

1

2 **Angiogenesis in the mature mouse cortex is governed in a region**
3 **specific and Notch1 dependent manner**

4

5 Alejandra Raudales¹, Ben Schager¹, Dominique Hancock¹, Sorabh S. Sharma¹, Kamal
6 Narayana¹, Patrick Reeson¹, Manjinder Cheema¹, Jakob Körbelin², Craig E. Brown^{1,3 *}

7

8 ¹Division of Medical Sciences, University of Victoria, Victoria, BC, Canada

9 ²Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical
10 Center Hamburg-Eppendorf, Germany

11 ³Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada

12

13 *Corresponding author:

14 Craig E. Brown, PhD, Professor

15 University of Victoria, Medical Sciences Building, PO Box 1700 STN CSC, Victoria, BC, V8W
16 2Y2; Phone: (250) 853-3733; Fax: (250) 472-5505; Email: brownnc@uvic.ca

17

18 **Abbreviated Title:** Regional and Notch-1 dependent angiogenesis

19

20 Number of pages: 35; Number of figures: 6

21 Abstract: 150 words; Introduction: 565 words; Discussion: 1726 words

22 Key words: angiogenesis, microcirculation, plasticity, Notch, VEGF, rarefaction, capillary, blood
23 flow

24

25 **Abstract**

26 Cerebral angiogenesis is well appreciated in development and after injury, but the extent to which
27 it occurs across cortical regions in normal adult mice and underlying mechanisms, is incompletely
28 understood. Using *in vivo* imaging, we show that angiogenesis in anterior-medial cortical regions
29 (retrosplenial and sensorimotor cortex), was exceptionally rare. By contrast, angiogenesis was
30 significantly elevated in posterior-lateral regions such as visual cortex, primarily within 200 μ m of
31 the cortical surface. There were no regional differences in vessel pruning or sex effects except for
32 the length and depth of new capillaries. To understand mechanisms, we surveyed gene expression
33 and found Notch related genes were enriched in ultra-stable retrosplenial versus visual cortex.
34 Using endothelial specific knockdown of Notch1, cerebral angiogenesis was significantly
35 increased along with genes implicated in angiogenesis (*Apln*, *Angpt2*, *Cdkn1a*). Our study shows
36 that angiogenesis is regionally dependent and manipulations of Notch1 signaling could unlock the
37 angiogenic potential of the mature vasculature.

38

39

40

41

42

43

44

45

46

47

48

49 The brain uses up to 20% of the energy metabolised by the body to sustain the needs of neurons
50 and glial cells¹. Despite the tremendous efficiency of this system, there is little capacity for energy
51 storage in the form of glycogen, therefore the brain requires a constant supply of blood through
52 the cerebrovascular system. It follows that alterations or interruptions to blood flow, even within
53 the smallest vessels known as capillaries, can have deleterious effects on cognitive and sensori-
54 motor function². There is a substantial body of literature showing the vascular system can rapidly
55 adapt (in a matter of seconds to minutes) to meet the brains' needs, largely through modulating
56 vessel tone³⁻⁵. Over longer time scales, the vascular system can eliminate or generate new blood
57 vessels from existing ones, referred to as pruning and angiogenesis, respectively. This form of
58 structural plasticity is well appreciated in brain development⁶⁻⁹, where there is abundant vascular
59 endothelial cell growth along gradients of hypoxia, to support nascent brain regions.
60 Mechanistically, new vessel growth in development is primarily orchestrated by vascular
61 endothelial growth factor (VEGF) receptor signalling pathways in growing tip cells¹⁰⁻¹³. VEGF
62 receptors in tip cells interact with NOTCH signalling, which play a critical role in vessel
63 development by stabilizing endothelial stalk cells, thereby allowing lumen formation and patency
64 of new vessels^{14,15}. However, mechanistic studies in adulthood typically involve hypoxia or stroke
65 to induce angiogenic activity, therefore whether similar signalling pathways are required for
66 ongoing angiogenesis in the healthy mature brain, is not well understood.

67 Although there is considerable evidence showing that mature vascular networks remodel when
68 challenged by hypoxic stimuli, stroke, diabetes or exercise¹⁶⁻²⁷, the extent to which these networks
69 can change under normal, healthy conditions is debatable. Aside from histological studies that
70 assume a constitutive but low level of angiogenesis in the healthy cortex²⁸⁻³⁰, *in vivo* 2-photon
71 imaging studies have found little or no ongoing angiogenesis in the adult mouse cortex, even after
72 weeks of voluntary exercise^{6,31-35}. However, virtually all studies focus on one or occasionally two
73 cortical regions, typically somatosensory and/or motor cortex. Thus, there has yet to be a
74 systematic survey of vascular remodelling across cortical regions.

75 This possibility of regional differences in vascular plasticity has recently come into focus with
76 multiple reports showing brain region specific differences in susceptibility to capillary plugging,
77 neurovascular coupling, and vascular density³⁶⁻⁴⁰. Indeed, work from our lab has revealed that
78 some cortical regions such as the visual cortex, are resistant to age related vessel loss, whereas
79 others (ie. retrosplenial, somatosensory/motor cortex) are not³⁸. This raises the possibility that

80 there may be inherent differences in the rate at which cortical regions produce or eliminate vessels.
81 In order to address this question, we used longitudinal two-photon imaging in adult mice to survey
82 vascular remodelling across multiple cortical regions that span the anterior to posterior extent of
83 dorsal cortex. Our results reveal a surprising level of angiogenic potential in visual cortex, whereas
84 retrosplenial, forelimb/hindlimb somatosensory or motor cortex exhibited very little. Further we
85 link regional differences in angiogenesis with *Notch1* gene expression, which appears to serve as
86 a brake on cerebral angiogenesis given that endothelial knockdown significantly enhanced
87 angiogenesis.

88

89

90 **Results**

91 **Patterns of blood vessel growth in mature cortex**

92 To examine the sprouting of new blood vessels or their elimination (angiogenesis vs.
93 pruning) in the adult mouse cortex, we implanted a cranial window over anterior or posterior
94 cortical regions in 2–3 month old female and male C57BL6/J mice (**Fig. 1a, b**, n=15 and 7 mice,
95 respectively). About 4 weeks later, we employed intrinsic optical signal (IOS) imaging to
96 functionally map the visual and hindlimb somatosensory cortex for posterior windows (see Vis
97 and HL in **Fig. 1b, c**), or hindlimb and forelimb somatosensory cortex for anterior windows.
98 Mapping these areas provided landmarks to delineate other cortical regions such as retrosplenial,
99 motor, and trunk/whisker somatosensory cortex (RS, Mo and Tr/W in **Fig. 1b**). Ten days after IOS
100 mapping, we used 2-photon microscopy to image vascular networks labelled by injection of 70kDa
101 FITC dextran (i.v. 3-5% dissolved in saline) in each cortical region over a 23 day period (**Fig. 1d**).
102 As shown in **Figure 1d**, each region could be reliably imaged to a depth of 400 μ m below the pial
103 surface. Further, the vast majority of vessels could be re-identified for structural analysis indicating
104 that: a) vascular networks are largely stable in adulthood and b) our surgical and imaging
105 preparation induced minimal damage or hypoxia⁴¹.

106 Although mature vascular networks are highly stable, we clearly observed instances of
107 capillary sprouting and pruning over the 23 day imaging period (mean diameter 3.78 \pm 0.86 μ m, **Fig.**
108 **2a**). Since capillaries were imaged by fluorescent labelling of blood plasma, angiogenic sprouts
109 often appeared to show a “blob or head-like” bumps at the growing end of the vessel (**Fig. 2a and**

110 **2d)**, consistent with previous *in vivo* descriptions^{20,33}. Our own post-mortem immunolabelling
111 experiments in young mice confirmed that growing vessels often show a blob-like intravascular
112 dye distribution (**Supp. Fig. 1a**). In general, the emergence or growth of new blood vessels
113 followed one of three patterns. We therefore defined an angiogenic event as the formation of a
114 new, connected blood vessel at day 23 that emerged from either a sprout or no sprout on day 0 (see
115 examples in **Fig. 2b,c**). We also included examples where a sprout appeared at day 23 (at least
116 10µm in length), but was not yet connected to another vessel by the end of the experiment (**Supp.**
117 **Fig. 1b**). In order to describe the progression of angiogenesis, we first identified all new blood
118 vessels or sprouts at day 23, and then examined earlier time-points (day 0 and 9) to see how these
119 new vessels/sprouts came about. On day 0, the majority of new vessels/sprouts (evident on day
120 23) had yet to show any signs of sprouting from the parent branch (“absent” 80%), while about
121 20% displayed a sprout (**Fig. 2d**). By day 9-10, 60% of vessels were either still in the sprouting
122 stage or were already connected to another vessel, while 40% still had yet to show signs of a sprout.
123 By day 23, 90% of all new vessels were connected to another vessel (see blue and green bars in
124 **Fig. 2d**), with most showing evidence of blood flow (ie. streaking pattern in vessel lumen created
125 by movement of red blood cells), while the remaining 10% were still in the sprout phase. To
126 visualize how these angiogenic events progress, we plotted individual events at each phase of
127 growth in **Figure 2e** (Note purple lines are events that end in a sprout, teal lines are those ending
128 in a connected capillary). With respect to where newly formed or pruned vessels occur, we
129 examined capillary branch orders from the nearest penetrating arteriole or ascending venule (see
130 PA or AV in **Fig. 2f**). Our analysis agrees with previous early development work^{9,42}, in that almost
131 all angiogenic events occurred off of lower order capillary branches (branches 2-5) from the
132 ascending venule rather than penetrating arteriole (**Fig. 2g**). Similarly for vessel pruning, most
133 events occur off of branches of the ascending venule (**Fig. 2g**). These experiments show that new
134 capillaries primarily originate from the ascending venule, which can occur within 9-10 days time
135 but the majority (90%) take longer and become complete (and flowing) by day 23.

136

137 **Cerebral angiogenesis but not pruning, is regionally dependent**

138 To help reconcile discrepancies in the literature about rates of angiogenesis in the mature
139 cortex, we imaged vascular networks in 6 different regions across the dorsal cortical mantle (RS,

140 Vis, Tr/W, HL, FL and Mo, in general we could image 2-4 brain regions per mouse). Our analysis
141 indicated a highly significant effect of brain region on the number of angiogenic events per mm³
142 (**Fig. 3a**; $F_{(5,64)}=5.80$, $p<0.001$). As shown in **Figure 3a**, the highest rates were found in visual
143 cortex whereas the lowest levels were in retrosplenial cortex. Contrasting with regional gradients
144 in angiogenesis, vessel pruning did not vary significantly across cortical regions (**Fig. 3b**;
145 $F_{(5,65)}=0.70$, $p=0.63$). Summing up angiogenic and pruning events to provide an estimate of vessel
146 turnover (or remodelling) also revealed a significant effect of brain region (**Fig. 3c**; $F_{(5,65)}=2.80$,
147 $p<0.05$), where turnover was highest in visual cortex and lowest in retrosplenial cortex. While no
148 regional differences in pruning were found, linear regression indicated that regions with higher
149 levels of angiogenesis also tended to have higher pruning rates (**Fig. 3d**, 69 areas imaged,
150 $R^2=0.196$, $p<0.001$). In order to better appreciate spatial gradients across the cortex, we plotted the
151 stereotaxic coordinates (relative to bregma) of every imaging stack and expressed normalized rates
152 of angiogenesis and pruning. The resultant map reveals a distinctive gradient in angiogenesis
153 which was lower in anterior and medial regions and higher in posterior-lateral regions (**Fig. 3e**).
154 These findings reveal that rates of cerebral angiogenesis, but not pruning are regionally dependent.

155 Regional differences in angiogenic rates could conceivably be related to: a) their relative
156 position in the cranial window (ie. regions closer to window edge may be exposed to more damage
157 during surgery) or b) differing proportions of ascending venules vs. penetrating arterioles
158 (AV/PA), since new capillaries mainly originate from the venular side. Regression analysis
159 indicated there was no relationship between rates of angiogenesis and a region's distance to the
160 nearest edge of the cranial window ($r^2=0.0005$, $p=0.8746$; **Supp. Fig. 2a**). With regard to the latter
161 issue, we sampled 21 imaging regions ($n=7$ V1; $n=7$ S1; $n=7$ RS) from 7 mice and identified 121
162 ascending venules or penetrating arterioles (AV/PA). In congruence with other studies⁴³, we found
163 a higher proportion of AVs (73/121; ~60.3%) compared to PAs (48/121; ~39.6%) across all
164 regions. However, there were no differences in the proportions of AV vs. PAs across posterior
165 cortical regions (**Supp. Fig. 2b**; AVs as % total: 60.0%, 58.5%, and 62.2% in RS, Visual and SS
166 respectively).

167 Given there are some reports indicating that biological sex can influence cerebrovascular
168 structure and function⁴⁴, we stratified our experimental data accordingly. Since each sex was
169 sampled similarly for mice with posterior placed cranial windows, we focused our analysis on
170 retrosplenial, visual and somatosensory cortex that pooled HL and Tr/W areas ($n=7$ male and 8

171 female mice, respectively). As expected for angiogenic events (**Fig. 4a**), there was a highly
172 significant effect of brain region ($F_{(2,35)}=8.40$, $p\leq 0.001$) but no main effect of sex ($F_{(1,35)}=2.99$,
173 $p=0.09$) or sex by region interaction ($F_{(2,35)}=2.01$, $p=0.15$). Analysis of pruning rates (**Fig. 4b**) did
174 not show any differences based on region or sex (Main effect of sex: $F_{(1,35)}=2.28$, $p=0.14$). We next
175 examined whether sex influenced the depth where angiogenesis or pruning events occurred or the
176 length of remodelled capillaries. For newly formed capillaries, these were deeper (**Fig. 4c**;
177 $t_{(158)}=3.78$, $p<0.001$) and longer in female mice (**Fig. 4d**; $t_{(158)}=4.62$, $p<0.0001$) relative to their
178 male counterparts. However, there were no sex dependent differences in the depth or length of
179 pruned capillaries (**Fig. 4c, d**). Of note, pruned capillaries in both male and female mice were
180 significantly shorter than angiogenic or stable capillaries (**Fig. 4d**). In summary, our data indicate
181 that sex does not influence rates of cerebral angiogenesis or pruning but does affect the depth and
182 length of newly formed capillaries.

183

184 **Brain endothelial specific knockdown of Notch1 stimulates cortical angiogenesis**

185 In order to understand the molecular mechanisms that regulate angiogenesis in the adult
186 cortex, we surveyed gene expression of select signalling pathways previously implicated in
187 vascular remodelling^{45,46}. We focused our qPCR analysis on tissue from retrosplenial and visual
188 cortex because they are situated relatively close to one another yet show the starker differences in
189 angiogenesis. These experiments revealed that genes associated with Notch (*Notch1*, *Jag1* and
190 *Dll4*) and VEGF receptor signalling (*Vegfr1*, *Vegfr2*) were more highly expressed in retrosplenial
191 cortex relative to visual cortex (**Fig. 5a**). Since Notch ligands Dll4 and Jag1 signal through Notch1
192 receptors, which are expressed in endothelial cells and are more abundant in brain than other Notch
193 receptors (Notch2-4)⁴⁷, we examined whether endothelial knockdown of Notch1 signalling could
194 stimulate cerebral angiogenesis *in vivo*. As shown in **Figure 5b**, we imaged the retrosplenial and
195 visual cortex in homozygous *Notch1* floxed mice after saline injection (baseline) and then again
196 after intravenous injection of AAV-BR1-iCre for endothelial specific knockdown of *Notch1*. To
197 confirm Cre recombinase activity in endothelial cells, we injected cre-dependent Tdtomato
198 reporter mice (Ai9) with saline and then again with AAV-BR1-iCre. Consistent with previous
199 studies using this virus⁴⁸, we found widespread and specific expression of cre-dependent reporter
200 expression in cerebrovascular endothelial cells (**Fig. 5c, left** and **Supp. Fig. 3**; 84-89% of
201 endothelial cells express reporter). As a control, we also ran a cohort of mice where AAV-BR1-

202 GFP was injected first, followed several weeks later by AAV-BR1-iCre. Doing so prevents
203 transfection of endothelial cells with AAV-BR1-iCre (**Fig. 5c, right**), likely due to the production
204 of neutralizing antibodies associated with the first AAV injection. Analysis of our imaging data
205 indicated that endothelial knockdown of Notch1 significantly increased rates of angiogenesis in
206 both retrosplenial and visual cortex relative to baseline (see Sal/Cre in **Fig. 5d**). By contrast, our
207 control group that were injected with AAV-BR1-GFP first, followed by AAV-BR1-iCre, did not
208 show any changes in angiogenesis (see GFP/Cre in **Fig. 5d**). Rates of vessel pruning in both
209 retrosplenial and visual cortex were not significantly affected by these manipulations (**Fig. 5e**). As
210 an additional control, we injected mice with AAV-BR1-GFP alone and found no significant
211 changes in angiogenesis or pruning when compared to the saline injected mice (**Supp. Fig. 4**). For
212 the sake of completeness, we also examined the impact of endothelial specific knockdown of
213 *Vegfr2* (injection of AAV-BR1-iCre in homozygous *Vegfr2* floxed mice), using the same
214 experimental paradigm described above. This experiment did not reveal any significant effects of
215 *Vegfr2* knockdown on rates of angiogenesis or pruning in retrosplenial and visual cortex (**Supp.**
216 **Fig. 5**). Collectively, these results show that inhibiting Notch1 signalling in endothelial cells
217 stimulates cortical angiogenesis, even in regions where angiogenesis is usually extremely limited
218 (ie. retrosplenial cortex).

219 In order to probe what genetic programs were induced in brain endothelial cells following
220 *Notch1* knockdown, we performed bulk RNA sequencing on purified brain endothelial cells
221 isolated from *Notch1*^{flx/flx} mice treated with AAV-BR1-iCre or GFP. Gene ontology (GO)
222 analysis of differentially expressed genes (DEGs) revealed that Notch1 knockdown strongly
223 altered expression of gene families implicated in angiogenesis (**Fig. 6a** and **Supp. Fig. 6a**). KEGG
224 enrichment analysis of DEGs (up or down regulated) showed that Notch1 knockdown most
225 significantly altered PI3K-AKT and MAPK signalling pathways (**Fig. 6b** and **Supp. Fig. 6b**).
226 Quantification of differential gene expression indicated that *Syt15*, *Tet1*, *Synpo2*, *Frem2* and
227 *Notch1* were among the most significantly down-regulated genes, thus further validating our viral
228 knockdown approach (**Fig. 6c,d**). Of note, several of the most significantly upregulated genes
229 following Notch1 knockdown, namely *Apln*, *Angpt2*, *Cdkn1a*, *Plaur*, *Serpine1* to name a few, have
230 been previously implicated in regulating angiogenesis (**Fig. 6c,d**). These findings indicate that
231 Notch1 knockdown initiates a host of gene signalling pathways critical for angiogenesis.

232

233 Discussion

234 Given there are discrepancies in the literature about basal rates of vascular remodelling,
235 combined with the fact that most studies focus on one or two brain regions, we longitudinally
236 imaged vascular networks across multiple cortical regions. One of our primary findings was that
237 rates of angiogenesis were significantly higher in visual cortex relative to medial/anterior regions
238 such as retrosplenial, motor and FL/HL somatosensory cortex. By contrast, rates of vessel pruning
239 were quite similar across regions. While this is to our knowledge, the first longitudinal imaging
240 study of vasculature in visual cortex, our finding agrees with previous work showing that
241 angiogenesis is quite rare in somatosensory and motor regions^{20,31,32}. Our data also indicate that
242 elevated angiogenesis in visual cortex could not be attributed to potential damage related artifacts
243 associated with the cranial window (ie. proximity to the edge of the cranial window) or a higher
244 proportion of ascending venules where angiogenesis typically occurs.

245 There are several plausible explanations for regional differences in angiogenesis that could
246 work co-operatively or independent of the gene expression differences we observed in the present
247 study. Although speculative, visual cortical areas may have different metabolic and perfusion
248 demands than in medial or anterior cortical regions, which could affect the necessity for producing
249 new vessels over time. Quantitative anatomical studies have shown prominent regional differences
250 in cell density and vascular structure across the dorsal cortex^{36,38,40,49,50}. For example, vessel
251 length/branch density and fluid conductance tend to be lower in visual areas relative to
252 retrosplenial, motor and somatosensory cortex. Furthermore, there are significant differences in
253 the density of cell types, such that visual cortex has the highest density of excitatory Glut1
254 expressing neurons whereas retrosplenial and somatosensory regions are more enriched with
255 inhibitory parvalbumin expressing neurons⁴⁰. Based on our current mapping of angiogenic events
256 across the dorsal cortex (see Fig. 3E), we cannot say with certainty that elevated angiogenesis rates
257 are exclusive to visual cortex since rates were slightly elevated in nearby trunk/whisker
258 somatosensory cortex. Indeed, Kleinfeld's group has mapped vascular beds across cortex and
259 found they tend to follow regional gradients rather than respect very sharp neuronal or functional
260 borders that typically define cortical areas^{51,52}. Thus, a conservative interpretation of our data could
261 be that angiogenesis follows a regional pattern where rates are higher in posterior/lateral regions
262 (ie. Visual and whisker/trunk somatosensory cortex within our imaging window) and lower in

263 medial/anterior cortex. A simple explanation for this is that territories supplied by the posterior,
264 medial or anterior cerebral arteries (CA) possess intrinsic differences in angiogenic potential.
265 Indirect support of this idea comes from recent work showing that vessel loss with aging is
266 generally lower in cortical regions perfused by the PCA than ACA³⁸. Further, the PCA has stronger
267 collateral connections than that found in ACA⁵³, which could be related to its heightened capacity
268 for angiogenesis. Alternatively, there could be regional differences in “hypoxia pockets” which
269 could provide a stimulus for angiogenesis and have been reported in healthy cortex^{54,55}.

270 Ultimately, the ability for vascular networks to remodel will likely involve changes in gene
271 expression. We therefore leveraged the highly divergent levels of angiogenesis between visual and
272 retrosplenial cortex to search for candidate mechanisms. Since angiogenic signalling mechanisms
273 include co-ordinating interactions between endothelium and nearby pericytes, astrocytes,
274 microglia and neurons, we conducted our original qPCR directed screen in whole tissue (rather
275 than sorted cells) on a select set of genes previously implicated in angiogenesis. Doing so revealed
276 that Notch1 related signalling genes (*Dll4*, *Jag1*, *Notch1*) were enriched in retrosplenial cortex,
277 relative to the visual cortex. Using a viral approach for endothelial specific knockdown of *Notch1*,
278 we found that rates of angiogenesis could be significantly increased in both visual and retrosplenial
279 cortex. The fact that angiogenesis could be upregulated in retrosplenial cortex, an area virtually
280 devoid of angiogenesis normally, suggest that Notch1 may normally serve as a brake on this form
281 of plasticity. Notch and VEGF signalling play co-ordinated roles in normal development, as well
282 as diabetes and tumor related angiogenesis that involves spatially/temporally precise patterns of
283 activation^{14,56,57}. The present findings agree with previous work showing Notch1 acts to stabilize
284 vasculature⁴⁶, given that endothelial specific deletion of Notch1 in developing retina stimulates
285 endothelial tip cells¹⁵. Studies in adult animals are much more scant, although one study showed
286 Notch1 knockdown promotes endothelial cell proliferation and reduces elongation in the aorta,
287 consistent with our data in brain⁵⁸. However, most Notch1 knockdown studies in adulthood have
288 been associated with impairments in ischemia induced angiogenesis in hindlimb and brain^{59,60}. On
289 the surface, these previous findings might appear to contradict our findings of increased
290 angiogenesis with Notch1 knockdown. However, in both previous studies, Notch1 required VEGF
291 signalling for the angiogenic response to ischemia. In our study, we did not induce any ischemia
292 (and presumably VEGF signalling) to observe angiogenesis in the healthy brain, nor did it appear
293 that endothelial specific knockdown of *Vegfr2* had a significant effect, although there was a slight

294 trend in visual cortex towards reduced angiogenesis. While the absence of a *Vegfr2* effect may
295 seem surprising since it is essential for vascular development⁶¹, it is consistent with a recent paper
296 showing no effect of endothelial *Vegfr2* deletion on vascular density in retina, heart or brain⁶².
297 However we do concede a “floor effect” may have been at play since rates of angiogenesis were
298 very low to begin with. Collectively these findings suggest that Notch1 plays a critical role in
299 regulating non-hypoxia/ischemia forms of angiogenesis in the mature mouse cerebral cortex.

300 Consistent with the idea that VEGF signaling is not essential for Notch1 to regulate adult
301 angiogenesis, our analysis of DEGs in brain endothelial cells after Notch1 knockdown did not
302 reveal significant changes in VEGF isoform or receptor (eg. *Vegfa*, *Vegfr1* or *Vegfr2*) expression.
303 Instead, we found that other angiogenesis related genes such as *Apln*, *Cdkn1a* and *Angpt2* were
304 some of the most significantly upregulated genes in this group, which is consistent with studies
305 examining Notch1 deletion or inhibition^{63,64}. For example, recent work in Zebrafish embryos
306 demonstrated that Apelin was critical for induction of aortic angiogenesis⁶⁴. In agreement with the
307 present work, inhibition of the Notch1 ligand DLL4 stimulated downstream Apelin expression
308 which promoted endothelial sprouting and angiogenesis. The role of *Cdkn1a* in angiogenesis is
309 not entirely clear as global deletion does not cause developmental defects⁶⁵, but does lead to tumors
310 in adult mice if combined with *Cdkn1b* deletion⁶⁶. Angiopoietin-2 is a growth factor that has pro-
311 angiogenic properties. Studies have shown that Angiopoietin-2 can stimulate migration and
312 sprouting angiogenesis in endothelial cells with low Tie2 expression⁶⁷, and blocking Angiopoietin-
313 2 can reduce angiogenesis in certain types of cancer such as glioblastoma⁶⁸. Lastly, Notch1
314 knockdown upregulated *Plaur* and *Serpine1*, that while classically associated with hemostasis,
315 have been implicated in angiogenesis under pathological conditions^{69,70}. Given that many of these
316 genes ultimately signal through PI3K/AKT and MAP kinase, it is not surprising to notice these
317 were also strongly affected in the KEGG functional gene analysis.

318 There are limitations to our study that should be carefully considered. First, we focused our
319 long-term imaging experiments on easily accessible dorsal cortex and therefore omitted regions
320 that extended laterally beyond the parietal bone ridge, such as secondary somatosensory, auditory
321 and insular cortices. Given the fact that these regions would require imaging at a considerable
322 angle and necessitate removal of the mastication related temporalis musculature, future imaging
323 studies might be better served with an implanted two-photon endoscope/fiberscopes⁷¹.
324 Furthermore, the considerable amount of time required to collect high-resolution images of cortical

325 vasculature, prompted us to restrict our imaging to 2-4 cortical regions and a depth of 400 μ m
326 below the cortical surface per mouse. Thus our estimates of angiogenesis and pruning do not
327 include deeper cortical regions involving layers 5 and 6. Since there are layer specific differences
328 in cerebral blood flow, vessel length and cell density, it is conceivable that rates of angiogenesis
329 and pruning may differ in those deeper layers^{40,72}. It is worth noting that our result showing that
330 angiogenesis varies as a function of superficial cortical depth (0-400 μ m, see Fig. 4c), closely aligns
331 with previous imaging work where hypoxia induced capillary sprouting was most abundant within
332 250 μ m from the cortical surface³³. A final caveat that deserves mention is we focused most of our
333 experiments on C57BL/6 mice. Strain differences in vascular volume and length have been
334 reported in the literature, as well as differences in the angiogenic response to hypoxia^{51,73}. Indeed
335 we did find that basal rates of angiogenesis tended to be lower in our *Vegfr2* knockdown
336 experiments which involved mice on a CD1 background. Thus there could have been a floor effect
337 that occluded our ability to detect a decrease in angiogenesis. Since many mouse strains are
338 commonly used in research, future studies would be required to specifically resolve strain related
339 differences in angiogenesis.

340 What is the functional significance of our findings? We know that angiogenesis is critical
341 for proper brain development, but also plays a contributing role in pathology associated with
342 neurological conditions and correlates with recovery from different forms of injury in the adult
343 brain^{21,23,26,74,75}. Even in the absence of injury or disease, some studies suggest that angiogenesis
344 may participate in every day activities like learning and memory or the rapid cognitive boosting
345 effects of exercise^{29,76,77}. While we did not enrich our socially/group housed mice with exercise
346 wheels or learning tasks, the production of new vessels, even when stimulated with Notch1
347 knockdown, usually took many days or weeks to occur. Further, if one assumes there are 1-2x10⁴
348 capillaries per mm³ of cortex, new or pruned vessels would affect less than 1% of the total capillary
349 network over our 3-week imaging period. Therefore, we think that ongoing cerebral angiogenesis
350 and pruning in the normal brain is most relevant to slow changes, such as those associated with
351 aging. Indeed, our group has recently shown that visual cortex resists age related vessel loss
352 whereas retrosplenial, motor and somatosensory limb cortex exhibit significant decline on the
353 order of 10% over 18-22 months³⁸. It is therefore conceivable that elevated rates of angiogenesis
354 in visual cortex may engender resiliency to the effects of aging. Whether angiogenesis significantly
355 affects blood flow over the long term (ie. weeks to years) remains to be determined. At the very

356 least, our quantitative data could help inform future computational studies that model how
357 structural plasticity of vessels augments blood flow over time.

358

359

360 **Methods**

361 **Animals**

362 Two to four-month old male and female C57BL/6J mice were used for cortical imaging
363 experiments. For endothelial specific knockdown experiments, we used adult mice homozygous
364 for the floxed *Vegfr2/Flk1* gene with a CD1 background (generous gift from Dr. Jane Rossant), or
365 mice homozygous for the floxed *Notch1* gene (N1CKO, JAX# 007181) backcrossed to a
366 C57BL/6J background⁷⁸. All animals involved in this study were cared for and treated following
367 protocols approved by the University of Victoria Animal Care Committee and are in compliance
368 with the guidelines set by the Canadian Council on Animal Care (CCAC) standards. The animals
369 were housed in standard cages with ad libitum access to water and the standardized laboratory diet.
370 Mice were kept in a room maintained at 22.5°C ±2.5°C in a 12-hour light/dark cycle and a
371 humidity-controlled environment. Reporting of this work complies with ARRIVE guidelines.

372 **AAV based manipulation of endothelial *Notch1*, *Vegfr2* or *Tdtomato* reporter expression**

373 AAV-BR1-iCRE or eGFP was prepared as previously described⁴⁸. For determining the
374 efficacy and specificity of endothelial expression, three *Gt(ROSA)26Sor^{tm1(CAG-tdTomato)Hze}* with a
375 C57BL6/J background (“Ai9” reporter mice) were intravenously injected with AAV-BR1-iCRE
376 (20µl of 5.0x10¹² GC/mL mixed with 80µl of 0.9% saline). Endothelial specific knockdown of
377 *Vegfr2* or *Notch1* was achieved by intravenous injection of AAV-BR1-iCRE (as described above)
378 into homozygous *Notch1* or *Vegfr2* floxed mice. A subset of mice received intravenous injection
379 of AAV-BR1-eGFP control virus. Following injection of virus, mice were given a 9-10 day rest
380 period before imaging to allow transfection of endothelial cells.

381 **Cranial window preparation**

382 To implant cranial windows for longitudinal imaging, mice were anesthetized throughout
383 the surgical procedure using isoflurane gas with medical grade air (80% N₂, 20% O₂) at a flow
384 rate of 0.7L/min. The isoflurane vaporizer was set to 2% for induction until the animal reached an

385 anesthetic depth appropriate for transfer to the surgical stage and the vaporizer was set at 1.3% for
386 maintenance throughout the surgery. Mice were head fixed to a custom-built surgical stage and a
387 feedback driven heating pad was used to maintain body temperature between 36-37°C. Mice
388 received an injection of 30 μ L of 2% dexamethasone (i.p. Vetoquinol; Dexamethasone sodium
389 phosphate) to reduce surgery related inflammation and lidocaine (s.c. 30 μ L at 20mg/ml) beneath
390 the scalp as an analgesic. A mid-line incision was done to expose the skull surface which was
391 cleaned and dried with a sterile cotton swab. For posterior cranial windows, a custom metal ring
392 (11.3 mm outer diameter, 7.0 mm inner diameter, 1.5mm height) was secured to the skull with
393 dental cement over the right hemisphere and above the retrosplenial, visual and somatosensory
394 cortices, based on stereotaxic co-ordinates. For anterior cranial windows, the metal ring was
395 secured to the skull above motor cortex and forelimb somatosensory areas. A 4mm diameter
396 craniectomy was made by carefully thinning a circular area of the skull with a high speed dental
397 drill. Cold HEPES buffered artificial cerebral spinal fluid (ACSF) was regularly applied to the
398 skull to prevent heating. Once the skull was thin enough to visualize underlying vessels, the skull
399 was removed with sterile forceps while leaving the dura intact. Gel foam soaked in ACSF was
400 used to control for any bleeds that occurred throughout the surgery. A 5mm diameter circular glass
401 coverslip was positioned over the craniotomy, secured with cyanoacrylate glue and dental acrylic
402 around the circumference of the coverslip. Mice were monitored in the acute post-surgery period
403 as they recovered under a heat lamp or pad. If recovery was normal, mice were returned to their
404 home cage where they were monitored regularly for 4 weeks prior to beginning the longitudinal
405 2-photon imaging timeline. Mice who did not have a clear window 4 weeks post-surgery were
406 excluded from imaging experiments.

407 **Intrinsic optical signal imaging**

408 Intrinsic optical signal (IOS) imaging was used to identify cortical sensory regions by
409 measuring changes in deoxygenated hemoglobin in response to sensory stimuli. Mice with a clear
410 cranial window (no damage to the dura, extensive bone growth or inflammation) were anesthetized
411 with isoflurane mixed with medical grade air (2% isoflurane for induction, 1.0% for maintenance)
412 and transferred to a custom-built head fixing stage. Body temperature was monitored and
413 maintained at 36-37°C using a rectal probe and heating pad. The brain surface was imaged with a
414 2X objective (NA=0.14) on an upright Olympus microscope connected to a MiCAM02 CCD

415 camera and BrainVision software (SciMedia). An image of the surface blood vessels was captured
416 and then a red LED (625nm) was used to illuminate the cortical surface. Either the left eye,
417 whisker, forelimb (FL) or hindlimb (HL) was stimulated to evoke responses within their respective
418 cortex. For tactile stimulation, a pencil lead attached to a piezo-electric wafer was used to stimulate
419 the FL or HL using 5ms biphasic pulses at 100Hz for 1s per trial. A single whisker on the
420 contralateral face was stimulated with a small loop attached to a pencil lead using 3ms biphasic
421 pulses at 25Hz. Visual cortical responses were elicited by illuminating the left eye using a cyan
422 LED (505nm). Each set of stimulation trials was composed of 10-12 individual stimulation trials
423 that was followed by a no-stimulus trial and a 12s interval between stimulation/no stimulation
424 trials. Within each trial, 3s of reflected red light was collected with 1s of sensory stimulation
425 starting after 1s of baseline. Each 3s trial was imaged at 100 Hz with a 10ms exposure per frame.

426 For processing IOS images in ImageJ, the 10-12 Stim/no stim trials were averaged together
427 and mean filtered using a 5-pixel radius. The baseline surface reflectance image (Ro) was
428 generated by averaging the first 100 pre-stimulus image frames. The baseline image (Ro) was then
429 subtracted from the 300 frames stim/no stim averaged frames and then divided to generate a dR/Ro.
430 To clearly identify each cortical region, we mean projected 150 frames starting 0.5s to 1.5s after
431 stimulation when the initial change in deoxyhemoglobin signals is maximal. The image was then
432 thresholded at 70% of peak response values, the borders of each functional area were demarcated
433 and superimposed onto a cortical image with visible superficial vasculature.

434 ***In vivo* 2-photon imaging and analysis**

435 Approximately 5 weeks after cranial window surgeries, mice with a clear window were
436 anesthetized using isoflurane mixed with medical grade air (2% Isoflurane for induction, 1%
437 maintenance). Once appropriate anesthetic depth was reached, mice were transferred to a custom-
438 built stage which fixed the head holding ring into place. Body temperature was monitored and
439 maintained at 36-37°C. C57BL/6J mice were imaged longitudinally on days 0, 2, 9-10, and 23.
440 These time intervals were based on previous imaging studies describing vascular remodelling
441 associated with micro-emboli³¹. Genetic knockdown experiments followed a similar timeline
442 except we omitted day 2 which we deemed unnecessary given the increased total number of
443 imaging sessions. Prior to the start of each imaging session, mice were intravenously injected with
444 FITC-dextran (100µL of 3-5% w/v in 0.9% saline; 70kDa, Sigma #46945) or Texas Red dextran

445 (100 μ L of 3% w/v in 0.9% saline; ThermoFisher; MW 70kDa, D1830) to fluorescently label blood
446 plasma. High-resolution *in vivo* images of the cerebral vasculature were acquired using a
447 multiphoton laser scanning microscope running Fluoview FV10-ASW software (Olympus
448 FV1000MPE) and a mode-locked Ti:Sapphire laser (Spectral Physics) with a water dipping 20X
449 objective lens (Olympus XLUPlanFl, NA=0.95). The laser was tuned to 800nm for FITC dextran
450 or 850nm for Texas Red dextran. Laser power was adjusted according to imaging depth and ranged
451 between 15mW to 150mW from superficial to deep images. Emitted light was split by a 570nm
452 dichroic mirror prior to passing through bandpass emission filters (495-540nm and 575-630nm).
453 Imaging specifications were as follows: z-step of 2 μ m, dwell time of 2 μ s/pixel up to a depth of
454 420 μ m and with an imaging area of 1024x1024 pixels (635x635 μ m² across x-y planes). For each
455 mouse, 2-4 brain regions were imaged using IOS generated maps for visual, FL, HL or whisker
456 cortex, as a reference. Retrosplenial and motor cortex were demarcated based on their relative
457 position to the midline and V1 or FL/HL somatosensory areas, respectively. Imaging of the same
458 areas over time was achieved by collecting brightfield images of surface cortical vessels which
459 provided landmarks from week to week.

460 To quantify rates of angiogenesis and pruning across different experimental conditions,
461 image stacks for the first and last imaging time-point (eg. days 0 vs. 23 or day 33 vs. 56) were
462 opened and aligned using Fiji software (ImageJ 1.53q). Each image stack was binned into
463 maximum intensity z-projections that each consisted of 20-30 image frames. Z-projection images
464 between the two time-points were compared by an observer blind to condition. Suspected
465 angiogenic or pruning events were further confirmed by manually inspecting original 3D image
466 stacks and examining intermediate time-points (eg. day 9 or 42). An angiogenic event was
467 recorded if a fully formed and connected vessel was present on D23 that was either completely
468 absent or accompanied by a sprout at D0. Also included were rarer cases where a sprout (not
469 connected to another vessel) was evident at D23 that was preceded by no sprout (“absent”) or a
470 shorter sprout on D0, that grew at least 10 μ m in length. Pruning events were defined as when a
471 vessel or sprout that was present on D0, was completely absent on D23. The rate of turnover was
472 calculated by summing the number of angiogenic and pruning events in each region, divided by
473 the total volume sampled.

474 For plotting the density of angiogenic and pruning events for all imaging stacks relative to
475 bregma (see Fig. 3E), we first used IOS maps of the hindlimb region as a reference landmark

476 (common to both anterior and posterior cranial windows, assume centroid is 1.5mm lateral and
477 0.5mm posterior to bregma) for establishing stereotaxic co-ordinates of all other imaging stacks.
478 Each angiogenic or pruning event was then plotted in 2D space in Python 3.9.12
479 (<https://www.python.org/downloads/release/python-3912/>) and then interpolated with a Kernel
480 Density Estimate using the Seaborn package
481 (<https://seaborn.pydata.org/generated/seaborn.kdeplot.html>) in a Jupyter notebook
482 (<https://jupyter.org/>). The Seaborn KDE plot forms a continuous probability density curve of the
483 (x,y) data in 2D space using a bandwidth method of 0.05. Color scale is the proportional density
484 for each plot, from maximum to minimum values in 10 level increments. Total area under all
485 densities was normalized to sum to 1.

486 **Histology and confocal imaging**

487 Adult or 15 day old mice were euthanized with an overdose of sodium pentobarbital (i.p.
488 50µL of Euthanyl at 120mg/mL, Biomedia-MTC Animal Health Inc.). Once toe-pinch reflexes were
489 lost, mice were transcardially perfused with 10mL of 0.1M phosphate buffered saline (PBS).
490 Following dissection, brains were immersed in 4% paraformaldehyde (PFA) overnight and later
491 transferred to a 30% sucrose solution (in 0.1M PBS with 0.2% sodium azide). Brains were
492 sectioned on a freezing microtome (American Optical Corp.) into 40-50µm thick coronal sections
493 and stored in a 12-well plate with 0.1M PBS in 0.2% sodium azide. For immunostaining, sections
494 were incubated overnight in 0.1M PBS + 0.1% TX-100 solution containing primary antibody for
495 rat anti-CD31 (label endothelial cells; 1:200 dilution, BD Clone MEC 13:3: #553370) or sheep
496 anti-CD93 (label endothelial tip cells, 1:500 dilution, R&D Systems, AF1696). After 3 washes,
497 sections were incubated in PBS containing Cy5 or Alexa 488 conjugated secondary antibodies
498 (1:400) at room temperature for 4 hours. Sections were washed, mounted onto gelatin coated
499 slides, allowed to dry and cover-slipped with Fluoromount-G (Southern Biotech).

500 Confocal image stacks were collected under a 10 or 20X objective lens (NA= 0.4 or 0.75,
501 respectively) using Fluoview FV10-ASW software (Olympus Corp.). A 488, 561 or 635nm laser
502 line with 4µs pixel dwell time was used to excite tdTomato or fluorophore conjugated secondary
503 antibodies. Kalman averaged images (Kalman=2 frames) were collected at 4µm z-steps covering
504 1271x1271µm (1.24µm/pixel) under 10X magnification, or 2µm z-steps covering 424x424µm
505 (0.26µm/pixel) under 20X magnification. To assess the efficacy of the AAV-BR1-driven Cre-

506 recombinase, tdTomato signal was overlaid against CD31 immunolabeling of endothelial cells. To
507 do this, images from each channel were first maximally projected and de-noised with median filter
508 (radius=0.8 pixels). Background fluorescence was subtracted from each image (by median filtering
509 original image with 50 pixel radius). The resultant background corrected imaged were binarized
510 using a Li threshold and then overlaid on top of each other. Pixel overlap for each channel was
511 quantified and expressed as a percentage using Fiji software (ImageJ 1.53q).

512 **Whole tissue RNA extraction and RT-qPCR**

513 Mice was overdosed by injection of sodium pentobarbital (i.p. injection of 240mg/mL) and
514 transcardially perfused with 10mL of 0.1M phosphate buffered saline to remove the blood. Brain
515 tissue was quickly extracted, and sliced into 1mm thick coronal sections. The retrosplenial and
516 visual cortex were micro-dissected and flash-frozen in liquid nitrogen. Total RNA was extracted
517 from frozen tissue using RNeasy Mini kit (Qiagen, cat#74104) with additional DNase treatment
518 (Qiagen, cat#79254). 100ng of RNA per sample was used to prepare cDNA using High-Capacity
519 cDNA synthesis kit (Applied Biosystems, cat#4368814). cDNA was then diluted 5-fold for RT-
520 qPCR runs. Primers (see below) were designed using NCBI portal and Primer Bank to detect the
521 levels of the indicated transcripts and those selected achieved an efficiency rate between 90-110%.
522 To further validate the selection of primers, specificity was calculated first using NCBI online
523 primer blast tool in conjunction with UCSC genome browser and later confirmed experimentally
524 using 10-fold serial dilutions and melt curve analyses ran in triplicates. Fluorescent signals were
525 acquired using the StepOne plus system with qPCR reaction mixtures comprised of: 1 μ L cDNA,
526 0.5 μ L of each primer, 3 μ L RNase, DNase free water, and 5 μ L of SYBR Green Master Mix
527 (Applied Biosystems). Thermocycling conditions for reactions were as follows: 50°C for 2
528 minutes, 95°C for 2 minutes followed by 40 cycles of denaturation at 95°C for 15 seconds and
529 annealing at 60°C/62°C for 1 minute. Triplicate reactions were performed for each sample. To
530 analyse RT-PCR results delta-delta Ct methods were used, where Ct values were averaged and
531 normalized to the expression of geometric mean of housekeeping genes *Tbp*, and *Hprt* to calculate
532 relative levels of mRNA expression of genes of interest using Design and Analysis Software
533 Version 2.4.3 (Applied Biosystems). Values for each gene in retrosplenial cortex were then
534 normalized to expression in visual cortex. Forward and reverse primers used for RT-qPCR were as
535 follows: *Tbp* (housekeeping): CCCCCACAACCTCTTCCATTCT and
536 *GCAGGAGTGATAGGGTCAT*; *Hprt* (housekeeping): AGCCTAAGATGAGCGCAAGT and

537 TTACTAGGCAGATGGCCACA; *Evl*: CCGTGATGGTCTACGATGACA and
538 GTCCCCGGCAGTTGATGAG; *Adam17*: AGGACGTAATTGAGCGATTTGG and
539 TGTTATCTGCCAGAAACTTCCC; *Dll4*: ATGGTGGCAGCTGTAAGGACC and
540 AGGCATAACTGGACCCCTGG; *Notch1*: CCCTTGCTCTGCCTAACGC and
541 GGAGTCCTGGCATCGTTGG; *Vegfr1* (*Flt1*): TGGCTCTACGACCTTAGACTG and
542 CAGGTTGACTTGTCTGAGGTT; *Vegfr2* (*Flk1*): TTTGGCAAATACAACCCTTCAGA and
543 GCAGAAGATACTGTCACCACC; *Jag1*: CCTCGGGTCAGTTGAGCTG and
544 CCTTGAGGCACACTTGAAGTA.

545 **Endothelial cell separation**

546 Mice were deeply anesthetized with 2% isoflurane and euthanized by decapitation. Brain
547 was extracted and immediately transferred to sterile 35mm petri dish containing 1mL HBSS with
548 no calcium and magnesium (Thermo Fisher #14175095). Brain tissues were cut into small pieces
549 using scalpel before transferring them into a 15mL falcon tube. The mechanical dissociation of
550 brain tissue was performed using the Adult Brain Dissociation Kit (Miltenyi Biotec #130-107-677)
551 as per manufacturer's instructions. Briefly, the brain was homogenized by gently pipetting up and
552 down ~10 times with a 1mL pipette at 37°C. The recovered homogeneous cell mixture was gently
553 applied to a smart strainer (Miltenyi Biotec #130-098-462) to remove the connective tissue. In the
554 following steps, samples were always kept on ice unless otherwise indicated. Myelin was removed
555 from the cell mixture using Myelin Removal Kit (Miltenyi Biotec #130-096-733) as per
556 manufacturer's instructions and then passed through LS columns (Miltenyi Biotec #130-042-401)
557 using Quadro-MACS separator (Miltenyi Biotec #130-090-976). After 3 washes with Auto-MACS
558 rinsing solution (Miltenyi Biotec #130-091-222) containing 0.5% BSA (Miltenyi Biotech #130-
559 091-376), the flow through was centrifuged for 10min and re-suspended in Auto-MACS Rinsing
560 Solution containing 0.5% BSA. CD45 positive cells were removed from the total cell suspension
561 using CD45 microbeads (Miltenyi Biotec #130-052-301) by passing the cell mixture through LS
562 columns. The flow through containing CD45-negative cells was then centrifuged for 10min. The
563 cell pellet was re-suspended in Auto-MACS Rinsing Solution with 0.5% BSA and incubated with
564 CD31 microbeads (Miltenyi Biotech #130-097-418) and passed through MS column (Miltenyi
565 Biotech #130-042-201) using Octo-MACS separator (Miltenyi Biotec #130-042-108). After 3
566 washes with Auto-MACS rinsing solution with 0.5% BSA, column bound CD31 positive
567 endothelial cells were collected by adding 1mL Auto-MACS rinsing solution with 0.5% BSA. The

568 collected sample volume was centrifuged at max speed in a benchtop centrifuge for 10 minutes
569 and after discarding the supernatant, the endothelial cell pellet was flash frozen and kept at -80°C
570 until further use.

571 **RNA sequencing and bioinformatics**

572 RNA sequencing was performed by Novogene Inc. according to their standardized
573 procedures. For library construction, messenger RNA was purified from total RNA using poly-T
574 oligo-attached magnetic beads. After fragmentation, the first strand cDNA was synthesized using
575 random hexamer primers, followed by the second strand cDNA synthesis using either dUTP for
576 directional library or dTTP for non-directional library⁷⁹. For the non-directional library, samples
577 were ready after end repair, A-tailing, adapter ligation, size selection, amplification, and
578 purification. For the directional library, samples were ready after end repair, A-tailing, adapter
579 ligation, size selection, USER enzyme digestion, amplification, and purification. The library was
580 checked with Qubit and real-time PCR for quantification and bioanalyzer for size distribution
581 detection. Quantified libraries were pooled and sequenced on Illumina platforms, according to
582 effective library concentration and data amount.

583 For data quality control, raw data (raw reads) of fast q format were firstly processed through
584 in-house perl scripts. In this step, clean data (clean reads) were obtained by removing reads
585 containing adapter, reads containing ploy-N and low quality reads from raw data. At the same
586 time, Q20, Q30 and GC content the clean data were calculated. All the downstream analyses were
587 based on the clean data with high quality. Reference genome and gene model annotation files were
588 downloaded from genome website directly. Index of the reference genome was built using Hisat2
589 v2.0.5 and paired-end clean 1 reads were aligned to the reference genome using Hisat2 v2.0.5. We
590 selected Hisat2 as the mapping tool for that Hisat2 can generate a database of splice junctions
591 based on the gene model annotation file and thus a better mapping result than other non-splice
592 mapping tools⁸⁰.

593 Quantification of gene expression was done using featureCounts v1.5.0-p3 to count the
594 read numbers mapped to each gene⁸¹. The expected number of Fragments Per Kilobase of
595 transcript sequence per Millions base pairs (FPKM) of each gene was calculated based on the
596 length of the gene and read counts mapped to a particular gene. FPKM considers the effect of
597 sequencing depth and gene length for the read count at the same time, and is currently the most

598 commonly used method for estimating gene expression levels. Differential expression analysis of
599 the two groups was performed using the DESeq2R package (1.20.0). DESeq2 provide statistical
600 routines for determining differential expression in digital gene expression data using a model based
601 on the negative binomial distribution. The resulting P-values were adjusted using the Benjamini
602 and Hochberg's approach for controlling the false discovery rate. Genes with an adjusted P value
603 ≤ 0.05 found by DESeq2 were assigned as differentially expressed. Corrected P value ≤ 0.05 and
604 a Log2 fold change of 1.3 were set as the threshold for significant differential expression. Gene
605 Ontology (GO) enrichment analysis of differentially expressed genes was implemented by the
606 cluster Profiler R package, in which gene length bias was corrected. GO terms with corrected P
607 value ≤ 0.05 were considered significantly enriched by differential expressed genes. We used
608 cluster Profiler R package to test the statistical enrichment of differentially expressed genes in
609 KEGG pathways⁸².

610 **Statistics**

611 All data were statistically analysed using GraphPad Prism (versions 7 and 8,
612 RRID:SCR_002798). Statistical tests for each experiment are reported in the Figure legends. To
613 analyze between group differences (ie. when only 2 groups compared on a single factor), planned
614 two-tailed student's *t* tests (paired or unpaired) were employed as appropriate. One-way ANOVA
615 was used to compare region specific differences whereas two-way ANOVAs were used to compare
616 differences related to factors such as sex and brain region. Significant main effects from ANOVAs
617 were analyzed with Tukey's multiple comparisons tests. Linear regression tests were used to
618 determine if there was a relationship between: a) the quantity of angiogenic and pruning events
619 within the same region and b) an imaging area's proximity to the edge of the cranial window and
620 rates of angiogenesis. A two-tailed Mann-Whitney test was used to compare differences between
621 arteriole and venous branch order distributions with respect to formation or elimination of
622 capillaries. $P < 0.05$ was considered statistically significant.

623

624 **Data Availability:** Data generated for this study are available from the corresponding author on
625 reasonable request.

626 **Acknowledgements:** We are grateful Roobina Boghozian, Ana Paula Cota for their assistance
627 with experiments, as well as Angie Hentze and Taimei Yang for managing the mouse colony. We
628 thank Animal Care Services for their help with animal husbandry and welfare. This research was
629 supported by operating, salary and equipment grants to C.E.B. from the Canadian Institutes of
630 Health Research (CIHR), Heart and Stroke Foundation (HSF), Natural Sciences and Engineering
631 Research Council (NSERC).

632

633 **Author Contributions:** C.E.B, A.R., B.S. conceived the study. C.E.B, A.R wrote the manuscript.
634 J.K provided critical reagents, A.R., B.S., D.H., S.S., K.N., P.R., M.C., and C.E.B. performed
635 experiments and/or analyzed data.

636

637 **Competing Interests:** The authors declare no competing interests.

638

639

640

641

642

643

644

645

646

647

648

649

650 **References**

- 651 1. Atwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain.
652 *J. Cereb. Blood Flow Metab.* **21**, 1133-1145 (2001).
- 653 2. Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a
654 scientific statement from the american heart association/American stroke association. *Stroke*
655 **56**, e251-e271 (2023).
- 656 3. Davis, H. & Atwell, D. A. A tight squeeze: how do we make sense of small changes in
657 microvascular diameter? *J. Physiol.* **601**, 2263-2272 (2023).
- 658 4. Harraz, O. F., Longden T. A., Dabertrand, F., Hill-Eubanks, D., & Nelson, M. T. Endothelial
659 GqPCR activity controls capillary electrical signalling and brain blood flow through PIP₂
660 depletion. *PNAS* **115**, e3569-e3577 (2018).
- 661 5. Zambach, S. A. et al. Precapillary sphincters and pericytes at first-order capillaries as key
662 regulators for brain capillary perfusion. *PNAS* **118**, e2023749118 (2021).
- 663 6. Harb, R., Whiteus, C., Freitas, C., & Grutzendler, J. In vivo imaging of cerebral microvascular
664 plasticity from birth to death. *J. Cereb. Blood Flow Metab.* **33**, 146-156 (2013).
- 665 7. Whiteus, C., Freitas, C., & Grutzendler, J. Perturbed neural activity disrupts cerebral
666 angiogenesis during a postnatal critical period. *Nature* **505**, 407-411 (2014).
- 667 8. Lacoste, B. et al. Sensory-related neural activity regulates the structure of vascular networks
668 in the cerebral cortex. *Neuron* **83**, 1117-1130 (2014).
- 669 9. Coelho-Santos, V., Berthiaume, A. A., Ornelas, S., Stuhlmann, H., & Shih, A. Y. Imaging the
670 construction of capillary networks in the neonatal mouse brain. *PNAS* **118**, e2100866118
671 (2021).
- 672 10. Ruiz de Almodovar, C., Lambrechts, D., Mazzone, M., & Carmeliet, P. Role and therapeutic
673 potential of VEGF in the nervous system. *Physiol. Rev.* **89**, 607-648 (2009).
- 674 11. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia.
675 *J. Cell Biol.* **161**, 1163-1177 (2003).
- 676 12. Eelen, G., Treps, L. Li, X., & Carmeliet, P. Basic and therapeutic aspects of angiogenesis
677 updated. *Circ. Res.* **127**, 310-329 (2020).
- 678 13. Wang, X. et al. YAP/TAZ orchestrate VEGF signalling during developmental angiogenesis.
679 *Dev. Cell* **42**, 462-478 (2017).
- 680 14. Cuervo, H., Mühleider, S., García-Gonzalez, I., & Benedito, R. Notch-mediated cellular
681 interactions between vascular cells. *Curr. Opin. Cell Biol.* **85**, (2023).
- 682 15. Hellström, M. et al. DII4 signalling through Notch1 regulates formation of tip cells during
683 angiogenesis. *Nature* **445**, 776-780 (2007).
- 684 16. Clark, T. A. et al. Artery targeted photothrombosis widens the vascular penumbra, instigates
685 peri-infarct neovascularization and models forelimb impairments. *Sci. Rep.* **9**, (2019).
- 686 17. Brown, C. E., Li, P., Boyd, J. D., Delaney, K. R., & Murphy, T. H. Extensive turnover of
687 dendritic spines and vascular remodelling in cortical tissues recovering from stroke. *J.
688 Neurosci.* **27**, 4101-4109 (2007).
- 689 18. Rust, R. et al. Nogo-A targeted therapy promotes vascular repair and functional recovery
690 following stroke. *PNAS* **116**, 14270-14279 (2019).
- 691 19. Allegra Mascaro, A. L. et al. Combined rehabilitation promotes the recovery of structural and
692 functional features of healthy neuronal networks after stroke. *Cell Rep.* **28**, 3474-3485 (2019).
- 693 20. Masamoto, K. et al. Hypoxia-induced cerebral angiogenesis in mouse cortex with two-photon
694 microscopy. *Adv. Exp. Med. Biol.* **789**, 15-20 (2013).

695 21. Williamson, M. R. et al. A window of vascular plasticity coupled to behavioural recovery after
696 stroke. *J. Neurosci.* **40**, 7651-7667 (2020).

697 22. Ohab, J. J., Fleming, S., Blesch, A., & Carmichael, S. T. A neurovascular niche for
698 neurogenesis after stroke. *J. Neurosci.* **26**, 13007-13016 (2006).

699 23. Ergul, A., Abdelsaid, M., Fouda, A. Y., & Fagan, S. C. Cerebral neovascularization in diabetes:
700 implications for stroke recovery and beyond. *J. Cereb. Blood Flow Metab.* **34**, 553-563 (2014).

701 24. Xiong, Y. et al. Effects of erythropoietin on reducing brain damage and improving functional
702 outcome after traumatic brain injury in mice. *J. Neurosurg.* **109**, 510-521 (2008).

703 25. Benderro, G. F. & LaManna, J. C. Hypoxia-induced angiogenesis is delayed in aging mouse
704 brain. *Brain Res.* **1389**, 50-60 (2011).

705 26. Jullienne, A. et al. Male and female mice exhibit divergent responses of the cortical vasculature
706 to traumatic brain injury. *J. Neurotrauma* **35**, 1646-1658 (2018).

707 27. Morland, C. et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor
708 HCAR1. *Nat. Commun.* **8**, (2017).

709 28. Black, J. E., Polinsky, M., & Greenough, W. T. Progressive failure of cerebral angiogenesis
710 supporting neural plasticity in aging rats. *Neurobiol. Aging* **10**, 353-358 (1989).

711 29. Swain, R. A. et al. Prolonged exercise induces angiogenesis and increases cerebral blood
712 volume in primary motor cortex of the rat. *Neuroscience* **117**, 1037-1046 (2003).

713 30. He, C., Tsipis, C. P., LaManna, J. C., & Xu, K. Environmental enrichment induces increased
714 cerebral capillary density and improved cognitive function in mice. *Adv. Exp. Med. Biol.* **977**,
715 177-181 (2017).

716 31. Reeson, P., Choi, K., & Brown, C. E. VEGF signaling regulates the fate of obstructed
717 capillaries in mouse cortex. *Elife* **7**, e33670 (2018).

718 32. Cudmore, R. H., Dougherty, S. E., & Linden, D. J. Cerebral vascular structure in the motor
719 cortex of adult mice is stable and is not altered by voluntary exercise. *J. Cereb. Blood Flow
720 Metab.* **37**, 3725-3743 (2017).

721 33. Masamoto, K. et al. Microvascular sprouting, extension, and creation of new capillary
722 connections with adaptations of the neighbouring astrocytes in adult mouse cortex under
723 chronic hypoxia. *J. Cereb. Blood Flow Metab.* **34**, 325-331 (2014).

724 34. Mostany, R. et al. Local hemodynamics dictate long-term dendritic plasticity in peri-infarct
725 cortex. *J. Neurosci.* **30**, 14116-14126 (2010).

726 35. Tennant, K. A. & Brown, C. E. Diabetes augments in vivo microvascular blood flow dynamics
727 after stroke. *J. Neurosci.* **33**, 19194-19204 (2013).

728 36. Ji, X. et al. Brain microvasculature has a common topology with local differences in geometry
729 that match metabolic load. *Neuron* **109**, 1168-1187 (2021).

730 37. Shaw, K. et al. Neurovascular coupling and oxygenation are decreased in hippocampus
731 compared to neocortex because of microvascular differences. *Nat. Commun.* **12**, 3190 (2021).

732 38. Schager, B. & Brown, C. E. Susceptibility to capillary plugging can predict brain region
733 specific vessel loss with aging. *J. Cereb. Blood Flow Metab.* **40**, 2475-2490 (2020).

734 39. Bennett, H. C. et al. Aging drives cerebrovascular network remodeling and functional changes
735 in mouse brain. Preprint at <https://doi.org/10.1101/2023.05.23.541998> (2023).

736 40. Wu, Y. T. et al. Quantitative relationship between cerebrovascular network and neuronal cell
737 types in mice. *Cell Rep.* **39**, 110978 (2022).

738 41. Kilic, K. et al. Chronic cranial windows for long term multimodal neurovascular imaging in
739 mice. *Front. Physiol.* **11**, 612678 (2021).

740 42. Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. *Nat. Commun.* **5**, 5758
741 (2014).

742 43. Hartmann, D. A., Hyacinth, I. H., Liao, F.-F., & Shih, A. Y. Cerebral microinfarcts: small but
743 dangerous. *J. Neurochem.* **144**, 517-526 (2018).

744 44. Jullienne, A. et al. Progressive vascular abnormalities in the aging 3xTg-AD mouse model of
745 Alzheimer's disease. *Biomedicines* **10**, 1967 (2022).

746 45. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. *Cell* **130**, 691-
747 703 (2007).

748 46. Ehling, M., Adams, S., Benedito, R., & Adams, R. H. Notch controls retinal blood vessel
749 maturation and quiescence. *Development (Cambridge)* **140**, 3051-3061 (2013).

750 47. Fernández-Chacón, M. et al. Incongruence between transcriptional and vascular
751 pathophysiological cell states. *Nat. Cardiovasc. Res.* **2**, 530-549 (2023).

752 48. Körbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the
753 potential to treat neurovascular and neurological diseases. *EMBO Mol. Med.* **8**, 609-625
754 (2016).

755 49. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. *Cell*
756 **180**, 780-795 (2020).

757 50. Xiong, B. et al. Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain.
758 *Front. Neuroanat.* **11**, (2017).

759 51. Tsai, P. S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed
760 by direct counting and colocalization of nuclei and vessels. *J. Neurosci.* **29**, 14553-14570
761 (2009).

762 52. Blinder, P. et al. The cortical angiome: an interconnected vascular network with noncolumnar
763 patterns of blood flow. *Nat. Neurosci.* **16**, 889-897 (2013).

764 53. Menon, B. K. et al. Assessment of leptomeningeal collaterals using dynamic CT angiography
765 in patients with acute ischemic stroke. *J. Cereb. Blood Flow Metab.* **33**, 365-371 (2013).

766 54. Beinlich, F. R. M. et al. Oxygen imaging of hypoxic pockets in the mouse cerebral cortex.
767 *Science* **383**, 1471-1478 (2024).

768 55. Moeini, M. et al. Compromised microvascular oxygen delivery increases brain tissue
769 vulnerability with age. *Sci. Rep.* **8**, 8219 (2018).

770 56. Hofmann, J. J. & Iruela-Arispe, M. L. Notch signaling in blood vessels: who is talking to
771 whom about what? *Circ. Res.* **100**, 1556-1568 (2007).

772 57. Miloudi, K. et al. NOTCH1 signaling induces pathological vascular permeability in diabetic
773 retinopathy. *Proc. Natl. Acad. Sci. U S A* **116**, 4538-4547 (2019).

774 58. Mack, J.J., et al. NOTCH1 is a mechanosensor in adult arteries. *Nat Commun* **8**, 1620 (2017).

775 59. Takeshita, K. et al. Critical role of endothelial Notch1 signaling in postnatal angiogenesis.
776 *Circ. Res.* **100**, 70-78 (2007).

777 60. Ren, C. et al. Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1
778 signaling activation. *Exp. Neurol.* **304**, 30-40 (2018).

779 61. Haigh, J. J. et al. Cortical and retinal defects caused by dosage-dependent reductions in
780 VEGF-A paracrine signaling. *Dev. Biol.* **262**, 225-241 (2003).

781 62. Karaman, S. et al. Interplay of vascular endothelial growth factor receptors in organ-specific
782 vessel maintenance. *J. Exp. Med.* **219**, e20210565 (2022).

783 63. Pontes-Quero, S. et al. High mitogenic stimulation arrests angiogenesis. *Nat. Commun.* **10**,
784 2016 (2019).

785 64. Helker, C. S. M. et al. Apelin signaling drives vascular endothelial cells toward a pro-
786 angiogenic state. *eLife* **9**, e55589 (2020).

787 65. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., & Leder, P. Mice lacking p21CIP1/WAF1
788 undergo normal development, but are defective in G1 checkpoint control. *Cell* **82**, 675-684
789 (1995).

790 66. García-Fernández, R. A. et al. Combined loss of p21^{waf1/cip1} and p27^{kip1} enhances tumorigenesis
791 in mice. *Lab. Invest.* **91**, 1634-1642 (2011).

792 67. Felcht, M. et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and
793 integrin signaling. *J. Clin. Invest.* **122**, 1991-2005 (2012).

794 68. Scholz, A. et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-
795 native and bevacizumab-resistant glioblastoma. *EMBO Mol. Med.* **8**, 39-57 (2016).

796 69. Zhai, B-T. et al. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic
797 target in cancer. *J. Transl. Med.* **20**, 135 (2022).

798 70. Isogai, C. et al. Plasminogen activator inhibitor-1 promotes angiogenesis by stimulating
799 endothelial cell migration toward fibronectin. *Cancer Res.* **61**, 5587-5594 (2001).

800 71. Meng, G. et al. High-throughput synapse-resolving two-photon fluorescence microendoscopy
801 for deep-brain volumetric imaging in vivo. *Elife* **8**, e40805 (2019).

802 72. Schmid, F., Tsai, P. S., Kleinfeld, D., Jenny, P., & Weber, B. Depth-dependent flow and
803 pressure characteristics in cortical microvascular networks. *PLoS Comput Biol.* **13**, e1005392
804 (2017).

805 73. Ward, N. L. et al. Cerebral angiogenic factors, angiogenesis, and physiological response to
806 chronic hypoxia differ among four commonly used mouse strains. *J. Appl. Physiol.* (1985) **102**, 1927-1935 (2007).

808 74. Ouellette, J. et al. Vascular contributions to 16p11.2 deletion autism syndrome modeled
809 mice. *Nat. Neurosci.* **23**, 1090-1101 (2020).

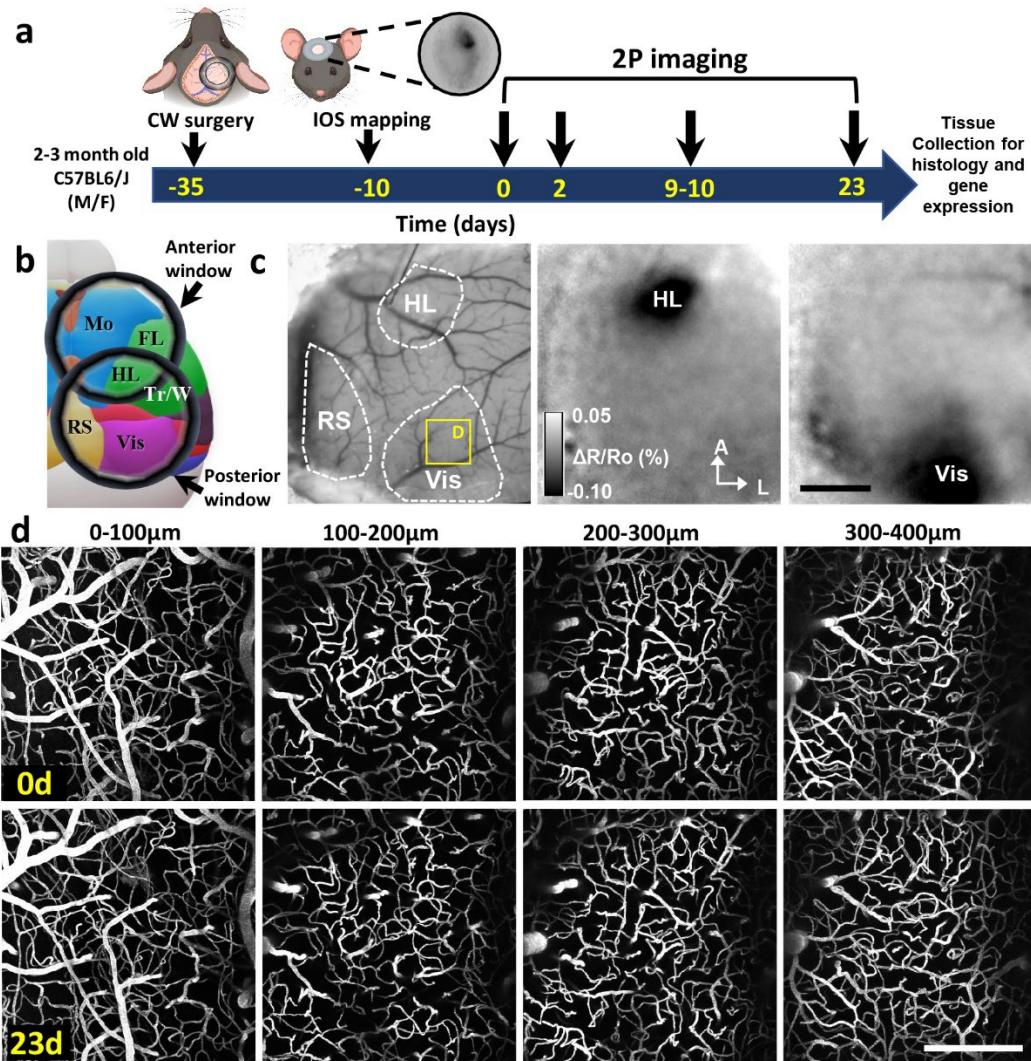
810 75. Zechariah, A. et al. Hyperlipidemia attenuates vascular endothelial growth factor-induced
811 angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased
812 pericyte coverage of brain endothelial cells. *Arterioscler. Thromb. Vasc. Biol.* **33**, 1561-1567
813 (2013).

814 76. Zang, Q. et al. Running exercise improves spatial learning and memory ability and enhances
815 angiogenesis in the cerebral cortex via endogenous nitric oxide. *Behav. Brain Res.* **439**,
816 114243 (2023).

817 77. Kerr, A. L., Steuer, E. L., Pochtarev, V., & Swain, R. A. Angiogenesis but not neurogenesis
818 is critical for normal learning and memory acquisition. *Neuroscience* **171**, 214-226 (2010).

819 78. Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-
820 dependent pathway. *Dev. Biol.* **269**, 81-94 (2004).

821 79. Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of
822 complementary DNA. *Nucleic Acids Res.* **37**, e123 (2009).


823 80. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. Mapping and
824 quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods* **5**, 621-628 (2008).

825 81. Liao, Y., Smyth, G. K., & Shi, W. featureCounts: an efficient general purpose program for
826 assigning sequence reads to genomic features. *Bioinformatics (Oxford, England)* **30**, 923-930
827 (2014).

828 82. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids*
829 *Res.* **28**, 27-30 (2000).

830

831 **Figure 1**

832

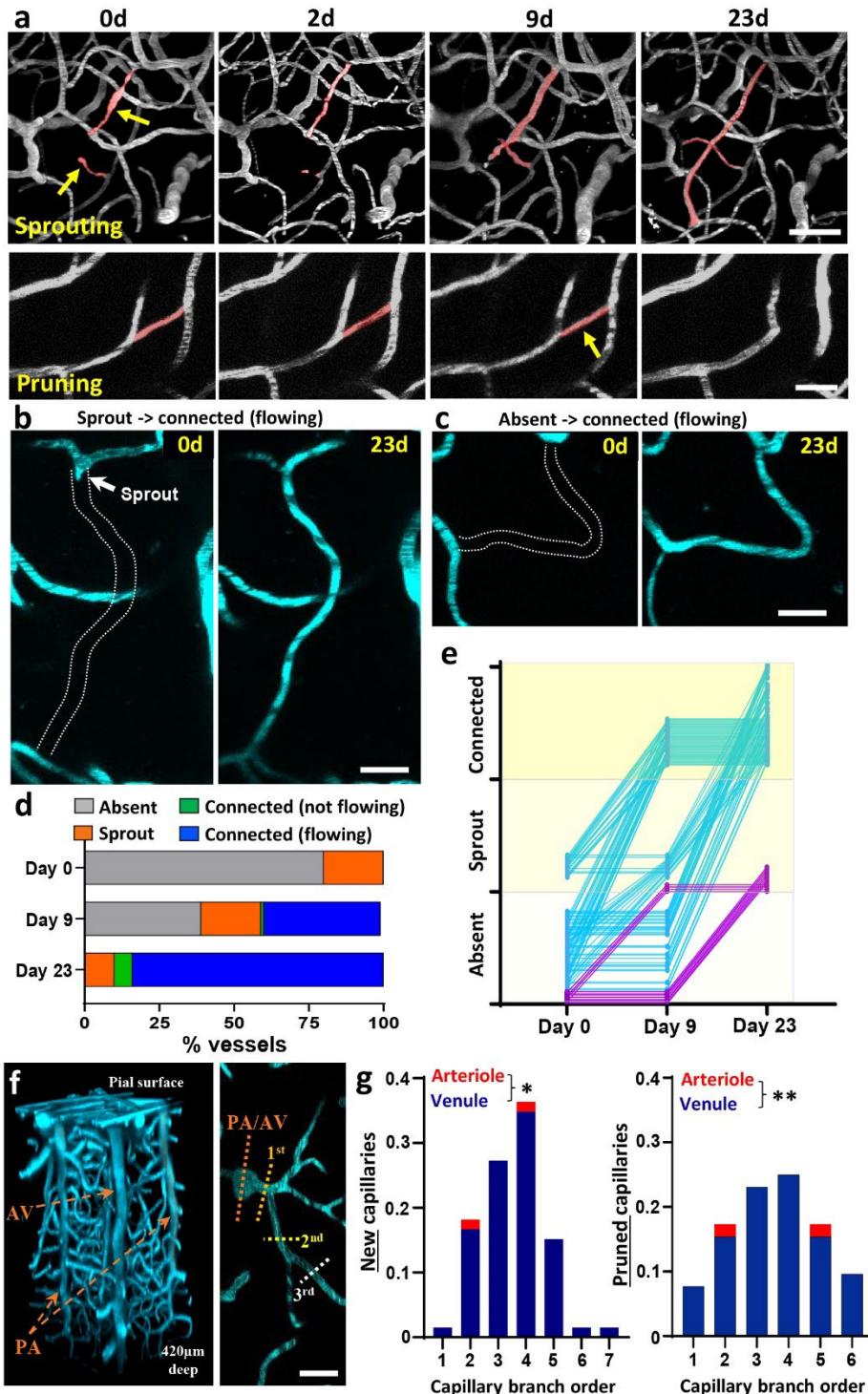
833 **Figure 1. Longitudinal *in vivo* imaging of vascular remodelling across cortical regions in**
834 **adult mice. (a)** Timeline of experimental procedures and two-photon (2P) imaging sessions.

835 **(b)** Schematic showing different cortical regions imaged with anterior or posterior positioned

836 cranial windows. **(c)** Left: Brightfield image of the cortical surface showing the location of

837 retrosplenial (RS), hindlimb somatosensory (HL) and Visual cortex (Vis). Middle and right:

838 intrinsic optical signal (IOS) maps show the position of the hindlimb and visual cortex. **(d)**


839 Maximal intensity z-projection images of fluorescently labelled blood vessels at different depths

840 in the visual cortex at the start of the experiment and then again 23 days later. Mo: motor cortex,

841 FL: forelimb somatosensory cortex, Tr/W: trunk and whisker-barrel somatosensory cortex. Scale

842 bars = 1mm (c) and 200μm (d).

843 **Figure 2**

844

845 **Figure 2. Progressive formation of new capillaries originate from branches off the**
 846 **ascending venule. (a)** Time lapse *in vivo* maximal intensity z-projection images show
 847 development of a newly formed (top row) or pruned (bottom row) capillaries over 23 days in

848 visual cortex. Newly formed capillaries with blood flow on day 23 originated from a sprout (**b**)
849 or no sprout (“absent”, **c**) on day 0. (**d**) Graph shows time-dependent changes in the fraction (%)
850 of newly formed capillaries at each stage of development (n=100 events). (**e**) Time course of
851 each angiogenic event across the 3 phases of growth. Purple lines indicate events that finish day
852 23 as a sprout whereas teal lines indicate events that finish as a connected new capillary. (**f**) Left:
853 maximal intensity y-z image projection showing the vasculature in visual cortex from the pial
854 surface to 400 μ m deep. Right: branch order of new or pruned capillaries was determined by
855 tracing back to the nearest penetrating arteriole (PA) or ascending venule (AV). (**g**) Almost the
856 entire fraction of new (left side, 64/66 capillaries) or pruned capillaries (right side, 50/52
857 capillaries) originated from lower order capillary branches off the ascending venule. Data in g
858 analysed with two-tailed Mann-Whitney test. *p \leq 0.05, **p \leq 0.01. Scale bars = 40 μ m (a, top row)
859 and 20 μ m (a, bottom row, b, c, f).

860

861

862

863

864

865

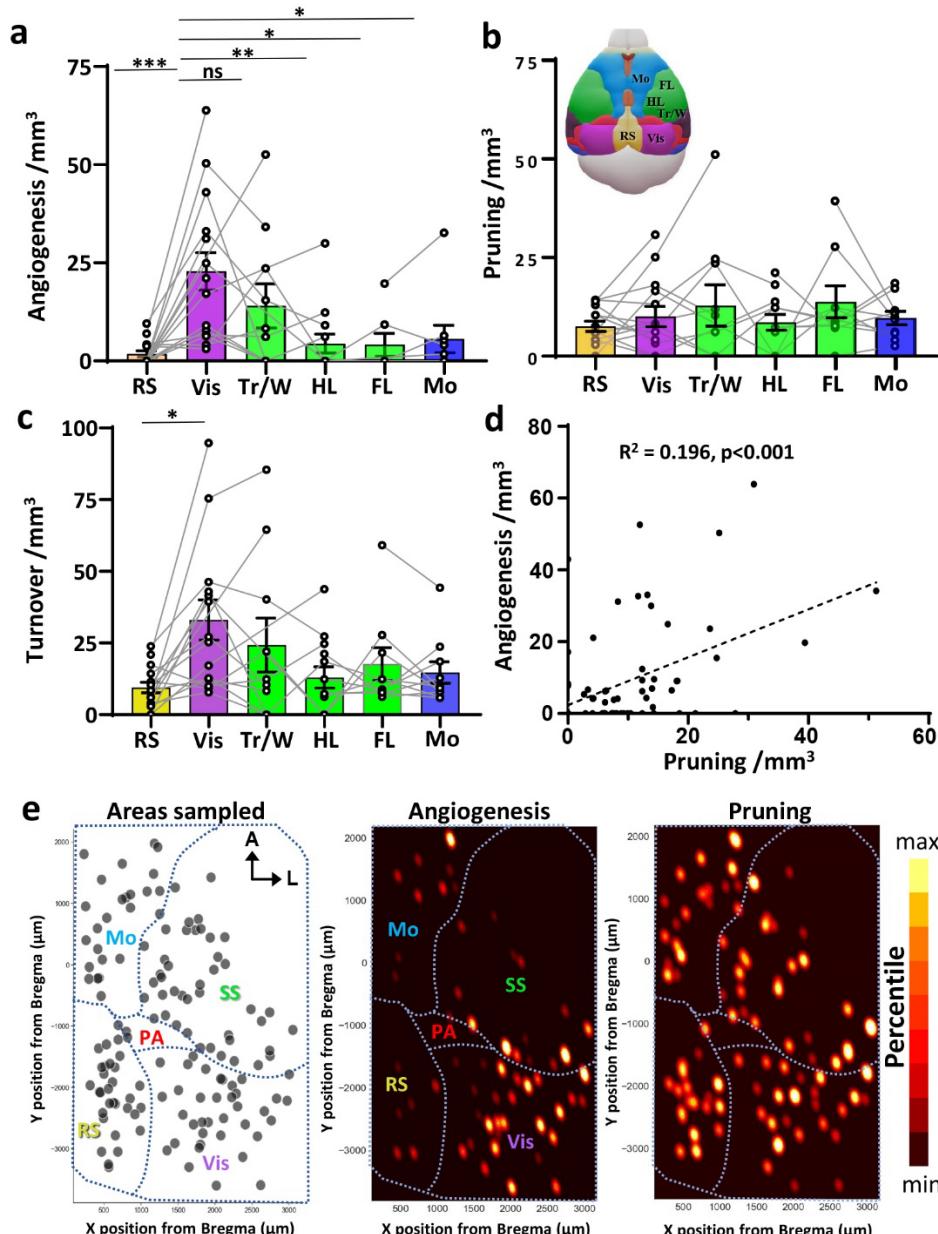
866

867

868

869

870


871

872

873

874

875 **Figure 3**

876

877 **Figure 3. Cerebral angiogenesis but not pruning, is regionally dependent.** (a) Graphs show
878 individual data points (regions imaged in the same mouse are connected by lines) and the
879 average number of angiogenic capillaries per mm³ across different cortical regions (sexes pooled
880 together; n=16, 15, 10, 13, 7 and 9 mice for the 6 regions, respectively). (b) Individual and mean
881 rates of capillary pruning per mm³ across different cortical regions. (c) Bar graph shows the sum
882 of new and pruned capillaries (“turnover”) per mm³ in each cortical region. (d) Linear regression
883 shows significant relationship between the mean rate of angiogenesis and pruning for each

884 region imaged (n=68 regions). (e) Maps show the spatial location of each imaging stack across
885 the cortical mantle relative to bregma (139 stacks from 24 mice) and corresponding weighted
886 probability density of angiogenesis and pruning events for each stack. Color scale is proportional
887 density for each plot, with maximum to minimum values expressed in 10th percentile increments.
888 Total area under all densities sums to 1. Data in a, b, c were analysed with one-way ANOVA
889 followed by Tukey's multiple comparisons tests. ns = not significant, *p≤0.05, **p≤0.01,
890 ***p≤0.001. Data are mean ± SEM.

891

892

893

894

895

896

897

898

899

900

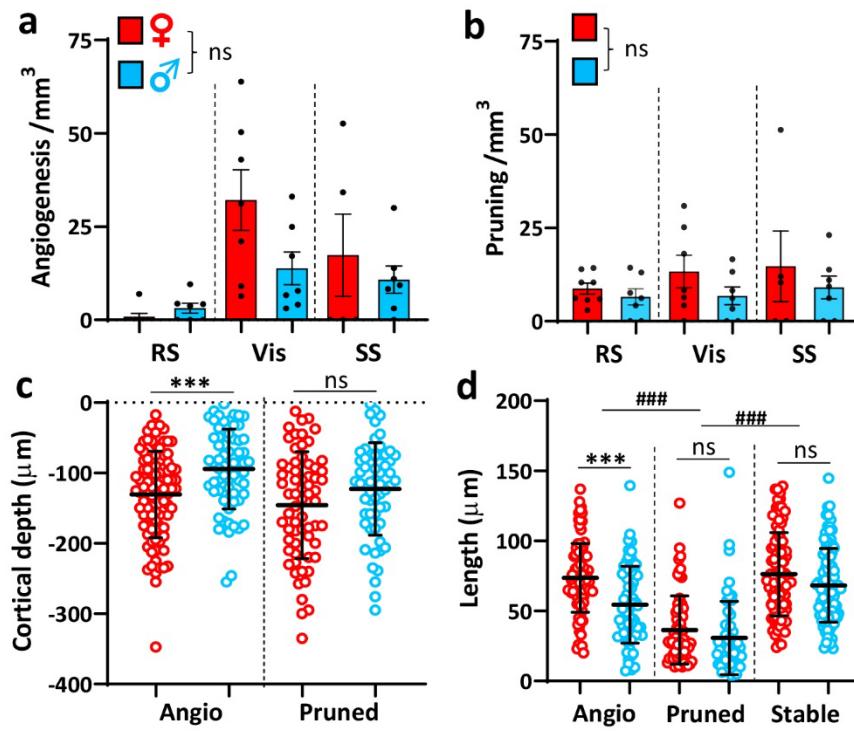
901

902

903

904

905


906

907

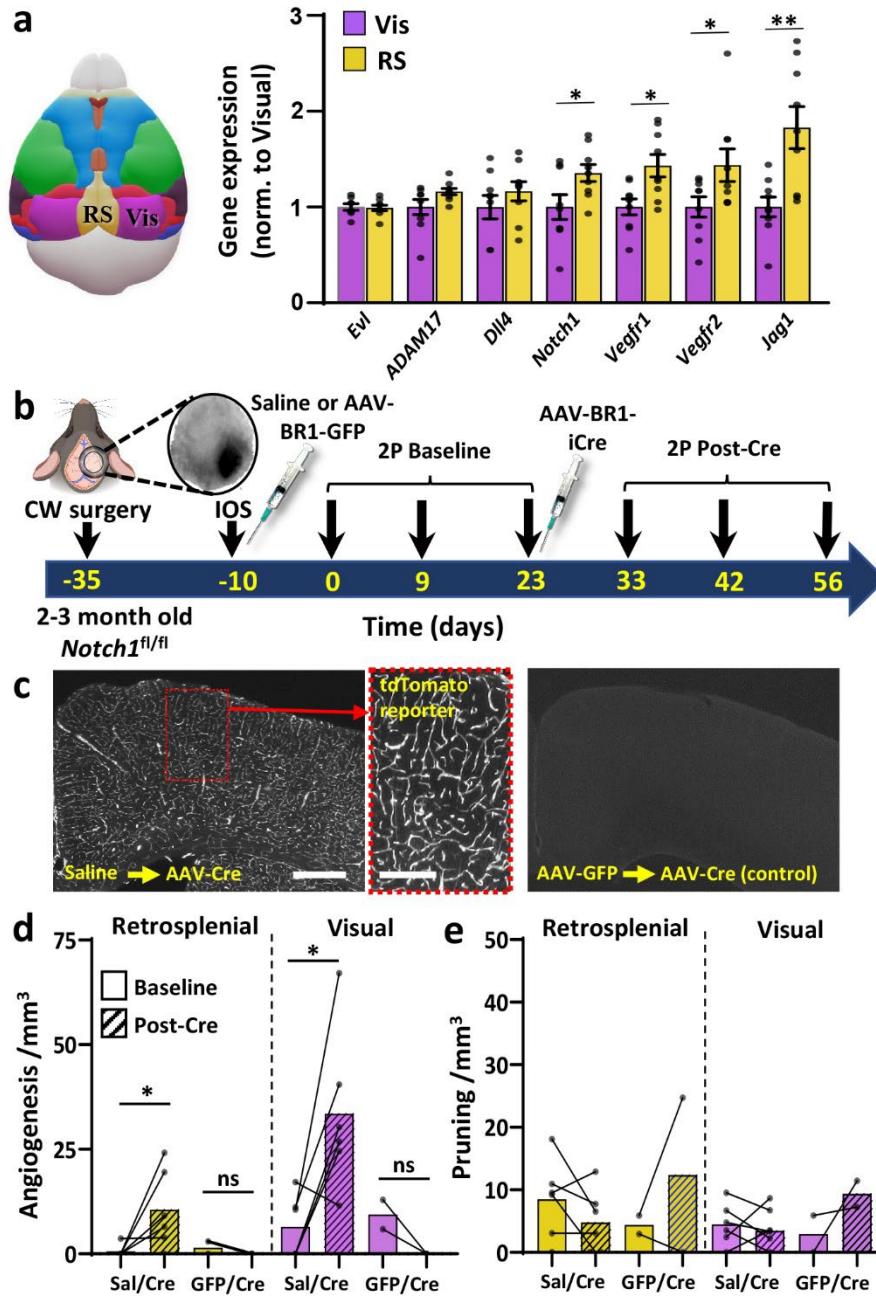
908

909

910 **Figure 4**

911

912 **Figure 4. Sex affects the depth and length of newly formed capillaries but not rates of**
913 **angiogenesis and pruning. (a)** Bar graph shows individual and mean rate of angiogenesis per
914 mm^{-3} across different cortical regions in female and male mice (n=8 and 7 mice, respectively). SS
915 represents pooled data from HL and Tr/W somatosensory regions. **(b)** Individual and mean
916 pruning rates across cortical regions in male and female mice. **(c,d)** Graphs show the depth
917 below the pial surface **(c)** and length **(d)** for each newly formed or pruned capillary in male and
918 female mice (93 new capillaries in females vs 66 in males; 65 pruned capillaries in females vs 60
919 in males). The length of stable capillaries was based on a random sample of 100 capillaries from
920 4 mice per sex. Data in a and b were analysed with two-way ANOVA while data in c and d were
921 analysed with unpaired two-tailed t-tests. ns = not significant, $***p\leq 0.001$ for comparisons
922 between sex. $###p\leq 0.001$ for comparisons with sexes pooled. Data are mean \pm SEM.


923

924

925

926

927 **Figure 5**

928

929 **Figure 5. Endothelial knockdown of Notch1 signalling stimulates cerebral angiogenesis. (a)**
 930 qPCR analysis shows gene expression from tissues collected from the retrosplenial and visual
 931 cortex (n=9 mice). Data are mean \pm SEM. **(b)** Timeline of experimental procedures for imaging
 932 vasculature in retrosplenial and visual cortex before and after AAV mediated knockdown of
 933 endothelial Notch1. **(c)** Fluorescent images of coronal brain sections show cre-dependent
 934 expression of tdTomato in cortical vascular endothelial cells after injection of AAV-BR1-iCre

935 (left) into Ai9 reporter mice. Right image: Ai9 mouse injected with AAV-BR1-eGFP at baseline,
936 which do not show cre-dependent reporter expression after injection of AAV-BR1-iCre several
937 weeks later. (d) Graphs show individual and mean rate of angiogenesis in retrosplenial and
938 visual cortex in mice at baseline and then after with injection of AAV-BR1-iCre. Note that
939 angiogenesis increases in mice with endothelial specific knockdown of Notch1 (Sal/Cre mice,
940 n=6 mice), but not in control mice that were first injected with AAV-BR1-GFP at baseline
941 (GFP/Cre, n=2 mice). (e) Pruning rates in retrosplenial and visual cortex in mice with endothelial
942 specific knockdown of Notch1 or controls (Sal/Cre vs GFP/Cre mice). Data in a were analysed
943 with unpaired two-tailed t-tests, while data in d, e were analysed with paired t-tests. ns = not
944 significant, *p≤0.05, **p≤0.01. Scale bars in C = 0.5mm (left) and 0.2mm (middle).

945

946

947

948

949

950

951

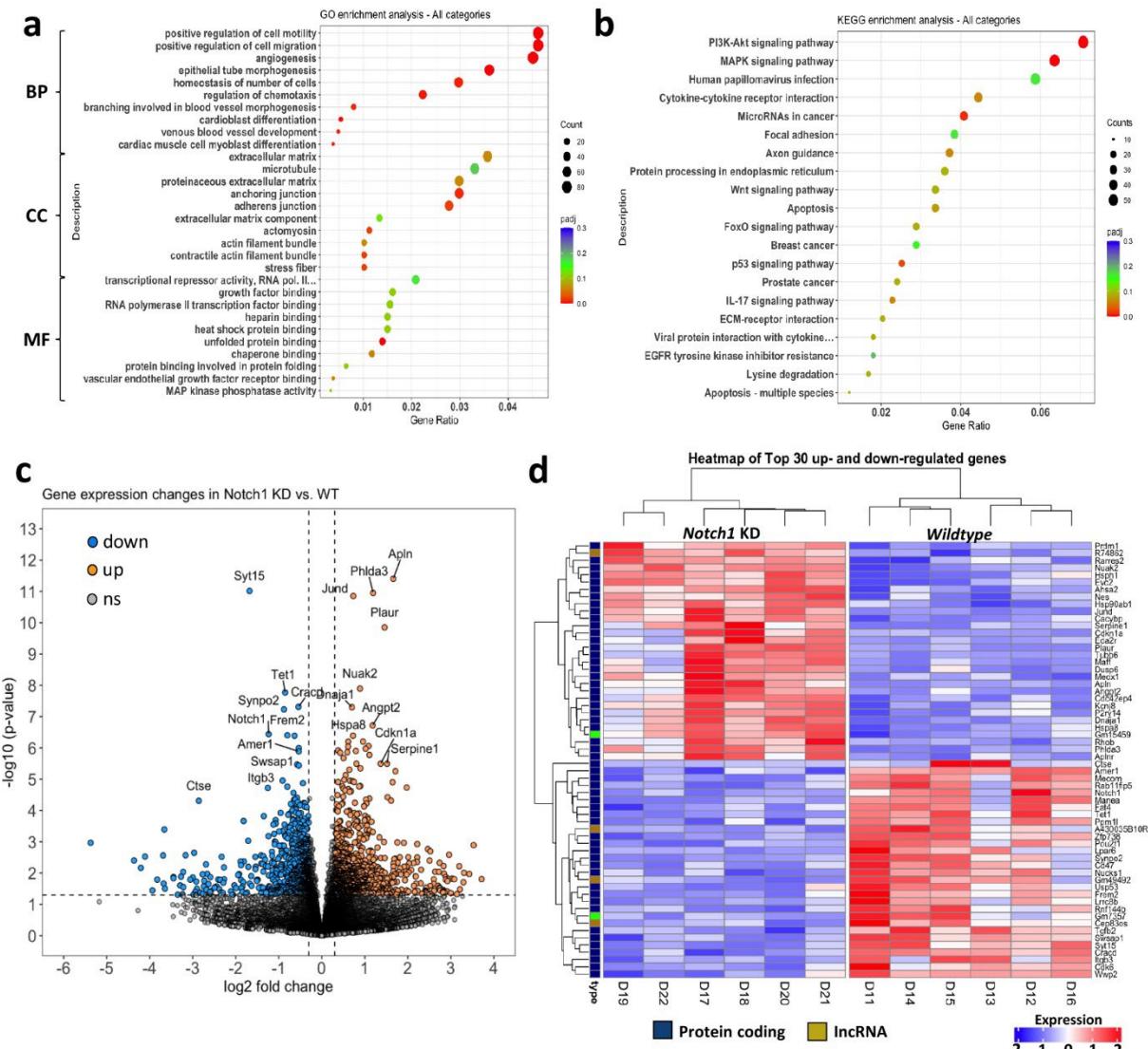
952

953

954

955

956


957

958

959

960

961 **Figure 6**

962

963 **Figure 6. Transcriptional changes in brain endothelial cells following viral knockdown of**
 964 **Notch1.** All graphs compare endothelial specific knockdown of Notch1 (n=6 mice infected with
 965 AAV-BR1-iCre) to wildtype control endothelial cells (n=6 mice infected with AAV-BR1-eGFP).
 966 **(a)** Dot plot for gene enrichment analysis shows top 10 GO terms (for genes up and down
 967 regulated) in each GO category after Notch1 knockdown. BP: biological processes, CC: cellular
 968 component, MF: molecular function. **(b)** Dot plot shows KEGG classification for differentially
 969 expressed genes (top 20 most significantly affected functions) following Notch1 knockdown. **(c)**
 970 Volcano plot depicts gene expression based on log2 fold change and statistical significance
 971 (adjusted p<0.05). Gene names are attached to the top 10 genes most significantly up (orange) or

972 down (blue) regulated. (d) Heat map shows top 30 differentially expressed genes in endothelial
973 cells across each mouse in Notch 1 knockdown or wildtype control groups.