

1 **Title: Systematic deconstruction of myeloid cell signaling in tuberculosis granulomas**
2 **reveals IFN- γ , TGF- β , and time are associated with conserved myeloid diversity**

3 **Authors:** Joshua M. Peters^{1,2,3}, Hannah P. Gideon^{4,5}, Travis K. Hughes⁶, Cal Gunnarson^{1,2},
4 Pauline Maiello^{4,5}, Douaa Mugahid⁷, Sarah K. Nyquist², Joshua D. Bromley², Paul C. Blainey^{1,3},
5 Beth F. Junecko⁷, Molly L. Nelson⁷, Douglas A. Lauffenburger¹, Philana Ling Lin, JoAnne L.
6 Flynn^{4,5}, Alex K. Shalek⁶, Sarah M. Fortune⁸, Joshua T. Mattila^{4,7*}, Bryan D. Bryson^{1,2*}

7
8 **Affiliations:**
9

10 ¹Department of Biological Engineering, MIT, Cambridge, USA

11 ²Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA

12 ³Broad Institute of MIT and Harvard, Cambridge, USA

13 ⁴Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, USA

14 ⁵Department of Microbiology and Molecular Genetics, University of Pittsburgh School of
15 Medicine, Pittsburgh, USA

16 ⁶Institute for Medical Engineering & Science and Koch Institute for Integrative Cancer Research,
17 Department of Chemistry, MIT, Cambridge USA

18 ⁷Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public
19 Health

20 ⁸Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
21 Health, Boston, USA

22
23 *Corresponding authors: jmattila@pitt.edu (J.T.M.), bryand@mit.edu (B.D.B.)

24
25 **ABSTRACT**

26 Myeloid cells are key constituents of tuberculosis (TB) granulomas. They are the major target of
27 pathogen infection and play central roles in pathogen control, antigen presentation, adaptive
28 immune cell recruitment, and tissue homeostasis. However, the role of myeloid cells in TB has
29 been studied largely through *ex vivo* experimental approaches that do not capture the dynamic
30 phenotypic and functional states of these cells in the disease environment. To address this gap,
31 we used a combination of bulk and single-cell RNA sequencing (scRNA-seq), computational
32 modeling, and imaging to define the molecular diversity of myeloid cells in granulomas from
33 *Mycobacterium tuberculosis*-infected nonhuman primates. We observed an increase in myeloid
34 cell diversity in granulomas compared to non-granulomatous lung tissue. This increased
35 transcriptional diversity is defined by a continuum of macrophage differentiation-, metabolism-,
36 and cytokine-regulated transcriptional programs. *In vitro* experimental modeling of monocyte-to-
37 macrophage differentiation in defined cytokine environments implicates differentiation time, IFN-
38 γ , and TGF- β signaling as candidate drivers of macrophage diversity. We next examined the
39 conservation of these populations across additional experimental models of Mtb infection and
40 found myeloid cell subsets enriched across the TB disease spectrum. To further contextualize
41 these responses, we constructed an atlas of myeloid cells across diverse human lung pathologies,
42 finding myeloid cell subpopulations that were similar between TB and other lung pathologies as
43 well as subpopulations that distinguish between diseases. Collectively, this study identifies points
44 of integration between myeloid cell biology in TB granulomas and other lung diseases that can be
45 used for defining the signals that instruct myeloid cell behavior in TB and other diseases, as well
46 as advance myeloid cell-targeted therapies.

47
48 **Main text:**
49

50 **INTRODUCTION**

51
52 *Mycobacterium tuberculosis* (Mtb) infection is responsible for over 1.5 million deaths and more
53 than 10 million cases of active tuberculosis (TB) annually¹. Granuloma formation is a pathologic
54 manifestation associated with Mtb infection, and these inflammatory lesions contain a diverse
55 collection of cells, including immune cells of the lymphoid and myeloid lineages^{2–7}. Under optimal
56 conditions, the activity of these cells is carefully coordinated, prevents bacterial escape and
57 dissemination, and generates sterilizing immunity that kills Mtb⁸. In less optimal conditions,
58 granulomas serve as local sites of bacterial proliferation and contribute to tissue- and organ-level
59 pathology. Differentiating the factors that lead to these disparate outcomes may lead to improved
60 treatments and vaccines for TB.

61
62 Myeloid cells are a cornerstone of the immune response to Mtb and play key roles that span the
63 full course of disease from the initiation of infection and development of pathology to disease
64 resolution^{9–16}. The range of myeloid cells found in granulomas is diverse and includes mast cells,
65 eosinophils, neutrophils, and multiple subsets of macrophages^{2–4,17–27}. Investigation of the
66 complexity of myeloid cells in granulomas has focused on specific features such as the spatial
67 distribution of subsets or polarization along established axes of inflammation^{5,24,25,28–32}. Several of
68 these studies emphasize an important conclusion: specific subsets of myeloid cells can shape
69 the outcome of TB disease^{25,30}. Many of these causal relationships, however, have only been
70 defined in the murine model of TB which may not adequately capture aspects of the disease
71 pathology observed in humans.

72
73 The extent and genesis of myeloid cell diversity in TB granulomas is unclear. Studies of other
74 lung pathologies or myeloid cell dynamics in other tissues provide models (molecular or
75 conceptual) which may apply to TB granulomas. For example, in lung cancer, tissue resident
76 macrophages support systems-level responses that are distinct from those generated by bone
77 marrow-derived cells³³; in the bronchoalveolar lavage fluid of individuals with severe cases of
78 COVID-19 disease, alveolar macrophages are depleted, and monocyte-derived macrophages
79 take their place³⁴. New conceptual models propose that the differentiation of monocytes recruited
80 to sites of inflammation is shaped by both tissue- and inflammation-derived cues. We hypothesize
81 that the genesis of myeloid diversity in TB granulomas results from the combined activity of
82 myeloid cell recruitment and reprogramming of homeostatic circuits in resident cells in response
83 to infection-associated signals. An improved understanding of granuloma myeloid cell diversity
84 and the molecular circuits that control the emergence of specific myeloid cell states may identify
85 pathways that can be targeted to promote anti-mycobacterial and pro-resolution functions.

86
87 Here, we sought to define how Mtb infection reprograms the local myeloid cell landscape. We
88 took advantage of the human-like pathology seen in Mtb-infected cynomolgus macaques – an
89 animal model that develops phenotypically diverse granulomas – to identify how alteration of
90 cellular circuits in granulomas shape myeloid cell identity^{2,8,35,36}. Our analysis reveals that
91 macrophages harboring a transcriptional signature of monocyte-derived cells are the dominant
92 constituents of granulomas compared to non-diseased lung tissue which harbor mostly
93 macrophages expressing a signature of tissue-derived alveolar macrophages. Furthermore, our
94 ligand-receptor signaling network analysis indicates that TGF-β and IFN-γ signaling are the major
95 axes of variation in granuloma myeloid cells. We also found similar myeloid cell subsets in
96 different lung diseases but variations in their relative abundance, suggesting the presence of a
97 disease-specific local signals that tune myeloid subset emergence or maintenance. Together,
98 these data highlight the unappreciated phenotypic and functional diversity of myeloid cells in TB
99 granulomas and have implications for developing approaches to control Mtb infection and repair
100 damaged lung tissue.

101

RESULTS

102

104 TB granulomas harbor diverse myeloid subpopulations

105

106 To examine myeloid cell diversity in TB granulomas, we generated single-cell transcriptional
107 profiles from granuloma tissue from *Mtb*-infected NHP. Four cynomolgus macaques were infected
108 with a low dose of *Mtb* Erdman (<10 CFU) and necropsied at 10 weeks post-infection for profiling
109 (Fig. 1A, Materials and Methods). Granulomas for analysis were selected based on early
110 detection (~4 weeks post *Mtb* challenge) on PET-CT scans. 39 lung granulomas and 4 areas of
111 non-granulomatous lung tissue (1 from each macaque) were sampled. Each sample was
112 analyzed for bacterial burden and gene expression using single-cell mRNA sequencing (scRNA-
113 seq)³⁷. Granuloma bacterial burden spanned from 25 to 18,600 CFUs. After applying quality
114 control filters (Methods), 31,198 cellular transcriptomes were generated.

115

116 We next integrated these transcriptomes with data from our previously published study of NHP
117 granulomas at 4- and 10-weeks post infection (Materials and Methods, Table S1, Fig. S1-2)³. The
118 integrated dataset is composed of 10 macaques, 43 tissue samples, and 41,559 cells (Fig. 1A).
119 Clustering and differential expression analysis of the myeloid cells identified 17 distinct clusters.

120

121 Using curated gene signatures for myeloid cells, we identified dendritic cells, mast cells,
122 monocytes, neutrophils, and macrophages (Fig. 1B-C, Table S2-3, Materials and Methods)^{3,38,39}.
123 Four dendritic cell populations, including DC1s, DC2s, LAMP3+ DCs, and plasmacytoid DCs were
124 identified. DC1s were defined by *CLEC9A* expression whereas DC2s were defined by *GPR183*,
125 *CD1C*, *CLEC6A*, *CLEC4A* expression. Plasmacytoid DCs had high expression of *LILRA4* and
126 *CCDC50*, and the LAMP3+ DC population resembled previously identified anti-tumor populations
127 based on *CCR7* and *LAMP3* expression⁴⁰. Mast cells were defined by *CLU* and *CPA3* expression.
128 Classical and non-classical monocytes were defined based on *VCAN* and *FCGR3A* expression,
129 respectively. One myeloid population clustered with the monocyte populations but displayed
130 increased expression of other dendritic cell and macrophage genes, such as *IDO1*, *FAM26F*, and
131 *CPVL* and reduced expression of *VCAN* and other monocyte markers. We therefore annotated
132 these cells as recruited myeloid cells (RM1) to highlight the mixed markers⁴¹⁻⁴³. Neutrophils were
133 defined by *CSF3R* and *S100A9* expression. Seven macrophage populations defined by *FABP4*,
134 *MRC1*, *C1QB* and *CSF1R* expression were identified. Macrophage populations were
135 differentiated by the level of expression of antimicrobial genes, metabolic genes, and
136 metallothionein genes including *CTSB*, *IDO1*, *SOD2*, and *LGMN*. To examine features of
137 macrophage ontogeny, we utilized published signatures of monocyte-derived and alveolar
138 macrophages, scored all macrophage populations according to these signatures, and assigned
139 macrophage class based on signature score³³.

140

141 Gene ontology enrichment using the GO Molecular Function database (Table S4, Materials and
142 Methods) indicated that a range of processes were enriched uniquely in each macrophage subset
143 (Fig. 1D). For example, macrophage populations 4 and 5 had high levels of expression of genes
144 involved in cholesterol metabolism, a key nutrient source for *Mtb*, while macrophage populations
145 2 and 3 expressed high levels of genes associated with chemokine receptor signaling⁴⁴. We also
146 sought to contextualize these myeloid cells according to their inflammatory state using published
147 signatures of macrophages stimulated with IFN- γ +LPS or IL-4, reflective of a classical M1 or M2
148 state, respectively⁴⁵. RM2 cells scored highly for the M1 signature while RM4, 5, and AM2 scored
149 highly for the M2 signature (Fig. 1E). The other populations did not score highly for either signature
150 suggesting that additional signals shape granuloma myeloid cell identity.

151

152 In the murine model of TB, interstitial macrophages and alveolar macrophages differ in their
153 antimicrobial capacity³⁰. We therefore examined univariate relationships between myeloid
154 population abundance and granuloma bacterial burden. Using a non-parametric Mann-Whitney
155 test, we did not observe a strong association between specific subpopulations and bacterial
156 burden (Table S5). A generalized linear model revealed associations between LAMP3+ DCs and
157 reduced CFU burden as well as an association between mast cells and higher CFU burden as we
158 observed previously³ (Table S5).

159

160

161 **Cell recruitment, activation and differentiation underlies the diversity of myeloid cell states 162 in TB granulomas**

163

164 An emerging model of myeloid cell states within the tissue, such as the lung, involves the dynamic
165 recruitment, activation, and reprogramming of myeloid cells upon deviation from homeostasis^{46–}
166 ⁴⁸. We hypothesized that comparing non-granulomatous lung tissue to granulomas would provide
167 insight into the cellular and molecular signals that shape granuloma myeloid cell identity.

168

169 We initially hypothesized that the TB granuloma would be associated with less myeloid diversity
170 compared to non-granulomatous lung tissue given dominant inflammatory signaling. We
171 compared myeloid cell diversity in granulomas versus non-granulomatous tissues. Using the
172 Inverse Simpson Index (ISI, range: 1+, higher diversity = higher ISI), we found that granulomas
173 were in fact more diverse (ISI = 9.64) than non-granulomatous tissue (ISI = 6.09) (Fig 2A). We
174 found significant changes in the frequency of specific myeloid populations (adjusted P < 0.05,
175 Methods). Macrophage populations AM1 and AM2 (odds ratio, μ OR = 0.152) and monocytes
176 (odds ratio, μ OR = 0.51) were enriched in non-granulomatous tissue whereas all other myeloid
177 subsets were enriched in granulomas, except for proliferating cells. We found that macrophages
178 expressing a signature of monocyte-derived macrophages were enriched in granulomas relative
179 to non-diseased tissue consistent with a model of monocyte-mediated replenishment of
180 macrophages in the granuloma niche (Fig. 2B). Plasmacytoid DCs (pDCs), which also showed a
181 dramatic increase in granulomas in our analysis, have been reportedly to be differentially
182 abundant in lung tissue from macaques with latent or active TB disease as well as uninfected
183 versus Mtb-infected mice^{49,50}.

184

185 We next sought to deconstruct other factors that may contribute to granuloma myeloid cell
186 diversity. Our previously published study of NHP granulomas, now integrated here with these new
187 samples, examined how a granuloma's composition changed at different timepoints post-
188 development so we examined how myeloid diversity changed as a function of granuloma age³.
189 Newly-developed granulomas harvested 4 weeks post infection and granulomas that were found
190 at later timepoints by PET-CT imaging and harvested 10 weeks post-infection showed similarly
191 high levels of myeloid cell diversity, whereas non-granulomatous tissue harbored the lowest
192 diversity (Fig. S3). RM1, RM2, RM3, RM5 and DC2 displayed increased relative abundance in
193 week 4 granulomas relative to non-granulomatous tissue, suggesting that these populations may
194 emerge early in the granuloma environment (Fig. 2C).

195

196 We then sought to examine monocyte and macrophage diversity using canonical markers
197 traditionally used to define myeloid subsets using flow cytometry (*CD68*, *CSF1R*, *MRC1* (*CD206*),
198 *CD163*, *FOLR2*, *CD74*, *ITGAX* (*CD11c*), and *ITGAM* (*CD11b*)) (Fig. 2D). We found that *MRC1*, a
199 marker of alveolar macrophages, is increasingly expressed from classical monocytes (CMono) to
200 alveolar macrophages (AM1, AM2), and previous studies have established that monocytes can
201 differentiate into alveolar macrophages⁵¹. In contrast, *CD68* shows a strong step-like increase in
202 expression from RM1 to RM2, suggesting an inflection point in cell state. On the other hand,

203 *FOLR2*, a marker used for interstitial macrophages and therapeutic target in cancer is expressed
204 highly in RM4 as compared to other populations^{52,53}. Consistent with our analysis of individual
205 markers, scoring each of the granuloma monocyte and macrophage populations according to a
206 previously published tissue-resident macrophage signature revealed a gradual increase in
207 expression of the monocyte-derived macrophage score across the recruited macrophage
208 populations (Fig. 2E). These analyses suggest that granuloma myeloid cells include a diversity of
209 macrophage subsets and that recruited monocytes exist on a differentiation spectrum.

210
211 We next used immunofluorescence staining to confirm that subset-defining transcripts were
212 translated into proteins by macrophages and to identify where within the granuloma
213 microenvironment these cells are present. We examined expression of CD11b (*ITGAM*, highest
214 in RM2), CD11c (*ITGAX*, highest in RM5), CD68 (highest in RM5), CD163 (highest in AM1),
215 CD206 (highest in AM1), *FOLR2* (highest in RM4) and *CSF1R* (highest in RM4, Fig. 2F, Fig. S4)
216 and found unique expression patterns as well as overlap between these markers. We found that
217 AMs expressing CD206, *FOLR2*, and *CSF1R* were abundant in the granuloma-adjacent lung and
218 that few of these cells had infiltrated into the granuloma. In contrast, CD163 and CD11b were
219 expressed by granuloma-adjacent AMs and macrophages in the granuloma's lymphocyte cuff.
220 CD11c was the most broadly expressed macrophage-associated antigen and was expressed by
221 AMs and macrophages in the histologically-defined epithelioid macrophage region. CD68, which
222 is often used as a general macrophage marker, was most strongly expressed by cells in the
223 epithelioid macrophage region, especially by the cells adjacent to the caseum. Taken together,
224 these protein-level data support our transcriptional analyses by showing the complexity of
225 granuloma-associated macrophage populations in a spatial context.

226
227
228 ***In vitro* profiling reveals dominant variance induced by time, IFN- γ , and TGF- β**
229
230 Thus far, we verified that diversity in the granuloma could be driven by variations in the abundance
231 of myeloid subtypes, monocyte infiltration, differentiation, and changes in cell state. Recent work
232 on macrophage ontogeny and monocyte-macrophage dynamics has emphasized the influence of
233 environmental cues on myeloid cell phenotype in the tissue^{41,43,48,54–56}. Ligand-receptor interaction
234 prediction methods such as NicheNet offer a technique to predict signals potentially responsible
235 for the transcriptional profile of cell populations of interest. To generate testable hypotheses about
236 ligand signals in the granuloma, we used NicheNet focusing on differentially expressed genes
237 within RM2, RM4, and AM1 populations (Table S6, Materials and Methods)⁵⁷. We focused on
238 these populations because they showed the most distinct transcriptional and functional
239 enrichment profiles that were not well-explained by any of the analyses above. NicheNet analysis
240 predicted several cytokines with potential activity in RM2, RM4, and AM1 cells including TNF- α ,
241 IL-13, IL-15, IL-1 β , TGF- β , IL-6, and IFN- γ , which have been previously detected in TB
242 granulomas (Fig. 3A)^{58–60}. TNF transcript was predominantly detected in myeloid cells, whereas
243 TGF- β was detected in NK cells, T cells, DC2s, and proliferating cells (Fig. S5).

244
245 Given that the data that inform NicheNet predictions are not derived solely from myeloid cells, we
246 sought to enhance our study of cytokine signals that shape myeloid cell state, by performing time-
247 resolved *in vitro* stimulation experiments of myeloid cells. Given the enrichment of monocyte-
248 derived macrophage signatures in the granuloma, we focused on monocytes and monocyte-
249 derived cells. We and others have previously utilized transcriptional profiling to define the acute
250 response to macrophage stimulation with diverse ligands⁶¹. To build upon these previous studies
251 and in recognition that monocytes recruited to sites of disease often differentiate in the presence
252 of multiple ligands concurrently, we sought to model the monocyte response to tonic cytokine
253 signals associated with differentiation and granuloma residency. We utilized classical human

254 CD14+ monocytes from peripheral blood as our experimental monocyte source. To examine the
255 contribution of time, we generated samples at multiple time points (0, 1, 3, and 7 days). These
256 studies resulted in the generation of 200 unique RNA-seq samples which we analyzed using
257 Prime-seq, a high-throughput bulk RNA sequencing technique (see Materials and Methods)⁶². To
258 simulate the complexity in lung granulomas, we combined GM-CSF with each of the following
259 ligands: IFN- β , IFN- γ , IL-1 β , IL-4, IL-6, M-CSF, TGF- β , and TNF- α (Fig. 3B). Given the necessity
260 and influence of GM-CSF on alveolar macrophage development, ligands were added immediately
261 at day 0 along with GM-CSF, which resulted in robust transcriptional changes over time⁶³⁻⁶⁶ (Fig.
262 3C).

263

264 We next sought to evaluate how the diverse signals we modeled in our *in vitro* experiments (time
265 and ligand identity) were reflected in the transcriptional signatures observed *in vivo*. We first
266 focused on gene programs that describe the temporal axis of monocyte (day 0) to differentiated
267 monocyte-derived cell (day 7). We defined gene signatures based on differential gene expression
268 at each time point (0, 1, 3, 7 days, Materials and Methods). (Fig. 3D). We identified several time-
269 dependent gene sets: genes that are downregulated following day 0, genes that are induced by
270 day 3 and remain highly expressed at day 7, and genes that are gradually induced over the course
271 of 7 days. Genes in the day 0 signature included *S100A8*, *CD93*, *CD14* while genes in the day 7
272 signature included *MAF*, *ALOX15B*, and *ITGB5*. We then asked how much variance *in vivo* is
273 explained by the gene sets associated with *in vitro* time course study. We found that the gene
274 sets changing over time *in vitro* explained a significant portion of the variance *in vivo* (Fig. 3E, P
275 < 2.2e-16, Materials and Methods). To identify which time points *in vitro* resemble the *in vivo*
276 subsets, we scored the subsets based on the day-specific gene sets (Fig. 3F). The day 0 gene
277 signature on was most highly expressed by classical monocytes. The day 1 gene signature was
278 expressed most highly by the RM2 subset. The day 7 signature was highly expressed by AM1,
279 AM2, and proliferating cells. Other RM subsets show mixed scoring across day 0 to day 7
280 consistent with an intermediate phenotype. As an alternative strategy to visualize these trends,
281 we scored granuloma myeloid cells according to the day 0 and day 7 scores and visualized their
282 distributions as a histogram. AM1 and AM2 cells scored higher for the day 7 signature than the
283 day 0 signature. By contrast, classical monocytes (cMono) and RM1 scored higher for the day 0
284 signature than the day 7 signature (Fig. 3G). Taken together, these data reinforce that granuloma
285 myeloid cells exist on a spectrum of differentiation^{41,47}.

286

287 We next asked how ligands predicted by our NicheNet analysis and modeled *in vitro* using
288 monocyte-derived cells aligned with variation in myeloid cell gene expression *in vivo*. Like our
289 analysis of temporal signatures, we defined gene sets that describe each ligand using differential
290 expression (Materials and Methods). Like the time-dependent gene sets, the ligand gene sets
291 explain a significant amount of variance *in vivo* relative to random control gene sets (Fig. 3H). We
292 next scored the *in vivo* subsets according to the *in vitro* ligand signatures and compared their
293 relative scores across subsets. GM-CSF and TGF- β gene signatures are most expressed in the
294 AMs with decreasing relative expression to classical monocytes; this is consistent with previous
295 studies demonstrating the requirement of GM-CSF and TGF- β in alveolar macrophage
296 development (Fig. 3I)^{63,64,67}. IL-4 signatures associated with the DC subsets⁶⁸. TNF- α and IL-1 β
297 signatures showed more distinct subset expression whereas IL-6 and IFN- β showed similar,
298 correlated trends with TGF- β and IFN- γ , respectively (Fig. 3J).

299

300 We next visualized sites of *in vivo* TGF- β and IFN- γ signaling by staining granulomas for
301 phosphorylated SMAD3 (pSMAD3) and phosphorylated STAT1 (pSTAT1). We used CD11c as a
302 marker for macrophages based on our prior work showing this marker's broad expression across
303 subsets (Fig. S6, Fig. 2F, Fig. S4). We found that pSMAD3 signaling was widespread throughout
304 granulomas, including in macrophages (Fig. S6, magenta), whereas cells regulated by STAT1

305 were less common. Three STAT1 phenotypes were noted in CD11c⁺ macrophages including
306 pSTAT1-negative cells (phenotype 1), cells with intranuclear pSTAT1 (phenotype 2), and cells
307 with cytoplasmic but not intranuclear pSTAT1 (phenotype 3). Each phenotype could be found in
308 granulomas from macaques at 4- and 10-weeks post infection. pSTAT1-negative macrophages
309 were often found in the granuloma's lymphocyte cuff region whereas macrophages with intra-
310 nuclear pSTAT1 were present in closer proximity to necrosis. The phenotype 3 macrophages with
311 cytoplasmic pSTAT1 were similar in size and appearance to alveolar macrophages and were
312 present as clusters adjacent to or embedded within the granuloma's lymphocyte cuff. Taken
313 together, these data suggest that TGF- β and IFN- γ regulated macrophages are distinct subsets
314 of cells that occur in different granuloma regions, potentially with different functional
315 consequences for granuloma-level homeostasis and bacterial control.
316

317 **Alignment of myeloid states across species and related pathologies reveals conserved
318 subsets**

319
320 The abundance of publicly available scRNA-seq data across diverse lung pathologies and other
321 diseases inspired us to examine the possibility that the transcriptional subsets we identified in
322 NHP granulomas were similarly observed across other lung pathologies. To test this possibility,
323 we generated a human lung atlas of myeloid cells (>300,000 cells across 394 samples) in the
324 lung representing diverse pathologies (Materials and Methods, Fig. 4A, Table S7-10)⁶⁹.
325

326 We first asked if there were any unique myeloid cell populations in TB granulomas that were not
327 observed in other pathologies. To compare transcriptional subsets, we utilized Celltypist, a
328 previously established computational framework for scRNA-seq cell type annotation (Materials
329 and Methods)⁷⁰. We trained a CellTypist model on our cynomolgus granuloma data and predicted
330 the granuloma cluster labels within the human lung atlas (Fig. 4B)³⁸. We observed strong mapping
331 of most populations, including LAMP3⁺ DC, DC2, RM3, RM4, RM5, AM1, and AM2 (Fig. 4B).
332 Predictions for RM1 were relatively weaker. Although RM6, defined by metallothionein genes like
333 *MT1X*, failed to generate any predictions, a clear metallothionein-defined cluster (Cluster 17) was
334 identified in the pan-lung pathology atlas. The weak mapping of RM1 may reflect a unique
335 population of granuloma myeloid cells, or it may reflect the dynamic nature of TB granulomas
336 where an immature population of myeloid cells is continually recruited to the granuloma in contrast
337 to the other diseases analyzed.
338

339 Our comparison of non-diseased and granuloma tissue revealed a trend involving a reduction in
340 alveolar macrophages and expansion of specific myeloid populations in granuloma tissue. We
341 next sought to test if these trends generalized to the other diseases in our lung atlas. When
342 comparing control versus diseased samples present in the human lung atlas, we saw a significant
343 decrease in the AM1 score and significant increases in LAMP3⁺ DC, RM3, and RM4 scores in
344 diseased samples overall, consistent with a model where monocyte-derived cells alter the myeloid
345 compartment during disease (Fig. 4C).
346

347 Our observation of similar myeloid cell populations between a pan-lung atlas and granulomas
348 next inspired us to investigate specific comparisons between our study and other published
349 studies of mycobacterial disease and granulomatous pathologies.
350

351 We compared our cynomolgus macaque study to a previously published study of lung samples
352 from rhesus macaques with latent or active infection⁴⁹. Again, we used Celltypist. We observed
353 robust mapping and subset identification between mast cells, plasmacytoid DCs, and cDC1s
354 across the two datasets (Fig. S7A). We observed more nuanced mapping between macrophage

355 populations. For example, the Alveolar TREM2+ population from the rhesus study mapped to
356 multiple populations in our study (RM4, RM5, and RM6) (Fig. S7A). We next sought to examine
357 the association of specific myeloid subsets from our study with the TB disease status as
358 investigated in the rhesus study. pDCs were elevated in active infection, as described previously,
359 in addition to RM1/RM2/RM3 populations which mapped to their “Alv IFN signature” (Fig. S7B).
360 The alveolar macrophages AM1 and AM2 were more frequent in latent disease consistent with a
361 model where active TB disease alters the lung immune landscape, similar to what is observed in
362 COVID-19³⁴.

363
364 We next compared the macrophage subsets we identified in NHP with macrophage subsets
365 identified in the lungs of C57BL/6J mice following infection with 1,500 Mtb CFU (Fig. S8A)⁷¹.
366 Celltypist mapping failed to predict more than one broad cell type, so we modified our analysis to
367 comparing and scoring 1:1 ortholog genes as previously done (Materials and Methods)^{72,73}. Non-
368 macrophage subsets and proliferating cells were generally well-aligned (Fig. S8B-C). As
369 previously observed with conservation of macrophage subsets across between mice and humans,
370 concordance between mouse and cynomolgus macrophage subsets were mixed⁷². There was
371 significant similarity between the *Nos2*-expressing IM1 and IM3 populations with RM2 and the
372 *C1QA*-expressing IM2 population with RM4 and RM5.

373
374 We next examined the relationship between NHP TB granulomas and other granulomatous
375 diseases. We first compared our myeloid subsets to those observed in leprosy, a skin disease
376 whose causative agent is a different mycobacterial species, *Mycobacterium leprae*^{37,74}. Not
377 surprisingly, we observed strong mapping with mast cells and no mapping with alveolar
378 macrophages (Fig. 4D-E). We observed mapping of a limited number of recruited macrophage
379 subsets (RM3 and RM4) to leprosy granulomas. RM3 and RM4 cells were more abundant in
380 leprosy samples than normal skin suggesting that these populations are similarly enriched in a
381 diseased environment (Fig. 4F).

382
383 Sarcoidosis is a condition that results in granulomas in the lung and other tissues, and the etiology
384 of sarcoid granulomas is still poorly understood⁷⁵. We asked whether these two granulomatous
385 diseases might have cellular features that distinguish between them⁷⁶. We performed mapping
386 using Celltypist and observed consistent, strong concordance between mast cells, pDCs, and
387 monocytes (Fig. 4G-I). Neutrophils, DC1s, LAMP3+ DCs, RM1 and RM2 largely failed to map to
388 sarcoidosis cells. Notably, RM1 and RM2 cells are marked by high expression of *IDO1*, *CD274*
389 and *CXCL9*. A previous protein-centric study comparing human TB and sarcoidosis granulomas
390 similarly observed an absence of macrophages co-expressing PD-L1 (CD274) and *IDO1*
391 consistent with the observations made by imaging mass cytometry². We hypothesize that the
392 absence of neutrophils, DC1s, LAMP3+ DCs, RM1 and RM2 reflects an absence of signals these
393 cells need for recruitment to and differentiation in granulomas. Together, these comparative
394 analyses reveal that granuloma myeloid cells share similarities with other lung pathologies which
395 may facilitate the repurposing of myeloid-targeted therapies in TB as well as mechanistic
396 dissection of the signals that support the generation of these cellular states.

397
398 **DISCUSSION**
399

400 Myeloid cells play a critical role in TB pathogenesis from initiation to resolution^{15,25,77}. The function
401 of myeloid cells in granulomas is central to the trajectory of disease. Using a combination of
402 experimental and computational techniques, we defined the transcriptional diversity of myeloid
403 cells in the NHP TB granuloma. We found that granuloma myeloid cells are not a monolith and
404 that cells harboring signatures of monocyte-derived cells are the dominant myeloid cell constituent
405 of granulomas. Many of these myeloid cell populations are detectable as early as 4 weeks. Unlike

406 the mouse model, we did not identify a univariate relationship between cellular subsets and
407 bacterial control. We found that signatures of myeloid cell age and IFN- γ and TGF- β signaling
408 explained a significant component of the *in vivo* transcriptional heterogeneity of granuloma
409 myeloid cells. Lastly, by comparing TB granuloma myeloid cells to other lung pathologies, we
410 found that TB granulomas harbor myeloid cell subsets that are transcriptionally similar to other
411 lung pathologies. Disease-specific comparisons between TB and sarcoidosis granulomas
412 identified cellular features that distinguish between these two types of granulomas.

413
414 Myeloid cells integrate diverse signals (ontogeny, soluble cues, time) to shape their identity.
415 Models of macrophage cell states in TB granulomas have historically focused on polarization
416 along an M1-M2 axis, their spatial localization in granulomas, and a small number of canonical
417 markers. In this study, we expand this model to place macrophages on a spectrum from classical
418 monocytes to tissue-resident alveolar macrophages, with each subset being characterized by a
419 distinct transcriptional profile. By comparing to non-diseased lung tissue from the same animals,
420 we demonstrate how the lung tissue niche is remodeled locally in granulomas^{33,41,47,78,79}.

421
422 *In vitro* profiling further confirmed this spectrum by identifying the mixture of differentiation and
423 cytokine factors that partially describe *in vivo* heterogeneity. Pairing computational predictions of
424 cytokine activities, *in vitro* validation, and imaging of transcription factors that are phosphorylated
425 in response to TGF- β and IFN- γ signaling, we observed that transcriptional variation in the
426 myeloid compartment was associated with variation in IFN- γ and TGF- β signaling among others.
427 The heterogeneity and combination of cytokines measured in granulomas support the idea that
428 granuloma cells entering the microenvironment experience a complex mix of signals^{59,60}. Future
429 granuloma myeloid cell phenotyping should incorporate markers beyond canonical macrophage
430 markers and aim to distinguish between monocyte-derived and tissue resident macrophages⁸⁰⁻
431 ⁸². Based on our findings, candidate markers for expanded protein-centric panels should consider
432 including markers such as NR1H3, CEBPB, CLEC4E, FOLR2, and TREM2 to better define
433 macrophage populations in the granuloma⁸³⁻⁸⁶.

434
435 Our data revealed a macrophage population, RM2, which was high in *IDO1*, *CXCL9*, *CXCL10*,
436 and *CXCL11* expression. RM2 was present across all cohorts and significantly increased in
437 granuloma samples. This population was also high for Mincle (*CLEC4E*), a receptor for
438 mycobacterial ligands⁸⁷. RM1 and RM3 displayed similar, albeit with lower expression of these
439 key features, suggesting that they may be at a different activation or differentiation stage than this
440 population. Metabolically, this population was uniquely high in tryptophan and glycolysis-related
441 pathways and displayed high *STAT1*, *NFKB1*, and *CEPBD* activities. We hypothesize this
442 population represents an immunoregulatory subset composed of recently recruited and immature
443 macrophages. This population shares various features with similar cells described as key
444 mediators of *Salmonella* infection and *Mtb*-infected cells^{42,88}. The consequence of this population
445 in the microenvironment remains paradoxical. The expression of tryptophan metabolism and
446 *CEPBD* activity also suggests an immunoregulatory role but the combination of IFN- γ and TNF- α
447 has been noted to drive inflammatory cell death and tissue damage⁸⁹⁻⁹³. Interrogating the
448 consequence of this population at the site of the granuloma may identify a balance of functional
449 roles this population performs.

450
451 Interactions between alveolar macrophages and *Mtb* are one of the earliest detected interactions
452 between *Mtb* and the host⁹⁴. While alveolar macrophages are a gateway to the lung early in
453 infection, our data show that monocyte-derived cells are the major contributors to the macrophage
454 compartment in the granuloma. Recent studies in other lung diseases emphasize the importance
455 of monocyte-derived cells. For example, bronchoalveolar lavage samples from individuals with
456 severe COVID-19 disease have a decreased frequency of tissue resident alveolar macrophage

457 and an increased frequency of monocyte-derived cells³⁴. It was hypothesized that this increased
458 frequency of inflammatory monocyte-derived cells may be associated with worsened outcomes
459 due by recruiting inflammatory monocytes and neutrophils. The role of monocyte recruitment in
460 TB disease is nuanced and has not been rigorously examined in the NHP model of TB disease.
461 In murine studies, monocyte recruitment has been experimentally explored through the utilization
462 of mice deficient in the chemokine receptor, CCR2^{95,96}. The conclusion from these studies is that
463 at high doses of Mtb, loss of CCR2 has a dramatic impact on susceptibility while CCR2 appears
464 dispensable at low doses of Mtb challenge. It is difficult to predict how perturbation of monocyte
465 recruitment in TB disease may impact granuloma formation or TB disease outcome, especially
466 given the diversity of monocyte-derived cells in granulomas. A previous murine study does
467 suggest that monocyte-derived cells have higher antimicrobial potential than alveolar
468 macrophages while a different study suggests that human monocytes have reduced capacity to
469 control Mtb growth compared to monocyte-derived or alveolar macrophages^{30,97}. Future
470 experimental studies in NHP may be poised to define a functional role for specific populations of
471 myeloid cells in granuloma function as several myeloid subpopulations were defined by genes
472 encoding cell surface proteins suggesting the potential for antibody-mediated cell depletion.
473 These markers include *CD36*, *CLEC9A*, *FOLR2*, *MRC1*, *MS4A7*, and *SLAMF7* among others.
474

475 Recent studies in lung cancer suggest that monocyte-derived cells in the lung may have
476 immunosuppressive functions³³. TREM2+ monocyte-derived macrophages have become the
477 subject of intense study, in part inspired by a large body of literature on TREM2 in the context of
478 microglia function in the brain. Loss of TREM2 expression or activity has been shown to reduce
479 tumor burden in several models of lung cancer^{84,98}. Our data highlight the existence of similar
480 transcriptional populations of TREM2+ cells in TB granulomas. A recent study suggests that
481 TREM2+ macrophages result from the efferocytosis of cellular debris, and it is appealing to
482 consider the contributions of cell death in TB granulomas, which has been widely documented,
483 as a potential driver of this population of cells⁹⁸. While TREM2+ macrophages have been
484 implicated in immunosuppression, it will be necessary to examine whether they play a similarly
485 immunosuppressive role in TB granulomas. More broadly, it will be valuable to explore new
486 experimental perturbations in non-human primates to regulate monocyte-derived cell function,
487 isolate them from granulomas, or model their function with novel *in vitro* models.
488

489 Our analyses across other scRNA-seq profiles of lung diseases provides additional experimental
490 support of many of the conclusions made with TB granulomas. Firstly, our observation of similar
491 populations across diseases enhances our confidence in the identification of these transcriptional
492 subsets. The observation of the shift from tissue-resident alveolar macrophages to monocyte-
493 derived macrophages across diseases emphasizes the importance of monocyte differentiation
494 and recruitment as major events that may shape the course of lung diseases. Notably, RM1 and
495 RM2, identified in TB granulomas, weakly mapped to populations in the human myeloid lung atlas.
496 We hypothesize that this may be due to the temporal nature of sampling in these datasets which
497 were generally late-stage fibrotic diseases and cancer; however, future studies should seek to
498 determine if cells resembling the RM1 population is present in other diseases. It has recently been
499 hypothesized that a transitional macrophage population “TransMac” exists during disease.
500 Pseudotime analyses and experimental examination of the myeloid cell populations in the human
501 lung atlas may resolve whether these intermediate populations differentiate into bona fide tissue-
502 resident macrophages or preserve their intermediate state^{47,79}.
503

504 Recent studies highlight a role for eosinophils in modulating infection and macrophage
505 function^{17,18}. In our study, we did not detect the canonical marker defining eosinophils, *EPX*, to
506 any significant degree. Alternative scRNA-seq technologies may better facilitate their capture and
507 analysis^{99,100}. Lastly, our *in vitro* studies were limited to a small number of cytokines for

508 experimental feasibility subset of cytokines. The pleiotropic nature of several cytokines included,
509 such as IL-6, further complicate these efforts¹⁰¹. Biologically, there may be multiple sets of
510 cytokines that can generate a given cell state and computationally, recovering the stimulation
511 history of cells in tissue is difficult; however, studies with tissue resident alveolar macrophages
512 and cytokine neutralization studies *in vivo* may help disentangle this complexity in the future.
513

514 In summary, our integrative and comparative investigation detailed the myeloid cell states in the
515 granuloma microenvironment and across similar pathologies. By identifying and contextualizing
516 these newly identified macrophage populations, we compiled significant evidence for acute,
517 pathology-associated recruited macrophage states (primarily RM2, RM3, and RM4). Better
518 understanding how these cell states modify the adaptive cell compartment will help differentiate
519 the beneficial and pathogenic roles they may play at different points in infection. Taken together,
520 our data substantiate a highly dynamic and microenvironment-driven monocyte-to-macrophage
521 compartment that shares features across diseases and models. This framework has far-reaching
522 implications and suggests the ability to co-opt biology across diseases as our understanding of
523 their dynamics spatiotemporally and ability to therapeutically target these cells increases. Building
524 complete models of macrophage state across perturbations—such as genetic knockouts,
525 cytokines, cellular depletions, and vaccines—will enable rational dissection of the immune
526 responses behind effective vaccines and host-directed therapies in TB.

527 **SUPPLEMENTARY MATERIALS**

528 Materials and Methods

529 Fig. S1. Technical assessment of ambient and batch effects.

530 Fig. S2. Overview of week 10 cohort 2 infection.

531 Fig. S3. Inverse Simpson's Index across sample types.

532 Fig. S4. Immunofluorescence staining of myeloid cell markers in macaque granulomas.

533 Fig. S5. NicheNet analysis of cytokine production.

534 Fig. S6. Immunofluorescence staining of pSTAT1 and pSMAD3 in macaque granulomas.

535 Fig. S7. Alignment of NHP states with NHP states in Esaulova et al.

536 Fig. S8. Alignment of NHP states with murine states.

537 Table S1. Macaque and sample metadata.

538 Table S2. Cellular metadata.

539 Table S3. Cell markers.

540 Table S4. Cluster gene enrichment.

541 Table S5. CFU associations.

542 Table S6. NicheNet activities.

543 Table S7. In vitro samples.

544 Table S8. Public studies used for comparisons.

545 Table S9. Atlas metadata.

546 Table S10. Atlas markers.

547

548

549 **MATERIALS AND METHODS**

550 **Ethics statement**

551 All experimental manipulations, protocols, and care of the animals were approved by the
552 University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee
553 (IACUC). The protocol assurance number for our IACUC is D16-00118. Our specific protocol
554 approval numbers for this project are 18124275 and IM-18124275-1. The IACUC adheres to
555 national guidelines established in the Animal Welfare Act (7 U.S.C. Sections 2131 - 2159) and
556 the Guide for the Care and Use of Laboratory Animals (8th Edition) as mandated by the U.S.
557 Public Health Service Policy.

558

559 All macaques used in this study were housed at the University of Pittsburgh in rooms with
560 autonomously controlled temperature, humidity, and lighting. Animals were singly housed in
561 caging at least 2 square meters apart that allowed visual and tactile contact with neighboring
562 conspecifics. The macaques were fed twice daily with biscuits formulated for nonhuman primates,
563 supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had
564 access to water ad libitum. Because our macaques were singly housed due to the infectious
565 nature of these studies, an enhanced enrichment plan was designed and overseen by our
566 nonhuman primate enrichment specialist. This plan has three components. First, species-specific
567 behaviors are encouraged. All animals have access to toys and other manipulata, some of which
568 will be filled with food treats (e.g., frozen fruit, peanut butter, etc.). These are rotated on a regular
569 basis. Puzzle feeders, foraging boards, and cardboard tubes containing small food items also are
570 placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals
571 stimulate interaction between animals. Second, routine interaction between humans and
572 macaques are encouraged. These interactions occur daily and consist mainly of small food
573 objects offered as enrichment and adhere to established safety protocols. Animal caretakers are
574 encouraged to interact with the animals (by talking or with facial expressions) while performing
575 tasks in the housing area. Routine procedures (e.g., feeding, cage cleaning, etc.) are done on a
576 strict schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques
577 are provided with a variety of visual and auditory stimulation. Housing areas contain either radios
578 or TV/video equipment that play cartoons or other formats designed for children for at least 3
579 hours each day. The videos and radios are rotated between animal rooms so that the same
580 enrichment is not played repetitively for the same group of animals.

581

582 All animals are checked at least twice daily to assess appetite, attitude, activity level, hydration
583 status, etc. Following *M. tuberculosis* infection, the animals are monitored closely for evidence of
584 disease (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams, including
585 weights, are performed on a regular basis. Animals are sedated prior to all veterinary procedures
586 (e.g., blood draws, etc.) using ketamine or other approved drugs. Regular PET/CT imaging is
587 conducted on most of our macaques following infection and has proved very useful for monitoring
588 disease progression. Our veterinary technicians monitor animals especially closely for any signs
589 of pain or distress. If any are noted, appropriate supportive care (e.g., dietary supplementation,
590 rehydration) and clinical treatments (analgesics) are given. Any animal considered to have
591 advanced disease or intractable pain or distress from any cause is sedated with ketamine and
592 then humanely euthanized using sodium pentobarbital.

593

594 **Research animals**

595 Four cynomolgus macaques (*Macaca fascicularis*), >4 years of age, (Valley Biosystems,
596 Sacramento, CA) were housed within a Biosafety Level 3 (BSL-3) primate facility as previously
597 described and as above. Animals were infected with low dose (~10 colony-forming units (CFUs))
598 *M. tuberculosis* (Erdman strain) via bronchoscopic instillation. Infection was confirmed by PET-

599 CT scan at 4 weeks and monitored with clinical and radiographic examinations until 10 weeks
600 post infection.

601

602 **Necropsy**

603 Necropsy was performed as previously described³. Briefly, an 18F-FDG PET-CT scan was
604 performed on every animal 1-3 days prior to necropsy to measure disease progression and
605 identify individual granulomas. At necropsy, monkeys were maximally bled and humanely
606 sacrificed using pentobarbital and phenytoin (Euthanasia; Schering-Plough, Kenilworth, NJ).
607 Individual granulomas previously identified by PET-CT and those that were not seen on imaging
608 from lung and mediastinal lymph nodes were excised for histological analysis, bacterial burden,
609 and other immunological studies. TB specific gross pathologic lesions and overall gross
610 pathologic disease burden was quantified using a previously published method¹⁰². The size of
611 each granuloma was measured by pre-necropsy scans and at necropsy. Granulomas were
612 enzymatically dissociated using the gentleMACS dissociator system (Miltenyi Biotec, Inc.) to
613 obtain single cell suspension and used to enumerate bacterial burden and applied on a Seq-Well
614 device for scRNA-seq. 200 μ L of each granuloma homogenate were plated in serial dilutions onto
615 7H11 medium, and the CFU of *M. tuberculosis* growth were enumerated 21 days later to
616 determine the number of bacilli in each granuloma¹⁰³. As a quantitative measure of overall
617 bacterial burden, a CFU score was derived from the summation of the log-transformed CFU/gram
618 of each sample at the time of necropsy.

619

620 **Non-human primate single-cell RNA-sequencing (scRNA-seq)**

621 High-throughput scRNA-seq was performed using the Seq-Well platform as previously
622 described¹⁰⁴. Briefly, total cell counts from single-cell suspension of granuloma homogenate were
623 enumerated and ~15,000-30,000 cells were applied to the surface of a Seq-Well device loaded
624 with capture beads in the BSL-3 facility at University of Pittsburgh. Following cell loading, Seq-
625 Well devices were reversibly sealed with a polycarbonate membrane and incubated at 37°C for
626 30 minutes. After membrane sealing, Seq-Well devices were submerged in lysis buffer (5M
627 guanidine thiocyanate, 10 mM EDTA, 0.1% -mercaptoethanol, 0.1% Sarkosyl) and rocked for 30
628 minutes. Following cell lysis, arrays were rocked for 40 minutes in 2 M NaCl to promote
629 hybridization of mRNA to bead-bound capture oligos. Beads were removed from arrays by
630 centrifugation and reverse transcription was performed at 52°C for 2 hours. Following reverse
631 transcription, arrays were washed with TE-SDS (TE Buffer + 0.1% SDS) and twice with TE-Tween
632 (TE Buffer + 0.01% Tween20). Following Exol digestion, PCR amplification was performed to
633 generate whole-transcriptome amplification (WTA) libraries. Specifically, a total of 2,000 beads
634 were amplified in each PCR reaction using 16 cycles. Following PCR amplification, SPRI
635 purification was performed at 0.6x and 0.8x volumetric ratios and eluted samples were quantified
636 using a Qubit. Sequencing libraries were prepared by fragmentation of 800 pg of cDNA input using
637 Illumina Nextera XT reagents. Fragmented libraries were purified using 0.6x and 0.8x volumetric
638 SPRI ratios and final library concentrations were determined using a Qubit. Library size
639 distributions were established using an Agilent TapeStation with D1000 High Sensitivity
640 ScreenTapes (Agilent, Inc., USA).

641

642 **Non-human primate sequencing and alignment**

643 Libraries for each sample were sequenced on a NextSeq550 75 Cycle High Output sequencing
644 kit (Illumina Inc., Sunnyvale, CA, USA). For each library, 20 bases were sequenced in read 1,
645 which contains information for cell barcode (12 bp) and unique molecular identifier (UMI, 8bp),
646 while 50 bases were obtained for each read 2 sequence. Cell barcode and UMI tagging of
647 transcript reads was performed using DropSeqTools v1.12. Barcode and UMI-tagged sequencing
648 reads were aligned to the *Macaca fascicularis* v5 genome
649 (https://useast.ensembl.org/Macaca_fascicularis/Info/Index) using the STAR aligner. Aligned

650 reads were then collapsed by barcode and UMI sequences to generate digital gene expression
651 matrices with 10,000 barcodes for each array.

652

653 **Immunofluorescence staining of macaque granulomas**

654 Formalin-fixed paraffin-embedded granulomas were cut into 5- μ m sections and deparaffinized
655 and processed as previously indicated using pressure-cooker mediated antigen retrieval and
656 immunofluorescence staining^{105,106}. For experiments investigating macrophage protein
657 expression (Fig. S4), we used a cyclic staining process where the antibodies were stripped off
658 the tissue between rounds by running the slide through a cycle of pressure cooking in tris-EDTA
659 buffer as previously described^{105,106}. At the end of the multi-round staining process, the tissue
660 section was stripped of antibodies one final time and then stained with hematoxylin and eosin to
661 image the granuloma's morphologic characteristics. Primary antibodies included CD11b (rabbit
662 polyclonal, Novus Biologicals, Centennial, CO), CD11c (mouse IgG2a, clone 5D11; Leica
663 Microsystems, Deer Park, IL), CD68 (mouse IgG1, clone KP-1; Thermo Fisher Scientific,
664 Waltham, MA), CD163 (mouse IgG1, clone 1D6; Thermo Fisher Scientific), CD206 (mouse IgG2b,
665 clone 685645, Novus Biologicals), FOLR2 (rabbit polyclonal; Novus Biologicals), CSF1R (mouse
666 IgG2b, clone 6B9B9; Novus Biologicals), phospho-SMAD3 (rabbit polyclonal; Novus Biologicals),
667 and phospho-STAT1 (rabbit monoclonal, clone 58D6; Cell Signaling Technology, Danvers, MA).
668 Donkey-anti rabbit or mouse secondary antibodies were purchased from Jackson
669 ImmunoResearch (West Grove, PA). Where possible, multiplexed staining was performed with
670 anti-isotype antibodies purchased from Jackson ImmunoResearch. For pSMAD3 and pSTAT1
671 staining, CD11c and pSMAD3 were included in a primary antibody cocktail, followed by secondary
672 staining, and then a Zenon rabbit IgG labeling kit (Thermo Fisher Scientific) was used to label the
673 pSTAT1 antibodies to enable the use of two rabbit antibodies in one round of staining. Coverslips
674 were applied with Prolong Gold Mounting medium containing DAPI and the sections were imaged
675 at 20x with a DS-Qi2 camera (Nikon, Melville, NY) on an e1000 epifluorescence microscope
676 (Nikon) operated with Nikon AR Imaging software and acquired as ND2-format images that were
677 exported as TIFF files. For images where multiple rounds of staining were performed, the images
678 were aligned in Adobe Photoshop (Adobe Systems, Mountainview, CA) using the DAPI-stained
679 nuclei for each round as consistent fiducial markers across rounds of staining. For plotting the
680 position of CD11c+ cells expressing combinations pSMAD3 or pSTAT1, the images were
681 segmented with QuPath and data were exported as CSV files for import into Cytomap for analysis
682 and visualization^{107,108}. Color schemes were selected to ensure accessibility to all audiences.

683

684 **Ex vivo macrophage isolation, differentiation, and stimulation**

685 Deidentified buffy coats from three healthy human donors were obtained from MGH Blood Center.
686 PBMCs were isolated from buffy coats by density-based centrifugation using Ficoll (GE
687 Healthcare). Monocytes were isolated using a CD14 positive selection enrichment kit (Stemcell)
688 and frozen in liquid nitrogen. Isolated monocytes were cultured under 10 cytokine conditions, GM-
689 CSF with one of the following cytokines: IFN- β , IFN- γ , IL-1 β , IL-4, IL-6, M-CSF, TGF- β , and TNF-
690 α . All cytokines were cultured at 10 ng/mL except for GM-CSF (25 ng/mL) and IL-1 β (50 ng/mL).
691 Macrophages were cultured for 1 day, 3 days, or 7 days. Additionally, a separate set of monocytes
692 were differentiated to GM-CSF-derived macrophages then stimulated with the same combination
693 of cytokines on day 6 for 24 hours ahead of RNA-sequencing on day 7. Lastly, on day 3, another
694 set of differentiating macrophages were stimulated with Pam3CSK4 (10 ng/mL). All culture
695 conditions were in RPMI 1640 (ThermoFisher Scientific) supplemented with 10% heat inactivated
696 FBS (ThermoFisher Scientific), 1% HEPES, and 1% L-glutamine.

697

698 **Ex vivo macrophage RNA-sequencing**

699 RNA-sequencing was performed using prime-seq as described⁶². In brief, cells were lysed in 200
700 μ L of RLT + 1% BME buffer and snap frozen on dry ice. RNA was extracted after proteinase K

701 (15 minutes, 50C) and DNase I digestion (10 minutes, 25C) using SPRI beads. Reverse
702 transcription (RT) was performed by resuspending beads in RT mix and barcoded oligo(dT)
703 primers and incubating 90 minutes at 42C. All samples were then pooled (48 samples per pool)
704 for SPRI-based clean-up, exonuclease digestion, and cDNA amplification. After cDNA
705 amplification, samples were ligated and amplified for sequencing. Libraries were analyzed using
706 Qubit dsDNA HS and Agilent TapeStation D1000 kits. Libraries were sequenced on a NextSeq
707 500 system (Illumina). Count matrices were generated using kallisto bustools against GRCh38¹⁰⁹.
708

709 **Processing of public datasets**

710 Raw count matrices and metadata from Esaulova *et al.* was accessed via GSE149758⁴⁹. A
711 preprocessed and annotated R object from Pisu *et al.* was downloaded from GSE167232⁷¹. Skin
712 leprosy and lepromatous lesions/reversal reaction (LL/RR) samples were compiled from
713 GSE150672 and GSE151528, respectively^{37,74}. Sarcoidosis samples were compiled from
714 GSE135893⁷⁶. Only sarcoidosis samples were utilized. These single-cell data were processed as
715 described previously. Human lung datasets used for integration are detailed in Table S9.
716

717 **Ortholog mapping**

718 Ortholog mapping between human, mouse, cynomolgus macaque, and macaque genomes was
719 performed using the Ensembl database. In analyses where cross-species comparison was
720 utilized, only one-to-one orthologs or genes with identical symbols were included based on the
721 Ensembl database (Ensembl genes 104, Human genes GRCh38.p13) with the following
722 attributes: Gene stable ID, Gene name, Mouse gene name, Mouse gene stable ID, Macaque gene
723 name, Macaque gene stable ID, Crab-eating macaque gene name, Crab-eating macaque gene
724 stable ID.
725

726 **Identification of ambient RNA-associated genes**

727 We used SoupX as described to identify potentially problematic genes due to ambient RNA
728 contamination. Ambient contamination per array was automatically estimated (autoEstCont) using
729 the raw count matrix. Gene counts in barcodes not identified as bona fide cells were utilized to
730 determine a list of genes defined as “soup-defining.” The top 100 expressed genes (based on
731 inspection of the distribution of counts within selected arrays) from each array were collated and
732 genes present in at least three arrays with expression levels above the 33rd percentile or genes
733 present in more than 14 arrays were classified as soup-defining. These genes were not included
734 in any PCA or integration analyses. These genes included common housekeeping genes like
735 ACTB, ATP6, COX1, ND6, TMSB4X along with ribosomal genes and dominantly-expressed cell
736 lineage genes.
737

738 **Data preprocessing and quality control**

739 Data from cohort 1 (C1) was provided by the authors and is available on the Single Cell Portal
740 (SCP257, SCP1749). From these week 10 data, we extracted originally assigned phagocytes
741 (pDC, cDC, Macrophage, and Mast cell clusters) for downstream analyses. We additionally
742 derived cell type markers from C1 using logistic regression differential expression controlling for
743 the batch covariate for downstream use in annotation. Cohort 2 data were initially filtered through
744 low stringency thresholds (>450 UMIs, >100 genes, <10% mitochondrial reads, <50% ribosomal
745 reads, <10% heat shock family reads, <5 median absolute deviations (MADs)) and clustered.
746 After standard processing (see Data processing, embedding, visualization, and clustering),
747 additional cells were removed based on expert inspection of transcriptional profiles and technical
748 metrics.
749

750 **Data processing, embedding, visualization, and clustering**

751 Primary single-cell analyses were performed using Seurat. Counts were log-normalized using
752 NormalizeData and the top 3000 variable features were selected using FindVariableFeatures
753 (selection.method = "vst"). PCA was run on the scaled matrix on variable features only. Selection
754 of downstream PCs was inspected using multiple methods including the "elbow" heuristic and an
755 intrinsic dimension estimation (maxLikGlobalDimEst, intrinsicDimension, R). Batch effects were
756 then corrected using Harmony (theta = 1, sigma = 0.1, lambda = 1, dims.use = 1:30) using 30
757 PCs. Visualization of the UMAP embedding was generated using RunUMAP across 20
758 dimensions. Clustering was performed on the shared nearest neighbor (SNN) graph (knn = 20,
759 dimensions = 20) using the Walktrap algorithm (steps = 4, cluster_walktrap, igraph, R) and the
760 Leiden algorithm (leiden_find_partition, leidenbase, R). Any clusters with less than 10 cells were
761 automatically grouped into other clusters based on their SNN connectivity (modified
762 GroupSingletons, Seurat, R). Leiden clustering was performed automatically by scanning
763 resolutions with between 10 and 50 clusters then optimizing the modularity between those
764 resolutions. Leiden and Walktrap results were visually inspected. Resulting clusters were
765 hierarchically clustered and reordered (BuildClusterTree, Seurat, R) based on expression of all
766 variable features. This procedure was standard and utilized across all datasets, as supported by
767 recent benchmarking efforts¹¹⁰.

768

769 **Cluster annotation**

770 Differentially-expressed genes were calculated using the Wilcoxon Rank Sum Test and AUROC
771 implemented in presto (wilcoxauc) and a logistic regression test implemented in Seurat
772 (FindMarkers) using the array as a latent variable¹¹¹. The log fold-change between the top two
773 expressing clusters was also calculated to more aptly describe gene specificity and expression
774 relative to similar clusters, as described previously⁷². Cells identified as cycling cells were
775 subsetted, reprocessed, and reassigned based on cell type markers. To assist in lymphocyte
776 annotation, we utilized a lung reference as well as original labels for C1¹¹². We both scored cells
777 based on differentially-expressed gene signatures and transferred cell labels using
778 *symphony*^{113,114}.

779

780 **Integration of cohort 1 and cohort 2**

781 Cohort 1 and cohort 2 phagocytes were integrated using the integration procedure in Seurat¹¹¹.
782 Using the reciprocal PCA approach, we integrated all batches with ≥ 201 cells. Each array was
783 split and processed through PCA (normalization, variable gene identification, scaling, and PCA).
784 Integration anchors were identified using FindIntegrationAnchors (dimensions = 1:30, k.filter =
785 200, k.score = 20, k.anchor = 5, anchor.features = 3000, n.trees = 20). Data was then integrated
786 using IntegrateData (dimensions = 1:30). Subsequently, integrated data was analyzed as
787 described (see Data processing, embedding, visualization, and clustering). These procedures
788 were performed on a GCP Cloud Compute instance using 64 CPUs and 416 GB.

789

790 **Human lung myeloid atlas processing, integration, and analysis**

791 Integration of human lung myeloid cells was performed similarly to NHP cohort integration. All
792 datasets were preprocessed through standardized gene and metadata harmonization. Quality
793 control filters applied include $< 20\%$ mitochondrial reads, $< 50\%$ ribosomal reads, $< 5\%$
794 hemoglobin or heat shock reads, ≥ 200 nUMIs and ≥ 100 genes detected. Mononuclear
795 phagocytes (MNP) were identified by transferring HLCA labels as described above (see Cluster
796 annotation) and by scoring cells based on signatures derived from that atlas. First, we define a
797 MNP score for each cell, which is the difference between the HLCA scores for MNP cell types
798 and non-MNP cell types. We then fit a Gaussian mixture model to this score and define an upper
799 threshold of 2.5σ above μ . Clusters with a median score above this threshold were labeled as
800 MNPs for the second round of classification. Cycling cells above this threshold were also included.

801 Clusters that did not reach the median score threshold or contained more than 50% of other cell
802 types (as classified by the maximum Travaglini score) were not MNPs. A second round of
803 preprocessing and annotation revealed contaminating non-MP clusters that were manually
804 inspected and removed. This procedure combining automated labeling procedures and expert
805 curation generated a robust set of mononuclear phagocytes for integration.
806

807 We excluded samples with less than 100 cells and pulled the largest 3 control and 3 disease
808 samples from each study. Reference samples were set to the most abundant control and disease
809 sample from each study. Using the reciprocal PCA approach, we integrated all batches with \geq
810 201 cells. Each array was split and processed through PCA (normalization, variable gene
811 identification, scaling, and PCA). Integration anchors were identified using
812 FindIntegrationAnchors (dimensions = 1:20, k.filter = 200, k.score = 20, k.anchor = 5,
813 anchor.features = 2000, n.trees = 20). Data was then integrated using IntegrateData (dimensions
814 = 1:30). These procedures were performed on a GCP Cloud Compute instance using 64 CPUs
815 and 416 GB. Integrated data was then clustered as described previously (see Data processing,
816 embedding, and clustering). CellTypist was used to build a granuloma reference model and
817 predict labels on this atlas⁷⁰. Diversity sampling was performed using scSampler (96). Only
818 datasets with both control and disease samples were used. 1,000 cells were sampled across
819 1,000 iterations for both random and diversity-preserving sampling procedures.
820

821 **Comparison with other scRNA-seq datasets**

822 To compare profiles with the mouse scRNA-seq data, we defined gene signatures for each subset
823 in each dataset using methods described above (see Cluster annotation). We subsetted these
824 signatures to 1:1 orthologs and scored subsets using UCell (AddModuleScore_UCell). The Nos2
825 signature was identified by calculating the Spearman correlation of all genes with Nos2 and
826 extracting the top 50 genes with a positive Spearman correlation coefficient. To compare with
827 rhesus macaque and human leprosy data, *symphony* was used to build a reference model and
828 transfer labels. Sarcoidosis was compared using the Seurat transfer procedure based on PCA
829 projection across 30 dimensions¹¹¹.
830

831 **Enrichment and activity analysis**

832 We utilized Enrichr (enrichR, R package) to perform gene set enrichment analysis on the
833 differentially-expressed genes¹¹⁵. The GO Molecular Function database was utilized to calculate
834 enrichment using Fisher's exact test. We used *decoupleR* to calculate transcription factor and
835 metabolic pathway activity from DoRothEa and KEGG databases, respectively¹¹⁶. The normalized
836 weighted mean scoring procedure was used based on its benchmarked performance.
837

838 **NicheNet**

839 NicheNet was used to identify potential ligand-receptor activity within myeloid populations, as
840 outlined in the method vignettes⁵⁷. Briefly, we first define sender and receiver populations,
841 background and target gene sets, and potential ligands. Target gene sets were defined as
842 differentially-expressed genes with the highest gene expression across all clusters and an auROC
843 ≥ 0.6 and adjusted P value ≤ 0.001 . Background gene sets were defined by expression in at
844 least 10% of cells. NicheNet returns ligand activities based on target genes relative to background
845 genes. Potential receptors are then identified from top ligands. In this application, we defined
846 sender populations as cells not utilized for defining the target gene set (e.g., all subsets except
847 RM3). The Pearson correlation coefficient and auROC is reported as a measure of suggested
848 ligand activity.
849

850 **Statistical methods**

851 For all the analysis and plots, sample sizes and measures of center and confidence intervals

852 (mean \pm SD or SEM), and statistical significance are presented in the figures, figure legends, and
853 in the text. Cellular abundances were tested using a binomial generalized linear model. Inverse
854 Simpson Index was calculated using cell counts (*vegan::diversity* function). Differentially-
855 expressed markers were determined by comparing groups using a Mann-Whitney U test in
856 addition to the auROC metric (*wilcoxauc*, *presto*, R). Gene enrichment was calculated using
857 Fisher's exact test. Score comparisons were conducted using Mann-Whitney U tests, adjusted
858 using the Benjamini-Hochberg procedure. NicheNet statistics were calculated as previously
859 described. All P values and, where appropriate, adjusted P values were considered significant at
860 ≤ 0.05 . All statistical analyses were performed in R using base statistics and supporting packages.
861
862

863 **Acknowledgements:** We acknowledge the outstanding work of veterinary and research
864 technicians. We thank the Bryson and Blainey lab members for discussions and feedback.
865

866 **Funding:** Bill and Melinda Gates Foundation (OP1139972: SMF, JLF, AKS; OPP1202327: AKS),
867 NIH (BAA-NIAID-NIHAI201700104: SMF, AKS, JLF, NIH Contract: 75N93019C00071: SMF,
868 AKS, DAL, JLF, BDB, A1022553: BDB, AI166313: BDB, AI164970: JTM, BDB, AI150171-01: EI).
869 Harvard University Center for AIDS Research (CFAR) (JMR), an NIH funded program (P30
870 AI060354), which is supported by the following NIH Co-Funding and Participating Institutes and
871 Centers: NIAID, NCI, NICHD, NIDCR, NHLBI, NIDA, NIMH, NIA, NIDDK, NINR, NIMHD, FIC, and
872 OAR.

873

874 **Author contributions:**

875 Conceptualization: JMP, JTM, JLF, AKS, SMF, BDB
876 Methodology: JMP, HPG, TKH, BFJ, MLN, JTM, JLF, AKS, SMF, BDB
877 Investigation: JMP, HPG, TKH, BFJ, MLN, JTM, JLF, AKS, SMF, BDB
878 Data curation: JMP, TKH, CG, SKN, JDB, BFJ, MLN, JTM, JLF, AKS, SMF, BDB, DM
879 Formal analysis: JMP, CG, BFJ, MLN, JTM, JLF, BDB
880 Visualization: JMP, BFJ, MLN, JTM, BDB
881 Resources: DAL, JTM, JLF, AKS, SMF, BDB
882 Writing - original draft: JMP, PCB, JTM, BDB
883 Writing - review and editing: all authors
884 Supervision: DAL, PCB, JTM, JLF, AKS, SMF, BDB
885 Funding: DAL, JTM, JLF, AKS, SMF, BDB
886

887 **Competing interests:** P.C.B. is a consultant to and/or holds equity in companies that develop or
888 apply genomic, microfluidic, or single-cell technologies: 10X Genomics, General Automation Lab
889 Technologies, Celsius Therapeutics, Next Gen Diagnostics, LLC, and Cache DNA. A.K.S. reports
890 compensation for consulting and/or SAB membership from Honeycomb Biotechnologies,
891 Cellarity, Ochre Bio, Relation Therapeutics, IntrECate biotherapeutics, Fog Pharma, Passkey
892 Therapeutics, and Dahlia Biosciences unrelated to this work.
893

894 **Data and materials availability**

895 All the data supporting this work is included in the figures, or can be found in the supplementary
896 information, <https://fairdomhub.org/studies/1184>. Specifically, bulk human MDM RNA-
897 sequencing data have been deposited in the Gene Expression Omnibus (GEO) under accession
898 number GSE211113. Single-cell RNA-sequencing data from non-human primates have been
899 deposited in the Gene Expression Omnibus under accession number GSE211663. For all data
900 analyses, we used publicly available software. All code used for this analysis is available on
901 Github (<https://www.github.com/joshpeters>).
902
903

904 **REFERENCES**

- 905
- 906 1. Chakaya, J. *et al.* Global Tuberculosis Report 2020 – Reflections on the Global TB burden,
907 treatment and prevention efforts. *Int. J. Infect. Dis.* **113**, S7–S12 (2021).
- 908 2. McCaffrey, E. F. *et al.* The immunoregulatory landscape of human tuberculosis granulomas.
909 *Nat. Immunol.* **23**, 318–329 (2022).
- 910 3. Gideon, H. P. *et al.* Multimodal profiling of lung granulomas in macaques reveals cellular
911 correlates of tuberculosis control. *Immunity* **55**, 827-846.e10 (2022).
- 912 4. Flynn, J., Chan, J. & Lin, P. Macrophages and control of granulomatous inflammation in
913 tuberculosis. *Mucosal Immunol.* **4**, 271–278 (2011).
- 914 5. Cohen, S. B., Gern, B. H. & Urdahl, K. B. The Tuberculous Granuloma and Preexisting
915 Immunity. *Annu. Rev. Immunol.* **40**, 589–614 (2022).
- 916 6. Pagán, A. J. & Ramakrishnan, L. The Formation and Function of Granulomas. *Annu. Rev.*
917 *Immunol.* **36**, 639–665 (2018).
- 918 7. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. *Nat. Rev. Immunol.*
919 **12**, 352–366 (2012).
- 920 8. Lin, P. L. *et al.* Sterilization of granulomas is common in active and latent tuberculosis despite
921 within-host variability in bacterial killing. *Nat. Med.* **20**, 75–79 (2014).
- 922 9. Srivastava, S., Ernst, J. D. & Desvignes, L. Beyond macrophages: the diversity of
923 mononuclear cells in tuberculosis. *Immunol. Rev.* **262**, 179–192 (2014).
- 924 10. Marakalala, M. J., Martinez, F. O., Plüddemann, A. & Gordon, S. Macrophage Heterogeneity
925 in the Immunopathogenesis of Tuberculosis. *Front. Microbiol.* **9**, (2018).
- 926 11. Dorhoi, A. & Kaufmann, S. H. E. Versatile myeloid cell subsets contribute to tuberculosis-
927 associated inflammation. *Eur. J. Immunol.* **45**, 2191–2202 (2015).
- 928 12. Sia, J. K. & Rengarajan, J. Immunology of *Mycobacterium tuberculosis* infections. *Microbiol.*
929 *Spectr.* **7**, 10.1128/microbiolspec.GPP3-0022-2018 (2019).

- 930 13. Ravesloot-Chávez, M. M., Van Dis, E. & Stanley, S. A. The Innate Immune Response to
931 Mycobacterium tuberculosis Infection. *Annu. Rev. Immunol.* **39**, 611–637 (2021).
- 932 14. Cohen, S. B. *et al.* Alveolar Macrophages Provide an Early Mycobacterium tuberculosis
933 Niche and Initiate Dissemination. *Cell Host Microbe* **24**, 439-446.e4 (2018).
- 934 15. Norris, B. A. & Ernst, J. D. Mononuclear cell dynamics in *M. tuberculosis* infection provide
935 opportunities for therapeutic intervention. *PLOS Pathog.* **14**, e1007154 (2018).
- 936 16. Price, J. V. & Vance, R. E. The Macrophage Paradox. *Immunity* **41**, 685–693 (2014).
- 937 17. Bohrer, A. C. *et al.* Eosinophils are part of the granulocyte response in tuberculosis and
938 promote host resistance in mice. *J. Exp. Med.* **218**, e20210469 (2021).
- 939 18. Bohrer, A. C. *et al.* Rapid GPR183-mediated recruitment of eosinophils to the lung after
940 Mycobacterium tuberculosis infection. *Cell Rep.* **40**, 111144 (2022).
- 941 19. Gideon, H. P., Phuah, J., Junecko, B. A. & Mattila, J. T. Neutrophils express pro- and anti-
942 inflammatory cytokines in granulomas from Mycobacterium tuberculosis-infected
943 cynomolgus macaques. *Mucosal Immunol.* **12**, 1370–1381 (2019).
- 944 20. Hult, C., Mattila, J. T., Gideon, H. P., Linderman, J. J. & Kirschner, D. E. Neutrophil Dynamics
945 Affect Mycobacterium tuberculosis Granuloma Outcomes and Dissemination. *Front.*
946 *Immunol.* **12**, 712457 (2021).
- 947 21. Mattila, J. T., Maiello, P., Sun, T., Via, L. E. & Flynn, J. L. Granzyme B-expressing neutrophils
948 correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected
949 cynomolgus macaques. *Cell. Microbiol.* **17**, 1085–1097 (2015).
- 950 22. Seiler, P. *et al.* Early granuloma formation after aerosol Mycobacterium tuberculosis infection
951 is regulated by neutrophils via CXCR3-signaling chemokines. *Eur. J. Immunol.* **33**, 2676–
952 2686 (2003).
- 953 23. Cronan, M. R. *et al.* Macrophage Epithelial Reprogramming Underlies Mycobacterial
954 Granuloma Formation and Promotes Infection. *Immunity* **45**, 861–876 (2016).

- 955 24. Duque-Correa, M. A. *et al.* Macrophage arginase-1 controls bacterial growth and pathology
956 in hypoxic tuberculosis granulomas. *Proc. Natl. Acad. Sci.* **111**, E4024–E4032 (2014).
- 957 25. Marino, S. *et al.* Macrophage Polarization Drives Granuloma Outcome during
958 *Mycobacterium tuberculosis* Infection. *Infect. Immun.* **83**, 324–338 (2014).
- 959 26. Peyron, P. *et al.* Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a
960 Nutrient-Rich Reservoir for *M. tuberculosis* Persistence. *PLOS Pathog.* **4**, e1000204 (2008).
- 961 27. Kim, M.-J. *et al.* Caseation of human tuberculosis granulomas correlates with elevated host
962 lipid metabolism. *EMBO Mol. Med.* **2**, 258–274 (2010).
- 963 28. Seto, S. *et al.* Spatial multiomic profiling reveals the novel polarization of foamy
964 macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice
965 infected with *Mycobacterium tuberculosis*. *Front. Cell. Infect. Microbiol.* **12**, 968543 (2022).
- 966 29. Pham, T. H. M. *et al.* Salmonella-Driven Polarization of Granuloma Macrophages
967 Antagonizes TNF-Mediated Pathogen Restriction during Persistent Infection. *Cell Host
968 Microbe* **27**, 54-67.e5 (2020).
- 969 30. Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of *Mycobacterium*
970 tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. *J. Exp.
971 Med.* **215**, 1135–1152 (2018).
- 972 31. Cronan, M. R. *et al.* A non-canonical type 2 immune response coordinates tuberculous
973 granuloma formation and epithelialization. *Cell* **184**, 1757-1774.e14 (2021).
- 974 32. Mattila, J. T. *et al.* Microenvironments in tuberculous granulomas are delineated by distinct
975 populations of macrophage subsets and expression of nitric oxide synthase and arginase
976 isoforms. *J. Immunol. Baltim. Md 1950* **191**, 773–784 (2013).
- 977 33. Casanova-Acebes, M. *et al.* Tissue-resident macrophages provide a pro-tumorigenic niche
978 to early NSCLC cells. *Nature* **595**, 578–584 (2021).
- 979 34. Liao, M. *et al.* Single-cell landscape of bronchoalveolar immune cells in patients with COVID-
980 19. *Nat. Med.* **26**, 842–844 (2020).

- 981 35. Lin, P. L. *et al.* Early events in *Mycobacterium tuberculosis* infection in cynomolgus
982 macaques. *Infect. Immun.* **74**, 3790–3803 (2006).
- 983 36. Carow, B. *et al.* Spatial and temporal localization of immune transcripts defines hallmarks
984 and diversity in the tuberculosis granuloma. *Nat. Commun.* **10**, 1823 (2019).
- 985 37. Hughes, T. K. *et al.* Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals
986 Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. *Immunity*
987 **53**, 878-894.e7 (2020).
- 988 38. Mulder, K. *et al.* Cross-tissue single-cell landscape of human monocytes and macrophages
989 in health and disease. *Immunity* **54**, 1883-1900.e5 (2021).
- 990 39. Sikkema, L. *et al.* An integrated cell atlas of the lung in health and disease. *Nat. Med.* **29**,
991 1563–1577 (2023).
- 992 40. Maier, B. *et al.* A conserved dendritic-cell regulatory program limits antitumour immunity.
993 *Nature* **580**, 257–262 (2020).
- 994 41. Sen, D. *et al.* Tracking the Spatial and Functional Gradient of Monocyte-To-Macrophage
995 Differentiation in Inflamed Lung. *PLOS ONE* **11**, e0165064 (2016).
- 996 42. Goldberg, M. F. *et al.* *Salmonella* Persist in Activated Macrophages in T Cell-Sparse
997 Granulomas but Are Contained by Surrounding CXCR3 Ligand-Positioned Th1 Cells.
998 *Immunity* **49**, 1090-1102.e7 (2018).
- 999 43. Desalegn, G. & Pabst, O. Inflammation triggers immediate rather than progressive changes
1000 in monocyte differentiation in the small intestine. *Nat. Commun.* **10**, 3229 (2019).
- 1001 44. Pandey, A. K. & Sasse, C. M. Mycobacterial persistence requires the utilization of host
1002 cholesterol. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 4376–4380 (2008).
- 1003 45. Gerrick, K. Y. *et al.* Transcriptional profiling identifies novel regulators of macrophage
1004 polarization. *PLOS ONE* **13**, e0208602 (2018).
- 1005 46. Watanabe, S., Alexander, M., Misharin, A. V. & Budinger, G. R. S. The role of macrophages
1006 in the resolution of inflammation. *J. Clin. Invest.* **129**, 2619–2628 (2019).

- 1007 47. Guilliams, M. & Svedberg, F. R. Does tissue imprinting restrict macrophage plasticity? *Nat.*
1008 *Immunol.* **22**, 118–127 (2021).
- 1009 48. Guilliams, M., Thierry, G. R., Bonnardel, J. & Bajenoff, M. Establishment and Maintenance
1010 of the Macrophage Niche. *Immunity* **52**, 434–451 (2020).
- 1011 49. Esaulova, E. *et al.* The immune landscape in tuberculosis reveals populations linked to
1012 disease and latency. *Cell Host Microbe* **29**, 165-178.e8 (2021).
- 1013 50. Kotov, D. I. *et al.* Early cellular mechanisms of type I interferon-driven susceptibility to
1014 tuberculosis. *Cell* **186**, 5536-5553.e22 (2023).
- 1015 51. Liu, Z. *et al.* Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells.
1016 *Cell* **178**, 1509-1525.e19 (2019).
- 1017 52. Puig-Kröger, A. *et al.* Folate receptor beta is expressed by tumor-associated macrophages
1018 and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. *Cancer Res.*
1019 **69**, 9395–9403 (2009).
- 1020 53. Leach, S. M. *et al.* Human and Mouse Transcriptome Profiling Identifies Cross-Species
1021 Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. *Cell Rep.* **33**, 108337
1022 (2020).
- 1023 54. Lavin, Y. *et al.* Tissue-resident macrophage enhancer landscapes are shaped by the local
1024 microenvironment. *Cell* **159**, 1312–1326 (2014).
- 1025 55. Gosselin, D. *et al.* Environment drives selection and function of enhancers controlling tissue-
1026 specific macrophage identities. *Cell* **159**, 1327–1340 (2014).
- 1027 56. Lai, S. M. *et al.* Organ-Specific Fate, Recruitment, and Refilling Dynamics of Tissue-
1028 Resident Macrophages during Blood-Stage Malaria. *Cell Rep.* **25**, 3099-3109.e3 (2018).
- 1029 57. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by
1030 linking ligands to target genes. *Nat. Methods* **17**, 159–162 (2020).
- 1031 58. Gern, B. H. *et al.* TGF β restricts expansion, survival, and function of T cells within the
1032 tuberculous granuloma. *Cell Host Microbe* **29**, 594-606.e6 (2021).

- 1033 59. Phuah, J. *et al.* Effects of B Cell Depletion on Early *Mycobacterium tuberculosis* Infection in
1034 Cynomolgus Macaques. *Infect. Immun.* **84**, 1301–1311 (2016).
- 1035 60. Kauffman, K. D. *et al.* PD-1 blockade exacerbates *Mycobacterium tuberculosis* infection in
1036 rhesus macaques. *Sci. Immunol.* **6**, eabf3861 (2021).
- 1037 61. Nilsson, A., Peters, J. M., Meimetis, N., Bryson, B. & Lauffenburger, D. A. Artificial neural
1038 networks enable genome-scale simulations of intracellular signaling. *Nat. Commun.* **13**,
1039 3069 (2022).
- 1040 62. Janjic, A. *et al.* Prime-seq, efficient and powerful bulk RNA sequencing. *Genome Biol.* **23**,
1041 88 (2022).
- 1042 63. Gschwend, J. *et al.* Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2
1043 cells before and after birth. *J. Exp. Med.* **218**, e20210745 (2021).
- 1044 64. Shibata, Y. *et al.* GM-CSF regulates alveolar macrophage differentiation and innate
1045 immunity in the lung through PU.1. *Immunity* **15**, 557–567 (2001).
- 1046 65. Luo, M., Lai, W., He, Z. & Wu, L. Development of an Optimized Culture System for
1047 Generating Mouse Alveolar Macrophage-like Cells. *J. Immunol. Baltim. Md 1950* **207**, 1683–
1048 1693 (2021).
- 1049 66. Higgins, D. M. *et al.* Relative levels of M-CSF and GM-CSF influence the specific generation
1050 of macrophage populations during infection with *Mycobacterium tuberculosis*. *J. Immunol.*
1051 *Baltim. Md 1950* **180**, 4892–4900 (2008).
- 1052 67. Yu, X. *et al.* The Cytokine TGF- β Promotes the Development and Homeostasis of Alveolar
1053 Macrophages. *Immunity* **47**, 903-912.e4 (2017).
- 1054 68. Sander, J. *et al.* Cellular Differentiation of Human Monocytes Is Regulated by Time-
1055 Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2. *Immunity* **47**,
1056 1051-1066.e12 (2017).

- 1057 69. Peters, J. M., Blainey, P. C. & Bryson, B. D. Consensus transcriptional states describe
1058 human mononuclear phagocyte diversity in the lung across health and disease.
1059 2020.08.06.240424 Preprint at <https://doi.org/10.1101/2020.08.06.240424> (2020).
- 1060 70. Domínguez Conde, C. *et al.* Cross-tissue immune cell analysis reveals tissue-specific
1061 features in humans. *Science* **376**, eabl5197 (2022).
- 1062 71. Pisu, D. *et al.* Single cell analysis of *M. tuberculosis* phenotype and macrophage lineages in
1063 the infected lung. *J. Exp. Med.* **218**, e20210615 (2021).
- 1064 72. Zilionis, R. *et al.* Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals
1065 Conserved Myeloid Populations across Individuals and Species. *Immunity* **50**, 1317-
1066 1334.e10 (2019).
- 1067 73. Tosches, M. A. *et al.* Evolution of pallium, hippocampus, and cortical cell types revealed by
1068 single-cell transcriptomics in reptiles. *Science* **360**, 881–888 (2018).
- 1069 74. Ma, F. *et al.* The cellular architecture of the antimicrobial response network in human leprosy
1070 granulomas. *Nat. Immunol.* **22**, 839–850 (2021).
- 1071 75. Grunewald, J. *et al.* Sarcoidosis. *Nat. Rev. Dis. Primer* **5**, 1–22 (2019).
- 1072 76. Habermann, A. C. *et al.* Single-cell RNA sequencing reveals profibrotic roles of distinct
1073 epithelial and mesenchymal lineages in pulmonary fibrosis. *Sci. Adv.* **6**, eaba1972 (2020).
- 1074 77. Guirado, E., Schlesinger, L. S. & Kaplan, G. Macrophages in tuberculosis: friend or foe.
1075 *Semin. Immunopathol.* **35**, 563–583 (2013).
- 1076 78. Ginhoux, F., Schultze, J. L., Murray, P. J., Ochando, J. & Biswas, S. K. New insights into the
1077 multidimensional concept of macrophage ontogeny, activation and function. *Nat. Immunol.*
1078 **17**, 34–40 (2016).
- 1079 79. Misharin, A. V. *et al.* Monocyte-derived alveolar macrophages drive lung fibrosis and persist
1080 in the lung over the life span. *J. Exp. Med.* **214**, 2387–2404 (2017).

- 1081 80. Mayer-Barber, K. D. *et al.* Innate and adaptive interferons suppress IL-1 α and IL-1 β
1082 production by distinct pulmonary myeloid subsets during *Mycobacterium tuberculosis*
1083 infection. *Immunity* **35**, 1023–1034 (2011).
- 1084 81. Darrah, P. A. *et al.* Prevention of tuberculosis in macaques after intravenous BCG
1085 immunization. *Nature* **577**, 95–102 (2020).
- 1086 82. Grant, N. L. *et al.* T cell transcription factor expression evolves over time in granulomas from
1087 *Mycobacterium tuberculosis*-infected cynomolgus macaques. *Cell Rep.* **39**, 110826 (2022).
- 1088 83. Iizasa, E. *et al.* TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that
1089 limits anti-mycobacterial macrophage activation. *Nat. Commun.* **12**, 2299 (2021).
- 1090 84. Molgora, M. *et al.* TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing
1091 Anti-PD-1 Immunotherapy. *Cell* **182**, 886-900.e17 (2020).
- 1092 85. Joseph, S. B. *et al.* LXR-dependent gene expression is important for macrophage survival
1093 and the innate immune response. *Cell* **119**, 299–309 (2004).
- 1094 86. Nalio Ramos, R. *et al.* Tissue-resident FOLR2+ macrophages associate with CD8+ T cell
1095 infiltration in human breast cancer. *Cell* **185**, 1189-1207.e25 (2022).
- 1096 87. Ishikawa, E. *et al.* Direct recognition of the mycobacterial glycolipid, trehalose dimycolate,
1097 by C-type lectin Mincle. *J. Exp. Med.* **206**, 2879–2888 (2009).
- 1098 88. Lee, J. *et al.* CD11cHi monocyte-derived macrophages are a major cellular compartment
1099 infected by *Mycobacterium tuberculosis*. *PLoS Pathog.* **16**, e1008621 (2020).
- 1100 89. Friedrich, M. *et al.* Tryptophan metabolism drives dynamic immunosuppressive myeloid
1101 states in IDH-mutant gliomas. *Nat. Cancer* **2**, 723–740 (2021).
- 1102 90. Gautam, U. S. *et al.* In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma
1103 and augments immune-mediated control of *Mycobacterium tuberculosis*. *Proc. Natl. Acad.*
1104 *Sci. U. S. A.* **115**, E62–E71 (2018).

- 1105 91. Karki, R. *et al.* Synergism of TNF- α and IFN- γ Triggers Inflammatory Cell Death, Tissue
1106 Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. *Cell* **184**,
1107 149-168.e17 (2021).
- 1108 92. Giladi, A. *et al.* Cxcl10+ monocytes define a pathogenic subset in the central nervous system
1109 during autoimmune neuroinflammation. *Nat. Immunol.* **21**, 525–534 (2020).
- 1110 93. Zhang, F. *et al.* IFN- γ and TNF- α drive a CXCL10+ CCL2+ macrophage phenotype
1111 expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation.
1112 *Genome Med.* **13**, 64 (2021).
- 1113 94. Rothchild, A. C. *et al.* Alveolar macrophages generate a noncanonical NRF2-driven
1114 transcriptional response to *Mycobacterium tuberculosis* in vivo. *Sci. Immunol.* **4**, eaaw6693
1115 (2019).
- 1116 95. Peters, W. *et al.* Chemokine receptor 2 serves an early and essential role in resistance to
1117 *Mycobacterium tuberculosis*. *Proc. Natl. Acad. Sci.* **98**, 7958–7963 (2001).
- 1118 96. Scott, H. M. & Flynn, J. L. *Mycobacterium tuberculosis* in chemokine receptor 2-deficient
1119 mice: influence of dose on disease progression. *Infect. Immun.* **70**, 5946–5954 (2002).
- 1120 97. Corleis, B. *et al.* Tobacco smoke exposure recruits inflammatory airspace monocytes that
1121 establish permissive lung niches for *Mycobacterium tuberculosis*. *Sci. Transl. Med.* **15**,
1122 eadg3451 (2023).
- 1123 98. Park, M. D. *et al.* TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer.
1124 *Nat. Immunol.* **24**, 792–801 (2023).
- 1125 99. Mimitou, E. P. *et al.* Scalable, multimodal profiling of chromatin accessibility, gene
1126 expression and protein levels in single cells. *Nat. Biotechnol.* **39**, 1246–1258 (2021).
- 1127 100. Stoeckius, M. *et al.* Simultaneous epitope and transcriptome measurement in single cells.
1128 *Nat. Methods* **14**, 865–868 (2017).
- 1129 101. Murakami, M., Kamimura, D. & Hirano, T. Pleiotropy and Specificity: Insights from the
1130 Interleukin 6 Family of Cytokines. *Immunity* **50**, 812–831 (2019).

- 1131 102. Lin, P. L. *et al.* Quantitative Comparison of Active and Latent Tuberculosis in the
1132 Cynomolgus Macaque Model. *Infect. Immun.* **77**, 4631–4642 (2009).
- 1133 103. Gideon, H. P. *et al.* Variability in tuberculosis granuloma T cell responses exists, but a
1134 balance of pro- and anti-inflammatory cytokines is associated with sterilization. *PLoS*
1135 *Pathog.* **11**, e1004603 (2015).
- 1136 104. Gierahn, T. M. *et al.* Seq-Well: portable, low-cost RNA sequencing of single cells at high
1137 throughput. *Nat. Methods* **14**, 395–398 (2017).
- 1138 105. Winchell, C. G. *et al.* CD8+ lymphocytes are critical for early control of tuberculosis in
1139 macaques. *J. Exp. Med.* **220**, e20230707 (2023).
- 1140 106. Talukdar, P., Junecko, B. F., Lane, D. S., Maiello, P. & Mattila, J. T. Macrophages and
1141 neutrophils express IFNλs in granulomas from *Mycobacterium tuberculosis*-infected
1142 nonhuman primates. *Front. Immunol.* **13**, (2022).
- 1143 107. Bankhead, P. *et al.* QuPath: Open source software for digital pathology image analysis. *Sci.*
1144 *Rep.* **7**, 16878 (2017).
- 1145 108. Stoltzfus, C. R. *et al.* CytoMAP: A Spatial Analysis Toolbox Reveals Features of Myeloid Cell
1146 Organization in Lymphoid Tissues. *Cell Rep.* **31**, (2020).
- 1147 109. Melsted, P. *et al.* Modular, efficient and constant-memory single-cell RNA-seq
1148 preprocessing. *Nat. Biotechnol.* **39**, 813–818 (2021).
- 1149 110. Germain, P.-L., Sonrel, A. & Robinson, M. D. pipeComp, a general framework for the
1150 evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing
1151 tools. *Genome Biol.* **21**, 227 (2020).
- 1152 111. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902.e21
1153 (2019).
- 1154 112. Travaglini, K. J. *et al.* A molecular cell atlas of the human lung from single-cell RNA
1155 sequencing. *Nature* **587**, 619–625 (2020).

- 1156 113. Kang, J. B. *et al.* Efficient and precise single-cell reference atlas mapping with Symphony.
1157 *Nat. Commun.* **12**, 5890 (2021).
- 1158 114. Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature
1159 scoring. *Comput. Struct. Biotechnol. J.* **19**, 3796–3798 (2021).
- 1160 115. Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment analysis
1161 tool. *BMC Bioinformatics* **14**, 128 (2013).
- 1162 116. Badia-I-Mompel, P. *et al.* decoupleR: ensemble of computational methods to infer biological
1163 activities from omics data. *Bioinforma. Adv.* **2**, vbac016 (2022).
- 1164
1165

1166
1167
1168

Figure Captions

1169
1170
1171
1172
1173
1174
1175

Fig. 1. Increased myeloid cell diversity in granulomas. (A) Diagrammatic overview of study workflow (B) UMAP embedding of integrated cells colored by annotated cell state. (C) Clustered heatmap of gene expression, scaled $\log_{10}(TP10K+1)$, across cell states. The top 2 markers by AUROC are shown for each state. (D) GO molecular function enrichment for the top 50 markers across cell states. (E) Hierarchically clustered scaled scores of M1 and M2 transcriptional signatures across macrophages states.

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

Fig. 2. Monocytes and macrophages form a transcriptional continuum aligned with ontogeny. (A) Average fractional abundance of cell states between non-diseased and granuloma samples. Inverse Simpson's Index describes state diversity within each sample type. Asterisk denotes significant change per state in abundance between non-diseased and granuloma samples at adjusted P value < 0.05 . (B) Fractional abundance of select cell states across week 4, week 10 early, week 10 late, or non-diseased samples. Error bars indicate standard error of the fractional abundance mean. (C) Fractional abundance between non-diseased and granuloma samples based on inferred monocyte-derived or tissue-resident ontogeny. (D) Log-normalized expression of canonical markers across select monocyte and macrophage markers. Error bar represents standard error of the mean expression per subset. (E) Distribution of signature scores across subsets. Signatures are derived from Casanova-Acebes *et al.* 2021 for murine and human monocyte-derived and tissue-resident macrophages. (F) Immunofluorescence staining of CD11b, CD163, and CD206 in macaque granulomas.

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

Fig. 3. *In vitro* differentiation and stimulation describes *in vivo* transcriptional variability. (A) NicheNet predicted ligands based on genes differentially expressed by the RM3 state. (B) Overview of experimental setup for *ex vivo* primary macrophage culture, stimulation, and sampling. (C) Number of differentially expressed (DE) genes based on time * cue interaction model for each condition. (D) Normalized expression of DE genes for each day expressed across the timepoints. (E) Percent of variance explained in NHP data by top 200 genes associated with time, based on significance, compared to distribution of 1,000 random gene sets. (F) Scaled score for each day signature across NHP myeloid states. (G) Distribution of scaled day 1 and day 7 signature scores across NHP myeloid states. (H) Percent of variance explained in NHP data by top 200 genes associated with cytokine stimulations, compared to distribution of 1,000 random gene sets. (I) Scaled score for each cytokine signature across NHP myeloid states. (J) Select cytokine signature scores pseudobulked across subsets between non-diseased and granuloma samples.

1203

1204
1205
1206
1207
1208
1209
1210
1211
1212

Fig. 4. Myeloid human lung atlas suggests conserved disease-induced diversity and transcriptional states. (A) UMAP projection of integrated human lung atlas myeloid cells (B) CellTypist classification of cell populations across this study and human lung myeloid atlas (C) Reanalysis (UMAP) of leprosy granuloma samples from Hughes *et al.* (D) CellTypist classification of cell populations across this study and Hughes *et al.* (E) Comparison of cellular subset abundance in Hughes *et al* across healthy and granuloma skin samples. (F) Reanalysis (UMAP) of sarcoidosis granuloma samples from Habermann *et al.* (G) CellTypist classification of cell populations across this study and Habermann *et al.* (H) Comparison of cellular subset abundance in Habermann *et al* across healthy and sarcoidosis granuloma samples.

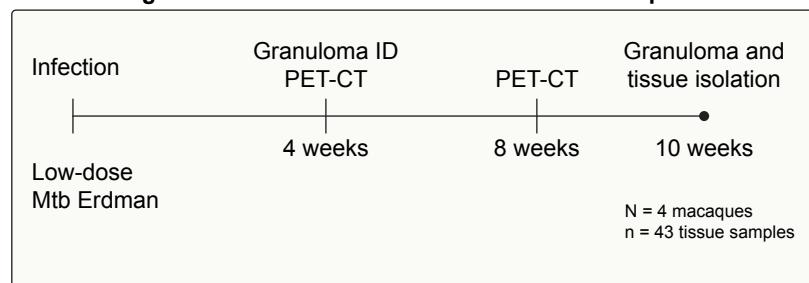
1213
1214
1215

Supplemental Figure Captions

- 1216 **Fig. S1. Technical assessment of ambient and batch effects.** **(A)** Average expression of
1217 genes in non-cellular barcodes across batches colored by ambient thresholds for variable gene
1218 exclusion. **(B)** UMAP embedding and LISI metrics for week 10 cohort 2 data colored by batch.
1219
- 1220 **Fig. S2. Overview of week 10 cohort 2 infection.** **(A)** UMAP embedding of annotated week 10
1221 cohort 2 data colored by annotated cell type. **(B)** Clustered heatmap of scaled log(TP10K+1)
1222 expression values of marker genes across annotated cell types.
1223
- 1224 **Fig. S3. Inverse Simpson's Index across sample types.** **(A)** Inverse Simpson's Index
1225 describing sample diversity across sample types, non-diseased, week 10 early, week 10 late, and
1226 week 4. P values were adjusted using the Benjamini-Hochberg procedure. Adjusted P values are
1227 denoted by: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. Only comparisons significant
1228 at p < 0.05 are shown.
1229
- 1230 **Fig. S4. Immunofluorescence staining of myeloid cell markers in macaque granulomas**
1231 **shows that subset-defining antigens are expressed in different granuloma locations.** A
1232 cyclic immunofluorescence staining protocol was used on a necrotic granuloma to examine the
1233 protein expression and localization of transcriptionally defined subsets identified by scRNA-seq
1234 analysis. Protein markers (yellow) are shown against the granuloma's DAPI-stained nuclei (blue).
1235 The inset region represented by the black box shown in the hematoxylin and eosin-stained image
1236 (top left) was selected to show representative granuloma regions including intact granuloma-
1237 adjacent lung (inset, top left), lymphocyte cuff and epithelioid macrophage regions (inset, middle),
1238 and caseum (inset, bottom right).
1239
- 1240 **Fig. S5. NicheNet analysis of cytokine production.** Cell-type specific analysis of gene
1241 expression of cytokines predicted by NicheNet to be acting on RM2 cells.
1242
- 1243 **Fig. S6. Immunofluorescence staining of pSTAT1 and pSMAD3 in macaque**
1244 **granulomas.** Granulomas harvested from animals euthanized at (A) 4- or (B) 10-weeks post
1245 infection were stained for pSTAT1 (green) and pSMAD3 (magenta) as surrogates for IFN- γ and
1246 TGF- β signaling, respectively. CD11c (blue) was used as a broadly-expressed macrophage
1247 marker (blue) and maps showing the position of the granuloma's nuclei (grey) and
1248 pSTAT1+CD11c+ (green) and pSMAD3+CD11c+ (magenta) macrophages is shown to facilitate
1249 visualization of each population's location (middle panels). The position of three distinct pSTAT1
1250 phenotypes noted on the full granuloma image and zoomed in regions (right) are shown with the
1251 region's nuclei (DAPI; grey) to show the cellularity within each region.
1252
- 1253 **Fig. S7. Alignment of NHP states with NHP states in Esaulova et al.** **(A)** CellTypist
1254 classification of cell populations across this study and Esaulova et al. **(B)** Proportion of predicted
1255 granuloma labels from cynomolgus subsets between control, latent, and active rhesus samples.
1256
- 1257 **Fig. S8. Alignment of NHP states with murine states.** **(A)** Hierarchically-clustered heatmap of
1258 AUROC values for murine subsets annotated from Pisu et al. 2020. Supplementary bar plot (right)
1259 describes the number of DE genes per subset. **(B)** Hierarchically-clustered heatmap of scaled
1260 NHP scores of murine signatures. **(C)** Hierarchically-clustered heatmap of scaled murine scores
1261 of NHP signatures.

A

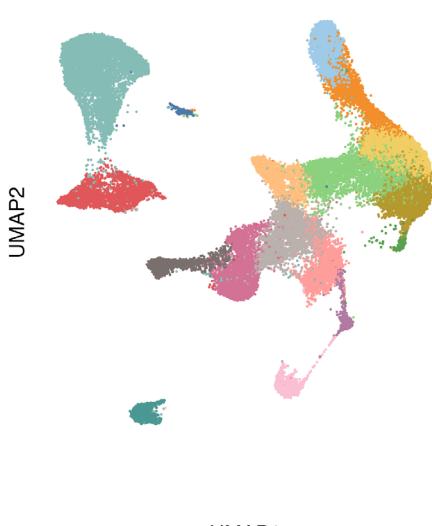
Cohort design



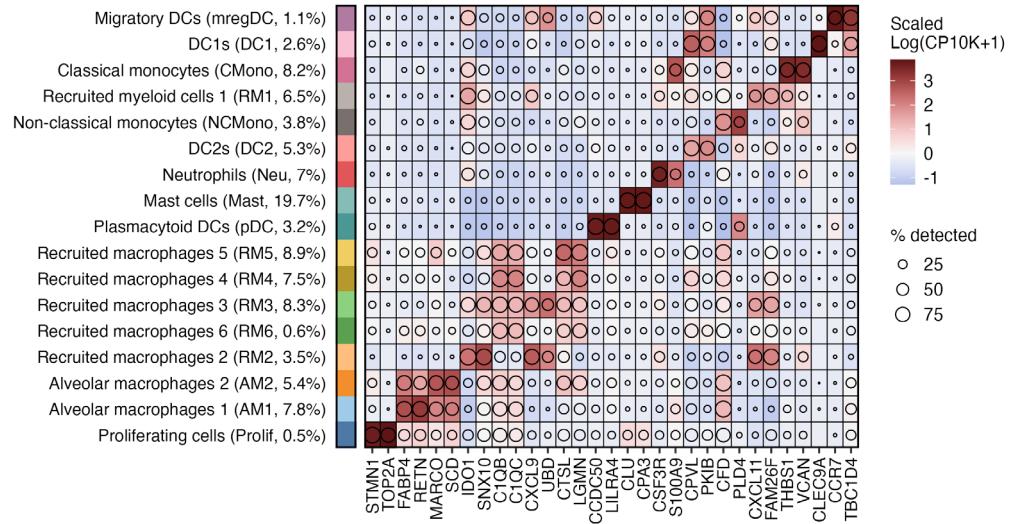
Experimental design

- Bacterial load quantification
- Single-cell RNA-sequencing
- Imaging
- In vitro* ligand modeling

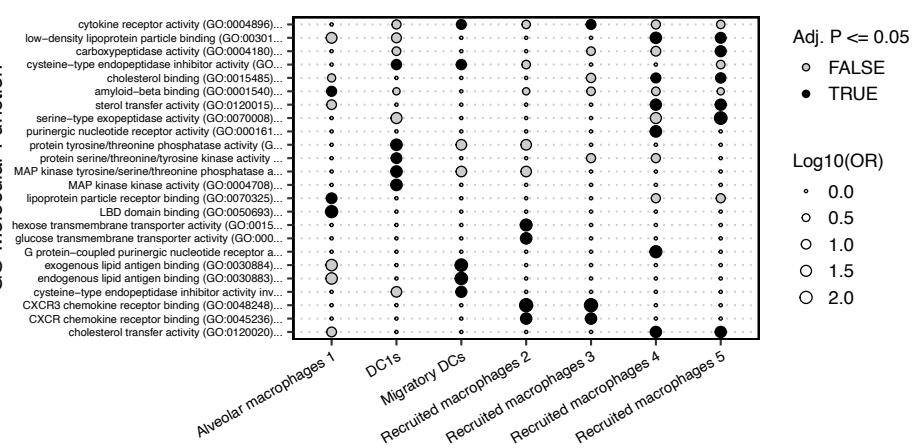
B



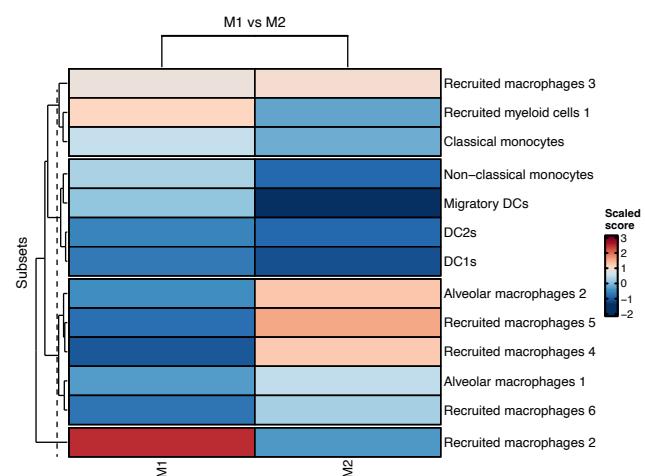
C

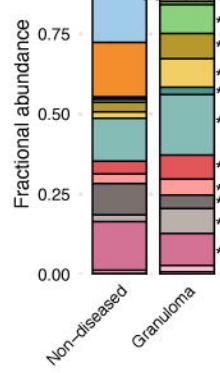
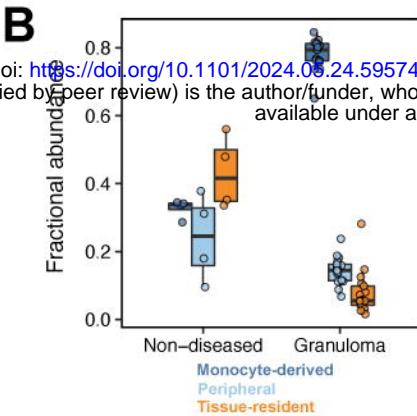
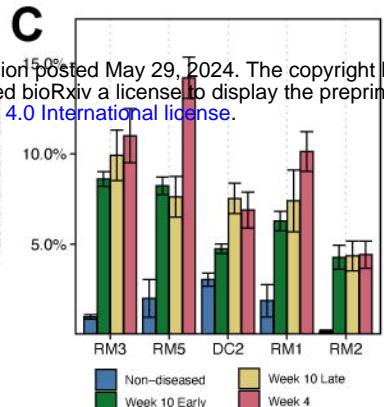


D

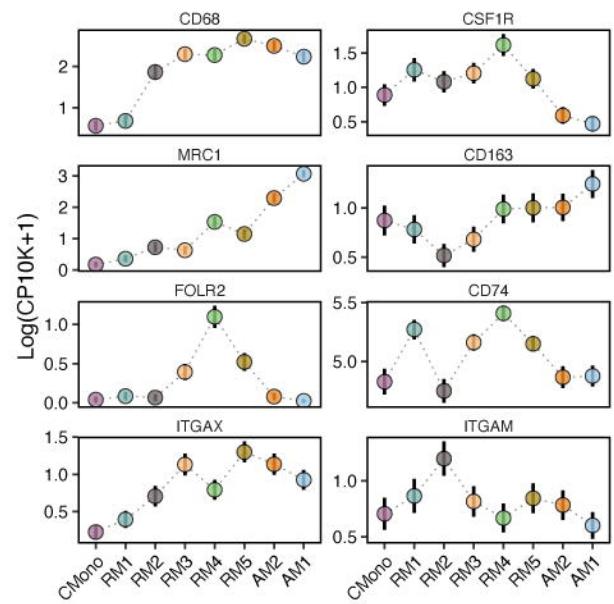


E

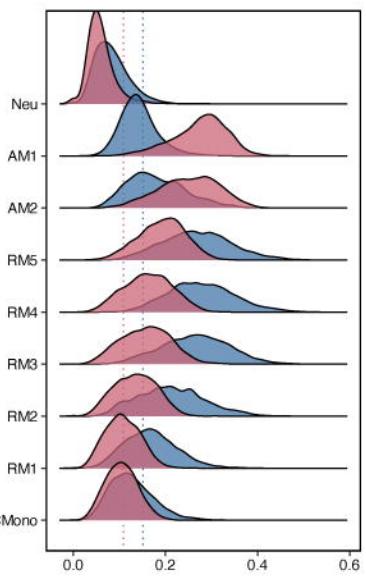




D

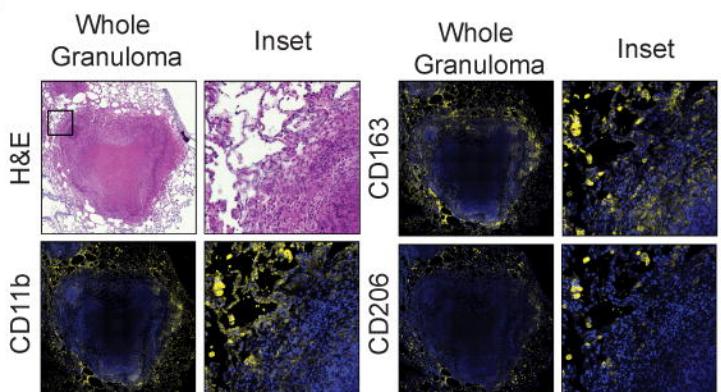


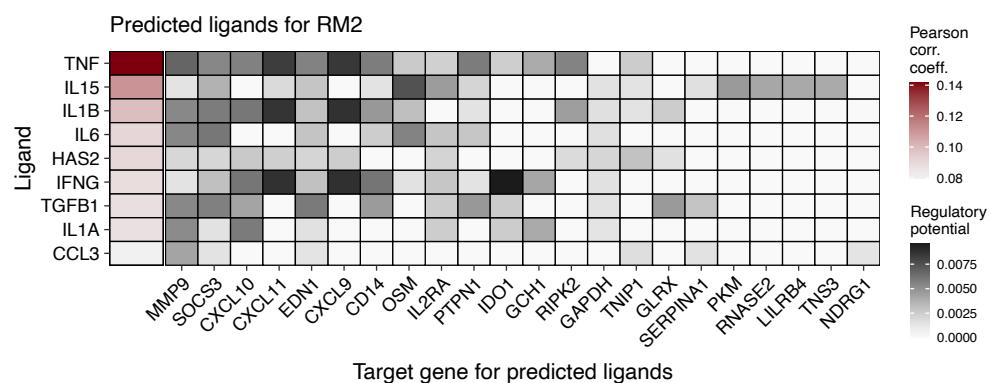
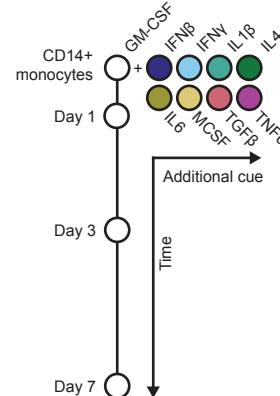
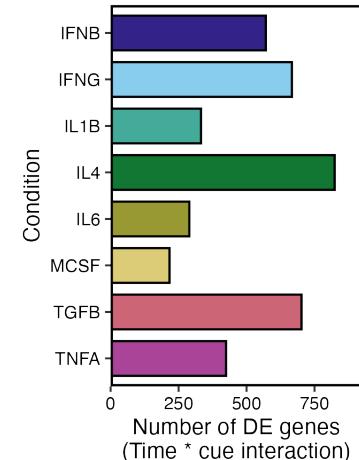
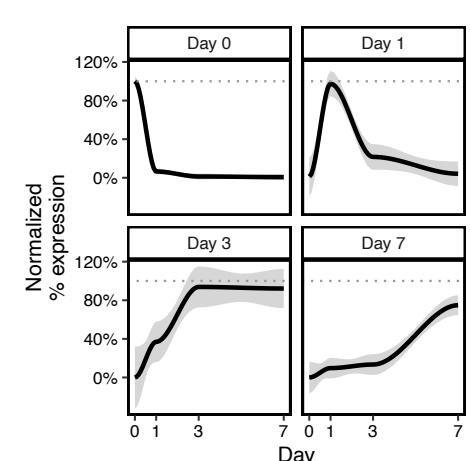
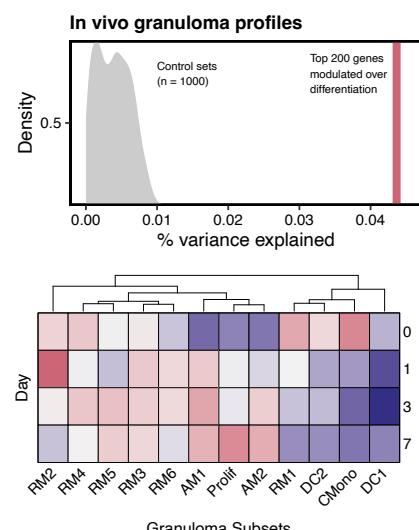
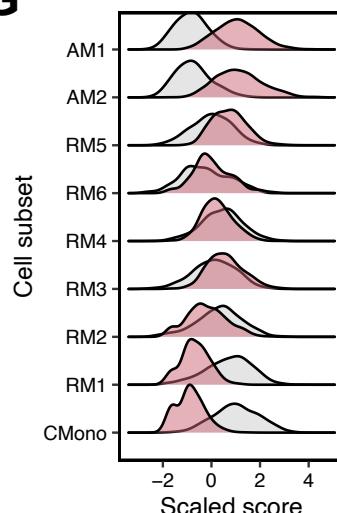
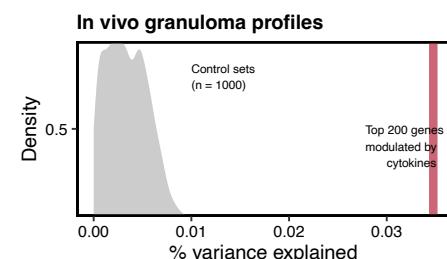
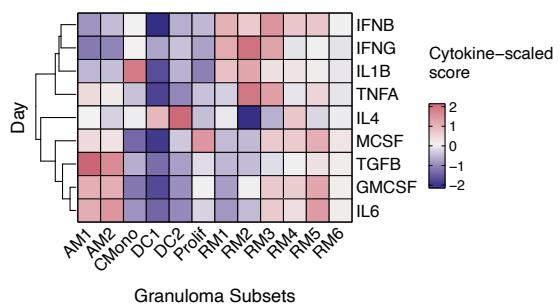
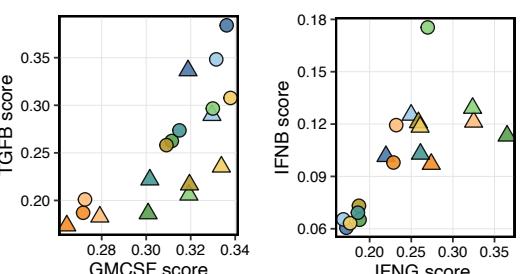
E



Tissue-resident or Monocyte-derived score
(Casanova-Acebes et al. 2021, Figure 1, Cluster I/II)

F



A**B****C****D****E****G****H****I****J**

Tissue

Non-diseased

Diseased

Subset

AM1

AM2

CMono

RM1

RM2

RM3

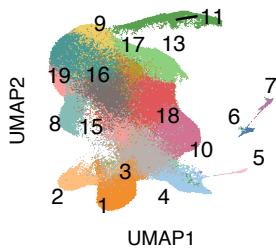
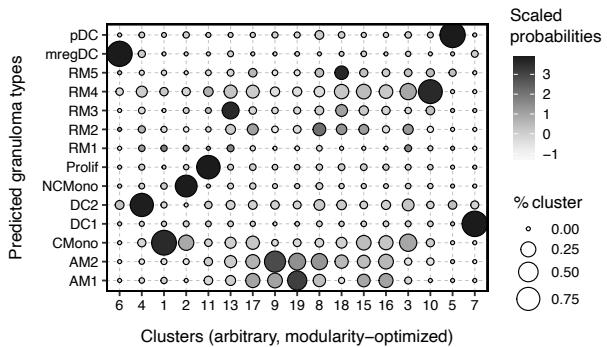
RM4

RM5

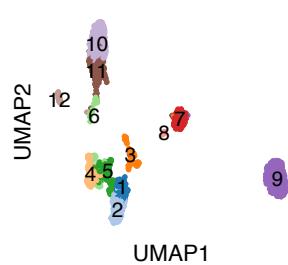
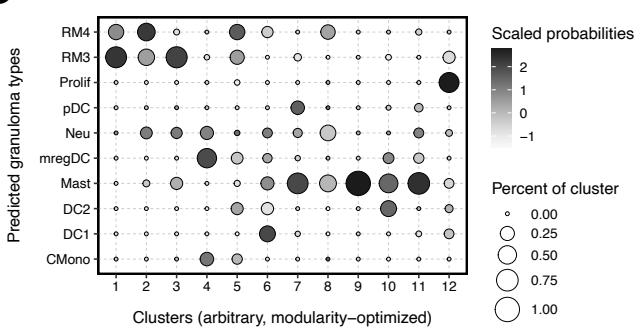
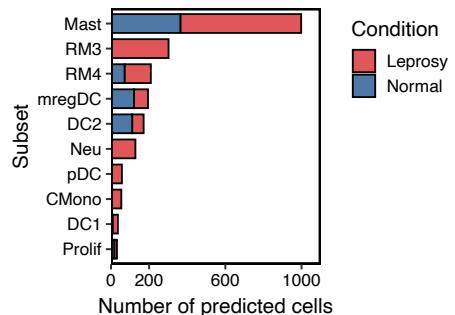
RM6

A

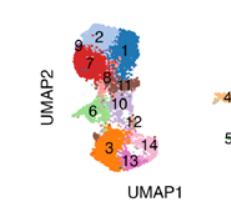
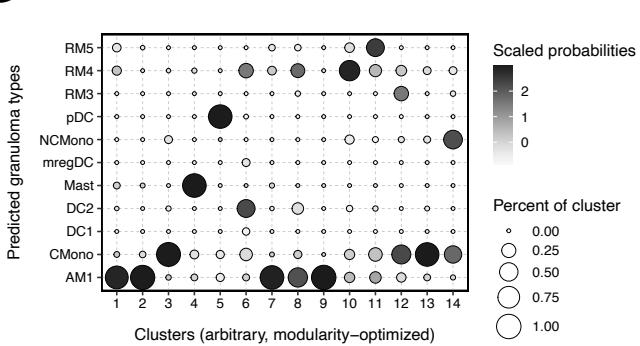
Myeloid cells from 15 studies across lung cancer, COPD, ILD, COVID

**B****C**

Myeloid cells from leprosy samples (Hughes et al. 2020)

**D****E****F**

Myeloid cells from sarcoidosis samples (Habermann et al. 2019)

**G****H**