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ABSTRACT

We sought to examine how resistance exercise (RE), cycling exercise, and disuse atrophy affect
myosin heavy chain (MyHC) protein fragmentation in humans. In the first study (1boutRE),
younger adult men (n=8; 5£2 years of RE experience) performed a lower body RE bout with
vastus lateralis (VL) biopsies obtained immediately before, 3-, and 6-hours post-exercise. In the
second study (10weekRT), VL biopsies were obtained in untrained younger adults (n=36, 18 men
and 18 women) before and 24 hours (24h) after their first/naive RE bout. These participants also
engaged in 10 weeks (24 sessions) of resistance training and donated VL biopsies before and 24h
after their last RE bout. VL biopsies were also examined from a third acute cycling study (n=7)
and a fourth study involving two weeks of leg immobilization (n=20, 15 men and 5 women) to
determine how MyHC fragmentation was affected. In the 1boutRE study, the fragmentation of all
MyHC isoforms (MyHCrotal) increased 3 hours post-RE (~ +200%, p=0.018) and returned to pre-
exercise levels by 6 hours post-RE. Immunoprecipitation of MyHCrotal revealed ubiquitination
levels remained unaffected at the 3- and 6-hour post-RE time points. Interestingly, a greater
increase in magnitude for MyHC type Ila versus I isoform fragmentation occurred 3-hours post-
RE (8.6+6.3-fold versus 2.1+0.7-fold, p=0.018). In all 10weekRT participants, the first/naive and
last RE bouts increased MyHCroal fragmentation 24h post-RE (+65% and +36%, respectively;
p<0.001); however, the last RE bout response was attenuated compared to the first bout
(p=0.045). The first/naive bout response was significantly elevated in females only (p<0.001),
albeit females also demonstrated a last bout attenuation response (p=0.002). Although an acute
cycling bout did not alter MyHCrotal fragmentation, ~8% VL atrophy with two weeks of leg
immobilization led to robust MyHCrotal fragmentation (+108%, p<0.001), and no sex-based
differences were observed. In summary, RE and disuse atrophy increase MyHC protein
fragmentation. A dampened response with 10 weeks of resistance training, and more refined
responses in well-trained men, suggest this is an adaptive process. Given the null
polyubiquitination IP findings, more research is needed to determine how MyHC fragments are
processed. Moreover, further research is needed to determine how aging and disease-associated
muscle atrophy affect these outcomes, and whether MyHC fragmentation is a viable surrogate
for muscle protein turnover rates.

Keywords: resistance exercise, myosin heavy chain, proteolysis, skeletal muscle,
immunoblotting
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INTRODUCTION

Our laboratory recently recruited college-aged men with prior resistance training
experience to perform two lower body resistance exercise (RE) bouts separated by one week
consisting of 30% versus 80% one repetition loads [1]; these being termed 30-FAIL and 80-FAIL
bouts, respectively. Vastus lateralis (VL) muscle biopsies were obtained immediately prior to as
well as 3- and 6-hours following these bouts, and we sought to holistically examine skeletal
muscle-molecular outcomes that differed between the two loading paradigms. Our first series of
experiments indicated that both bouts similarly altered global DNA methylation and
transcriptome-wide markers [1]. Our second report indicated that both bouts similarly increased
certain aspects of the mechanistic target of rapamycin signaling complex 1 (mTORCI1) cascade
while also similarly increasing follistatin mRNA and protein expression [2]. Notably, both
studies support prior literature suggesting that low-load and high-load training elicit similar post-
exercise anabolic signaling outcomes so long as sets are performed near failure [3-5].

The final phase of project analysis began with utilizing the remaining 30-FAIL tissue for
8 participants to examine if titin phosphorylation was altered 3- or 6-hours following exercise.
Our interest was spawned by past reviews suggesting this phenomenon may be a catalyst for
post-exercise anabolic signaling [6, 7]. To accomplish this aim, myofibrils were isolated and
solubilized using our recently published MIST method adopted by us and others [8-11]. During
pilot SDS-PAGE Coomassie experiments with myofibril isolates, we observed notable protein
fragmentation occurred 3 hours following exercise that was visibly reversed by the 6-hour post-
exercise time point (depicted in Figure 1 in the Results section). With preliminary
immunoblotting experiments we also observed a similar trend with the titin protein, thus
precluding phosphorylation analysis. After a thorough examination of the literature, only one
paper has reported that a RE bout promotes titin and myosin heavy chain (MyHC) fragmentation
3 hours following a RE bout [12], and this report was in seven previously trained men. However,
aside from briefly mentioning this as being potential evidence of protein disruption with
resistance training, the significance of this finding was not further explored.

These observations motivated a series of exploratory experiments using VL biopsy
specimens from various human studies. Data from one study (termed “1boutRE”) provides
compelling evidence that significant MyHC fragmentation occurs 3 hours following a single
lower body RE bout in well-trained males. However, MyHC fragments are largely absent 6 hours
following exercise implying that skeletal muscle can rapidly clear these proteins following a
loading stimulus. In a second study (termed “10weekRT”’), we observed that MyHC
fragmentation is present 24 hours following a leg extensor bout in a large cohort of untrained
males and females, and that this 24-hour response is attenuated after 10 weeks (24 total sessions)
of leg extensor resistance training. Results from our third study indicated that 60 minutes of
cycling exercise did not promote MyHC fragmentation 2- or 8-hours post-exercise. Results from
our fourth study indicated that two weeks of disuse atrophy through leg immobilization
promoted a robust MyHC fragmentation response. We believe that this easy-to-perform
immunoblot-based technique could be used as a proxy marker of protein degradation in
resistance exercise studies or disuse studies. Experimental details and an expanded discussion of
these findings are provided in the following paragraphs.

METHODS

1boutRE study participants
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113 Muscle specimens from well-trained college-aged males (n=8; 22+3 years old, 5+2 years of RE
114  experience, 83.0+£7.0 kg, 1.6+0.3 1RM squat: body mass) as described by Sexton et al. [1], and
115  all experimental procedures were approved by the Auburn University Institutional Review Board
116  (IRB protocol #20-081). Information regarding participant characteristics, the acute lower body
117  RE exercise bout, and the procurement of vastus lateralis biopsies can be found in Sexton et al.
118  [1]. Briefly, participants reported to the laboratory during morning hours in a fasted state. After
119  donating a baseline biopsy, participants performed 4 sets each of the back squat and leg

120  extension exercises at 30% of their estimated one-repetition maximum loads until volitional

121  failure. Five minutes of rest was allowed between sets and exercises. Following the RE bout, VL
122 biopsies were collected 3- and 6-h post-exercise. This study, along with others detailed herein,
123 are visually depicted in Figure 1.

124

125 INSERT FIGURE 1 HERE

126

127  10weekRT study participants

128  Muscle specimens were from healthy college-aged participants (n=38 total with

129 19 women [24.2 + 4.9 years old, 62.7 = 8.5 kg and 1.64 + 0.1 m) and 19 men (24.5 £ 3.3 years
130 old, 73.6 £ 13.4 kg, 1.76 = 0.1 m) as previously described by Scarpelli et al. [13]. Due to sample
131  limitations for 2 participants, only 36 participants were analyzed. All experimental procedures
132 were approved by the local ethics committee, the study was conducted in accordance with the
133 most recent version of the Declaration of Helsinki and was registered as a clinical trial (Brazilian
134  Registry of Clinical Trials — RBR-57v9mrb), and training as well as specimen collection was
135  performed at the University of Sao Carlos. The resistance training protocol consisted of four sets
136  of 9-12 maximum repetitions of unilateral leg extension exercises, with a 90-second rest period
137  between sets. The load was adjusted for each set to ensure that concentric muscle failure

138  occurred within the target repetition range. Participants completed 24 training sessions over a
139  period of 10 weeks, with sessions conducted 2 to 3 times per week. Critically, four mid-thigh VL
140  biopsies were obtained before (Pre) and 24 h after the first training bout (untrained state), and 96
141  hours after the second to last training bout (Pre) and 24 h after the last training bout (trained

142 state).

143

144 Cycling study and leg immobilization study participants

145  To determine how an acute cycling bout affects post-exercise MyHC fragmentation, human

146  muscle specimens from a previously published study from our laboratory were analyzed (IRB
147  protocol #18-226) [14]. To determine how non-complicated (i.e., without injury or illness) disuse
148  atrophy affects MyHC fragmentation, human muscle specimens from another ongoing Auburn
149  University IRB-approved study (IRB protocol #23-220) were analyzed. Experimental procedures
150 from both studies were approved by the Auburn University Institutional Review Board and were
151  conducted at Auburn University.

152 For the cycling study, apparently healthy college-aged participants (n=7, 3 males and 4
153  females; 2343 years old, 23.0+2.9 kg/m?) reported to the laboratory during the morning hours
154  under fasted conditions and donated a baseline VL biopsy. Participants then mounted a cycle

155  ergometer (Velotron, RacerMate, Seattle, WA, USA) and performed a 5-minute warm-up at a
156  self-selected pace. Wattage was adjusted thereafter to achieve 70% VOareserve and participants
157  cycled for 60 minutes. Post-exercise biopsies were then obtained 2- and 8-hours following the
158  cycling bout.
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For the leg immobilization study, apparently healthy college-aged participants (n=20, 15
males and 5 females; 26+3 years old, 25.9+5.6 kg/m?) reported to the laboratory under fasted
conditions and donated a baseline VL biopsy. Participants were then fitted with a knee brace
locked at 90° and administered crutches and explicit instructions to prevent weight-bearing
activities on the braced leg for a 14-day period. Following the 14-day disuse period, participants
reported back to the laboratory under fasted conditions (£ 2 hours from the first visit) and
donated a second VL biopsy.

1boutRE tissue myofibril and cytoplasmic fractionation

Using a liquid nitrogen-cooled ceramic stage, approximately 20 mg of muscle from each biopsy
specimen was placed in 1.7 mL tubes containing 300 uL of ice-cold homogenizing buffer (Buffer
1: 20 mM Tris-HCL, pH 7.2, 5 mM EGTA, 100 mM KCI, 1% Triton-X100; all chemicals from
VWR; Radnor, PA, USA). Samples were homogenized using tight-fitting pestles and centrifuged
at 3,000 g for 30 minutes at 4°C. Supernatants (cytoplasmic fraction) were transferred to new 1.7
mL tubes and stored at -80°C until protein analyses described below. As a wash step, resultant
pellets (myofibrillar fraction) were resuspended in Buffer 1, and samples were centrifuged at
3,000 g for 10 minutes at 4°C. Resultant supernatants from this step were discarded, myofibril
pellets were resuspended in 300 pL of ice-cold wash buffer (Buffer 2: 20 mM Tris-HCI, pH 7.2,
100 mM KCl, 1 mM DTT; all chemicals from VWR), and tubes were centrifuged at 3,000 g for
10 minutes at 4°C; this step was performed twice. Final myofibril pellets were resuspended in
400 pL of ice-cold storage buffer (Buffer 3: 20 mM Tris-HCL pH 7.2, 100 mM KCl, 20%
glycerol, I mM DTT, 50 mM spermidine; all chemicals from VWR), and stored at -80°C for
analyses described below.

Whole tissue lysate preparations for 10weekRT, cycling, and leg immobilization studies

Using a liquid nitrogen-cooled ceramic stage, approximately 20 mg of muscle from each biopsy
specimen was placed in 1.7 mL tubes containing 400 pL of commercially available general cell
lysis buffer (Cell Signaling; Danvers, MA, USA; cat#: 9803). Samples were centrifuged at 500 g
for 5 minutes at 4°C. Resultant supernatants from placed in new 1.7 mL tubes and stored at -
80°C for analyses described below.

MyHC immunoblotting

Protein concentrations of 1boutRE myofibril and cytoplasmic isolates, and whole tissue lysates
from the other studies were quantified using bicinchoninic acid (BCA) colorimetric assays
(Thermo Scientific, Waltham, MA, USA). Isolates and lysates from all studies were then
prepared for Western blot analysis with 4x Laemmli buffer for final concentration preparations at
1 pg/uL. Aliquots of prepared samples (4 uL for myofibrillar preps, 15 pL for cytoplasmic preps,
and 10 pL of whole tissue lysate preps) were applied to 4—15% SDS-polyacrylamide gels (Bio-
Rad; Hercules, CA, USA) and subjected to electrophoresis at 180 volts for 50 minutes in a
preformulated 1x SDS-PAGE buffer (VWR). Proteins were then electrotransferred onto pre-
activated polyvinylidene difluoride membranes (Bio-Rad) for 2 hours on ice, Ponceau stained,
and placed in a gel documentation system (ChemiDoc Touch; Bio-Rad) to capture whole-lane
images for protein normalization purposes. Membranes were then blocked in a solution
containing 5% skimmed milk powder in Tris-buffered saline with 0.1% Tween-20 (VWR) for 1
hour at ambient temperature.
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Incubation of membranes with anti-MyHC antibodies were carried out for 1-2 hours
(room temperature) at a dilution of 1:200 in TBST containing 5% bovine serum albumin. These
antibodies included non-concentrated clone supernatants of: i) mouse monoclonal I[gG2a MyHC,
termed MyHCrota throughout (Developmental Studies Hybridoma Bank; Iowa City, IA, USA;
cat#: A4.1025), i1)) mouse monoclonal IgG1 MyHCI (Developmental Studies Hybridoma Bank;
cat#: A4.951), iii) mouse monoclonal IgG1 MyHClIlIa (Developmental Studies Hybridoma Bank;
cat#: SC-71), and iv) mouse monoclonal IgM MyHCIIx (Developmental Studies Hybridoma
Bank; cat#: 6H1). Following primary antibody incubations, membranes were washed for 15
minutes in TBST and incubated with horseradish peroxidase-conjugated anti-mouse IgG (Cell
Signaling; cat#: 7076) or IgM (ThermoFisher Scientific; cat#: 31440) secondary antibodies at a
dilution of 1:2000 in TBST with 5% BSA for one hour (room temperature) prior to development
steps described below.

Membranes were developed for 1-5 seconds using an enhanced chemiluminescence
reagent (Luminata Forte HRP substrate; Millipore Sigma) in a gel documentation system
(ChemiDoc Touch; Bio-Rad). The densitometry of prominent MyHC bands and fragments were
quantified with ImageLab v6.0.1 (Bio-Rad) using the “Lanes & Bands Tool” functions.
Densitometry readings for bands and targets were normalized to baseline (Pre) values, which
were averaged to a value of 1.00, and expressed as fold-change from Pre.

Immunoprecipitation for MyHCrywai polyubiquitination in 1boutRE myofibril isolates

To determine if MyHC fragments were polyubiquitinated, immunoprecipitation (IP) experiments
were performed on 1boutRE myofibril isolates using a commercially available kit (Dynabeads
Protein G; Thermo Fisher Scientific; cat#: 10009D). Per sample reaction, 50 pL of resuspended
bead slurry was mixed with 30 pL of mouse monoclonal IgG2a MyHC (Developmental Studies
Hybridoma Bank; cat#: supernatant of A4.1025) for 60 minutes at room temperature on an
inversion apparatus. Bead-IgG2a complexes were washed with antibody binding/wash buffer
provided by the kit and subsequently incubated with 600 pg of myofibril protein per sample for
60 minutes at room temperature on an inversion apparatus. Bead-Ab-Ag complexes were then
washed three times with wash buffer provided by the kit, and 20 pL of elution buffer as well as
10 pL of 4x Laemmli buffer was added. Samples were boiled for 5 minutes at 100°C, beads were
removed using a magnetic rack apparatus, and immunoblotting experiments were carried out on
10 uL of resultant IP preps whereby polyubiquitinated MyHC fragments were probed using a
polyclonal rabbit IgG antibody (1:1000; Cell Signaling; cat#: 3933). In addition to these IP
experiments, 1boutRE myofibril isolates were immunoblotted for polyubiquitination using the
same polyclonal rabbit IgG antibody and immunoblotting methods described in the prior section.

Statistical analysis

Stats were performed and graphs were constructed using commercially available software
(GraphPad Prism, v10.1.0; Boston, MA, USA). Most 1boutRE and all cycling study data were
analyzed via one-way repeated measures ANOV As. When significant model effects were
observed (p<0.05), Tukey’s post hoc tests were performed to determine which time points were
significantly different from one another. The only 1boutRE data analyzed via two-way repeated
measures ANOV As were isoform-specific data. When significant model effects were observed
(p<0.05), Fisher’s LSD post hoc tests were performed to determine which time points were
significantly different from one another. All 10weekRT data were analyzed via two-way
(training status x time) repeated measures ANOV As. When significant model effects were
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observed (p<0.05), Tukey’s post hoc tests were performed to determine which time points were
significantly different from one another. Leg immobilization study data were analyzed using
dependent samples t-tests. Data throughout are presented as means and standard deviation values
with individual data points.

RESULTS

Evidence of post-exercise myofibril protein fragmentation following a single RE bout

As noted in the Introduction section, our experiments began with attempting to interrogate the
titin protein from 1boutRE specimens. Figure 2 shows preliminary SDS-PAGE Coomassie
experiments on myofibril isolates in two participants from this study. Notably, visual protein
fragments were observed in the MyHC region 3 hours following the RE bout, and the rapid
disappearance of these fragments was evident by 6 hours post-exercise.

INSERT FIGURE 2

Transient post-exercise MyHCrow fragmentation following a single RE bout

Figure 3 shows MyHCrotal immunoblotting experiments in all 1boutRE participants. The
increased presence of MyHCrotal fragmentation was evident in the myofibril fraction 3 hours
following RE, and the rapid disappearance of these fragments was evident by the 6-hour post-
exercise time point (Figure 3a). MyHCrotwl fragmentation was also observed at the 3-hour post-
exercise time point in the cytoplasmic fraction of several participants (Figure 3b), albeit this did
not reach statistical significance.

INSERT FIGURE 3

Isoform-specific MyHC fragmentation following a single RE bout

Figure 4 shows isoform specific MyHC immunoblotting experiments in all 1boutRE participants.
The increased presence of type I and 1la MyHC fragments were evident in the myofibril fraction
3 hours following the RE bout, and the rapid disappearance of these fragments was evident by
the 6-hour post-exercise time point (Figure 4a). Additionally, the magnitude of 3-hour post-RE
type Ila isoform fragmentation was greater than type I isoform fragmentation (p=0.024). Finally,
there were visually different patterns of fragmentation between isoforms, with lighter molecular
weight type I isoform fragments appearing post-RE versus heavier type Ila fragments (Figure
4b).

INSERT FIGURE 4 HERE

Polyubiquitination of myofibril proteins and MyH Crowi poly-ubiquitination following a single RE
bout

Figure 5 shows myofibril protein polyubiquitination and MyHCrotal polyubiquitination in all
1boutRE participants. Myofibril protein poly-ubiquitination levels did not significantly differ
between pre- and post-exercise timepoints (Figure 5a). Moreover, polyubiquitinated fragments in
the ~15-50 kD region (where the signal was prominent) were not significantly altered when this
signal was normalized to the MyHC IP signal (Figure 5b). Also notable is the lack of
polyubiquitinated MyHtotal fragments between the ~50-220 kD region.
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296 INSERT FIGURE 5 HERE

297

298  Post-exercise MyHCrywal fragmentation in 10weekRT participants in the naive and trained states
299  Figure 6 shows MyHCroal fragmentation responses in 10weekRT participants. Significant

300 increases were observed 24-hours following the first/naive and last training bouts (Figure 6a).
301 However, this response was attenuated following the last versus the first/naive bout (p=0.045).
302 Given that there were a robust number of men and women with this study (n=18 per sex),
303  we also examined MyHCrotai fragmentation responses between sexes (Figure 6b). Interestingly, a
304 two-way (sex X time) repeated measures ANOVA indicated that significant 24-hour MyHCrotal
305 fragmentation following the first/naive bout was only evident in females (p<0.001 within and
306  between sexes). However, this response in females was attenuated 24 hours following the last
307  bout of training (p=0.002).

308

309 INSERT FIGURE 6 HERE

310

311  MyHCrow fragmentation is absent following a cycling bout

312 Figure 7 shows MyHCrotal fragmentation responses in the 7 participants who engaged in 60

313  minutes of cycling exercise. Unlike what was observed with the resistance exercise responses,

314  there was a lack of post-exercise fragmentation 2- and 8-hours following the cycling bout.
315

316 INSERT FIGURE 7 HERE
317

318  MyHCrwl fragmentation increases following two weeks of leg immobilization

319  Figure 8 shows data in the 20 participants who underwent leg immobilization for two weeks. Leg
320 immobilization led to ~8% mid-thigh vastus lateralis atrophy (p<0.001, Figure 8a) and this

321  coincided with a 108% increase in MyHCrotal fragmentation (p<0.001, Figure 8b).

322 Although there were appreciably more men than women in this cohort (15 versus 5,

323  respectively), statistical analyses were still performed to determine if responses were similar

324  between sexes. Following disuse, MyHCrotal fragmentation increased in men (92%, p=0.002) and
325 women (164%, p<0.001), and while the magnitude was greater in women, these responses were
326  statistically similar between sexes (p=0.374). Likewise, no difference in VL muscle atrophy was

327  apparent between sexes (men: -8.7+7.5%, women: -5.443.4%, p=0.355).
328

329 INSERT FIGURE 8 HERE

330 DISCUSSION

331 This investigation provides evidence that RE and disuse in humans promote MyHC

332 fragmentation. The absence of MyHC fragmentation following a cycling bout implies this

333 process is likely a response to load-induced damage. These findings are physiologically relevant
334  given that the MyHC protein is needed for proper muscle function and is by far the most

335 abundant protein in skeletal muscle (i.e., ~42% of the total muscle protein pool in college-aged
336  men according to our recent proteomic estimates [15]). As mentioned prior, only one other study
337  has reported that a RE bout increases titin and MyHC fragmentation in whole tissue lysates 3
338  hours following exercise in seven previously trained men [12]. Although the authors did not

339  extensively pursue the significance of this finding, other studies indirectly support that the

340 fragmentation of MyHC and other myofibrillar proteins likely occur following a RE bout. For
341  example, Beaton et al. [16] demonstrated a loss of sarcomeric structural proteins such as desmin
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342  4- and 24-hours following a bout of eccentric exercise in recreationally trained men. Nielson et
343  al. [17] reported that a bout of eccentric loading leads to significant z-/m-line disruption 3-, 24-
344  and 48-hours following exercise in untrained men; notably, z-/m-line disruption is an

345  ultrastructural feature that may represent the release of myofilaments from intracellular

346  structures [18]. Phillips et al. [19] reported that muscle protein breakdown (MPB) rates following
347  RE peak at 3 hours in untrained men, and a significant elevation in MPB is also evident in these
348 individuals 24 hours following exercise. These researchers have also reported that MPB rates are
349  significantly elevated in resistance trained men 4 hours following a leg RE bout [20].

350 Ample availability of 1boutRE biopsy specimens allowed for a more expanded analysis
351 relative to the other studies. Aside from isoform specific fragmentation patterns (discussed in the
352  next paragraph), myofibril isolates were also analyzed for MyHC protein polyubiquitination to
353  potentially explain the rapid disappearance of fragments by the 6-hour post-RE time point. The
354  muscle RING finger 1 (MuRF1) and muscle atrophy F-box protein (MAFbx) E3 ligases catalyze
355  sarcomeric protein poly-ubiquitination for degradation through the proteasome [21, 22], although
356 there is additional evidence that polyubiquitinated protein aggregates can undergo selective

357 lysosome degradation [23]. Hence, we hypothesized that post-RE MyHC fragments are likely
358  polyubiquitinated. Contrary to this hypothesis, however, were the IP experiment results

359 indicating that polyubiquitinated MyHCrotl fragments (normalized to the MyHCrotal IP signal)
360  were not altered 3- and 6-hours post RE. Moreover, polyubiquitinated myofibril proteins were
361 not altered at post-exercise time points and there was a lack of polyubiquitinated MyHCrotal

362  fragments in the ~50-220 kD range. Previous data published by our laboratory demonstrates that
363 the ubiquitin antibody used in the current study readily detects proteolytic activity as observed by
364  the accumulation of polyubiquitinated proteins in myotubes treated with a proteasome inhibitor
365  [24]. Hence, this lends further credence that post-RE MyHC fragments are not polyubiquitinated
366 and may be cleared from muscle through non-proteolytic mechanisms. These findings call into
367 question how MyHC fragments are cleared from muscle. It is tempting to speculate that MyHC
368 fragments have dissociated peptide bonds rapidly repaired and are re-associated back into

369 myofibrils post-RE. However, enzymes facilitating this process require a catalytic domain that
370  possesses peptide bond formation capabilities, and although non-ribosomal peptide synthetases
371  (NRPSs) have been exist in bacteria [25], these enzymes do not exist in mammalian cells.

372 Another explanation is that MyHC fragments are packaged into extracellular vesicles (EVs) and
373 arereleased into circulation post-RE. This is not too far-fetched given that others have reported
374  robust elevations in circulating EVs immediately post-RE [26], and MyHC has been reported to
375  be enriched in circulating EVs [27]. However, we were not able to test this hypothesis given that
376  blood was not obtained in 1boutRE participants. Therefore, future research is needed in further
377  determining the fate of post-RE MyHC fragments.

378 The unique RE-induced MyHC I and Ila isoform fragmentation responses in the 1boutRE
379  study participants also warrant consideration. Although the isoform responses were indeed

380 interesting, this finding was not unanticipated given that fiber type-specific macromolecule and
381 proteome differences have been reported (reviewed in [28]). Calpains, which are chiefly

382  responsible for the cleavage of MyHC [29], have been reported to be differentially expressed in
383  slow- versus fast-twitch muscle [30, 31]. Moreover, endogenous calpain inhibitors are

384  differentially expressed in slow- versus fast-twitch muscle [32]. Hence, these fiber type

385  differences may partially be responsible for the post-RE type I versus Ila isoform fragmentation
386  patterns. Mechanisms aside, it is tempting to speculate how divergent post-exercise MyHC

387  isotype fragmentation patterns associate with muscle hypertrophy outcomes. In this regard, there
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is generally a greater increase in type II versus type I fiber cross-sectional area in response to a
variety of resistance training protocols [28, 33], and our laboratory has reported this on multiple
occasions [34-37]. There is also evidence to suggest that plyometric resistance exercise leads to
significantly more sarcomere damage in type II versus I fibers (~85% versus 27%) as assessed
by transmission electron microscopy [38]. This prior finding agrees in principle with
observations of a more robust post-RE increase in Ila versus I isoform fragmentation. However,
we temper our enthusiasm for various reasons. First, the compact pattern of Ila isoform
fragmentation made it more difficult to distinguish between the intact protein and protein
fragments (see lane profile in Figure 4b). Additionally, the type I isoform yielded more pre-
exercise immunoreactive fragments across numerous participants compared to the type Ila
isoform. Hence, the utilization of more refined approaches (e.g., longer electrophoresis run times
for Ila assays) is needed to determine the extent of Ila isoform fragmentation. Future
investigations parsing the mechanisms responsible for fiber type-specific differences in
fragmentation and/or if these differences are associated with fiber type-specific responses to
training are also warranted.

The robust MyHCrotal fragmentation response following two weeks of disuse atrophy in
both sexes is another novel finding that is worthy of discussion. Multiple pathways catalyze
MPB including calpain-mediated proteolysis, lysosome-mediated autophagy, and the ATP-
dependent ubiquitin proteasome pathway [39, 40]. Although human and rodent disuse studies
support an upregulation in surrogate skeletal muscle and/or blood markers related to these
processes [41-46], MPB has been reported to remain unaltered or paradoxically reduced during 4
and 21 days of different disuse models in younger males [47, 48]. Indeed, this may be a
limitation of tracer methods and assumptions used to assess MPB as posited by O’Reilly et al.
[49]. One limitation herein is the lack of time course biopsies during leg immobilization. In this
regard, an interesting interrogation would include examining MyHC fragmentation patterns one,
3, and/or 5 days following leg bracing. Notwithstanding, the current data suggest that the
breakdown of MyHC occurs with VL muscle atrophy following disuse in humans, and this
simple-to-execute immunoblot-based assay may serve as a viable proteolysis surrogate for future
disuse studies.

Finally, the robust sample size of the 10weekRT study allowed for comparisons based on
training status and sex that warrant further discussion. If indeed post-RE MyHC fragmentation is
a surrogate for myofiber damage, then the Figure 6 data suggest that a naive RE bout may elicit a
greater 24-hour post-exercise damage response, as the response was attenuated in the trained
state. These findings are supported by Damas et al. [50], who investigated the global
transcriptome signature in nine young men. Muscle biopsies were conducted at rest and 24 hours
post-resistance training (RT), both before (untrained state) and after (trained state) a 10-week
resistance training program. An upregulation of genes associated with the ubiquitin-proteasome
pathway (UPP), the calpain pathway, and extracellular matrix (ECM) remodeling were observed
24 hours after single RE bouts, with a more notable increase observed in the untrained state.
Additionally, these results were accompanied by a reduction in muscle damage [51].

Interestingly, the attenuation of increased fragmentation in the trained state was greater
for men than for women. This counters the notion that estradiol confers protection against post-
exercise muscle damage, albeit considerable debate has ensued suggesting that this phenomenon
is confined to rodents [52]. Moreover, sex-based differences in anabolic signaling, mRNAs
associated with proteolysis, or MPS rates are minimal between young adult men and women
over a 24-hour post-exercise period [53]. Women tend to experience less acute fatigue [54], and
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thus speculation may exist that more disruption per session limits recovery between sessions.
However, while some evidence exists showing greater relative strength decrements [55, 56], a
heightened post-exercise inflammatory response [57], and a heightened post-exercise blood
creatine kinase response [55] compared to males, other evidence contradicts these findings [58-
60]. Mechanisms potentially responsible for this sex-divergent response were not interrogated.
However, the significance of this finding is questionable for a couple of reasons. First, in prior
publications involving both sexes from this study demonstrated similar hypertrophic outcomes
following 10 weeks of training [13, 61]. Moreover, the 24-hour post-exercise MyHCrotal
fragmentation response to the last bout of exercise was attenuated in females and not different
between sexes. Notwithstanding, the current study provides additional data to support that sex-
based differences in response to RE exist and provide a further impetus to examine this area of
muscle biology.

Conclusions

In summary, MyHC fragmentation occurs in response to RE bouts and disuse atrophy in humans.
A refined fragmentation response with 10 weeks of resistance training, and more refined
responses in well-trained participants, suggest this an adaptive process. Importantly, we posit that
this easy-to-execute immunoblot-based technique has promising utility with resistance exercise
or disuse studies. More research is needed to determine how different exercise modalities (e.g.,
concurrent training), aging, or certain diseases that promote skeletal muscle atrophy (e.g., hyper-
metabolic stress, cancer-cachexia, etc.) affect MyHC fragmentation. Research into the
physiological consequences of different fragmentation responses as well as the fate of MyHC
fragments is also warranted.
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625 FIGURE LEGENDS
626
627  Figure 1. Summary of human studies
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628
629  Legend: Schematic (drawn using Biorender.com) illustrates the study logistics and participant

630 number for each study whereby MyHC analyses occurred. More details related to each study can
631  be found in-text.
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632  Figure 2. Evidence of post-exercise myofibril protein fragmentation in 1boutRE study
633  participants
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635 Legend: As discussed in-text, preliminary 1boutRE experiments were performed on two well-
636 trained participants’ myofibril isolates aiming to examine the presence of titin using 4-15% SDS-
637  PAGE gels and Coomassie staining. In both participants, visual myofibril protein fragments were
638  observed in the myosin heavy chain (MyHC) kilodalton region 3 hours following the resistance
639  exercise bout. Conversely, the rapid disappearance of these fragments was evident by the 6-hour
640  post-exercise time point.
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641  Figure 3. Post-exercise MyHCrotl fragmentation in 1boutRE participants
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642
643  Legend: Data from well-trained 1boutRE men (n=8) show that significant total myosin heavy

644  chain (MyHCrotwl) fragmentation is evident in the myofibril fraction 3 hours following a

645  resistance exercise bout (panel a); however, the rapid (and significant) disappearance of these
646  fragments was evident by the 6-hour post-exercise time point. Also notable is the high presence
647  of MyHCroal fragments in the cytoplasmic fraction in several participants (panel b); however,
648 this did not reach statistical significance. Representative immunoblots are shown for 2 of 8

649  participants, and data are presented as mean and standard deviation values with repeated

650 measures (RM) ANOVA p-values.
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651  Figure 4. Type I versus Ila MyHC isoform fragmentation in 1boutRE participants
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652
653  Legend: Data from well-trained 1boutRE men (n=8) show that significant myosin heavy chain

654 (MyHC) fragmentation of the type I and Ila isoforms is evident in the myofibril fraction 3 hours
655  following the resistance exercise bout (panel a); however, as with MyHCrotl fragments, the rapid
656  (and significant) disappearance of I and Ila fragments was evident by the 6-hour post-exercise
657  time point. Also notable were the different patterns of fragmentation between isoforms, with

658  lighter molecular weight type I isoform fragments appearing post-RE versus heavier type Ila

659  fragments. Representative immunoblots are shown for 2 of 8 participants, and data are presented
660 as mean and standard deviation values with two-way (isoform*time) ANOVA time and

661 interaction p-values. Panel b shows lane profiles of type I and Ila isoform fragmentation from
662  two different participants where “*” indicates fragments detected by analysis software.
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663  Figure 5. Total myofibril protein and MyHCrotal poly-ubiquitination in 1boutRE participants

a Subj. 1 Subj. 2

Corresponding
Ponceau stain

RM ANOVA p=0.134

o

[2)
£
[ ) >au
g5 0 t.oap.
Q_?g <
za °
Q2 £ 34 2 g
N— o -C ‘
¥ 5
® §2- = | S
2a =1 -—
© < g
= ® 5
22 Y 3 :
23S g
? e —
% ° Pre 3h post  6h post LB BLD B
- £88888
1.00 0.93 0.97 cc £¢&
Mean (SD)  (5'10) (0.05) 0.08) 58
: Corresponding
IP'. MyHCT"‘_‘" poly-Ub signal
b Subj. 1 Subj. 2 on IP: MyHCr,,
1] ' | "
0w 4n RM ANOVA p=0.504 220 kD = " :
c c | !
[O2Ne)) |
£ I |
7E® i |
23 | |
s1* = N :
= , . 45kD—>, Lo !
§ S 1- .y ° | Lo !
‘_QJ_ c + °® . : : !
= ! !
&g 1 1 : !
- < I | ;

Pre 3hpost 6hpost 15kD—>_

1.00 1.11 1.04
(0.22)  (0.25)  (0.20)

;‘

Mean (SD)

664
665 Legend: Data from well-trained 1boutRE men (n=8) show that total myofibril protein

666  polyubiquitination levels remain unaltered post-exercise (panel a). Additionally, the

667  polyubiquitination signal on immunoprecipitated MyHC fragments (spanning ~15-50 kD)

668  remained unaltered 3- and 6-hours post-exercise when data were normalized to the IP: MyHC
669  signal (panel b). Representative immunoblots are shown for 2 of 8 participants, and data are

670 presented as mean and standard deviation values with one-way repeated measures (RM) ANOVA
671  p-values.
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Figure 6. 24-hour post-exercise MyHCrotal fragmentation in the untrained and trained states in
10weekRT participants
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Legend: Data from all 10weekRT participants (n=36) show that significant total myosin heavy
chain (MyHCrotl) fragmentation is evident in the whole tissue lysate 24 hours following the
first/naive resistance exercise bout (panel a). While this same 24-hour post-exercise response
occurs following 10 weeks of training (24 leg extensor sessions), it is significantly attenuated.
Sex analysis in 10weekRT participants (18 men and 18 women) show that the 24-hour first bout
RE responses in panel a are largely driven by females (panel b). Representative immunoblots are
shown for 3 participants, and data are presented as mean and standard deviation values with two-
way (training state*time) ANOVA main effect and interaction p-values.
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Figure 7. MyHCrotal fragmentation is absent following a cycling exercise bout
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Legend: Data from cycling study participants (n=7) show that total myosin heavy chain
(MyHCrota1) fragmentation is not significantly altered 2- and 8-hours following a 60-minute
cycling exercise bout (panel a). Representative immunoblots are shown for 2 participants.
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689  Figure 8. MyHCrotl fragmentation increases following two weeks of disuse atrophy
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691 Legend: Data from two-week disuse participants (n=20) show that VL muscle atrophy occurs
692  with lower-limb immobilization (determined by ultrasound, panel a), and that this coincides with
693  significant total myosin heavy chain (MyHCrotal) fragmentation (panel b). Representative

694  immunoblots are shown for 3 participants, and data are presented as mean and standard deviation
695  values with dependent t-test p-values.
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