Larval zebrafish were homogenized in ice-cold HBSS buffer mixed with 1 mM PMSF
478 and phosphatase inhibitors. Equivalent amounts of total protein were loaded into a 12%
479 SDS-PAGE for electrophoresis and then transferred into a PVDF membrane

480 (Millipore, USA). After blocking nonspecific binding with 5% skimmed milk in
481 TBST, the PVDF membrane was incubated with primary antibodies, i.e., antibodies
482 against anti-GAPDH (CST, 2118, 1:2000), anti-TLR2 (CST, 12276, 1:1000). Blots
483 were imaged on a ChemiDoc (SynGene) using chemiluminescence detection with
484 ECL western blotting substrate (Thermo Scientific, 34095).

485 **Quantitative PCR analysis**

486 Total RNA was isolated from larval zebrafish or liver /spleen /kidney tissues of adult
487 zebrafish with Trizol reagent (TaKaRa, Tokyo, Japan) following the manufacturer's
488 protocol. The extracted RNA was re-suspended in 30 μ l RNase-free water then
489 quantified with a BioTek SynergyTM2 Multi-detection Microplate Reader (BioTek
490 Instruments, Winooski, VT) and agarose gel electrophoresis. One microgram of total
491 RNA was used for reverse transcription with Revert AidTM Reverse Transcriptase
492 (TaKaRa, Tokyo, Japan) according to the manufacturer's instructions. The synthesized
493 cDNA was stored at -20°C. Experimental methods about *q*PCR reaction were
494 conducted as previously described (45). The primers used in the experiment were
495 listed in table S3. *Ribosomal protein s11* gene (*rps11*) was used as the internal
496 reference gene, and the data were statistically analyzed by $2^{-\Delta\Delta CT}$ method.

497 **Statistical analysis**

498 All data were performed using GraphPad Prism 8 software (GraphPad Software Inc.
499 CA, USA). All data were expressed as mean \pm SEM. Data involving more than two
500 groups were analyzed using one-way ANOVA followed by Dunnett's multiple
501 comparison test. Comparisons between the two groups were analyzed using the
502 unpaired Student's *t* test. For the survival experiments, Kaplan–Meier survival curves
503 were constructed and analyzed with the log-rank (Mantel–Cox) test. Statistical
504 significance was denoted in figures as * $p \leq 0.05$, ** $p \leq 0.01$, n.s., not significant.

505

506 **ACKNOWLEDGMENTS**

507 We are grateful to Dr. Jun-Fa Yuan for sharing the virus, and Bing-Yu Liu for helping
508 with fluorescence microscopy.

509 **FUNDING**

510 This work was supported by grants from the National Natural Science Foundation of
511 China (32122088 to C. R., 31925038 to Z. Z.).

512 **AUTHOR CONTRIBUTIONS**

513 C. R. and Z. Z. designed the experiments; H. L. conducted the experiment and
514 analyzed the data; M. L., J. C., W. Z., D. X., Q. D., Y. Y. and Z. Z. helped with the
515 experiments or provided the reagents; C. R. and H. L. prepared the manuscript.

516 **DECLARATION OF INTERESTS**

517 The authors declare no competing interests.

518

519 REFERENCES AND NOTES

- 520 1. B. Zhang, B. Chassaing, Z. Shi, R. Uchiyama, Z. Zhang, T.L. Denning, et al,
521 Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of
522 IL-22 and IL-18. *Science* **346**, 861–865 (2014).
- 523 2. K.L. Stefan, M.V. Kim, A. Iwasaki, and D.L. Kasper, Commensal microbiota
524 modulation of natural resistance to virus infection. *Cell* **183**, 1312–1324 (2020).
- 525 3. V. Monedero, M.C. Collado, J. Rodríguez-Díaz, Therapeutic opportunities in
526 intestinal microbiota–virus interactions. *Trends Biotechnol.* **36**, 645–648 (2018).
- 527 4. B. Mazel-Sanchez, S. Yildiz, and M. Schmolke, Menage a trois: virus, host, and
528 microbiota in experimental infection models. *Trends Microbiol.* **27**, 440–452 (2019).
- 529 5. C. Ran, Y. Li, X.F. Ma, Y.D. Xie, M.X. Xie, Y.T. Zhang, W. Zhou, Y.L. Yang, Z.
530 Zhang, L. Zhou, K.J. Wei, Z.G. Zhou, Interactions between commensal bacteria and
531 viral infection: insights for viral disease control in farmed animals. *Sci. China Life Sci.*
532 **64**, 1–12 (2021).
- 533 6. S.M. Karst, The influence of commensal bacteria on infection with enteric viruses.
534 *Nat. Rev. Microbiol.* **14**, 197–204 (2016).
- 535 7. K.R. Grau, S. Zhu, S.T. Peterson, E.W. Helm, D. Philip, M. Phillips, A. Hernandez,
536 H. Turula, P. Frasse, V.R. Graziano, C.B. Wilen, The intestinal regionalization of acute
537 norovirus infection is regulated by the microbiota via bile acid-mediated priming of
538 type III interferon. *Nat. Microbiol.* **5**, 84–92 (2020).
- 539 8. M.C. Abt, L.C. Osborne, L.A. Monticelli, T.A. Doering, T. Alenghat, G.F.
540 Sonnenberg, M.A. Paley, M. Antenus, K.L. Williams, J. Erikson, and E.J. Wherry,
541 Commensal bacteria calibrate the activation threshold of innate antiviral immunity.
542 *Immunity* **37**, 158-170 (2012).
- 543 9. K.C. Bradley, K. Finsterbusch, D. Schnepf, S. Crotta, M. Llorian, S. Davidson, S.Y.
544 Fuchs, P. Staeheli, A. Wack, Microbiota-driven tonic interferon signals in lung stromal
545 cells protect from influenza virus infection. *Cell Rep.* **28**, 245–256 (2019).
- 546 10. S.C. Ganal, S.L. Sanos, C. Kallfass, K. Oberle, C. Johner, C. Kirschning, S.
547 Lienenklaus, S. Weiss, P. Staeheli, P. Aichele, Diefenbach, A. Priming of natural killer
548 cells by nonmucosal mononuclear phagocytes requires instructive signals from
549 commensal microbiota. *Immunity* **37**, 171–186 (2012).
- 550 11. A.L. Steed, G.P. Christophi, G.E. Kaiko, L. Sun, V.M. Goodwin, U. Jain, E.
551 Esaulova, M.N. Artyomov, D.J. Morales, M.J. Holtzman, and A.C. Boon, The
552 microbial metabolite desaminotyrosine protects from influenza through type I
553 interferon. *Science* **357**, 498–502 (2017).
- 554 12. H.C. Yin, Z.D. Liu, W.W. Zhang, Q.Z. Yang, T.F. Yu, and X.J. Jiang, Chicken
555 intestinal microbiota modulation of resistance to nephropathogenic infectious

556 bronchitis virus infection through IFN-I. *Microbiome* **10**, 162 (2022).

557 13. E.S. Winkler, S. Shrihari, B.L. Hykes, S.A. Handley, P.S. Andhey, Y.J.S. Huang, A.
558 Swain, L. Droit, K.K. Chebrolu, M. Mack, D.L. Vanlandingham, The intestinal
559 microbiome restricts alphavirus infection and dissemination through a bile acid-type I
560 IFN signaling axis. *Cell* **182**, 901–918 (2020).

561 14. K. Stagaman, T.J. Sharpton, K. Guillemin, Zebrafish microbiome studies make
562 waves. *Lab anim.* **49**, 201–207 (2020).

563 15. J.F. Rawls, B.S. Samuel, J.I. Gordon, Gnotobiotic zebrafish reveal evolutionarily
564 conserved responses to the gut microbiota. *Proc. Nat. Acad. Sci.* **101**, 4596–4601
565 (2004).

566 16. A.M. Earley, C.L. Graves, and C.E. Shiao, Critical role for a subset of intestinal
567 macrophages in shaping gut microbiota in adult zebrafish. *Cell Rep.* **25**, 424–436
568 (2018).

569 17. B.E. Koch, S. Yang, G. Lamers, J. Stougaard, H.P. Spaink, Intestinal microbiome
570 adjusts the innate immune setpoint during colonization through negative regulation of
571 MyD88. *Nat. Commun.* **9**, 4099 (2018).

572 18. M. Kanther, X. Sun, M. Mühlbauer, L.C. Mackey, E.J. Flynn III, M. Bagnat, C.
573 Jobin, J.F. Rawls, Microbial colonization induces dynamic temporal and spatial
574 patterns of NF-κB activation in the zebrafish digestive tract. *Gastroenterology* **141**,
575 197–207 (2011).

576 19. I. Semova, J.D. Carten, J. Stombaugh, L.C. Mackey, R. Knight, S.A. Farber, J.F.
577 Rawls, Microbiota regulate intestinal absorption and metabolism of fatty acids in the
578 zebrafish. *Cell host microbe* **12**, 277–288 (2012).

579 20. C.D. Robinson, E.G. Sweeney, J. Ngo, E. Ma, A. Perkins, T.J. Smith, N.L.
580 Fernandez, C.M. Waters, S.J. Remington, B.J. Bohannan, and K. Guillemin,
581 Host-emitted amino acid cues regulate bacterial chemokinesis to enhance colonization.
582 *Cell host microbe* **29**, 1221–1234 (2021).

583 21. S.H. Lam, H.L. Chua, Z. Gong, T.J. Lam, Y.M. Sin, Development and maturation
584 of the immune system in zebrafish, *Danio rerio*: a gene expression profiling, in situ
585 hybridization and immunological study. *Dev. Comp. Immunol.* **28**, 9–28 (2004).

586 22. J. Zou, and C.J. Secombes, Teleost fish interferons and their role in immunity. *Dev.*
587 *Comp. Immunol.* **35**, 1376–1387 (2011).

588 23. C. Langevin, E. Aleksejeva, G. Passoni, N. Palha, J.P. Levraud, P. Boudinot, The
589 antiviral innate immune response in fish: evolution and conservation of the IFN
590 system. *J Mol Biol.* **425**, 4904–4920 (2013).

591 24. J.P. Levraud, P. Boudinot, I. Colin, A. Benmansour, N. Peyrieras, P. Herbomel, G.
592 Lutfalla, Identification of the zebrafish IFN receptor: implications for the origin of the
593 vertebrate IFN system. *J Immunol.* **178**, 4385–4394 (2007).

594 25. D. Aggad, M. Mazel, P. Boudinot, K.E. Mogensen, O.J. Hamming, R. Hartmann,
595 S. Kotenko, P. Herbomel, G. Lutfalla, J.P. Levraud, The two groups of zebrafish
596 virus-induced interferons signal via distinct receptors with specific and shared chains.
597 *J Immunol.* **183**, 3924–3931 (2009).

598 26. S. Li, L.F. Lu, S.B. Liu, C. Zhang, Z.C. Li, X.Y. Zhou, Y.A. Zhang, Spring
599 viraemia of carp virus modulates p53 expression using two distinct mechanisms. *PLoS*
600 *Pathog.* **15**, 1007695 (2019).

601 27. R. Espín-Palazón, A. Martínez-López, F.J. Roca, A. López-Muñoz, S.D.
602 Tyrkalska, S. Candel, D. García-Moreno, A. Falco, J. Meseguer, A. Estepa, V. Mulero,
603 TNF α impairs rhabdoviral clearance by inhibiting the host autophagic antiviral
604 response. *PLoS Pathog.* **12**, 1005699 (2016).

605 28. J. Zhu, X. Liu, X. Cai, G. Ouyang, H. Zha, Z. Zhou, Q. Liao, J. Wang, W. Xiao,
606 Zebrafish prmt3 negatively regulates antiviral responses. *FASEB J.* **34**, 10212–10227
607 (2020).

608 29. L.F. Lu, J.Y. Jiang, W.X. Du, X.L. Wang, Z.C. Li, X.Y. Zhou, C. Zhang, C.Y.
609 Mou, D.D. Chen, Z. Li, L. Zhou, J.F. Gui, X.Y. Li, S. Li, Fish female-biased gene
610 cyp19a1a leads to female antiviral response attenuation between sexes by autophagic
611 degradation of MITA. *PLoS Pathog.* **18**, 1010626 (2022).

612 30. S.N. Chen, Z. Gan, J. Hou, Y.C. Yang, L. Huang, B. Huang, S. Wang, P. Nie,
613 Identification and establishment of type IV interferon and the characterization of
614 interferon- ν including its class II cytokine receptors IFN- ν R1 and IL-10R2. *Nat.*
615 *Commun.* **13**, 999 (2022).

616 31. N. Palha, F. Guivel-Benhassine, V. Briolat, G. Lutfalla, M. Sourisseau, F. Ellett,
617 C.H. Wang, G.J. Lieschke, P. Herbomel, O. Schwartz, Levraud, J.P. Real-time
618 whole-body visualization of Chikungunya Virus infection and host interferon
619 response in zebrafish. *PLoS Pathog.* **9**, 1003619 (2013).

620 32. X. Liao, Y. Lan, W. Wang, J. Zhang, R. Shao, Z. Yin, G.H. Gudmundsson, P.
621 Bergman, K. Mai, Q. Ai, M. Wan, Vitamin D influences gut microbiota and acetate
622 production in zebrafish (*Danio rerio*) to promote intestinal immunity against invading
623 pathogens. *Gut microbes* **15**, 2187575 (2023).

624 33. C.E. Shiao, Z. Kaufman, A.M. Meireles, W.S. Talbot, Differential requirement for
625 irf8 in formation of embryonic and adult macrophages in zebrafish. *PLoS One* **10**,
626 0117513 (2015).

627 34. T. Kawai, S. Akira, Signaling to NF- κ B by Toll-like receptors. *Trends. Mol. Med.*
628 **13**, 460–469 (2007).

629 35. L. Li, J. Zou, J.G. Su, L.H. Liu, S. Zhang, P. Nie, Interferon (IFN) system in fish:
630 research progress and contributions from China. *Shuichan Xuebao* **47**, 119413 (2023).

631 36. L. Schaupp, S. Muth, L. Rogell, M. Kofoed-Branzk, F. Melchior, S. Lienenklaus,
632 S.C. Ganal-Vonarburg, M. Klein, F. Guendel, T. Hain, K. Schütze,

633 Microbiota-induced type I interferons instruct a poised basal state of dendritic cells.
634 *Cell* **181**, 1080–1096 (2020).

635 37. X.L. Yang, G. Wang, J.Y. Xie, H. Li, S.J. Zhu, The intestinal microbiome primes
636 host innate immunity against enteric virus systemic infection through type i interferon.
637 *MBio*. **12**, 00366–21 (2021).

638 38. T. Ichinohe, I.K. Pang, Y. Kumamoto, D.R. Peaper, J.H. Ho, T.S. Murray, A.
639 Iwasaki, Microbiota regulates immune defense against respiratory tract influenza a
640 virus infection. *Proc. Natl. Acad. Sci.* **108**, 5354–5359 (2011).

641 39. Z. Shi, J. Zou, Z. Zhang, X. Zhao, J. Noriega, B. Zhang, C. Zhao, H. Ingle, K.
642 Bittinger, L.M. Mattei, A.J. Pruijssers, Segmented filamentous bacteria prevent and
643 cure rotavirus infection. *Cell* **179**, 644–658 (2019).

644 40. Z. Zhang, H.L. Zhang, D.H. Yang, Q. Hao, H.W. Yang, D.L. Meng, et al,
645 *Lactobacillus rhamnosus* GG triggers intestinal epithelium injury in zebrafish
646 revealing host dependent beneficial effects. *iMeta* **3**, 181 (2024).

647 41. L.N. Pham, M. Kanther, I. Semova, J.F. Rawls, Methods for generating and
648 colonizing gnotobiotic zebrafish. *Nat. Protoc.* **3**, 1862 (2008).

649 42. A. Wang, Z. Zhang, Q. Ding, Y. Yang, J. Bindelle, C. Ran, Z. Zhou, Intestinal
650 *Cetobacterium* and acetate modify glucose homeostasis via parasympathetic
651 activation in zebrafish. *Gut Microbes* **13**, 1-15 (2021).

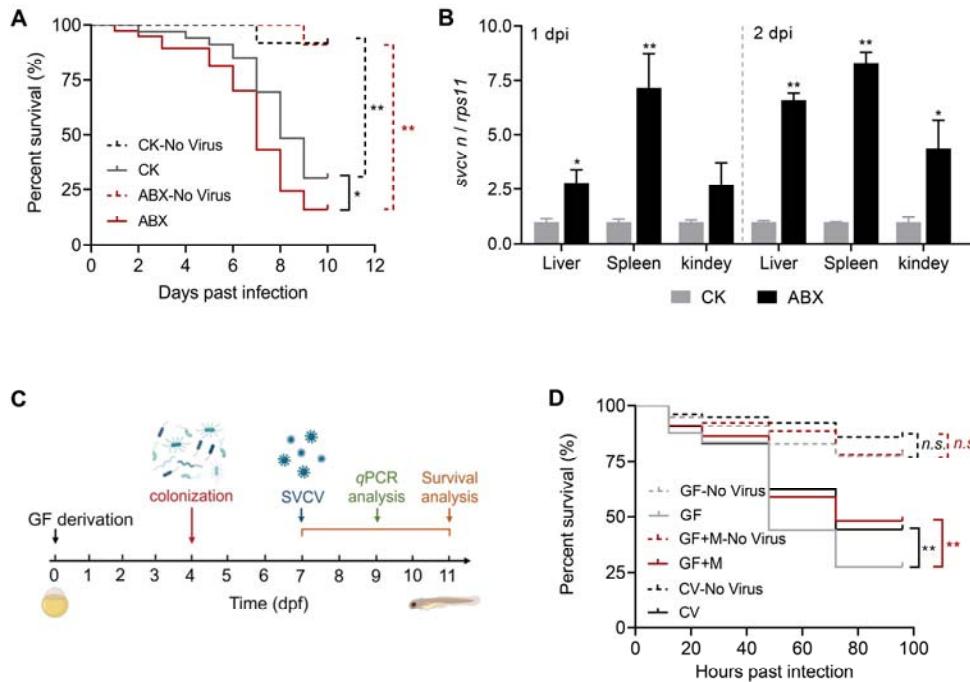
652 43. K.L. Adamek, J. Rakus, G. Chyb, A. Brogden, I. Huebner, D. Irnazarow,
653 Steinhagen Interferon type I responses to virus infections in carp cells: *in vitro* studies
654 on Cyprinid herpesvirus 3 and *Rhabdovirus carpio* infections. *Fish Shellfish Immun.*
655 **33**, 482–493 (2012).

656 44. L.J. Reed, H. Muench, A simple method of estimating fifty percent endpoints. *Am.*
657 *J. Hyg.* **27**, 493–497 (1938).

658 45. Z. Zhang, C. Ran, Q.W. Ding, H.L. Liu, et al, Ability of prebiotic polysaccharides
659 to activate a HIF1 α -antimicrobial peptide axis determines liver injury risk in zebrafish.
660 *Commun. Biol.* **2**, 274 (2019).

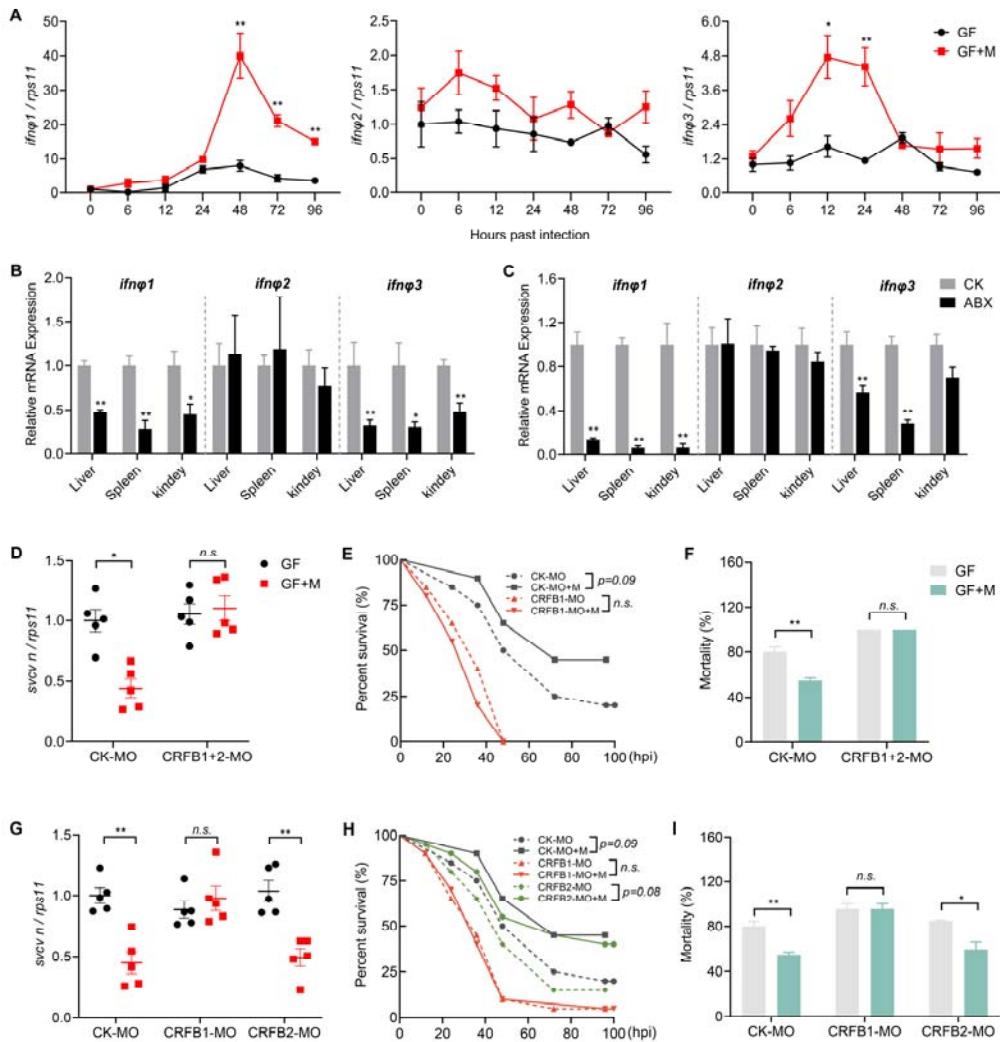
661 46. S. Yang, R. Marín-Juez, A.H. Meijer, H.P. Spalink, Common and specific
662 downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in
663 zebrafish. *BMC genom.* **16**, 1-10 (2015).

664 47. A.T. Veetil, J. Zou, K.W. Henderson, M.S. Jani, S.M. Shaik, S.S. Sisodia, M.E.
665 Hale, and Y. Krishnan, DNA-based fluorescent probes of NOS2 activity in live brains.
666 *Proc. Natl. Acad. Sci. U.S.A.* **117**, 14694-14702 (2020).


667 48. H. Clay, J.M. Davis, D. Beery, A. Huttenlocher, S.E. Lyons, L. Ramakrishnan,
668 Dichotomous role of the macrophage in early *Mycobacterium marinum* infection of

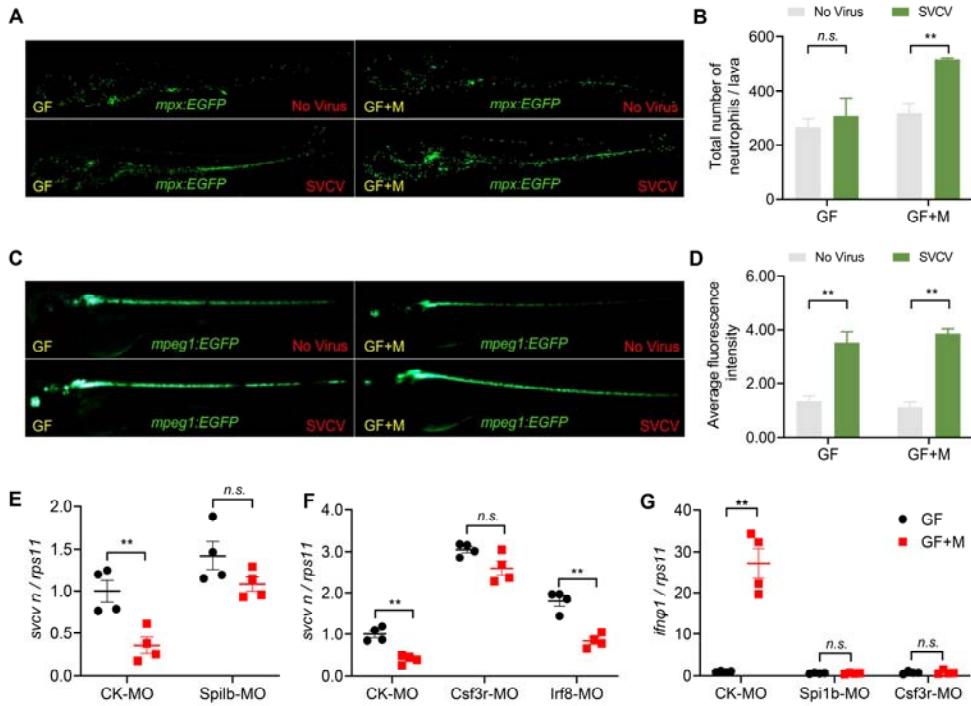
669 the zebrafish. *Cell host microbe* **2**, 29-39 (2007).

670 49. N. Palha, F. Guivel-Benhassine, V. Briolat, G. Lutfalla, M. Sourisseau, F. Ellett,
671 C.H. Wang, G.J. Lieschke, P. Herbomel, O. Schwartz, and J.P. Levraud, Real-time
672 whole-body visualization of Chikungunya Virus infection and host interferon
673 response in zebrafish. *PLoS pathog.* **9**, 1003619 (2013).


674

675 **FIGURES**

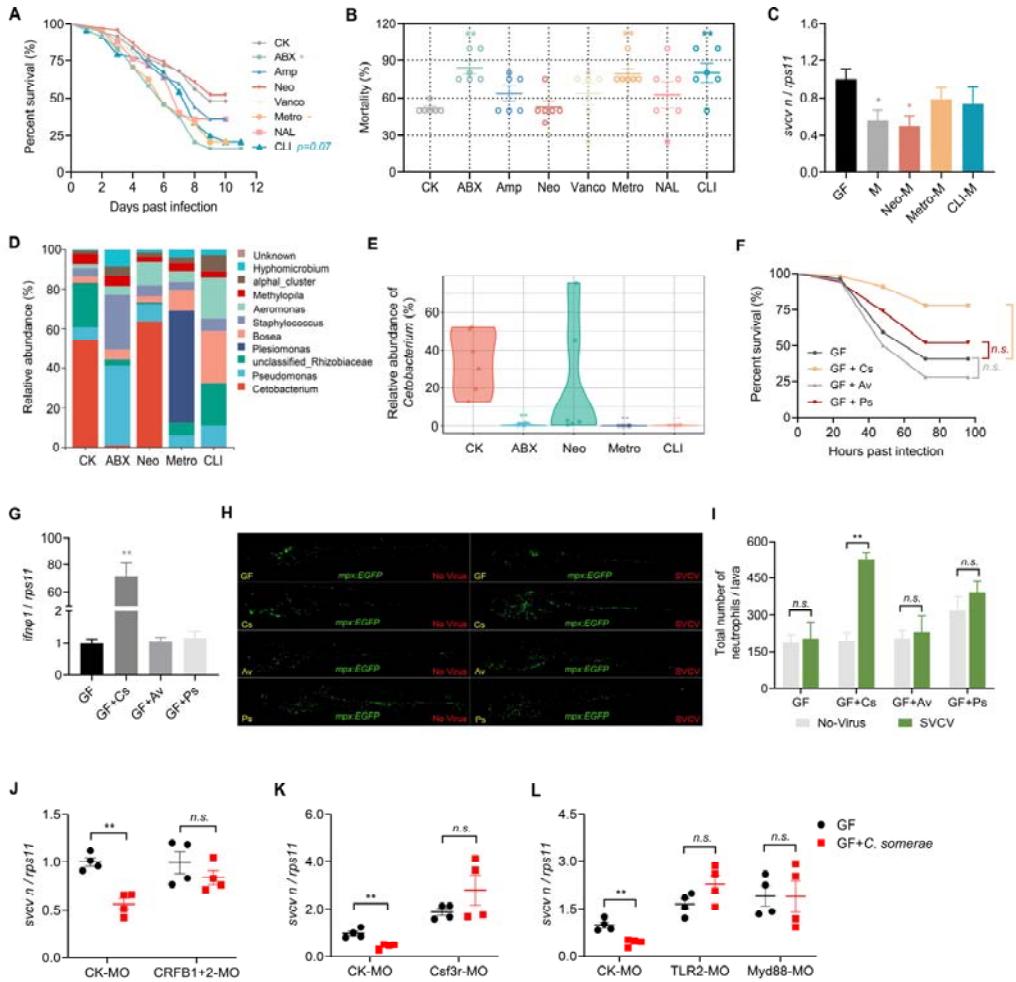
676


677 **Fig. 1. Depletion of intestinal microbiome enhances SVCV infection in zebrafish.**
678 (A) Survival curve of mock or SVCV-infected adult zebrafish fed control or ABX diet
679 (No Virus groups: n=11-12; SVCV groups: n=39-40). (B) Viral replication in the liver,
680 spleen, and kidney of SVCV-infected adult zebrafish fed control or ABX diet (n=4,
681 pool of 6 fish per sample). (C) Schematic representation for gnotobiotic zebrafish
682 experiment. (D) Survival curve of mock or SVCV-infected GF, conventional, and
683 conventionalized zebrafish (n = 80). (A and D) log-rank test; (B) unpaired *t* test. **p*<
684 0.05, ***p*< 0.01, n.s., not significant.

685

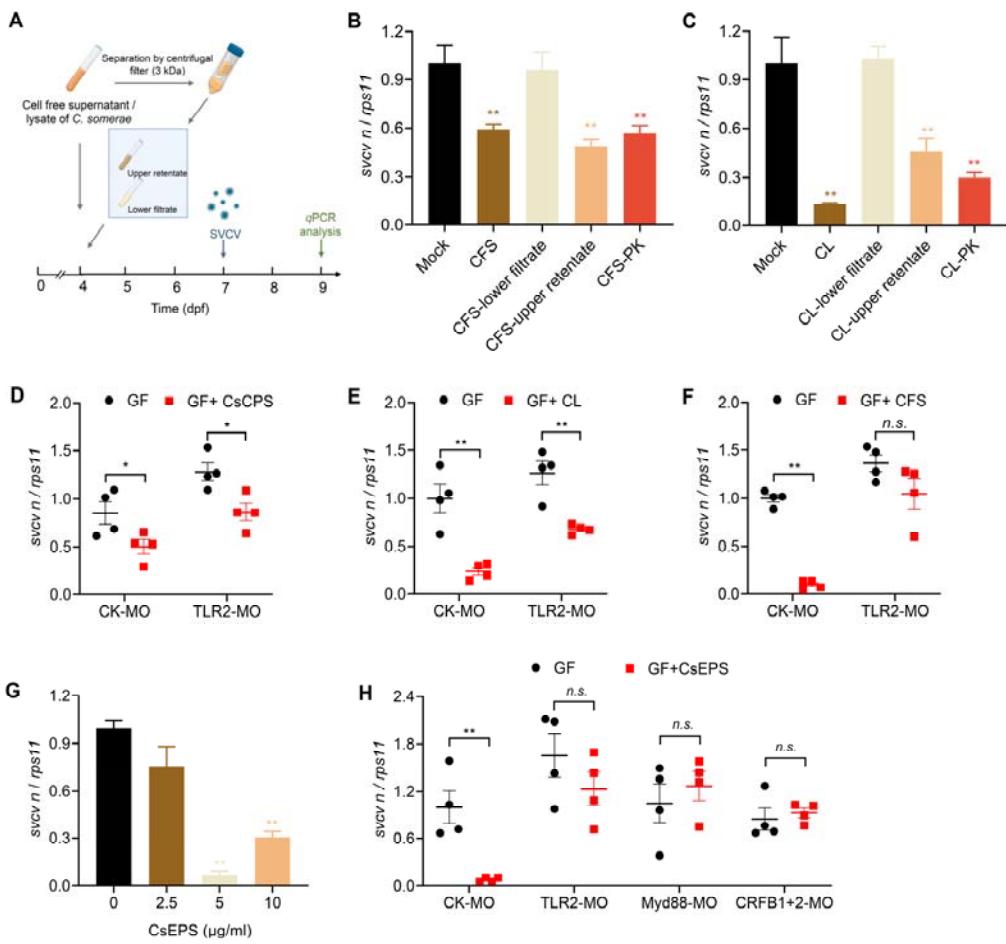
686 **Fig. 2. Intestinal microbiome depletion impairs type I IFN response to SVCV**
687 **infection.** (A) Expression of IFN Φ 1, IFN Φ 2, and IFN Φ 3 in SVCV-infected GF or
688 conventionalized zebrafish at different time points (n = 3, pool of 30 zebrafish larvae
689 per sample). (B-C) Expression of IFN Φ 1, IFN Φ 2, and IFN Φ 3 in the liver, spleen, and
690 kidney of adult zebrafish after 1 (B) and 2 (C) days post SVCV infection (n = 4, pool
691 of 6 fish per sample). (D-F) Effect of morpholino-mediated knockdown of type I IFN
692 receptors on SVCV infection. GF and conventionalized zebrafish were treated with
693 control morpholino (CK-MO) or a mixture of CRFB1 and CRFB2 morpholino
694 (CRFB1+2 MO) and subjected to SVCV infection. (D) Viral replication at 48 hpi. (n
695 = 5, pool of 30 zebrafish larvae per sample), (E) Survival curve (n=20), (F) Mortality
696 at 96 hpi (n=3). (G-I) Effect of morpholino-mediated knockdown of group I or II type
697 I IFN signaling on SVCV infection. GF and conventionalized zebrafish were treated
698 with control morpholino (CK-MO), CRFB1 morpholino (CRFB1-MO), or CRFB2

699 morpholino (CRFB2-MO) and subjected to SVCV infection. (G) Viral replication at
700 48 hpi (n = 5, pool of 30 zebrafish larvae per sample), (H) Survival curve (n=20), (I)
701 Mortality at 96 hpi (n=3). (A-D, F, G, I) unpaired *t* test; (E and H) log-rank test. **p*<
702 0.05, ***p*< 0.01, *n.s.*, not significant.


703

704 **Fig. 3. Neutrophil responses to SVCV infection are impaired in the absence of**
705 **intestinal microbiome. (A-D)** Neutrophils (A) and macrophages (C) were imaged in
706 mock or SVCV-infected GF or conventionalized transgenic zebrafish at 48 hpi. Scale
707 bar, 500 μ m. The number of neutrophils (B) and macrophages (D) were analyzed
708 ($n=3$). (E-F) Effect of myeloid cell depletion (Spi1b MO) (E) or selective depletion of
709 neutrophils (Csf3r MO) or macrophages (Irf8 MO) (F) on viral replication in GF or
710 conventionalized zebrafish at 48 hpi. ($n = 4$, pool of 30 zebrafish larvae per sample).
711 (G) Effect of myeloid cell depletion (Spi1b MO) or selective depletion of neutrophils
712 (Csf3r MO) on IFN Φ 1 expression in GF or conventionalized zebrafish at 48 hpi ($n =$
713 4, pool of 30 zebrafish larvae per sample). (B, D, E-G) unpaired t test. * $p<0.05$, ** $p<$
714 0.01, n.s., not significant.

715


Fig. 4. The antiviral effect of intestinal microbiota requires TLR2 and Myd88 signaling. (A) Effect of Myd88 knockdown on SVCV infection in GF or conventionalized zebrafish at 48 hpi (n = 6, pool of 30 zebrafish larvae per sample). (B) Effect of morpholino-mediated knockdown of TLR3, TLR4ba, TLR7 and TLR9 on SVCV infection in GF or conventionalized zebrafish at 48 hpi (n = 4, pool of 30 zebrafish larvae per sample). (C) Effect of TLR2 knockdown on SVCV infection in GF or conventionalized zebrafish at 48 hpi (n = 4, pool of 30 zebrafish larvae per sample). (D-E) TLR2 morpholino diminished TLR2 protein expression in zebrafish larvae (n=3, pool of 30 zebrafish larvae per sample). (F-G) Effect of morpholino-mediated knockdown of TLR2, Myd88 (F), TLR3, TLR4ba, TLR7 and TLR9 (G) on IFNΦ1 expression in GF or conventionalized zebrafish at 48 hpi (n = 4, pool of 30 zebrafish larvae per sample). (H-I) Effect of morpholino-mediated knockdown of TLR2 and Myd88 on neutrophil response in GF or conventionalized *Tg (mpx:EGFP)* zebrafish at 48 hpi. (H) Confocal imaging of SVCV-infected *Tg (mpx:EGFP)* zebrafish. Scale bar, 500 μ m. (I) Neutrophil numbers (n=3). (A, B, C, E, F, G, I) unpaired t test. *p< 0.05, **p< 0.01, n.s., not significant.

732

733 **Fig. 5. *C. somerae* recapitulates the antiviral effect of intestinal microbiome. (A-B)**
 734 Effect of antibiotics cocktail or single antibiotic feeding on SVCV infection in adult
 735 zebrafish. (A) Survival curve (n=25), (B) Mortality (n=6). (C) Viral replication in GF
 736 zebrafish or GF zebrafish colonized with microbiota derived from adult zebrafish fed
 737 with control or antibiotic(s) diet. (n = 3, pool of 30 zebrafish larvae per sample).
 738 Mock, GF group; M, control microbiota; Neo-M, microbiota from zebrafish fed
 739 neomycin; Metro-M, microbiota from zebrafish fed metronidazole; CLI-M,
 740 microbiota from zebrafish fed clindamycin. (D) The composition of intestinal
 741 microbiota of adult zebrafish fed control or antibiotic(s) diet. (n =6, pool of 6
 742 zebrafish per sample). (E) The relative abundance of *Cetobacterium* in intestinal
 743 microbiota of adult zebrafish fed control or antibiotic(s) diet. (n =6, pool of 6
 744 zebrafish per sample). (F) Survival curve of GF zebrafish or GF zebrafish
 745 mono-colonized with *C. somerae* (GF+CS), *Aeromonas veronii* (GF+AV), or
 746 *Plesiomonas shigelloides*. (GF+PS) following SVCV infection (n = 60). (G) IFN Φ 1

747 expression of GF zebrafish or GF zebrafish mono-colonized with indicated
748 commensal bacterium. Expression was detected at 48 hpi. (n = 4, pool of 30 zebrafish
749 larvae per sample). **(H-I)** Neutrophils response in mock or SVCV-infected GF *Tg*
750 (*mpx:EGFP*) zebrafish or GF counterparts mono-colonized with indicated commensal
751 bacterium. (H) Confocal imaging of transgenic zebrafish, (I) Neutrophil numbers
752 (n=3). Samples were collected for imaging at 48 hpi. Scale bar, 500 μ m. **(J-L)** Effect
753 of type I IFN receptors knockdown (CRFB1+CRFB2 MO) (J), depletion of
754 neutrophils (Csf3r MO) (K), and TLR2 and Myd88 knockdown (L) on SVCV
755 infection in GF zebrafish or GF counterparts mono-colonized with *C. somerae* (n = 4,
756 pool of 30 zebrafish larvae per sample). Viral replication was detected at 48 hpi. (A
757 and F) log-rank test; (B, C, E, G) one-way ANOVA followed by Dunnett's multiple
758 comparisons test; (I-L) unpaired *t* test. **p*<0.05, ***p*<0.01, n.s., not significant.

759

760 **Fig. 6. Exopolysaccharides of *C. somerae* signal through TLR2 to inhibit SVCV**
761 **infection.** (A) Schematic representation of the study design. (B-C) Nonprotein
762 macromolecule(s) mediated the antiviral effect of *C. somerae*. The *C. somerae* culture
763 suspension was separated into cell free supernatant (CFS) and bacterial cells by
764 centrifugation. CFS and cell lysate (CL) were separated by a 3kDa filter, or treated
765 with proteinase K. GF zebrafish were treated with different CFS or CL samples and
766 subjected to SVCV infection. Viral replication was detected at 48 hpi. (n = 4, pool of
767 30 zebrafish larvae per sample). CFS, cell free supernatant; CL, cell lysate; “-lower
768 filtrate”, 3kDa filtrate; “-upper retentate”, 3 kDa upper retentate; “-PK”, proteinase K
769 treated CFS or CL samples. (D) Effect of morpholino-mediated TLR2 knockdown on
770 the antiviral effect mediated by *C. somerae* CPS in GF zebrafish. Viral replication was
771 detected at 48 hpi. (n = 4, pool of 30 zebrafish larvae per sample). (E-F) Effect of
772 morpholino-mediated TLR2 knockdown on the antiviral effect mediated by *C.*
773 *somerae* CL (E) or CFS (F) in GF zebrafish. Viral replication was detected at 48 hpi.
774 (n = 4, pool of 30 zebrafish larvae per sample). (G) *C. somerae* exopolysaccharides
775 (CsEPS) inhibited SVCV infection in GF zebrafish. GF zebrafish were treated with

776 different doses of CsEPS and subjected to SVCV infection. Viral replication was
777 detected at 48 hpi. (n = 4, pool of 30 zebrafish larvae per sample). (H) Effect of
778 morpholino-mediated knockdown of TLR2, Myd88, and type I IFN receptors on the
779 antiviral effect of CsEPS in GF zebrafish. GF zebrafish were treated with CsEPS at 5
780 μ g/mL and subjected to SVCV infection. Viral replication was detected at 48 hpi. (n =
781 4, pool of 30 zebrafish larvae per sample). (B, C, G) One-way ANOVA followed by
782 Dunnett's multiple comparisons test; (D, E, F, H) unpaired *t* test. **p*< 0.05, ***p*< 0.01,
783 *n.s.*, not significant.

784 **Supplementary Materials**

785 **The PDF file includes:**

786 Tables S1, S2 to S3

787 Figs. S1 to S12

788