

1 **Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair**
2 **mitochondrial axonal transport, and trigger motoneuron death.**

3 Pablo Martínez¹, Mónica Silva², Sebastián Abarzúa¹, María Florencia Tevy³, Enrique Jaimovich²,
4 Martha Constantine-Paton⁴, Fernando J Bustos^{1,5*}, Brigitte van Zundert^{1,5,6*}.

5 ¹Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences,
6
7 Universidad Andres Bello, Santiago, Chile. ²Center for Exercise, Metabolism and Cancer, Facultad
8
9 de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile. ³INTA,
10
11 Universidad de Chile, Santiago, Chile. ⁴McGovern Institute for Brain Research, Department of
12 Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
13
14 ⁵Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile. ⁶Department
15
16 of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.

13

14 *Corresponding Authors

15 Brigitte van Zundert (bvanzundert@unab.cl)

16 Fernando J Bustos (fernando.bustos@unab.cl)

17

18 Running title (less than 40 characters): ALS myotubes are toxic to motor neurons

19

20 **ABSTRACT**

21 Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss
22 of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of
23 evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous
24 toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early
25 disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies
26 about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we
27 generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human
28 mutant SOD1^{G93A} (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal
29 myotubes display intrinsic phenotypic and functional differences compared to control myotubes
30 generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert
31 non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes
32 (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary
33 MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study
34 further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices
35 rapidly reduces mitochondrial axonal transport while increasing Ca²⁺ transients and reactive
36 oxygen species (i.e., H₂O₂). These results indicate that soluble factor(s) released by mutSOD1
37 myotubes cause MN axonopathy that leads to lethal pathogenic changes.

38

39 **5-7 Keywords:** ALS, myotubes, muscle, motoneuron, axonopathy, mitochondria, pathology.

40

41 1 | INTRODUCTION

42 Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease
43 characterized by the loss of upper and lower motoneurons (MNs), muscle wasting, and paralysis
44 (Al-Chalabi & Hardiman, 2013; Peters et al., 2015; Taylor et al., 2016). Some cases of ALS arise
45 in association with frontotemporal dementia (FTD) (Ling et al., 2013). Sporadic ALS (sALS) cases
46 are responsible for most of the cases (90%), while the remaining 10% have a familial history of
47 ALS (fALS), characterized by genetic inheritance (Renton et al., 2014). Approximately 20% of
48 fALS corresponds to mutations in the superoxide dismutase 1 (mutSOD1) gene, where more than
49 160 mutations have now been identified in its sequence (<http://alsod.iop.kcl.ac.uk/>). The discovery
50 of SOD1 mutations in fALS patients (Rosen et al., 1993) led to the generation of the first transgenic
51 ALS mouse model expressing SOD1^{G93A} (Gurney et al., 1994). As of today, the high copy number
52 SOD1^{G93A} transgenic mouse model is still a cornerstone of ALS research because this model
53 closely recapitulates the human clinical and histopathological symptoms of ALS and exhibits a
54 stable and well-established disease progression, enabling preclinical testing of novel genes and
55 pharmacological therapies (Zundert & Brown, 2017).

56 Based on studies *in vitro* with cultures and *in vivo* with mouse models, it is widely accepted that
57 MN degeneration in ALS occurs through non-cell-autonomous mechanisms, involving
58 interactions between various local cell types such as astrocytes, microglia, and oligodendrocytes
59 (Ilieva et al., 2009; Maimon & Perlson, 2019). Particularly, there is compelling evidence that ALS
60 astrocytes cause non-cell-autonomous toxicity to MNs (Dittlau & Bosch, 2023; Garcés et al., 2024;
61 Harten et al., 2021). For example, in *in vivo* studies, the survival of mutSOD1 mice is significantly
62 extended when ALS MNs are surrounded by wild-type (WT) non-neuronal cells (Clement et al.,
63 2003), particularly astrocytes (Lepore et al., 2008). Selective deletion of the mutSOD1 genes from
64 astrocytes markedly prolongs the survival of the mutSOD1 mice by delaying disease onset and/or
65 progression (L. Wang et al., 2011; Yamanaka et al., 2008). Conversely, studies in rodents, either

66 by selectively expressing ALS-linked mutant genes or by transplanting glial progenitors, suggest
67 that fALS astrocytes (Papadeas et al., 2011; Tong et al., 2013), and sALS astrocytes (Qian et al.,
68 2017) can induce certain aspects of MN degeneration, locomotor deficits, and decrease survival.
69 Non-cell autonomous toxicity to MNs induced by cultured astrocytes harboring diverse ALS-
70 causing gene mutations, including mutations in SOD1, TDP43, and C9ORF72, has also been
71 extensively documented (Dittlau & Bosch, 2023; Garcés et al., 2024; Harten et al., 2021). Our
72 recent study further reveals that excessive inorganic polyphosphate (polyP) released by ALS
73 astrocytes triggers MN death and increases neuronal excitability and Ca^{2+} transients (Arredondo
74 et al., 2022; Garcés et al., 2024; Rojas et al., 2023). Additionally, other studies have also shown
75 that astrocyte-mediated MN degeneration is accompanied by several other pathogenic events,
76 including oxidative stress, induction of a cell death signaling (i.e., phosphorylation of c-Abl), and
77 impaired mitochondrial transport (Birger et al., 2019; Dittlau & Bosch, 2023; Fritz et al., 2013;
78 Haidet-Phillips et al., 2011; Harten et al., 2021; Rojas et al., 2014, 2015).
79 In addition to astrocytes, studies in patients and animal models indicate that cells outside the central
80 nervous system (CNS) are also affected in ALS, including lymphocytes (Cova et al., 2006),
81 fibroblasts (Aguirre et al., 1998), and skeletal muscle (Cappello & Francolini, 2017; Dobrowolny
82 et al., 2008; Frey et al., 2000; W. Guo et al., 2020; Hegedus et al., 2007; Jensen et al., 2016; Wong
83 & Martin, 2010). Regarding the latter, while skeletal muscle cells innervate muscle fibers and ALS
84 is characterized by the early disruption of the neuromuscular junction (NMJ) and axon
85 degeneration (Cappello & Francolini, 2017; Fischer et al., 2004; W. Guo et al., 2020; Moloney et
86 al., 2014), there are controversies whether muscle contributes to MN degeneration. While reducing
87 SOD1 levels directly in the muscles of mutSOD1 transgenic mice did not affect the onset of the
88 disease or survival (T. M. Miller et al., 2006) muscle-restricted expression of mutSOD1 led to
89 alterations associated with ALS pathogenesis (Dobrowolny et al., 2009) and a classic ALS mouse
90 phenotype (Dobrowolny et al., 2009; Maimon et al., 2018; Wong & Martin, 2010). *In vitro*, studies

91 also report controversial results with data favoring (Maimon et al., 2018) or contrasting (Nagai et
92 al., 2007) evidence for showing non-cell-autonomous toxic actions of mutSOD1 myotubes to
93 healthy MNs.

94 Here, we demonstrate that myotube-conditioned media (MCM) derived from primary
95 myotubes harboring mutated human SOD1^{G93A} (mutSOD1-MCM) induce MN death and trigger
96 the accumulation of ROS and phosphorylated c-Abl. Furthermore, we found that distal application
97 of mutSOD1-MCM increases intracellular Ca²⁺ events, ROS production, and death of primary
98 wild-type MNs using microfluidic devices. We also found that MCM-mutSOD1 produces a
99 functional deficit of axonal mitochondrial transport, both retrograde and anterograde. Our findings
100 provide compelling evidence that myotubes contribute to MN degeneration in SOD1-linked ALS.

101

102 **2 | MATERIALS AND METHODS**

103

104 **2.1 | Mice handling**

105 All mice used were handled according to the guidelines for the handling and care of
106 experimentation established by the NIH (NIH, Maryland, USA) and following the protocol
107 approved by the bioethics committee of Andres Bello University (approval certificate 014/2017).

108 We used hemizygous transgenics mice harboring the human mutation SOD1^{G93A} (High number of
109 copies; B6SJL) obtained from Laboratories Jackson (Cat. No. 0022726, Bar Harbor, ME, USA).
110 Non-transgenic littermates were used as controls. The presence of the transgene was identified by
111 end-point PCR (Fritz et al., 2013).

112

113 **2.2 | Myoblasts and myotubes cultures**

114 Cultures of myoblasts and myotubes were made from postnatal days 1-4 (P1-4) pups as described
115 previously (Valdés et al., 2007). Briefly, pups were euthanized by decapitation and left in PBS 1X

116 (Hyclone, No.SH30538.03). Muscle tissue was obtained from lower limbs and incubated for 15
117 min at 37°C in a collagenase type-2 (1.5 mg/mL; Gibco, No.17101-015), dissolved in PBS 1X and
118 filtered with 0.22 µm filters. Then, the tissue was mechanically disintegrated and incubated for 15
119 min at 37°C with the collagenase solution. Subsequently, it was mechanically disintegrated for a
120 second time, and 5 ml of F-10 medium was added (Sigma, No. 6635-1L). The solution was filtered
121 through 40 µm filters (Falcon, No. 352340) and centrifuged at 1100 RPM for 7 min. The
122 supernatant was removed, and the pellet was resuspended in myoblast growing media (F-10
123 supplemented with 20% bovine growth serum (BGS, Hyclone, No. SH30541.03), 1%
124 penicillin/streptomycin (Gibco, No. 15114-122), and five ng/mL final concentration of human
125 fibroblast growth factor (FGF; PeproTech, No. 100-18B-100UG). Cells were plated in 100 mm
126 plates (without any matrix) for 45 min at 37°C and 5% CO₂. After this time, adhered fibroblasts
127 were observed, and the supernatant containing the myoblasts was removed and plated on a new
128 100 ml plate treated with Matrigel (Sigma, No. E1270). The culture medium was replaced every
129 two days. When the myoblasts reached 70% confluence (3-5 DIV), growing media was replaced
130 by differentiation media that consisted of DMEM (Gibco, No. 11885-084) supplemented with 10%
131 fetal bovine serum (FBS; Gibco, No. 16000-044), 4% horse serum (Gibco, No. 16050), 1% L-
132 glutamine (Gibco, No. 25030) and 1% penicillin/streptomycin. The fusion of myoblasts was
133 observed from the second day after the medium change. The differentiation medium was replaced
134 every four days until the complete fusion and differentiation to myotubes (~10 DIV after medium
135 change), which showed spontaneous contractions under the light microscope.

136

137 **2.3 | Spontaneous contraction assay**

138 Mature myotube cultures were visualized using an epifluorescence microscope (Nikon Eclipse Ti-
139 U; objective 20X) 10 DIV after differentiation. Spontaneous contractions were observed and
140 quantified manually and normalized to 1 min.

141

142 **2.4 | Preparation of myotube-conditioned media**

143 Conditioned media was prepared from primary cultures of myotubes. At 80-90% of confluence (8-
144 10 DIV after differentiation induction) culture medium was replaced by ventral spinal cord neurons
145 growth media (Fritz et al., 2013), containing 70% MEM (Life technologies 11090-073), 25%
146 Neurobasal media (Life technologies 21103-049), 1% N2 supplement (Life technologies 17502-
147 048), 1% L-glutamine (Life technologies 25030-081), 1% penicillin-streptomycin (Life
148 technologies 15070-063), 2% horse serum (Hyclone SH30074.03) and 1 mM pyruvate (Sigma).
149 The media was left for seven days, supplemented with D(+)Glucose (Sigma, No.G7021), and
150 filtered with 0.22 μ m filters. The myotube conditioning media (MCM) was stored at -80°C for six
151 months.

152

153 **2.5 | Primary ventral spinal cord cultures**

154 Sprague Dawley rats were cared for and handled according to the guideline practices of managing
155 and caring for experimental animals established by the NIH (NIH, Maryland, USA) and following
156 the approval of the Ethics Committee of Andres Bello University. Primary ventral spinal cord
157 cultures were prepared from embryonic day 18 (E18) rats as previously described by our laboratory
158 (Fritz et al., 2013; Sepulveda et al., 2010). Briefly, pregnant wild-type rats were euthanized using
159 a CO₂ chamber, and E18 embryos were removed and rapidly decapitated. Tissues were placed in
160 a cold PBS1X solution supplemented with 1% penicillin/streptomycin. The dorsal portion of the
161 cord was removed using a sterile scalpel. The ventral spinal cords were mechanically dissociated
162 and incubated for 20 min at 37°C in prewarmed 1X PBS supplemented with 0.25% trypsin (Life
163 Technologies 15090-046). After incubation, the cells were transferred to 15 ml tubes containing
164 feeding medium: Minimum Essential Media (MEM; Life Technologies, 11095-072) supplemented
165 with 10% Horse serum (Hyclone, SH30074.03), 1% L-glutamine (Life Technologies, 25030-081),

166 4 mg/mL DNAase (Roche, 04716728001). The cells were resuspended by mechanical agitation
167 through Pasteur pipettes flamed with decreasing diameters. Cells were counted and seeded
168 (400,000 cells/mL for survival assays) on poly-L-lysine treated glasses (MW 350 kDa, Sigma
169 Chemical, St. Louis, MO). The feeding medium was replaced to growth media: 70% MEM (Life
170 technologies 11090-073), 25% Neurobasal media (Life technologies 21103-049), 1% N2
171 supplement (Life technologies 17502-048), 1% L-glutamine (Life technologies 25030-081), 1%
172 penicillin-streptomycin (Life technologies 15070-063), 2% horse serum (Hyclone SH30074.03)
173 and 1 mM pyruvate (Sigma S8636). The cultures were supplemented with 45 µg/ml of E18 chicken
174 leg extract kept at 37 °C and 5% CO₂, with medium replaced every 3 days.

175

176 **2.6 | Immunofluorescence**

177 For myoblast and myotube cultures characterization, MN survival, and c-Abl phosphorylation,
178 immunofluorescence assays were performed on 4% PFA (20 min) fixed cultures, followed by three
179 washes with PBS 1X. Then, the cells were permeabilized with Triton X-100 at 0.05% v/v in PBS
180 1X for 30 min and washed three times with PBS 1X. Cells were blocked for 30 min with goat
181 serum (Life Technologies, No. 50062Z). Cells were incubated with the different primary
182 antibodies overnight at 4°C. Primary antibodies used: Pax7 (DSHB, AB_528428, 1:100), SMI32
183 (Abcam, Ab187374, 1:500), MAP2 (Merck Millipore, Mab378, 1:250), MyoD (DSHB, D7F2-s,
184 1:500), MHC (Novus Biologicals, NB300-284, 1:1000), Myogenin (Abcam, Ab1835, 1:500) and
185 c-Abl Tyr-412 (SIGMA, C5240, 1:1000). The next day, cells were washed three times with PBS
186 1X for 5 min each wash and incubated with the secondary antibodies conjugated to Alexa 488,
187 Alexa 555, or Alexa 633 for 2.5 h at room temperature. Secondary antibodies used: goat anti-rabbit
188 Alexa Fluor 488 (Life Technologies, A11008, 1:500), goat anti-mouse Alexa Fluor 488 (Life
189 Technologies, A10667, 1:500), goat anti-rabbit Alexa Fluor 555 (Life Technologies, A21428,
190 1:500), goat anti-mouse Alexa Fluor 555 (Life Technologies, A21422, 1:500), goat anti-rabbit

191 Alexa Fluor 633 (Life Technologies, A21070, 1:500), goat anti-mouse Alexa Fluor 633 (Life
192 Technologies, A21050, 1:500). In parallel to the secondary antibodies' incubation, the cells were
193 incubated with DAPI (Sigma, No. D9542). Cells were then washed three times for 5 min in PBS
194 1X and mounted using Fluoromont G fluorescence mounting medium (EMS, No. 17984-25). For
195 all immunofluorescence analysis, we used an epifluorescence microscope (Nikon Eclipse Ti-U;
196 objective 20X).

197

198 **2.7 | MN survival assay**

199 Survival of MNs was measured as previously described by our laboratory (Fritz et al., 2013; Rojas
200 et al., 2014). Briefly, spinal cord cultures were fixed at 7 DIV, and immunofluorescence was
201 performed using the above protocol. We used a specific antibody for MAP2 to detect all neurons
202 in the cultures (including interneurons and MNs) and a specific antibody for SMI32 to identify
203 only MNs (Arredondo et al., 2022; Fritz et al., 2013; Mishra et al., 2020; Nagai et al., 2007;
204 Sepulveda et al., 2010). Previously, we have described that primary spinal cord cultures contain 8-
205 10% of MNs at 12 DIV (Sepulveda et al., 2010). Fluorescent staining was visualized by
206 epifluorescence microscopy (Nikon Eclipse Ti-U; objective 20X). The fields with neurons were
207 randomly chosen, and the number of MAP2⁺ and SMI32⁺ neurons was counted from all the
208 acquired images. Per condition, \geq ten randomly selected fields (\geq 200 cells) were analyzed to
209 calculate the percentage of SMI32⁺ MNs for the total number of MAP2⁺ cells. The ratio between
210 SMI32⁺/MAP2⁺-cells and SMI32⁻/MAP2⁺ neurons indicate the percentage of MN survival
211 compared to the control media. Each condition was replicated in 3-4 independent cultures.

212

213 **2.8 | Reactive oxygen species (ROS) production assay**

214 Intracellular ROS levels were measured as previously described by our laboratory (Rojas et al.,
215 2015). Briefly, a stock of 5 mM of the CM-H2DCF-DA probe (Invitrogen, Cat. No.C6827) was

216 prepared fresh in DMSO and then diluted in the culture medium to a final concentration of 1 μ M.
217 Cells were washed with PBS 1X to remove the different MCMs for 90 min after applying the
218 different conditioned medium and the CM-H2DCF-DA probe for 30 min at 37 °C in the dark. To
219 facilitate the incorporation of the probe into cells, 0.004% pluronic acid F-127 (Invitrogen, Cat.
220 No. P-3000MP) was added. After the incubation, the probe CMH2DCF-DA dissolved in the
221 culture media was removed, and the cells were washed twice with PBS 1X to apply the culture
222 medium to the spinal cord neurons. Cultures were also incubated with H₂O₂ (200 μ M for 20 min)
223 as a positive control to normalize the number of positive DCF cells after the insult with MCMs.
224 Imaging was made using an epifluorescence microscope (Nikon Eclipse Ti-U; objective 20X) and
225 excitation and emission wave $\lambda_{\text{ex}}/\lambda_{\text{em}} = 492\text{--}495/517\text{--}527$ nm. At least three fields were taken
226 for each condition, and at least ten cells per field were used for the quantification. The analysis of
227 images was done using ImageJ software (NIH, Bethesda, MD, USA).

228

229 **2.9 | phosphorylated c-Abl (c-Abl-P) immunofluorescence labeling**

230 c-Abl phosphorylation in MNs was determined by immunofluorescence labeling as previously
231 described (Rojas et al., 2014). Briefly, primary spinal cord cultures were exposed to the different
232 MCMs, fixed at 7 DIV with 4% PFA, and incubated with antibodies against SMI32. To detect
233 phosphorylated c-Abl, a mouse monoclonal antibody that recognizes phosphorylation of Tyr-412
234 was used and visualized with the appropriate Alexa fluorescent secondary antibody (see section
235 2.6 immunofluorescence). For c-Abl-P quantification in cultures, cultures were imaged using a
236 20X objective. The fluorescence intensity was quantified in SMI32⁺ MNs using ImageJ software
237 (NIH, Bethesda, MD, USA). Briefly, the cell body of each SMI32⁺ neuron was marked manually
238 to set a region of interest (ROI), and the mean c-Abl-P fluorescence was quantified. The
239 background was subtracted, choosing a region without cells. The fluorescence corresponding to
240 control cells was normalized to 1.

241

242 **2.10 | Microfluidic system**

243 We use microfluidic chambers with microchannels 450 μm long (Xona, No. SND450). The sterile
244 chambers were mounted on glass coverslips previously treated with poly-L-lysine for 30 min at
245 37°C. Once adhered, chambers were incubated at 80°C for 1 h to allow the correct adhesion
246 between the chamber and the glass. Chambers were then exposed to UV light for 5 min for
247 sterilization. 100 μl of the medium was applied to each chamber, and MNs were plated (adapted
248 from (Southam et al., 2013)).

249

250 **2.11 | MN and myotube co-cultures**

251 Enriched MN cultures for microfluidic experiments were performed as described previously
252 (Milligan & Gifondorwa, 2011) with some modifications. Briefly, P0-P1 wild-type mice pups were
253 euthanized by decapitation, the skin on the back removed, and the spinal cord was taken, opening
254 each vertebra right down the middle. The spinal cord was left in cold 1X PBS and subsequently
255 transferred to the digestion solution: Papain (Sigma, No. P3375), DNAase (Roche, No.
256 10104159001), MgCl₂ (Sigma, No. M2393), 1 ml PBS 1X. Spinal cords were mechanically
257 disaggregated using tweezers, leaving pieces of approximately 0.3 mm, then incubated at 37°C for
258 10 min, to be later transferred to a 15 ml tube and washed three times by adding 1X PBS. The
259 spinal cord pieces were placed in 5 ml of preheated MN medium: Neurobasal Medium (Gibco,
260 No. 21103-049), 1% Glutamax (Gibco, No. 35050-061), 2% Supplement B27 (Gibco, No. 17504-
261 04), 5% of horse serum), and DNAase and MgCl₂. Then, the marrows were disintegrated using
262 glass Pasteur pipettes, previously flamed at the tip, with two different thicknesses, passing each
263 spinal cord through the pipettes from the greater to the smaller hole. To purify the MNs, an
264 Optiprep gradient column was assembled (Milligan & Gifondorwa, 2011). Cells were centrifuged
265 at 1900 rpm for 15 min. After centrifugation, the third layer of the generated gradient, which

266 contains a higher proportion of MNs was removed. The cells were left in a new 15 ml tube with
267 10 mL of prewarmed MN medium and were centrifuged at 1000 rpm for 10 min. The pellet was
268 carefully resuspended in no more than 200 μ l of preheated MN medium, and cells were counted
269 and diluted up to 1×10^6 cells/ml. Approximately 5×10^4 cells were plated in the proximal
270 compartment in no more than 50 μ l of MN medium. The cells were incubated for 30 min at 37°C
271 and 5% CO₂ for cell adhesion. Subsequently, 200 μ l of MN medium was applied to the culture of
272 MN localized in the upper proximal compartment. The culture medium was replaced every 48
273 hours. At 3 DIV, the first axonal prolongations were observed, and that was the time that the
274 myoblasts were plated in the distal compartment. Like MNs, 5×10^4 myoblast cells from the
275 protocol described before (see section 2.2 myoblasts and myotubes cultures) were resuspended in
276 50 μ l of myoblast growth medium and plated in the upper distal compartment. The chamber was
277 incubated for 30 min at 37°C and 5% CO₂, and finally, 200 μ l of myoblast growth culture medium
278 was applied in the upper distal compartment. The next day, the medium was replaced to
279 differentiate myotubes to induce fusion of the myoblasts. Approximately between 10 and 14 DIV,
280 it was possible to observe the innervation of MN axons to the distal compartment where the
281 myotubes were cultured.

282

283 **2.12 | Adeno-associated viral particle production**

284 Based on previous work (Arredondo et al., 2022; Bustos et al., 2017, Bustos et al., 2023)
285 HEK293FT cells were grown on 150 mm plates in DMEM medium (Hyclone SH30081.02) until
286 reaching 80-90% of confluence and supplemented with 10% fetal bovine serum (FBS; Hyclone
287 SH30070.01), 4 mM L-glutamine (Life technologies 25030-081), 100 U/ml
288 penicillin/streptomycin (Life technologies 15070-063) and 1 mM pyruvate (Sigma), at 37 °C and
289 5% CO₂. Cells were transfected using polyethyleneimine (PEI), and the plasmids for adeno-
290 associated viruses type 1 and 2 (pAAV1 and pAAV2) were utilized. In addition, we use the pFΔ6

291 plasmid and the following plasmids of interest: hSyn-COX8-RFP, a plasmid with the synapsin-1
292 promoter that controls the expression of COX8, exclusive from mitochondria, and fused to the red
293 fluorochrome RFP; hSyn-mRuby2-GCaMP6, a plasmid with the synapsin-1 promoter that controls
294 the expression of the biosensor GCaMP6 and fused to the red fluorochrome mRuby2 (Addgene, #
295 50942); and hSyn-HyPer, HyPer biosensor 3.0 under CMV promoter (Addgene, #42131). We
296 transfected 10.4 µg of pFΔ6, 4.35 µg of pAAV1, 4.35 µg of pAAV2, 5.2 µg of the plasmid of
297 interest and 880 µl of Optimem (Gibco, No. 31985-070). Plasmids were mixed, and 260 µl of
298 polyethyleneimine reagent (PEI; Sigma, No. P3143) was added. The solution was applied on 80%
299 confluent HEK293T cells, and after 12 h, the medium was replaced by DMEM medium with 1%
300 FBS. At 72 h from the start of the transfection, cells were collected and centrifuged at 3000 RPM
301 for 10 min 4 °C. The supernatant was discarded, and the pellet was resuspended in 4 ml 1X PBS.
302 Cells in suspension were left at -80°C for 10 min and then thawed at 37°C for 10 min. This cycle
303 was repeated three times to achieve thermal lysis of the cells. Finally, the supernatant was removed
304 and filtered using 1.2 µm, 0.45 µm and 0.22 µm filters. The solution containing the viral particles
305 was aliquoted and refrigerated at -80°C.

306

307 **2.13 | Mitochondrial velocity assay**

308 Microfluidic co-cultures of MNs and myotubes were transduced at 10-14 DIV in the proximal
309 compartment using AAV1/2 coding for hSyn-COX8-RFP. 4-7 After transduction (14-21 DIV of
310 co-culture), it was possible to observe the expression of RFP with a mitochondrial pattern in MN
311 under epifluorescence microscopy. At this point, the culture medium was replaced by the different
312 MCMs, and 24 h later the registration of the mitochondrial movement was measured. The
313 microfluidic chamber was placed in a CO₂ chamber (Tokai-Hit) coupled to an epifluorescence
314 microscope (20X objective; Nikon TE-2000). Sequential images of axons that crossed the
315 microchannels in direct contact with myotubes were recorded. The images were acquired every 2

316 seconds for 5 min to generate a pattern of the mitochondrial movement. The images were processed
317 in the ImageJ software using the Kymograph plugin. The slopes obtained by Kymograph represent
318 mitochondrial velocity (Zahavi et al., 2015).

319

320 **2.14 | Analysis of calcium events in MNs**

321 Co-cultures of MNs and myoblasts were generated in the microfluidics chambers as described
322 above. Next, cells in the proximal compartment containing the MNs were infected with AAV1/2
323 containing hSyn-mRuby2-GCaMP6s, which encodes for the GCaMP6s biosensor to detect
324 intracellular calcium fluctuations (Chen et al., 2013). After 5-7, DIV of transduction, calcium
325 frequency recordings were performed using an epifluorescence microscope (Nikon TE2000e, 20X
326 objective, and Andor Zyla camera 5.5). Images were taken every 50 ms for 1-1.5 min with an
327 excitation wavelength of 480 nm and emission of 510 nm. The soma of an isolated MN was
328 selected to quantify the frequency of calcium events. Images of the isolated soma were analyzed
329 using the ImageJ software and the Z-Profiler tool, which provides an intensity profile during the
330 time. Each intensity peak was counted manually and was divided by 1 min, resulting in a value
331 expressed as events per min.

332

333 **2.15 | Analysis of ROS production in MN in the microfluidic system**

334 Co-cultures of MNs and myoblasts were generated in the microfluidics chambers as described
335 above. Next, cells in the proximal compartment containing MNs were infected with AAV1/2
336 containing the hSyn-HyPer 3.0 plasmid, which encodes for the HyPer biosensor and YFP protein
337 (Bilan et al., 2013). After 5-7 DIV of transduction, ROS production recordings were performed
338 using an epifluorescence microscope, with an excitation wavelength at 480 nm and emission at
339 510 nm. The acquisition was made every 2 seconds for 10 min. The images were analyzed using
340 the ImageJ software, using the Z-Profiler tool to obtain the intensity profile over time.

341

342 **2.16 | Data analysis**

343 Statistical analyses were performed using GraphPad Prism software. Student's t-test was
344 performed when two populations were examined, while one-way ANOVA followed by the
345 Bonferroni post-hoc was utilized when making multiple (three or more) comparisons. In all
346 figures, data is reported as mean±S.E.M.; *p < 0.05, **p < 0.01, ***p < 0.001 compared to control.

347 For all data, three or more independent experiments were analyzed.

348

349 **3 | RESULTS**

350 **3.1 | MutSOD1 myotubes acquire aberrant phenotypic and functional characteristics.**

351 We first aimed to determine the phenotypic characteristics of mutSOD1 myoblasts and myotubes
352 primary cultures. Primary myoblast cultures were generated from lower limb skeletal muscles
353 derived from postnatal day (P) 1-4 neonatal ALS transgenic mice carrying human mutant
354 SOD1^{G93A}. As controls, myoblasts were isolated from non-transgenic littermates (NTg). Using
355 immunofluorescence staining assays for Pax7 and myosin heavy chain (MHC), we tested the
356 differentiation of myoblasts to myotubes. Pax7 is essential for the normal expansion and
357 differentiation of satellite cells (SCs) into myoblasts in both neonatal and adult myogenesis
358 (Maltzahn et al., 2013), while MHC is a marker for functional myotubes (X. Guo et al., 2020;
359 Torgan & Daniels, 2001). At 3-5 DIV, when NTg and mutSOD1 myoblasts reached 70%
360 confluence, we observed a robust expression of the transcription factor Pax7 (Fig. 1A). Next,
361 differentiation media was applied to induce complete fusion and differentiation to myotubes. As
362 expected, during the differentiation process the expression of Pax7 decreased concomitantly with
363 an increased expression of MHC (Fig. 1A). Both NTg and mutSOD1 cultures displayed the
364 myoblast to myotube transition over ten days. Next, we analyzed the efficiency of
365 the myotube formation by performing a short differentiation assay (8 h) followed by double

366 immunofluorescence assays to determine the expression of both Pax7 and myotube marker
367 myogenin (MyoG) (González et al., 2016). Interestingly, mutSOD1 myotubes showed a significant
368 reduction (~50%) in myogenin induction (Pax7⁺/MyoG⁺) compared to NTg myotubes, indicating
369 a deaccelerated commitment to myotube differentiation (Fig. 1B-C). To further characterize the
370 myogenic process in the ALS cells, we analyzed the structural and functional traits of NTg and
371 mutSOD1 myotubes. Since myotube cultures show spontaneous contractions (X. Guo et al., 2013;
372 Smolina et al., 2015), we analyzed the contraction capability in our model. We found that
373 mutSOD1 myotubes displayed a significantly higher contraction frequency (~55%), compared to
374 NTg myotubes (Fig. 1D). Moreover, we determined that mutSOD1 myotubes display a
375 significantly lower width (~23%), compared to NTg myotubes (Fig. 1E), without evident changes
376 in nuclei number per myotube (Fig. 1F). Together, these results show that mutSOD1 myotubes
377 display intrinsic phenotypic and functional differences compared to NTg muscle cells.

378

379 **3.2 | Exposure to mutSOD1-MCM triggers the death of primary MNs.**

380 Next, we aimed to explore the hypothesis that skeletal muscle expressing mutSOD1 causes MN
381 pathology and death by releasing soluble toxic factor(s). We established an *in vitro* culture model
382 (Fig. 2A) in which myotube-conditioned media (MCM) from mutSOD1 myotubes (termed
383 mutSOD1-MCM) was applied at different dilutions to ventral spinal cord cultures at 4 DIV. MCM
384 from NTg astrocytes (termed NTg-ACM) and fresh media to maintain MNs in culture (termed MN
385 medium) were included as controls. At 7 DIV, cultures were fixed and double immunostained for
386 unphosphorylated neurofilament-H (SMI32) and MAP2 to identify MNs (SMI32⁺/MAP2⁺-cells)
387 or interneurons (SMI32⁻/MAP2⁺-cells) (Arredondo et al., 2022; Fritz et al., 2013; Mishra et al.,
388 2020; Nagai et al., 2007; Sepulveda et al., 2010). In agreement with our hypothesis, we found that
389 a 1/4 (25%) and 1/8 (12.5%) dilution of mutSOD1-MCM strongly reduced MN survival (~40-
390 50%), whereas NTg-MCM did not cause MN death (Fig. 2B-C).

391

392 **3.3 | Application of mutSOD1- MCM to spinal cord cultures leads to increases in ROS/RNS**
393 **and c-Abl-P.**

394 To further analyze possible cellular mechanisms underlying MN death induced by mutSOD1-
395 MCM, we focused on two classical pathogenic events reported in MNs in ALS models, namely
396 accumulation of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and activation of
397 c-Abl (Fritz et al., 2013; Marchetto et al., 2008; Rojas et al., 2014, 2015). Based on our previous
398 time-course imaging studies measuring ROS/RNS and c-Abl-P in spinal cord neurons induced by
399 mutSOD1 astrocyte-conditioned media (Rojas et al., 2014, 2015), in the current study we applied
400 mutSOD1-MCM for 90 min to 4 DIV spinal neurons for both sets of experiments. NTg-MCM and
401 MN media were used as negative controls (90 min), and H₂O₂ (200 μM, 20 min) was used as
402 positive control. To investigate whether mutSOD1-MCM leads to increases in intracellular
403 ROS/RNS levels, following incubation, spinal cord neurons were washed and loaded for 30 min
404 with CM-H₂DCF-DA. This non-fluorescent dye passively diffuses into cells, but upon hydrolysis,
405 the generated DCFH carboxylate anion is trapped inside the cells where oxidation leads to the
406 formation of the fluorescent product DCF. The increased DCF fluorescent intensity reflects the
407 accumulation of certain ROS/RNS species. Using combined real-time fluorescence and phase-
408 contrast imaging, a substantial increase in intracellular DCF fluorescence was observed upon
409 application of MCM-mutSOD1 (diluted 1/4 and 1/8) in spinal cord neurons, including in MN-like
410 cells (Fig. 3A-B). The application of H₂O₂ mimicked this increase in DCF labeling. In control
411 conditions, NTg-MCM and MN media did not change intracellular DCF levels (Fig. 3A-B).
412 Using immunolabeling, we next evaluated the effect of mutSOD1-MCM on the levels of
413 phosphorylated c-Abl kinase (c-Abl-P), a tyrosine kinase widely associated with neuronal
414 apoptosis, activated under a wide range of stimuli including inflammation, DNA damage, amyloid
415 beta, and oxidative stress (Etten, 1999; Klein et al., 2010; Martinez et al., 2023; Schlatterer et al.,

416 2011; Tsai & Yuan, 2003; J. Y. J. Wang, 2005; Yáñez et al., 2016). After 90 min of application of
417 the media, cells were fixed and double immunostained with an antibody against SMI32 to identify
418 MNs and with a specific antibody that recognizes c-Abl that is phosphorylated on tyrosine 412
419 (Tyr412), a site that enhances c-Abl catalytic activity (Hantschel & Superti-Furga, 2004). We
420 detected a significant induction of c-Abl-P in MNs incubated with 1/4 dilution of MCM-mutSOD1
421 compared to controls NTg-MCM or MN media (Fig. 3C-D). Together, these results indicate that
422 soluble toxic factor(s) released by myotubes that carry mutSOD1 lead to increases in ROS/RNS
423 and c-Abl-P in MNs.

424

425 **3.4 | MutSOD1-MCM induces MN death distally through the axons.**

426 Muscle-motoneuron communication is key for maintaining the NMJ and for the long-term survival
427 of MNs (Ionescu et al., 2016). Alterations in intracellular communications can lead to synapse
428 disruption and axon degeneration, which could be an inflection point in neurodegenerative
429 diseases, including ALS (Maimon et al., 2018). The molecular signaling for the correct
430 maintenance of neuromuscular communication can act locally at the synapse or travel long
431 distances through the axon by retrograde transport. In our previous survival experiment (see Fig.
432 2), the MN soma and the axon are in direct contact with the MCM. Therefore, it is not possible to
433 determine if the observed effects of myotube-derived toxic factor(s) on MN survival exert their
434 impact in the soma (proximal effect) or through the axons (distal effect). For this reason, we used
435 microfluidic devices that enable a physical separation between the neuronal soma and its synaptic
436 terminal, with no fluid exchange between the chambers. Primary MNs from neonatal wild-type
437 mice were cultured in the microfluidic devices in the proximal compartment (Fig. 4A, B). At 4
438 DIV, MCM 1/4 dilution was applied in the distal compartment (Fig. 4B). After three days, cells
439 were fixed and immunostained for SMI32 and MAP2 to determine MN survival (Fig. 4C). To
440 evaluate the survival of MNs more precisely, the MN compartment was divided into two sides

441 (sides A and B; [Fig. 4A](#)), separating the MNs that were further from the microchannels, which
442 were less likely to have direct contact with the MCMs (termed non-innervating side A), from those
443 MNs closer to the microchannels and hence more likely to have innervated the distal chamber and
444 thus directly contact the conditioned environment (termed innervating side B) ([Fig. 4C](#)). We found
445 that distal application of mutSOD1-MCM reduced MN survival by 30% in the cell located in
446 innervating side B, while no significant MN loss was detected in non-innervating side A ([Fig. 4C-E](#)). Moreover, we found that neither NTg-MCM nor MN media reduced MN survival on either
447 side A or B (not shown). Together, these results indicate that the toxic factor(s) present in the
448 mutSOD1-MCM exerts its effect retrogradely.

450

451 **3.5 | Distal application of mutSOD1-MCM increases Ca^{2+} transients in wild-type MNs.**

452 Next, we wanted to get insights into molecular mechanisms that underlie the mutSOD1 myotube-
453 mediated toxicity on MNs through a retrograde manner. To recreate the MN-muscle
454 communication, and to ensure the generation of abundant functional MN axons in this distal
455 chamber, WT (NTg) myotubes were grown in the distal compartment ([Fig. 5A](#)). Regarding
456 potential mechanisms, we first focused on measuring intracellular Ca^{2+} transients as abnormalities
457 in Ca^{2+} homeostasis has been implicated in the disruption of kinesin-mediated axonal trafficking
458 (Hollenbeck & Saxton, 2005; Li et al., 2004). To determine if mutSOD1-MCM causes alterations
459 in intracellular Ca^{2+} transients in the MNs, we used the GCaMP6 sensor to transduce the proximal
460 MN compartment of the microfluidic devices (Rose et al., 2016). Seven days after transduction,
461 we replaced the medium for MN media, NTg-MCM, or mutSOD1-MCM in the proximal and distal
462 chambers ([Fig. 5A](#)). Five min later we recorded the MN somas for 2 min to analyze Ca^{2+} events.
463 Independent of the chamber used, low MN activity (5-7 spontaneous Ca^{2+} events/min) was
464 measured when MN media (control) or NTg-MCM was applied ([Fig. 5B-C](#)). By contrast,
465 application of mutSOD1-MCM in the proximal chamber led to a significant increase of 2.5-fold

466 (~12 events/min) in transient Ca^{2+} events (Fig. 5B). When adding mutSOD1-MCM in the distal
467 chamber, we observed an even higher increase of 3-4-fold (~20 events/min) in transient Ca^{2+}
468 events (Fig. 5C). These results show that soluble factor(s) released from mutSOD1 myotubes
469 trigger an increase in Ca^{2+} transients, particularly when applied at the axonal compartment where
470 the NMJ resides, suggesting a distinct spatial effect of toxic mutSOD1-MCM.

471

472 **3.6 | mutSOD1-MCM applied distally induces H_2O_2 accumulation in wild-type MNs.**

473 Studies in ALS-related SOD1 mutations indicate that mitochondrial dysfunction participates in the
474 pathogenesis of MNs through the generation of intracellular ROS (Barber & Shaw, 2010; Rojas et
475 al., 2014, 2015; Vehviläinen et al., 2014). As reported with DCF (Fig. 3), mutSOD1-MCM triggers
476 an accumulation of ROS/RNS in WT (NTg) spinal cord cultures. To evaluate whether mutSOD1-
477 MCM can induce ROS accumulation in MNs in a distal and retrograde manner in the microfluidic
478 cultures, we used the HyPer-3 probe as a biosensor for intracellular H_2O_2 in living cells (Bilan et
479 al., 2013). Co-cultures of wild-type myotubes and MNs were generated, with the latter neuronal
480 compartment transduced with AAV1/2-HyPer-3. Seven days after infection, NTg-MCM or
481 mutSOD1-MCM was applied to the distal chamber (Fig. 5D-E), and serial images were taken in
482 an epifluorescent microscope (every 2 sec for 6 min). We found that the application of mutSOD1-
483 MCM significantly increased ~2.5-fold the HyPer-3 fluorescent intensity relative to NTg-MCM
484 (Fig. 5E-F). These results show that applying mutSOD1-MCM to the axonal compartment triggers
485 the accumulation of intracellular H_2O_2 levels in MN somas.

486

487 **3.7 | MCM-mutSOD1 affects antegrade and retrograde mitochondrial axonal transporting
488 in MNs.**

489 To analyze the possibility of an axonal trafficking dysfunction as a pathological cell event, we
490 evaluated the antegrade (from the soma to the axonal terminal) and retrograde (from the axon

491 terminal to the soma) mitochondrial transport in MN-myotube microfluidic co-cultures (Fig. 6A)
492 to evaluate mitochondria trafficking by kymograph quantification (Fig. 6B) after proximal (Fig.
493 6C) or distal (Fig. 6D) application of MCM-NTg and MCM-mutSOD1. To visualize MN axons, 3
494 DIV MNs were infected with an AAV1/2 harboring a red fluorescent protein (RFP) fused to a
495 mitochondrial targeting sequence Cox8 (Fig. 6A). mutSOD1-MCM or NTg-MCM was applied to
496 the myotube (distal) or MN (proximal) compartments and 24 h later mitochondrial movement in
497 the axons of the MN was recorded. We tracked the mitochondrial axonal movement through the
498 microchannels of the microfluidic chamber, thereby only quantifying axons in contact with the
499 distal compartment. The generated videos were converted to kymograph images representing the
500 movement of a particle over time. The resulting slopes show mitochondrial velocity (Fig. 6C-D).
501 Compared to NTg-MCM, we observed that incubation of mutSOD1-MCM in the proximal
502 compartment (MNs) significantly decreased the mitochondrial velocity of both the anterograde (from
503 0.55 μ m/s to 0.3 μ m/s) and retrograde movement (from 0.4 μ m/s to 0.3 μ m/s) (Fig. 6C, E).
504 Conversely, application of mutSOD1-MCM to the distal chamber only affected anterograde, but
505 not retrograde transport (Fig. 6D, F). These results indicate that mutSOD1-MCM affects
506 differentially axonal mitochondrial transport, with the anterograde transport being the most affected
507 by the muscle-released toxic factor(s).

508

509 4 | DISCUSSION

510 The role of muscle in ALS pathology involves complex interactions, including potential
511 contributions to disease progression and the modulation of MN function. Even though the role of
512 skeletal muscle in ALS pathogenesis remains controversial, increasing evidence points out a
513 preponderant non-autonomous mechanism underlying muscle degeneration (Badu-Mensah et al.,
514 2020; Dobrowolny et al., 2005; Dupuis et al., 2009; Wong & Martin, 2010). To elucidate novel
515 non-autonomous mechanisms of muscle-mediated MN degeneration in ALS, we generated a

516 highly homogenous population of primary skeletal myotubes from myoblasts derived from ALS
517 transgenic mice expressing human mutSOD1 and control NTg littermates. Characterization of the
518 cultures revealed that mutSOD1 skeletal myotubes display phenotypic and functional differences
519 compared to control myotube cultures. Given that our *in vitro* ALS muscle model is free of other
520 critical implicated cell types, such as MNs, astrocytes, and microglia, our data suggest that the
521 aberrant phenotypic and functional signature of mutSOD1 myotubes is cell autonomous. We also
522 studied how conditioned media derived from mutSOD1 myotubes affects the function and survival
523 of healthy NTg rodent MNs in typical mixed spinal cord cultures and compartmentalized
524 microfluidic chambers enriched in MNs. Our finding that mutSOD1-MCM robustly kills MNs
525 establishes that soluble toxic factor(s) released by ALS myotubes cause non-cell autonomous MN
526 death. Furthermore, our study shows that mutSOD1-expressing myotubes exhibit phenotypic
527 differences, suggesting a deaccelerated commitment from myoblasts to myotube differentiation.
528 Specifically, we found that besides reduced myotube width, mutSOD1 myotubes display an
529 increase in Pax7 and a decrease in MyoG protein expression. Our findings agree with a recent
530 report where a human ALS skeletal muscle model was generated from induced pluripotent stem
531 cells (iPSCs) derived from healthy individuals and ALS patients harboring mutations in SOD1
532 (Badu-Mensah et al., 2020). On the other hand, the expression pattern of Pax7 and MyoG is in
533 stark contrast with data obtained from skeletal muscle biopsies of symptomatic ALS patients,
534 where the expression of Pax7 was increased. In contrast, MyoG expression was reduced relative
535 to control subject samples (Jensen et al., 2016). Based on additional data in the same study
536 (comparing baseline with 12 weeks of progression), it was suggested that the activated myogenic
537 process in symptomatic ALS muscle likely intends to overcome the denervation-induced muscle
538 wasting. Comparing the data on cultured ALS myotubes with the analysis from skeletal muscle
539 biopsies, we suggest that compensatory mechanisms during the progress of the disease are causing
540 drastic alterations in myogenesis, changing from a deaccelerated process to an accelerated process.

541 In future longitudinal studies, it would be interesting to determine underlying molecular
542 mechanisms for the altered gene expression in pre-symptomatic and symptomatic ALS muscle
543 cells.

544 The phenotypic alterations in cultured mouse and human mutSOD1 myotubes reproduce
545 some of the validated muscle states *in vivo* models of ALS (Brooks et al., 2004; Hegedus et al.,
546 2007, 2009; Manzano et al., 2011, 2013; Scaramozza et al., 2014; Wong & Martin, 2010). For
547 instance, we further investigated the contraction frequency of our primary myotubes as a marker
548 of contractile function. While several studies have reported impaired contractile function in
549 mutSOD1 models, most employed electrical stimulation (not measuring spontaneous activity) and
550 focused on adult mouse muscle or primary myotubes co-cultured with MNs (Badu-Mensah et al.,
551 2020; Benlefki et al., 2020; Derave et al., 2003; Dupuis et al., 2004; Wier et al., 2019). Notably,
552 Derave et al. (2003) observed slowed contraction in aged mutSOD1 mice at later stages of disease
553 progression (P90 and P120). In contrast, our study uniquely assessed spontaneous contraction
554 frequency in isolated myotubes derived from neonatal mice. Surprisingly, we found increased
555 spontaneous contraction frequency in mutSOD1 myotubes compared to controls. This finding is
556 intriguing, considering the delayed maturation observed in our mutSOD1 myotubes. It suggests
557 that altered contractile behavior may manifest early in disease progression, independent of MN
558 influence, and warrants further investigation into the underlying mechanisms.

559 Interestingly, we found that applying mutSOD1-MCM to the cultures further revealed a
560 rapid induction of several classical pathogenic events in MNs, including impaired mitochondrial
561 transport, disturbed calcium homeostasis, oxidative stress accumulation, and cell death induction.
562 The findings underlying the mutSOD1-MCM application support previous observations of MN
563 cell pathology which include impaired axonal transport of mitochondria from muscle to motor
564 neurons contributing to ALS pathogenesis. Other studies demonstrate disrupted mitochondrial
565 transport, calcium overload, and oxidative stress in ALS mouse models, leading to MN

566 degeneration (Magrané et al., 2012; Rojas et al., 2014, 2015). Furthermore, dysregulation of
567 calcium homeostasis in ALS involves non-cell-autonomous processes, as previously demonstrated
568 by our lab using mutSOD1-ACM (Fritz et al., 2013). The observation of these altered processes
569 mediated by toxic factor(s) present in mutSOD1-MCM may suggest a novel non-autonomous
570 mechanism in ALS.

571 Soluble factor(s) released by mutSOD1 myotubes exert their toxic effects predominantly
572 retrogradely, causing axonopathy and leading to lethal pathogenic changes. Our present *in vitro*
573 evidence showing non-cell-autonomous toxic actions of mutSOD1 myotubes to healthy MNs
574 agrees with several studies *in vitro* and *in vivo*. Thus, Maimon and colleagues (2018), using a
575 compartmentalized microfluidic co-culture system with wild-type MN explants and primary
576 myocytes, demonstrated that diverse ALS-causing genes, including mutations in SOD1, TDP43,
577 and C9ORF72, promoted axon degeneration. In addition, studies using transgenic mice that
578 express mutSOD1 selectively in skeletal muscles found alterations associated with ALS
579 pathogenesis (Dobrowolny et al., 2009; Maimon et al., 2018; Wong & Martin, 2010). Specifically,
580 Dobrowolny and colleagues (2009) showed that muscle-specific expression of mutSOD1 in mice
581 induces severe muscle atrophy accompanied by microglia activation in the spinal cord but without
582 evident signs of MN degeneration. Wong and Martin (2010) found that their transgenic mice
583 exhibiting a skeletal muscle-restricted expression of mutSOD1 also developed muscle pathology
584 and neurologic and pathologic phenotypes consistent with ALS, evidenced by spinal MNs
585 developing distal axonopathy and significant MN degeneration. As indicated in the latter work,
586 the difference between the severity of alterations in the spinal cord observed with the two
587 transgenic studies could be explained by the aging of the animals; thus, Wong and Martin (2010)
588 led their mice to become old, while Dobrowolny et al. (2009) performed their analyses on much
589 younger mice (1–4-month-old) (Dobrowolny et al., 2009; Maimon et al., 2018; Wong & Martin,
590 2010). Despite these studies that support our findings, other *in vitro* and *in vivo* studies did not find

591 evidence for the primary role of muscles in ALS. Specifically, in another *in vitro* study,
592 conditioned media generated by myotubes/myocytes derived from the same transgenic mutSOD1
593 mouse model as we used to be unable to reduce the survival of NTg mouse MNs, either analyzed
594 in mixed spinal cord cultures or cultures enriched for embryonic stem-cell derived MNs (Nagai et
595 al., 2007). While the media was conditioned for seven days in both studies, the reason(s)
596 underlying the difference between their results and ours may be related to technical issues
597 associated with the generation of myotubes. For example, in our study, mutSOD1 myoblasts were
598 differentiated into myotubes in 10 days, a process validated by phenotypic and functional analysis.
599 In the previous study (Nagai et al., 2007), it was reported that myotubes were formed in 2-3 days
600 from myoblasts (without showing characterization), making it plausible that not fully
601 differentiated myotubes were generated from mutSOD1 myoblasts. Two *in vivo* studies also
602 indicate that muscle is not a primary target for non-cell-autonomous toxicity in ALS (T. M. Miller
603 et al., 2006; Towne et al., 2008). It was shown that delivery of RNA interferences (RNAi) targeting
604 SOD1 to skeletal muscles in the mutant SOD1^{G93A} mouse model did not alter the time of onset of
605 the disease or its progression despite causing a 50-60% reduction in SOD1 protein levels in the
606 examined muscle (K. E. Miller & Sheetz, 2004; Towne et al., 2008). In both studies, the viral
607 particles (AAV and lentivirus) to deliver RNAi against SOD1 were injected in young adult
608 mutSOD1 mice; thus, intra-muscularly at P40 (T. M. Miller et al., 2006) or intravenously at P42
609 (Towne et al., 2008). Given that systematic studies of hindlimb muscles in mutSOD1 mice
610 revealed functional and structural motor unit loss starting already at P40-P50 (Fischer et al., 2004;
611 Frey et al., 2000; Hegedus et al., 2007; Saxena & Caroni, 2011; Zundert et al., 2012), it is plausible
612 that the late viral delivery of SOD1-RNAi to the skeletal muscles was unable to significant protect
613 and/or revert already induced muscle damage. This would not be surprising as multiple studies
614 designed to reduce mutSOD1 in the CNS revealed that silencing in SOD1 gene expression only
615 was able to significantly delay ALS onset and/or extend lifespan when the treatment was started

616 during early developmental, strongly declining efficacy in maturing mice (Zundert & Brown,
617 2017).

618 Together, our data presented here, along with previous *in vitro* and *in vivo* studies (Badu-
619 Mensah et al., 2020; Dobrowolny et al., 2009; Maimon et al., 2018; Wong & Martin, 2010),
620 demonstrate that ALS skeletal muscle causes MN death and classic pathogenicity through non-
621 cell-autonomous processes. Identifying the factors released by ALS skeletal muscle that are toxic
622 to MNs will be essential to translate this knowledge into muscle-targeting treatments for ALS.

623

624 **DECLARATIONS.**

625 **Ethics approval.** All experiments conducted in mice were handled according to the guidelines for
626 the handling and care of experimentation established by the NIH (NIH, Maryland, USA) and
627 following the protocol approved by the bioethics committee of Andres Bello University (approval
628 certificate 014/2017).

629 **Availability of data and material.** All data supporting our findings are in the manuscript. Any
630 materials are available upon request.

631 **Competing interests.** We declare no competing interests.

632 **Funding.** This work was supported by grants from: BvZ: ANID-FONDECYT (1181645 and
633 1221745, BvZ), ANID-MILENIO (NCN2023_23, BvZ and FB), ANID-EXPLORADOR
634 (13220203, BvZ), LifeArc (BvZ), FJB: UNAB DI-06-24/REG, PM: ANID-CONICYT
635 (21151265, PM), SA: ANID-CONICYT (21151265, SA), MCP: National Institutes of Health
636 Grants R01-EY014074 and R01-638 EY014420 (MCP), EJ : ANID-FONDECYT (1151293, EJ),
637 UChile ICBM P2022, EJ.

638

639 **Authors' contributions.** P.M., F.J.B., and B.v.Z. conceived, designed the project, and wrote the
640 manuscript. P.M., F.J.B., M.S., and S.A. performed experimental work. M.F.T., E.J., and M.C.-P.
641 contributed to experimental design, manuscript review, and editing.

642

643

644

645

646

647

648

649 **FIGURE CAPTIONS**

650

651 **Figure 1. Characterization of primary mutSOD1 myoblast cultures.** **A**, Representative images
652 of myogenic markers during myoblast differentiation in primary mutSOD1 and non-transgenic
653 littermate (NTg) myoblast cultures. Myoblasts from P2 mice were maintained in a growth medium
654 up to 70% confluence and then cultured in a differentiation medium to induce myotube formation.
655 Cells were fixed at 3, 5, 7, and 10 DIV and immunostained with antibodies against Pax7 and MHC,
656 and DAPI to detect nuclei (n=3). Scale bar: 100 μ m. **B**, Quantification of subpopulations present
657 in primary NTg and mutSOD1 myoblast cultures. Five DIV primary mutSOD1 and NTg myoblasts
658 were induced to differentiate into myotubes for 8 h. Cells were fixed, and immunofluorescence
659 was performed using specific antibodies against Pax7 and myogenin (MyoG). Scale bar: 100 μ m.
660 **C**, Pax7, and myogenin-positive (and negative) cells were quantified to obtain the enrichment
661 percentage of each myogenic gene over the total number of cells. The quantification corresponds
662 to 3 independent experiments, analyzed by student t-test (* p <0.05, *** p <0.0005). **D**, Myotube
663 contraction frequency, comparing NTg and mutSOD1 myotubes and quantified as event per min.

664 Data are represented as the mean \pm s.e.m., student t-test (** p<0.005). **E**, Myotube width.
665 Comparison made between NTg and mutSOD1 myotubes in 3 independent experiments. Data are
666 represented as the mean \pm s.e.m., student t-test (** p<0.005). **F**, Number of nuclei per cell in NTg
667 and mutSOD1 myotubes. The quantification corresponds to 3 independent experiments, analyzed
668 by student t-test. No significant differences were detected.

669

670 **Figure 2. MCM-mutSOD1 contains soluble toxic factor(s) that induce(s) MN death. A,**
671 Workflow diagram of primary WT (NTg) spinal cord cultures (4 DIV) that were exposed for 3
672 days to MCM derived from mutSOD1 transgenic mice (MCM-mutSOD1), NTg littermates (NTg-
673 MCM), and culture medium (MN medium). Cells were fixed at 7 DIV, and immunofluorescence
674 assayed cell survival. **B**, Representative images of immunofluorescence against SMI32 (MNs) and
675 MAP2 (all neurons) when exposed to MCM-mutSOD1 (dilution 1/4), NTg-MCM (dilution 1/4),
676 and MN medium. Scale bar: 50 μ m. **C**, MN survival graph (SMI32 $^+$ /MAP2 $^+$ cells as a percentage
677 of all MAP2 $^+$ neurons) after treatment with MCM-mutSOD1, NTg-MCM, and MN medium for 3
678 DIV. Values represent the mean \pm s.e.m of at least three independent experiments performed in
679 duplicate and analyzed by one-way ANOVA (** P <0.0005) relative to the NTg-MCM at 7 DIV.

680

681 **Figure 3. MCM-mutSOD1 triggers phosphorylated c-Abl and H₂O₂ accumulation. A,**
682 Representative images of DFC assay and phase contrast of NTg spinal cord cultures exposed to
683 MCM-mutSOD1 (dilution 1/4), NTg-MCM (dilution 1/4), MN medium, and H₂O₂ (200 mM) as a
684 positive control. Scale bar: 50 μ m. **B**, Graph of the average intensity of DFC probe in neurons
685 treated for 90 min with MCMs at different dilutions, as indicated. The graph represents the average
686 \pm s.e.m of 3 experiments performed independently and analyzed by one-way ANOVA (**, P
687 <0.005 relative to NTg-MCM. **C**, Representative images of immunofluorescence against
688 phosphorylated c-abl (c-Abl-P) and SMI32 (MNs) when exposed for 90 min to MCM-mutSOD1

689 (dilution 1/4), NTg-MCM (dilution 1/4), and MN medium, and H₂O₂ (200 mM, 20 min) as a
690 positive control. Scale bar: 50 μ m. **D**, Graphs showing fluorescence intensities (a.u.) for c-Abl-P
691 at 4 DIV when NTg spinal cord cultures were treated acutely (90 min) with MCM at different
692 dilutions, as indicated. The graph represents the mean \pm s.e.m of 3 experiments performed
693 independently and analyzed by one-way ANOVA (** P <0.005) relative to the NTg-MCM.

694

695 **Figure 4. MN survival is reduced in microfluidic systems when exposed to mutSOD1-MCM.**
696 **A**, Representative diagram showing a microfluidic device to determine the survival of primary
697 NTg MN cultures (cultured on MN side) at 14 DIV under the distal application of MCM-mutSOD1
698 or NTg-MCM for 3 DIV: indicated is the non-innervating (side A) and non-innervating (side B)
699 of MNs. Next, MNs were fixed and incubated with specific antibodies against SMI32 to detect
700 MNs and counted with respect to the total nuclei visualized with NucBlue staining. **B**,
701 Immunostaining against SMI32 in 3 DIV NTg primary MN culture in a microfluidic device. Cells
702 were plated in the proximal compartment and MCM-mutSOD1 was applied in the distal
703 compartment for survival quantification. Scale bar: 200 μ m. **C**, Representative images of
704 immunofluorescence against SMI32 (MNs) and MAP2 (all neurons) when exposed to MCM-
705 mutSOD1 in the non-innervating (side A) and non-innervating (side B) of the proximal chamber.
706 Scale bar: 100 μ m. **D**, Quantification of survival of non-innervating MN after distal treatment with
707 MCM-mutSOD1 or NTg-MCM in a microfluidic chamber. Values represent the mean \pm s.e.m. of
708 3 independent experiments and analyzed by one-way ANOVA relative to the NTg-MCM at 17
709 DIV. **E**, Graph of survival of innervating MN after distal treatment with MCM-mutSOD1 or NTg-
710 MCM in the microfluidic chamber. Values represent the mean \pm s.e.m. of 3 independent
711 experiments and were analyzed by one-way ANOVA (*P <0.05 **P <0.005) relative to the NTg-
712 MCM at 17 DIV relative to the control medium at 17 DIV.

713

714 **Figure 5. Application of mutSOD1-MCM rapidly increases calcium transients and induces**
715 **H₂O₂ accumulation in wild-type MNs.** **A**, Representative diagram of NTg MNs and NTg
716 myotubes co-cultured in a microfluidic chamber. Images show examples of MN that was subjected
717 to transduction with AAV1/2-hSyn-mRuby2-GCaMP6s (hSyn-mRuby in red, and GMaMP6s in
718 green, left panel). Seven days later, cultures were exposed to NTg-MCM and MCM-mutSOD1 in
719 the myotube (distal) or MN (proximal) compartment for 10 min before measuring calcium events.
720 Scale bar: 50 μ m. **B, C**, Quantification of the number of calcium events per min of MN exposed
721 to the different MCMs, as indicated. Values of the graph represent the mean \pm s.e.m. of 3
722 independent experiments and analyzed by one-way ANOVA (** P <0.005, *** P <0.0005) relative
723 to the MN medium and NTg-MCM. **D**, Schematic of a co-culture of NTg MNs expressing the
724 Hyper-3 sensor and NTg myotubes from P2 mice in a microfluidic chamber, where MCM (NTg
725 and mutSOD1) were applied in the distal myotube compartment. **E**, Signal profile plot of Hyper3
726 fluorescent signal vs. time after application NTg-MCM and MCM-mutSOD1. Values of the graph
727 represent the experimental average of 6 cells (n=6), using the same microfluidic chamber, and
728 analyzed by t-student test (*P <0.05) relative to NTg-MCM. **F**, Fluorescent intensity of Hyper
729 measured at 60 s from the profile, after application NTg-MCM and MCM-mutSOD1. Values
730 represent the mean \pm s.e.m. and analyzed by t-student test (*P <0.05) relative to NTg-MCM (n=6).

731
732 **Figure 6. MCM-mutSOD1 applied proximally affects both antegrade and retrograde axonal**
733 **transport.** **A**, Representative diagram of MN and myotube co-cultures in a microfluidic chamber.
734 MNs were subjected to transduction with AAV1/2-Cox8-RFP. Seven days later, cultures were
735 exposed to NTg-MCM and MCM-mutSOD1 in the MN (proximal) or myotube (distal)
736 compartment for 24 h for mitochondrial recording. **B**, Schematic of a kymograph to quantify
737 mitochondria movements. Green lines and arrows indicate anterograde movements (from MN
738 soma to axons), while red lines and arrows indicate retrograde movements (from axons to MN

739 soma). **C, D**, Representative kymographs of mitochondrial movement in MN axons exposed to the
740 different MCM, as indicated. **E, F**, Graphs of axonal mitochondrial velocity quantified from
741 generated kymographs when MCM was applied in the proximal (**E**) and distal (**F**) chambers.
742 Values of the graph represent the mean \pm s.e.m. of 3 independent experiments and analyzed by t-
743 Student test (*P <0.1, **P <0.01) relative to NTg-MCM.

744

745

746

747

748

749 **REFERENCES**

750

751

752 Aguirre, T., Bosch, L. van D., Goetschalckx, K., Tilkin, P., Mathijis, G., Cassiman, J. J., &
753 Robberecht, W. (1998). Increased sensitivity of fibroblasts from amyotrophic lateral sclerosis
754 patients to oxidative stress. *Annals of Neurology*, 43(4), 452–457.
755 <https://doi.org/10.1002/ana.410430407>

756 Al-Chalabi, A., & Hardiman, O. (2013). The epidemiology of ALS: a conspiracy of genes,
757 environment and time. *Nature Reviews Neurology*, 9(11), 617–628.
758 <https://doi.org/10.1038/nrneurol.2013.203>

759 Arredondo, C., Cefaliello, C., Dyrda, A., Jury, N., Martinez, P., Díaz, I., Amaro, A., Tran, H.,
760 Morales, D., Pertusa, M., Stoica, L., Fritz, E., Corvalán, D., Abarzúa, S., Méndez-Ruette, M.,
761 Fernández, P., Rojas, F., Kumar, M. S., Aguilar, R., ... Zundert, B. van. (2022). Excessive
762 release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous
763 toxicity to motoneurons. *Neuron*, 110(10), 1656-1670.e12.
764 <https://doi.org/10.1016/j.neuron.2022.02.010>

765 Badu-Mensah, A., Guo, X., McAleer, C. W., Rumsey, J. W., & Hickman, J. J. (2020). Functional
766 skeletal muscle model derived from SOD1-mutant ALS patient iPSCs recapitulates hallmarks
767 of disease progression. *Scientific Reports*, 10(1), 14302. [https://doi.org/10.1038/s41598-020-70510-3](https://doi.org/10.1038/s41598-020-
768 70510-3)

769 Barber, S. C., & Shaw, P. J. (2010). Barber et al-2010-Free Radical Bio Med.pdf. *Free Radical
770 Biology and Medicine*, 48(5), 629–641. <https://doi.org/10.1016/j.freeradbiomed.2009.11.018>

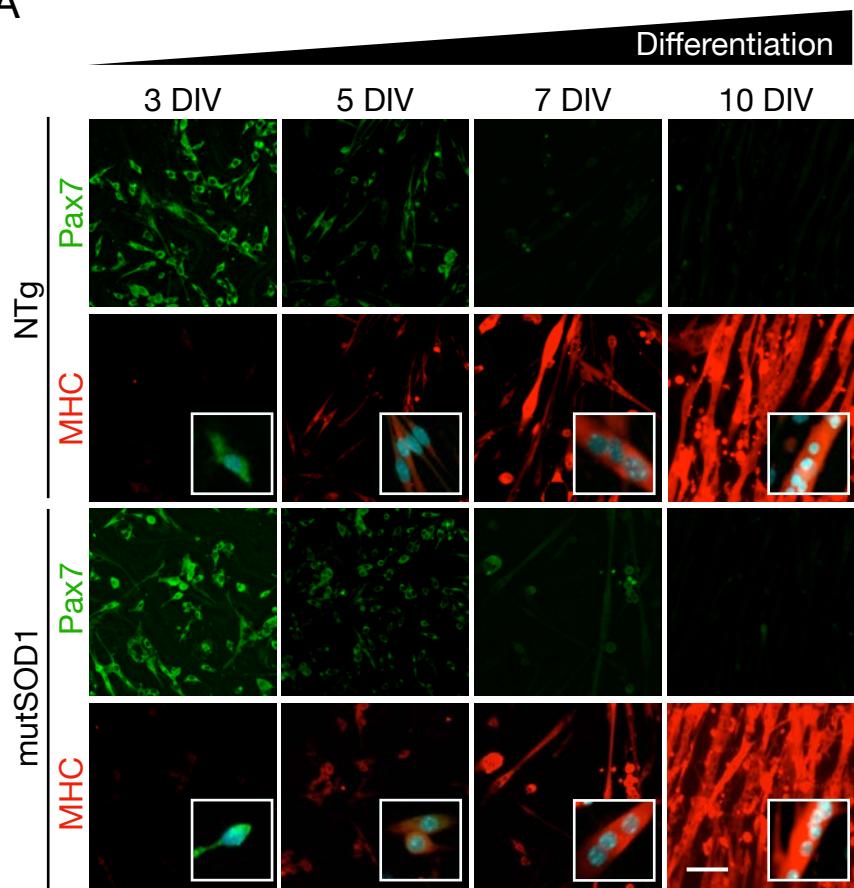
- 771 Benlefki, S., Sanchez-Vicente, A., Milla, V., Lucas, O., Soulard, C., Younes, R., Gergely, C.,
772 Bowerman, M., Raoul, C., Scamps, F., & Hilaire, C. (2020). Expression of ALS-linked SOD1
773 Mutation in Motoneurons or Myotubes Induces Differential Effects on Neuromuscular
774 Function In vitro. *Neuroscience*, 435, 33–43.
775 <https://doi.org/10.1016/j.neuroscience.2020.03.044>
- 776 Bilan, D. S., Pase, L., Joosen, L., Gorokhovatsky, A. Yu., Ermakova, Y. G., Gadella, T. W. J.,
777 Grabher, C., Schultz, C., Lukyanov, S., & Belousov, V. V. (2013). Bilan-Belousov-HyPer-3-
778 A Genetically Encoded H2O2 Probe with Improved Performance for Ratiometric and
779 Fluorescence Lifetime Imaging-ACS Chemical Biology_1.pdf. *ACS Chemical Biology*, 8(3),
780 535–542. <https://doi.org/10.1021/cb300625g>
- 781 Birger, A., Ben-Dor, I., Ottolenghi, M., Turetsky, T., Gil, Y., Sweetat, S., Perez, L., Belzer, V.,
782 Casden, N., Steiner, D., Izrael, M., Galun, E., Feldman, E., Behar, O., & Reubinoff, B.
783 (2019). Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show
784 increased oxidative stress and neurotoxicity. *EBioMedicine*, 50, 274–289.
785 <https://doi.org/10.1016/j.ebiom.2019.11.026>
- 786 Brooks, K. J., Hill, M. D. W., Hockings, P. D., & Reid, D. G. (2004). 3 Brooks, Reid 2003 MRI
787 detects early hindlimb muscle atrophy in Gly93Ala superoxide dismutase-1 (G93A SOD1)
788 transgenic mice, an animal model of familial amyotrophic lateral sclerosis.pdf. *NMR in
789 Biomedicine*, 17(1), 28–32. <https://doi.org/10.1002/nbm.861>
- 790 Bustos, F. J., Jury, N., Martinez, P., Ampuero, E., Campos, M., Abarzúa, S., Jaramillo, K., Ibing,
791 S., Mardones, M. D., Haensgen, H., Kzhyshkowska, J., Tevy, M. F., Neve, R., Sanhueza, M.,
792 Varela-Nallar, L., Montecino, M., & Zundert, B. van. (2017). NMDA receptor subunit
793 composition controls dendritogenesis of hippocampal neurons through CAMKII, CREB-P,
794 and H3K27ac. *Journal of Cellular Physiology*, 232(12), 3677–3692.
795 <https://doi.org/10.1002/jcp.25843>
- 796 Cappello, V., & Francolini, M. (2017). Neuromuscular Junction Dismantling in Amyotrophic
797 Lateral Sclerosis. *International Journal of Molecular Sciences*, 18(10), 2092.
798 <https://doi.org/10.3390/ijms18102092>
- 799 Chen, T.-W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., Schreiter, E. R.,
800 Kerr, R. A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013).
801 Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature*, 499(7458), 295–
802 300. <https://doi.org/10.1038/nature12354>
- 803 Clement, A. M., Nguyen, M. D., Roberts, E. A., Garcia, M. L., Boillée, S., Rule, M., McMahon,
804 A. P., Doucette, W., Siwek, D., Ferrante, R. J., Jr., R. H. B., Julien, J.-P., Goldstein, L. S. B.,
805 & Cleveland, D. W. (2003). Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant
806 Motor Neurons in ALS Mice. *Science*, 302(5642), 113–117.
807 <https://doi.org/10.1126/science.1086071>
- 808 Cova, E., Cereda, C., Galli, A., Curti, D., Finotti, C., Poto, C. D., Corato, M., Mazzini, G., &
809 Ceroni, M. (2006). Modified expression of Bcl-2 and SOD1 proteins in lymphocytes from
810 sporadic ALS patients. *Neuroscience Letters*, 399(3), 186–190.
811 <https://doi.org/10.1016/j.neulet.2006.01.057>

- 812 Derave, W., Bosch, L. V. D., Lemmens, G., Eijnde, B. O., Robberecht, W., & Hespel, P. (2003).
813 Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis:
814 effects of creatine treatment. *Neurobiology of Disease*, 13(3), 264–272.
815 [https://doi.org/10.1016/s0969-9961\(03\)00041-x](https://doi.org/10.1016/s0969-9961(03)00041-x)
- 816 Dittlau, K. S., & Bosch, L. V. D. (2023). Why should we care about astrocytes in a motor neuron
817 disease? *Frontiers in Molecular Medicine*, 3, 1047540.
818 <https://doi.org/10.3389/fmmmed.2023.1047540>
- 819 Dobrowolny, G., Aucello, M., Rizzuto, E., Beccafico, S., Mammucari, C., Boncompagni, S.,
820 Belia, S., Wannenes, F., Nicoletti, C., Prete, Z. D., Rosenthal, N., Molinaro, M., Protasi, F.,
821 Fanò, G., Sandri, M., & Musarò, A. (2009). Skeletal Muscle Is a Primary Target of
822 SOD1G93A-Mediated Toxicity. *Cell Metabolism*, 9(1), 110.
823 <https://doi.org/10.1016/j.cmet.2008.12.003>
- 824 Dobrowolny, G., Aucello, M., Rizzuto, E., Beccafico, S., Mammucari, C., Boncompagni, S.,
825 Boncompagni, S., Belia, S., Wannenes, F., Nicoletti, C., Prete, Z. D., Rosenthal, N., Molinaro,
826 M., Protasi, F., Fanò, G., Sandri, M., & Musarò, A. (2008). 4 Dobrowolny, Musaro 2008
827 Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity.pdf. *Cell Metabolism*,
828 8(5), 425–436. <https://doi.org/10.1016/j.cmet.2008.09.002>
- 829 Dobrowolny, G., Giacinti, C., Pelosi, L., Nicoletti, C., Winn, N., Barberi, L., Molinaro, M.,
830 Rosenthal, N., & Musarò, A. (2005). Muscle expression of a local Igf-1 isoform protects
831 motor neurons in an ALS mouse model. *The Journal of Cell Biology*, 168(2), 193–199.
832 <https://doi.org/10.1083/jcb.200407021>
- 833 Dupuis, L., Aguilar, J.-L. G. de, Echaniz-Laguna, A., Eschbach, J., Rene, F., Oudart, H., Halter,
834 B., Huze, C., Schaeffer, L., Bouillaud, F., & Loeffler, J.-P. (2009). Muscle Mitochondrial
835 Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor
836 Neurons. *PLoS ONE*, 4(4), e5390. <https://doi.org/10.1371/journal.pone.0005390>
- 837 Dupuis, L., Oudart, H., René, F., Aguilar, J.-L. G. de, & Loeffler, J.-P. (2004). Evidence for
838 defective energy homeostasis in amyotrophic lateral sclerosis: Benefit of a high-energy diet in
839 a transgenic mouse model. *Proceedings of the National Academy of Sciences*, 101(30),
840 11159–11164. <https://doi.org/10.1073/pnas.0402026101>
- 841 Etten, R. A. V. (1999). Cycling, stressed-out and nervous: cellular functions of c-Abl. *Trends in
842 Cell Biology*, 9(5), 179–186. [https://doi.org/10.1016/s0962-8924\(99\)01549-4](https://doi.org/10.1016/s0962-8924(99)01549-4)
- 843 Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A.,
844 Khan, J., Polak, M. A., & Glass, J. D. (2004). Amyotrophic lateral sclerosis is a distal
845 axonopathy: evidence in mice and man. *Experimental Neurology*, 185(2), 232–240.
846 <https://doi.org/10.1016/j.expneurol.2003.10.004>
- 847 Frey, D., Schneider, C., Xu, L., Borg, J., Spooren, W., & Caroni, P. (2000). Early and Selective
848 Loss of Neuromuscular Synapse Subtypes with Low Sprouting Competence in Motoneuron
849 Diseases. *The Journal of Neuroscience*, 20(7), 2534–2542.
850 <https://doi.org/10.1523/jneurosci.20-07-02534.2000>

- 851 Fritz, E., Izaurieta, P., Weiss, A., Mir, F. R., Rojas, P., Gonzalez, D., Rojas, F., Brown, R. H.,
852 Madrid, R., & Zundert, B. van. (2013). Mutant SOD1-expressing astrocytes release toxic
853 factors that trigger motoneuron death by inducing hyperexcitability. *Journal of*
854 *Neurophysiology*, 109(11), 2803–2814. <https://doi.org/10.1152/jn.00500.2012>
- 855 Garcés, P., Amaro, A., Montecino, M., & Zundert, B. van. (2024). Inorganic polyphosphate:
856 from basic research to diagnostic and therapeutic opportunities in ALS/FTD. *Biochemical*
857 *Society Transactions*, 52(1), 123–135. <https://doi.org/10.1042/bst20230257>
- 858 González, N., Moresco, J. J., Cabezas, F., Vega, E. de la, Bustos, F., Yates, J. R., & Olguín, H.
859 C. (2016). Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in
860 Proliferating Muscle Progenitors. *PLoS ONE*, 11(5), e0154919.
861 <https://doi.org/10.1371/journal.pone.0154919>
- 862 Guo, W., Dittlau, K. S., & Bosch, L. V. D. (2020). Axonal transport defects and
863 neurodegeneration: Molecular mechanisms and therapeutic implications. *Seminars in Cell &*
864 *Developmental Biology*, 99, 133–150. <https://doi.org/10.1016/j.semcdb.2019.07.010>
- 865 Guo, X., Badu-Mensah, A., Thomas, M. C., McAleer, C. W., & Hickman, J. J. (2020).
866 Characterization of Functional Human Skeletal Myotubes and Neuromuscular Junction
867 Derived—From the Same Induced Pluripotent Stem Cell Source. *Bioengineering*, 7(4), 133.
868 <https://doi.org/10.3390/bioengineering7040133>
- 869 Guo, X., Greene, K., Akanda, N., Smith, A. S. T., Stancescu, M., Lambert, S., Vandenburg, H.,
870 & Hickman, J. J. (2013). In vitro differentiation of functional human skeletal myotubes in a
871 defined system. *Biomaterials Science*, 2(1), 131–138. <https://doi.org/10.1039/c3bm60166h>
- 872 Gurney, M. E., Pu, H., Chiu, A. Y., Canto, M. C. D., Polchow, C. Y., Alexander, D. D.,
873 Caliendo, J., Hentati, A., Kwon, Y. W., Deng, H.-X., Chen, W., Zhai, P., Sufit, R. L., &
874 Siddique, T. (1994). Motor Neuron Degeneration in Mice that Express a Human Cu,Zn
875 Superoxide Dismutase Mutation. *Science*, 264(5166), 1772–1775.
876 <https://doi.org/10.1126/science.8209258>
- 877 Haidet-Phillips, A. M., Hester, M. E., Miranda, C. J., Meyer, K., Braun, L., Frakes, A., Song, S.,
878 Likhite, S., Murtha, M. J., Foust, K. D., Rao, M., Eagle, A., Kammesheidt, A., Christensen,
879 A., Mendell, J. R., Burghes, A. H. M., & Kaspar, B. K. (2011). Astrocytes from Familial and
880 Sporadic ALS Patients are Toxic to Motor Neurons. *Nature Biotechnology*, 29(9), 824–828.
881 <https://doi.org/10.1038/nbt.1957>
- 882 Hantschel, O., & Superti-Furga, G. (2004). Regulation of the c-Abl and Bcr–Abl tyrosine
883 kinases. *Nature Reviews Molecular Cell Biology*, 5(1), 33–44.
884 <https://doi.org/10.1038/nrm1280>
- 885 Harten, A. C. M. V., Phatnani, H., & Przedborski, S. (2021). Non-cell-autonomous pathogenic
886 mechanisms in amyotrophic lateral sclerosis. *Trends in Neurosciences*, 44(8), 658–668.
887 <https://doi.org/10.1016/j.tins.2021.04.008>
- 888 Hegedus, J., Putman, C. T., & Gordon, T. (2007). Time course of preferential motor unit loss in
889 the SOD1 G93A mouse model of amyotrophic lateral sclerosis. *Neurobiology of Disease*,
890 28(2), 154–164. <https://doi.org/10.1016/j.nbd.2007.07.003>

- 891 Hegedus, J., Putman, C. T., & Gordon, T. (2009). Progressive motor unit loss in the G93A
892 mouse model of amyotrophic lateral sclerosis is unaffected by gender. *Muscle & Nerve*,
893 39(3), 318–327. <https://doi.org/10.1002/mus.21160>
- 894 Hollenbeck, P. J., & Saxton, W. M. (2005). The axonal transport of mitochondria. *Journal of*
895 *Cell Science*, 118(23), 5411–5419. <https://doi.org/10.1242/jcs.02745>
- 896 Ilieva, H., Polymenidou, M., & Cleveland, D. W. (2009). Ilieva-Non-cell autonomous toxicity in
897 neurodegenerative disorders- ALS and beyond-2009-The Journal of Cell Biology.pdf. *The*
898 *Journal of Cell Biology*, 187(6), 761–772. <https://doi.org/10.1083/jcb.200908164>
- 899 Ionescu, A., Zahavi, E. E., Gradus, T., Ben-Yaakov, K., & Perlson, E. (2016). Ionescu-
900 Compartmental microfluidic system for studying muscle–neuron communication and
901 neuromuscular junction maintenance-2016-European Journal of Cell Biology.pdf. *European*
902 *Journal of Cell Biology*, 95(2), 69–88. <https://doi.org/10.1016/j.ejcb.2015.11.004>
- 903 Jensen, L., Jørgensen, L. H., Bech, R. D., Frandsen, U., & Schrøder, H. D. (2016). Skeletal
904 Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis.
905 *BioMed Research International*, 2016, 5930621. <https://doi.org/10.1155/2016/5930621>
- 906 Klein, A., Maldonado, C., Vargas, L. M., Gonzalez, M., Robledo, F., Arce, K. P. de, Muñoz, F.
907 J., Hetz, C., Alvarez, A. R., & Zanlungo, S. (2010). Oxidative stress activates the c-Abl/p73
908 proapoptotic pathway in Niemann-Pick type C neurons. *Neurobiology of Disease*, 41(1), 209–
909 218. <https://doi.org/10.1016/j.nbd.2010.09.008>
- 910 Lepore, A. C., Rauck, B., Dejea, C., Pardo, A. C., Rao, M. S., Rothstein, J. D., & Maragakis, N.
911 J. (2008). Focal transplantation-based astrocyte replacement is neuroprotective in a model of
912 motor neuron disease. *Nature Neuroscience*, 11(11), 1294–1301.
913 <https://doi.org/10.1038/nn.2210>
- 914 Li, Y.-C., Zhai, X.-Y., Ohsato, K., Futamata, H., Shimada, O., & Atsumi, S. (2004).
915 Mitochondrial accumulation in the distal part of the initial segment of chicken spinal
916 motoneurons. *Brain Research*, 1026(2), 235–243.
917 <https://doi.org/10.1016/j.brainres.2004.08.016>
- 918 Ling, S.-C., Polymenidou, M., & Cleveland, D. W. (2013). Converging Mechanisms in ALS and
919 FTD: Disrupted RNA and Protein Homeostasis. *Neuron*, 79(3), 416–438.
920 <https://doi.org/10.1016/j.neuron.2013.07.033>
- 921 Magrané, J., Sahawneh, M. A., Przedborski, S., Estévez, Á. G., & Manfredi, G. (2012).
922 Mitochondrial Dynamics and Bioenergetic Dysfunction Is Associated with Synaptic
923 Alterations in Mutant SOD1 Motor Neurons. *The Journal of Neuroscience*, 32(1), 229–242.
924 <https://doi.org/10.1523/jneurosci.1233-11.2012>
- 925 Maimon, R., Ionescu, A., Bonnie, A., Sweetat, S., Wald-Altman, S., Inbar, S., Gradus, T., Trott, I.,
926 D., Weil, M., Behar, O., & Perlson, E. (2018). miR126-5p Downregulation Facilitates Axon
927 Degeneration and NMJ Disruption via a Non–Cell–Autonomous Mechanism in ALS. *The*
928 *Journal of Neuroscience*, 38(24), 5478–5494. <https://doi.org/10.1523/jneurosci.3037-17.2018>

- 929 Maimon, R., & Perlson, E. (2019). Muscle secretion of toxic factors, regulated by miR126-5p,
930 facilitates motor neuron degeneration in amyotrophic lateral sclerosis. *Neural Regeneration
931 Research*, 14(6), 969–970. <https://doi.org/10.4103/1673-5374.250571>
- 932 Maltzahn, J. von, Jones, A. E., Parks, R. J., & Rudnicki, M. A. (2013). Pax7 is critical for the
933 normal function of satellite cells in adult skeletal muscle. *Proceedings of the National
934 Academy of Sciences*, 110(41), 16474–16479. <https://doi.org/10.1073/pnas.1307680110>
- 935 Manzano, R., Toivonen, J. M., Calvo, A. C., Oliván, S., Zaragoza, P., Rodellar, C., Montarras,
936 D., & Osta, R. (2013). Altered in vitro Proliferation of Mouse SOD1-G93A Skeletal Muscle
937 Satellite Cells. *Neurodegenerative Diseases*, 11(3), 153–164.
938 <https://doi.org/10.1159/000338061>
- 939 Manzano, R., Toivonen, J. M., Oliván, S., Calvo, A. C., Moreno-Igoa, M., Muñoz, M. J.,
940 Zaragoza, P., García-Redondo, A., & Osta, R. (2011). Manzano et al-2011-Gwumc Dept.pdf.
941 *Neurodegenerative Diseases*, 8(5), 386–396. <https://doi.org/10.1159/000324159>
- 942 Marchetto, M. C. N., Muotri, A. R., Mu, Y., Smith, A. M., Cezar, G. G., & Gage, F. H. (2008).
943 Non-Cell-Autonomous Effect of Human SOD1G37R Astrocytes on Motor Neurons Derived
944 from Human Embryonic Stem Cells. *Cell Stem Cell*, 3(6), 649–657.
945 <https://doi.org/10.1016/j.stem.2008.10.001>
- 946 Martinez, A., Lamaizon, C. M., Valls, C., Llambi, F., Leal, N., Fitzgerald, P., Guy, C., Kamiński,
947 M. M., Inestrosa, N. C., Zundert, B. van, Cancino, G. I., Dulcey, A. E., Zanlungo, S.,
948 Marugan, J. J., Hetz, C., Green, D. R., & Alvarez, A. R. (2023). c-Abl Phosphorylates MFN2
949 to Regulate Mitochondrial Morphology in Cells under Endoplasmic Reticulum and Oxidative
950 Stress, Impacting Cell Survival and Neurodegeneration. *Antioxidants*, 12(11), 2007.
951 <https://doi.org/10.3390/antiox12112007>
- 952 Miller, K. E., & Sheetz, M. P. (2004). Axonal mitochondrial transport and potential are
953 correlated. *Journal of Cell Science*, 117(13), 2791–2804. <https://doi.org/10.1242/jcs.01130>
- 954 Miller, T. M., Kim, S. H., Yamanaka, K., Hester, M., Umapathi, P., Arnson, H., Rizo, L.,
955 Mendell, J. R., Gage, F. H., Cleveland, D. W., & Kaspar, B. K. (2006). Gene transfer
956 demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial
957 amyotrophic lateral sclerosis. *Proceedings of the National Academy of Sciences*, 103(51),
958 19546–19551. <https://doi.org/10.1073/pnas.0609411103>
- 959 Milligan, C., & Gifondorwa, D. (2011). Isolation and culture of postnatal spinal motoneurons.
960 *Methods in Molecular Biology* (Clifton, N.J.), 793, 77–85. [https://doi.org/10.1007/978-1-61779-328-8_5](https://doi.org/10.1007/978-1-
961 61779-328-8_5)
- 962 Mishra, V., Re, D. B., Verche, V. L., Alvarez, M. J., Vasciaveo, A., Jacquier, A., Doulias, P.-T.,
963 Greco, T. M., Nizzardo, M., Papadimitriou, D., Nagata, T., Rinchetti, P., Perez-Torres, E. J.,
964 Politi, K. A., Ikiz, B., Clare, K., Than, M. E., Corti, S., Ischiropoulos, H., ... Przedborski, S.
965 (2020). Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic
966 lateral sclerosis using multi-modal integrated bioinformatics workflow. *Nature
967 Communications*, 11(1), 5579. <https://doi.org/10.1038/s41467-020-19177-y>


- 968 Moloney, E. B., Winter, F. de, & Verhaagen, J. (2014). ALS as a distal axonopathy: molecular
969 mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the
970 disease. *Frontiers in Neuroscience*, 8, 252. <https://doi.org/10.3389/fnins.2014.00252>
- 971 Nagai, M., Re, D. B., Nagata, T., Chalazonitis, A., Jessell, T. M., Wichterle, H., & Przedborski,
972 S. (2007). Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic
973 to motor neurons. *Nature Neuroscience*, 10(5), 615–622. <https://doi.org/10.1038/nn1876>
- 974 Papadeas, S. T., Kraig, S. E., O'Banion, C., Lepore, A. C., & Maragakis, N. J. (2011). Astrocytes
975 carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron
976 degeneration in vivo. *Proceedings of the National Academy of Sciences*, 108(43), 17803–
977 17808. <https://doi.org/10.1073/pnas.1103141108>
- 978 Peters, O. M., Ghasemi, M., & Brown, R. H. (2015). Emerging mechanisms of molecular
979 pathology in ALS. *Journal of Clinical Investigation*, 125(5), 1767–1779.
980 <https://doi.org/10.1172/jci71601>
- 981 Qian, K., Huang, H., Peterson, A., Hu, B., Maragakis, N. J., Ming, G., Chen, H., & Zhang, S.-C.
982 (2017). Sporadic ALS Astrocytes Induce Neuronal Degeneration In Vivo. *Stem Cell Reports*,
983 8(4), 843–855. <https://doi.org/10.1016/j.stemcr.2017.03.003>
- 984 Renton, A. E., Chiò, A., & Traynor, B. J. (2014). 0 REV Renton 2014 .pdf. *Nature
985 Neuroscience*, 17(1), 17–23. <https://doi.org/10.1038/nn.3584>
- 986 Rojas, F., Aguilar, R., Almeida, S., Fritz, E., Corvalán, D., Ampuero, E., Abarzúa, S., Garcés, P.,
987 Amaro, A., Diaz, I., Arredondo, C., Cortes, N., Sanchez, M., Mercado, C., Varela-Nallar, L.,
988 Gao, F.-B., Montecino, M., & Zundert, B. van. (2023). Mature iPSC-derived astrocytes of an
989 ALS/FTD patient carrying the TDP43 A90V mutation display a mild reactive state and
990 release polyP toxic to motoneurons. *Frontiers in Cell and Developmental Biology*, 11,
991 1226604. <https://doi.org/10.3389/fcell.2023.1226604>
- 992 Rojas, F., Cortes, N., Abarzua, S., Dyrda, A., & Zundert, B. van. (2014). Astrocytes expressing
993 mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and
994 nitrooxidative stress. *Frontiers in Cellular Neuroscience*, 8, 24.
995 <https://doi.org/10.3389/fncel.2014.00024>
- 996 Rojas, F., Gonzalez, D., Cortes, N., Ampuero, E., Hernández, D. E., Fritz, E., Abarzúa, S.,
997 Martínez, A., Elorza, A. A., Alvarez, A., Court, F., & Zundert, B. van. (2015). Reactive
998 oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through
999 activation of c-Abl signaling. *Frontiers in Cellular Neuroscience*, 9, 203.
1000 <https://doi.org/10.3389/fncel.2015.00203>
- 1001 Rose, T., Jaepel, J., Hübener, M., & Bonhoeffer, T. (2016). Cell-specific restoration of stimulus
1002 preference after monocular deprivation in the visual cortex. *Science*, 352(6291), 1319–1322.
1003 <https://doi.org/10.1126/science.aad3358>
- 1004 Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D.,
1005 Goto, J., O'Regan, J. P., Deng, H.-X., Rahmani, Z., Krizus, A., McKenna-Yasek, D.,
1006 Cayabyab, A., Gaston, S. M., Berger, R., Tanzi, R. E., Halperin, J. J., Herzfeldt, B., ...
1007 Brown, R. H. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with

- 1008 familial amyotrophic lateral sclerosis. *Nature*, 362(6415), 59–62.
1009 <https://doi.org/10.1038/362059a0>
- 1010 Saxena, S., & Caroni, P. (2011). Selective Neuronal Vulnerability in Neurodegenerative
1011 Diseases: from Stressor Thresholds to Degeneration. *Neuron*, 71(1), 35–48.
1012 <https://doi.org/10.1016/j.neuron.2011.06.031>
- 1013 Scaramozza, A., Marchese, V., Papa, V., Salaroli, R., Sorarù, G., Angelini, C., & Cenacchi, G.
1014 (2014). Skeletal Muscle Satellite Cells in Amyotrophic Lateral Sclerosis. *Ultrastructural
1015 Pathology*, 38(5), 295–302. <https://doi.org/10.3109/01913123.2014.937842>
- 1016 Schlatterer, S. D., Tremblay, M. A., Acker, C. M., & Davies, P. (2011). Neuronal c-Abl
1017 Overexpression Leads to Neuronal Loss and Neuroinflammation in the Mouse Forebrain.
1018 *Journal of Alzheimer's Disease*, 25(1), 119–133. <https://doi.org/10.3233/jad-2011-102025>
- 1019 Sepulveda, F. J., Bustos, F. J., Inostroza, E., Zúñiga, F. A., Neve, R. L., Montecino, M., &
1020 Zundert, B. van. (2010). Differential Roles of NMDA Receptor Subtypes NR2A and NR2B in
1021 Dendritic Branch Development and Requirement of RasGRF1. *Journal of Neurophysiology*,
1022 103(4), 1758–1770. <https://doi.org/10.1152/jn.00823.2009>
- 1023 Smolina, N., Kostareva, A., Bruton, J., Karpushev, A., Sjoberg, G., & Sejersen, T. (2015).
1024 Primary Murine Myotubes as a Model for Investigating Muscular Dystrophy. *BioMed
1025 Research International*, 2015, 594751. <https://doi.org/10.1155/2015/594751>
- 1026 Southam, K. A., King, A. E., Blizzard, C. A., McCormack, G. H., & Dickson, T. C. (2013).
1027 Microfluidic primary culture model of the lower motor neuron–neuromuscular junction
1028 circuit. *Journal of Neuroscience Methods*, 218(2), 164–169.
1029 <https://doi.org/10.1016/j.jneumeth.2013.06.002>
- 1030 Taylor, J. P., Brown, R. H., & Cleveland, D. W. (2016). Decoding ALS: from genes to
1031 mechanism. *Nature*, 539(7628), 197–206. <https://doi.org/10.1038/nature20413>
- 1032 Tong, J., Huang, C., Bi, F., Wu, Q., Huang, B., Liu, X., Li, F., Zhou, H., & Xia, X. (2013).
1033 Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor
1034 neuron death in rats. *The EMBO Journal*, 32(13), 1917–1926.
1035 <https://doi.org/10.1038/emboj.2013.122>
- 1036 Torgan, C. E., & Daniels, M. P. (2001). Regulation of Myosin Heavy Chain Expression during
1037 Rat Skeletal Muscle Development In Vitro. *Molecular Biology of the Cell*, 12(5), 1499–1508.
1038 <https://doi.org/10.1091/mbc.12.5.1499>
- 1039 Towne, C., Raoul, C., Schneider, B. L., & Aebischer, P. (2008). Systemic AAV6 Delivery
1040 Mediating RNA Interference Against SOD1: Neuromuscular Transduction Does Not Alter
1041 Disease Progression in fALS Mice. *Molecular Therapy*, 16(6), 1018–1025.
1042 <https://doi.org/10.1038/mt.2008.73>
- 1043 Tsai, K. K. C., & Yuan, Z.-M. (2003). c-Abl stabilizes p73 by a phosphorylation-augmented
1044 interaction. *Cancer Research*, 63(12), 3418–3424.

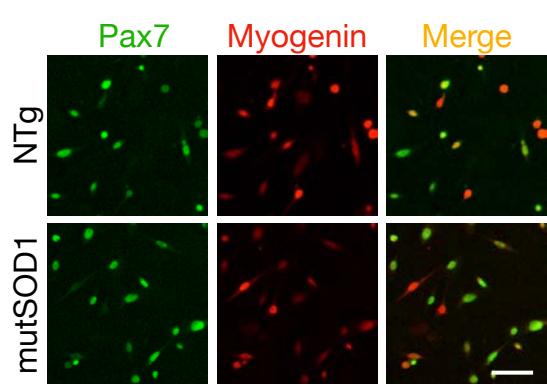
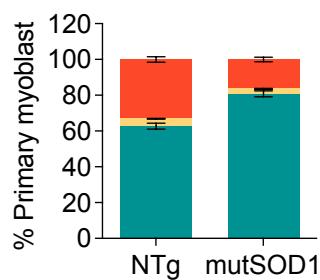
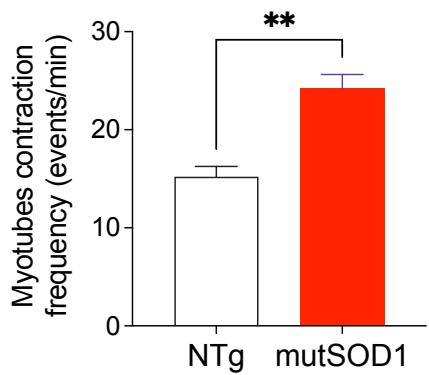

- 1045 Valdés, J. A., Hidalgo, J., Galaz, J. L., Puentes, N., Silva, M., Jaimovich, E., & Carrasco, M. A.
1046 (2007). NF- κ B activation by depolarization of skeletal muscle cells depends on ryanodine and
1047 IP3 receptor-mediated calcium signals. *American Journal of Physiology-Cell Physiology*,
1048 292(5), C1960–C1970. <https://doi.org/10.1152/ajpcell.00320.2006>
- 1049 Vehviläinen, P., Koistinaho, J., & Gundars, G. (2014). 0 REV Vehvilainen 2014 Mechanisms of
1050 mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis.pdf. *Frontiers*
1051 in *Cellular Neuroscience*, 8, 126. <https://doi.org/10.3389/fncel.2014.00126>
- 1052 Wang, J. Y. J. (2005). Nucleo-cytoplasmic communication in apoptotic response to genotoxic
1053 and inflammatory stress. *Cell Research*, 15(1), 43–48. <https://doi.org/10.1038/sj.cr.7290263>
- 1054 Wang, L., Gutmann, D. H., & Roos, R. P. (2011). Astrocyte loss of mutant SOD1 delays ALS
1055 disease onset and progression in G85R transgenic mice. *Human Molecular Genetics*, 20(2),
1056 286–293. <https://doi.org/10.1093/hmg/ddq463>
- 1057 Wier, C. G., Crum, A. E., Reynolds, A. B., Iyer, C. C., Chugh, D., Paletas, M. S., Heilman, P.
1058 L., Kline, D. M., Arnold, W. D., & Kolb, S. J. (2019). Muscle contractility dysfunction
1059 precedes loss of motor unit connectivity in SOD1(G93A) mice. *Muscle & Nerve*, 59(2), 254–
1060 262. <https://doi.org/10.1002/mus.26365>
- 1061 Wong, M., & Martin, L. J. (2010). Skeletal muscle-restricted expression of human SOD1 causes
1062 motor neuron degeneration in transgenic mice. *Human Molecular Genetics*, 19(11), 2284–
1063 2302. <https://doi.org/10.1093/hmg/ddq106>
- 1064 Yamanaka, K., Chun, S. J., Boilée, S., Fujimori-Tonou, N., Yamashita, H., Gutmann, D. H.,
1065 Takahashi, R., Misawa, H., & Cleveland, D. W. (2008). Astrocytes as determinants of disease
1066 progression in inherited amyotrophic lateral sclerosis. *Nature Neuroscience*, 11(3), 251–253.
1067 <https://doi.org/10.1038/nn2047>
- 1068 Yáñez, M. J., Belbin, O., Estrada, L. D., Leal, N., Contreras, P. S., Lleó, A., Burgos, P. V.,
1069 Zanlungo, S., & Alvarez, A. R. (2016). c-Abl links APP-BACE1 interaction promoting APP
1070 amyloidogenic processing in Niemann-Pick type C disease. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease*, 1862(11), 2158–2167.
1071 <https://doi.org/10.1016/j.bbadi.2016.08.016>
- 1073 Zahavi, E. E., Ionescu, A., Gluska, S., Gradus, T., Ben-Yaakov, K., & Perlson, E. (2015). 2.1
1074 Perlson, Erez (2015) A compartmentalized microfluidic neuromuscular co-culture system
1075 reveals spatial aspects of GDNF functions.pdf. *Journal of Cell Science*, 128(6), 1241–1252.
1076 <https://doi.org/10.1242/jcs.167544>
- 1077 Zundert, B. van, & Brown, R. H. (2017). Silencing strategies for therapy of SOD1-mediated
1078 ALS. *Neuroscience Letters*, 636, 32–39. <https://doi.org/10.1016/j.neulet.2016.07.059>
- 1079 Zundert, B. van, Izaurieta, P., Fritz, E., & Alvarez, F. J. (2012). Early pathogenesis in the adult-
1080 onset neurodegenerative disease amyotrophic lateral sclerosis. *Journal of Cellular*
1081 *Biochemistry*, 113(11), 3301–3312. <https://doi.org/10.1002/jcb.24234>
- 1082

Figure 1

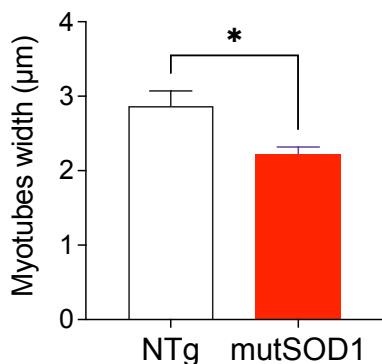
A



B



C


- Pax7(-)/MyoG(+) ***
- Pax7(+)/MyoG(-) ***
- Pax7(+)/MyoG(+) *

D

E

F

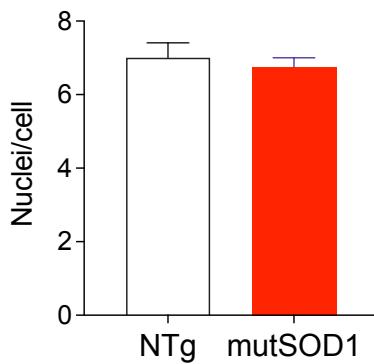


Figure 2

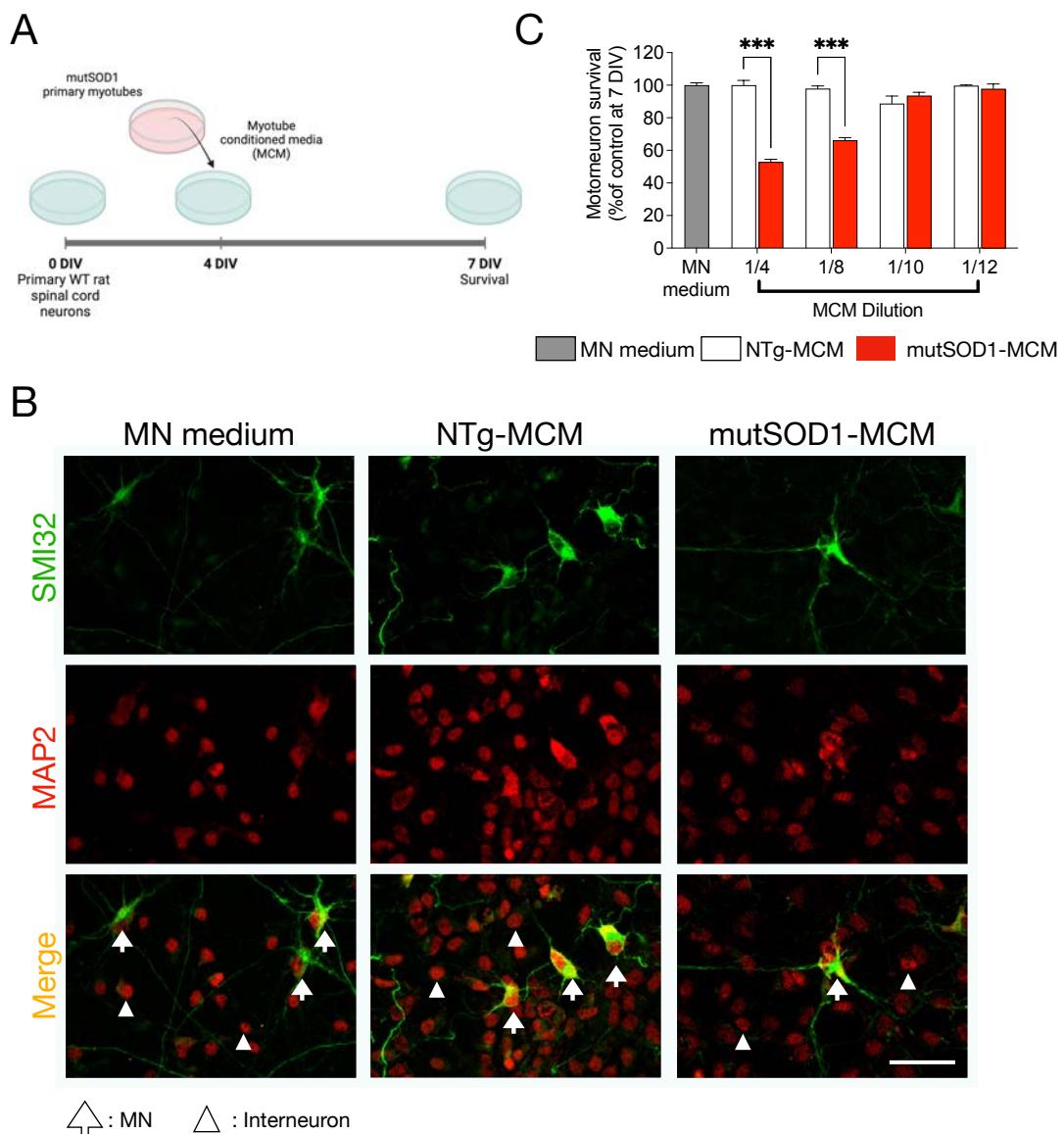
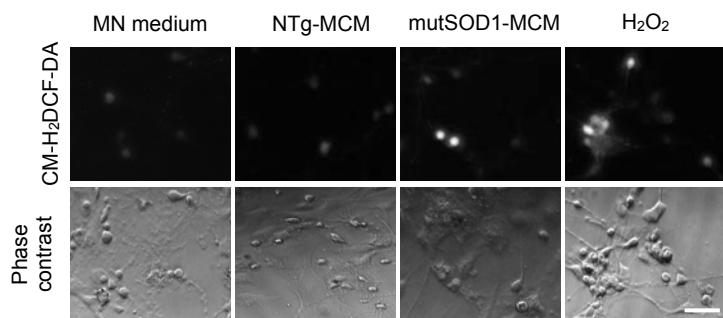
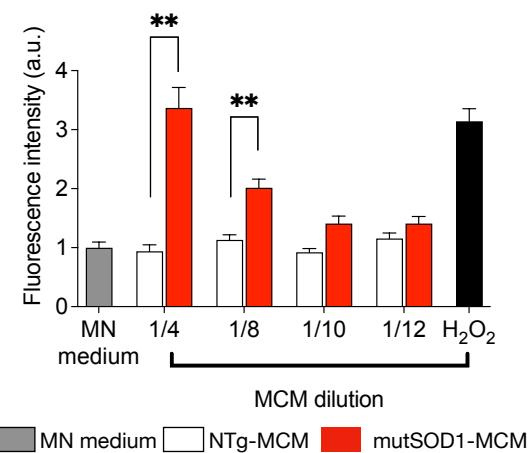
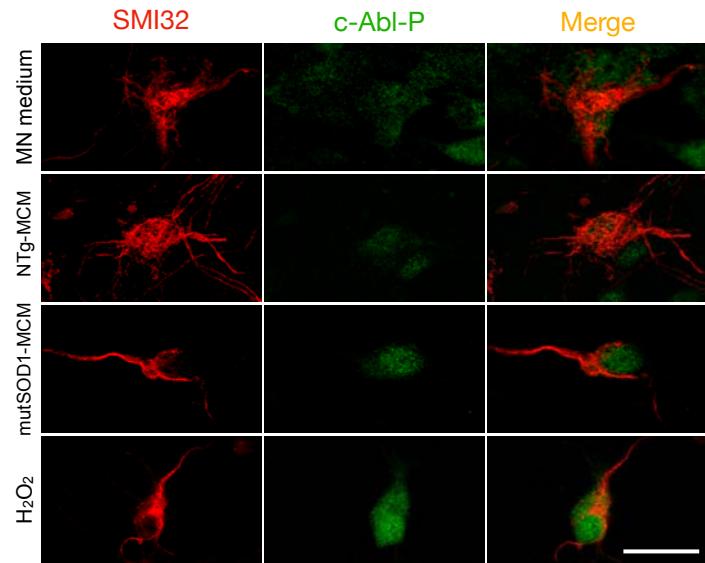




Figure 3


A

B

C

D

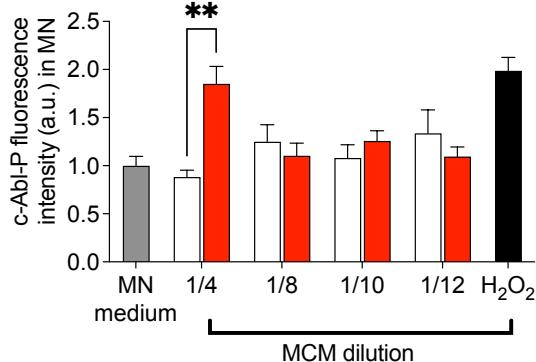


Figure 4

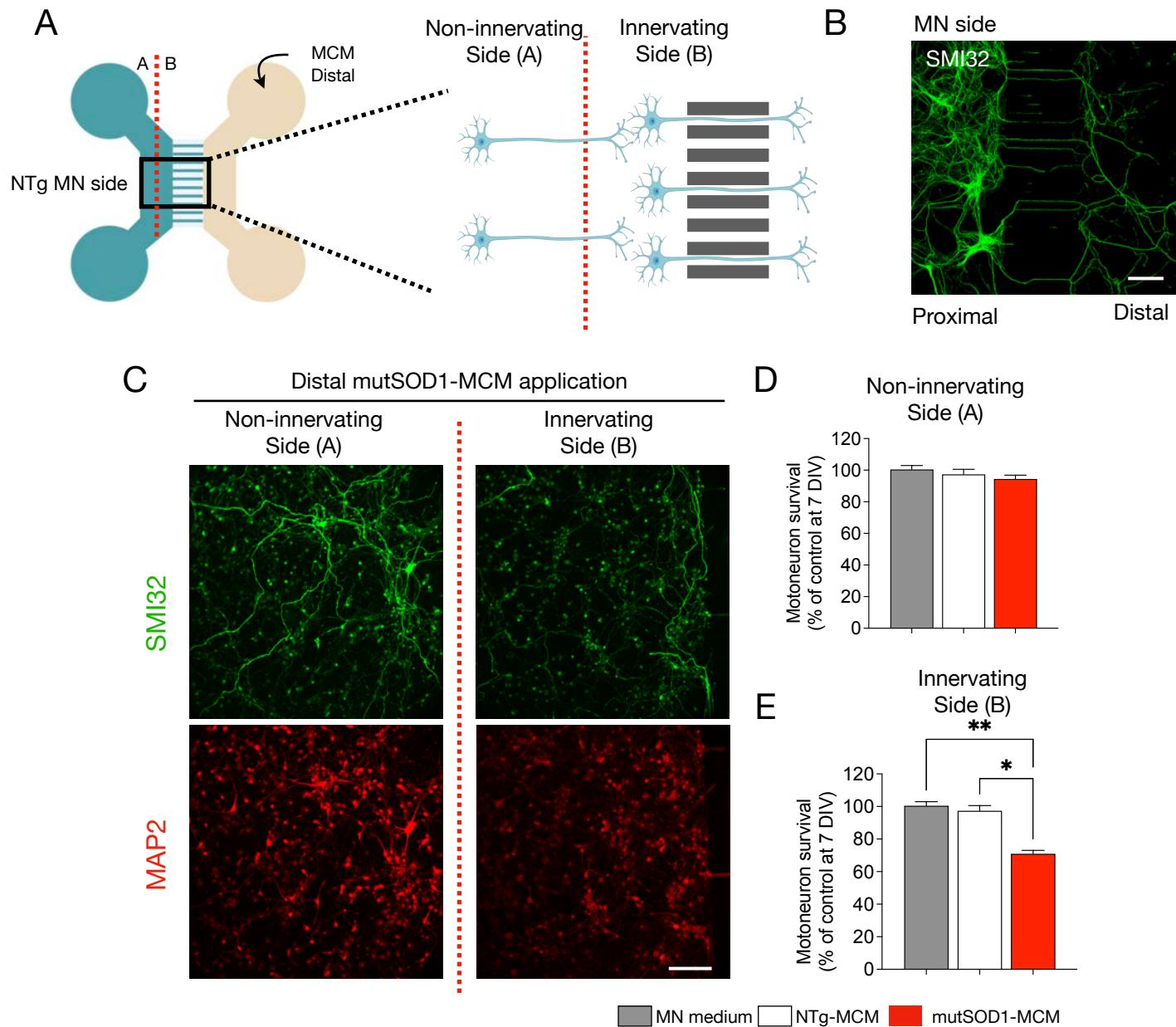


Figure 5

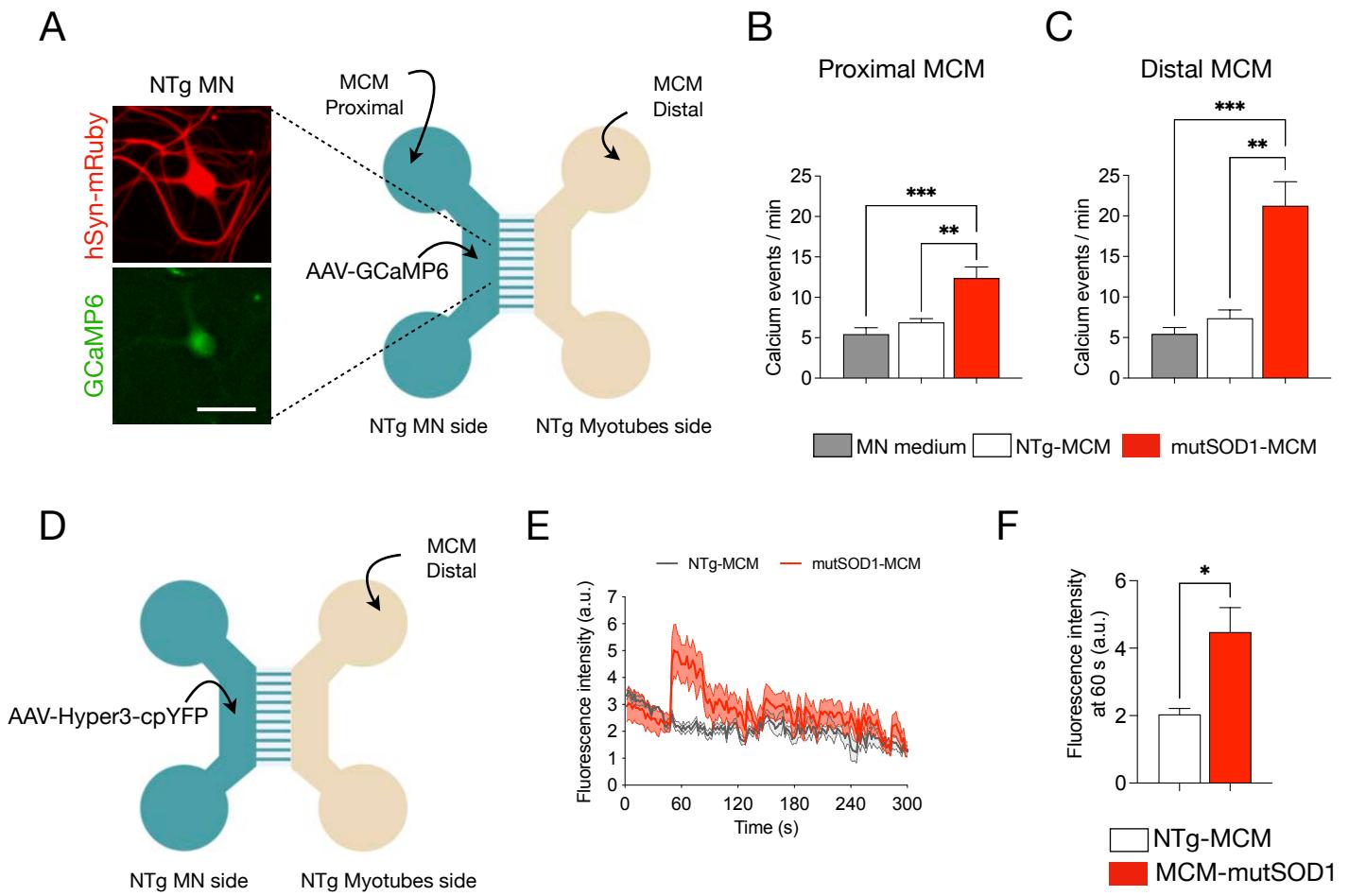
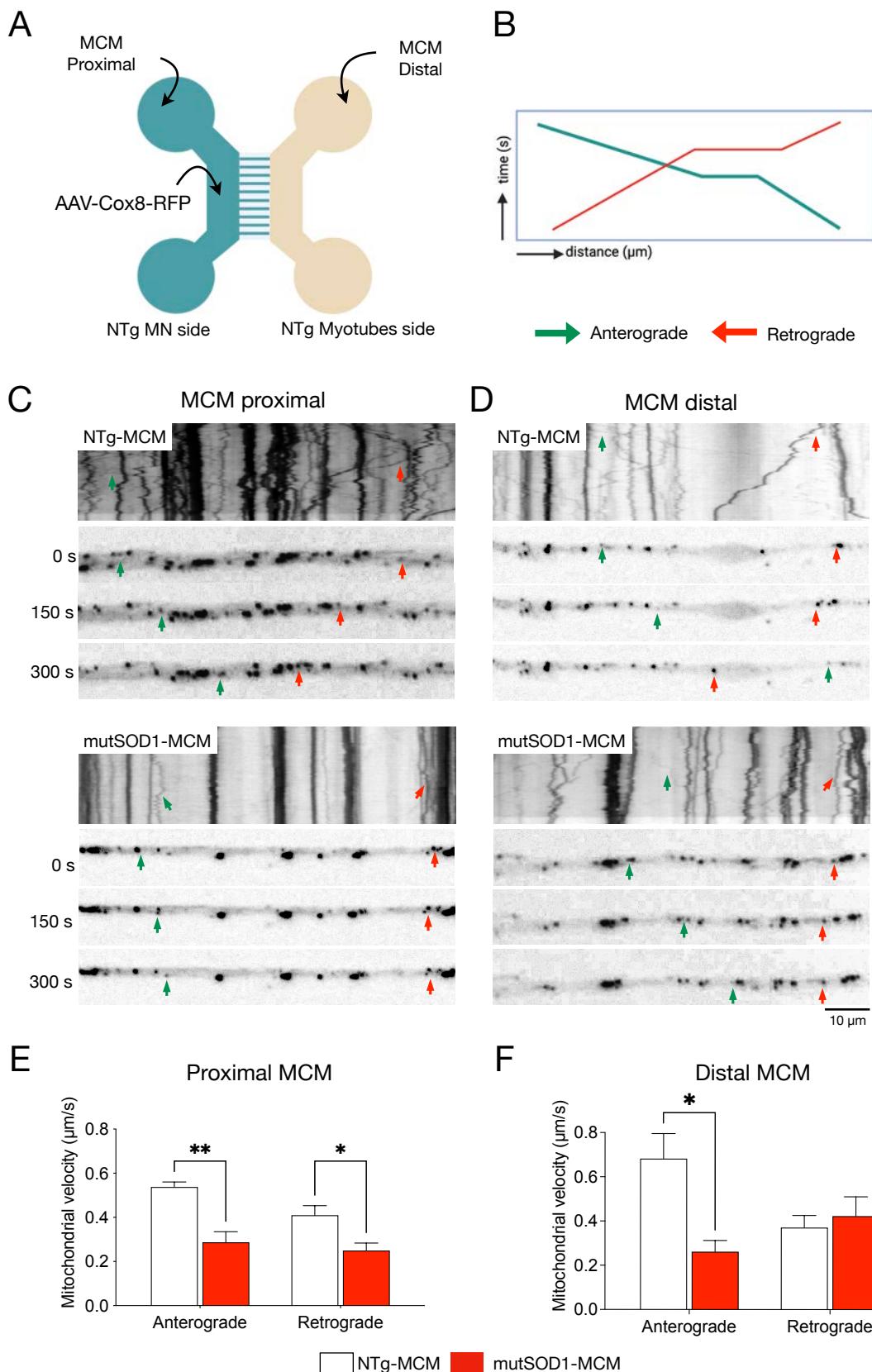



Figure 6

