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ABSTRACT

Myeloid cells are key constituents of tuberculosis (TB) granulomas. They are the major target of
pathogen infection and play central roles in pathogen control, antigen presentation, adaptive
immune cell recruitment, and tissue homeostasis. However, the role of myeloid cells in TB has
been studied largely through ex vivo experimental approaches that do not capture the dynamic
phenotypic and functional states of these cells in the disease environment. To address this gap,
we used a combination of bulk and single-cell RNA sequencing (scRNA-seq), computational
modeling, and imaging to define the molecular diversity of myeloid cells in granulomas from
Mycobacterium tuberculosis-infected nonhuman primates. We observed an increase in myeloid
cell diversity in granulomas compared to non-granulomatous lung tissue. This increased
transcriptional diversity is defined by a continuum of macrophage differentiation-, metabolism-,
and cytokine-regulated transcriptional programs. In vitro experimental modeling of monocyte-to-
macrophage differentiation in defined cytokine environments implicates differentiation time, IFN-
Y, and TGF-B signaling as candidate drivers of macrophage diversity. We next examined the
conservation of these populations across additional experimental models of Mtb infection and
found myeloid cell subsets enriched across the TB disease spectrum. To further contextualize
these responses, we constructed an atlas of myeloid cells across diverse human lung pathologies,
finding myeloid cell subpopulations that were similar between TB and other lung pathologies as
well as subpopulations that distinguish between diseases. Collectively, this study identifies points
of integration between myeloid cell biology in TB granulomas and other lung diseases that can be
used for defining the signals that instruct myeloid cell behavior in TB and other diseases, as well
as advance myeloid cell-targeted therapies.
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50 INTRODUCTION
51

52 Mycobacterium tuberculosis (Mtb) infection is responsible for over 1.5 million deaths and more
53 than 10 million cases of active tuberculosis (TB) annually’. Granuloma formation is a pathologic
54  manifestation associated with Mtb infection, and these inflammatory lesions contain a diverse
55  collection of cells, including immune cells of the lymphoid and myeloid lineages®”’. Under optimal
56  conditions, the activity of these cells is carefully coordinated, prevents bacterial escape and
57  dissemination, and generates sterilizing immunity that kills Mtb®. In less optimal conditions,
58 granulomas serve as local sites of bacterial proliferation and contribute to tissue- and organ-level
59  pathology. Differentiating the factors that lead to these disparate outcomes may lead to improved
60 treatments and vaccines for TB.

61

62  Myeloid cells are a cornerstone of the immune response to Mtb and play key roles that span the
63  full course of disease from the initiation of infection and development of pathology to disease
64  resolution®'®. The range of myeloid cells found in granulomas is diverse and includes mast cells,
65  eosinophils, neutrophils, and multiple subsets of macrophages®™*'~?’. Investigation of the
66  complexity of myeloid cells in granulomas has focused on specific features such as the spatial
67 distribution of subsets or polarization along established axes of inflammation®242°28-32_Several of
68 these studies emphasize an important conclusion: specific subsets of myeloid cells can shape
69  the outcome of TB disease®*°. Many of these causal relationships, however, have only been
70  defined in the murine model of TB which may not adequately capture aspects of the disease
71  pathology observed in humans.

72

73 The extent and genesis of myeloid cell diversity in TB granulomas is unclear. Studies of other
74 lung pathologies or myeloid cell dynamics in other tissues provide models (molecular or
75  conceptual) which may apply to TB granulomas. For example, in lung cancer, tissue resident
76  macrophages support systems-level responses that are distinct from those generated by bone
77  marrow-derived cells®®; in the bronchoalveolar lavage fluid of individuals with severe cases of
78  COVID-19 disease, alveolar macrophages are depleted, and monocyte-derived macrophages
79  take their place®. New conceptual models propose that the differentiation of monocytes recruited
80 to sites of inflammation is shaped by both tissue- and inflammation-derived cues. We hypothesize
81 that the genesis of myeloid diversity in TB granulomas results from the combined activity of
82  myeloid cell recruitment and reprogramming of homeostatic circuits in resident cells in response
83  to infection-associated signals. An improved understanding of granuloma myeloid cell diversity
84  and the molecular circuits that control the emergence of specific myeloid cell states may identify
85  pathways that can be targeted to promote anti-mycobacterial and pro-resolution functions.

86

87  Here, we sought to define how Mtb infection reprograms the local myeloid cell landscape. We
88  took advantage of the human-like pathology seen in Mtb-infected cynomolgus macaques — an
89 animal model that develops phenotypically diverse granulomas — to identify how alteration of
90 cellular circuits in granulomas shape myeloid cell identity>33>3¢. Our analysis reveals that
91  macrophages harboring a transcriptional signature of monocyte-derived cells are the dominant
92  constituents of granulomas compared to non-diseased lung tissue which harbor mostly
93  macrophages expressing a signature of tissue-derived alveolar macrophages. Furthermore, our
94  ligand-receptor signaling network analysis indicates that TGF-f3 and IFN-y signaling are the major
95 axes of variation in granuloma myeloid cells. We also found similar myeloid cell subsets in
96 different lung diseases but variations in their relative abundance, suggesting the presence of a
97  disease-specific local signals that tune myeloid subset emergence or maintenance. Together,
98 these data highlight the unappreciated phenotypic and functional diversity of myeloid cells in TB
99  granulomas and have implications for developing approaches to control Mtb infection and repair
100  damaged lung tissue.
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101

102 RESULTS

103

104  TB granulomas harbor diverse myeloid subpopulations
105

106  To examine myeloid cell diversity in TB granulomas, we generated single-cell transcriptional
107  profiles from granuloma tissue from Mtb-infected NHP. Four cynomolgus macaques were infected
108  with a low dose of Mtb Erdman (<10 CFU) and necropsied at 10 weeks post-infection for profiling
109 (Fig. 1A, Materials and Methods). Granulomas for analysis were selected based on early
110  detection (~4 weeks post Mtb challenge) on PET-CT scans. 39 lung granulomas and 4 areas of
111 non-granulomatous lung tissue (1 from each macaque) were sampled. Each sample was
112 analyzed for bacterial burden and gene expression using single-cell mMRNA sequencing (scRNA-
113 seq)*. Granuloma bacterial burden spanned from 25 to 18,600 CFUs. After applying quality
114  control filters (Methods), 31,198 cellular transcriptomes were generated.

115

116 ~ We next integrated these transcriptomes with data from our previously published study of NHP
117  granulomas at 4- and 10-weeks post infection (Materials and Methods, Table S1, Fig. S1-2)°. The
118 integrated dataset is composed of 10 macaques, 43 tissue samples, and 41,559 cells (Fig. 1A).
119  Clustering and differential expression analysis of the myeloid cells identified 17 distinct clusters.

120

121  Using curated gene signatures for myeloid cells, we identified dendritic cells, mast cells,
122 monocytes, neutrophils, and macrophages (Fig. 1B-C, Table S2-3, Materials and Methods)>383°.
123 Four dendritic cell populations, including DC1s, DC2s, LAMP3+ DCs, and plasmacytoid DCs were
124  identified. DC1s were defined by CLEC9A expression whereas DC2s were defined by GPR183,
125 CD1C, CLECG6A, CLEC4A expression. Plasmacytoid DCs had high expression of LILRA4 and
126  CCDC50, and the LAMP3+ DC population resembled previously identified anti-tumor populations
127  based on CCR7 and LAMP3 expression*°. Mast cells were defined by CLU and CPA3 expression.
128  Classical and non-classical monocytes were defined based on VCAN and FCGR3A expression,
129  respectively. One myeloid population clustered with the monocyte populations but displayed
130  increased expression of other dendritic cell and macrophage genes, such as IDO1, FAM26F, and
131  CPVL and reduced expression of VCAN and other monocyte markers. We therefore annotated
132 these cells as recruited myeloid cells (RM1) to highlight the mixed markers*'~**. Neutrophils were
133  defined by CSF3R and S7100A9 expression. Seven macrophage populations defined by FABP4,
134 MRC1, C1QB and CSF1R expression were identified. Macrophage populations were
135 differentiated by the level of expression of antimicrobial genes, metabolic genes, and
136  metallothionein genes including CTSB, IDO1, SOD2, and LGMN. To examine features of
137  macrophage ontogeny, we utilized published signatures of monocyte-derived and alveolar
138  macrophages, scored all macrophage populations according to these signatures, and assigned
139  macrophage class based on signature score®.

140

141  Gene ontology enrichment using the GO Molecular Function database (Table S4, Materials and
142  Methods) indicated that a range of processes were enriched uniquely in each macrophage subset
143 (Fig. 1D). For example, macrophage populations 4 and 5 had high levels of expression of genes
144 involved in cholesterol metabolism, a key nutrient source for Mtb, while macrophage populations
145 2 and 3 expressed high levels of genes associated with chemokine receptor signaling**. We also
146  sought to contextualize these myeloid cells according to their inflammatory state using published
147  signatures of macrophages stimulated with IFN-y+LPS or IL-4, reflective of a classical M1 or M2
148  state, respectively*®. RM2 cells scored highly for the M1 signature while RM4, 5, and AM2 scored
149 highly for the M2 signature (Fig. 1E). The other populations did not score highly for either signature
150  suggesting that additional signals shape granuloma myeloid cell identity.

151
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152 In the murine model of TB, interstitial macrophages and alveolar macrophages differ in their
153 antimicrobial capacity®®. We therefore examined univariate relationships between myeloid
154  population abundance and granuloma bacterial burden. Using a non-parametric Mann-Whitney
155 test, we did not observe a strong association between specific subpopulations and bacterial
156  burden (Table S5). A generalized linear model revealed associations between LAMP3+ DCs and
157  reduced CFU burden as well as an association between mast cells and higher CFU burden as we
158  observed previously® (Table S5).

159

160

161  Cell recruitment, activation and differentiation underlies the diversity of myeloid cell states
162  in TB granulomas

163

164  An emerging model of myeloid cell states within the tissue, such as the lung, involves the dynamic
165  recruitment, activation, and reprogramming of myeloid cells upon deviation from homeostasis*®-
166  “8. We hypothesized that comparing non-granulomatous lung tissue to granulomas would provide
167  insight into the cellular and molecular signals that shape granuloma myeloid cell identity.

168

169  We initially hypothesized that the TB granuloma would be associated with less myeloid diversity
170  compared to non-granulomatous lung tissue given dominant inflammatory signaling. We
171  compared myeloid cell diversity in granulomas versus non-granulomatous tissues. Using the
172 Inverse Simpson Index (IS, range: 1+, higher diversity = higher ISI), we found that granulomas
173  were in fact more diverse (IS = 9.64) than non-granulomatous tissue (ISI = 6.09) (Fig 2A). We
174  found significant changes in the frequency of specific myeloid populations (adjusted P < 0.05,
175  Methods). Macrophage populations AM1 and AM2 (odds ratio, JOR = 0.152) and monocytes
176  (odds ratio, yJOR = 0.51) were enriched in non-granulomatous tissue whereas all other myeloid
177  subsets were enriched in granulomas, except for proliferating cells. We found that macrophages
178  expressing a signature of monocyte-derived macrophages were enriched in granulomas relative
179 to non-diseased tissue consistent with a model of monocyte-mediated replenishment of
180  macrophages in the granuloma niche (Fig. 2B). Plasmacytoid DCs (pDCs), which also showed a
181  dramatic increase in granulomas in our analysis, have been reportedly to be differentially
182  abundant in lung tissue from macaques with latent or active TB disease as well as uninfected
183  versus Mtb-infected mice**.

184

185 We next sought to deconstruct other factors that may contribute to granuloma myeloid cell
186  diversity. Our previously published study of NHP granulomas, now integrated here with these new
187 samples, examined how a granuloma’s composition changed at different timepoints post-
188  development so we examined how myeloid diversity changed as a function of granuloma age®.
189  Newly-developed granulomas harvested 4 weeks post infection and granulomas that were found
190  at later timepoints by PET-CT imaging and harvested 10 weeks post-infection showed similarly
191  high levels of myeloid cell diversity, whereas non-granulomatous tissue harbored the lowest
192 diversity (Fig. S3). RM1, RM2, RM3, RM5 and DC2 displayed increased relative abundance in
193 week 4 granulomas relative to non-granulomatous tissue, suggesting that these populations may
194  emerge early in the granuloma environment (Fig. 2C).

195

196 We then sought to examine monocyte and macrophage diversity using canonical markers
197  traditionally used to define myeloid subsets using flow cytometry (CD68, CSF1R, MRC1 (CD206),
198 CD163, FOLR2, CD74, ITGAX (CD11c), and ITGAM (CD11b)) (Fig. 2D). We found that MRC1, a
199  marker of alveolar macrophages, is increasingly expressed from classical monocytes (CMono) to
200 alveolar macrophages (AM1, AM2), and previous studies have established that monocytes can
201 differentiate into alveolar macrophages®’. In contrast, CD68 shows a strong step-like increase in
202  expression from RM1 to RM2, suggesting an inflection point in cell state. On the other hand,
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203  FOLRZ2, a marker used for interstitial macrophages and therapeutic target in cancer is expressed
204  highly in RM4 as compared to other populations®°®. Consistent with our analysis of individual
205  markers, scoring each of the granuloma monocyte and macrophage populations according to a
206  previously published tissue-resident macrophage signature revealed a gradual increase in
207  expression of the monocyte-derived macrophage score across the recruited macrophage
208  populations (Fig. 2E). These analyses suggest that granuloma myeloid cells include a diversity of
209  macrophage subsets and that recruited monocytes exist on a differentiation spectrum.

210

211  We next used immunofluorescence staining to confirm that subset-defining transcripts were
212 translated into proteins by macrophages and to identify where within the granuloma
213 microenvironment these cells are present. We examined expression of CD11b (/ITGAM, highest
214  in RM2), CD11c (ITGAX, highest in RM5), CD68 (highest in RM5), CD163 (highest in AM1),
215  CD206 (highest in AM1), FOLR2 (highest in RM4) and CSF1R (highest in RM4, Fig. 2F, Fig. S4)
216  and found unique expression patterns as well as overlap between these markers. We found that
217  AMs expressing CD206, FOLR2, and CSF1R were abundant in the granuloma-adjacent lung and
218  that few of these cells had infiltrated into the granuloma. In contrast, CD163 and CD11b were
219  expressed by granuloma-adjacent AMs and macrophages in the granuloma’s lymphocyte cuff.
220  CD11c was the most broadly expressed macrophage-associated antigen and was expressed by
221  AMs and macrophages in the histologically-defined epithelioid macrophage region. CD68, which
222 is often used as a general macrophage marker, was most strongly expressed by cells in the
223 epithelioid macrophage region, especially by the cells adjacent to the caseum. Taken together,
224  these protein-level data support our transcriptional analyses by showing the complexity of
225  granuloma-associated macrophage populations in a spatial context.

226

227

228  In vitro profiling reveals dominant variance induced by time, IFN-y, and TGF-

229

230  Thus far, we verified that diversity in the granuloma could be driven by variations in the abundance
231  of myeloid subtypes, monocyte infiltration, differentiation, and changes in cell state. Recent work
232 on macrophage ontogeny and monocyte-macrophage dynamics has emphasized the influence of
233 environmental cues on myeloid cell phenotype in the tissue*!**4354-% | igand-receptor interaction
234  prediction methods such as NicheNet offer a technique to predict signals potentially responsible
235  for the transcriptional profile of cell populations of interest. To generate testable hypotheses about
236  ligand signals in the granuloma, we used NicheNet focusing on differentially expressed genes
237  within RM2, RM4, and AM1 populations (Table S6, Materials and Methods)®’. We focused on
238 these populations because they showed the most distinct transcriptional and functional
239  enrichment profiles that were not well-explained by any of the analyses above. NicheNet analysis
240  predicted several cytokines with potential activity in RM2, RM4, and AM1 cells including TNF-q,
241 IL-13, IL-15, IL-1B, TGF-B, IL-6, and IFN-y, which have been previously detected in TB
242 granulomas (Fig. 3A)**°. TNF transcript was predominantly detected in myeloid cells, whereas
243  TGF-B was detected in NK cells, T cells, DC2s, and proliferating cells (Fig. S5).

244

245  Given that the data that inform NicheNet predictions are not derived solely from myeloid cells, we
246  sought to enhance our study of cytokine signals that shape myeloid cell state, by performing time-
247  resolved in vitro stimulation experiments of myeloid cells. Given the enrichment of monocyte-
248  derived macrophage signatures in the granuloma, we focused on monocytes and monocyte-
249  derived cells. We and others have previously utilized transcriptional profiling to define the acute
250  response to macrophage stimulation with diverse ligands®'. To build upon these previous studies
251 and in recognition that monocytes recruited to sites of disease often differentiate in the presence
252 of multiple ligands concurrently, we sought to model the monocyte response to tonic cytokine
253  signals associated with differentiation and granuloma residency. We utilized classical human
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254  CD14+ monocytes from peripheral blood as our experimental monocyte source. To examine the
255  contribution of time, we generated samples at multiple time points (0, 1, 3, and 7 days). These
256  studies resulted in the generation of 200 unique RNA-seq samples which we analyzed using
257  Prime-seq, a high-throughput bulk RNA sequencing technique (see Materials and Methods)®?. To
258  simulate the complexity in lung granulomas, we combined GM-CSF with each of the following
259  ligands: IFN-@, IFN-y, IL-1B, IL-4, IL-6, M-CSF, TGF-B, and TNF-a (Fig. 3B). Given the necessity
260  and influence of GM-CSF on alveolar macrophage development, ligands were added immediately
261  at day 0 along with GM-CSF, which resulted in robust transcriptional changes over time®*-% (Fig.
262 3C).

263

264  We next sought to evaluate how the diverse signals we modeled in our in vitro experiments (time
265 and ligand identity) were reflected in the transcriptional signatures observed in vivo. We first
266  focused on gene programs that describe the temporal axis of monocyte (day 0) to differentiated
267  monocyte-derived cell (day 7). We defined gene signatures based on differential gene expression
268  ateach time point (0, 1, 3, 7 days, Materials and Methods). (Fig. 3D). We identified several time-
269  dependent gene sets: genes that are downregulated following day 0, genes that are induced by
270  day 3 and remain highly expressed at day 7, and genes that are gradually induced over the course
271  of 7 days. Genes in the day 0 signature included ST00A8, CD93, CD14 while genes in the day 7
272 signature included MAF, ALOX15B, and ITGB5. We then asked how much variance in vivo is
273  explained by the gene sets associated with in vitro time course study. We found that the gene
274  sets changing over time in vitro explained a significant portion of the variance in vivo (Fig. 3E, P
275 < 2.2e-16, Materials and Methods). To identify which time points in vitro resemble the in vivo
276  subsets, we scored the subsets based on the day-specific gene sets (Fig. 3F). The day 0 gene
277  signature on was most highly expressed by classical monocytes. The day 1 gene signature was
278  expressed most highly by the RM2 subset. The day 7 signature was highly expressed by AM1,
279  AM2, and proliferating cells. Other RM subsets show mixed scoring across day 0 to day 7
280  consistent with an intermediate phenotype. As an alternative strategy to visualize these trends,
281  we scored granuloma myeloid cells according to the day 0 and day 7 scores and visualized their
282  distributions as a histogram. AM1 and AM2 cells scored higher for the day 7 signature than the
283  day O signature. By contrast, classical monocytes (cMono) and RM1 scored higher for the day 0
284  signature than the day 7 signature (Fig. 3G). Taken together, these data reinforce that granuloma
285  myeloid cells exist on a spectrum of differentiation*'*’.

286

287  We next asked how ligands predicted by our NicheNet analysis and modeled in vitro using
288  monocyte-derived cells aligned with variation in myeloid cell gene expression in vivo. Like our
289  analysis of temporal signatures, we defined gene sets that describe each ligand using differential
290  expression (Materials and Methods). Like the time-dependent gene sets, the ligand gene sets
291  explain a significant amount of variance in vivo relative to random control gene sets (Fig. 3H). We
292  next scored the in vivo subsets according to the in vitro ligand signatures and compared their
293  relative scores across subsets. GM-CSF and TGF-B gene signatures are most expressed in the
294  AMs with decreasing relative expression to classical monocytes; this is consistent with previous
295  studies demonstrating the requirement of GM-CSF and TGF-B in alveolar macrophage
296  development (Fig. 31)°*6*%7 |L-4 signatures associated with the DC subsets®®. TNF-a and IL-1B
297  signatures showed more distinct subset expression whereas IL-6 and IFN- showed similar,
298  correlated trends with TGF-B and IFN-y, respectively (Fig. 3J).

299

300 We next visualized sites of in vivo TGF-f and IFN-y signaling by staining granulomas for
301  phosphorylated SMAD3 (pSMAD3) and phosphorylated STAT1 (pSTAT1). We used CD11c as a
302  marker for macrophages based on our prior work showing this marker’s broad expression across
303  subsets (Fig. S6, Fig. 2F, Fig. S4). We found that pSMAD3 signaling was widespread throughout
304 granulomas, including in macrophages (Fig. S6, magenta), whereas cells regulated by STAT1
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305 were less common. Three STAT1 phenotypes were noted in CD11c+ macrophages including
306 pSTAT1-negative cells (phenotype 1), cells with intranuclear pSTAT1 (phenotype 2), and cells
307  with cytoplasmic but not intranuclear pSTAT1 (phenotype 3). Each phenotype could be found in
308 granulomas from macaques at 4- and 10-weeks post infection. pSTAT1-negative macrophages
309  were often found in the granuloma’s lymphocyte cuff region whereas macrophages with intra-
310  nuclear pSTAT1 were present in closer proximity to necrosis. The phenotype 3 macrophages with
311  cytoplasmic pSTAT1 were similar in size and appearance to alveolar macrophages and were
312  present as clusters adjacent to or embedded within the granuloma’s lymphocyte cuff. Taken
313  together, these data suggest that TGF- and IFN-y regulated macrophages are distinct subsets
314 of cells that occur in different granuloma regions, potentially with different functional
315  consequences for granuloma-level homeostasis and bacterial control.

316

317  Alignment of myeloid states across species and related pathologies reveals conserved
318 subsets

319

320  The abundance of publicly available scRNA-seq data across diverse lung pathologies and other
321 diseases inspired us to examine the possibility that the transcriptional subsets we identified in
322 NHP granulomas were similarly observed across other lung pathologies. To test this possibility,
323  we generated a human lung atlas of myeloid cells (>300,000 cells across 394 samples) in the
324 lung representing diverse pathologies (Materials and Methods, Fig. 4A, Table S7-10)%.

325

326  We first asked if there were any unique myeloid cell populations in TB granulomas that were not
327 observed in other pathologies. To compare transcriptional subsets, we utilized Celltypist, a
328  previously established computational framework for scRNA-seq cell type annotation (Materials
329  and Methods)®. We trained a CellTypist model on our cynomolgus granuloma data and predicted
330  the granuloma cluster labels within the human lung atlas (Fig. 4B). We observed strong mapping
331  of most populations, including LAMP3+ DC, DC2, RM3, RM4, RM5, AM1, and AM2 (Fig. 4B).
332 Predictions for RM1 were relatively weaker. Although RM6, defined by metallothionein genes like
333  MT1X, failed to generate any predictions, a clear metallothionein-defined cluster (Cluster 17) was
334 identified in the pan-lung pathology atlas. The weak mapping of RM1 may reflect a unique
335  population of granuloma myeloid cells, or it may reflect the dynamic nature of TB granulomas
336  where an immature population of myeloid cells is continually recruited to the granuloma in contrast
337  to the other diseases analyzed.

338

339  Our comparison of non-diseased and granuloma tissue revealed a trend involving a reduction in
340  alveolar macrophages and expansion of specific myeloid populations in granuloma tissue. We
341  next sought to test if these trends generalized to the other diseases in our lung atlas. When
342 comparing control versus diseased samples present in the human lung atlas, we saw a significant
343  decrease in the AM1 score and significant increases in LAMP3+ DC, RM3, and RM4 scores in
344  diseased samples overall, consistent with a model where monocyte-derived cells alter the myeloid
345  compartment during disease (Fig. 4C).

346

347  Our observation of similar myeloid cell populations between a pan-lung atlas and granulomas
348 next inspired us to investigate specific comparisons between our study and other published
349  studies of mycobacterial disease and granulomatous pathologies.

350

351  We compared our cynomolgus macaque study to a previously published study of lung samples
352 from rhesus macaques with latent or active infection*®. Again, we used Celltypist. We observed
353  robust mapping and subset identification between mast cells, plasmacytoid DCs, and cDC1s
354  across the two datasets (Fig. S7A). We observed more nuanced mapping between macrophage
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355  populations. For example, the Alveolar TREM2+ population from the rhesus study mapped to
356  multiple populations in our study (RM4, RM5, and RM6) (Fig. S7A). We next sought to examine
357 the association of specific myeloid subsets from our study with the TB disease status as
358 investigated in the rhesus study. pDCs were elevated in active infection, as described previously,
359  in addition to RM1/RM2/RM3 populations which mapped to their “Alv IFN signature” (Fig. S7B).
360  The alveolar macrophages AM1 and AM2 were more frequent in latent disease consistent with a
361  model where active TB disease alters the lung immune landscape, similar to what is observed in
362  COVID-19*.

363

364  We next compared the macrophage subsets we identified in NHP with macrophage subsets
365 identified in the lungs of C57BL/6J mice following infection with 1,500 Mtb CFU (Fig. S8A)"".
366  Celltypist mapping failed to predict more than one broad cell type, so we modified our analysis to
367  comparing and scoring 1:1 ortholog genes as previously done (Materials and Methods)">"®. Non-
368 macrophage subsets and proliferating cells were generally well-aligned (Fig. S8B-C). As
369  previously observed with conservation of macrophage subsets across between mice and humans,
370  concordance between mouse and cynomolgus macrophage subsets were mixed’2. There was
371  significant similarity between the Nos2-expressing IM1 and IM3 populations with RM2 and the
372  C1QA-expressing IM2 population with RM4 and RM5.

373

374  We next examined the relationship between NHP TB granulomas and other granulomatous
375 diseases. We first compared our myeloid subsets to those observed in leprosy, a skin disease
376  whose causative agent is a different mycobacterial species, Mycobacterium leprae®” ™. Not
377  surprisingly, we observed strong mapping with mast cells and no mapping with alveolar
378  macrophages (Fig. 4D-E). We observed mapping of a limited number of recruited macrophage
379  subsets (RM3 and RM4) to leprosy granulomas. RM3 and RM4 cells were more abundant in
380 leprosy samples than normal skin suggesting that these populations are similarly enriched is a
381 diseased environment (Fig. 4F).

382

383  Sarcoidosis is a condition that results in granulomas in the lung and other tissues, and the etiology
384  of sarcoid granulomas is still poorly understood”. We asked whether these two granulomatous
385  diseases might have cellular features that distinguish between them®. We performed mapping
386  using Celltypist and observed consistent, strong concordance between mast cells, pDCs, and
387  monocytes (Fig. 4G-l). Neutrophils, DC1s, LAMP3+ DCs, RM1 and RM2 largely failed to map to
388  sarcoidosis cells. Notably, RM1 and RM2 cells are marked by high expression of IDO1, CD274
389  and CXCL9. A previous protein-centric study comparing human TB and sarcoidosis granulomas
390 similarly observed an absence of macrophages co-expressing PD-L1 (CD274) and IDO1
391  consistent with the observations made by imaging mass cytometry?. We hypothesize that the
392  absence of neutrophils, DC1s, LAMP3+ DCs, RM1 and RM2 reflects an absence of signals these
393  cells need for recruitment to and differentiation in granulomas. Together, these comparative
394  analyses reveal that granuloma myeloid cells share similarities with other lung pathologies which
395 may facilitate the repurposing of myeloid-targeted therapies in TB as well as mechanistic
396  dissection of the signals that support the generation of these cellular states.

397

398 DISCUSSION

399

400  Myeloid cells play a critical role in TB pathogenesis from initiation to resolution'>?*"”. The function
401  of myeloid cells in granulomas is central to the trajectory of disease. Using a combination of
402  experimental and computational techniques, we defined the transcriptional diversity of myeloid
403  cells in the NHP TB granuloma. We found that granuloma myeloid cells are not a monolith and
404  that cells harboring signatures of monocyte-derived cells are the dominant myeloid cell constituent
405  of granulomas. Many of these myeloid cell populations are detectable as early as 4 weeks. Unlike
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406  the mouse model, we did not identify a univariate relationship between cellular subsets and
407  bacterial control. We found that signatures of myeloid cell age and IFN-y and TGF-B signaling
408 explained a significant component of the in vivo transcriptional heterogeneity of granuloma
409  myeloid cells. Lastly, by comparing TB granuloma myeloid cells to other lung pathologies, we
410  found that TB granulomas harbor myeloid cell subsets that are transcriptionally similar to other
411  lung pathologies. Disease-specific comparisons between TB and sarcoidosis granulomas
412  identified cellular features that distinguish between these two types of granulomas.

413

414  Myeloid cells integrate diverse signals (ontogeny, soluble cues, time) to shape their identity.
415  Models of macrophage cell states in TB granulomas have historically focused on polarization
416  along an M1-M2 axis, their spatial localization in granulomas, and a small number of canonical
417  markers. In this study, we expand this model to place macrophages on a spectrum from classical
418  monocytes to tissue-resident alveolar macrophages, with each subset being characterized by a
419  distinct transcriptional profile. By comparing to non-diseased lung tissue from the same animals,
420  we demonstrate how the lung tissue niche is remodeled locally in granulomas3*4'47:78.79

421

422 In vitro profiling further confirmed this spectrum by identifying the mixture of differentiation and
423  cytokine factors that partially describe in vivo heterogeneity. Pairing computational predictions of
424  cytokine activities, in vitro validation, and imaging of transcription factors that are phosphorylated
425  in response to TGF-B and IFN-y signaling, we observed that transcriptional variation in the
426  myeloid compartment was associated with variation in IFN-y and TGF-@ signaling among others.
427  The heterogeneity and combination of cytokines measured in granulomas support the idea that
428  granuloma cells entering the microenvironment experience a complex mix of signals®*®°. Future
429  granuloma myeloid cell phenotyping should incorporate markers beyond canonical macrophage
430  markers and aim to distinguish between monocyte-derived and tissue resident macrophages®®-
431  ® Based on our findings, candidate markers for expanded protein-centric panels should consider
432 including markers such as NR1H3, CEBPB, CLEC4E, FOLR2, and TREM2 to better define
433 macrophage populations in the granuloma®-%.

434

435  Our data revealed a macrophage population, RM2, which was high in IDO1, CXCL9, CXCL10,
436 and CXCL11 expression. RM2 was present across all cohorts and significantly increased in
437  granuloma samples. This population was also high for Mincle (CLEC4E), a receptor for
438  mycobacterial ligands®’. RM1 and RM3 displayed similar, albeit with lower expression of these
439  key features, suggesting that they may be at a different activation or differentiation stage than this
440  population. Metabolically, this population was uniquely high in tryptophan and glycolysis-related
441  pathways and displayed high STAT1, NFKB1, and CEPBD activities. We hypothesize this
442  population represents an immunoregulatory subset composed of recently recruited and immature
443  macrophages. This population shares various features with similar cells described as key
444  mediators of Salmonella infection and Mtb-infected cells**®. The consequence of this population
445  in the microenvironment remains paradoxical. The expression of tryptophan metabolism and
446  CEBPD activity also suggests an immunoregulatory role but the combination of IFN-y and TNF-a
447  has been noted to drive inflammatory cell death and tissue damage®. Interrogating the
448  consequence of this population at the site of the granuloma may identify a balance of functional
449  roles this population performs.

450

451 Interactions between alveolar macrophages and Mtb are one of the earliest detected interactions
452 between Mtb and the host®. While alveolar macrophages are a gateway to the lung early in
453 infection, our data show that monocyte-derived cells are the major contributors to the macrophage
454  compartment in the granuloma. Recent studies in other lung diseases emphasize the importance
455  of monocyte-derived cells. For example, bronchoalveolar lavage samples from individuals with
456  severe COVID-19 disease have a decreased frequency of tissue resident alveolar macrophage
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457  and an increased frequency of monocyte-derived cells®**. It was hypothesized that this increased
458  frequency of inflammatory monocyte-derived cells may be associated with worsened outcomes
459  due by recruiting inflammatory monocytes and neutrophils. The role of monocyte recruitment in
460  TB disease is nuanced and has not been rigorously examined in the NHP model of TB disease.
461 In murine studies, monocyte recruitment has been experimentally explored through the utilization
462  of mice deficient in the chemokine receptor, CCR2%%. The conclusion from these studies is that
463  at high doses of Mtb, loss of CCR2 has a dramatic impact on susceptibility while CCR2 appears
464  dispensable at low doses of Mtb challenge. It is difficult to predict how perturbation of monocyte
465  recruitment in TB disease may impact granuloma formation or TB disease outcome, especially
466  given the diversity of monocyte-derived cells in granulomas. A previous murine study does
467  suggest that monocyte-derived cells have higher antimicrobial potential than alveolar
468  macrophages while a different study suggests that human monocytes have reduced capacity to
469  control Mtb growth compared to monocyte-derived or alveolar macrophages®®’. Future
470  experimental studies in NHP may be poised to define a functional role for specific populations of
471  myeloid cells in granuloma function as several myeloid subpopulations were defined by genes
472 encoding cell surface proteins suggesting the potential for antibody-mediated cell depletion.
473  These markers include CD36, CLEC9A, FOLR2, MRC1, MS4A7, and SLAMF7 among others.
474

475  Recent studies in lung cancer suggest that monocyte-derived cells in the lung may have
476  immunosuppressive functions®. TREM2+ monocyte-derived macrophages have become the
477  subject of intense study, in part inspired by a large body of literature on TREM2 in the context of
478  microglia function in the brain. Loss of TREM2 expression or activity has been shown to reduce
479  tumor burden in several models of lung cancer® . Our data highlight the existence of similar
480  transcriptional populations of TREM2+ cells in TB granulomas. A recent study suggests that
481 TREM2+ macrophages result from the efferocytosis of cellular debris, and it is appealing to
482  consider the contributions of cell death in TB granulomas, which has been widely documented,
483  as a potential driver of this population of cells®. While TREM2+ macrophages have been
484  implicated in immunosuppression, it will be necessary to examine whether they play a similarly
485  immunosuppressive role in TB granulomas. More broadly, it will be valuable to explore new
486  experimental perturbations in non-human primates to regulate monocyte-derived cell function,
487  isolate them from granulomas, or model their function with novel in vitro models.

488

489  Our analyses across other scRNA-seq profiles of lung diseases provides additional experimental
490  support of many of the conclusions made with TB granulomas. Firstly, our observation of similar
491  populations across diseases enhances our confidence in the identification of these transcriptional
492  subsets. The observation of the shift from tissue-resident alveolar macrophages to monocyte-
493  derived macrophages across diseases emphasizes the importance of monocyte differentiation
494 and recruitment as major events that may shape the course of lung diseases. Notably, RM1 and
495  RM2, identified in TB granulomas, weakly mapped to populations in the human myeloid lung atlas.
496  We hypothesize that this may be due to the temporal nature of sampling in these datasets which
497  were generally late-stage fibrotic diseases and cancer; however, future studies should seek to
498  determine if cells resembling the RM1 population is present in other diseases. It has recently been
499  hypothesized that a transitional macrophage population “TransMac” exists during disease.
500 Pseudotime analyses and experimental examination of the myeloid cell populations in the human
501 lung atlas may resolve whether these intermediate populations differentiate into bona fide tissue-
502  resident macrophages or preserve their intermediate state*”°.

503

504 Recent studies highlight a role for eosinophils in modulating infection and macrophage
505  function' 8. In our study, we did not detect the canonical marker defining eosinophils, EPX, to
506  any significant degree. Alternative scRNA-seq technologies may better facilitate their capture and
507 analysis®®'%. Lastly, our in vitro studies were limited to a small number of cytokines for
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508  experimental feasibility subset of cytokines. The pleiotropic nature of several cytokines included,
509 such as IL-6, further complicate these efforts’®’. Biologically, there may be multiple sets of
510  cytokines that can generate a given cell state and computationally, recovering the stimulation
511  history of cells in tissue is difficult; however, studies with tissue resident alveolar macrophages
512 and cytokine neutralization studies in vivo may help disentangle this complexity in the future.

513

514  In summary, our integrative and comparative investigation detailed the myeloid cell states in the
515  granuloma microenvironment and across similar pathologies. By identifying and contextualizing
516 these newly identified macrophage populations, we compiled significant evidence for acute,
517  pathology-associated recruited macrophage states (primarily RM2, RM3, and RM4). Better
518 understanding how these cell states modify the adaptive cell compartment will help differentiate
519  the beneficial and pathogenic roles they may play at different points in infection. Taken together,
520  our data substantiate a highly dynamic and microenvironment-driven monocyte-to-macrophage
521  compartment that shares features across diseases and models. This framework has far-reaching
522  implications and suggests the ability to co-opt biology across diseases as our understanding of
523  their dynamics spatiotemporally and ability to therapeutically target these cells increases. Building
524  complete models of macrophage state across perturbations—such as genetic knockouts,
525  cytokines, cellular depletions, and vaccines—will enable rational dissection of the immune
526  responses behind effective vaccines and host-directed therapies in TB.
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549  MATERIALS AND METHODS

550  Ethics statement

551  All experimental manipulations, protocols, and care of the animals were approved by the
552 University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee
553  (IACUC). The protocol assurance number for our IACUC is D16-00118. Our specific protocol
554  approval numbers for this project are 18124275 and IM-18124275-1. The IACUC adheres to
555 national guidelines established in the Animal Welfare Act (7 U.S.C. Sections 2131 - 2159) and
556  the Guide for the Care and Use of Laboratory Animals (8th Edition) as mandated by the U.S.
557  Public Health Service Policy.

558

559  All macaques used in this study were housed at the University of Pittsburgh in rooms with
560  autonomously controlled temperature, humidity, and lighting. Animals were singly housed in
561 caging at least 2 square meters apart that allowed visual and tactile contact with neighboring
562  conspecifics. The macaques were fed twice daily with biscuits formulated for nonhuman primates,
563  supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had
564  access to water ad libitum. Because our macaques were singly housed due to the infectious
565 nature of these studies, an enhanced enrichment plan was designed and overseen by our
566  nonhuman primate enrichment specialist. This plan has three components. First, species-specific
567  behaviors are encouraged. All animals have access to toys and other manipulata, some of which
568  will be filled with food treats (e.g., frozen fruit, peanut butter, etc.). These are rotated on a regular
569  basis. Puzzle feeders, foraging boards, and cardboard tubes containing small food items also are
570  placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals
571  stimulate interaction between animals. Second, routine interaction between humans and
572  macaques are encouraged. These interactions occur daily and consist mainly of small food
573  objects offered as enrichment and adhere to established safety protocols. Animal caretakers are
574  encouraged to interact with the animals (by talking or with facial expressions) while performing
575  tasks in the housing area. Routine procedures (e.g., feeding, cage cleaning, etc.) are done on a
576  strict schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques
577  are provided with a variety of visual and auditory stimulation. Housing areas contain either radios
578  or TV/video equipment that play cartoons or other formats designed for children for at least 3
579  hours each day. The videos and radios are rotated between animal rooms so that the same
580  enrichment is not played repetitively for the same group of animals.

581

582  All animals are checked at least twice daily to assess appetite, attitude, activity level, hydration
583  status, etc. Following M. tuberculosis infection, the animals are monitored closely for evidence of
584 disease (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams, including
585  weights, are performed on a regular basis. Animals are sedated prior to all veterinary procedures
586 (e.g., blood draws, etc.) using ketamine or other approved drugs. Regular PET/CT imaging is
587  conducted on most of our macaques following infection and has proved very useful for monitoring
588  disease progression. Our veterinary technicians monitor animals especially closely for any signs
589  of pain or distress. If any are noted, appropriate supportive care (e.g., dietary supplementation,
590  rehydration) and clinical treatments (analgesics) are given. Any animal considered to have
591  advanced disease or intractable pain or distress from any cause is sedated with ketamine and
592 then humanely euthanized using sodium pentobarbital.

593

594  Research animals

595  Four cynomolgus macaques (Macaca fascicularis), >4 years of age, (Valley Biosystems,
596  Sacramento, CA) were housed within a Biosafety Level 3 (BSL-3) primate facility as previously
597  described and as above. Animals were infected with low dose (~10 colony-forming units (CFUs))
598 M. tuberculosis (Erdman strain) via bronchoscopic instillation. Infection was confirmed by PET-
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599  CT scan at 4 weeks and monitored with clinical and radiographic examinations until 10 weeks
600  post infection.

601

602  Necropsy

603  Necropsy was performed as previously described®. Briefly, an 18F-FDG PET-CT scan was
604  performed on every animal 1-3 days prior to necropsy to measure disease progression and
605 identify individual granulomas. At necropsy, monkeys were maximally bled and humanely
606  sacrificed using pentobarbital and phenytoin (Euthanasia; Schering-Plough, Kenilworth, NJ).
607 Individual granulomas previously identified by PET-CT and those that were not seen on imaging
608  from lung and mediastinal lymph nodes were excised for histological analysis, bacterial burden,
609 and other immunological studies. TB specific gross pathologic lesions and overall gross
610  pathologic disease burden was quantified using a previously published method'%. The size of
611 each granuloma was measured by pre-necropsy scans and at necropsy. Granulomas were
612  enzymatically dissociated using the gentleMACS dissociator system (Miltenyi Biotec, Inc.) to
613  obtain single cell suspension and used to enumerate bacterial burden and applied on a Seg-Well
614  device for scRNA-seq. 200 L of each granuloma homogenate were plated in serial dilutions onto
615 7H11 medium, and the CFU of M. tuberculosis growth were enumerated 21 days later to
616  determine the number of bacilli in each granuloma'®. As a quantitative measure of overall
617  bacterial burden, a CFU score was derived from the summation of the log-transformed CFU/gram
618  of each sample at the time of necropsy.

619

620  Non-human primate single-cell RNA-sequencing (scRNA-seq)

621  High-throughput scRNA-seq was performed using the Seq-Well platform as previously
622  described'. Briefly, total cell counts from single-cell suspension of granuloma homogenate were
623  enumerated and ~15,000-30,000 cells were applied to the surface of a Seq-Well device loaded
624  with capture beads in the BSL-3 facility at University of Pittsburgh. Following cell loading, Seqg-
625  Well devices were reversibly sealed with a polycarbonate membrane and incubated at 37°C for
626 30 minutes. After membrane sealing, Seg-Well devices were submerged in lysis buffer (5M
627  guanidine thiocyanate, 10 mM EDTA, 0.1% -mercaptoethanol, 0.1% Sarkosyl) and rocked for 30
628 minutes. Following cell lysis, arrays were rocked for 40 minutes in 2 M NaCl to promote
629  hybridization of mRNA to bead-bound capture oligos. Beads were removed from arrays by
630  centrifugation and reverse transcription was performed at 52°C for 2 hours. Following reverse
631  transcription, arrays were washed with TE-SDS (TE Buffer + 0.1% SDS) and twice with TE-Tween
632  (TE Buffer + 0.01% Tween20). Following Exol digestion, PCR amplification was performed to
633  generate whole-transcriptome amplification (WTA) libraries. Specifically, a total of 2,000 beads
634 were amplified in each PCR reaction using 16 cycles. Following PCR amplification, SPRI
635  purification was performed at 0.6x and 0.8x volumetric ratios and eluted samples were quantified
636  using a Qubit. Sequencing libraries were prepared by tagmentation of 800 pg of cDNA input using
637  lllumina Nextera XT reagents. Tagmented libraries were purified using 0.6x and 0.8x volumetric
638 SPRI ratios and final library concentrations were determined using a Qubit. Library size
639 distributions were established using an Agilent TapeStation with D1000 High Sensitivity
640  ScreenTapes (Agilent, Inc., USA).

641

642  Non-human primate sequencing and alignment

643  Libraries for each sample were sequenced on a NextSeq550 75 Cycle High Output sequencing
644 kit (lllumina Inc., Sunnyvale, CA, USA). For each library, 20 bases were sequenced in read 1,
645  which contains information for cell barcode (12 bp) and unique molecular identifier (UMI, 8bp),
646  while 50 bases were obtained for each read 2 sequence. Cell barcode and UMI tagging of
647  transcript reads was performed using DropSeqTools v1.12. Barcode and UMI-tagged sequencing
648  reads were aligned to the Macaca fascicularis v5 genome
649  (https://useast.ensembl.org/Macaca_fascicularis/Info/lndex) using the STAR aligner. Aligned
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650 reads were then collapsed by barcode and UMI sequences to generate digital gene expression
651  matrices with 10,000 barcodes for each array.

652

653  Immunofluorescence staining of macaque granulomas

654  Formalin-fixed paraffin-embedded granulomas were cut into 5-um sections and deparaffinized
655 and processed as previously indicated using pressure-cooker mediated antigen retrieval and
656  immunofluorescence staining'®'%. For experiments investigating macrophage protein
657  expression (Fig. S4), we used a cyclic staining process where the antibodies were stripped off
658 the tissue between rounds by running the slide through a cycle of pressure cooking in tris-EDTA
659  buffer as previously described'®'%_ At the end of the multi-round staining process, the tissue
660  section was stripped of antibodies one final time and then stained with hematoxylin and eosin to
661 image the granuloma’s morphologic characteristics. Primary antibodies included CD11b (rabbit
662  polyclonal, Novus Biologicals, Centennial, CO), CD11c (mouse IgG2a, clone 5D11; Leica
663  Microsystems, Deer Park, IL), CD68 (mouse IgG1, clone KP-1; Thermo Fisher Scientific,
664  Waltham, MA), CD163 (mouse IgG1, clone 1D6; Thermo Fisher Scientific), CD206 (mouse IgG2b,
665  clone 685645, Novus Biologicals), FOLR2 (rabbit polyclonal; Novus Biologicals), CSF1R (mouse
666  1gG2b, clone 6B9B9; Novus Biologicals), phospho-SMAD3 (rabbit polyclonal; Novus Biologicals),
667  and phospho-STAT1 (rabbit monoclonal, clone 58D6; Cell Signaling Technology, Danvers, MA).
668  Donkey-anti rabbit or mouse secondary antibodies were purchased from Jackson
669  ImmunoResearch (West Grove, PA). Where possible, multiplexed staining was performed with
670  anti-isotype antibodies purchased from Jackson ImmunoResearch. For pPSMAD3 and pSTAT1
671  staining, CD11c and pSMAD3 were included in a primary antibody cocktail, followed by secondary
672  staining, and then a Zenon rabbit IgG labeling kit (Thermo Fisher Scientific) was used to label the
673  pSTAT1 antibodies to enable the use of two rabbit antibodies in one round of staining. Coverslips
674  were applied with Prolong Gold Mounting medium containing DAPI and the sections were imaged
675 at 20x with a DS-Qi2 camera (Nikon, Melville, NY) on an e1000 epifluorescence microscope
676  (Nikon) operated with Nikon AR Imaging software and acquired as ND2-format images that were
677  exported as TIFF files. For images where multiple rounds of staining were performed, the images
678  were aligned in Adobe Photoshop (Adobe Systems, Mountainview, CA) using the DAPI-stained
679  nuclei for each round as consistent fiducial markers across rounds of staining. For plotting the
680  position of CD11c+ cells expressing combinations pSMAD3 or pSTAT1, the images were
681  segmented with QuPath and data were exported as CSV files for import into CytoMap for analysis
682  and visualization'”'%®_Color schemes were selected to ensure accessibility to all audiences.
683

684  Ex vivo macrophage isolation, differentiation, and stimulation

685  Deidentified buffy coats from three healthy human donors were obtained from MGH Blood Center.
686 PBMCs were isolated from buffy coats by density-based centrifugation using Ficoll (GE
687  Healthcare). Monocytes were isolated using a CD14 positive selection enrichment kit (Stemcell)
688  and frozen in liquid nitrogen. Isolated monocytes were cultured under 10 cytokine conditions, GM-
689  CSF with one of the following cytokines: IFN-B, IFN-y, IL-1B, IL-4, IL-6, M-CSF, TGF-f3, and TNF-
690  a. All cytokines were cultured at 10 ng/mL except for GM-CSF (25 ng/mL) and IL-13 (50 ng/mL).
691  Macrophages were cultured for 1 day, 3 days, or 7 days. Additionally, a separate set of monocytes
692  were differentiated to GM-CSF-derived macrophages then stimulated with the same combination
693  of cytokines on day 6 for 24 hours ahead of RNA-sequencing on day 7. Lastly, on day 3, another
694  set of differentiating macrophages were stimulated with Pam3CSK4 (10 ng/mL). All culture
695  conditions were in RPMI 1640 (ThermoFisher Scientific) supplemented with 10% heat inactivated
696  FBS (ThermoFisher Scientific), 1% HEPES, and 1% L-glutamine.

697

698  Ex vivo macrophage RNA-sequencing

699  RNA-sequencing was performed using prime-seq as described®. In brief, cells were lysed in 200
700  uL of RLT + 1% BME buffer and snap frozen on dry ice. RNA was extracted after proteinase K
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701 (15 minutes, 50C) and DNase | digestion (10 minutes, 25C) using SPRI beads. Reverse
702  transcription (RT) was performed by resuspending beads in RT mix and barcoded oligo(dT)
703  primers and incubating 90 minutes at 42C. All samples were then pooled (48 samples per pool)
704  for SPRI-based clean-up, exonuclease digestion, and cDNA amplification. After cDNA
705  amplification, samples were ligated and amplified for sequencing. Libraries were analyzed using
706  Qubit dsDNA HS and Agilent TapeStation D1000 kits. Libraries were sequenced on a NextSeq
707 500 system (lllumina). Count matrices were generated using kallisto bustools against GRCh38"%.
708

709  Processing of public datasets

710  Raw count matrices and metadata from Esaulova et al. was accessed via GSE149758%°. A
711  preprocessed and annotated R object from Pisu et al. was downloaded from GSE167232"". Skin
712 leprosy and lepromatous lesions/reversal reaction (LL/RR) samples were compiled from
713  GSE150672 and GSE151528, respectively®’ ™. Sarcoidosis samples were compiled from
714  GSE135893°. Only sarcoidosis samples were utilized. These single-cell data were processed as
715  described previously. Human lung datasets used for integration are detailed in Table S9.

716

717  Ortholog mapping

718  Ortholog mapping between human, mouse, cynomolgus macaque, and macaque genomes was
719  performed using the Ensembl database. In analyses where cross-species comparison was
720  utilized, only one-to-one orthologs or genes with identical symbols were included based on the
721  Ensembl database (Ensembl genes 104, Human genes GRCh38.p13) with the following
722  attributes: Gene stable ID, Gene name, Mouse gene name, Mouse gene stable ID, Macaque gene
723  name, Macaque gene stable ID, Crab-eating macaque gene name, Crab-eating macaque gene
724  stable ID.

725

726  ldentification of ambient RNA-associated genes

727  We used SoupX as described to identify potentially problematic genes due to ambient RNA
728  contamination. Ambient contamination per array was automatically estimated (autoEstCont) using
729  the raw count matrix. Gene counts in barcodes not identified as bona fide cells were utilized to
730  determine a list of genes defined as “soup-defining.” The top 100 expressed genes (based on
731  inspection of the distribution of counts within selected arrays) from each array were collated and
732 genes present in at least three arrays with expression levels above the 33rd percentile or genes
733 present in more than 14 arrays were classified as soup-defining. These genes were not included
734 in any PCA or integration analyses. These genes included common housekeeping genes like
735  ACTB, ATP6, COX1, ND6, TMSB4X along with ribosomal genes and dominantly-expressed cell
736  lineage genes.

737

738  Data preprocessing and quality control

739  Data from cohort 1 (C1) was provided by the authors and is available on the Single Cell Portal
740  (SCP257, SCP1749). From these week 10 data, we extracted originally assigned phagocytes
741  (pDC, cDC, Macrophage, and Mast cell clusters) for downstream analyses. We additionally
742 derived cell type markers from C1 using logistic regression differential expression controlling for
743 the batch covariate for downstream use in annotation. Cohort 2 data were initially filtered through
744 low stringency thresholds (>450 UMls, >100 genes, <10% mitochondrial reads, <50% ribosomal
745  reads, <10% heat shock family reads, <5 median absolute deviations (MADs)) and clustered.
746  After standard processing (see Data processing, embedding, visualization, and clustering),
747  additional cells were removed based on expert inspection of transcriptional profiles and technical
748  metrics.

749
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750  Data processing, embedding, visualization, and clustering

751  Primary single-cell analyses were performed using Seurat. Counts were log-normalized using
752 NormalizeData and the top 3000 variable features were selected using FindVariableFeatures
753  (selection.method = “vst”). PCA was run on the scaled matrix on variable features only. Selection
754  of downstream PCs was inspected using multiple methods including the “elbow” heuristic and an
755  intrinsic dimension estimation (maxLikGlobalDimEst, intrinsicDimension, R). Batch effects were
756  then corrected using Harmony (theta = 1, sigma = 0.1, lambda = 1, dims.use = 1:30) using 30
757  PCs. Visualization of the UMAP embedding was generated using RunUMAP across 20
758  dimensions. Clustering was performed on the shared nearest neighbor (SNN) graph (knn = 20,
759  dimensions = 20) using the Walktrap algorithm (steps = 4, cluster_walktrap, igraph, R) and the
760  Leiden algorithm (leiden_find_partition, leidenbase, R). Any clusters with less than 10 cells were
761  automatically grouped into other clusters based on their SNN connectivity (modified
762  GroupSingletons, Seurat, R). Leiden clustering was performed automatically by scanning
763  resolutions with between 10 and 50 clusters then optimizing the modularity between those
764  resolutions. Leiden and Walktrap results were visually inspected. Resulting clusters were
765  hierarchically clustered and reordered (BuildClusterTree, Seurat, R) based on expression of all
766  variable features. This procedure was standard and utilized across all datasets, as supported by
767  recent benchmarking efforts''°.

768

769  Cluster annotation

770  Differentially-expressed genes were calculated using the Wilcoxon Rank Sum Test and AUROC
771  implemented in presto (wilcoxauc) and a logistic regression test implemented in Seurat
772 (FindMarkers) using the array as a latent variable'". The log fold-change between the top two
773  expressing clusters was also calculated to more aptly describe gene specificity and expression
774  relative to similar clusters, as described previously’?. Cells identified as cycling cells were
775  subsetted, reprocessed, and reassigned based on cell type markers. To assist in lymphocyte
776  annotation, we utilized a lung reference as well as original labels for C1'"2. We both scored cells
777  based on differentially-expressed gene signatures and transferred cell labels using
778  symphony''3114,

779

780  Integration of cohort 1 and cohort 2

781  Cohort 1 and cohort 2 phagocytes were integrated using the integration procedure in Seurat'"".
782  Using the reciprocal PCA approach, we integrated all batches with >= 201 cells. Each array was
783  split and processed through PCA (normalization, variable gene identification, scaling, and PCA).
784  Integration anchors were identified using FindIntegrationAnchors (dimensions = 1:30, k.filter =
785 200, k.score = 20, k.anchor = 5, anchor.features = 3000, n.trees = 20). Data was then integrated
786  using IntegrateData (dimensions = 1:30). Subsequently, integrated data was analyzed as
787  described (see Data processing, embedding, visualization, and clustering). These procedures
788  were performed on a GCP Cloud Compute instance using 64 CPUs and 416 GB.

789

790  Human lung myeloid atlas processing, integration, and analysis

791 Integration of human lung myeloid cells was performed similarly to NHP cohort integration. All
792  datasets were preprocessed through standardized gene and metadata harmonization. Quality
793  control filters applied include < 20% mitochondrial reads, < 50% ribosomal reads, < 5%
794  hemoglobin or heat shock reads, >= 200 nUMIs and >= 100 genes detected. Mononuclear
795  phagocytes (MNPs) were identified by transferring HLCA labels as described above (see Cluster
796  annotation) and by scoring cells based on signatures derived from that atlas. First, we define a
797 MNP score for each cell, which is the difference between the HLCA scores for MNP cell types
798  and non-MNP cell types. We then fit a Gaussian mixture model to this score and define an upper
799  threshold of 2.50 above . Clusters with a median score above this threshold were labeled as
800  MNPs for the second round of classification. Cycling cells above this threshold were also included.
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801  Clusters that did not reach the median score threshold or contained more than 50% of other cell
802 types (as classified by the maximum Travaglini score) were not MNPs. A second round of
803  preprocessing and annotation revealed contaminating non-MP clusters that were manually
804  inspected and removed. This procedure combining automated labeling procedures and expert
805  curation generated a robust set of mononuclear phagocytes for integration.

806

807  We excluded samples with less than 100 cells and pulled the largest 3 control and 3 disease
808  samples from each study. Reference samples were set to the most abundant control and disease
809  sample from each study. Using the reciprocal PCA approach, we integrated all batches with >=
810 201 cells. Each array was split and processed through PCA (normalization, variable gene
811 identification, scaling, and PCA). Integration anchors were identified using
812  FindIntegrationAnchors (dimensions = 1:20, k.filter = 200, k.score = 20, k.anchor = 5,
813  anchor.features = 2000, n.trees = 20). Data was then integrated using IntegrateData (dimensions
814 = 1:30). These procedures were performed on a GCP Cloud Compute instance using 64 CPUs
815 and 416 GB. Integrated data was then clustered as described previously (see Data processing,
816 embedding, and clustering). CellTypist was used to build a granuloma reference model and
817  predict labels on this atlas’. Diversity sampling was performed using scSampler (96). Only
818  datasets with both control and disease samples were used. 1,000 cells were sampled across
819 1,000 iterations for both random and diversity-preserving sampling procedures.

820

821  Comparison with other scRNA-seq datasets

822  Tocompare profiles with the mouse scRNA-seq data, we defined gene signatures for each subset
823  in each dataset using methods described above (see Cluster annotation). We subsetted these
824  signatures to 1:1 orthologs and scored subsets using UCell (AddModuleScore_UCell). The Nos2
825  signature was identified by calculating the Spearman correlation of all genes with Nos2 and
826  extracting the top 50 genes with a positive Spearman correlation coefficient. To compare with
827  rhesus macaque and human leprosy data, symphony was used to build a reference model and
828  transfer labels. Sarcoidosis was compared using the Seurat transfer procedure based on PCA
829  projection across 30 dimensions'"".

830

831  Enrichment and activity analysis

832  We utilized Enrichr (enrichR, R package) to perform gene set enrichment analysis on the
833  differentially-expressed genes'’. The GO Molecular Function database was utilized to calculate
834  enrichment using Fisher's exact test. We used decoupleR to calculate transcription factor and
835  metabolic pathway activity from DoRothEa and KEGG databases, respectively''®. The normalized
836  weighted mean scoring procedure was used based on its benchmarked performance.

837

838  NicheNet

839  NicheNet was used to identify potential ligand-receptor activity within myeloid populations, as
840  outlined in the method vignettes®’. Briefly, we first define sender and receiver populations,
841  background and target gene sets, and potential ligands. Target gene sets were defined as
842  differentially-expressed genes with the highest gene expression across all clusters and an auROC
843  >= 0.6 and adjusted P value <= 0.001. Background gene sets were defined by expression in at
844  least 10% of cells. NicheNet returns ligand activities based on target genes relative to background
845  genes. Potential receptors are then identified from top ligands. In this application, we defined
846  sender populations as cells not utilized for defining the target gene set (e.g., all subsets except
847  RM3). The Pearson correlation coefficient and auROC is reported as a measure of suggested
848  ligand activity.

849

850  Statistical methods

851 For all the analysis and plots, sample sizes and measures of center and confidence intervals
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852  (mean = SD or SEM), and statistical significance are presented in the figures, figure legends, and
853  in the text. Cellular abundances were tested using a binomial generalized linear model. Inverse
854  Simpson Index was calculated using cell counts (vegan::diversity function). Differentially-
855  expressed markers were determined by comparing groups using a Mann-Whitney U test in
856  addition to the auROC metric (wilcoxauc, presto, R). Gene enrichment was calculated using
857  Fisher's exact test. Score comparisons were conducted using Mann-Whitney U tests, adjusted
858  using the Benjamini-Hochberg procedure. NicheNet statistics were calculated as previously
859  described. All P values and, where appropriate, adjusted P values were considered significant at
860  <0.05. All statistical analyses were performed in R using base statistics and supporting packages.
861

862
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1166

1167  Figure Captions

1168

1169  Fig. 1. Increased myeloid cell diversity in granulomas. (A) Diagrammatic overview of study
1170  workflow (B) UMAP embedding of integrated cells colored by annotated cell state. (C) Clustered
1171  heatmap of gene expression, scaled log10(TP10K+1), across cell states. The top 2 markers by
1172 AUROC are shown for each state. (D) GO molecular function enrichment for the top 50 markers
1173 across cell states. (E) Hierarchically clustered scaled scores of M1 and M2 transcriptional
1174  signatures across macrophages states.

1175

1176  Fig. 2. Monocytes and macrophages form a transcriptional continuum aligned with
1177  ontogeny. (A) Average fractional abundance of cell states between non-diseased and granuloma
1178  samples. Inverse Simpson’s Index describes state diversity within each sample type. Asterisk
1179  denotes significant change per state in abundance between non-diseased and granuloma
1180  samples at adjusted P value < 0.05. (B) Fractional abundance of select cell states across week
1181 4, week 10 early, week 10 late, or non-diseased samples. Error bars indicate standard error of
1182  the fractional abundance mean. (C) Fractional abundance between non-diseased and granuloma
1183  samples based on inferred monocyte-derived or tissue-resident ontogeny. (D) Log-normalized
1184  expression of canonical markers across select monocyte and macrophage markers. Error bar
1185  represents standard error of the mean expression per subset. (E) Distribution of signature scores
1186  across subsets. Signatures are derived from Casanova-Acebes et al. 2021 for murine and human
1187  monocyte-derived and tissue-resident macrophages. (F) Immunofluorescence staining of CD11b,
1188  CD163, and CD206 in macaque granulomas.

1189

1190  Fig. 3. In vitro differentiation and stimulation describes in vivo transcriptional variability.
1191  (A) NicheNet predicted ligands based on genes differentially expressed by the RM3 state. (B)
1192  Overview of experimental setup for ex vivo primary macrophage culture, stimulation, and
1193  sampling. (C) Number of differentially expressed (DE) genes based on time * cue interaction
1194  model for each condition. (D) Normalized expression of DE genes for each day expressed across
1195 the timepoints. (E) Percent of variance explained in NHP data by top 200 genes associated with
1196 time, based on significance, compared to distribution of 1,000 random gene sets. (F) Scaled score
1197  for each day signature across NHP myeloid states. (G) Distribution of scaled day 1 and day 7
1198  signature scores across NHP myeloid states. (H) Percent of variance explained in NHP data by
1199  top 200 genes associated with cytokine stimulations, compared to distribution of 1,000 random
1200  gene sets. (I) Scaled score for each cytokine signature across NHP myeloid states. (J) Select
1201  cytokine signature scores pseudobulked across subsets between non-diseased and granuloma
1202  samples.

1203

1204  Fig. 4. Myeloid human lung atlas suggests conserved disease-induced diversity and
1205  transcriptional states. (A) UMAP projection of integrated human lung atlas myeloid cells (B)
1206  CellTypist classification of cell populations across this study and human lung myeloid atlas (C)
1207  Reanalysis (UMAP) of leprosy granuloma samples from Hughes et al. (D) CellTypist classification
1208  of cell populations across this study and Hughes et al. (E) Comparison of cellular subset
1209  abundance in Hughes et al across healthy and granuloma skin samples. (F) Reanalysis (UMAP)
1210  of sarcoidosis granuloma samples from Habermann et al. (G) CellTypist classification of cell
1211  populations across this study and Habermann et al. (H) Comparison of cellular subset abundance
1212 in Habermann et al across healthy and sarcoidosis granuloma samples.

1213

1214  Supplemental Figure Captions

1215
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1216  Fig. S1. Technical assessment of ambient and batch effects. (A) Average expression of
1217  genes in non-cellular barcodes across batches colored by ambient thresholds for variable gene
1218  exclusion. (B) UMAP embedding and LISI metrics for week 10 cohort 2 data colored by batch.
1219

1220  Fig. S2. Overview of week 10 cohort 2 infection. (A) UMAP embedding of annotated week 10
1221  cohort 2 data colored by annotated cell type. (B) Clustered heatmap of scaled log(TP10K+1)
1222 expression values of marker genes across annotated cell types.

1223

1224  Fig. S3. Inverse Simpson’s Index across sample types. (A) Inverse Simpson’s Index
1225  describing sample diversity across sample types, non-diseased, week 10 early, week 10 late, and
1226  week 4. P values were adjusted using the Benjamini-Hochberg procedure. Adjusted P values are
1227  denoted by: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. Only comparisons significant
1228  atp <0.05 are shown.

1229

1230  Fig. S4. Inmunofluorescence staining of myeloid cell markers in macaque granulomas
1231  shows that subset-defining antigens are expressed in different granuloma locations. A
1232 cyclic immunofluorescence staining protocol was used on a necrotic granuloma to examine the
1233  protein expression and localization of transcriptionally defined subsets identified by scRNA-seq
1234 analysis. Protein markers (yellow) are shown against the granuloma's DAPI-stained nuclei (blue).
1235  The inset region represented by the black box shown in the hematoxylin and eosin-stained image
1236  (top left) was selected to show representative granuloma regions including intact granuloma-
1237  adjacent lung (inset, top left), lymphocyte cuff and epithelioid macrophage regions (inset, middle),
1238  and caseum (inset, bottom right).

1239

1240  Fig. S5. NicheNet analysis of cytokine production. Cell-type specific analysis of gene
1241  expression of cytokines predicted by NicheNet to be acting on RM2 cells.

1242

1243  Fig. S6. Immunofluorescence staining of pSTAT1 and pSMAD3 in macaque
1244  granulomas. Granulomas harvested from animals euthanized at (A) 4- or (B) 10-weeks post
1245  infection were stained for pSTAT1 (green) and pSMAD3 (magenta) as surrogates for IFN-y and
1246  TGF-B signaling, respectively. CD11c (blue) was used as a broadly-expressed macrophage
1247  marker (blue) and maps showing the position of the granuloma's nuclei (grey) and
1248  pSTAT1+CD11c+ (green) and pSMAD3+CD11c+ (magenta) macrophages is shown to facilitate
1249  visualization of each population's location (middle panels). The position of three distinct pSTAT1
1250  phenotypes noted on the full granuloma image and zoomed in regions (right) are shown with the
1251  region's nuclei (DAPI; grey) to show the cellularity within each region.

1252

1253  Fig. S7. Alignment of NHP states with NHP states in Esaulova et al. (A) CellTypist
1254  classification of cell populations across this study and Esaulova et al. (B) Proportion of predicted
1255  granuloma labels from cynomolgus subsets between control, latent, and active rhesus samples.
1256

1257  Fig. S8. Alignment of NHP states with murine states. (A) Hierarchically-clustered heatmap of
1258  AUROC values for murine subsets annotated from Pisu et al. 2020. Supplementary bar plot (right)
1259  describes the number of DE genes per subset. (B) Hierarchically-clustered heatmap of scaled
1260  NHP scores of murine signatures. (C) Hierarchically-clustered heatmap of scaled murine scores
1261  of NHP signatures.
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A Myeloid cells from 15 studies across
lung cancer, COPD, ILD, COVID
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