

Lumped Parameter Simulations of Cervical Lymphatic Vessels: Dynamics of Murine Cerebrospinal Fluid Efflux from the Skull

Daehyun Kim¹ and Jeffrey Tithof^{1*}

¹Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States.

*Corresponding author(s). E-mail(s): tithof@umn.edu;

Abstract

Background: Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders.

Methods: We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs. Our model uses intracranial pressure as an inlet pressure and central venous blood pressure as an outlet pressure. The model incorporates initial lymphatic vessels (modeling those in the nasal region) that absorb the CSF and collecting lymphatic vessels (modeling CLVs) to transport the CSF against an adverse pressure gradient. To determine unknown parameters such as wall stiffness and valve properties, we utilize a Monte Carlo approach and validate our simulation against recent *in vivo* experimental measurements.

Results: Our parameter analysis reveals the physical characteristics of CLVs. Our results suggest that the stiffness of the vessel wall and the closing state of the valve are crucial for maintaining the vessel size and volume flow rate observed *in vivo*. We find that a decreased contraction amplitude and frequency leads to a reduction in volume flow rate, and we test the effects of varying the different pressures acting on the CLVs. Finally, we provide evidence that branching of initial lymphatic vessels may deviate from Murray's law to reduce sensitivity to elevated intracranial pressure.

Conclusions: This is the first numerical study of CSF drainage through CLVs. Our comprehensive parameter analysis offers guidance for future numerical modeling of CLVs. This study also provides a foundation for understanding physiology of CSF drainage, helping guide future experimental studies aimed at identifying causal mechanisms of reduction in CLV transport and potential therapeutic approaches to enhance flow.

Keywords: cervical lymphatic vessels, lymphatic system, cerebrospinal fluid, traumatic brain injury

Background

Cerebrospinal fluid (CSF) is a clear and colorless fluid that circulates around the brain and spinal cord, offering physical protection, acting as a "water cushion" to the central nervous system [1]. Additionally,

35 it serves as a medium for supplying nutrients to the brain [2]. Beyond these traditional functions, CSF
36 has gained recognition for its potential role in clearing metabolic wastes from the brain [3]. The discovery
37 of meningeal lymphatic vessels [4], which permeate nearly the entire meninges (the layers of tissue
38 surrounding the brain) in mammals, has significantly advanced research on CSF and its flow, potentially
39 linked to various neurological disorders.

40 CSF is secreted from various sources, including the choroid plexus, ependymal cells, limited trans-
41 capillary fluid flux, and metabolic water production [5]. Among these sites, the choroid plexus (found
42 within the ventricles of the brain) is the main source, accounting for about 80% of CSF production.
43 Following its production, CSF traverses the intricate ventricular system and subsequently reaches the
44 subarachnoid space (SAS) surrounding the brain and spinal cord. Traditionally, the prevailing belief was
45 that CSF is absorbed by arachnoid granulations. However, advancements in experimental techniques have
46 revealed that substantial CSF also drains from the skull to eventually reach the cervical lymphatic vessels
47 (CLVs) [6–11]. The contents of the CLVs may not be solely composed of CSF. The exact contribution of
48 CSF to the total fluid within the CLVs is not fully understood and may vary under different conditions.
49 However, it has been confirmed that fluid in the CLVs directly drains CSF, as microspheres injected into
50 the cisterna magna of mice reach the CLVs within minutes [12].

51 The specific details of the route through which CSF reaches the CLVs are currently an area of active
52 research and debate [13]. In animal studies, outflow along the cranial nerves, including the olfactory,
53 optical, and facial nerves, as well as outflow to the meningeal lymphatic vessels and delivery to the deep
54 cervical lymphatic nodes, has been well described. Compared to animal experiments, the understanding
55 of CSF outflow pathways in humans is quite limited. Some evidence suggests that CSF outflow pathways
56 exist through nasal lymphatics and meningeal lymphatic vessels [14, 15]. Several prior experiments in
57 mice – especially of relevance for this study – suggests that a substantial fraction of fluid follows a
58 pathway through the cribriform plate along the cranial nerves, draining into lymphatic vessels that
59 eventually reach the CLVs [10, 12, 16–18].

60 Understanding fundamental aspects of CSF drainage to CLVs is significant due to its intricate asso-
61 ciation with various neurological disorders [19, 20]. Traumatic brain injury (TBI) also has been linked
62 to CSF drainage disruption. In mouse models of TBI, research has revealed a significant reduction in
63 CSF drainage through meningeal lymphatic vessels due to increased intracranial pressure (ICP) [21].
64 Additionally, it has been demonstrated that CSF flow serves as a conduit for transporting biomarkers
65 associated with neurodegenerative diseases into the bloodstream via the cervical lymphatics [22]. More
66 recently, TBI was linked to weakening of CLV activity and exacerbation of brain edema, which the
67 authors argued arose as a consequence of a post-TBI surge in norepinephrine [12]. Notably, administra-
68 tion of a norepinephrine antagonist cocktail led to restoration of CLV function, reduction of edema, and

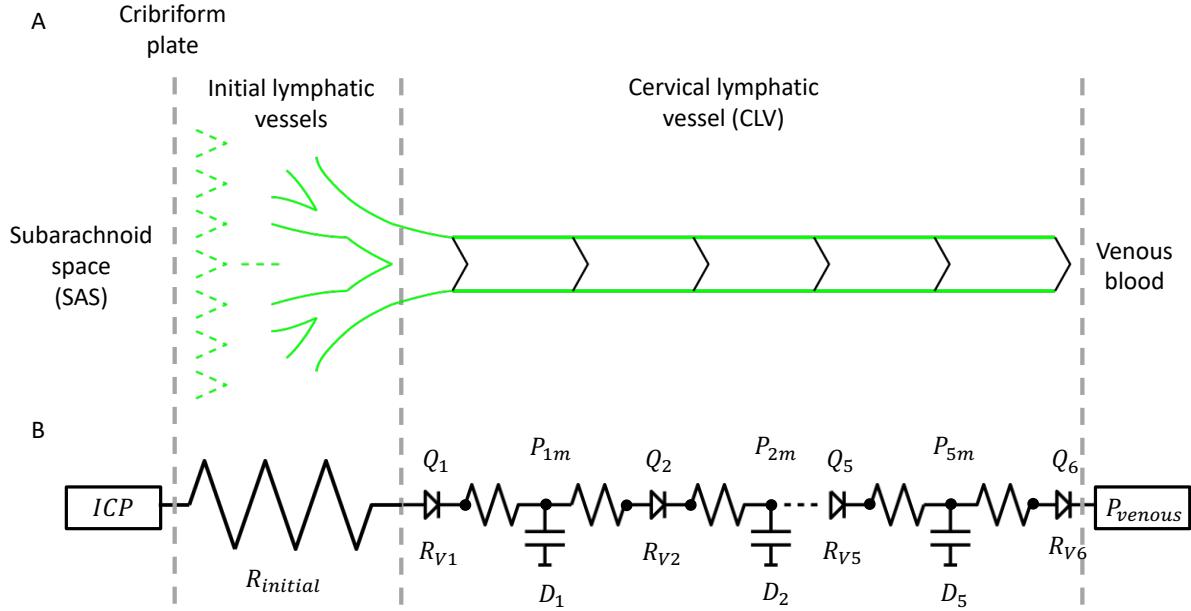
69 improved cognitive outcomes. These findings suggest TBI may directly impact CLV function, disrupting
70 CSF drainage from the skull.

71 Despite the significant implications for advancing disease treatments, precise quantification of CSF
72 drainage routes has proven challenging. Spatial and temporal limitations in imaging pose one of the
73 biggest challenges. Since lymphatic vessels are narrow and long, and traverse a substantial fraction of
74 the body that can be difficult to optically access [23, 24], *in vivo* visualization of a large fraction of the
75 lymphatic network that drains CSF is tremendously challenging. Moreover, the alteration of biological
76 variables, such as ICP, during experimental testing has the potential to disrupt this delicate biological
77 system [25]. As a consequence, these inherent constraints in experiments leave many open questions
78 which can perhaps be addressed via numerical simulation.

79 Numerical simulations serve as efficient, safe, and ethically desirable alternatives to experiments; sim-
80 ulations also enable manipulation of parameters and the ability to prescribe/determine precise conditions
81 that may be difficult or impossible to achieve experimentally, such as pressures inside vessels. Numerous
82 prior studies have used a numerical approach to model lymphatic vessels. Reddy et al. pioneered this field
83 by creating the initial mathematical model for branching lymphatic vessels [26]. Their one-dimensional
84 (1D) model simulated laminar lymphatic flow throughout the entire body, from the periphery through
85 the main lymphatic system into the venous blood system. Their governing equation was based on the
86 Navier-Stokes equation (in a 1D form) coupled with a thin-wall tube model. Quick et al. employed a
87 circuit-theory approach, commonly employed in the simulation of cardiovascular systems [27], to simulate
88 both individual lymphangions and a chain of lymphangions. Bertram et al. extended this methodology
89 and focused on a series of lymphangions, highlighting the efficiency of sequential contractions compared
90 to synchronized contractions for fluid transport [28]. These foundational models lay the groundwork for
91 simulating a large number of interconnected lymphangions, with incorporation of compliant walls and
92 valves. Notably, these models were primarily based on parameters from the thoracic duct and mesenteric
93 lymphatic vessels.

94 In parallel, two-dimensional (2D) or three-dimensional (3D) models have typically focused on a
95 single lymphangion and often utilize fluid-structure interaction techniques [29–31]. Such studies have
96 investigated the influence of active contractions driven by nitric oxide and calcium ions on fluid drainage.
97 Validation of Poiseuille flow under substantial radial contractions was also studied. Computational cost
98 has largely confined such studies to simulation of a single lymphangion, although some 2D/3D simulations
99 for a series of lymphatic vessels, leveraging fluid-structure interaction approaches, have been achieved [32–
100 34]. These studies tackled a range of factors, including the chain's length and its influence on mean flow
101 rates, the effects of adverse pressure differences on flow rates, contraction timing, dynamics related to
102 valve geometry impacting backflow, and the effects of valve elasticity. Again, it is worth highlighting that

103 these simulations were based on lymphatic vessels in the other regions, such as mesenteric lymphatic
104 vessels, and were not specifically tailored to CSF drainage through CLVs.


105 Currently, there is an absence of numerical models that predict fluid transport through CLVs. The
106 goal of this study is to construct a comprehensive lumped parameter model that captures the intricate
107 CSF drainage process in mice. In the absence of knowledge of the exact geometry and physical proper-
108 ties of CLVs, we use a Monte Carlo approach to identify a parameter regime that matches closely with
109 experimental data. Simultaneously, we perform a parameter sensitivity analysis to examine the charac-
110 teristics of CLVs and how changes in these parameters affect the CLV diameter and net volume flow
111 rate. Using our model, we explore strategies to enhance CSF flow rate through CLVs by manipulating
112 certain variables. Finally, we explore how the variation of ICP affects CSF efflux through the CLVs. This
113 study is the first numerical model of CSF outflow through CLVs, providing novel insights into potential
114 strategies to enhance CSF drainage. These findings provide guidance for future experimental research
115 and serve as a valuable resource for optimizing CSF drainage strategies.

116 Methods

117 We use the lumped parameter method to model the nasal and cervical lymphatic system, which are
118 treated as initial and collecting lymphatics. The versatility and computational efficiency makes this
119 approach suitable for simulating the complexities and capturing the impact of uncertainties associated
120 with this lymphatic network that connects the SAS to the end of the CLVs. Given the lack of detailed
121 parameter values for CLVs in the literature (e.g., stiffness of the vessel wall, active tension due to smooth
122 muscle cells, valve properties), this approach allows for computationally-efficient iterative determination
123 of parameters to obtain agreement with experimental observations.

124 Modeling CSF Drainage via CLVs

125 Lymphatic vessels typically consist of initial lymphatic vessels (lymphatic capillaries) and collecting lym-
126 phatic vessels [35]; in this study, CLVs are considered the only collecting lymphatic vessels. The initial
127 lymphatic vessels form the starting point of the lymphatic system and are responsible for absorbing ISF.
128 These vessels consist of a single layer of endothelial cells, and their button-like junctions structure allows
129 ISF and small particles to enter. As these interstitial lymphatic vessels merge, they give rise to larger
130 lymphatic vessels known as collecting lymphatic vessels. Collecting lymphatic vessels consist of intercon-
131 nected compartments called lymphangions which serve as the primary transporters of lymph within the
132 lymphatic system. Unlike initial lymphatic vessels, collecting lymphatic vessels are covered by smooth
133 muscle cells. There are two types of pumping mechanism in the collecting lymphatic vessels: extrinsic

Fig. 1: Comparative illustration and mathematical approach to modeling CSF drainage. (A) Illustration of the biological pathway for CSF drainage through CLVs. CSF in the SAS is directly absorbed by lymphatic capillaries that cross the cribriform plate. These capillaries merge to form larger vessels, which eventually connect to the CLVs. The CLVs then transport the CSF back into the central venous blood. (B) Schematic of the electrical model of this CSF drainage pathway. The inlet pressure is the ICP, and the lymphatic capillaries are modeled using a net equivalent hydraulic resistance ($R_{initial}$). The outlet pressure is equal to that of central venous blood. CLVs are modeled to incorporate contractions and expansions of lymphangions, as well as opening and closing of valves in between. Hydraulic resistance of the valves (R_V) are represented as LEDs in the electrical circuit. Each lymphangion has the same length (L) and its own diameter (D_j). While capacitance is not explicitly included in our governing equations, the change in vessel diameter serves a capacitance-like function and is therefore denoted with a capacitance symbol. The pressures within each lymphangion are calculated at three points: just past the inlet, the midpoint, and just before the outlet. The inlet and outlet pressures are used to calculate the volume flow rates (Q) at the valves. The pressures at the midpoint (P_m) are determined using the transmural pressure equation. The design of the CLV part is inspired by Bertram et al. [28].

134 and intrinsic. Extrinsic pumping primarily occurs due to external forces acting on the lymphatic sys-
 135 tem. These external forces include skeletal muscle contractions, external compression from the pulsation
 136 of nearby arteries, and/or movement caused by respiration. Intrinsic pumping refers to the transport
 137 arising from natural contractile activity of smooth muscle cells lining the basement membrane of lym-
 138 phatic vessels. In the periphery, a combination of extrinsic and intrinsic forces facilitate the movement
 139 of lymph against an adverse pressure gradient. The presence of valves between lymphangions ensures
 140 net transport of lymph by preventing backflow. Thus intrinsic and extrinsic pumping enables collecting
 141 lymphatic vessels to efficiently transport lymph to lymph nodes.

142 We used this general lymphatic structure to model CSF outflow through CLVs. A schematic of the
 143 model is illustrated in Fig. 1A. Due to limited anatomical data and flow measurements for humans, we
 144 instead developed our model to capture murine anatomy. Even though the exact route connecting the
 145 CSF in SAS to the lymphatic capillaries is not fully established [13], recent experiments suggest that

146 tiny lymphatics have direct connection to the SAS across the cribriform plate [16, 36–38]. Based on these
147 findings, we assume there are direct connections through which the lymphatic capillaries absorb CSF
148 from the SAS. These capillaries then merge to form larger vessels, with diameters prescribed by Murray's
149 Law but with a different exponent value ($n = 1.45$) [39]. For simplicity, we assume that initial lymphatics
150 are impermeable and absorption of CSF occurs at the tip of the vessels. CSF in the initial lymphatics is
151 transported to the CLVs, then eventually pumped to the central venous blood. Fig. 1B summarizes the
152 mathematical model that describes CSF efflux from the SAS to CLVs then venous blood. Our model is
153 based on the lumped parameter method, which is analogous to an electrical circuit, so our simulation
154 diagram includes circuit elements, including an equivalent resistor $R_{initial}$ which captures the hydraulic
155 resistance of the initial lymphatic vessels.

156 The size of the initial lymphatics located near the cribriform plate was estimated by analyzing images
157 from Spera et al. [18] (tip diameter: 7.5 μm) and Norwood et al. [16] (length of total branches: 370 μm).
158 By applying the modified Murray's Law ($d_i^{1.45} = d_{i+1}^{1.45} + d_{i+1}^{1.45}$), we calculated the diameters of parent
159 vessels and number of branching generations until their diameter reached the median diameter of CLVs
160 ($D = 84.1 \mu\text{m}$) as reported in Hussain et al. [12]. We assume that the tip of two daughter branches of the
161 lymphatic capillaries with the same diameter merge into one parent vessel. Eventually, the merged parent
162 vessels join to form the first lymphangion of the collecting lymphatic vessels. We obtained $N = 5$ for the
163 number of generations (compared to $N = 11$ for standard Murray's law with exponent 3). The modified
164 exponent in our model results in a smaller generation ($N = 5$), leading to smaller diameters of the
165 branches. Also, each branch becomes longer, as the total length of the entire branching structure is fixed.
166 Subsequently, we computed the hydraulic resistance of this branching network under the assumption of
167 Hagen-Poiseuille flow. Finally, the total hydraulic resistance was calculated using computation of series
168 of parallel resistances as,

$$R_{initial} = \sum_{i=1}^N \frac{128\mu l/\pi d_i^4}{2^i} = 2.64 \times 10^9 \text{ dyne s/mL cm}^2 \quad (1)$$

169 where i is the specific generation, μ is dynamic viscosity of the CSF, l is length of each segment of
170 daughter capillaries, and d_i is the initial lymphatic vessel diameter at generation i . Note that lower case
171 d and l are used to represent the initial lymphatic vessels, while upper case D and L are used to represent
172 the collecting lymphatic vessels.

173 Bertram et al's works are the inspiration for our approach to modeling CLVs [28, 40, 41]. We assume
174 a collecting lymphatic vessel consists of five lymphangions, based on our estimates of 10 mm from
175 the nasal mucosa to superficial cervical lymph node and a 2 mm lymphangion length [12, 17]. Each
176 lymphangion, j , is characterized by time-dependent variables, namely, CLV diameter D_j , and pressures

177 $P_{j,1}$, $P_{j,m}$, and $P_{j,2}$ representing the pressures just after the inlet, at the midpoint, and just before the
 178 outlet, respectively. Note that the use of three points per lymphangion (rather than just one) enables
 179 more realistic modeling that can capture valve prolapse [42]. Additionally, the model includes the volume
 180 flow rates Q_j and Q_{j+1} , representing the inflow and outflow rates at each valve of a given lymphangion,
 181 respectively. The fluid flow from one chamber to the next chamber is described by a control volume
 182 discretization of the equations governing conservation of mass and momentum [28, 40, 42],

$$\frac{dD_j(t)}{dt} = \frac{2(Q_j(t) - Q_{j+1}(t))}{\pi L D_j(t)} \quad (2)$$

$$\frac{P_{j,1}(t) - P_{j,m}(t)}{L} = \frac{64\mu Q_j(t)}{\pi D_j(t)^4}, \quad \frac{P_{j,m}(t) - P_{j,2}(t)}{L} = \frac{64\mu Q_{j+1}(t)}{\pi D_j(t)^4} \quad (3)$$

183 under the quasi-steady assumption of fully developed Hagen-Poiseuille flow. This assumption is justified
 184 by the small Reynolds number ($Re = UD_0/\nu \approx 7 \times 10^{-3}$) and small Womersley number ($Wo =$
 185 $D_0\sqrt{2\pi f/\nu} \approx 0.05$) of flow in the CLVs, where $U = 64.8 \text{ } \mu\text{m/s}$ is the mean flow speed, $D_0 = 84.1 \text{ } \mu\text{m}$ is
 186 the mean CLV diameter, $\nu = 0.7 \times 10^{-6} \text{ m}^2/\text{s}$, and $f \approx 0.04 \text{ Hz}$ is the contraction frequency. Note that
 187 we provide derivations of equations (2-3) in Appendix A. Each lymphangion is separated by valves with
 188 hydraulic resistance [28],

$$R_{V_{j+1}}(t) = R_{V_{\min}} + R_{V_{\max}} \left(\frac{1}{1 + \exp(-s_{open}((P_{j,2}(t) - P_{j+1,1}(t)) - P_{open}))} \right), \quad (4)$$

189 where $R_{V_{\min}}$ and $R_{V_{\max}}$ are the respective minimum and maximum hydraulic resistance of the valves
 190 when open or closed, P_{open} is the minimum pressure required to open the valve, and s_{open} is the slope of
 191 the valve opening. A large s_{open} means a more rapid response of the valve opening to changes in pressure
 192 difference across the valve, while a smaller s_{open} indicates a more gradual response. The volume flow
 193 rate through the valves is calculated based on a momentum equation analogous to Ohm's law,

$$Q_{j+1}(t) = \frac{P_{j,2}(t) - P_{j+1,1}(t)}{R_{V_{j+1}}(t)}. \quad (5)$$

194 The associated sets of differential algebraic equations are then closed by specifying the transmural
 195 pressure (i.e., pressure difference between inside and outside the lymphangion) using an equation that
 196 contains both passive and periodic contractile components [28]:

$$P_{j,m}(t) - P_{external} = P_a \left(\exp \left(\frac{D_j(t)}{D_d} \right) - \left(\frac{D_d}{D_j(t)} \right)^3 \right) + \frac{M}{D_j(t)} (1 - \cos(2\pi f(t - t_{dj}))), \quad (6)$$

197 where $P_{external}$ is a uniform pressure external to the lymphangions, P_d and D_d are passive properties that
198 account for mechanical characteristics of lymphangion's contractions and expansions, M is the active
199 tension, and t_d is temporal phase between contractions of adjacent lymphangions (these parameters are
200 discussed in more detail below). We assume the external pressure $P_{external}$ is constant and slightly lower
201 than the inlet and outlet pressures to make the transmural pressure operate more dynamically, similar
202 to Bertram et al's work [28].

203 Parameter Estimation

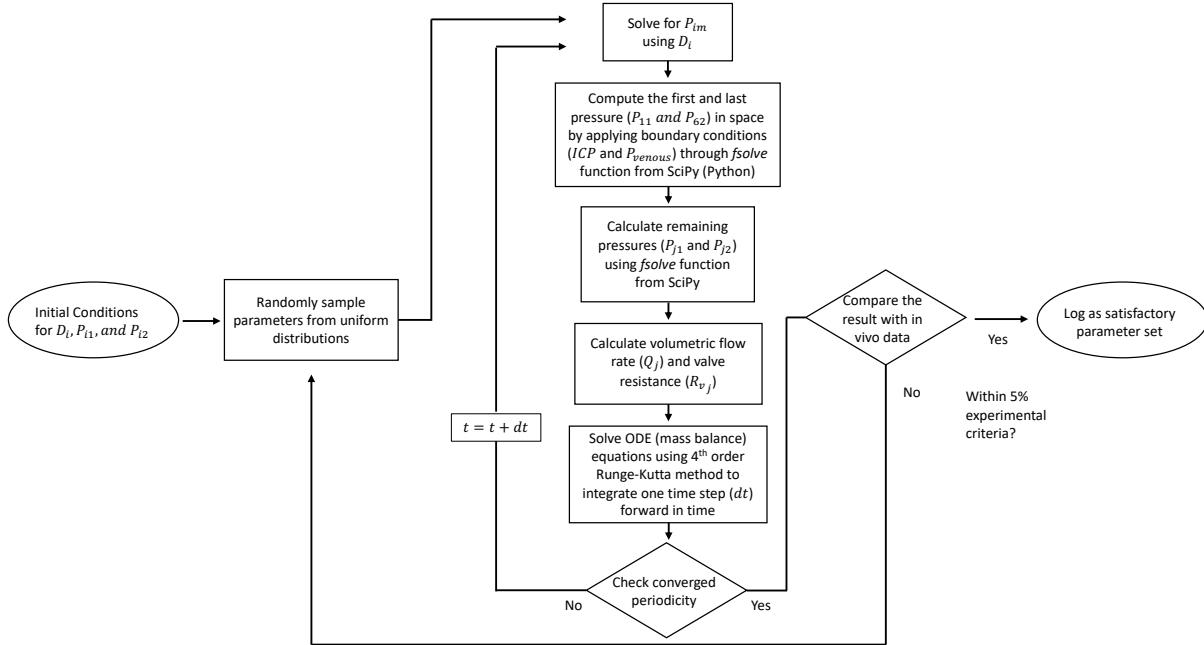
204 We first discuss parameters in the equations that are well-known based on literature and experimental
205 observations, which are detailed in Table 1. The frequency of lymphangions' contractions, f , and the
206 length of each lymphangion, L , are determined directly from in vivo images [12] using our recently
207 published image analysis techniques [43]. The dynamic viscosity of CSF was used in our model [44]. We
208 used the same values for the temporal phase between adjacent lymphangion contractions, t_d , and the
209 slope of valve opening, s_{open} , as in previous studies [28, 41].

210 Estimating other parameters poses a substantial challenge, particularly for those not directly mea-
211 surable, such as properties of the cervical lymphatic vessel walls (P_d, D_d), active tension generated by
212 smooth muscle cells (M), the minimum pressure required to open the valve (P_{open}), and hydraulic resis-
213 tance of the valves ($R_{V_{min}}, R_{V_{max}}$). While more detailed explanation of these constants is available in the
214 original works [28, 40, 41, 45], it is worthwhile to provide a brief explanation of these unknown properties
215 here. P_d represents the vessel wall stiffness. A higher P_d value means that the transmural pressure reacts
216 more sharply to any change in vessel diameter. D_d is the threshold diameter at which the vessel begins to
217 experience positive or negative transmural pressure. When the lymphangion's diameter (D_j) surpasses
218 D_d , the transmural pressure becomes positive, with the shape of an exponential curve. Conversely, when
219 the lymphangion's diameter is less than D_d , the transmural pressure becomes negative, described by a
220 cubic function. M represents the tension generated by smooth muscle cells around the vessel. The trans-
221 mral pressure incorporates this active tension (M) as well as the vessel's passive properties (P_d and D_d)
222 to account for the mechanical characteristics of lymphangion's contractions and expansions. P_{open} is the
223 threshold pressure for the opening of valves between adjacent lymphangion. The valves are analogous to
224 a diode in an electrical circuit. When the pressure difference across the valve exceeds P_{open} , the resis-
225 tance of the valve becomes approximately $R_{V_{min}}$. When the upstream pressure (pressure before the valve)
226 is lower than the downstream pressure (pressure after the valve), the hydraulic resistance of the valve
227 becomes approximately $R_{V_{max}}$, meaning that if this value is very large, the valve is practically closed.

228 To overcome the challenge of not knowing the mechanical properties of CLVs, we adopt an inverse
229 problem-solving approach based on a Monte Carlo method in which we vary parameters then compare

Parameters	Definitions	Value	Unit	Reference
f	Contraction frequency	2.4 (Default) 1 - 29 (Fig. 5B)	min^{-1}	[12]
L	Length of lymphangion	2	mm	[12]
n	Number of lymphangions	5		Assumed
t_d	Temporal phase between adjacent lymphangion contractions	90	degree	[41]
s_{open}	Slope of valve opening	0.2	cm^2/dyne	[40]
μ	Dynamic viscosity of CSF	0.007	$\text{Pa} \cdot \text{s}$	[44]
$P_{external}$	External pressure	3.75 (Default) 2 - 4 (Fig. 5C)	mmHg	Assumed
ICP	Intracranial pressure	4 (Default) 10 (Elevated ICP for Fig. 6) 2.5 - 7 (Fig. 5D)	mmHg	[46, 47]
P_{venous}	Central venous pressure	6 (Default) 4.16 - 8.94 (Fig. 5D)	mmHg	[48]
$R_{initial}$	Equivalent hydraulic resistance of lymphatic capillaries	3.21×10^8 ($n = 3$) 2.653×10^9 ($n = 1.45$)	$\text{dyne} \cdot \text{s}/(\text{mL} \cdot \text{cm}^2)$	[39]

Table 1: Reasonably well-known parameters for modeling CLVs, as used in this study.


230 model outputs (diameter of the third lymphangion and volume flow rate through the downstream valve
 231 of the third lymphangion) to experimental measurements of the median vessel diameter (84.072 μm)
 232 and mean volume flow rate (0.0226 $\mu\text{l}/\text{min}$) [12]. This approach allows us to iteratively adjust and
 233 optimize our parameters by validating against the known outputs, aiming to achieve a more accurate
 234 and comprehensive model of the CSF drainage dynamics.

235 We set bounds for unknown parameters based on prior research on rat mesenteric lymphatic ves-
 236 sels [28, 40, 41, 45, 49]. The lower and upper bounds we set come from the minimum and maximum of
 237 reported values. We then expanded the bounds by subtracting or adding twice the standard deviation σ .
 238 Our resulting bounds for unknown parameters are summarized in Table 2. We next generated a random
 239 uniform distribution for each of the unknown parameters in accordance with each range. 10,000 simu-
 240 lations were conducted based on these randomly sampled parameters, and results from the model were
 241 compared to the median diameter and mean volume flow rate of the CLVs as measured *in vivo*.

242 Diameters, pressures, and volume flow rates in the differential algebraic equations (1)-(3) coupled with
 243 valve and transmural pressure equations (4)-(6) were solved numerically. 'fsolve' function from the SciPy
 244 library was used to find the transmural pressures of each lymphangion. Diameters were calculated by
 245 employing the 4th order Runge-Kutta method. These calculations continued until converged periodicity
 246 of variables was achieved. Finally, the volume flow rates at the valves were calculated based on the

Parameters	Definitions	Lower Bound	Upper Bound	Unit
M	Active tension	3.6	24.3	dyne/cm
$R_{V_{min}}$	Minimum valve resistance	600	2.83×10^6	dyne · s/(mL · cm ²)
$R_{V_{max}}$	Maximum valve resistance	1.2×10^7	2.82×10^{10}	dyne · s/(mL · cm ²)
p_{open}	Valve opening pressure	-70	-15	dyne/cm ²
P_d	Constitutive-relation constant	20	732	dyne/cm ²
D_d	Constitutive-relation constant	0.00845	0.0613	cm

Table 2: Bounds on unknown parameters, used in our Monte Carlo approach to modeling CLVs to determine parameter sets that lead to simulations that closely match average experimental measurements.

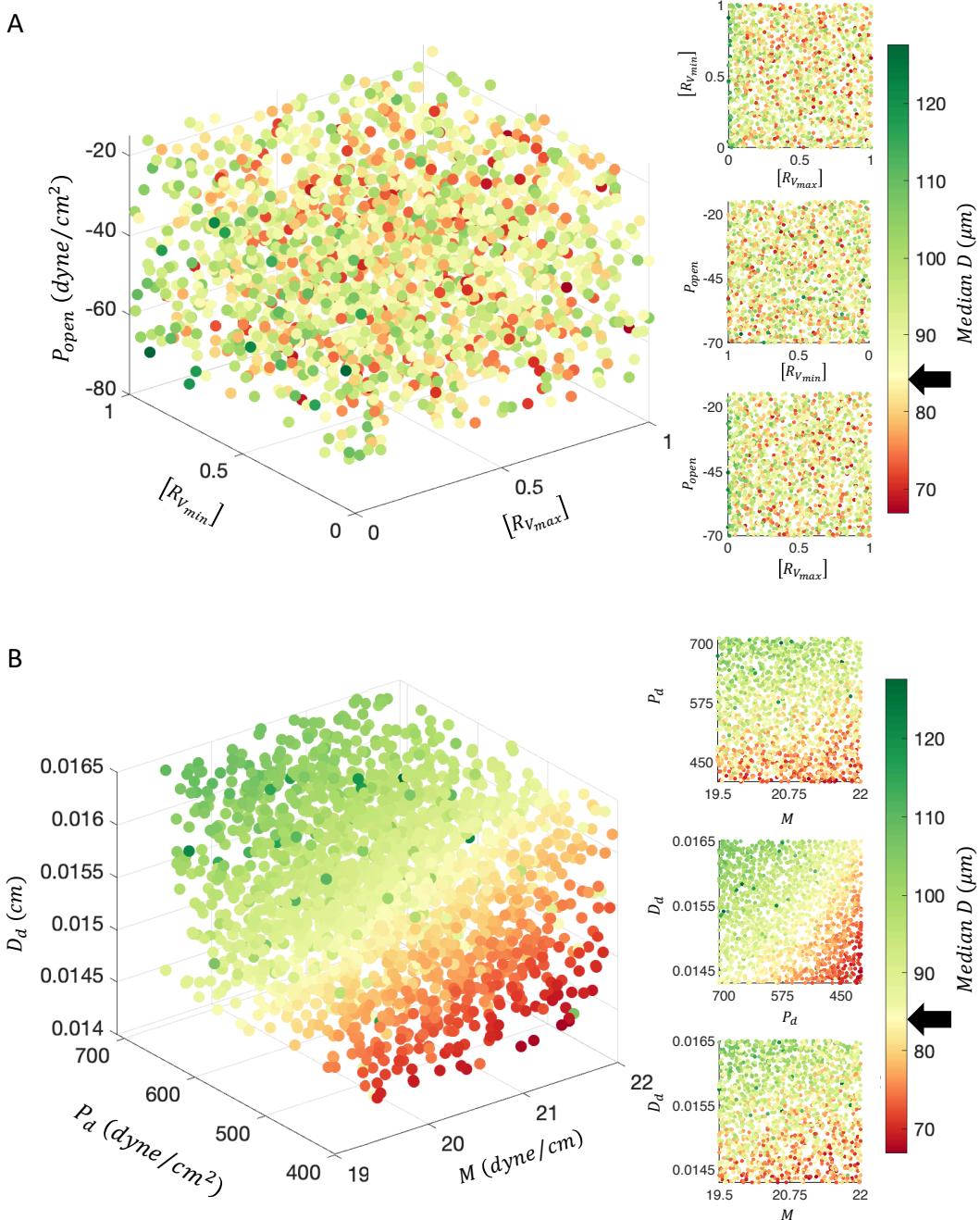
Fig. 2: A flow chart depicting the algorithm used in our Monte Carlo parameter search.

247 hydraulic resistance of the valve and pressure difference across it. We computed the median diameter
 248 $med(D_{sim})$ and mean volume flow rate \bar{Q}_{sim} for each simulation, which we used as criteria for the search.
 249 If the comparison fell within 5% of the experimental value (denoted with subscript “exp”), such that,

$$\frac{|med(D_{sim}) - med(D_{exp})|}{med(D_{exp})} \leq 0.05 \quad , \quad \frac{|\bar{Q}_{sim} - \bar{Q}_{exp}|}{\bar{Q}_{exp}} \leq 0.05 \quad (7)$$

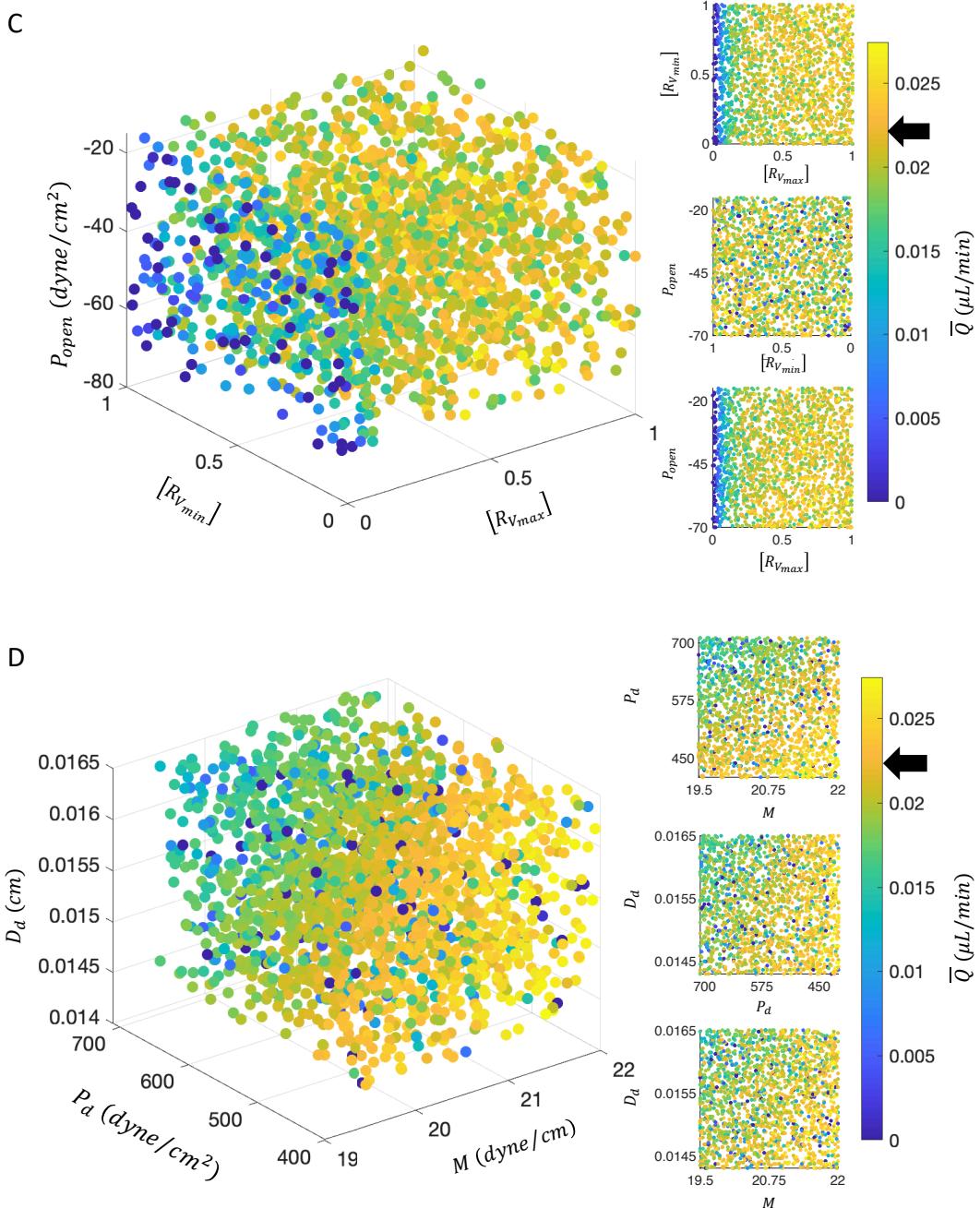
250 we noted that particular parameter set. We continued this process for every randomly chosen parameter
 251 set and repeated the same numerical procedure. A summary of this process, including the Monte Carlo
 252 parameter selection, is depicted in Fig. 2. Note that we stored the results of all simulations (including
 253 those that did not meet our 5% criteria) for the sake of performing sensitivity analysis.

254 Results


255 We now present simulation results, which detail our parameter estimations, overall CSF efflux through
256 lymphatic vessels, a sensitivity analysis of the parameters affecting CLVs, and the impact of branching
257 in initial lymphatic vessels. It is important to note that the volume flow rate is calculated at the valves,
258 whereas the diameters are calculated in the middle of each lymphangion. The mean volume flow rate
259 (\bar{Q}) used throughout the results refers to the time-averaged downstream volume flow rate of the third
260 lymphangion in our simulation. Similarly, the reported median diameter is the temporal median of the
261 third lymphangion diameter. Additionally, we restate the definition of each unknown parameter used in
262 the Monte Carlo simulation, for convenience. P_d and D_d represent the properties of the CLV wall that
263 control the stiffness of the vessel. M denotes the magnitude of active tension generated by smooth muscle
264 cells. P_{open} is the minimum pressure required to open the valve. $R_{V_{min}}$ is the hydraulic resistance of the
265 valves in their open state, whereas $R_{V_{max}}$ is the hydraulic resistance of the valves in their closed state.

266 Inverse Problem: Monte Carlo Approach

267 We conducted a Monte Carlo simulation to estimate parameters that are consistent with experimental
268 observations. Out of 10,000 simulations, only 585 successfully converged. The converged simulations
269 indicate that M , D_d , and P_d must fall within a narrow range for simulations to successfully converge. To
270 further explore the sensitivity, we narrowed the values of M , D_d , and P_d and performed an additional
271 2,000 simulations, randomly sampling parameters from within these revised limits (Fig. 3).


272 The parameter sensitivity analysis revealed that P_{open} and $R_{V_{min}}$ do not significantly impact the
273 vessel diameter, as no clear trend in median diameter value emerged as each of these parameters were
274 varied (Fig. 3A and Supplementary Fig. S1B, D). Values close to the experimental value we sought to
275 match (84.1 μm), in a color indicated by the black arrow on the color bar, are randomly distributed
276 throughout the parameter space. $R_{V_{max}}$ had a barely discernible influence on the diameter when $R_{V_{max}}$
277 was very small; such values led to increases in diameter of around 120 μm (see green circles at left in
278 Fig. 3A). On the other hand, the parameters D_d , P_d , and M were found to influence vessel size, with
279 a strong tendency for the diameter to increase with lower M , higher P_d , and higher D_d (Fig. 3B and
280 Supplementary Fig. S1A, E, F). This indicates that the balance between the stiffness of the vessel wall
281 and the active tension exerted by smooth muscle cells significantly affects the diameter of the CLV.

282 The mean volume flow rate was not greatly affected by P_{open} or $R_{V_{min}}$, but showed significant
283 sensitivity to $R_{V_{max}}$ (Fig. 3C and Supplementary Fig. S2B, C, D). Very small $R_{V_{max}}$, in particular,
284 resulted in a negative mean volume flow rate (Supplementary Fig. S2C) meaning that backflow exceeded
285 forward flow. This suggests that the closure of the valve is crucial for prograde net transport, even more
286 so than the pressure difference required to open the valve or the hydraulic resistance of the open valve

Fig. 3: Results from the Monte Carlo search and analysis of parameter sensitivity (figure part one of two). The large 3D scatter plots on the left side illustrate the overall sensitivity to the chosen parameters on each axis. The smaller three plots on the right provide 2D projections onto each pair of axes. The target values for each criteria are indicated by black arrows on the color bars. (A) 3D scatter plots showing the variation of median diameter with changes in P_{open} , $R_{V_{min}}$, and $R_{V_{max}}$. The hydraulic resistance of the valves, $R_{V_{min}}$ and $R_{V_{max}}$ are normalized by their maximum values such that $[R_{V_{min}}] = R_{V_{min}}/\max(R_{V_{min}})$ and $[R_{V_{max}}] = R_{V_{max}}/\max(R_{V_{max}})$ (see text for values). (B) 3D scatter plots showing the variation of median diameter with changes in D_d , P_d , and M .

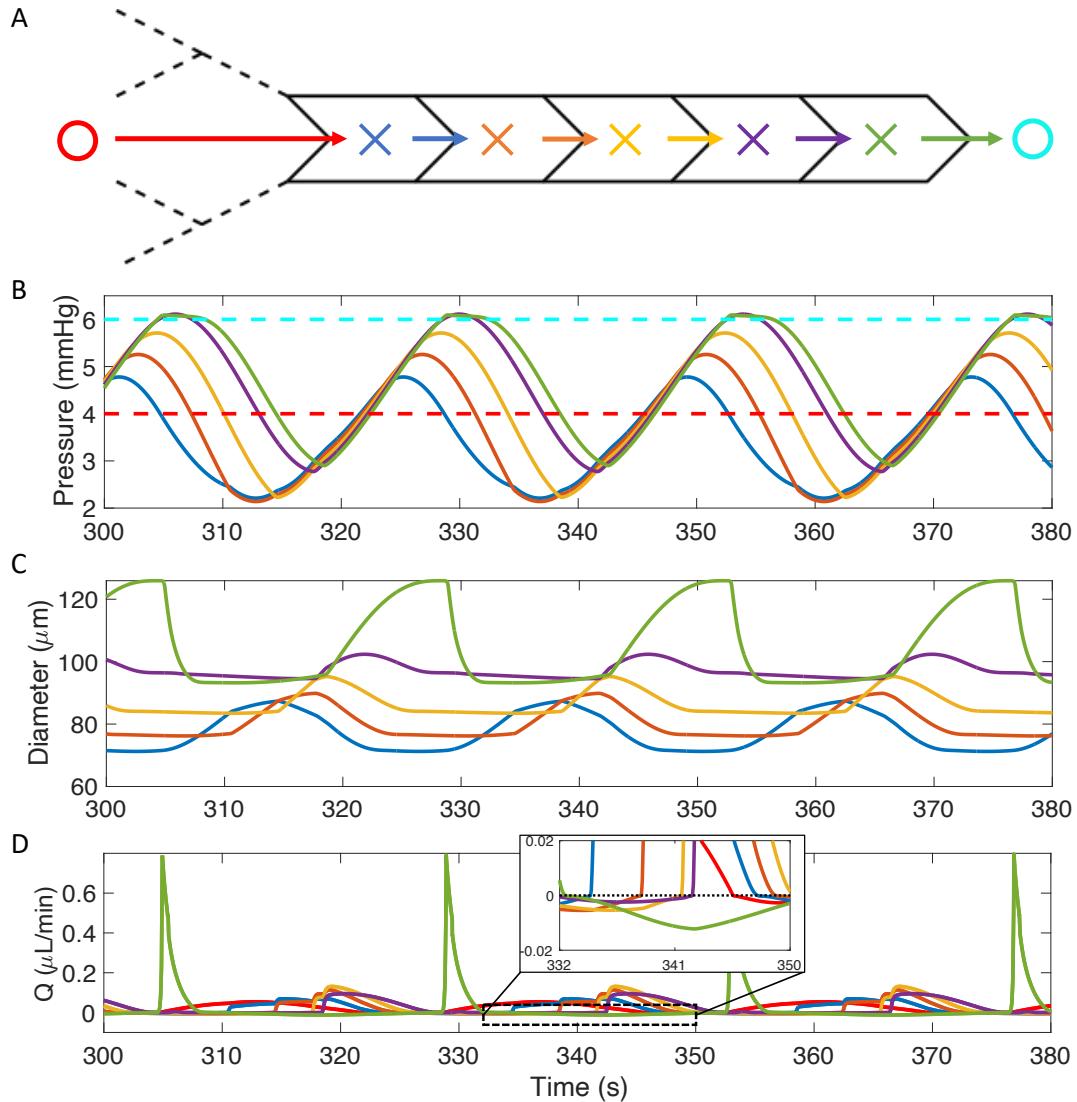

(for the parameter ranges considered here, anyway). We also found the mean volume flow rate increases with higher M , lower P_d , and is insensitive to changes in D_d (Fig. 3D and Supplementary Fig. S2A, E, F). Hence, higher active tension and reduced vessel stiffness increase net transport. This suggests

Fig. 3: Results from the Monte Carlo search and analysis of parameter sensitivity (figure part two of two). (C) 3D scatter plot showing the variation of mean volume flow rate \bar{Q} with changes in P_{open} , $R_{V_{min}}$, and $R_{V_{max}}$. (D) 3D scatter plot showing the variation of mean volume flow rate with changes in D_d , P_d , and M . For (C) and (D), volume flow rates below zero are plotted as zero to emphasize the sensitivity among positive values.

290 that active properties are more important than passive properties for enhancing transport, and this is
 291 achieved by increasing vessel wall compliance with respect to the action of smooth muscle cells. A more
 292 detailed analysis of intrinsic pumping is discussed in the next section.

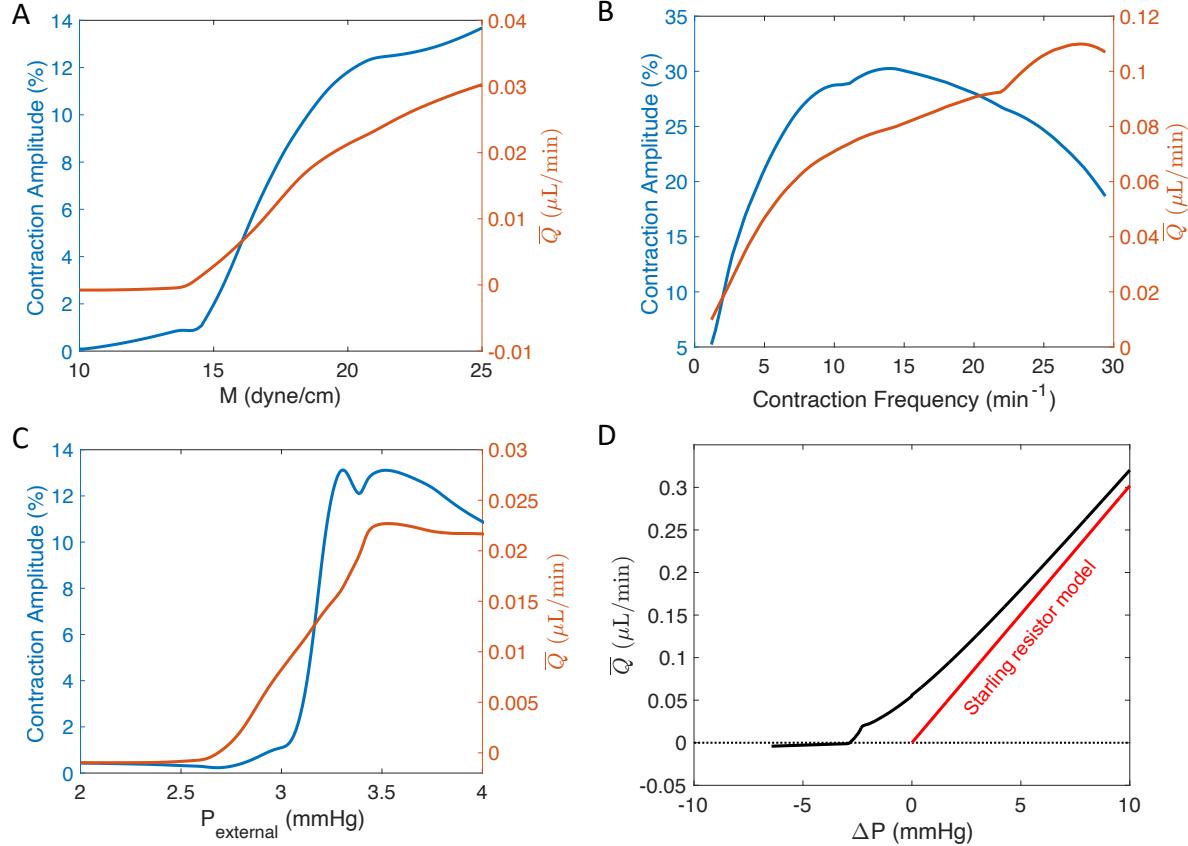
293 From this analysis, we identified the following parameters that lead to simulation results that align
 294 closely with experimental data: $M = 20.86$ dyne/cm, $R_{V_{min}} = 7.43 \times 10^5$ dyne s/mL cm², $R_{V_{max}} =$

Fig. 4: CSF drainage through CLVs. (A) Illustration of the geometry of the simulation. A red and a cyan circle indicate the locations at which upstream pressure (ICP) and downstream pressure (venous blood pressure), respectively, are plotted in (B). Additional X symbols inside each lymphangion are color-coded to indicate the locations of pressure and diameter in (B) and (C); similarly, arrows inside each valve are color-coded to indicate volume flow rate plotted in (D). (B) Plot of pressures in the middle of each lymphangion ($P_{j,m}$) versus time. We assume constant pressure for the inlet (red dashed line) and outlet (cyan dashed line). (C) Plot of diameters versus time. (D) Plot of volume flow rate versus time. Note the large green peak corresponds to flow through the last valve, furthest right in (A). The subplot in (D) provides a magnified view of the volume flow rate plot for 332–350 s to better visualize the backflow.

295 2.03×10^{10} dyne s/mL cm², $P_{open} = -45$ dyne/cm², $P_d = 521$ dyne/cm², and $D_d = 0.015$ cm. This
 296 parameter set will be used below for further analysis.

297 CSF Efflux Through CLVs

298 The adverse pressure difference that CLVs must overcome is higher than other lymphatic regions. The
 299 CSF must be transported against this adverse pressure, and this is enabled through intrinsic pumping
 300 in the presence of bileaflet valves in the lymphangions. Fig. 4A-D illustrate this process. In Fig. 4A,


301 the ICP is indicated by a red circle, while central venous blood pressure is represented by a cyan circle.
302 The colors of the X symbols in Fig. 4A correspond to the locations of pressures (Fig. 4B) and diameters
303 (Fig. 4C) for each lymphangion. The arrows in Fig. 4A represent the volume flow rate downstream from
304 the X symbols, and these flow rates are plotted in Fig. 4D using the corresponding colors. It is worth
305 noting that three pressures per lymphangion were calculated, but only the pressures in the middle of
306 each lymphangion were plotted in Fig. 4B to avoid overcrowding. The three pressures computed for each
307 lymphangion are not identical but are similar to each other.

308 We now examine the first (blue in Fig. 4A) and second (orange in Fig. 4A) lymphangions. Initially,
309 the pressure in the first lymphangion is lower than the second lymphangion (Fig. 4B). As the pressure
310 inside the first lymphangion begins to exceed that of the second lymphangion (Fig. 4B) and surpasses the
311 additional threshold pressure needed to open the valve (p_{open}), CSF is transported from the first to the
312 second lymphangion (Fig. 4D) as the first lymphangion contracts (Fig. 4C) and opens the valve between
313 them. This results in the expansion of the second lymphangion as the CSF flows in. However, this forward
314 flow is not continuous. The pressure in the second lymphangion exceeds that of the first lymphangion
315 again (Fig. 4B), causing the valve between them close, leading to a small but non-negligible backflow
316 from the second to the first lymphangion (subplot in Fig. 4D). The cycle of expansion and contraction of
317 each lymphangion, driven by oscillatory active tension from smooth muscle cells (intrinsic pumping) and
318 the opening and closing of the valves, enable CSF transport against a relatively large adverse pressure
319 difference (~ 2 mmHg), ultimately facilitating fluid drainage into the central venous blood.

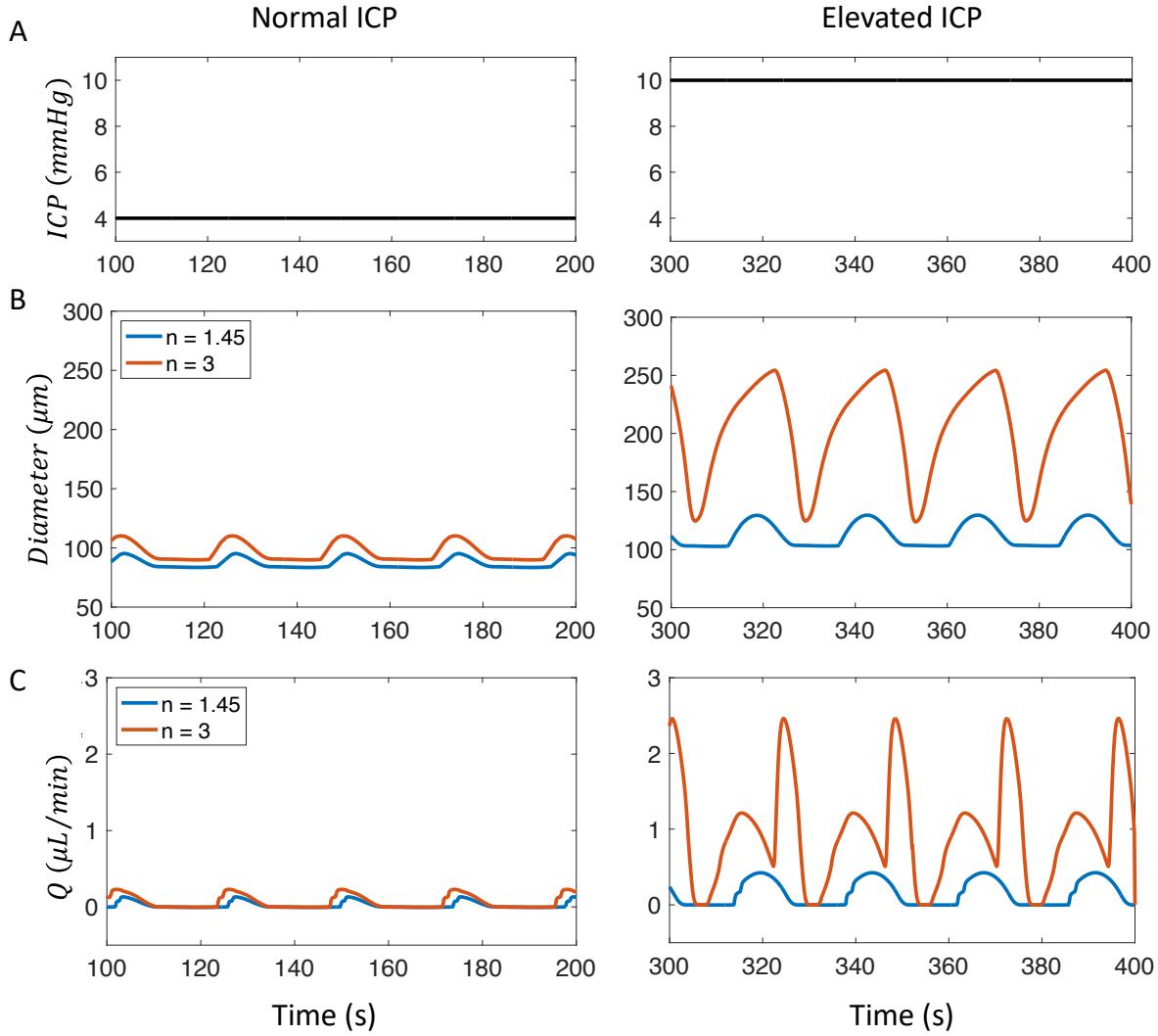
320 An interesting flow is observed at the inlet and outlet of the CLV (Fig. 4D). The volume flow rate
321 at the first valve is positive over a wide time span (red curve in Fig. 4D), due to the presence of large
322 initial lymphatics attached to it. The addition of the net hydraulic resistance of the initial lymphatics
323 results in a gradual change in the volume flow rate. The impact of the net hydraulic resistance of the
324 initial lymphatic vessels will be discussed in more detail in the following section. The outflow from the
325 last lymphangion to the central venous blood is narrow but high (green curve in Fig. 4D). This is due
326 to the higher contraction amplitude of the last lymphangion compared to the other lymphangions. It is
327 important to note that the time-averaged volume flow rate across all lymphangions remains consistent,
328 in accordance with the mass conservation.

329 **Effect of Intrinsic Pumping and Variable Pressures**

330 Lymphatic vessels rely on both intrinsic and extrinsic pumping mechanisms to transport fluid. Active
331 tension generated by smooth muscle cells in response to stimuli, such as adrenergic and nitric oxide sig-
332 nals, is the primary driver of intrinsic pumping, regulating lymph flow. As active tension (M) increases,

Fig. 5: Effects of varying active tension, contraction frequency, external pressure, and longitudinal pressure gradient. These quantities are varied for all lymphangions in our model, but results are plotted for only the third lymphangion. (A) Contraction amplitude (left y-axis) and mean volume flow rate \bar{Q} (right y-axis) as a function of M (active tension of smooth muscle cells). (B) Contraction amplitude (left y-axis) and mean volume flow rate \bar{Q} (right y-axis) as a function of f (contraction frequency). (C) Contraction amplitude (left y-axis) and \bar{Q} (right y-axis) as a function of $P_{external}$ (external pressure); the longitudinal pressure difference is fixed at $\Delta P = -2$ mmHg. (D) \bar{Q} as a function of longitudinal pressure difference $\Delta P = ICP - P_{venous}$ (i.e., inlet pressure – outlet pressure); the external pressure is fixed at $P_{external} = 3.75$ mmHg. At large Δp , the model volume flow rate approaches that of a Starling resistor model (red line), as expected (see main text).

333 lymphangion contraction amplitude, which we define as the difference between the maximum and mini-
 334 mum diameter divided by the maximum diameter ($\frac{D_{max} - D_{min}}{D_{max}}$), also increases (blue curve in Fig. 5A).
 335 The orange curve in Fig. 5A illustrates the relationship between mean volume flow rate and M , indicating
 336 that a higher value of M (i.e., higher contraction amplitude) results in greater net transport.


337 In Fig. 5A, two key points stand out. First, as M increases in the 10 – 14 dyne/cm range, the
 338 contraction amplitude increases slowly, and the mean volume flow rate remains nearly steady. This is
 339 because the active tension is too low to significantly affect contractions compared to the lymphangion's
 340 passive properties. In the 15 – 20 range for M , the contraction amplitude increases dramatically as active
 341 tension dominates the lymphangion's passive properties. Beyond $M \approx 21$, the increase in contraction
 342 amplitude slows down, suggesting volume flow rate may stabilize beyond this point. This is because the
 343 vessel diameter remains small when active tension is large (and hydraulic resistance depends sensitively

344 on diameter, scaling with D^4). This indicates that excessively high tension does not necessarily promote
345 CSF transport, and the the optimal range is likely around 20 dyne/cm.

346 Next, we fixed $M = 20.86$ dyne/cm and adjusted the contraction frequency, f (Fig. 5B). Initially, the
347 contraction amplitude and the mean volume flow rate rose sharply for frequencies in the approximate
348 range $2 - 14 \text{ min}^{-1}$. For frequencies in the range of $14 - 27 \text{ min}^{-1}$, the contraction amplitude decreases,
349 but the mean volume flow rate continues to increase. Once the frequency exceeds 27 min^{-1} , the volume
350 flow rate begins to decrease slightly. This suggest that there is a wide range over which increases in
351 contraction frequency lead to increases in mean volume flow rate, but transport is most strongly altered
352 for frequencies below about 10 min^{-1} . At higher contraction frequencies ($\gtrsim 14 \text{ min}^{-1}$), the lymphangion's
353 contraction amplitude is reduced because it begins contracting before becoming fully inflated.

354 We also tested the effect of varying external pressure (Fig. 5C). When the external pressure is in the
355 lower range ($2 - 2.7$) mmHg, the contraction amplitude of the vessels is low, resulting in a low volume flow
356 rate. For external pressures of about $2.7 - 3.3$ mmHg, the contraction amplitude of the vessels increases,
357 leading to a corresponding increase in the volume flow rate. However, once the external pressure exceeds
358 about 3.5 mmHg, the contraction amplitude begins to decrease, causing a slight decrease in the volume
359 flow rate. These results indicate that external pressure affects the intrinsic pumping of the CLVs, with
360 an optimal range of external pressure necessary for effective pumping. At lower external pressures, the
361 lymphangion is inflated with reduced contractility and thus the volume flow rate is low. Conversely, at
362 higher external pressures, the diameter of the lymphangion is significantly reduced, but the substantial
363 contraction amplitudes are able to maintain considerable volume flow rate, at least for the range of
364 external pressures we considered.

365 Finally, we tested different net pressure drops between the inlet and outlet in our model of the
366 CSF outflow pathway (Fig. 5D). We varied both the ICP (inlet pressure) and P_{venous} (outlet pressure)
367 to model outflow during various scenarios that affect pressure (e.g., different body postures, variable
368 hydration states). From the ranges of ICP and P_{venous} listed in Table 1, we estimated the pressure
369 drop ($\Delta P = ICP - P_{venous}$) across the model to vary from -6.44 mmHg to 2.84 mmHg. For ΔP values
370 between -6.44 mmHg and -2.9 mmHg, either the inlet pressure was too small or the outlet pressure
371 was too high, resulting in an overall negative mean volume flow rate. This indicates that for this range
372 of pressure differences, the CLV pumping is not strong enough to transport fluid to the cervical lymph
373 nodes and instead a small amount of fluid is transported retrograde. For ΔP values above -2.9 mmHg,
374 a positive volume flow rate with a gradually varying slope was observed. Since the external pressure
375 was fixed at $P_{external} = 3.75$ mmHg in these simulations, and $P_{venous} \geq 4.16$ mmHg (Table 2), we may
376 conclude that our model should behave like a Starling resistor as ΔP increases [50], i.e., the volume flow
377 rate \bar{Q} should vary in proportion with ΔP . We analytically computed the volume flow rate as a function

Fig. 6: Impact of lymphatic capillary branching on diameter and volume flow rate under different ICP conditions. (A) Plots of inlet pressure (ICP) for a normal (left) and elevated (right) case. (B) CLV diameter versus time for different ICP. The exponent in Murray's law is $n = 1.45$ (blue curve) or $n = 3$ (orange curve). (C) Volume flow rate versus time for different ICP. Note that the value $n = 1.45$ comes from an experimental study of murine dermal lymphatic capillaries [39].

378 of ΔP for a Hagen-Poiseuille flow through a tube (with length $5L$ and diameter matching the temporal
 379 mean diameter of the third lymphangion for each given ΔP value) connected in series with a hydraulic
 380 resistance $R_{initial}$; the result is plotted in red in Fig. 5D. As expected, our model approaches that of the
 381 Starling resistor as ΔP increases. This provides both a source of model verification and insight that at
 382 large favorable pressure gradients, the external pressure becomes unimportant.

383 Effect of Lymphatic Capillary Branching Assumptions

384 In our final test, we examined how lymphatic capillary branching affects net volume flow rate. We applied
 385 an inlet pressure corresponding to either normal ICP (4 mmHg) or elevated ICP (10 mmHg), as indicated
 386 in Fig. 6A. We then tested two different branching scenarios: one adhering to the typical Murray's law

387 (with exponent 3) and another corresponding to Murray's law with exponent 1.45 [39]. The model with
388 the smaller exponent led to smaller vessel diameters, but longer length, across each bifurcation compared
389 to the normal case, ultimately generating a higher hydraulic resistance $R_{initial}$.

390 At normal ICP, both the diameter and volume flow rate for the two cases of different exponents
391 operate within a physiological range. The diameter and volume flow rate for typical Murray's law are
392 only slightly higher than those for the modified Murray's law (Fig.6B,C). However, at elevated ICP,
393 the differences for the two different exponent cases become substantial. Both the diameter and volume
394 flow rate increase for both exponent cases (Fig.6B and C), but the model with modified Murray's law
395 ($n = 1.45$, blue curve) shows only a small increase in diameter which spans a range of about 100 to
396 130 μm . On the other hand, the model with normal Murray's law ($n = 3$, orange curve) exhibits large
397 amplitude fluctuations, ranging from about 130 to 250 μm . Physiologically, such a large peak diameter
398 and range in diameter is unrealistic and could likely lead to vessel rupture when ICP increases. The
399 volume flow rate also increases with the elevated ICP, as expected when the upstream pressure exceeds
400 the downstream pressure. However, the model with the modified Murray's law ($n = 1.45$, blue curve)
401 shows a gradual increase in volume flow rate, while the model with normal Murray's law ($n = 3$, orange
402 curve) exhibits an extreme increase. Excessive outflow due to elevated ICP would likely have deleterious
403 effects. These results suggest that lymphatic capillaries that absorb the CSF in the SAS likely do not
404 follow normal Murray's law but may instead adhere to a modified version with a smaller exponent ($n < 3$)
405 so that the associated increase in hydraulic resistance will buffer transport rates with the respect to
406 changes in ICP.

407 Discussion

408 Lymphatic vessels transport fluid against an adverse pressure gradient, and CLVs are no exception. In
409 fact, CLVs must overcome a higher adverse pressure gradient compared to other lymphatics [46, 47],
410 which is a consequence of their anatomy which bridges the skull and cervical lymph nodes. Our numerical
411 model suggests that both active and passive properties of the vessel wall and the hydraulic resistance
412 of the valve in its closed state are crucial for maintaining the vessel's diameter and volume flow rate. In
413 particular, we found that transport is sensitive to maximum valve resistance ($R_{V_{max}}$) when that value
414 is small (Fig. 3C). This sensitivity results because, if the valves do not close completely (i.e., $R_{V_{max}}$ is
415 relatively small), substantial backflow will occur leading to a diminished net volume flow rate. Recent
416 *in vivo* measurements of CLV flow in mice [12, 51] support the conclusions drawn here regarding the
417 most sensitive parameters. Our simulations predict volume flow rates through a single CLV that range
418 from about 0 to 0.1 $\mu\text{L}/\text{min}$ as active tension or contraction frequency are varied (Fig. 5A-B), which is
419 in good agreement with CLV volume flow rates reported by Du et al. [51]. They found that volume flow

420 rates decrease from 0.071 to 0.017 $\mu\text{L}/\text{min}$ for 2-month-old versus 22-month-old mice [51]. Furthermore,
421 they attributed this reduced transport primarily to a decrease in contraction frequency, as well as valve
422 dysfunction that increased retrograde flow, reducing net transport.

423 As a lymphangion expands, the pressure inside it decreases, allowing cerebrospinal fluid (CSF) to
424 enter. As it contracts, the CSF is transported to the next lymphangion, opening the valve in between
425 and eventually draining to the central venous blood. It is noteworthy that the average diameters of
426 each of the five lymphangions we model increase as one moves in the downstream direction. This is
427 because the same parameters were used for all five lymphangions and the transmural pressure difference
428 increases along the streamwise direction. Parameters that control the passive properties of the wall, such
429 as distensibility (D_d) and the pressure at which the vessel is fully distended (P_d), can be modeled to
430 increase along the downstream direction [28, 40] in order to maintain the same average diameters. Our
431 results highlight differences between CLVs and mesenteric lymphatic vessels, in that CLVs exhibit a
432 stronger sensitivity to wall stiffening (D_d and P_d) with changes in diameter at both positive and negative
433 transmural pressures [28]. Due to this stiffer wall, the smooth muscle cells need to generate stronger
434 active tension (M) to transport CSF.

435 In the study by Hussain et al. it was observed that the CSF outflow through CLVs decreases following
436 TBI [12]. This study also found that the level of norepinephrine increased after TBI, which was associated
437 with a decrease in the contraction amplitude and alteration to the frequency of the CLVs. Our simulations
438 support the idea that decreased contraction amplitude and/or frequency lead to a decreased volume flow
439 rate. This suggests that enhancing lymphatic activity may provide an effective target for restoring CSF
440 drainage and enhancing brain waste clearance, as recently demonstrated by Du et al. [51]. Currently, our
441 model only includes intrinsic pumping, which captures net volume flow rates that are in good agreement
442 with experimental measurements. However, future numerical and/or experimental work may investigate
443 the role of external pressures, such as those exerted by skeletal muscles or arising from neck massage,
444 which may enhance drainage.

445 Various external forces act on the CLVs from sources such as pulsatility of nearby arteries, movement
446 due to respiration, and skeletal muscle contractions; however, a recent *in vivo* study suggests cardiac
447 pulsatility and respiration does not play an important role in CLV transport [51]. The pressure gradient
448 formed by the difference between the external pressure and the intraluminal pressure affects the con-
449 tractility of the CLVs. A small external pressure leads to inflation of the vessel with small amplitude
450 contractions, while a large external pressure decreases the vessel diameter but increases the contraction
451 amplitude. This indicates that an optimal range of external pressure likely exists, which is necessary
452 for effective pumping and net transport. Currently, we have tested external pressure in the range of 2
453 mmHg to 4 mmHg. We expect that beyond about 4 mmHg, total collapse of the vessel is likely because

454 the transmural pressure gradient will become negative. This negative pressure gradient leads to deformation
455 of the vessel wall. However, when we tested pressures beyond 4 mmHg, numerical instability and
456 failure occurred due to the calculation of negative diameter values. It may be helpful to test the effect
457 of external pressure using a different model of the transmural pressure equation 6 in the future.

458 The ICP, which was assumed as the inlet pressure in our model, can increase due to gross swelling
459 or intracranial bleeding after TBI [52]. One may hypothesize that this increased ICP could lead to rapid
460 drainage of CSF from the skull. However, our simulations indicate that if the initial lymphatics that
461 absorb the CSF bifurcate according to a modified version of Murray's law (with exponent substantially
462 less than the typical $n = 3$), the associated increase in hydraulic resistance will act as a buffer that inhibits
463 rapid CSF drainage. Murray's law, with an exponent of 3, was formulated to describe the bifurcations of
464 arteries, aiming to explain how arterial branching minimizes hydraulic resistance. Our simulations suggest
465 that minimizing hydraulic resistance in the initial lymphatic branches connecting the skull and CLVs
466 is perhaps deleterious. Additionally, it is worth noting that the assumptions associated with Murray's
467 law are already violated due to the presence of the valves, suggesting one should not expect to observe
468 an exponent of $n = 3$ associated with the branching. Future experiments could test for evidence of this
469 safety mechanism by directly measuring the diameters of sequential initial lymphatic vessels or even by
470 counting the number of branching generations. Our calculations suggest that approximately 11 versus
471 5 generations exist for Murray's law exponents of $n = 3$ versus $n = 1.45$. We also highlight that the
472 exponent value $n = 1.45$ comes from a study of murine dermal lymphatic capillaries [39], and the true
473 value for nasal lymphatics may differ substantially.

474 Substantial evidence indicates that CSF drains through the cribriform plate to nasal lymphatics in
475 rodents [13]. However, this pathway appears less important in humans [53], highlighting critical differ-
476 ences that may exist in CSF pathways for rodents versus humans. Meningeal lymphatics may potentially
477 serve as a primary efflux route in humans. In our model, the initial lymphatic vessels are currently based
478 on the nasopharyngeal lymphatic vessels of rodents. However, our model can be adapted to capture efflux
479 to any other lymphatic vessels with different dimensions and properties, including meningeal lymphatic
480 vessels.

481 In the recent study by Yoon et al., a complex network of lymphatics draining CSF through the
482 nasopharynx to the cervical lymph nodes was identified [54]. This plexus contains tiny lymphatic vas-
483 cularure at upstream locations, which merge into larger vessels. These larger vessels are considered
484 pre-collector lymphatic vessels due to the presence of valves and somewhat loose covering of smooth
485 muscle cells. Currently, our model does not include pre-collector lymphatic vessels. Future studies could
486 incorporate a model of the nasopharyngeal plexus and test its hydraulic resistance, which may further
487 buffer changes in ICP. Additionally, the presence of valves in the plexus supports the idea that hydraulic

488 resistance of the valve in its closed state is critical for CLVs when the pressure difference is high. Although
489 the closure of lymphatic valves is not perfect and does allows a small amount of backflow, the series
490 of valves located in the plexus likely help reduce backflow, allowing the CLVs to maintain an optimal
491 diameter and volume flow rate.

492 Several important limitations of this study should be acknowledged. Spatial resolution is limited in
493 our simulation which prevents, for example, detailed simulation of variation in contraction amplitude
494 along the length of each lymphangion. As a consequence of using lumped parameter modeling, our pre-
495 dictions only include volume flow rates and pressures for three points per lymphangion (one at the
496 center, and one very close to each valve). However, a more detailed treatment is precluded by the current
497 scarcity of quantitative data characterizing CLV geometry and physical properties. A further limitation
498 is that the lumped parameter approach assumes that contractions of adjacent lymphangions occur with
499 some fixed temporal phase (parameter t_d in Table 1). A more detailed analysis of relation between flow
500 and contraction timings, including both the frequency and t_d , will be conducted in future work. *In vitro*
501 observations of CLV contractions following exposure to norepinephrine reveal loss of contraction entrain-
502 ment [12], which cannot be readily modeled using the lumped parameter approach. Nonetheless, the
503 lumped parameter method is appealing in that simulations are fast and our Monte Carlo approach could
504 be conducted efficiently. Overall, our study has uncovered valuable insights into not only fundamentals
505 of the physical properties of CLVs, but also potential therapeutic strategies.

506 Conclusions

507 In this study, we performed simulations of CSF efflux to cervical lymphatic vessels using a lumped
508 parameter model. This model captures the CSF drainage from the subarachnoid space, absorbed by
509 the initial lymphatics embedded in the nasal region, which merge over several generations and drain to
510 the cervical lymphatic vessels, eventually reaching the central venous blood. We identified parameters
511 that are unknown and difficult to experimentally measure using a Monte Carlo search in which we
512 matched simulation predictions to *in vivo* measurements. Simultaneously, we explored how the unknown
513 parameters in the governing equations affect the median diameter of the vessels and the mean volume
514 flow rate, concluding that magnitude of active tension, passive properties of the vessel wall, and hydraulic
515 resistance of the valve in its closed state have the greatest effect. We also demonstrated that increasing
516 the active tension and/or the contraction frequency increases the overall volume flow rate, and we tested
517 how the bifurcations of the upstream lymphatic capillaries affect the overall flow in response to elevated
518 ICP. Narrower and longer branches (arising from a modified form of Murray's law with exponent 1.45 [39])
519 increases the net hydraulic resistance, increasing the robustness of the system to elevated ICP.

520 This is the first numerical study of CSF drainage through CLVs. We anticipate that our rigorous
 521 parameter analysis using our proposed model will help guide future numerical studies aimed at modeling
 522 CLVs under physiological and pathological conditions. Additionally, our results form a foundation for
 523 future experiments in this field, contributing to our understanding of CSF drainage and its potential
 524 therapeutic applications.

525 Appendix A Derivation of Lumped Parameter Equations

526 In this appendix, we present the derivation of lumped parameter fluid flow equations that are imple-
 527 mented as our governing equations. The equations for transmural pressure (equation 6) and valve
 528 resistance (equation 4) are directly adopted from the previous works of Bertram et al. [28, 40]. There-
 529 fore, the derivations of those equations are not included here. The mass conservation for 1D flow can be
 530 written as:

$$\frac{dA}{dt} + \frac{dQ}{dz} = 0 \quad (\text{A1})$$

531 where $A(z, t)$ is the cross-sectional area of the vessel and $Q(z, t)$ is the volume flow rate. Equation (A1)
 532 can be integrated over one lymphangion of length $z_2 - z_1 = L$:

$$\int_{z_1}^{z_2} \left(\frac{\delta A}{\delta t} + \frac{\delta Q}{\delta z} \right) dz = 0.$$

533 This integration can be split into two parts:

$$\int_{z_1}^{z_2} \frac{\delta A}{\delta t} dz + \int_{z_1}^{z_2} \frac{\delta Q}{\delta z} dz = 0$$

534 The first part can be computed as:

$$\int_{z_1}^{z_2} \frac{\delta A}{\delta t} dz = \frac{\delta}{\delta t} \int_{z_1}^{z_2} A dz = \frac{\delta}{\delta t} V$$

535 where $V(t)$ is the lymphangion volume. The second part can be computed as:

$$\int_{z_1}^{z_2} \frac{\delta Q}{\delta z} dz = Q(z_2, t) - Q(z_1, t).$$

536 If we denote $Q_{j+1} = Q(z_2, t)$ and $Q_j = Q(z_1, t)$, where j indexes the valves separating each lymphangion,
 537 then the equation can be rewritten in the form:

$$\frac{dV}{dt} = Q_j - Q_{j+1} \quad (\text{A2})$$

538 If we assume the lymphangion has a circular cross-sectional area over a length L , then the volume V
 539 can be written as $V = \frac{1}{4}\pi D^2 L$. The temporal derivative of V is then $\frac{dV}{dt} = \frac{1}{2}\pi D L \frac{dD}{dt}$. Thus, the lumped
 540 parameter mass conservation equation (A2) can be written in the form given by equation (2) in the main
 541 text:

$$\frac{dD}{dt} = \frac{2(Q_j - Q_{j+1})}{\pi L D_j}$$

542 The conservation of momentum equation can be written as follows, with the assumptions that the
 543 flow is quasi-steady and laminar, the velocity in the radial direction is zero ($v_r = 0$), the axial velocity
 544 is independent of the circumferential direction ($\frac{\delta v_z}{\delta \theta} = 0$), and the pressure gradient is constant over the
 545 length of a given lymphangion ($\frac{\delta P}{\delta z} = \frac{\Delta P}{L}$):

$$\mu \left(\frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) \right) = \frac{\Delta P}{L}$$

546 After integrating with respect to r and applying the boundary conditions (v_z is finite at $r = 0$ and $v_z = 0$
 547 at $r = \frac{D}{2}$), the equation can be written as:

$$v_z(z, t) = \frac{\Delta P}{4\mu L} \left(r^2 - \frac{1}{4} D(z, t)^2 \right) \quad (A3)$$

548 where μ is the dynamic viscosity of the fluid. The volume flow rate, Q , is the integral of the axial velocity
 549 over the cross-sectional area of the pipe:

$$Q = \int_0^{2\pi} \int_0^{D/2} \frac{\Delta P}{4\mu L} \left(r^2 - \frac{1}{4} D(z, t)^2 \right) r dr d\theta.$$

550 After integration, we obtain the Hagen-Poiseuille equation:

$$Q = \frac{\pi D^4 \Delta P}{128\mu L}. \quad (A4)$$

551 Since the midpoint pressure inside a lymphangion ($P_{j,m}$) is used to calculate the pressure drop, $L/2$
 552 should be used instead of L . Thus, equation (3) in the main text is obtained:

$$\frac{P_{j,1} - P_{j,m}}{L} = \frac{64\mu Q_j}{\pi D_j^4}, \quad \frac{P_{j,m} - P_{j,2}}{L} = \frac{64\mu Q_{j+1}}{\pi D_j^4}.$$

553 Ethics approval and consent to participate

554 Not applicable.

555

556 Consent for publication

557 Not applicable.

558

559 Availability of data and materials

560 Data and materials are available from the authors following any reasonable request. Simulation codes
561 are included as supplementary material.

562

563 Competing interests

564 The authors declare no competing interests.

565

566 Funding

567 This work is supported by a Career Award at the Scientific Interface from Burroughs Wellcome Fund
568 and the Research & Innovation Office at University of Minnesota.

569

570 Authors' contributions

571 Conceptualization: DK, JT; Methodology: DK, JT; Formal analysis and investigation: DK; Writing -
572 original draft preparation: DK; Writing - review and editing: JT; Funding acquisition: JT; Resources:
573 JT; Supervision: JT

574

575 Acknowledgements

576 Not applicable.

577

578 Authors' information

579 Authors and Affiliations

580 Daehyun Kim and Jeffrey Tithof

581 Mechanical Engineering, University of Minnesota

582

583 **Corresponding author**

584 Correspondence to [Jeffrey Tithof](#)

585

586 **References**

587 [1] Spector, R., Snodgrass, S.R., Johanson, C.E.: A balanced view of the cerebrospinal fluid composition
588 and functions: Focus on adult humans. *Exp. Neurol.* **273**, 57–68 (2015)

589 [2] Veening, J.G., Barendregt, H.P.: The regulation of brain states by neuroactive substances distributed
590 via the cerebrospinal fluid; a review. *Cerebrospinal Fluid Res.* **7**(1), 1–16 (2010)

591 [3] Hladky, S.B., Barrand, M.A.: The glymphatic hypothesis: the theory and the evidence. *Fluids and*
592 *Barriers of the CNS* **19**(1), 9 (2022)

593 [4] Louveau, A., Plog, B.A., Antila, S., Alitalo, K., Nedergaard, M., Kipnis, J., *et al.*: Understanding
594 the functions and relationships of the glymphatic system and meningeal lymphatics. *J. Clin. Invest.*
595 **127**(9), 3210–3219 (2017)

596 [5] Simon, M.J., Iliff, J.J.: Regulation of cerebrospinal fluid (csf) flow in neurodegenerative, neurovascular
597 and neuroinflammatory disease. *Biochimica et Biophysica Acta (BBA)-Molecular Basis of*
598 *Disease* **1862**(3), 442–451 (2016)

599 [6] Bradbury, M., Cole, D.: The role of the lymphatic system in drainage of cerebrospinal fluid and
600 aqueous humour. *J. Physiol.* **299**(1), 353–365 (1980)

601 [7] Brinker, T., Lüdemann, W., Rautenfeld, D., Samii, M.: Dynamic properties of lymphatic pathways
602 for the absorption of cerebrospinal fluid. *Acta Neuropathol.* **94**, 493–498 (1997)

603 [8] Cserr, H.F., Harling-Berg, C.J., Knopf, P.M.: Drainage of brain extracellular fluid into blood and
604 deep cervical lymph and its immunological significance. *Brain Pathol.* **2**(4), 269–276 (1992)

605 [9] Walter, B.A., Valera, V., Takahashi, S., Ushiki, T.: The olfactory route for cerebrospinal fluid
606 drainage into the peripheral lymphatic system. *Neuropath. Appl. Neuro.* **32**(4), 388–396 (2006)

607 [10] Ma, Q., Ineichen, B.V., Detmar, M., Proulx, S.T.: Outflow of cerebrospinal fluid is predominantly
608 through lymphatic vessels and is reduced in aged mice. *Nat. Commun.* **8**(1), 1434 (2017)

609 [11] Ahn, J.H., Cho, H., Kim, J.-H., Kim, S.H., Ham, J.-S., Park, I., Suh, S.H., Hong, S.P., Song, J.-H.,
610 Hong, Y.-K., *et al.*: Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. *Nature*
611 **572**(7767), 62–66 (2019)

612 [12] Hussain, R., Tithof, J., Wang, W., Cheetham-West, A., Song, W., Peng, W., Sigurdsson, B., Kim,
613 D., Sun, Q., Peng, S., *et al.*: Potentiating glymphatic drainage minimizes post-traumatic cerebral
614 oedema. *Nature* **623**(7989), 992–1000 (2023)

615 [13] Proulx, S.T.: Cerebrospinal fluid outflow: a review of the historical and contemporary evidence
616 for arachnoid villi, perineural routes, and dural lymphatics. *Cell. Mole. Life Sci.* **78**(6), 2429–2457
617 (2021) <https://doi.org/10.1007/s00018-020-03706-5>

618 [14] Johnston, M., Zakharov, A., Papaiconomou, C., Salmasi, G., Armstrong, D.: Evidence of connections
619 between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other
620 mammalian species. *Cerebrospinal fluid research* **1**, 1–13 (2004)

621 [15] Goodman, J.R., Adham, Z.O., Woltjer, R.L., Lund, A.W., Iliff, J.J.: Characterization of dural sinus-
622 associated lymphatic vasculature in human alzheimer’s dementia subjects. *Brain, behavior, and*
623 *immunity* **73**, 34–40 (2018)

624 [16] Norwood, J.N., Zhang, Q., Card, D., Craine, A., Ryan, T.M., Drew, P.J.: Anatomical basis and
625 physiological role of cerebrospinal fluid transport through the murine cribriform plate. *eLife* **8**, 44278
626 (2019) <https://doi.org/10.7554/eLife.44278> . Publisher: eLife Sciences Publications, Ltd

627 [17] Decker, Y., Krämer, J., Xin, L., Müller, A., Scheller, A., Fassbender, K., Proulx, S.T.: Magnetic
628 resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. *JCI*
629 *Insight* **7**(3) (2022)

630 [18] Spera, I., Cousin, N., Ries, M., Kedracka, A., Castillo, A., Aleandri, S., Vladymyrov, M., Mapunda,
631 J.A., Engelhardt, B., Luciani, P., *et al.*: Open pathways for cerebrospinal fluid outflow at the
632 cribriform plate along the olfactory nerves. *EBioMedicine* **91** (2023)

633 [19] Olsson, B., Lautner, R., Andreasson, U., Öhrfelt, A., Portelius, E., Bjerke, M., Hölttä, M., Rosén,
634 C., Olsson, C., Strobel, G., *et al.*: Csf and blood biomarkers for the diagnosis of alzheimer’s disease:
635 a systematic review and meta-analysis. *Lancet Neurol.* **15**(7), 673–684 (2016)

636 [20] Engelhardt, B., Carare, R.O., Bechmann, I., Flügel, A., Laman, J.D., Weller, R.O.: Vascular, glial,
637 and lymphatic immune gateways of the central nervous system. *Acta Neuropathol.* **132**, 317–338
638 (2016)

639 [21] Bolte, A.C., Dutta, A.B., Hurt, M.E., Smirnov, I., Kovacs, M.A., McKee, C.A., Ennerfelt, H.E.,
640 Shapiro, D., Nguyen, B.H., Frost, E.L., *et al.*: Meningeal lymphatic dysfunction exacerbates
641 traumatic brain injury pathogenesis. *Nature communications* **11**(1), 4524 (2020)

642 [22] Plog, B.A., Dashnaw, M.L., Hitomi, E., Peng, W., Liao, Y., Lou, N., Deane, R., Nedergaard, M.:
643 Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. *J.*
644 *Neurosci.* **35**(2), 518–526 (2015)

645 [23] Lohrberg, M., Wilting, J.: The lymphatic vascular system of the mouse head. *Cell Tissue Res.*
646 **366**(3), 667–677 (2016)

647 [24] Aspelund, A., Antila, S., Proulx, S.T., Karlsen, T.V., Karaman, S., Detmar, M., Wiig, H., Alitalo,
648 K.: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. *J.*
649 *Exp. Med.* **212**(7), 991–999 (2015) <https://doi.org/10.1084/jem.20142290>

650 [25] Xiang, T., Feng, D., Zhang, X., Chen, Y., Wang, H., Liu, X., Gong, Z., Yuan, J., Liu, M., Sha,
651 Z., *et al.*: Effects of increased intracranial pressure on cerebrospinal fluid influx, cerebral vascular
652 hemodynamic indexes, and cerebrospinal fluid lymphatic efflux. *Journal Cerebr. Blood F. Met.*
653 **42**(12), 2287–2302 (2022)

654 [26] Reddy, N.P., Krouskop, T.A., Newell Jr, P.H.: A computer model of the lymphatic system. *Comput.*
655 *Biol. Med.* **7**(3), 181–197 (1977)

656 [27] Quick, C.M., Venugopal, A.M., Dongaonkar, R.M., Laine, G.A., Stewart, R.H.: First-order approx-
657 imation for the pressure-flow relationship of spontaneously contracting lymphangions. *Am. J.*
658 *Physiol.-Heart C.* **294**(5), 2144–2149 (2008)

659 [28] Bertram, C.D., Macaskill, C., Moore, J.E.: Simulation of a Chain of Collapsible Contracting
660 Lymphangions With Progressive Valve Closure. *J. Biomech. Eng.* **133**(1), 011008 (2011) <https://doi.org/10.1115/1.4002799>

662 [29] Li, H., Mei, Y., Maimon, N., Padera, T.P., Baish, J.W., Munn, L.L.: The effects of valve leaflet
663 mechanics on lymphatic pumping assessed using numerical simulations. *Sci. Rep.* **9**(1), 10649 (2019)

664 [30] Baish, J.W., Kunert, C., Padera, T.P., Munn, L.L.: Synchronization and random triggering of
665 lymphatic vessel contractions. *PLoS Comput. Biol.* **12**(12), 1005231 (2016)

666 [31] Rahbar, E., Moore Jr, J.E.: A model of a radially expanding and contracting lymphangion. *J.*
667 *Biomech.* **44**(6), 1001–1007 (2011)

668 [32] Elich, H., Barrett, A., Shankar, V., Fogelson, A.L.: Pump efficacy in a two-dimensional, fluid–
669 structure interaction model of a chain of contracting lymphangions. *Biomech. Model. Mechan.* **20**,
670 1941–1968 (2021)

671 [33] Ballard, M., Wolf, K.T., Nepiyushchikh, Z., Dixon, J.B., Alexeev, A.: Probing the effect of
672 morphology on lymphatic valve dynamic function. *Biomech. Model. Mechan.* **17**, 1343–1356 (2018)

673 [34] Wolf, K.T., Dixon, J.B., Alexeev, A.: Fluid pumping of peristaltic vessel fitted with elastic valves.
674 *J. Fluid Mech.* **918**, 28 (2021)

675 [35] Moore Jr, J.E., Bertram, C.D.: Lymphatic system flows. *Annu. Rev. Fluid Mech.* **50**, 459–482 (2018)

676 [36] Hsu, M., Rayasam, A., Kijak, J.A., Choi, Y.H., Harding, J.S., Marcus, S.A., Karpus, W.J., Sandor,
677 M., Fabry, Z.: Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes
678 to drainage of CNS-derived antigens and immune cells. *Nat. Commun.* **10**(1), 229 (2019) <https://doi.org/10.1038/s41467-018-08163-0> . Number: 1 Publisher: Nature Publishing Group

680 [37] Furukawa, M., Shimoda, H., Kajiwara, T., Kato, S., Yanagisawa, S.: Topographic study on nerve-
681 associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron
682 microscopy. *Biomed. Res.* **29**(6), 289–296 (2008)

683 [38] Antila, S., Karaman, S., Nurmi, H., Airavaara, M., Voutilainen, M.H., Mathivet, T., Chilov, D., Li,
684 Z., Kopppinen, T., Park, J.-H., *et al.*: Development and plasticity of meningeal lymphatic vessels. *J.*
685 *Exp. Med.* **214**(12), 3645–3667 (2017)

686 [39] Talkington, A.M., Davis, R.B., Datto, N.C., Goodwin, E.R., Miller, L.A., Caron, K.M.: Dermal
687 Lymphatic Capillaries Do Not Obey Murray’s Law. *Front. Cardiovasc. Med.* **9**, 840305 (2022) <https://doi.org/10.3389/fcvm.2022.840305>

688 [40] Bertram, C.D., Macaskill, C., Davis, M.J., Moore, J.E.: Development of a model of a multi-
689 lymphangion lymphatic vessel incorporating realistic and measured parameter values. *Biomech.*
690 *Model. Mechan.* **13**(2), 401–416 (2014) <https://doi.org/10.1007/s10237-013-0505-0>

692 [41] Jamalian, S., Bertram, C.D., Richardson, W.J., Moore, J.E.: Parameter sensitivity analysis of a
693 lumped-parameter model of a chain of lymphangions in series. *Am. J. Physiol.-Heart C.* **305**(12),
694 1709–1717 (2013) <https://doi.org/10.1152/ajpheart.00403.2013>

695 [42] Bertram, C.D., Macaskill, C., Moore Jr, J.E.: Effects of lymphangion subdivision in a numerical
696 model of a lymphatic vessel. In: Summer Bioengineering Conference, vol. 54587, pp. 511–512 (2011).

697 American Society of Mechanical Engineers

698 [43] Kim, D., Gan, Y., Nedergaard, M., Kelley, D.H., Tithof, J.: Image analysis techniques for in vivo
699 quantification of cerebrospinal fluid flow. *Exp. Fluids* **64**(11), 181 (2023)

700 [44] Tithof, J., Boster, K.A., Bork, P.A., Nedergaard, M., Thomas, J.H., Kelley, D.H.: A network model
701 of glymphatic flow under different experimentally-motivated parametric scenarios. *iScience* **25**(5)
702 (2022)

703 [45] Bertram, C.D., Macaskill, C., Davis, M.J., Moore, J.E.: Consequences of intravascular lymphatic
704 valve properties: a study of contraction timing in a multi-lymphangion model. *Am. J. Physiol.-Heart
705 C.* **310**(7), 847–860 (2016) <https://doi.org/10.1152/ajpheart.00669.2015>

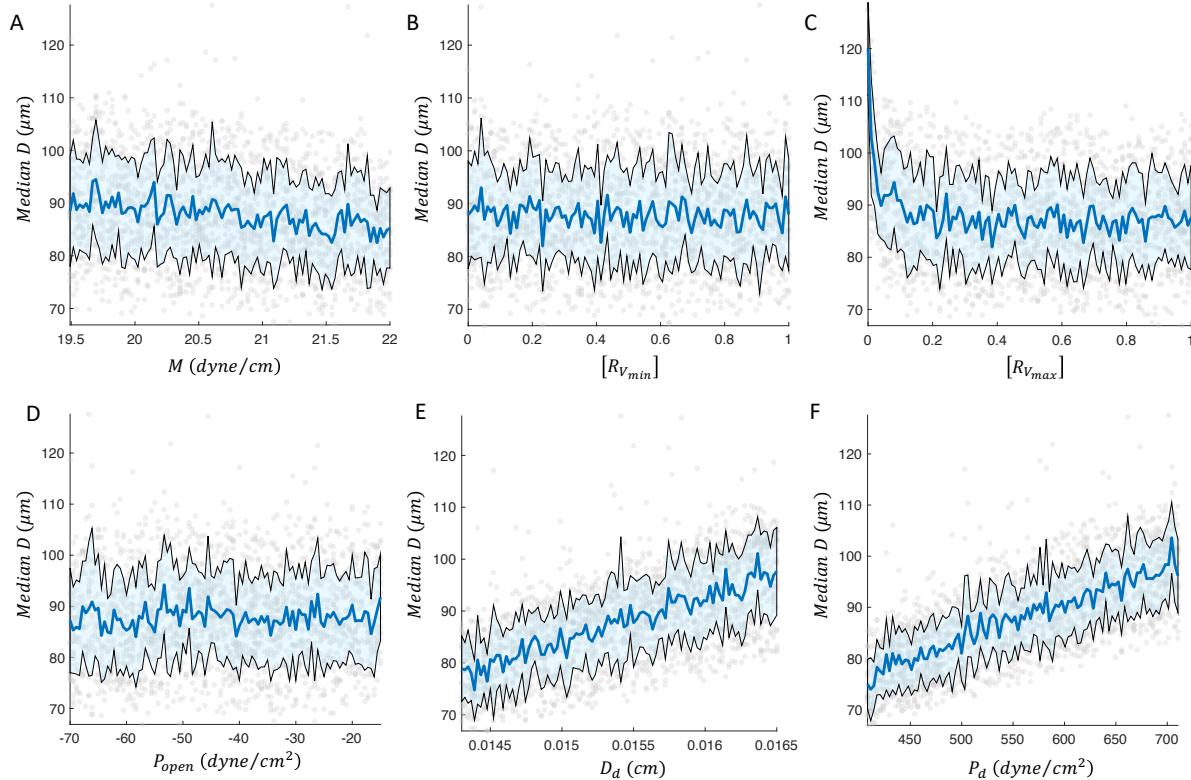
706 [46] Yang, B., Zador, Z., Verkman, A.: Glial cell aquaporin-4 overexpression in transgenic mice
707 accelerates cytotoxic brain swelling. *J. Biol. Chem.* **283**(22), 15280–15286 (2008)

708 [47] Moazen, M., Alazmani, A., Rafferty, K., Liu, Z.-J., Gustafson, J., Cunningham, M.L., Fagan, M.J.,
709 Herring, S.W.: Intracranial pressure changes during mouse development. *J. Biomech.* **49**(1), 123–126
710 (2016)

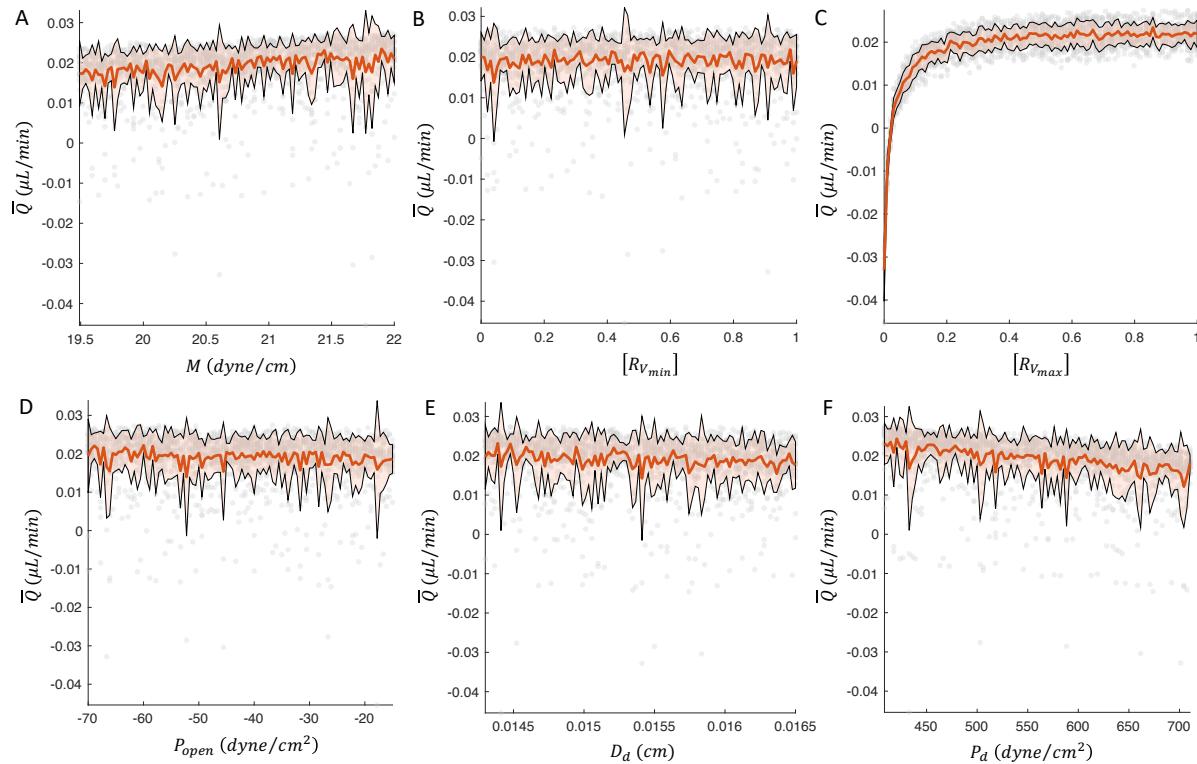
711 [48] Xie, C., Wei, W., Zhang, T., Dirsch, O., Dahmen, U.: Monitoring of systemic and hepatic
712 hemodynamic parameters in mice. *JoVE-J. Vis. Exp.* (92), 51955 (2014)

713 [49] Bertram, C.D., Macaskill, C., Davis, M.J., Moore, J.E.: Contraction of collecting lymphatics: organiza-
714 tion of pressure-dependent rate for multiple lymphangions. *Biomech. Model. Mechan.* **17**(5),
715 1513–1532 (2018) <https://doi.org/10.1007/s10237-018-1042-7>

716 [50] Lopez-Muniz, R., Stephens, N.L., Bromberger-Barnea, B., Permutt, S., Riley, R.L.: Critical closure
717 of pulmonary vessels analyzed in terms of starling resistor model. *J. Appl. Physiol.* **24**(5), 625–635
718 (1968)


719 [51] Du, T., Raghunandan, A., Mestre, H., Plá, V., Liu, G., Ladrón-de-Guevara, A., Newbold, E., Tobin,
720 P., Gahn-Martinez, D., Pattanayak, S., Huang, Q., Peng, W., Nedergaard, M., Kelley, D.H.: Restora-
721 tion of cervical lymphatic vessel function in aging rescues cerebrospinal fluid drainage. *Nat. Aging*
722 (2024) <https://doi.org/10.1038/s43587-024-00691-3>

723 [52] Dunn, L.T.: Raised intracranial pressure. *J. Neurol. Neurosur. Ps.* **73**(suppl 1), 23–27 (2002)


724 [53] Ringstad, G., Eide, P.K.: Glymphatic-lymphatic coupling: assessment of the evidence from magnetic
725 resonance imaging of humans. *Cell. Mol. Life Sci.* **81**(1), 1–14 (2024)

726 [54] Yoon, J.-H., Jin, H., Kim, H.J., Hong, S.P., Yang, M.J., Ahn, J.H., Kim, Y.-C., Seo, J., Lee, Y.,
 727 McDonald, D.M., et al.: Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage.
 728 Nature, 1–10 (2024)

729 Supplementary information

Fig. S1: Supplementary analysis of parameter sensitivity in median diameter. All data points are represented as light grey scattered points. The mean value is plotted in blue, while mean plus/minus one standard deviation is plotted in black (and the region in between is shaded light blue). (A-F) Median diameter as a function of (A) active tension, (B) normalized hydraulic resistance of the open valve, (C) normalized hydraulic resistance of the closed valve, (D) threshold pressure to open the valve, (E) threshold diameter for positive or negative transmural pressure in the vessel, and (F) vessel wall stiffness.

Fig. S2: Supplementary analysis of parameter sensitivity in mean volume flow rate. All data points are represented as light grey scatter points. The mean value is plotted in orange, while mean plus/minus one standard deviation is plotted in black (and the region in between is shaded light orange). (A-F) Mean volume flow rate as a function of (A) active tension, (B) normalized hydraulic resistance of the open valve, (C) normalized hydraulic resistance of the closed valve, (D) threshold pressure to open the valve, (E) threshold diameter for positive or negative transmural pressure in the vessel, and (F) vessel wall stiffness.