

Yan *et al.*, UFM1 in AD

1 **The UFMylation pathway is impaired in Alzheimer's disease**

2 Tingxiang Yan¹, Michael G. Heckman², Emily C. Craver², Chia-Chen Liu¹, Bailey D. Rawlinson¹,

3 Xue Wang¹, Melissa E. Murray^{1,3}, Dennis W. Dickson^{1,3}, Nilufer Ertekin-Taner^{1,3}, Zhenkun Lou⁴,

4 Guojun Bu^{1,4}, Wolfdieter Springer^{1,3} and Fabienne C. Fiesel^{1,3,*}

5

6 **Affiliations:**

7 ¹ Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA

8 ² Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA

9 ³ Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville,
10 FL 32224, USA

11 ⁴ Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA

12 [#] present address: Division of Life Science, The Hong Kong University of Science and Technology,
13 Hong Kong, China

14 ^{*} Corresponding author

15

16 Correspondence should be addressed to:

17 E-mail: Fiesel.Fabienne@mayo.edu

18

19

20 **Keywords:** UFMylation, UFM1, UFSP2, Alzheimer's disease, tau, brain

21

22 **ABSTRACT (350 words max – currently 350)**

23 **Background:** Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles

24 made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These

Yan et al., UFM1 in AD

25 pathognomonic deposits have been implicated in the pathogenesis, although the molecular
26 mechanisms and consequences remain undetermined. UFM1 is an important, but understudied
27 ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been
28 identified as major modifier of tau aggregation upon seeding in experimental models. However,
29 potential alterations of the UFM1 pathway in human AD brain have not been investigated yet.

30 **Methods:** Here we used frontal and temporal cortex samples from individuals with or without AD
31 to measure the protein levels of the UFMylation pathway in human brain. We used multivariable
32 regression analyses followed by Bonferroni correction for multiple testing to analyze associations
33 of the UFMylation pathway with neuropathological characteristics, primary biochemical
34 measurements of tau and additional biochemical markers from the same cases. We further
35 studied associations of the UFMylation cascade with cellular stress pathways using Spearman
36 correlations with bulk RNAseq expression data and functionally validated these interactions using
37 gene-edited neurons that were generated by CRISPR-Cas9.

38 **Results:** Compared to controls, human AD brain had increased protein levels of UFM1. Our data
39 further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation
40 in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions.
41 In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble
42 levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout
43 neurons revealed that the DNA damage response as well as the unfolded protein response are
44 perturbed by changes in neuronal UFM1 signaling.

45 **Conclusions:** There are marked changes in the UFMylation pathway in human AD brain. These
46 changes are significantly associated with pathological tau, supporting the idea that the UFMylation
47 cascade might indeed act as a modifier of tau pathology in human brain. Our study further
48 nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain
49 but also underscores the critical need to identify risks and benefits of manipulating the UFMylation
50 pathway as potential therapeutic avenue for AD.

Yan et al., UFM1 in AD

51 INTRODUCTION

52 Ubiquitin-fold modifier 1 (UFM1) is a small, ubiquitin-like protein that is covalently attached to
53 lysine residues of substrate proteins in a process termed UFMylation[1, 2]. Similar to ubiquitylation,
54 this post-translational modification is catalyzed by a series of enzymes. The first step is the
55 maturation of the UFM1 precursor (proUFM1) by the UFM1-specific cysteine proteases (UFSP1
56 and UFSP2), which cleave the dipeptide Ser-Cys from the C-terminus to expose a single glycine
57 residue that can be used for conjugation[3]. Subsequently, mature UFM1 is conjugated to target
58 substrates via a catalytic cascade involving a UFM1-specific set of E1 (UFM1-activating enzyme
59 - UBA5), E2 (UFM1-conjugating enzyme - UFC1), and a complex that consists of the E3 ligase
60 (UFM1 ligase - UFL1) and the adaptor proteins DDRGK1 (aka UFBP1) and CDK5RAP3[4-8].
61 UFMylation is reversible. The deconjugation of UFM1 is mainly mediated by the protease UFSP2,
62 loss of which significantly induces the accumulation of conjugated UFM1[9, 10].

63 The UFMylation pathway has been associated with a range of cellular functions, including
64 unfolded protein response[11, 12], DNA damage response[13, 14], autophagic functions as well
65 as immune response[15-20]. Interestingly, these cellular functions are central to
66 neurodegeneration and Alzheimer's disease (AD)[21-24]. Neuropathologically, AD is
67 characterized by the presence of extracellular senile plaques composed of beta-amyloid (A β) and
68 intracellular neurofibrillary tangles made of hyperphosphorylated forms of the microtubule-
69 associated protein tau[25]. Very recently, a group identified UFMylation as novel key modifier of
70 seeding-induced Tau propagation[26]. In addition, UFMylation is essential for brain development,
71 as loss of function of any of its components causes severe neurodevelopmental disorders[15, 27-
72 31]. Therefore, reduced functions of UFMylation could well affect neuronal function and viability.
73 However, UFMylation and its role in and significance for neurodegenerative disorders are just
74 emerging and changes in human AD brain have not been investigated yet.

Yan et al., UFM1 in AD

75 In this study, we biochemically measured levels of UFMylation pathway proteins in
76 temporal cortex and frontal cortex of control and AD brain. We assessed associations with primary
77 clinical parameters and the severity of AD pathology, the abundance of AD-related molecules (tau,
78 A β and APOE), as well as the expression of DNA damage and unfolded protein response related
79 genes. This revealed a significantly increased abundance of the UFM1 protein in the cortex of AD
80 brains, which was further associated with loss of soluble UFSP2 and the accumulation of
81 pathological tau. Furthermore, we investigated the functional consequences of aberrant
82 UFMylation in neurons and observed dual effects: protective benefits against DNA damage but
83 increased susceptibility towards unfolded protein stress in neurons. Our study highlights disease-
84 associated changes in UFMylation that might be associated with tau pathology in disease.

85

86 **MATERIALS AND METHODS**

87 **Subjects**

88 This study obtained de-identified post-mortem tissues from the Mayo Clinic Brain Bank. We
89 analyzed two cohorts that each consisted of AD patients and of neurological normal individuals
90 (hereafter referred to as controls). For the smaller exploratory cohort, we investigated frontal
91 cortex samples from n=13 AD and n=13 controls. For the main cohort we investigated midfrontal
92 and superior temporal cortex samples from n=72 AD and n=41 control cases. Detailed
93 characteristics of these cohorts are summarized in **Tables S1 and S2**, respectively.

94 All brains were examined in a systematic and standardized manner and obtained between
95 1998 and 2019. All subjects are non-Hispanic Caucasians of European descent. Available clinical
96 information included age at death, sex, Braak tangle stage (0-VI), and Thal amyloid phase (0–5)
97 [33,62]. For the AD cohort we also obtained the age at onset, and disease duration. For the main
98 cohort, we further obtained additional information such as the APOE genotype and mini mental

Yan et al., UFM1 in AD

99 state examination (MMSE) scores (AD patients only). The AD cases of the main cohort were part
100 of the M²OVE-AD (Molecular Mechanisms of the Vascular Etiology of AD) initiative and had been
101 phenotyped in depth. Levels of apoE, A β ₄₀, A β ₄₂, tau, pT231-tau were available from three
102 fractions (Tris-buffered saline [TBS] buffer, detergent-containing buffer [1% Triton X-100 in TBS,
103 termed TX], and formic acid [FA] fractions) from temporal cortex tissue[32]. These parameters
104 were used as secondary measures of interest. In addition, we used bulk transcriptome data
105 available from the same cases to study correlations with gene expression data.

106 The Mayo Clinic brain bank for neurodegenerative disorders operates with approval of the
107 Mayo Clinic Institutional Review Board. All brain samples are from autopsies performed after
108 approval by the legal next-of-kin. Research on de-identified postmortem brain tissue is considered
109 exempt from human subjects regulations by the Mayo Clinic Institutional Review Board.

110 **Sample preparation**

111 Cortex tissues were dissected and kept frozen until protein extraction. 180-200 mg of frozen tissue
112 were homogenized in 5 volumes of ice-cold Tris-buffered saline (TBS; 50 mM Tris [Millipore,
113 G48311], 150 mM NaCl [FisherScientific, BP358], pH 7.4) containing phosphatase inhibitors
114 (Roche, 4906845001) and protease inhibitor cocktail (Roche, 11836170001) with a Dounce tissue
115 grinder (DWK, K885300-0002). For protein extraction, 1/4 volume of a 5x RIPA buffer (50 mM Tris,
116 pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholate, 1% NP-40) was added to the TBS
117 homogenate and incubated at 4°C for 30 min with rotation. Then, samples were centrifuged at
118 100,000 g for 60 min at 4°C. The supernatant (referred to as 'soluble' fraction) was collected,
119 aliquoted, flash frozen in liquid nitrogen and stored at -80°C until use. The residual pellet was
120 washed with 1xRIPA buffer twice and centrifuged at 100,000 g for 30 min at 4°C. The pellet was
121 resuspended in 2% SDS (Fisher, BP166-500) in TBS with phosphatase and protease inhibitors,
122 sonicated for ten cycles (one cycle is 30 s ON/30 s OFF with high power level) in a Bioruptor plus
123 sonication system (diagenode, Belgium) at 18 °C, and boiled at 95°C for 5 min. After centrifugation

Yan et al., UFM1 in AD

124 at 100,000 g for 60 min at 22°C, the resulting supernatant (referred to as ‘insoluble’ fraction) was
125 collected, aliquoted, flash frozen in liquid nitrogen and stored at -80°C until use.

126 **Gel electrophoresis and western blot**

127 The protein concentration was measured using BCA assay (Thermo Fisher, 23225). 20 µg protein
128 extract was mixed with 6x SDS-PAGE loading buffer, boiled for 5 min at 95 °C and loaded on 8-
129 16% Tris-Glycine gels (Invitrogen, EC60485BOX). Proteins were transferred onto 0.2 µm
130 nitrocellulose membranes (Bio-Rad, 1620112). Following blocking with 5% nonfat milk (Sysco,
131 5398953) in TBS with 0.1% Tween (TBST) for one hour at room temperature (RT), primary and
132 secondary antibodies were applied, and the blots developed with Immobilon Western
133 Chemiluminescent HRP Substrate (Millipore, WBKLS0500). Bands were visualized on Blue Devil
134 Lite X-ray films (Genesee Scientific, 30-810L) or with a ChemiDoc MP Imager (BioRad, Hercules,
135 CA).

136 **Antibodies**

137 The following antibodies were used for immunoblot: Rabbit anti-UFM1-Ab1 (Abcam, ab109305,
138 1:1000), rabbit anti-UFM1-Ab2 (Sigma, HPA039758, 1:1000), rabbit anti-UFM1-Ab3 (Proteintech
139 Group, 15883-1-AP, 1:1000), rabbit anti-UFM1-Ab4 (LS Bio, LS-C807041, 1:1000), rabbit anti-
140 UFM1-Ab5 (LS Bio, LS-C500000, 1:1000), mouse anti-UFSP1 (Santa Cruz Biotechnology, sc-
141 398577, 1:1000), mouse anti-UFSP2 (Santa Cruz Biotechnology, SC-376084, 1:2000), rabbit
142 anti-UBA5 (Proteintech Group, 12093-1-AP, 1:2000), rabbit anti-UFC1 (Abcam, ab189252,
143 1:2000), rabbit anti-UFL1 (Thermo Fisher, A303-456A, 1:1000), rabbit anti-DDRGK1 (Proteintech
144 Group, 21445-1-AP, 1:1000), rabbit anti-CDK5RAP3 (Abcam, ab242399, 1:1000), mouse anti-β-
145 actin (Sigma, A1978, 1:100,000), mouse anti-Vinculin (Sigma, V9131, 1:100,000), mouse anti-
146 GAPDH (Meridian Life science, H86504M; 1:5,000,000), rabbit anti-Bip (Cell Signaling
147 Technology, 3177, 1:5,000), rabbit anti-PERK (Cell Signaling Technology, 3192, 1:4000), rabbit
148 anti-ATF4 (Cell Signaling Technology, 11815, 1:2000), mouse anti-CHOP (Cell Signaling

Yan et al., UFM1 in AD

149 Technology, 2895, 1:2000), rabbit anti-IRE1 α (Cell Signaling Technology, 3294, 1:2000), rabbit
150 anti-Xbp1s (Cell Signaling Technology, 12782, 1:5000), rabbit anti-ATF6 (Cell Signaling
151 Technology, 65880, 1:1000).

152 The following antibodies were used for immunofluorescence: mouse anti-CHOP (Cell
153 Signaling Technology, 2895, 1:200), rabbit anti-Xbp1s (Cell Signaling Technology, 12782, 1:400),
154 γ H2Ax (Cell Signaling Technology, 9718T, 1:400).

155 For ELISA the following antibodies were used: rabbit anti-UFM1-Ab1 (Abcam, ab109305,
156 1:300), rabbit anti-UFM1-Ab2 (Sigma, HPA039758, 1:100), rabbit anti-UFM1-Ab3 (Proteintech
157 Group, 15883-1-AP, 1:100), rabbit anti-UFM1-Ab4 (LS Bio, LS-C500000, 1:100), rabbit anti-
158 UFM1-Ab5 (LS Bio, LS-C807041, 1:100), mouse anti-UFSP2 (Santa Cruz Biotechnology, SC-
159 376084, 1:50), rabbit anti-tau (DAKO, AA002402-1, 1:500), mouse anti-total tau (Invitrogen,
160 AHB0042, 1:500), mouse anti-p-tau (PHF1, a generous gift from the late Dr. Peter Davies, 1:500).

161 **Generation of gene-edited neuronal precursor cells**

162 Neuronal progenitor cells derived from the ventral mesencephalon (ReN cell VM, Millipore,
163 SCC008) were maintained on growth factor-reduced matrigel (Corning, CB-40230) coated plates
164 in DMEM-F12 media (Thermo Fisher, 11320033), supplemented with B27 (Thermo Fisher,
165 17504044), 50 μ g/ml gentamicin (Thermo Fisher, 15-750-060), and 5 U/ml Heparin (Sigma,
166 H3149) in the presence of 20 ng/ml epidermal growth factor (EGF, Peprotech, AF-100-15) and
167 fibroblasts growth factor (FGF, Peprotech, 100-25). Differentiation of ReN cells was performed by
168 replacing FGF and EGF with 2 ng/ml GDNF (Peprotech, 450-10) and 1 mM dibutyryl-cAMP
169 (Invivochem, V1846) for fourteen days[33]. All cells were grown at 37°C, 5% CO₂/air in a
170 humidified atmosphere.

171 We used ALT-R CRISPR-Cas9 system (IDT, Coralville, IA) to knock out UFM1 or UFSP2.
172 UFM1 was further knocked out in UFSP2 KO cells to generate double knockouts (dKO). ReN
173 cells VM were electroporated with ribonucleoprotein complex using the nucleofector P3 kit (Lonza,

Yan et al., UFM1 in AD

174 V4XP-3032). Single cell colonies were generated by limited dilution in 96-well plates. All clones
175 were analyzed by PCR and western blot. The five most likely off-target sites as identified by the
176 Benchling biology software (2021, www.benchling.com) were sequenced by Sanger sequencing
177 to exclude unwanted editing. The sequences of gRNAs were as follows: gRNA-UFM1:
178 GTAAGCAACACTTACATGG; gRNA-UFSP2: AATAAGAGGAGGCCTTGATT.

179 **Quantification of UFM1, UFSP2, total tau, and pS396/404-tau**

180 The relative amounts of UFM1, UFSP2, tau and pS396/404-tau were measured by Meso Scale
181 Discovery (MSD) ELISA. All samples were run in duplicates. For the UFM1 and UFSP2 MSD
182 ELISA, 10 µg of denatured brain samples were diluted in 200 mM sodium carbonate buffer pH
183 9.7 overnight at 4°C in 96-well MSD plates (MSD, L15XA-3). Plates were washed 3 times with
184 300 µl TBST wash buffer, blocked with 5% nonfat milk in TBST for one hour at RT, then incubated
185 with primary antibody for UFM1 (Abcam, ab109305) or UFSP2 (Santa Cruz Biotechnology, sc-
186 376084) diluted in 5% nonfat milk for 2 hours at RT using agitation, washed 3 times with TBST,
187 and incubated with SULFO-TAG labeled goat anti-rabbit (for UFM1, MSD, R32AB-1) or anti-
188 mouse (for UFSP2, MSD, R32AC-1) for 1 h at RT using agitation. After the final three washing
189 steps, 150 µl MSD GOLD Read Buffer (MSD, R92TG-2) was added to each well and the plate
190 read on a MESO QuickPlex SQ 120 reader (MSD, Rockville, MD, USA). Lysates of UFM1 or
191 UFSP2 KO ReN cells were used as negative controls.

192 Levels of total tau were determined by the sandwich MSD ELISA using a polyclonal total
193 tau antibody (DAKO, A0024) as a capture antibody and a monoclonal total tau antibody (TAU-5,
194 Thermo, AHB0042) as a detection antibody. Levels of phosphorylated (pS396/404) tau were
195 determined by a MSD sandwich ELISA using a polyclonal total tau antibody (DAKO, AA002402-
196 1) as a capture antibody and a monoclonal pS396/404-tau antibody (PHF1) as a detection
197 antibody.

198 **Cell treatments, staining and microscopy**

Yan et al., UFM1 in AD

199 Neuronal progenitor cells were plated on matrigel coated 96-well plates (PerkinElmer, 6055302)
200 and differentiated for 14 days. DNA damage was induced with 10 μ M etoposide (Cayman
201 Chemical, 12092-25) for analysis of γ H2Ax immunostaining and with 100 μ M etoposide or 10 μ M
202 bleomycin (Sigma, B1141000) for cell viability analysis. ER stress was induced by treatment of
203 cells with 10 μ g/ml tunicamycin (Sigma, T7765) or 1 μ M thapsigargin (Santa Cruz Biotechnology,
204 sc-24017).

205 For immunostaining, cells were fixed with 4% paraformaldehyde (Thermo Scientific
206 Chemicals, J19943.K2) for 10 minutes, washed with PBS (Boston Bioproducts, BM-220) three
207 times before permeabilization with 0.1% Triton X-100 in PBS for 10 min at RT. After blocking with
208 10% normal goat serum (Invitrogen, 16210072) in PBS, cells were stained with γ H2AX (Cell
209 Signaling Technologies, 9718, 1:400), or Xbp1s (Cell Signaling Technologies, 40435, 1:400), and
210 CHOP (Cell Signaling Technologies, 2895, 1:200) antibodies for 1.5 h, followed by secondary
211 antibodies (donkey anti-rabbit IgG Alexa Fluor 488, donkey anti-mouse IgG Alexa Fluor 568,
212 Thermo Fisher Scientific, A21206, A10037) for 1 h at RT. Nuclei were counterstained with
213 Hoechst 33342 (1:5000 in PBS). For cell viability staining, a LIVE/DEAD Assay Kit (Invitrogen,
214 L32250) was used according to the manufacturer's instructions.

215 Imaging plates were imaged on an Operetta CLS system (PerkinElmer, Waltham, MA)
216 with a 20x water objective using at least 4 fields per view per well (no gaps). Raw images were
217 processed using the built-in Harmony software (version 4.9). Nuclei were identified based on the
218 Hoechst staining and defined as regions of interest using the standard analysis building block.
219 The mean fluorescence intensity of γ H2AX, Xbp1s or CHOP was recorded for each nucleus and
220 averaged. At least 1000 cells per genotype and condition were measured per experiment. Live
221 cells were identified by a linear classifier that was developed using the integrated Phenologic
222 machine learning module trained with intensity data for the live dye.

223 **Statistical analysis**

Yan et al., UFM1 in AD

224 Continuous variables were summarized with the sample median and range. Categorical variables
225 were summarized with number and percentage. Comparisons of subject characteristics between
226 AD patients and controls were made using a Wilcoxon rank sum test (continuous and ordinal
227 variables) or Fisher's exact test (categorical variables). Unadjusted pair-wise correlations
228 between variables were assessed using Spearman's test of correlation; p values below 0.05 were
229 considered statistically significant in these exploratory analyses.

230 Comparisons of UFSP2 and UFM1 between AD patients and controls were made using
231 unadjusted and age/sex-adjusted linear regression models. Soluble UFSP2 was examined on the
232 square root scale in all analyses owing to its skewed distribution. Regression coefficients (denoted
233 as β) and 95% confidence intervals (CIs) were estimated and are interpreted as the increase in
234 mean UFSP2, or UFM1 (on the square root scale for soluble UFSP2) for AD cases compared to
235 controls. In order to adjust for multiple testing for the primary comparisons of UFSP2 and UFM1
236 between AD patients and controls, we utilized a Bonferroni correction separately for the temporal
237 and frontal cortices and separately for each outcome, after which p-values <0.025 were
238 considered as statistically significant.

239 In the separate groups of controls and AD patients, associations of UFSP2 and UFM1 with
240 clinical and disease parameters were evaluated using unadjusted and multivariable linear
241 regression models. Multivariable models for controls were adjusted for age, sex, Braak stage, and
242 Thal phase, while multivariable models for AD patients were adjusted for age, sex, presence of
243 APOE $\epsilon 4$, Braak stage, and Thal phase. β coefficients and 95% CIs were estimated and are
244 interpreted as the increase in mean UFSP2 (on the square root scale when examining soluble
245 UFSP2) corresponding to presence of the given characteristic (categorical variables) or a
246 specified increase (continuous variables). Continuous variables were examined on the
247 untransformed, square root, cube root, or natural logarithm scale in regression analysis (**Table**
248 **S3**). In order to examine associations of UFSP2 and UFM1 with clinical and disease parameters
249 in the overall group of all subjects, we combined results for the separate AD and control groups

Yan et al., UFM1 in AD

250 using a random-effects meta-analysis[34]. We adjusted for multiple testing as follows: For the
251 association analysis assessing correlations of UFM1 and UFSP2 with each other as well as with
252 age, sex, *APOE* ε4, Braak stage, Thal phase, pS396/404-tau, and total tau, we applied a
253 Bonferroni correction for multiple testing separately for each patient group, cortex, and fraction,
254 after which p-values <0.01 (controls and all subjects) and <0.0071 (AD patients) were considered
255 as statistically significant.

266 All statistical tests were two-sided. Spearman's analysis and Wilcoxon rank sum tests
267 were performed using GraphPad Prism (version 10.0.0, Boston, MA, USA). All other statistical
268 analysis was performed using R Statistical Software (version 4.0.3; R Foundation for Statistical
269 Computing, Vienna, Austria).

270

271 **RESULTS**

272 **UFMylation pathway genes are differentially expressed in excitatory neurons of AD
273 patients**

274 To shed light onto the role of UFMylation for AD, we first performed a meta-analysis of published
275 single nuclei transcriptome data from brain of patients with AD and controls (no-AD pathology)[35].
276 We compared expression levels of all UFMylation pathway components (**Fig. 1A**) across cell
277 types including excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes,
278 oligodendrocyte precursor cells, and microglia. Five of the eight UFMylation components (UFSP1,
279 UFSP2, UFC1, UFL1, and DDRGK1) were significantly decreased in the excitatory neurons of
280 AD brains (**Fig S1A, Table S4**). Other cell types showed either no or a lower differential
281 expression of UFMylation genes between normal and AD brain (**Fig S1A, Table S4**). Of note,
282 other ubiquitin-like pathways, such as ISGylation, NEDDylation, SUMOylation, or others did not

Yan et al., UFM1 in AD

273 show a comparable change (**Fig S1B, Table S4**), suggesting that the UFMylation pathway might
274 be specifically altered in AD excitatory neurons.

275 **UFM1 and UFSP2 are altered in the frontal cortex of an exploratory AD cohort**

276 To examine whether also protein levels of UFMylation pathway components are altered in human
277 AD brain, we first used an exploratory cohort consisting of frontal cortex samples from 13
278 neurologically normals (hereafter referred to as controls) and 13 AD subjects (see Table S1).
279 All eight UFMylation pathway components were analyzed by western blot in the RIPA-soluble and
280 -insoluble fraction (**Fig 1B-D**). Free, unconjugated UFM1 was not altered between AD and
281 controls. However, protein levels of UFSP2 were significantly decreased in the soluble fraction
282 (**Fig 1C**), while concurrently increased in the insoluble fraction of AD cases. In line with a general
283 increase of aggregated proteins in AD, several other UFMylation proteins (UBA5, UFL1, DDRGK1
284 and CDK5RAP3) were also significantly increased in AD versus controls (**Fig 1D**). However, in
285 contrast to UFSP2 the soluble portion of these other UFMylation proteins remained unchanged
286 (**Fig 1B,C**).

287 UFSP2 is one of the UFM1-specific proteases. While UFSP1 and 2 have been both
288 described with to facilitate pre-processing and recycling of UFM1[3], it is becoming increasingly
289 clear that UFSP1 might be primarily important for the maturation of UFM1, while UFSP2 is
290 important to cleave off UFM1 from its substrates[9, 10]. A loss of soluble UFSP2 in brain could
291 therefore be linked to an increase of substrate-conjugated UFM1. Because UFM1 is attached to
292 different substrates with distinct molecular weights, conjugated UFM1 appears as multiple bands
293 or a smear in western blot, similar to ubiquitin (**Fig S2A**). However, none of the tested UFM1
294 antibodies was fully specific (**Fig S2B**) as some bands were still visible in samples from UFM1
295 knock out (KO) cells. To overcome these limitations, we developed a new Meso Scale Discovery
296 (MSD) ELISA method (**Fig S2C,D**). With this assay, signal obtained with lysates from UFM1 KO
297 was as low as the background signal without lysate added (buffer blank). In addition, lysates from

Yan et al., UFM1 in AD

298 UFSP2 KO neurons, which indeed show more conjugated UFM1 on western blot (**Fig S2B**),
299 resulted in a higher signal compared to isogenic wild-type (WT) neurons, confirming that the assay
300 detects total (i.e. conjugated and unconjugated) UFM1.

301 Using this UFM1 MSD ELISA on post-mortem brain samples, we found that total UFM1
302 levels were increased in both the soluble and insoluble fraction in AD compared to controls (**Fig**
303 **1E**). Since levels of unconjugated UFM1 were similar between AD and controls, the increase in
304 total UFM1 likely reflects primarily an increase in conjugated UFM1. A correlation analysis
305 between UFM1 levels, as determined by ELISA, and all other UFMylation pathway components
306 that were determined by western blot revealed a significant negative correlation of soluble UFSP2
307 with both soluble ($P=0.0028$) and insoluble total UFM1 ($P=0.0002$) (**Fig 1F, Table S5**). To
308 measure the protein level of UFSP2 on a larger scale, we developed another MSD ELISA that we
309 validated with UFSP2 KO cells (**Fig S3A,B**). The UFSP2 levels obtained with this MSD ELISA
310 correlated highly with levels assessed by western blot of AD and control samples ($r=0.93$,
311 $P=6.6 \times 10^{-12}$) (**Fig S3C**). Consistently, ELISA-measured UFSP2 levels were also significantly
312 different between controls and AD (**Fig S3D**). Furthermore, there was significant negative
313 correlation with both soluble ($P=0.0041$) and insoluble total UFM1 ($P=0.0029$) (**Fig S3E**). Given
314 the significant changes of total UFM1 and UFSP2 in our exploratory cohort, we decided to focus
315 on these two UFMylation pathway members for further investigation.

316 **Expression of UFM1 and UFSP2 are altered in the temporal and frontal cortex in AD**

317 We next studied a much larger cohort that consisted of 41 normal controls and 72 AD cases with
318 similar sex and age (**Table S2**). The superior temporal cortex and the frontal cortex were included
319 as early or later affected brain region, respectively. The AD cases of this cohort have previously
320 been deeply phenotyped by biochemistry and using bulk RNAseq[32]. As expected, and
321 consistent with the selection of subjects, both Braak tangle stage and Thal amyloid phase were
322 significantly higher in AD cases compared to controls (see Table S2).

Yan et al., UFM1 in AD

323 Consistent with findings from the pilot cohort, protein levels of both soluble and insoluble
324 UFM1, as well as insoluble UFSP2, were all significantly increased in both brain regions from the
325 larger AD group compared to controls as measured by MSD ELISA. Although soluble UFSP2 was
326 only significantly decreased in the temporal cortex of AD patients, a trend was also noticeable in
327 the frontal cortex that is later affected in disease (**Fig 2A**). In multivariable analysis adjusting for
328 age and sex, compared to controls, there were significantly (P<0.025 considered significant)
329 higher levels of soluble UFM1 in the temporal cortex (P=0.017), higher levels of insoluble UFSP2
330 in the frontal cortex (P=0.017), as well as higher levels of both soluble (P=0.002) and insoluble
331 UFM1 (P<0.001) in the frontal cortex of AD patients (**Table 1**). Though not quite significant, there
332 were trends towards higher insoluble UFSP2 levels in the temporal cortex of AD patients
333 compared to controls (P=0.050), and towards higher levels of insoluble UFM1 in the temporal
334 cortex of AD patients also approached significance (P=0.062) (**Table 1**).

335 The negative correlation between UFSP2 and UFM1 that was observed in the pilot cohort
336 was overall conserved (**Fig 2B**). However, in this larger cohort the correlation was mostly
337 restricted to insoluble UFM1. Significant correlation with soluble UFM1 was only observed in the
338 frontal cortex when all subjects were combined. The correlation of UFSP2 with insoluble UFM1
339 was stronger, and present in both brain regions and in all three groups (controls, AD, and when
340 combining all subjects), and remained significant in multivariable linear regression models and
341 upon adjusting for multiple testing (**Fig 2B, Table S6**). These results suggest that reduction of
342 soluble UFSP2 levels may be associated with UFM1 accumulation, particularly in the insoluble
343 fraction of the AD group in both the temporal and frontal cortices. Moreover, similar to the pilot
344 cohort, there was a significant negative correlation between soluble and insoluble UFSP2 in both
345 brain regions, pointing towards a solubility shift of UFSP2 (both P<0.001) (**Fig 2B, Table S6**).

346 **Levels of UFM1 are associated with pathological tau in human brain**

Yan et al., UFM1 in AD

347 To investigate whether the levels of UFM1 and UFSP2 are associated with primary clinical
348 parameters and the severity of AD pathology, we first performed association analyses. After
349 adjusting for multiple testing, there were only two significant associations between UFM1 or
350 UFSP2 with clinical or pathological parameters such as age at death, sex, presence of *APOE* ε4
351 allele, disease duration, MMSE scores, Braak neurofibrillary tangle stage, and Thal amyloid phase
352 (**Tables S7**). Specifically, levels of insoluble UFSP2 were significantly associated with Braak
353 stage in the frontal cortex of the control, but not the combined or the AD cohort, while levels of
354 insoluble UFM1 were associated with the Thal stage in the group that contains data from all
355 subjects.

356 To explore the association between the levels of UFM1 and UFSP2 and pathological AD
357 markers, we next obtained published data from the biochemical quantification of apoE, Aβ40,
358 Aβ42, tau, and pT231-tau of sequential fractions of the temporal cortex from the same AD
359 cases[32]. There was a significant correlation between soluble UFM1 and tau-related proteins,
360 specifically total and pT231-tau in the TX fraction. Similarly, insoluble UFM1 also demonstrated
361 significant correlations with pT231-tau in the TX and FA fraction (**Fig S5, Table S8**). In contrast,
362 no significant correlations were established between the levels of apoE, Aβ40 and Aβ42 proteins
363 and those of UFM1 and UFSP2 in the temporal cortex of AD patients. These findings highlight a
364 closer association of UFM1 and UFSP2 levels with tau over other AD-related markers.

365 In order to investigate the relationship with tau further, we measured total tau and
366 pS396/404-tau level in both the controls and AD cases with the MSD ELISA. We chose to focus
367 on pS396/404-tau because it is associated with advanced stages of AD, unlike pT231-Tau, which
368 is linked to early tau pathology changes[36]. Consistently, levels of pathological tau (soluble and
369 insoluble pS396/404-tau, and insoluble total tau) were significantly higher in AD than controls in
370 both brain regions (all $P<0.0001$, **Table S9**), while the levels of soluble total tau did not differ
371 noticeably between these two groups. Higher levels of soluble UFSP2 were correlated with higher
372 soluble total tau ($P<0.001$) in both cortices, indicative of association with physiological tau (**Fig.**

Yan et al., UFM1 in AD

373 3). In contrast insoluble UFSP2, as well as soluble and insoluble UFM1 were correlated with
374 pathological forms of tau (insoluble total tau and pS396/404-tau). These correlations were
375 generally stronger in the temporal cortex compared to the frontal cortex and stronger in the AD or
376 in all subjects combined compared to the controls (**Table 2**). Some of the associations were lost
377 upon adjusting for age- and sex in the multivariable analysis, especially the temporal cortex.
378 However, the strong positive correlation of UFSP2 with soluble total tau (in all groups), and the
379 association of soluble UFM1 with pS396/404-tau (in AD and the combined cohort) as well of
380 insoluble UFM1 with pS396/404-tau (AD cohort only) remained significant in both regions. in
381 addition, in the combined cohort soluble UFM1 was significantly associated with insoluble
382 pS396/404-tau, while insoluble UFM1 was significantly associated with soluble total tau.

383 **UFSP2 KO enhances neuronal survival against DNA Damage through UFM1-dependent
384 mechanism**

385 In order to identify potential consequences of aberrant UFMylation, we first focused on the DNA
386 damage response pathway that is known to be regulated by UFM1[13, 14, 37, 38]. AD neurons
387 present with an abnormal accumulation of DNA lesions, suggesting that the DNA damage
388 response is compromised in AD brains[22, 39, 40]. Utilizing available gene expression data from
389 the temporal cortex of the same AD cases (n=72), we conducted a correlation analysis between
390 the levels of UFM1 and UFSP2 proteins with the expression levels of DNA damage-related genes.
391 Notably, soluble UFSP2 exhibited a significant correlation with 22 out of 37 genes (**Fig 4A, Table
392 S10**). These association were spread across different sub-pathways and no single repair pathway
393 stood out. This suggests a pivotal role of soluble UFSP2 for the DNA damage response within
394 the human AD brain. In contrast, neither in-/soluble UFM1 nor insoluble UFSP2 showed a strong
395 correlation with DNA damage response genes.

396 Neurons are particularly prone to the accumulation of DNA damage, a vulnerability that
397 stems from their substantial energy demands, high levels of transcriptional activity, and

Yan et al., UFM1 in AD

398 longevity[41]. In order to mimic our findings of aberrant UFMylation from post-mortem brain, we
399 used UFSP2 KO neurons, which, similar to AD brain, display low (absent) levels of UFSP2 and
400 high levels of (conjugated) UFM1. As controls we utilized isogenic wild-type (WT) cells, as well
401 as UFM1 KO cells for normal and absent of total UFM1, respectively. Further we generated a
402 double knockout where we disabled both UFSP2 and UFM1 (dKO). To induce DNA double strand
403 breaks in differentiated neurons, we utilized etoposide[42-44] and evaluated the dynamics of
404 γ H2Ax foci formation, a marker for DNA breaks[45]. Post etoposide treatment, UFSP2 KO
405 neurons had substantially lower γ H2Ax foci intensity compared to WT neurons (**Fig 4B**). This was
406 not observed in dKO neurons, which displayed γ H2Ax foci intensities similar to WT, indicating
407 that UFSP2 KO neurons exhibit enhanced resistance to DNA damage in a UFM1-dependent
408 manner. Interestingly, the formation of γ H2Ax foci was not affected by loss of UFSP2 in
409 undifferentiated neural progenitor cells (**Fig S5A**), suggesting that this might be a neuron-specific
410 effect.

411 We next surveyed the viability of the neurons upon DNA damage and used etoposide or
412 bleomycin to induce strand breaks. In line with the findings above, UFSP2 KO neurons showed
413 greater survival upon DNA damage in comparison to WT neurons (**Fig 4B**). This advantage was
414 negated by additionally knocking out UFM1 in UFSP2 KO neurons, indicating that the survival
415 benefit of UFSP2 KO neurons is reliant on UFM1. Interestingly, UFM1 KO neurons showed no
416 significant difference or even lower survival compared to WT neurons. Furthermore, the beneficial
417 effect of UFSP2 KO seemed to be specific for differentiated neurons since neural progenitors did
418 not show the same effects on survival (**Fig S5B**).

419 **UFSP2 Knockout modulates the unfolded protein response and neuronal survival under
420 ER stress conditions**

421 The UFMylation pathway also plays a central role in ER stress and its related unfolded protein
422 response in mammals and plants[7, 11, 46]. Furthermore, the unfolded protein response is

Yan et al., UFM1 in AD

423 activated in AD and presents a target for therapy[21, 47-49]. To explore whether the aberrant
424 UFMylation observed in AD could lead to an impaired unfolded protein response, we first
425 examined the relationship between the levels of both soluble and insoluble UFSP2 and UFM1
426 proteins and unfolded protein response genes. Notably, expression of soluble UFSP2 was
427 significantly associated with expression of five out of seven unfolded protein response genes. Of
428 those, 4 (EIF2AK3/PERK, ATF4, DDIT3/CHOP and ERN1/IRE1 α) were negatively correlated and
429 one (ATF6) was positively correlated (**Fig 5A, Table S11**). This indicates that soluble UFSP2
430 might play an important role for the unfolded protein response in AD.

431 Next, we aimed to explore the impact of UFSP2 KO on the unfolded protein response
432 pathway in neurons and analyzed the protein levels of seven unfolded protein response molecules
433 in WT, UFM1 KO, and UFSP2 KO neurons at baseline, in the absence of stress (**Fig 5B**). This
434 revealed remarkable differences between WT and UFSP2 KO neurons for each of the
435 investigated proteins. Consistent with the mostly negative correlation between UFSP2 protein and
436 gene expression levels in AD brain, Bip, PERK, ATF4, CHOP, IRE1 α , and Xbp1s were all
437 increased in UFSP2 KO neurons, while ATF6 levels were decreased (**Fig 5B,C**). Notably, only
438 the full-length ATF6 protein, not the cleaved ATF6 which is the active form upon ER stress[50],
439 showed a decrease, suggesting that this reduction is not a result of heightened unfolded protein
440 response activation.

441 We next induced ER stress with tunicamycin or thapsigargin[51] and monitored induction
442 of Xbp1s and CHOP by high content imaging of cells that were stained by immunofluorescence.
443 Following both treatments, levels of CHOP immunoreactivity were significantly higher in neurons
444 with UFM1 KO, UFSP2 KO, or with dKO compared to WT cells (**Fig 5D, E**). The expression levels
445 of Xbp1s were also significantly elevated in the same genotypes compared to WT, at least in
446 response to thapsigargin. In order to assess the resilience of UFSP2 and UFM1 KO neurons
447 against ER stress we measured the survival. As expected, neurons with UFSP2 KO exhibited a
448 significantly lower survival rate compared to WT after both treatments (**Fig 5F**). UFM1 KO also

Yan et al., UFM1 in AD

449 caused lower survival compared to WT but could not reverse the effect of the UFSP2 KO. This
450 suggest that resilience towards ER stress is highly susceptible to increases and decreases of the
451 UFMylation pathway and this might also affect the viability of neurons.

452

453 **DISCUSSION**

454 The UFMylation pathway is implicated in a variety of biological processes known to be disrupted
455 in AD, and deficiencies in this pathway have been linked to neurodevelopmental disorders[28-30,
456 52]. In addition, the UFM1 pathway was very recently identified as potent modulator of tau
457 aggregation upon seeding[26, 53]. Therefore, the UFM1 pathway is of high relevance for AD. Yet,
458 the specific role of UFMylation in the development and progression of AD remains elusive. Here,
459 we comprehensively explored changes of the UFM1 pathway in AD. We utilized RNAseq data
460 and performed a thorough biochemical analysis of UFM1 in two different post-mortem brain
461 cohorts and across early and later affected brain regions. We correlated our findings with
462 additional biochemical and genetic data and further validated findings in neurons upon genetic
463 and pharmacological manipulation.

464 To explore changes in the UFM1 pathway, we first examined published single nuclei
465 transcriptomic data[35] and discovered that most genes related to the UFMylation pathway were
466 dysregulated in excitatory neurons of AD patients. Previous studies have reported that excitatory
467 neurons are more susceptible to neurodegeneration[54]. Biochemical assessment of the
468 UFMylation pathway in post-mortem brains revealed a solubility shift of UFSP2, while UFM1
469 levels were significantly elevated in both cortical areas in AD patients compared to controls.
470 Importantly, consistent with the role as the UFM1 protease, neurons with UFSP2 KO showed a
471 marked increase of conjugated UFM1. This finding not only reflects the negative correlation

Yan et al., UFM1 in AD

472 between UFM1 and UFSP2 observed in the AD brain but also suggests that UFSP2 KO neurons
473 could serve as a relevant model to study the aberrant UFMylation observed in AD.

474 Our results showed that total UFM1 was abnormally accumulated in AD brain. In the
475 absence of alterations in free UFM1, this change represents hyperUFMylation, an increase in
476 specifically conjugated UFM1. It is possible that there is a general increase of UFM1 attached as
477 monomer or in chains on one or several physiological substrates. Most knowledge about UFM1
478 substrates is derived from studies in cancer cell lines[15, 27, 55, 56]. Alternatively, in AD UFM1
479 could accumulate on a substrate that is normally not modified by UFM1 and further studies are
480 needed to investigate targets of physiological and pathological UFMylation in the brain. We
481 identified a strong correlation of UFM1 levels with pathological tau, suggesting that
482 hyperUFMylation might be linked to tau pathogenesis. This is in line with recent studies that
483 identified suppression of the UFMylation cascade as potent inhibitor of tau aggregation and
484 seeding in human induced pluripotent stem cell (iPSC)-derived neurons and tau transgenic
485 mice[26]. However, the mechanism of this interaction remains elusive. It is not known whether
486 UFM1 modifies tau or other substrates that may affect tau aggregation through pathways such as
487 aberrant ER stress, ER-phagy, and ribosomal quality control.

488 To explore whether abnormalities of UFMylation are influenced by AD disease progression,
489 we specifically examined the expression of UFM1 and UFSP2 and their correlation with tau in the
490 earlier-affected superior temporal cortex and the later-affected frontal cortex. Both brain regions
491 exhibited higher levels of UFM1 and insoluble UFSP2 in AD. A notable difference was that soluble
492 UFSP2 was significantly reduced in the temporal cortex, whereas in the frontal cortex there was
493 only a trend. It is therefore unclear whether the loss of the deUFMylation enzyme UFSP2 causes
494 the hyperUFMylation or if hyperUFMylation is induced by the presence of a substrate, such as
495 tau and the loss of soluble UFSP2 might further contribute to it. Moreover, UFM1 was positively
496 correlated with several pathological forms of tau in the temporal cortex, whereas in the frontal

Yan et al., UFM1 in AD

497 cortex, it only correlated positively with soluble pS396/404-tau. It is conceivable, that this is
498 caused by incomplete pathological changes in tau in this later-affected region, while changes in
499 UFM1 are already observed. This would place UFM1 parallel or upstream of pathogenic tau
500 changes. On the other hand, UFM1 could also be affected by tau deposition itself, in line with a
501 shift towards insoluble UFM1 in tau seeded iPSC-derived neurons[26]. Nevertheless, insoluble
502 UFM1 was negatively correlated with soluble UFSP2 in both AD and in controls in both brain
503 regions, suggesting that this relationship may be universal and unaffected by AD presence and
504 progression and that increasing UFSP2 activity might be a good strategy to combat
505 hyperUFMylation.

506 In order to further determine the functional effects of hyperUFMylation, we created UFSP2
507 KO cells and tested functional effects of DNA damage and unfolded protein response in neurons.
508 In the context of DNA damage, we found that levels of soluble UFSP2 correlated with the
509 expression of a majority of DNA damage response-related genes. Surprisingly, UFSP2 KO
510 neurons displayed a reduced sensitivity to DNA damage, exhibiting a milder DNA damage
511 response compared to wild-type, a phenomenon reliant on the accumulation of UFM1-modified
512 proteins. This suggests hyperUFMylation might confer a protective effect against DNA damage in
513 AD neuronal cells. This is in contrast to cancer cells, where UFSP2 KO is known to enhance DNA
514 damage response to counteract DNA damage[38]. This discrepancy could be attributed to the
515 fundamental differences between non-proliferating neurons and proliferating cancer cells, further
516 highlighting the need to study the UFM1 pathway in neurons and in the brain.

517 In the context of the unfolded protein response, we found a significant correlation between
518 levels of soluble UFSP2 and the mRNA expression of numerous unfolded protein response genes
519 in human temporal cortex of AD brain. Consistently, without any treatment, the expression levels
520 of six key unfolded protein response proteins were elevated in UFSP2 KO neurons, indicating an
521 inherently higher unfolded protein response in UFSP2 KO neurons compared to WT at baseline.

Yan et al., UFM1 in AD

522 Moreover, our findings reveal that UFSP2 KO neurons exhibit increased sensitivity to ER stress
523 as they showed higher levels of CHOP following tunicamycin or thapsigargin treatment,
524 implicating a pronounced unfolded protein response activation. Given that ER stress-induced
525 apoptosis is predominantly mediated by CHOP[21, 57], this could account for the observed
526 reduction in survival rates. Our results therefore indicate that a reduction in soluble UFSP2 levels
527 may be a key factor in the continuous activation of the unfolded protein response in AD brain[21].
528 However, the susceptibility towards ER stress was not only increased by UFSP2 but also by
529 UFM1 KO, highlighting that hyper- as well as hypoUFMylation both can have negative effects on
530 the survival of neurons in certain contexts.

531 The main limitation of this study is the relatively small sample size, which results in a lack
532 of power to detect differences and associations. In particular, the control group is not very large.
533 Therefore, the possibility of a type II error (i.e., a false-negative finding) is important to consider,
534 and we cannot conclude that a true difference does not exist simply due to the occurrence of a
535 non-significant p-value in our study.

536 Collectively, our data indicates that increasing UFSP2 activity might be an attractive target
537 to counteract the observed hyperUFMylation that is linked to pathological tau in AD brain.
538 However, it should be noted that the loss of UFMylation might increase the unfolded protein
539 response and might have further far-reaching effects. The loss of UFM1 has been connected to
540 severe neurodevelopmental phenotypes[15, 27, 31] and therefore unintended consequences of
541 such approach will have to be carefully monitored. Our study underscores the critical need to
542 identify specific substrates and molecular mechanisms of UFM1 in cell culture and animal models,
543 to identify risks and benefits of manipulating the UFM1 pathway as potential therapeutic avenue
544 for AD.

545

546 **Abbreviations**

Yan et al., UFM1 in AD

547 A β : beta-amyloid
548 MMSE: mini mental state examination
549 M²OVE-AD: Molecular Mechanisms of the Vascular Etiology of AD
550 TBS: Tris-buffered saline
551 TX: 1% Triton X-100 in TBS
552 FA: formic acid
553 RIPA: radioimmunoprecipitation assay
554 RT: room temperature
555 EGF: epidermal growth factor
556 FGF: fibroblasts growth factor
557 KO: knock out
558 dKO: double knockouts
559 PCR: polymerase chain reaction
560 MSD: Meso Scale Discovery
561 ELISA: enzyme-linked immunosorbent assay
562 ER: Endoplasmic reticulum
563 iPSC: induced pluripotent stem cell

564 **Declarations**

565 **Ethics approval**

566 All brain samples are from autopsies performed after approval by the legal next-of-kin. Research
567 on de-identified postmortem brain tissue is considered exempt from human subjects regulations
568 by the Mayo Clinic Institutional Review Board.

569 **Consent for publication**

570 Not applicable

Yan et al., UFM1 in AD

571 **Availability of data and materials**

572 The data that support the findings of this study are available from the corresponding author, upon
573 reasonable request.

574 **Competing interests**

575 The authors declare that they have no competing interests.

576 **Fundings**

577 This work was supported by a Florida Department of Health Ed and Ethel Moore Alzheimer's
578 disease research program grant 22A07 (to F.C.F.), NIH grants R56 AG062556 (to W.S.), and a
579 fellowship from Alzheimer's Association AARF-22-974258 (to T.Y.). This work was supported by
580 the Mayo Clinic Office of Research Equity, Inclusion and Diversity and Center for Biomedical
581 Discovery.

582 **Authors' contributions**

583 T.Y., W. S. and F.C.F. conceived and designed the study; T.Y. and F.C.F. performed the
584 experiments and analyzed the data; M.G.H. and E.C. analyzed the data; M.E.M. and D.W.D
585 provided the post-mortem tissues; B.D.R. cut the post-mortem tissues; C.L., and G.B., provided
586 the protein expression data from M²OVE-AD cohort; X.W. and N.T. provided bulk RNA-seq data
587 from M²OVE-AD cohort; Z.L. participated the design of the DNA damage related experiments;
588 T.Y., W.S. and F.C.F. wrote the manuscript; All authors discussed the results and commented on
589 the manuscript. All authors read and approved the final manuscript.

590 **Acknowledgments**

591 We thank all patients and family members who made this study possible. We are grateful to the
592 late Dr. Peter Davies for providing the pS396/404-tau (PHF1) antibodies.

593

594 REFERENCES

595 1. Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, Okazaki N, Ueno T, Kominami E,
596 Natsume T, Tanaka K: A novel protein-conjugating system for Ufm1, a ubiquitin-fold
597 modifier. *Embo j* 2004, 23:1977-1986.

598 2. Sasakawa H, Sakata E, Yamaguchi Y, Komatsu M, Tatsumi K, Kominami E, Tanaka K,
599 Kato K: Solution structure and dynamics of Ufm1, a ubiquitin-fold modifier 1. *Biochemical*
600 *and Biophysical Research Communications* 2006, 343:21-26.

601 3. Kang SH, Kim GR, Seong M, Baek SH, Seol JH, Bang OS, Ovaa H, Tatsumi K, Komatsu
602 M, Tanaka K, Chung CH: Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases,
603 UfSP1 and UfSP2. *J Biol Chem* 2007, 282:5256-5262.

604 4. Mizushima T, Tatsumi K, Ozaki Y, Kawakami T, Suzuki A, Ogasahara K, Komatsu M,
605 Kominami E, Tanaka K, Yamane T: Crystal structure of Ufc1, the Ufm1-conjugating
606 enzyme. *Biochemical and Biophysical Research Communications* 2007, 362:1079-1084.

607 5. Bacik J-P, Walker JR, Ali M, Schimmer AD, Dhe-Paganon S: Crystal structure of the
608 human ubiquitin-activating Enzyme 5 (UBA5) bound to ATP: MECHANISTIC INSIGHTS
609 INTO A MINIMALISTIC E1 ENZYME. *J Biol Chem* 2010, 285:20273-20280.

610 6. Tatsumi K, Sou Y-s, Tada N, Nakamura E, Iemura S-i, Natsume T, Kang SH, Chung CH,
611 Kasahara M, Kominami E, et al: A novel type of E3 ligase for the Ufm1 conjugation system.
612 *J Biol Chem* 2010, 285:5417-5427.

613 7. Lemaire K, Moura RF, Granvik M, Igoillo-Esteve M, Hohmeier HE, Hendrickx N, Newgard
614 CB, Waelkens E, Cnop M, Schuit F: Ubiquitin fold modifier 1 (UFM1) and its target UFBP1
615 protect pancreatic beta cells from ER stress-induced apoptosis. *PLOS ONE* 2011,
616 6:e18517.

Yan et al., UFM1 in AD

617 8. Peter JJ, Magnussen HM, DaRosa PA, Millrine D, Matthews SP, Lamoliatte F,
618 Sundaramoorthy R, Kopito RR, Kulathu Y: A non-canonical scaffold-type E3 ligase
619 complex mediates protein UFMylation. *The EMBO Journal* 2022, 41:e111015.

620 9. Liang Q, Jin Y, Xu S, Zhou J, Mao J, Ma X, Wang M, Cong Y-S: Human UFSP1 translated
621 from an upstream near-cognate initiation codon functions as an active UFM1-specific
622 protease. *J Biol Chem* 2022:102016.

623 10. Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney
624 T, Lamoliatte F, Knebel A, Kulathu Y: Human UFSP1 is an active protease that regulates
625 UFM1 maturation and UFMylation. *Cell Reports* 2022, 40:111168.

626 11. Zhang Y, Zhang M, Wu J, Lei G, Li H: Transcriptional regulation of the Ufm1 conjugation
627 system in response to disturbance of the endoplasmic reticulum homeostasis and
628 inhibition of vesicle trafficking. *PLOS ONE* 2012, 7:e48587.

629 12. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, Chen H, Wang M, Ju Z, Cong Y-S: A critical
630 role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1 α stability.
631 *Nature Communications* 2017, 8:14186.

632 13. Qin B, Yu J, Nowsheen S, Wang M, Tu X, Liu T, Li H, Wang L, Lou Z: UFL1 promotes
633 histone H4 ufmylation and ATM activation. *Nature Communications* 2019, 10:1242.

634 14. Wang Z, Gong Y, Peng B, Shi R, Fan D, Zhao H, Zhu M, Zhang H, Lou Z, Zhou J, et al:
635 MRE11 UFMylation promotes ATM activation. *Nucleic Acids Research* 2019, 47:4124-
636 4135.

637 15. Zhou X, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E: UFMylation: a
638 ubiquitin-like modification. *Trends in Biochemical Sciences* 2023.

639 16. Gerakis Y, Quintero M, Li H, Hetz C: The UFMylation system in proteostasis and beyond.
640 *Trends in Cell Biology* 2019, 29:974-986.

Yan et al., UFM1 in AD

641 17. DeJesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, Frias E, Alford J, Reece-
642 Hoyes JS, Lindeman A, et al: Functional CRISPR screening identifies the ufmylation
643 pathway as a regulator of SQSTM1/p62. *eLife* 2016, 5:e17290.

644 18. Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA, Corn JE: A
645 genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-
646 resident UFMylation. *Cell* 2020, 180:1160-1177.e1120.

647 19. Xi P, Ding D, Zhou J, Wang M, Cong Y-S: DDRGK1 regulates NF-κB activity by modulating
648 IκBα stability. *PLOS ONE* 2013, 8:e64231.

649 20. Tao Y, Yin S, Liu Y, Li C, Chen Y, Han D, Huang J, Xu S, Zou Z, Yu Y: UFL1 promotes
650 antiviral immune response by maintaining STING stability independent of UFMylation. *Cell*
651 *Death & Differentiation* 2022.

652 21. Ajoobady A, Lindholm D, Ren J, Pratico D: ER stress and UPR in Alzheimer's disease:
653 mechanisms, pathogenesis, treatments. *Cell Death & Disease* 2022, 13:706.

654 22. Dileep V, Boix CA, Mathys H, Marco A, Welch GM, Meharena HS, Loon A, Jeloka R, Peng
655 Z, Bennett DA, et al: Neuronal DNA double-strand breaks lead to genome structural
656 variations and 3D genome disruption in neurodegeneration. *Cell* 2023, 186:4404-
657 4421.e4420.

658 23. Di Meco A, Curtis ME, Lauretti E, Praticò D: Autophagy dysfunction in Alzheimer's
659 disease: mechanistic insights and new therapeutic opportunities. *Biological Psychiatry*
660 2020, 87:797-807.

661 24. Leng F, Edison P: Neuroinflammation and microglial activation in Alzheimer disease:
662 where do we go from here? *Nature Reviews Neurology* 2021, 17:157-172.

663 25. Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I:
664 Hallmarks of neurodegenerative diseases. *Cell* 2023, 186:693-714.

Yan et al., UFM1 in AD

665 26. Parra Bravo C, Giani AM, Perez JM, Zhao Z, Wan Y, Samelson AJ, Wong MY, Evangelisti
666 A, Cordes E, Fan L, et al: Human iPSC 4R tauopathy model uncovers modifiers of tau
667 propagation. *Cell* 2024.

668 27. Wang X, Xu X, Wang Z: The post-translational role of UFMylation in physiology and
669 disease. *Cells* 2023, 12:2543.

670 28. Nahorski MS, Maddirevula S, Ishimura R, Alsahli S, Brady AF, Begemann A, Mizushima
671 T, Guzmán-Vega FJ, Obata M, Ichimura Y, et al: Biallelic UFM1 and UFC1 mutations
672 expand the essential role of ufmylation in brain development. *Brain* 2018, 141:1934-1945.

673 29. Colin E, Daniel J, Ziegler A, Wakim J, Scrivo A, Haack Tobias B, Khiati S, Denommé A-S,
674 Amati-Bonneau P, Charif M, et al: Biallelic variants in UBA5 reveal that disruption of the
675 UFM1 cascade can result in early-onset encephalopathy. *The American Journal of Human
676 Genetics* 2016, 99:695-703.

677 30. Ni M, Afroze B, Xing C, Pan C, Shao Y, Cai L, Cantarel BL, Pei J, Grishin NV, Hewson S,
678 et al: A pathogenic UFSP2 variant in an autosomal recessive form of pediatric
679 neurodevelopmental anomalies and epilepsy. *Genetics in Medicine* 2021.

680 31. Yang S, Moy N, Yang R: The UFM1 conjugation system in mammalian development.
681 *Developmental Dynamics* 2023, 252:976-985.

682 32. Liu C-C, Yamazaki Y, Heckman MG, Martens YA, Jia L, Yamazaki A, Diehl NN, Zhao J,
683 Zhao N, DeTure M, et al: Tau and apolipoprotein E modulate cerebrovascular tight junction
684 integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. *Alzheimer's
685 & Dementia* 2020, 16:1372-1383.

686 33. Fiesel FC, Fričová D, Hayes CS, Coban MA, Hudec R, Bredenberg JM, Broadway BJ,
687 Markham BN, Yan T, Boneski PK, et al: Substitution of PINK1 Gly411 modulates substrate
688 receptivity and turnover. *Autophagy* 2022:1-22.

689 34. DerSimonian R, Laird N: Meta-analysis in clinical trials. *Controlled Clinical Trials* 1986,
690 7:177-188.

Yan et al., UFM1 in AD

691 35. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He
692 L, Abdurrob F, Jiang X, et al: Single-cell transcriptomic analysis of Alzheimer's disease.
693 *Nature* 2019.

694 36. Augustinack JC, Schneider A, Mandelkow E-M, Hyman BT: Specific tau phosphorylation
695 sites correlate with severity of neuronal cytopathology in Alzheimer's disease. *Acta
696 Neuropathol* 2002, 103:26-35.

697 37. Liu J, Guan D, Dong M, Yang J, Wei H, Liang Q, Song L, Xu L, Bai J, Liu C, et al:
698 UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination.
699 *Nature Cell Biology* 2020, 22:1056-1063.

700 38. Qin B, Yu J, Zhao F, Huang J, Zhou Q, Lou Z: Dynamic recruitment of UFM1-specific
701 peptidase 2 to the DNA double-strand breaks regulated by WIP1. *Genome Instability &
702 Disease* 2022, 3:217-226.

703 39. Silva ART, Santos ACF, Farfel JM, Grinberg LT, Ferretti REL, Campos AHJFM, Cunha
704 IW, Begnami MD, Rocha RM, Carraro DM, et al: Repair of oxidative DNA damage, cell-
705 cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's
706 disease. *PLOS ONE* 2014, 9:e99897.

707 40. Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K: DNA damage and cell cycle events
708 implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease. *Mol
709 Neurodegener* 2010, 5:60.

710 41. Welch G, Tsai L-H: Mechanisms of DNA damage-mediated neurotoxicity in
711 neurodegenerative disease. *EMBO reports* 2022, n/a:e54217.

712 42. Madabhushi R, Gao F, Pfenning Andreas R, Pan L, Yamakawa S, Seo J, Rueda R, Phan
713 TX, Yamakawa H, Pao P-C, et al: Activity-induced DNA breaks govern the expression of
714 neuronal early-response genes. *Cell* 2015, 161:1592-1605.

715 43. Mitra J, Guerrero EN, Hegde PM, Liachko NF, Wang H, Vasquez V, Gao J, Pandey A,
716 Taylor JP, Kraemer BC, et al: Motor neuron disease-associated loss of nuclear TDP-43 is

Yan et al., UFM1 in AD

717 linked to DNA double-strand break repair defects. *Proceedings of the National Academy of Sciences* 2019, 116:4696-4705.

718

719 44. Asada-Utsugi M, Uemura K, Ayaki T, T. Uemura M, Minamiyama S, Hikami R, Morimura
720 T, Shodai A, Ueki T, Takahashi R, et al: Failure of DNA double-strand break repair by tau
721 mediates Alzheimer's disease pathology in vitro. *Communications Biology* 2022, 5:358.

722 45. Kinner A, Wu W, Staudt C, Iliakis G: γ -H2AX in recognition and signaling of DNA double-
723 strand breaks in the context of chromatin. *Nucleic Acids Research* 2008, 36:5678-5694.

724 46. Li B, Niu F, Zeng Y, Tse MK, Deng C, Hong L, Gao S, Lo SW, Cao W, Huang S, et al:
725 Ufmylation reconciles salt stress-induced unfolded protein responses via ER-phagy in
726 *Arabidopsis*. *Proceedings of the National Academy of Sciences* 2023, 120:e2208351120.

727 47. Hoozemans JJM, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P,
728 Schepers W: The unfolded protein response is activated in Alzheimer's disease. *Acta
729 Neuropathol* 2005, 110:165-172.

730 48. Hetz C, Mollereau B: Disturbance of endoplasmic reticulum proteostasis in
731 neurodegenerative diseases. *Nature Reviews Neuroscience* 2014, 15:233-249.

732 49. Yoon Sung O, Park Dong J, Ryu Jae C, Ozer Hatice G, Tep C, Shin Yong J, Lim Tae H,
733 Pastorino L, Kunwar Ajaya J, Walton James C, et al: JNK3 perpetuates metabolic stress
734 induced by A β peptides. *Neuron* 2012, 75:824-837.

735 50. Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL: ER
736 stress induces cleavage of membrane-bound ATF6 by the same proteases that process
737 SREBPs. *Molecular Cell* 2000, 6:1355-1364.

738 51. Zohreh G, Patrick S, Benjamin F, Steven MC, David SP, Sean PC: Neuronal apoptosis
739 induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction
740 of the Bcl-2 homology 3-only member PUMA. *The Journal of Neuroscience* 2010,
741 30:16938.

Yan et al., UFM1 in AD

742 52. Muona M, Ishimura R, Laari A, Ichimura Y, Linnankivi T, Keski-Filppula R, Herva R,
743 Rantala H, Paetav A, Pöyhönen M, et al: Biallelic variants in UBA5 link dysfunctional
744 UFM1 ubiquitin-like modifier pathway to severe infantile-onset encephalopathy. *The*
745 *American Journal of Human Genetics* 2016, 99:683-694.

746 53. Samelson AJ, Arikat N, McKitney J, Rohanitazangi G, Bravo CP, Goodness D, Tian R,
747 Grosjean P, Abskharon R, Eisenberg D, et al: CRISPR screens in iPSC-derived neurons
748 reveal principles of tau proteostasis. *bioRxiv* 2023:2023.2006.2016.545386.

749 54. Fu H, Possenti A, Freer R, Nakano Y, Hernandez Villegas NC, Tang M, Cauhy PVM,
750 Lassus BA, Chen S, Fowler SL, et al: A tau homeostasis signature is linked with the
751 cellular and regional vulnerability of excitatory neurons to tau pathology. *Nature*
752 *Neuroscience* 2019, 22:47-56.

753 55. Chung CH, Yoo HM: Emerging role of protein modification by UFM1 in cancer.
754 *Biochemical and Biophysical Research Communications* 2022, 633:61-63.

755 56. Jing Y, Mao Z, Chen F: UFMylation system: An emerging player in tumorigenesis. *Cancers*
756 2022, 14:3501.

757 57. Uddin MS, Yu WS, Lim LW: Exploring ER stress response in cellular aging and
758 neuroinflammation in Alzheimer's disease. *Ageing Research Reviews* 2021, 70:101417.

759

760 **FIGURE LEGENDS**

761 **Figure 1: Exploratory analysis of the UFM1 pathway in normal and AD frontal cortex.**

762 (A) Schematic of the UFMylation pathway: Pro-UFM1 is cleaved by the protease UFSP1 or
763 UFSP2 into the mature, conjugatable form. UBA5 (E1) activates UFM1 and UFC1 acts as an E2
764 conjugating enzyme that interacts with the E3 complex consisting of UFL1 and the adaptor
765 proteins DDRGK1 and CDK5RAP3, which mediate the transfer of UFM1 from UFC1 to its target
766 substrate. UFM1 is cleaved from its substrates mainly by UFSP2. (B-D) Representative
767 immunoblot (B) and densitometric quantification of UFM1 pathway proteins in

Yan et al., UFM1 in AD

768 radioimmunoprecipitation assay (RIPA) buffer soluble (C) and insoluble (D) fractions of human
769 normal and AD frontal cortex. UFM1 pathway protein levels were normalized to loading control
770 beta-Actin and normalized to the median of the control cohort. Statistical analysis was performed
771 using a Wilcoxon rank sum test followed by Bonferroni correction for testing two fractions,
772 **P<0.00625, ***P<0.001; n.d. - not detected. (E) Quantification of total UFM1 via Meso Scale
773 Discovery (MSD) enzyme-linked immunosorbent assay (ELISA). Data is shown as median with
774 interquartile range. Statistical analysis was performed with Wilcoxon rank sum test followed by
775 adjustment with Bonferroni correction for analyzing two fractions, *P<0.025, **P<0.01, ***P<0.001.
776 (F) Soluble UFSP2 western blot levels are negatively correlated with soluble and insoluble total
777 UFM1 levels that were determined by MSD ELISA. Shown is a heatmap of Spearman correlation
778 coefficients (r_s), **P<0.00625, ***P<0.001. n = 13 per group. See Supplementary Table S5 for r_s
779 and p values.

780

781 **Figure 2: UFM1 and UFSP2 levels are altered in human AD brain.**

782 (A) Quantification of RIPA-soluble (sol) and -insoluble (ins) UFM1 and UFSP2 levels, respectively,
783 by MSD ELISA in the frontal and temporal cortex of AD cases (n=72) and controls (n=41). Median
784 and interquartile range is indicated. Statistical analysis was performed with a Wilcoxon rank sum
785 test, *P < 0.05, **P<0.01, ***P<0.001. Linear regression analysis is summarized in Table 1. (B)
786 Heatmap of Spearman correlation coefficients (r_s) illustrating strong correlation between soluble
787 UFSP2 with mostly insoluble UFM1 and UFSP2 levels from temporal cortex or frontal cortex of
788 controls, AD and of combined cases (control + AD, n=113). Indicated significance levels are from
789 Spearman's test after Bonferroni correction: *P<0.0167, **P<0.0033, ***P<0.0003, ****P<0.0001.
790 Significant correlations that were confirmed by multivariable linear regression analysis
791 (Supplementary Table S6) have been underlined.

792

Yan et al., UFM1 in AD

793 **Figure 3: Soluble UFSP2 and insoluble UFM1 correlate with total and pS396/404-tau,
794 respectively.**

795 **(A)** Heatmap of Spearman correlation coefficients (r_s) illustrating significant correlations of UFM1
796 and UFSP2 protein level with total and pS396/404-tau levels in the temporal and frontal cortex of
797 controls (n=41), AD (n=72) or combined groups (control + AD, n=113). A significance level of
798 $P<0.0125$ after Bonferroni correction was used for the analysis: * $P<0.0125$, ** $P<0.0025$, *** $P <$
799 0.00025, **** $P<0.0001$. Significant correlations that were confirmed by multivariable linear
800 regression analysis (Table 2) have been underlined.

801

802 **Figure 4: UFSP2 KO protects against DNA damage.**

803 **(A)** Heatmap of Spearman correlation coefficients (r_s) illustrating correlations of soluble (sol) and
804 insoluble (ins) UFM1 and UFSP2 protein levels, respectively, with the mRNA level of DNA
805 damage related genes in the temporal cortex of AD subjects (n=72). mRNA levels were obtained
806 by bulk RNAseq. A spearman's test with significance level of $P<0.05$ was used for the analysis:
807 * $P<0.05$, ** $P<0.01$, *** $P < 0.001$, **** $P<0.0001$. See Supplementary Table S10 for r_s and p values.

808 **(B, C)** Differentiated neurons with WT, UFM1 KO, UFSP2 KO or UFM1 and UFSP2 double KO
809 (dKO) were treated with 10 μ M etoposide for the indicated times and stained for γ H2AX (green).

810 (B) Representative microscope images at the indicated time points are shown for each genotype.
811 Scale bars: 20 μ m. (C) Images were analyzed by high content imaging for γ H2AX intensity. Three
812 independent experiments with multiple wells each were quantified over time. Data is shown as
813 mean \pm SEM. Statistical significance was assessed with two-way ANOVA. Shown is the least
814 significant comparison for UFSP2 KO neurons when compared against any of the other three
815 genotypes: ** $P<0.01$, **** $P<0.0001$. **(D)** Percentage of live neurons (WT, UFM1 KO, UFSP2 KO,
816 dKO) upon treatment with 100 μ M etoposide and 10 μ M bleomycin for 72 h. Cells were stained
817 with a viability dyes and imaged. Live cells were identified and quantified by high content imaging.
818 The live cell count of the stressed neurons was normalized to the live cell count of DMSO-treated

Yan et al., UFM1 in AD

819 cells for each genotype. Shown is the mean \pm SEM of 7 independent experiments. Statistical
820 significance to WT was assessed by one-way ANOVA followed by Dunnett's test: *P<0.05,
821 ***P<0.001. Statistical significance between UFSP2 KO and dKO cells was determined by
822 student's t test: ****P<0.0001.

823

824 **Figure 5: UFSP2 KO neurons exhibit a stronger unfolded protein response and higher
825 susceptibility towards ER stress.**

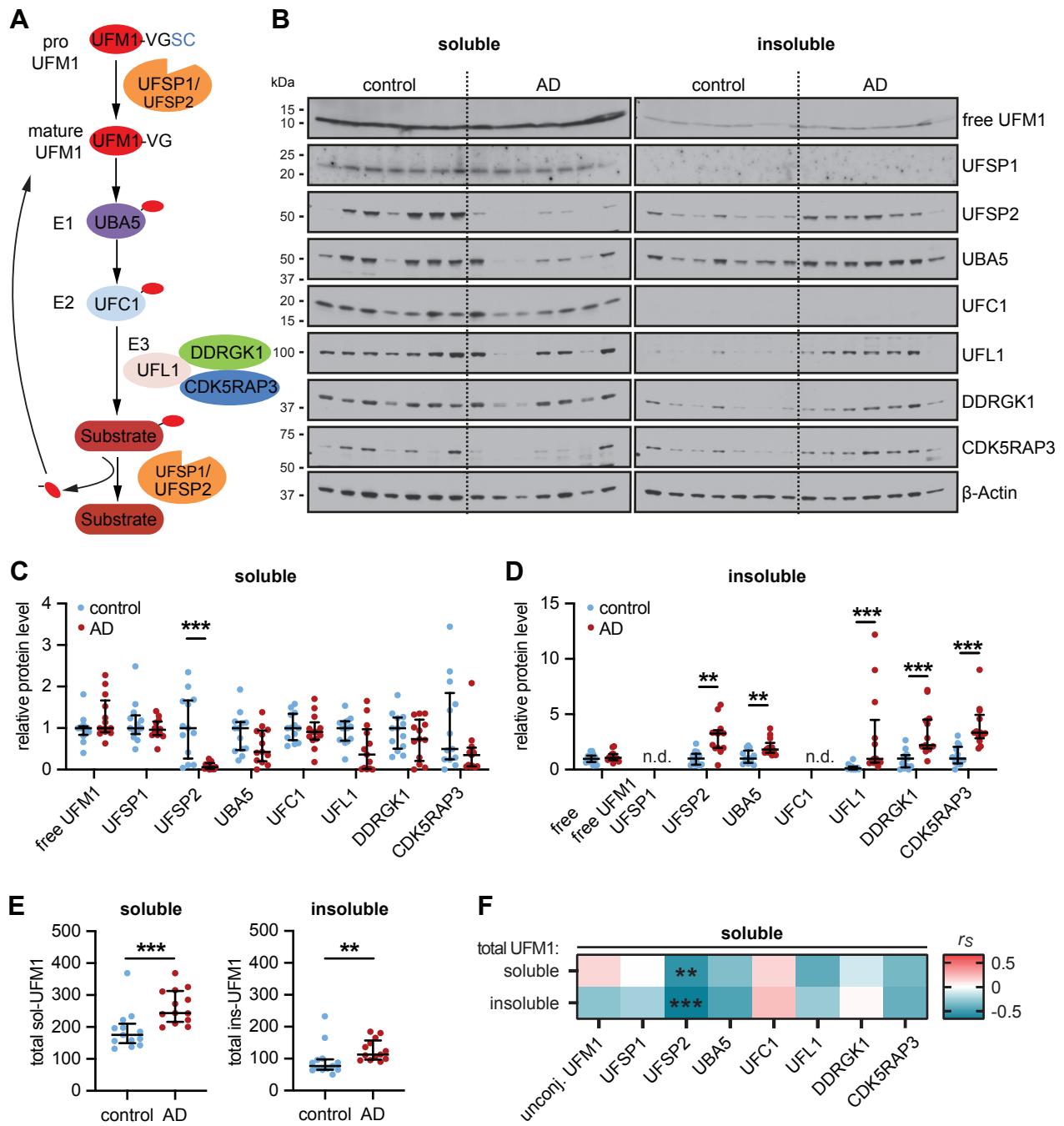
826 **(A)** Heatmap of Spearman correlation coefficients (r_s) illustrating significant correlations of soluble
827 (sol) and insoluble (ins) UFM1 and UFSP2 protein levels, respectively, with the mRNA level of
828 unfolded protein response related genes in the temporal cortex of AD subjects (n=72). mRNA
829 levels were obtained by bulk RNAseq. A significance level of P<0.05 was used for the analysis:
830 *P<0.05, **P<0.01, ***P< 0.001, ****P<0.0001. See Supplementary Table S11 for r_s and p values.

831 **(B, C)** Immunoblot analysis and quantification of expression of seven unfolded protein response
832 related proteins in differentiated neurons with UFM1 KO, UFSP2 KO or a double KO (dKO)
833 compared to isogenic controls (WT). Shown is the normalized mean \pm SEM from four independent
834 experiments. **(D, E)** Neurons (WT, UFM1 KO, UFSP2 KO or UFM1/UFSP2 double KO (dKO))

835 were treated with tunicamycin or thapsigargin for 16 hours, and then fixed and stained with anti-
836 CHOP (red) and anti-Xbp1s (green) antibodies. Nuclei were labeled with Hoechst 33342 (blue).

837 **(D)** Representative images are shown for untreated or treated neurons for each genotypes. Scale
838 bars: 20 μ m. **(E)** Images were analyzed by high content imaging for CHOP and Xbp1s intensity,

839 respectively. Data is shown as mean \pm SEM from n=5-6 independent experiments. Statistical
840 comparison to WT was assessed with one-way ANOVA followed by Dunnett's posthoc test:


841 **P<0.01, ***P<0.001, ****P<0.0001. **(F)** Percentage of live neurons (WT, UFM1 KO, UFSP2 KO
842 or UFM1/UFSP2 double KO (dKO)) upon treatment with tunicamycin or thapsigargin for 72 h.

843 Cells were fixed and stained with viability/cytotoxicity dyes, imaged and analyzed by high content
844 imaging. The number of live cells was normalized to the cell count of DMSO-treated cells for each

Yan *et al.*, UFM1 in AD

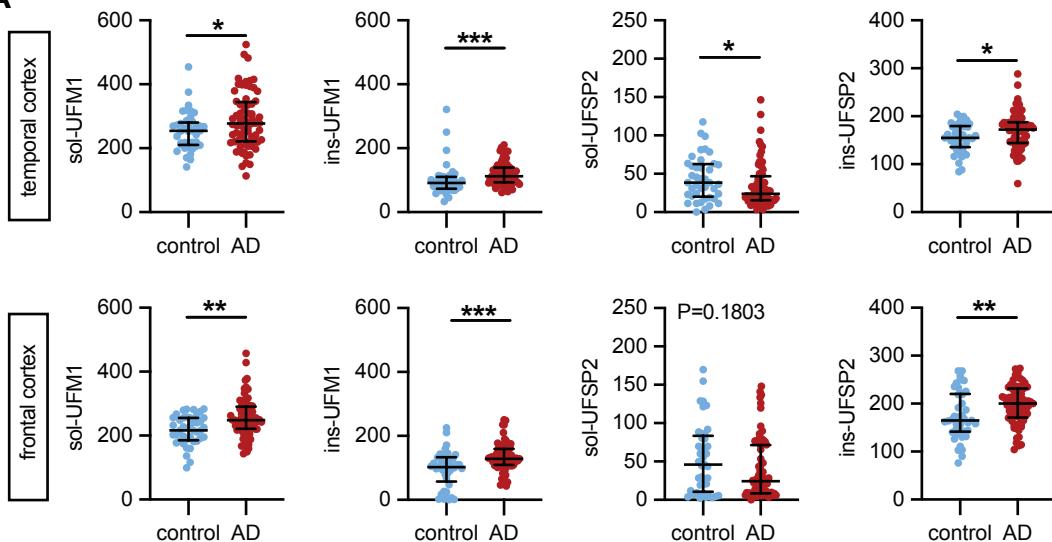

845 genotype. Shown is the mean \pm SEM of 3 independent experiments. Statistical significance was
846 assessed with one-way ANOVA followed by Dunnett's post-hoc test: **P<0.01, ***P<0.001.

Figure 1: Exploratory analysis of the UFMylation pathway in normal and AD frontal cortex

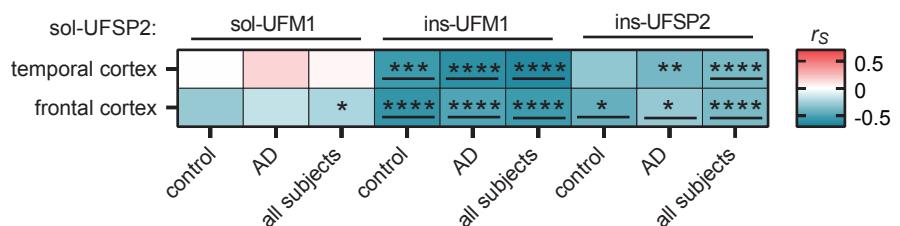
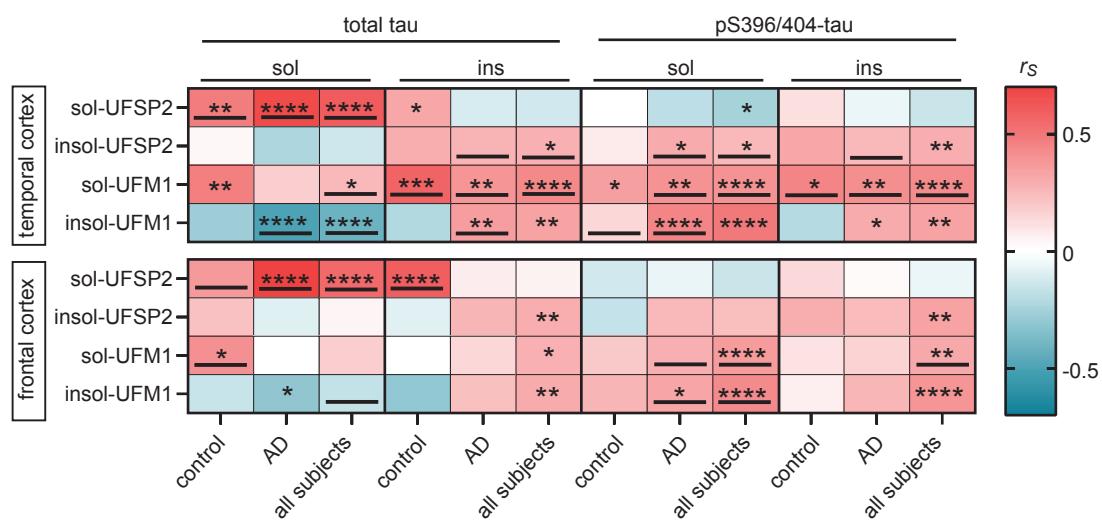
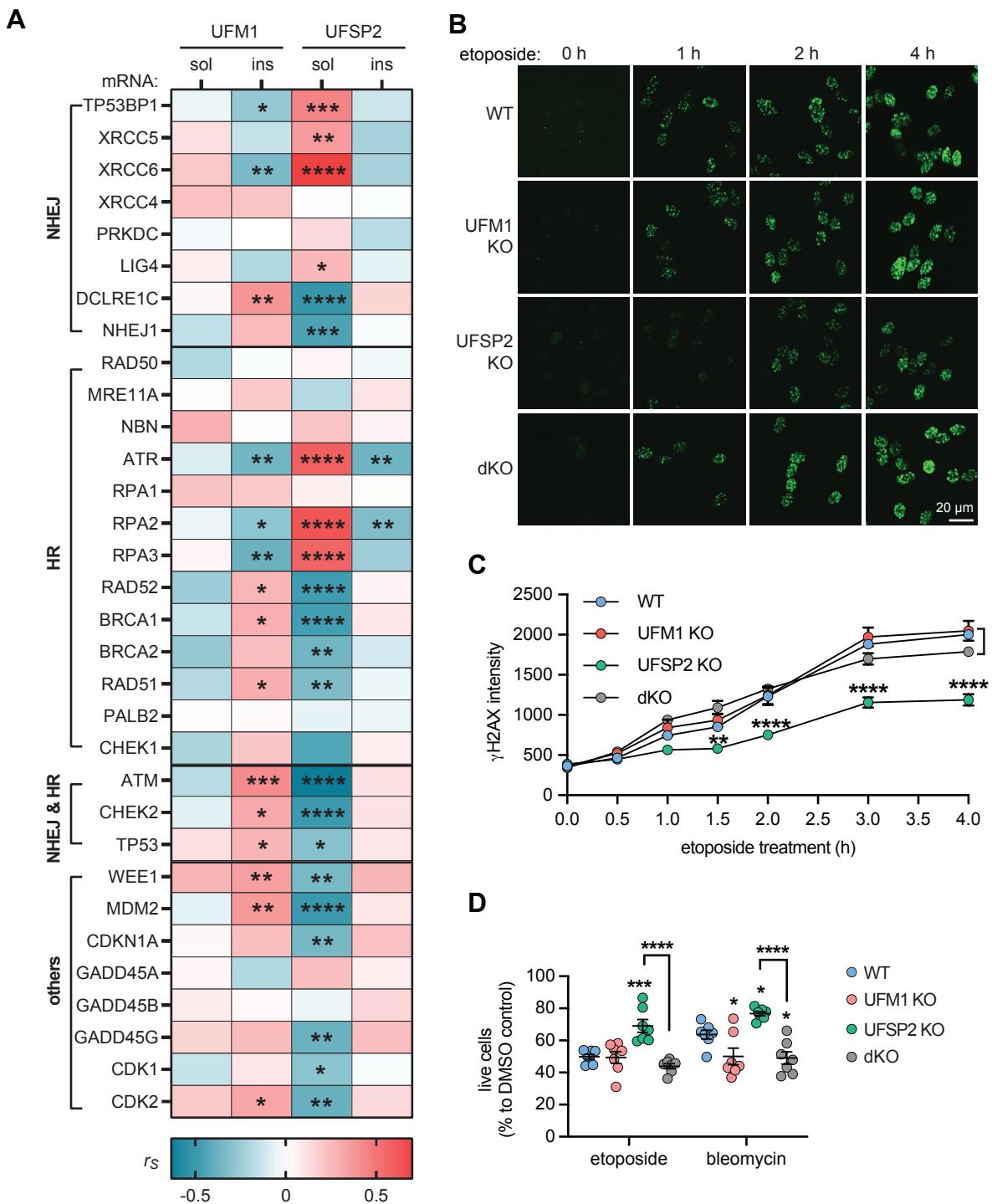


Figure 2: Quantification and correlations of UFM1 and UFSP2 proteins in post-mortem human temporal and frontal cortex.


A


B

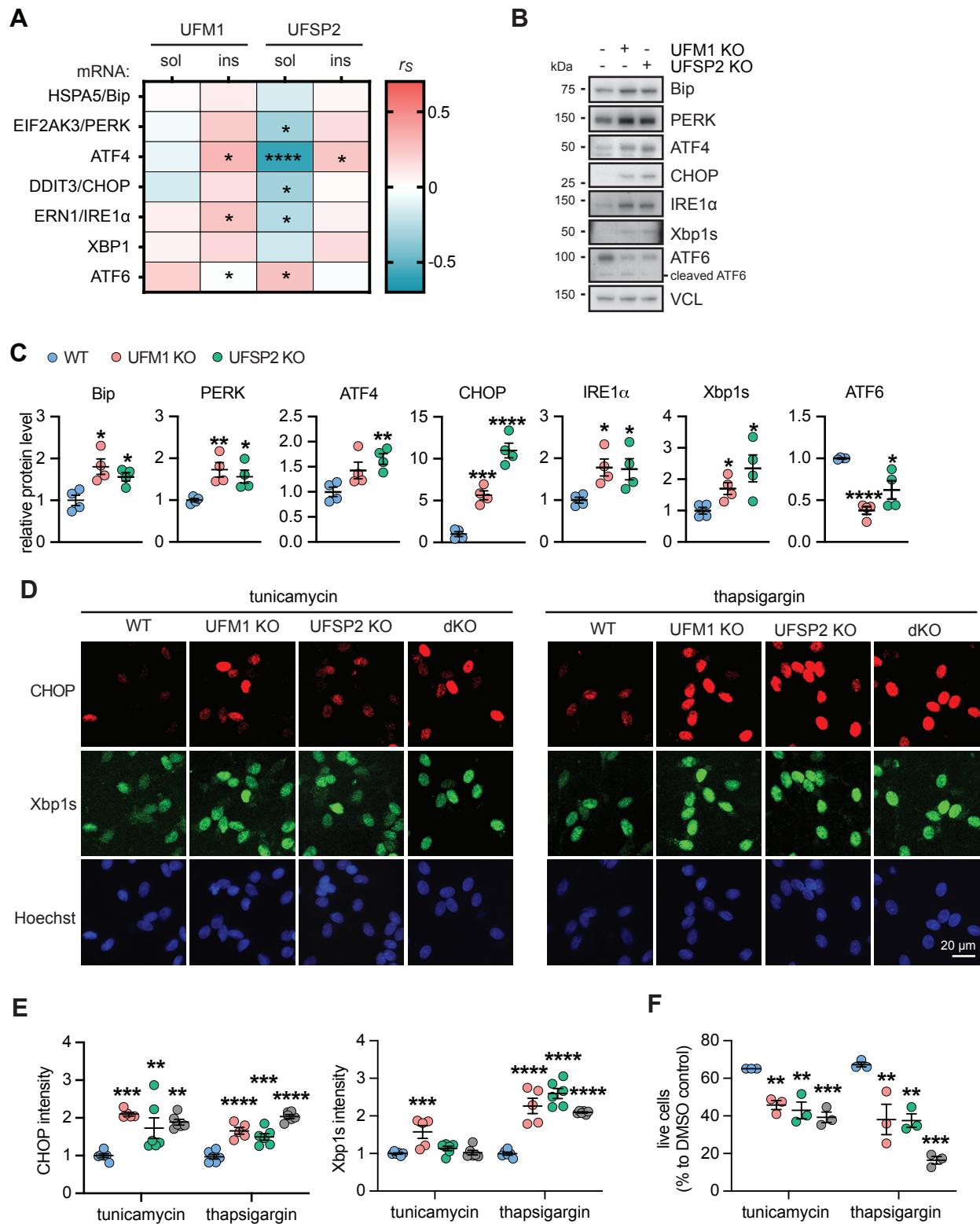

Figure 3: Correlations of UFM1 and UFSP2 proteins with total and phosphorylated tau (pS396/404-tau) in temporal and frontal cortex.

Figure 4: UFSP2 KO protects against DNA damage in neurons

Figure 5: UFSP2 KO neurons have stronger UPR and higher susceptibility to ER stress

Table 1: Comparisons of primary outcomes between AD patients and controls

Cortex/outcome/fraction	AD patients vs. controls							
	AD patients (N=72)		Controls (N=41)		Unadjusted analysis		Adjusting for age and sex	
	N	Median (minimum, maximum) or No. (%) of patients	N	Median (minimum, maximum) or No. (%) of patients	β (95% CI)	P-value	β (95% CI)	P-value
Temporal cortex								
UFSP2	sol	72	23.9 (3.5, 146.5)	41	38.5 (0.0, 117.5)	-0.71 (-1.59, 0.17)	0.1131	-0.58 (-1.46, 0.30)
	ins	72	172.5 (60.0, 288.5)	41	155.0 (84.6, 204.5)	14.26 (0.37, 28.16)	0.0442	14.13 (0.02, 28.24)
UFM1	sol	72	277.7 (113.7, 524.4)	41	254.5 (141.0, 454.1)	34.75 (4.42, 65.08)	0.0251	37.57 (6.77, 68.37)
	ins	72	112.3 (61.1, 210.0)	41	91.3 (33.9, 321.6)	19.04 (2.73, 35.35)	0.0226	15.32 (-0.76, 31.41)
Frontal cortex								
UFSP2	sol	72	24.3 (0.0, 148.0)	41	46.2 (2.4, 169.7)	-1.01 (-2.22, 0.19)	0.0992	-0.87 (-2.09, 0.35)
	ins	72	200.4 (104.0, 273.4)	41	164.8 (76.6, 268.5)	21.69 (4.59, 38.79)	0.0134	21.26 (3.90, 38.61)
UFM1	sol	72	248.0 (143.4, 457.2)	41	216.3 (99.1, 283.9)	37.77 (16.18, 59.35)	0.0007	35.55 (13.65, 57.46)
	ins	72	128.5 (43.0, 250.0)	41	102.5 (0.0, 225.0)	38.28 (19.51, 57.06)	<0.0001	34.87 (16.10, 53.63)

AD=Alzheimer's disease; β =regression coefficient; CI=confidence intervals; sol=soluble; ins=insoluble. β values, 95% CIs, and p-values result from linear regression models. β values are interpreted as the difference in the mean outcome level (on the square root scale for soluble UFSP2) between AD patients and the reference group of controls. P-values < 0.025 are considered as statistically significant after applying a Bonferroni correction for multiple testing separately for each cortex and each outcome; significant findings from the adjusted analysis are shown in bold.

Table 2: Association of UFSP2 and UFM1 with tau

Cortex/Group/Variable	Association with sol UFSP2		Association with ins UFSP2		Association with sol UFM1		Association with ins UFM1	
	β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value
Temporal Cortex								
Controls (N=41)								
sol total tau	1.03 (0.37, 1.68)	0.0030	2.14 (-7.26, 11.54)	0.6463	19.19 (1.51, 36.87)	0.0343	-13.60 (-27.97, 0.76)	0.0627
ins total tau	2.96 (0.28, 5.63)	0.0315	30.11 (-4.77, 64.99)	0.0884	105.86 (42.77, 168.95)	0.0017	-52.55 (-107.97, 2.86)	0.0623
sol pS396/404-tau	-1.22 (-5.24, 2.81)	0.5433	-7.85 (-59.18, 43.47)	0.7579	50.96 (-50.40, 152.33)	0.3144	125.96 (55.88, 196.03)	0.0009
ins pS396/404-tau	0.99 (-1.20, 3.18)	0.3644	18.33 (-9.12, 45.78)	0.1839	74.00 (23.69, 124.31)	0.0051	-27.07 (-71.22, 17.07)	0.2214
AD patients (N=72)								
sol total tau	1.67 (1.25, 2.09)	<0.0001	-12.59 (-22.55, -2.64)	0.0140	17.65 (-5.15, 40.45)	0.1270	-15.56 (-24.10, -7.03)	0.0005
ins total tau	-0.43 (-1.28, 0.42)	0.3170	26.32 (12.76, 39.88)	0.0002	62.52 (32.84, 92.19)	<0.0001	16.82 (3.98, 29.66)	0.0111
sol pS396/404-tau	-0.47 (-1.11, 0.17)	0.1445	23.95 (14.17, 33.73)	<0.0001	58.61 (37.71, 79.51)	<0.0001	18.39 (9.19, 27.59)	0.0002
ins pS396/404-tau	-0.33 (-1.31, 0.64)	0.4978	22.54 (6.19, 38.90)	0.0076	64.09 (29.07, 99.10)	0.0005	11.70 (-3.53, 26.94)	0.1298
All subjects (N=113)								
sol total tau	1.39 (0.77, 2.02)	<0.0001	-5.11 (-19.55, 9.33)	0.4880	18.62 (5.05, 32.19)	0.0072	-15.04 (-22.21, -7.87)	<0.0001
ins total tau	1.03 (-2.25, 4.32)	0.5376	26.84 (14.46, 39.21)	<0.0001	75.59 (36.60, 114.58)	0.0001	-12.80 (-80.05, 54.46)	0.7092
sol pS396/404-tau	-0.49 (-1.11, 0.13)	0.1197	17.72 (-7.03, 42.47)	0.1605	58.29 (38.21, 78.36)	<0.0001	66.73 (-38.14, 171.60)	0.2123
ins pS396/404-tau	-0.02 (-1.12, 1.08)	0.9718	21.41 (7.69, 35.14)	0.0022	67.39 (39.34, 95.45)	<0.0001	-2.34 (-38.86, 34.19)	0.9002
Frontal Cortex								
Controls (N=41)								
sol total tau	1.41 (0.34, 2.49)	0.0112	1.40 (-14.20, 16.99)	0.8569	19.63 (5.41, 33.84)	0.0082	-12.26 (-30.57, 6.05)	0.1827
ins total tau	13.50 (6.85, 20.15)	0.0002	-25.78 (-132.94, 81.37)	0.6283	-9.92 (-118.26, 98.42)	0.8535	-146.27 (-265.63, -26.91)	0.0178
sol pS396/404-tau	-2.17 (-5.65, 1.31)	0.2140	-21.07 (-67.72, 25.59)	0.3656	16.32 (-30.95, 63.59)	0.4879	32.84 (-22.89, 88.57)	0.2397
ins pS396/404-tau	0.19 (-10.14, 10.52)	0.9704	107.28 (-24.73, 239.30)	0.1079	-8.83 (-146.96, 129.30)	0.8975	-22.60 (-187.46, 142.26)	0.7824
AD patients (N=72)								
sol total tau	2.14 (1.57, 2.72)	<0.0001	-5.15 (-15.31, 5.00)	0.3142	-5.53 (-20.81, 9.75)	0.4723	-11.92 (-22.19, -1.64)	0.0237
ins total tau	1.02 (-0.13, 2.16)	0.0809	14.94 (0.06, 29.82)	0.0492	22.25 (-0.08, 44.57)	0.0508	5.90 (-10.06, 21.86)	0.4630
sol pS396/404-tau	-0.06 (-1.05, 0.92)	0.8968	12.49 (-0.04, 25.03)	0.0508	46.44 (30.86, 62.01)	<0.0001	19.72 (7.14, 32.30)	0.0026
ins pS396/404-tau	0.71 (-0.55, 1.97)	0.2637	16.67 (0.56, 32.78)	0.0428	31.35 (7.65, 55.05)	0.0103	7.69 (-9.59, 24.96)	0.3774
All subjects (N=113)								
sol total tau	1.91 (1.25, 2.58)	<0.0001	-3.16 (-11.47, 5.15)	0.4559	7.24 (-17.41, 31.89)	0.5650	-12.00 (-20.76, -3.24)	0.0072
ins total tau	6.84 (-5.36, 19.05)	0.2719	14.14 (-0.32, 28.61)	0.0553	20.89 (-0.55, 42.34)	0.0561	-59.04 (-206.55, 88.48)	0.4328
sol pS396/404-tau	-0.48 (-2.12, 1.16)	0.5680	3.00 (-26.64, 32.63)	0.8429	39.37 (14.35, 64.39)	0.0020	20.37 (8.34, 32.41)	0.0009
ins pS396/404-tau	0.70 (-0.52, 1.93)	0.2612	39.00 (-37.53, 115.54)	0.3179	30.17 (7.26, 53.08)	0.0099	7.35 (-9.51, 24.20)	0.3929

sol=soluble; ins=insoluble; β =regression coefficient; CI=confidence intervals. β values, 95% CIs, and P-values for the separate control and AD groups result from multivariate regression models. β values are interpreted as the increase in mean UFSP2 (on the square root scale when examining sol UFSP2) corresponding to a 1SD increase for the given continuous variables, which were examined on the untransformed, square root, or cube root scale. Models for controls were adjusted for age, sex, Braak stage, and Thal phase, and models for AD patients were adjusted for age, sex, presence of *APOE ε4*, Braak stage, and Thal phase. β values, 95% CIs, and P-values for the analysis of all subjects results from a random effects meta-analysis combining the separate results from the control and AD groups. P-value < 0.0125 is considered as significant after applying a Bonferroni correction for multiple testing separately for each cortex and each disease group. Significant associations are shown in bold.