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ABSTRACT 25 
Myeloid cells are key constituents of tuberculosis (TB) granulomas. They are the major target of 26 
pathogen infection and play central roles in pathogen control, antigen presentation, adaptive 27 
immune cell recruitment, and tissue homeostasis.  However, the role of myeloid cells in TB has 28 
been studied largely through ex vivo experimental approaches that do not capture the dynamic 29 
phenotypic and functional states of these cells in the disease environment. To address this gap, 30 
we used a combination of bulk and single-cell RNA sequencing (scRNA-seq), computational 31 
modeling, and imaging to define the molecular diversity of myeloid cells in granulomas from 32 
Mycobacterium tuberculosis-infected nonhuman primates. We observed an increase in myeloid 33 
cell diversity in granulomas compared to non-granulomatous lung tissue. This increased 34 
transcriptional diversity is defined by a continuum of macrophage differentiation-, metabolism-, 35 
and cytokine-regulated transcriptional programs. In vitro experimental modeling of monocyte-to-36 
macrophage differentiation in defined cytokine environments implicates differentiation time, IFN-37 
γ, and TGF-β signaling as candidate drivers of macrophage diversity. We next examined the 38 
conservation of these populations across additional experimental models of Mtb infection and 39 
found myeloid cell subsets enriched across the TB disease spectrum. To further contextualize 40 
these responses, we constructed an atlas of myeloid cells across diverse human lung pathologies, 41 
finding myeloid cell subpopulations that were similar between TB and other lung pathologies as 42 
well as subpopulations that distinguish between diseases. Collectively, this study identifies points 43 
of integration between myeloid cell biology in TB granulomas and other lung diseases that can be 44 
used for defining the signals that instruct myeloid cell behavior in TB and other diseases, as well 45 
as advance myeloid cell-targeted therapies. 46 
 47 
Main text: 48 
 49 
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INTRODUCTION 50 
 51 
Mycobacterium tuberculosis (Mtb) infection is responsible for over 1.5 million deaths and more 52 
than 10 million cases of active tuberculosis (TB) annually1. Granuloma formation is a pathologic 53 
manifestation associated with Mtb infection, and these inflammatory lesions contain a diverse 54 
collection of cells, including immune cells of the lymphoid and myeloid lineages2–7. Under optimal 55 
conditions, the activity of these cells is carefully coordinated, prevents bacterial escape and 56 
dissemination, and generates sterilizing immunity that kills Mtb8. In less optimal conditions, 57 
granulomas serve as local sites of bacterial proliferation and contribute to tissue- and organ-level 58 
pathology. Differentiating the factors that lead to these disparate outcomes may lead to improved 59 
treatments and vaccines for TB.  60 
 61 
Myeloid cells are a cornerstone of the immune response to Mtb and play key roles that span the 62 
full course of disease from the initiation of infection and development of pathology to disease 63 
resolution9–16. The range of myeloid cells found in granulomas is diverse and includes mast cells, 64 
eosinophils, neutrophils, and multiple subsets of macrophages2–4,17–27. Investigation of the 65 
complexity of myeloid cells in granulomas has focused on specific features such as the spatial 66 
distribution of subsets or polarization along established axes of inflammation5,24,25,28–32. Several of 67 
these studies emphasize an important conclusion: specific subsets of myeloid cells can shape 68 
the outcome of TB disease25,30. Many of these causal relationships, however, have only been 69 
defined in the murine model of TB which may not adequately capture aspects of the disease 70 
pathology observed in humans. 71 
 72 
The extent and genesis of myeloid cell diversity in TB granulomas is unclear. Studies of other 73 
lung pathologies or myeloid cell dynamics in other tissues provide models (molecular or 74 
conceptual) which may apply to TB granulomas. For example, in lung cancer, tissue resident 75 
macrophages support systems-level responses that are distinct from those generated by bone 76 
marrow-derived cells33; in the bronchoalveolar lavage fluid of individuals with severe cases of 77 
COVID-19 disease, alveolar macrophages are depleted, and monocyte-derived macrophages 78 
take their place34. New conceptual models propose that the differentiation of monocytes recruited 79 
to sites of inflammation is shaped by both tissue- and inflammation-derived cues. We hypothesize 80 
that the genesis of myeloid diversity in TB granulomas results from the combined activity of 81 
myeloid cell recruitment and reprogramming of homeostatic circuits in resident cells in response 82 
to infection-associated signals. An improved understanding of granuloma myeloid cell diversity 83 
and the molecular circuits that control the emergence of specific myeloid cell states may identify 84 
pathways that can be targeted to promote anti-mycobacterial and pro-resolution functions.  85 
 86 
Here, we sought to define how Mtb infection reprograms the local myeloid cell landscape. We 87 
took advantage of the human-like pathology seen in Mtb-infected cynomolgus macaques – an 88 
animal model that develops phenotypically diverse granulomas – to identify how alteration of 89 
cellular circuits in granulomas shape myeloid cell identity2,8,35,36. Our analysis reveals that 90 
macrophages harboring a transcriptional signature of monocyte-derived cells are the dominant 91 
constituents of granulomas compared to non-diseased lung tissue which harbor mostly 92 
macrophages expressing a signature of tissue-derived alveolar macrophages. Furthermore, our 93 
ligand-receptor signaling network analysis indicates that TGF-β and IFN-γ signaling are the major 94 
axes of variation in granuloma myeloid cells. We also found similar myeloid cell subsets in 95 
different lung diseases but variations in their relative abundance, suggesting the presence of a 96 
disease-specific local signals that tune myeloid subset emergence or maintenance. Together, 97 
these data highlight the unappreciated phenotypic and functional diversity of myeloid cells in TB 98 
granulomas and have implications for developing approaches to control Mtb infection and repair 99 
damaged lung tissue. 100 
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 101 
RESULTS 102 
 103 
TB granulomas harbor diverse myeloid subpopulations 104 
 105 
To examine myeloid cell diversity in TB granulomas, we generated single-cell transcriptional 106 
profiles from granuloma tissue from Mtb-infected NHP. Four cynomolgus macaques were infected 107 
with a low dose of Mtb Erdman (<10 CFU) and necropsied at 10 weeks post-infection for profiling 108 
(Fig. 1A, Materials and Methods). Granulomas for analysis were selected based on early 109 
detection (~4 weeks post Mtb challenge) on PET-CT scans. 39 lung granulomas and 4 areas of 110 
non-granulomatous lung tissue (1 from each macaque) were sampled. Each sample was 111 
analyzed for bacterial burden and gene expression using single-cell mRNA sequencing (scRNA-112 
seq)37. Granuloma bacterial burden spanned from 25 to 18,600 CFUs. After applying quality 113 
control filters (Methods), 31,198 cellular transcriptomes were generated.  114 
 115 
We next integrated these transcriptomes with data from our previously published study of NHP 116 
granulomas at 4- and 10-weeks post infection (Materials and Methods, Table S1, Fig. S1-2)3. The 117 
integrated dataset is composed of 10 macaques, 43 tissue samples, and 41,559 cells (Fig. 1A). 118 
Clustering and differential expression analysis of the myeloid cells identified 17 distinct clusters.  119 
 120 
Using curated gene signatures for myeloid cells, we identified dendritic cells, mast cells, 121 
monocytes, neutrophils, and macrophages (Fig. 1B-C, Table S2-3, Materials and Methods)3,38,39. 122 
Four dendritic cell populations, including DC1s, DC2s, LAMP3+ DCs, and plasmacytoid DCs were 123 
identified. DC1s were defined by CLEC9A expression whereas DC2s were defined by GPR183, 124 
CD1C, CLEC6A, CLEC4A expression. Plasmacytoid DCs had high expression of LILRA4 and 125 
CCDC50, and the LAMP3+ DC population resembled previously identified anti-tumor populations 126 
based on CCR7 and LAMP3 expression40. Mast cells were defined by CLU and CPA3 expression. 127 
Classical and non-classical monocytes were defined based on VCAN and FCGR3A expression, 128 
respectively. One myeloid population clustered with the monocyte populations but displayed 129 
increased expression of other dendritic cell and macrophage genes, such as IDO1, FAM26F, and 130 
CPVL and reduced expression of VCAN and other monocyte markers. We therefore annotated 131 
these cells as recruited myeloid cells (RM1) to highlight the mixed markers41–43. Neutrophils were 132 
defined by CSF3R and S100A9 expression. Seven macrophage populations defined by FABP4, 133 
MRC1, C1QB and CSF1R expression were identified. Macrophage populations were 134 
differentiated by the level of expression of antimicrobial genes, metabolic genes, and 135 
metallothionein genes including CTSB, IDO1, SOD2, and LGMN. To examine features of 136 
macrophage ontogeny, we utilized published signatures of monocyte-derived and alveolar 137 
macrophages, scored all macrophage populations according to these signatures, and assigned 138 
macrophage class based on signature score33.  139 
 140 
Gene ontology enrichment using the GO Molecular Function database (Table S4, Materials and 141 
Methods) indicated that a range of processes were enriched uniquely in each macrophage subset 142 
(Fig. 1D). For example, macrophage populations 4 and 5 had high levels of expression of genes 143 
involved in cholesterol metabolism, a key nutrient source for Mtb, while macrophage populations 144 
2 and 3 expressed high levels of genes associated with chemokine receptor signaling44. We also 145 
sought to contextualize these myeloid cells according to their inflammatory state using published 146 
signatures of macrophages stimulated with IFN-γ+LPS or IL-4, reflective of a classical M1 or M2 147 
state, respectively45. RM2 cells scored highly for the M1 signature while RM4, 5, and AM2 scored 148 
highly for the M2 signature (Fig. 1E). The other populations did not score highly for either signature 149 
suggesting that additional signals shape granuloma myeloid cell identity.  150 
 151 
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In the murine model of TB, interstitial macrophages and alveolar macrophages differ in their 152 
antimicrobial capacity30. We therefore examined univariate relationships between myeloid 153 
population abundance and granuloma bacterial burden. Using a non-parametric Mann-Whitney 154 
test, we did not observe a strong association between specific subpopulations and bacterial 155 
burden (Table S5). A generalized linear model revealed associations between LAMP3+ DCs and 156 
reduced CFU burden as well as an association between mast cells and higher CFU burden as we 157 
observed previously3 (Table S5). 158 
 159 
 160 
Cell recruitment, activation and differentiation underlies the diversity of myeloid cell states 161 
in TB granulomas 162 
 163 
An emerging model of myeloid cell states within the tissue, such as the lung, involves the dynamic 164 
recruitment, activation, and reprogramming of myeloid cells upon deviation from homeostasis46–165 
48. We hypothesized that comparing non-granulomatous lung tissue to granulomas would provide 166 
insight into the cellular and molecular signals that shape granuloma myeloid cell identity. 167 
 168 
We initially hypothesized that the TB granuloma would be associated with less myeloid diversity 169 
compared to non-granulomatous lung tissue given dominant inflammatory signaling. We 170 
compared myeloid cell diversity in granulomas versus non-granulomatous tissues. Using the 171 
Inverse Simpson Index (ISI, range: 1+, higher diversity = higher ISI), we found that granulomas 172 
were in fact more diverse (ISI = 9.64) than non-granulomatous tissue (ISI = 6.09) (Fig 2A). We 173 
found significant changes in the frequency of specific myeloid populations (adjusted P < 0.05, 174 
Methods). Macrophage populations AM1 and AM2 (odds ratio, μOR = 0.152) and monocytes 175 
(odds ratio, μOR = 0.51) were enriched in non-granulomatous tissue whereas all other myeloid 176 
subsets were enriched in granulomas, except for proliferating cells. We found that macrophages 177 
expressing a signature of monocyte-derived macrophages were enriched in granulomas relative 178 
to non-diseased tissue consistent with a model of monocyte-mediated replenishment of 179 
macrophages in the granuloma niche (Fig. 2B). Plasmacytoid DCs (pDCs), which also showed a 180 
dramatic increase in granulomas in our analysis, have been reportedly to be differentially 181 
abundant in lung tissue from macaques with latent or active TB disease as well as uninfected 182 
versus Mtb-infected mice49,50.  183 
 184 
We next sought to deconstruct other factors that may contribute to granuloma myeloid cell 185 
diversity. Our previously published study of NHP granulomas, now integrated here with these new 186 
samples, examined how a granuloma’s composition changed at different timepoints post-187 
development so we examined how myeloid diversity changed as a function of granuloma age3. 188 
Newly-developed granulomas harvested 4 weeks post infection and granulomas that were found 189 
at later timepoints by PET-CT imaging and harvested 10 weeks post-infection showed similarly 190 
high levels of myeloid cell diversity, whereas non-granulomatous tissue harbored the lowest 191 
diversity (Fig. S3). RM1, RM2, RM3, RM5 and DC2 displayed increased relative abundance in 192 
week 4 granulomas relative to non-granulomatous tissue, suggesting that these populations may 193 
emerge early in the granuloma environment (Fig. 2C).  194 
 195 
We then sought to examine monocyte and macrophage diversity using canonical markers 196 
traditionally used to define myeloid subsets using flow cytometry (CD68, CSF1R, MRC1 (CD206), 197 
CD163, FOLR2, CD74, ITGAX (CD11c), and ITGAM (CD11b)) (Fig. 2D). We found that MRC1, a 198 
marker of alveolar macrophages, is increasingly expressed from classical monocytes (CMono) to 199 
alveolar macrophages (AM1, AM2), and previous studies have established that monocytes can 200 
differentiate into alveolar macrophages51. In contrast, CD68 shows a strong step-like increase in 201 
expression from RM1 to RM2, suggesting an inflection point in cell state. On the other hand, 202 
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FOLR2, a marker used for interstitial macrophages and therapeutic target in cancer is expressed 203 
highly in RM4 as compared to other populations52,53. Consistent with our analysis of individual 204 
markers, scoring each of the granuloma monocyte and macrophage populations according to a 205 
previously published tissue-resident macrophage signature revealed a gradual increase in 206 
expression of the monocyte-derived macrophage score across the recruited macrophage 207 
populations (Fig. 2E). These analyses suggest that granuloma myeloid cells include a diversity of 208 
macrophage subsets and that recruited monocytes exist on a differentiation spectrum. 209 
 210 
We next used immunofluorescence staining to confirm that subset-defining transcripts were 211 
translated into proteins by macrophages and to identify where within the granuloma 212 
microenvironment these cells are present. We examined expression of CD11b (ITGAM, highest 213 
in RM2), CD11c (ITGAX, highest in RM5), CD68 (highest in RM5), CD163 (highest in AM1), 214 
CD206 (highest in AM1), FOLR2 (highest in RM4) and CSF1R (highest in RM4, Fig. 2F, Fig. S4) 215 
and found unique expression patterns as well as overlap between these markers. We found that 216 
AMs expressing CD206, FOLR2, and CSF1R were abundant in the granuloma-adjacent lung and 217 
that few of these cells had infiltrated into the granuloma.  In contrast, CD163 and CD11b were 218 
expressed by granuloma-adjacent AMs and macrophages in the granuloma’s lymphocyte cuff. 219 
CD11c was the most broadly expressed macrophage-associated antigen and was expressed by 220 
AMs and macrophages in the histologically-defined epithelioid macrophage region. CD68, which 221 
is often used as a general macrophage marker, was most strongly expressed by cells in the 222 
epithelioid macrophage region, especially by the cells adjacent to the caseum. Taken together, 223 
these protein-level data support our transcriptional analyses by showing the complexity of 224 
granuloma-associated macrophage populations in a spatial context. 225 
 226 
 227 
In vitro profiling reveals dominant variance induced by time, IFN-γ, and TGF-β 228 
 229 
Thus far, we verified that diversity in the granuloma could be driven by variations in the abundance 230 
of myeloid subtypes, monocyte infiltration, differentiation, and changes in cell state. Recent work 231 
on macrophage ontogeny and monocyte-macrophage dynamics has emphasized the influence of 232 
environmental cues on myeloid cell phenotype in the tissue41,43,48,54–56. Ligand-receptor interaction 233 
prediction methods such as NicheNet offer a technique to predict signals potentially responsible 234 
for the transcriptional profile of cell populations of interest. To generate testable hypotheses about 235 
ligand signals in the granuloma, we used NicheNet focusing on differentially expressed genes 236 
within RM2, RM4, and AM1 populations (Table S6, Materials and Methods)57. We focused on 237 
these populations because they showed the most distinct transcriptional and functional 238 
enrichment profiles that were not well-explained by any of the analyses above. NicheNet analysis 239 
predicted several cytokines with potential activity in RM2, RM4, and AM1 cells including TNF-α, 240 
IL-13, IL-15, IL-1β, TGF-β, IL-6, and IFN-γ, which have been previously detected in TB 241 
granulomas (Fig. 3A)58–60. TNF transcript was predominantly detected in myeloid cells, whereas 242 
TGF-β was detected in NK cells, T cells, DC2s, and proliferating cells (Fig. S5).  243 
 244 
Given that the data that inform NicheNet predictions are not derived solely from myeloid cells, we 245 
sought to enhance our study of cytokine signals that shape myeloid cell state, by performing time-246 
resolved in vitro stimulation experiments of myeloid cells. Given the enrichment of monocyte-247 
derived macrophage signatures in the granuloma, we focused on monocytes and monocyte-248 
derived cells. We and others have previously utilized transcriptional profiling to define the acute 249 
response to macrophage stimulation with diverse ligands61. To build upon these previous studies 250 
and in recognition that monocytes recruited to sites of disease often differentiate in the presence 251 
of multiple ligands concurrently, we sought to model the monocyte response to tonic cytokine 252 
signals associated with differentiation and granuloma residency. We utilized classical human 253 
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CD14+ monocytes from peripheral blood as our experimental monocyte source. To examine the 254 
contribution of time, we generated samples at multiple time points (0, 1, 3, and 7 days). These 255 
studies resulted in the generation of 200 unique RNA-seq samples which we analyzed using 256 
Prime-seq, a high-throughput bulk RNA sequencing technique (see Materials and Methods)62. To 257 
simulate the complexity in lung granulomas, we combined GM-CSF with each of the following 258 
ligands: IFN-β, IFN-γ, IL-1β, IL-4, IL-6, M-CSF, TGF-β, and TNF-α (Fig. 3B).  Given the necessity 259 
and influence of GM-CSF on alveolar macrophage development, ligands were added immediately 260 
at day 0 along with GM-CSF, which resulted in robust transcriptional changes over time63–66 (Fig. 261 
3C).  262 
 263 
We next sought to evaluate how the diverse signals we modeled in our in vitro experiments (time 264 
and ligand identity) were reflected in the transcriptional signatures observed in vivo. We first 265 
focused on gene programs that describe the temporal axis of monocyte (day 0) to differentiated 266 
monocyte-derived cell (day 7). We defined gene signatures based on differential gene expression 267 
at each time point (0, 1, 3, 7 days, Materials and Methods). (Fig. 3D). We identified several time-268 
dependent gene sets: genes that are downregulated following day 0, genes that are induced by 269 
day 3 and remain highly expressed at day 7, and genes that are gradually induced over the course 270 
of 7 days. Genes in the day 0 signature included S100A8, CD93, CD14 while genes in the day 7 271 
signature included MAF, ALOX15B, and ITGB5. We then asked how much variance in vivo is 272 
explained by the gene sets associated with in vitro time course study. We found that the gene 273 
sets changing over time in vitro explained a significant portion of the variance in vivo (Fig. 3E, P 274 
< 2.2e-16, Materials and Methods). To identify which time points in vitro resemble the in vivo 275 
subsets, we scored the subsets based on the day-specific gene sets (Fig. 3F). The day 0 gene 276 
signature on was most highly expressed by classical monocytes. The day 1 gene signature was 277 
expressed most highly by the RM2 subset. The day 7 signature was highly expressed by AM1, 278 
AM2, and proliferating cells. Other RM subsets show mixed scoring across day 0 to day 7 279 
consistent with an intermediate phenotype. As an alternative strategy to visualize these trends, 280 
we scored granuloma myeloid cells according to the day 0 and day 7 scores and visualized their 281 
distributions as a histogram. AM1 and AM2 cells scored higher for the day 7 signature than the 282 
day 0 signature. By contrast, classical monocytes (cMono) and RM1 scored higher for the day 0 283 
signature than the day 7 signature (Fig. 3G). Taken together, these data reinforce that granuloma 284 
myeloid cells exist on a spectrum of differentiation41,47. 285 
 286 
We next asked how ligands predicted by our NicheNet analysis and modeled in vitro using 287 
monocyte-derived cells aligned with variation in myeloid cell gene expression in vivo. Like our 288 
analysis of temporal signatures, we defined gene sets that describe each ligand using differential 289 
expression (Materials and Methods). Like the time-dependent gene sets, the ligand gene sets 290 
explain a significant amount of variance in vivo relative to random control gene sets (Fig. 3H). We 291 
next scored the in vivo subsets according to the in vitro ligand signatures and compared their 292 
relative scores across subsets. GM-CSF and TGF-β gene signatures are most expressed in the 293 
AMs with decreasing relative expression to classical monocytes; this is consistent with previous 294 
studies demonstrating the requirement of GM-CSF and TGF-β in alveolar macrophage 295 
development  (Fig. 3I)63,64,67. IL-4 signatures associated with the DC subsets68. TNF-α and IL-1β 296 
signatures showed more distinct subset expression whereas IL-6 and IFN-β showed similar, 297 
correlated trends with TGF-β and IFN-γ, respectively (Fig. 3J).  298 
 299 
We next visualized sites of in vivo TGF-β and IFN-γ signaling by staining granulomas for 300 
phosphorylated SMAD3 (pSMAD3) and phosphorylated STAT1 (pSTAT1). We used CD11c as a 301 
marker for macrophages based on our prior work showing this marker’s broad expression across 302 
subsets (Fig. S6, Fig. 2F, Fig. S4). We found that pSMAD3 signaling was widespread throughout 303 
granulomas, including in macrophages (Fig. S6, magenta), whereas cells regulated by STAT1 304 
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were less common. Three STAT1 phenotypes were noted in CD11c+ macrophages including 305 
pSTAT1-negative cells (phenotype 1), cells with intranuclear pSTAT1 (phenotype 2), and cells 306 
with cytoplasmic but not intranuclear pSTAT1 (phenotype 3). Each phenotype could be found in 307 
granulomas from macaques at 4- and 10-weeks post infection. pSTAT1-negative macrophages 308 
were often found in the granuloma’s lymphocyte cuff region whereas macrophages with intra-309 
nuclear pSTAT1 were present in closer proximity to necrosis. The phenotype 3 macrophages with 310 
cytoplasmic pSTAT1 were similar in size and appearance to alveolar macrophages and were 311 
present as clusters adjacent to or embedded within the granuloma’s lymphocyte cuff. Taken 312 
together, these data suggest that TGF-β and IFN-γ regulated macrophages are distinct subsets 313 
of cells that occur in different granuloma regions, potentially with different functional 314 
consequences for granuloma-level homeostasis and bacterial control.  315 
 316 
Alignment of myeloid states across species and related pathologies reveals conserved 317 
subsets 318 
 319 
The abundance of publicly available scRNA-seq data across diverse lung pathologies and other 320 
diseases inspired us to examine the possibility that the transcriptional subsets we identified in 321 
NHP granulomas were similarly observed across other lung pathologies. To test this possibility, 322 
we generated a human lung atlas of myeloid cells (>300,000 cells across 394 samples) in the 323 
lung representing diverse pathologies (Materials and Methods, Fig. 4A, Table S7-10)69.  324 
 325 
We first asked if there were any unique myeloid cell populations in TB granulomas that were not 326 
observed in other pathologies. To compare transcriptional subsets, we utilized Celltypist, a 327 
previously established computational framework for scRNA-seq cell type annotation (Materials 328 
and Methods)70. We trained a CellTypist model on our cynomolgus granuloma data and predicted 329 
the granuloma cluster labels within the human lung atlas (Fig. 4B)38. We observed strong mapping 330 
of most populations, including LAMP3+ DC, DC2, RM3, RM4, RM5, AM1, and AM2 (Fig. 4B). 331 
Predictions for RM1 were relatively weaker. Although RM6, defined by metallothionein genes like 332 
MT1X, failed to generate any predictions, a clear metallothionein-defined cluster (Cluster 17) was 333 
identified in the pan-lung pathology atlas. The weak mapping of RM1 may reflect a unique 334 
population of granuloma myeloid cells, or it may reflect the dynamic nature of TB granulomas 335 
where an immature population of myeloid cells is continually recruited to the granuloma in contrast 336 
to the other diseases analyzed. 337 
 338 
Our comparison of non-diseased and granuloma tissue revealed a trend involving a reduction in 339 
alveolar macrophages and expansion of specific myeloid populations in granuloma tissue. We 340 
next sought to test if these trends generalized to the other diseases in our lung atlas. When 341 
comparing control versus diseased samples present in the human lung atlas, we saw a significant 342 
decrease in the AM1 score and significant increases in LAMP3+ DC, RM3, and RM4 scores in 343 
diseased samples overall, consistent with a model where monocyte-derived cells alter the myeloid 344 
compartment during disease (Fig. 4C). 345 
 346 
Our observation of similar myeloid cell populations between a pan-lung atlas and granulomas 347 
next inspired us to investigate specific comparisons between our study and other published 348 
studies of mycobacterial disease and granulomatous pathologies.  349 
 350 
We compared our cynomolgus macaque study to a previously published study of lung samples 351 
from rhesus macaques with latent or active infection49. Again, we used Celltypist. We observed 352 
robust mapping and subset identification between mast cells, plasmacytoid DCs, and cDC1s 353 
across the two datasets (Fig. S7A). We observed more nuanced mapping between macrophage 354 
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populations. For example, the Alveolar TREM2+ population from the rhesus study mapped to 355 
multiple populations in our study (RM4, RM5, and RM6) (Fig. S7A). We next sought to examine 356 
the association of specific myeloid subsets from our study with the TB disease status as 357 
investigated in the rhesus study. pDCs were elevated in active infection, as described previously, 358 
in addition to RM1/RM2/RM3 populations which mapped to their “Alv IFN signature” (Fig. S7B). 359 
The alveolar macrophages AM1 and AM2 were more frequent in latent disease consistent with a 360 
model where active TB disease alters the lung immune landscape, similar to what is observed in 361 
COVID-1934.  362 
 363 
We next compared the macrophage subsets we identified in NHP with macrophage subsets 364 
identified in the lungs of C57BL/6J mice following infection with 1,500 Mtb CFU (Fig. S8A)71. 365 
Celltypist mapping failed to predict more than one broad cell type, so we modified our analysis to 366 
comparing and scoring 1:1 ortholog genes as previously done (Materials and Methods)72,73. Non-367 
macrophage subsets and proliferating cells were generally well-aligned (Fig. S8B-C). As 368 
previously observed with conservation of macrophage subsets across between mice and humans, 369 
concordance between mouse and cynomolgus macrophage subsets were mixed72. There was 370 
significant similarity between the Nos2-expressing IM1 and IM3 populations with RM2 and the 371 
C1QA-expressing IM2 population with RM4 and RM5.  372 
 373 
We next examined the relationship between NHP TB granulomas and other granulomatous 374 
diseases. We first compared our myeloid subsets to those observed in leprosy, a skin disease 375 
whose causative agent is a different mycobacterial species, Mycobacterium leprae37,74. Not 376 
surprisingly, we observed strong mapping with mast cells and no mapping with alveolar 377 
macrophages (Fig. 4D-E). We observed mapping of a limited number of recruited macrophage 378 
subsets (RM3 and RM4) to leprosy granulomas. RM3 and RM4 cells were more abundant in 379 
leprosy samples than normal skin suggesting that these populations are similarly enriched is a 380 
diseased environment (Fig. 4F).  381 
 382 
Sarcoidosis is a condition that results in granulomas in the lung and other tissues, and the etiology 383 
of sarcoid granulomas is still poorly understood75. We asked whether these two granulomatous 384 
diseases might have cellular features that distinguish between them76. We performed mapping 385 
using Celltypist and observed consistent, strong concordance between mast cells, pDCs, and 386 
monocytes (Fig. 4G-I). Neutrophils, DC1s, LAMP3+ DCs, RM1 and RM2 largely failed to map to 387 
sarcoidosis cells. Notably, RM1 and RM2 cells are marked by high expression of IDO1, CD274 388 
and CXCL9. A previous protein-centric study comparing human TB and sarcoidosis granulomas 389 
similarly observed an absence of macrophages co-expressing PD-L1 (CD274) and IDO1 390 
consistent with the observations made by imaging mass cytometry2. We hypothesize that the 391 
absence of neutrophils, DC1s, LAMP3+ DCs, RM1 and RM2 reflects an absence of signals these 392 
cells need for recruitment to and differentiation in granulomas. Together, these comparative 393 
analyses reveal that granuloma myeloid cells share similarities with other lung pathologies which 394 
may facilitate the repurposing of myeloid-targeted therapies in TB as well as mechanistic 395 
dissection of the signals that support the generation of these cellular states. 396 
 397 
DISCUSSION 398 
 399 
Myeloid cells play a critical role in TB pathogenesis from initiation to resolution15,25,77. The function 400 
of myeloid cells in granulomas is central to the trajectory of disease. Using a combination of 401 
experimental and computational techniques, we defined the transcriptional diversity of myeloid 402 
cells in the NHP TB granuloma. We found that granuloma myeloid cells are not a monolith and 403 
that cells harboring signatures of monocyte-derived cells are the dominant myeloid cell constituent 404 
of granulomas. Many of these myeloid cell populations are detectable as early as 4 weeks. Unlike 405 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.24.595747doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.24.595747
http://creativecommons.org/licenses/by-nd/4.0/


 

9 

the mouse model, we did not identify a univariate relationship between cellular subsets and 406 
bacterial control. We found that signatures of myeloid cell age and IFN-γ and TGF-β signaling 407 
explained a significant component of the in vivo transcriptional heterogeneity of granuloma 408 
myeloid cells. Lastly, by comparing TB granuloma myeloid cells to other lung pathologies, we 409 
found that TB granulomas harbor myeloid cell subsets that are transcriptionally similar to other 410 
lung pathologies. Disease-specific comparisons between TB and sarcoidosis granulomas 411 
identified cellular features that distinguish between these two types of granulomas. 412 
 413 
Myeloid cells integrate diverse signals (ontogeny, soluble cues, time) to shape their identity. 414 
Models of macrophage cell states in TB granulomas have historically focused on polarization 415 
along an M1-M2 axis, their spatial localization in granulomas, and a small number of canonical 416 
markers. In this study, we expand this model to place macrophages on a spectrum from classical 417 
monocytes to tissue-resident alveolar macrophages, with each subset being characterized by a 418 
distinct transcriptional profile. By comparing to non-diseased lung tissue from the same animals, 419 
we demonstrate how the lung tissue niche is remodeled locally in granulomas33,41,47,78,79.  420 
 421 
In vitro profiling further confirmed this spectrum by identifying the mixture of differentiation and 422 
cytokine factors that partially describe in vivo heterogeneity. Pairing computational predictions of 423 
cytokine activities, in vitro validation, and imaging of transcription factors that are phosphorylated 424 
in response to TGF-β and IFN-γ signaling, we observed that transcriptional variation in the 425 
myeloid compartment was associated with variation in IFN-γ and TGF-β signaling among others. 426 
The heterogeneity and combination of cytokines measured in granulomas support the idea that 427 
granuloma cells entering the microenvironment experience a complex mix of signals59,60. Future 428 
granuloma myeloid cell phenotyping should incorporate markers beyond canonical macrophage 429 
markers and aim to distinguish between monocyte-derived and tissue resident macrophages80–430 
82. Based on our findings, candidate markers for expanded protein-centric panels should consider 431 
including markers such as NR1H3, CEBPB, CLEC4E, FOLR2, and TREM2 to better define 432 
macrophage populations in the granuloma83–86.  433 
 434 
Our data revealed a macrophage population, RM2, which was high in IDO1, CXCL9, CXCL10, 435 
and CXCL11 expression. RM2 was present across all cohorts and significantly increased in 436 
granuloma samples. This population was also high for Mincle (CLEC4E), a receptor for 437 
mycobacterial ligands87. RM1 and RM3 displayed similar, albeit with lower expression of these 438 
key features, suggesting that they may be at a different activation or differentiation stage than this 439 
population. Metabolically, this population was uniquely high in tryptophan and glycolysis-related 440 
pathways and displayed high STAT1, NFKB1, and CEPBD activities. We hypothesize this 441 
population represents an immunoregulatory subset composed of recently recruited and immature 442 
macrophages. This population shares various features with similar cells described as key 443 
mediators of Salmonella infection and Mtb-infected cells42,88. The consequence of this population 444 
in the microenvironment remains paradoxical. The expression of tryptophan metabolism and 445 
CEBPD activity also suggests an immunoregulatory role but the combination of IFN-γ and TNF-α 446 
has been noted to drive inflammatory cell death and tissue damage89–93. Interrogating the 447 
consequence of this population at the site of the granuloma may identify a balance of functional 448 
roles this population performs. 449 
 450 
Interactions between alveolar macrophages and Mtb are one of the earliest detected interactions 451 
between Mtb and the host94. While alveolar macrophages are a gateway to the lung early in 452 
infection, our data show that monocyte-derived cells are the major contributors to the macrophage 453 
compartment in the granuloma.  Recent studies in other lung diseases emphasize the importance 454 
of monocyte-derived cells. For example, bronchoalveolar lavage samples from individuals with 455 
severe COVID-19 disease have a decreased frequency of tissue resident alveolar macrophage 456 
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and an increased frequency of monocyte-derived cells34. It was hypothesized that this increased 457 
frequency of inflammatory monocyte-derived cells may be associated with worsened outcomes 458 
due by recruiting inflammatory monocytes and neutrophils. The role of monocyte recruitment in 459 
TB disease is nuanced and has not been rigorously examined in the NHP model of TB disease. 460 
In murine studies, monocyte recruitment has been experimentally explored through the utilization 461 
of mice deficient in the chemokine receptor, CCR295,96. The conclusion from these studies is that 462 
at high doses of Mtb, loss of CCR2 has a dramatic impact on susceptibility while CCR2 appears 463 
dispensable at low doses of Mtb challenge. It is difficult to predict how perturbation of monocyte 464 
recruitment in TB disease may impact granuloma formation or TB disease outcome, especially 465 
given the diversity of monocyte-derived cells in granulomas. A previous murine study does 466 
suggest that monocyte-derived cells have higher antimicrobial potential than alveolar 467 
macrophages while a different study suggests that human monocytes have reduced capacity to 468 
control Mtb growth compared to monocyte-derived or alveolar macrophages30,97. Future 469 
experimental studies in NHP may be poised to define a functional role for specific populations of 470 
myeloid cells in granuloma function as several myeloid subpopulations were defined by genes 471 
encoding cell surface proteins suggesting the potential for antibody-mediated cell depletion. 472 
These markers include CD36, CLEC9A, FOLR2, MRC1, MS4A7, and SLAMF7 among others. 473 
 474 
Recent studies in lung cancer suggest that monocyte-derived cells in the lung may have 475 
immunosuppressive functions33. TREM2+ monocyte-derived macrophages have become the 476 
subject of intense study, in part inspired by a large body of literature on TREM2 in the context of 477 
microglia function in the brain. Loss of TREM2 expression or activity has been shown to reduce 478 
tumor burden in several models of lung cancer84,98. Our data highlight the existence of similar 479 
transcriptional populations of TREM2+ cells in TB granulomas. A recent study suggests that 480 
TREM2+ macrophages result from the efferocytosis of cellular debris, and it is appealing to 481 
consider the contributions of cell death in TB granulomas, which has been widely documented, 482 
as a potential driver of this population of cells98. While TREM2+ macrophages have been 483 
implicated in immunosuppression, it will be necessary to examine whether they play a similarly 484 
immunosuppressive role in TB granulomas. More broadly, it will be valuable to explore new 485 
experimental perturbations in non-human primates to regulate monocyte-derived cell function, 486 
isolate them from granulomas, or model their function with novel in vitro models.  487 
 488 
Our analyses across other scRNA-seq profiles of lung diseases provides additional experimental 489 
support of many of the conclusions made with TB granulomas. Firstly, our observation of similar 490 
populations across diseases enhances our confidence in the identification of these transcriptional 491 
subsets. The observation of the shift from tissue-resident alveolar macrophages to monocyte-492 
derived macrophages across diseases emphasizes the importance of monocyte differentiation 493 
and recruitment as major events that may shape the course of lung diseases. Notably, RM1 and 494 
RM2, identified in TB granulomas, weakly mapped to populations in the human myeloid lung atlas. 495 
We hypothesize that this may be due to the temporal nature of sampling in these datasets which 496 
were generally late-stage fibrotic diseases and cancer; however, future studies should seek to 497 
determine if cells resembling the RM1 population is present in other diseases. It has recently been 498 
hypothesized that a transitional macrophage population “TransMac” exists during disease. 499 
Pseudotime analyses and experimental examination of the myeloid cell populations in the human 500 
lung atlas may resolve whether these intermediate populations differentiate into bona fide tissue-501 
resident macrophages or preserve their intermediate state47,79.  502 
 503 
Recent studies highlight a role for eosinophils in modulating infection and macrophage 504 
function17,18. In our study, we did not detect the canonical marker defining eosinophils, EPX, to 505 
any significant degree. Alternative scRNA-seq technologies may better facilitate their capture and 506 
analysis99,100. Lastly, our in vitro studies were limited to a small number of cytokines for 507 
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experimental feasibility subset of cytokines. The pleiotropic nature of several cytokines included, 508 
such as IL-6, further complicate these efforts101. Biologically, there may be multiple sets of 509 
cytokines that can generate a given cell state and computationally, recovering the stimulation 510 
history of cells in tissue is difficult; however, studies with tissue resident alveolar macrophages 511 
and cytokine neutralization studies in vivo may help disentangle this complexity in the future. 512 
 513 
In summary, our integrative and comparative investigation detailed the myeloid cell states in the 514 
granuloma microenvironment and across similar pathologies. By identifying and contextualizing 515 
these newly identified macrophage populations, we compiled significant evidence for acute, 516 
pathology-associated recruited macrophage states (primarily RM2, RM3, and RM4). Better 517 
understanding how these cell states modify the adaptive cell compartment will help differentiate 518 
the beneficial and pathogenic roles they may play at different points in infection. Taken together, 519 
our data substantiate a highly dynamic and microenvironment-driven monocyte-to-macrophage 520 
compartment that shares features across diseases and models. This framework has far-reaching 521 
implications and suggests the ability to co-opt biology across diseases as our understanding of 522 
their dynamics spatiotemporally and ability to therapeutically target these cells increases. Building 523 
complete models of macrophage state across perturbations–such as genetic knockouts, 524 
cytokines, cellular depletions, and vaccines–will enable rational dissection of the immune 525 
responses behind effective vaccines and host-directed therapies in TB.  526 
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MATERIALS AND METHODS 549 
Ethics statement 550 
All experimental manipulations, protocols, and care of the animals were approved by the 551 
University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee 552 
(IACUC). The protocol assurance number for our IACUC is D16-00118. Our specific protocol 553 
approval numbers for this project are 18124275 and IM-18124275-1. The IACUC adheres to 554 
national guidelines established in the Animal Welfare Act (7 U.S.C. Sections 2131 - 2159) and 555 
the Guide for the Care and Use of Laboratory Animals (8th Edition) as mandated by the U.S. 556 
Public Health Service Policy.  557 
 558 
All macaques used in this study were housed at the University of Pittsburgh in rooms with 559 
autonomously controlled temperature, humidity, and lighting. Animals were singly housed in 560 
caging at least 2 square meters apart that allowed visual and tactile contact with neighboring 561 
conspecifics. The macaques were fed twice daily with biscuits formulated for nonhuman primates, 562 
supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had 563 
access to water ad libitum. Because our macaques were singly housed due to the infectious 564 
nature of these studies, an enhanced enrichment plan was designed and overseen by our 565 
nonhuman primate enrichment specialist. This plan has three components. First, species-specific 566 
behaviors are encouraged. All animals have access to toys and other manipulata, some of which 567 
will be filled with food treats (e.g., frozen fruit, peanut butter, etc.). These are rotated on a regular 568 
basis. Puzzle feeders, foraging boards, and cardboard tubes containing small food items also are 569 
placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals 570 
stimulate interaction between animals. Second, routine interaction between humans and 571 
macaques are encouraged. These interactions occur daily and consist mainly of small food 572 
objects offered as enrichment and adhere to established safety protocols. Animal caretakers are 573 
encouraged to interact with the animals (by talking or with facial expressions) while performing 574 
tasks in the housing area. Routine procedures (e.g., feeding, cage cleaning, etc.) are done on a 575 
strict schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques 576 
are provided with a variety of visual and auditory stimulation. Housing areas contain either radios 577 
or TV/video equipment that play cartoons or other formats designed for children for at least 3 578 
hours each day. The videos and radios are rotated between animal rooms so that the same 579 
enrichment is not played repetitively for the same group of animals. 580 
 581 
All animals are checked at least twice daily to assess appetite, attitude, activity level, hydration 582 
status, etc. Following M. tuberculosis infection, the animals are monitored closely for evidence of 583 
disease (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams, including 584 
weights, are performed on a regular basis. Animals are sedated prior to all veterinary procedures 585 
(e.g., blood draws, etc.) using ketamine or other approved drugs. Regular PET/CT imaging is 586 
conducted on most of our macaques following infection and has proved very useful for monitoring 587 
disease progression. Our veterinary technicians monitor animals especially closely for any signs 588 
of pain or distress. If any are noted, appropriate supportive care (e.g., dietary supplementation, 589 
rehydration) and clinical treatments (analgesics) are given. Any animal considered to have 590 
advanced disease or intractable pain or distress from any cause is sedated with ketamine and 591 
then humanely euthanized using sodium pentobarbital. 592 
 593 
Research animals 594 
Four cynomolgus macaques (Macaca fascicularis), >4 years of age, (Valley Biosystems, 595 
Sacramento, CA) were housed within a Biosafety Level 3 (BSL-3) primate facility as previously 596 
described and as above. Animals were infected with low dose (~10 colony-forming units (CFUs)) 597 
M. tuberculosis (Erdman strain) via bronchoscopic instillation. Infection was confirmed by PET-598 
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CT scan at 4 weeks and monitored with clinical and radiographic examinations until 10 weeks 599 
post infection. 600 
 601 
Necropsy 602 
Necropsy was performed as previously described3. Briefly, an 18F-FDG PET-CT scan was 603 
performed on every animal 1-3 days prior to necropsy to measure disease progression and 604 
identify individual granulomas. At necropsy, monkeys were maximally bled and humanely 605 
sacrificed using pentobarbital and phenytoin (Euthanasia; Schering-Plough, Kenilworth, NJ). 606 
Individual granulomas previously identified by PET-CT and those that were not seen on imaging 607 
from lung and mediastinal lymph nodes were excised for histological analysis, bacterial burden, 608 
and other immunological studies. TB specific gross pathologic lesions and overall gross 609 
pathologic disease burden was quantified using a previously published method102. The size of 610 
each granuloma was measured by pre-necropsy scans and at necropsy. Granulomas were 611 
enzymatically dissociated using the gentleMACS dissociator system (Miltenyi Biotec, Inc.) to 612 
obtain single cell suspension and used to enumerate bacterial burden and applied on a Seq-Well 613 
device for scRNA-seq. 200 μL of each granuloma homogenate were plated in serial dilutions onto 614 
7H11 medium, and the CFU of M. tuberculosis growth were enumerated 21 days later to 615 
determine the number of bacilli in each granuloma103. As a quantitative measure of overall 616 
bacterial burden, a CFU score was derived from the summation of the log-transformed CFU/gram 617 
of each sample at the time of necropsy. 618 
 619 
Non-human primate single-cell RNA-sequencing (scRNA-seq) 620 
High-throughput scRNA-seq was performed using the Seq-Well platform as previously 621 
described104. Briefly, total cell counts from single-cell suspension of granuloma homogenate were 622 
enumerated and ~15,000-30,000 cells were applied to the surface of a Seq-Well device loaded 623 
with capture beads in the BSL-3 facility at University of Pittsburgh. Following cell loading, Seq-624 
Well devices were reversibly sealed with a polycarbonate membrane and incubated at 37°C for 625 
30 minutes. After membrane sealing, Seq-Well devices were submerged in lysis buffer (5M 626 
guanidine thiocyanate, 10 mM EDTA, 0.1% -mercaptoethanol, 0.1% Sarkosyl) and rocked for 30 627 
minutes. Following cell lysis, arrays were rocked for 40 minutes in 2 M NaCl to promote 628 
hybridization of mRNA to bead-bound capture oligos. Beads were removed from arrays by 629 
centrifugation and reverse transcription was performed at 52°C for 2 hours. Following reverse 630 
transcription, arrays were washed with TE-SDS (TE Buffer + 0.1% SDS) and twice with TE-Tween 631 
(TE Buffer + 0.01% Tween20). Following ExoI digestion, PCR amplification was performed to 632 
generate whole-transcriptome amplification (WTA) libraries. Specifically, a total of 2,000 beads 633 
were amplified in each PCR reaction using 16 cycles. Following PCR amplification, SPRI 634 
purification was performed at 0.6x and 0.8x volumetric ratios and eluted samples were quantified 635 
using a Qubit. Sequencing libraries were prepared by tagmentation of 800 pg of cDNA input using 636 
Illumina Nextera XT reagents. Tagmented libraries were purified using 0.6x and 0.8x volumetric 637 
SPRI ratios and final library concentrations were determined using a Qubit. Library size 638 
distributions were established using an Agilent TapeStation with D1000 High Sensitivity 639 
ScreenTapes (Agilent, Inc., USA).  640 
 641 
Non-human primate sequencing and alignment 642 
Libraries for each sample were sequenced on a NextSeq550 75 Cycle High Output sequencing 643 
kit (Illumina Inc., Sunnyvale, CA, USA). For each library, 20 bases were sequenced in read 1, 644 
which contains information for cell barcode (12 bp) and unique molecular identifier (UMI, 8bp), 645 
while 50 bases were obtained for each read 2 sequence. Cell barcode and UMI tagging of 646 
transcript reads was performed using DropSeqTools v1.12. Barcode and UMI-tagged sequencing 647 
reads were aligned to the Macaca fascicularis v5 genome 648 
(https://useast.ensembl.org/Macaca_fascicularis/Info/Index) using the STAR aligner. Aligned 649 
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reads were then collapsed by barcode and UMI sequences to generate digital gene expression 650 
matrices with 10,000 barcodes for each array. 651 
 652 
Immunofluorescence staining of macaque granulomas 653 
Formalin-fixed paraffin-embedded granulomas were cut into 5-um sections and deparaffinized 654 
and processed as previously indicated using pressure-cooker mediated antigen retrieval and 655 
immunofluorescence staining105,106. For experiments investigating macrophage protein 656 
expression (Fig. S4), we used a cyclic staining process where the antibodies were stripped off 657 
the tissue between rounds by running the slide through a cycle of pressure cooking in tris-EDTA 658 
buffer as previously described105,106. At the end of the multi-round staining process, the tissue 659 
section was stripped of antibodies one final time and then stained with hematoxylin and eosin to 660 
image the granuloma’s morphologic characteristics. Primary antibodies included CD11b (rabbit 661 
polyclonal, Novus Biologicals, Centennial, CO), CD11c (mouse IgG2a, clone 5D11; Leica 662 
Microsystems, Deer Park, IL), CD68 (mouse IgG1, clone KP-1; Thermo Fisher Scientific, 663 
Waltham, MA), CD163 (mouse IgG1, clone 1D6; Thermo Fisher Scientific), CD206 (mouse IgG2b, 664 
clone 685645, Novus Biologicals), FOLR2 (rabbit polyclonal; Novus Biologicals), CSF1R (mouse 665 
IgG2b, clone 6B9B9; Novus Biologicals), phospho-SMAD3 (rabbit polyclonal; Novus Biologicals), 666 
and phospho-STAT1 (rabbit monoclonal, clone 58D6; Cell Signaling Technology, Danvers, MA). 667 
Donkey-anti rabbit or mouse secondary antibodies were purchased from Jackson 668 
ImmunoResearch (West Grove, PA). Where possible, multiplexed staining was performed with 669 
anti-isotype antibodies purchased from Jackson ImmunoResearch. For pSMAD3 and pSTAT1 670 
staining, CD11c and pSMAD3 were included in a primary antibody cocktail, followed by secondary 671 
staining, and then a Zenon rabbit IgG labeling kit (Thermo Fisher Scientific) was used to label the 672 
pSTAT1 antibodies to enable the use of two rabbit antibodies in one round of staining. Coverslips 673 
were applied with Prolong Gold Mounting medium containing DAPI and the sections were imaged 674 
at 20x with a DS-Qi2 camera (Nikon, Melville, NY) on an e1000 epifluorescence microscope 675 
(Nikon) operated with Nikon AR Imaging software and acquired as ND2-format images that were 676 
exported as TIFF files. For images where multiple rounds of staining were performed, the images 677 
were aligned in Adobe Photoshop (Adobe Systems, Mountainview, CA) using the DAPI-stained 678 
nuclei for each round as consistent fiducial markers across rounds of staining. For plotting the 679 
position of CD11c+ cells expressing combinations pSMAD3 or pSTAT1, the images were 680 
segmented with QuPath and data were exported as CSV files for import into CytoMap for analysis 681 
and visualization107,108. Color schemes were selected to ensure accessibility to all audiences. 682 
 683 
Ex vivo macrophage isolation, differentiation, and stimulation 684 
Deidentified buffy coats from three healthy human donors were obtained from MGH Blood Center. 685 
PBMCs were isolated from buffy coats by density-based centrifugation using Ficoll (GE 686 
Healthcare). Monocytes were isolated using a CD14 positive selection enrichment kit (Stemcell) 687 
and frozen in liquid nitrogen. Isolated monocytes were cultured under 10 cytokine conditions, GM-688 
CSF with one of the following cytokines: IFN-β, IFN-γ, IL-1β, IL-4, IL-6, M-CSF, TGF-β, and TNF-689 
α. All cytokines were cultured at 10 ng/mL except for GM-CSF (25 ng/mL) and IL-1β (50 ng/mL). 690 
Macrophages were cultured for 1 day, 3 days, or 7 days. Additionally, a separate set of monocytes 691 
were differentiated to GM-CSF-derived macrophages then stimulated with the same combination 692 
of cytokines on day 6 for 24 hours ahead of RNA-sequencing on day 7. Lastly, on day 3, another 693 
set of differentiating macrophages were stimulated with Pam3CSK4 (10 ng/mL). All culture 694 
conditions were in RPMI 1640 (ThermoFisher Scientific) supplemented with 10% heat inactivated 695 
FBS (ThermoFisher Scientific), 1% HEPES, and 1% L-glutamine. 696 
 697 
Ex vivo macrophage RNA-sequencing 698 
RNA-sequencing was performed using prime-seq as described62. In brief, cells were lysed in 200 699 
uL of RLT + 1% BME buffer and snap frozen on dry ice. RNA was extracted after proteinase K 700 
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(15 minutes, 50C) and DNase I digestion (10 minutes, 25C) using SPRI beads. Reverse 701 
transcription (RT) was performed by resuspending beads in RT mix and barcoded oligo(dT) 702 
primers and incubating 90 minutes at 42C. All samples were then pooled (48 samples per pool) 703 
for SPRI-based clean-up, exonuclease digestion, and cDNA amplification. After cDNA 704 
amplification, samples were ligated and amplified for sequencing. Libraries were analyzed using 705 
Qubit dsDNA HS and Agilent TapeStation D1000 kits.  Libraries were sequenced on a NextSeq 706 
500 system (Illumina). Count matrices were generated using kallisto bustools against GRCh38109. 707 
 708 
Processing of public datasets 709 
Raw count matrices and metadata from Esaulova et al. was accessed via GSE14975849. A 710 
preprocessed and annotated R object from Pisu et al. was downloaded from GSE16723271.  Skin 711 
leprosy and lepromatous lesions/reversal reaction (LL/RR) samples were compiled from 712 
GSE150672 and GSE151528, respectively37,74. Sarcoidosis samples were compiled from 713 
GSE13589376. Only sarcoidosis samples were utilized. These single-cell data were processed as 714 
described previously. Human lung datasets used for integration are detailed in Table S9. 715 
 716 
Ortholog mapping 717 
Ortholog mapping between human, mouse, cynomolgus macaque, and macaque genomes was 718 
performed using the Ensembl database. In analyses where cross-species comparison was 719 
utilized, only one-to-one orthologs or genes with identical symbols were included based on the 720 
Ensembl database (Ensembl genes 104, Human genes GRCh38.p13) with the following 721 
attributes: Gene stable ID, Gene name, Mouse gene name, Mouse gene stable ID, Macaque gene 722 
name, Macaque gene stable ID, Crab-eating macaque gene name, Crab-eating macaque gene 723 
stable ID. 724 
 725 
Identification of ambient RNA-associated genes 726 
We used SoupX as described to identify potentially problematic genes due to ambient RNA 727 
contamination. Ambient contamination per array was automatically estimated (autoEstCont) using 728 
the raw count matrix. Gene counts in barcodes not identified as bona fide cells were utilized to 729 
determine a list of genes defined as “soup-defining.” The top 100 expressed genes (based on 730 
inspection of the distribution of counts within selected arrays) from each array were collated and 731 
genes present in at least three arrays with expression levels above the 33rd percentile or genes 732 
present in more than 14 arrays were classified as soup-defining. These genes were not included 733 
in any PCA or integration analyses. These genes included common housekeeping genes like 734 
ACTB, ATP6, COX1, ND6, TMSB4X along with ribosomal genes and dominantly-expressed cell 735 
lineage genes.  736 
 737 
Data preprocessing and quality control 738 
Data from cohort 1 (C1) was provided by the authors and is available on the Single Cell Portal 739 
(SCP257, SCP1749). From these week 10 data, we extracted originally assigned phagocytes 740 
(pDC, cDC, Macrophage, and Mast cell clusters) for downstream analyses. We additionally 741 
derived cell type markers from C1 using logistic regression differential expression controlling for 742 
the batch covariate for downstream use in annotation. Cohort 2 data were initially filtered through 743 
low stringency thresholds (>450 UMIs, >100 genes, <10% mitochondrial reads, <50% ribosomal 744 
reads, <10% heat shock family reads, <5 median absolute deviations (MADs)) and clustered. 745 
After standard processing (see Data processing, embedding, visualization, and clustering), 746 
additional cells were removed based on expert inspection of transcriptional profiles and technical 747 
metrics. 748 
 749 
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Data processing, embedding, visualization, and clustering 750 
Primary single-cell analyses were performed using Seurat. Counts were log-normalized using 751 
NormalizeData and the top 3000 variable features were selected using FindVariableFeatures 752 
(selection.method = “vst”). PCA was run on the scaled matrix on variable features only. Selection 753 
of downstream PCs was inspected using multiple methods including the “elbow” heuristic and an 754 
intrinsic dimension estimation (maxLikGlobalDimEst, intrinsicDimension, R). Batch effects were 755 
then corrected using Harmony (theta = 1, sigma = 0.1, lambda = 1, dims.use = 1:30) using 30 756 
PCs. Visualization of the UMAP embedding was generated using RunUMAP across 20 757 
dimensions. Clustering was performed on the shared nearest neighbor (SNN) graph (knn = 20, 758 
dimensions = 20) using the Walktrap algorithm (steps = 4, cluster_walktrap, igraph, R) and the 759 
Leiden algorithm (leiden_find_partition, leidenbase, R). Any clusters with less than 10 cells were 760 
automatically grouped into other clusters based on their SNN connectivity (modified 761 
GroupSingletons, Seurat, R). Leiden clustering was performed automatically by scanning 762 
resolutions with between 10 and 50 clusters then optimizing the modularity between those 763 
resolutions. Leiden and Walktrap results were visually inspected. Resulting clusters were 764 
hierarchically clustered and reordered (BuildClusterTree, Seurat, R) based on expression of all 765 
variable features. This procedure was standard and utilized across all datasets, as supported by 766 
recent benchmarking efforts110. 767 
 768 
Cluster annotation 769 
Differentially-expressed genes were calculated using the Wilcoxon Rank Sum Test and AUROC 770 
implemented in presto (wilcoxauc) and a logistic regression test implemented in Seurat 771 
(FindMarkers) using the array as a latent variable111. The log fold-change between the top two 772 
expressing clusters was also calculated to more aptly describe gene specificity and expression 773 
relative to similar clusters, as described previously72. Cells identified as cycling cells were 774 
subsetted, reprocessed, and reassigned based on cell type markers. To assist in lymphocyte 775 
annotation, we utilized a lung reference as well as original labels for C1112. We both scored cells 776 
based on differentially-expressed gene signatures and transferred cell labels using 777 
symphony113,114.  778 
 779 
Integration of cohort 1 and cohort 2 780 
Cohort 1 and cohort 2 phagocytes were integrated using the integration procedure in Seurat111. 781 
Using the reciprocal PCA approach, we integrated all batches with >= 201 cells. Each array was 782 
split and processed through PCA (normalization, variable gene identification, scaling, and PCA). 783 
Integration anchors were identified using FindIntegrationAnchors (dimensions = 1:30, k.filter = 784 
200, k.score = 20, k.anchor = 5, anchor.features = 3000, n.trees = 20).  Data was then integrated 785 
using IntegrateData (dimensions = 1:30). Subsequently, integrated data was analyzed as 786 
described (see Data processing, embedding, visualization, and clustering). These procedures 787 
were performed on a GCP Cloud Compute instance using 64 CPUs and 416 GB. 788 
 789 
Human lung myeloid atlas processing, integration, and analysis 790 
Integration of human lung myeloid cells was performed similarly to NHP cohort integration. All 791 
datasets were preprocessed through standardized gene and metadata harmonization. Quality 792 
control filters applied include < 20% mitochondrial reads, < 50% ribosomal reads, < 5% 793 
hemoglobin or heat shock reads, >= 200 nUMIs and >= 100 genes detected. Mononuclear 794 
phagocytes (MNPs) were identified by transferring HLCA labels as described above (see Cluster 795 
annotation) and by scoring cells based on signatures derived from that atlas. First, we define a 796 
MNP score for each cell, which is the difference between the HLCA scores for MNP cell types 797 
and non-MNP cell types. We then fit a Gaussian mixture model to this score and define an upper 798 
threshold of 2.5σ above µ. Clusters with a median score above this threshold were labeled as 799 
MNPs for the second round of classification. Cycling cells above this threshold were also included. 800 
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Clusters that did not reach the median score threshold or contained more than 50% of other cell 801 
types (as classified by the maximum Travaglini score) were not MNPs. A second round of 802 
preprocessing and annotation revealed contaminating non-MP clusters that were manually 803 
inspected and removed. This procedure combining automated labeling procedures and expert 804 
curation generated a robust set of mononuclear phagocytes for integration. 805 
 806 
We excluded samples with less than 100 cells and pulled the largest 3 control and 3 disease 807 
samples from each study. Reference samples were set to the most abundant control and disease 808 
sample from each study. Using the reciprocal PCA approach, we integrated all batches with >= 809 
201 cells. Each array was split and processed through PCA (normalization, variable gene 810 
identification, scaling, and PCA). Integration anchors were identified using 811 
FindIntegrationAnchors (dimensions = 1:20, k.filter = 200, k.score = 20, k.anchor = 5, 812 
anchor.features = 2000, n.trees = 20).  Data was then integrated using IntegrateData (dimensions 813 
= 1:30). These procedures were performed on a GCP Cloud Compute instance using 64 CPUs 814 
and 416 GB. Integrated data was then clustered as described previously (see Data processing, 815 
embedding, and clustering). CellTypist was used to build a granuloma reference model and 816 
predict labels on this atlas70. Diversity sampling was performed using scSampler (96). Only 817 
datasets with both control and disease samples were used. 1,000 cells were sampled across 818 
1,000 iterations for both random and diversity-preserving sampling procedures.  819 
 820 
Comparison with other scRNA-seq datasets 821 
To compare profiles with the mouse scRNA-seq data, we defined gene signatures for each subset 822 
in each dataset using methods described above (see Cluster annotation). We subsetted these 823 
signatures to 1:1 orthologs and scored subsets using UCell (AddModuleScore_UCell). The Nos2 824 
signature was identified by calculating the Spearman correlation of all genes with Nos2 and 825 
extracting the top 50 genes with a positive Spearman correlation coefficient. To compare with 826 
rhesus macaque and human leprosy data, symphony was used to build a reference model and 827 
transfer labels. Sarcoidosis was compared using the Seurat transfer procedure based on PCA 828 
projection across 30 dimensions111.  829 
 830 
Enrichment and activity analysis 831 
We utilized Enrichr (enrichR, R package) to perform gene set enrichment analysis on the 832 
differentially-expressed genes115. The GO Molecular Function database was utilized to calculate 833 
enrichment using Fisher’s exact test. We used decoupleR to calculate transcription factor and 834 
metabolic pathway activity from DoRothEa and KEGG databases, respectively116. The normalized 835 
weighted mean scoring procedure was used based on its benchmarked performance. 836 
 837 
NicheNet 838 
NicheNet was used to identify potential ligand-receptor activity within myeloid populations, as 839 
outlined in the method vignettes57. Briefly, we first define sender and receiver populations, 840 
background and target gene sets, and potential ligands. Target gene sets were defined as 841 
differentially-expressed genes with the highest gene expression across all clusters and an auROC 842 
>= 0.6 and adjusted P value <= 0.001. Background gene sets were defined by expression in at 843 
least 10% of cells. NicheNet returns ligand activities based on target genes relative to background 844 
genes. Potential receptors are then identified from top ligands. In this application, we defined 845 
sender populations as cells not utilized for defining the target gene set (e.g., all subsets except 846 
RM3). The Pearson correlation coefficient and auROC is reported as a measure of suggested 847 
ligand activity.  848 
 849 
Statistical methods 850 
For all the analysis and plots, sample sizes and measures of center and confidence intervals 851 
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(mean ± SD or SEM), and statistical significance are presented in the figures, figure legends, and 852 
in the text. Cellular abundances were tested using a binomial generalized linear model. Inverse 853 
Simpson Index was calculated using cell counts (vegan::diversity function). Differentially-854 
expressed markers were determined by comparing groups using a Mann-Whitney U test in 855 
addition to the auROC metric (wilcoxauc, presto, R). Gene enrichment was calculated using 856 
Fisher’s exact test. Score comparisons were conducted using Mann-Whitney U tests, adjusted 857 
using the Benjamini-Hochberg procedure. NicheNet statistics were calculated as previously 858 
described. All P values and, where appropriate, adjusted P values were considered significant at 859 
≤ 0.05. All statistical analyses were performed in R using base statistics and supporting packages. 860 
 861 
  862 
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 1166 
Figure Captions 1167 
 1168 
Fig. 1. Increased myeloid cell diversity in granulomas. (A) Diagrammatic overview of study 1169 
workflow (B) UMAP embedding of integrated cells colored by annotated cell state. (C) Clustered 1170 
heatmap of gene expression, scaled log10(TP10K+1), across cell states. The top 2 markers by 1171 
AUROC are shown for each state.  (D) GO molecular function enrichment for the top 50 markers 1172 
across cell states. (E) Hierarchically clustered scaled scores of M1 and M2 transcriptional 1173 
signatures across macrophages states.  1174 
 1175 
Fig. 2. Monocytes and macrophages form a transcriptional continuum aligned with 1176 
ontogeny. (A) Average fractional abundance of cell states between non-diseased and granuloma 1177 
samples. Inverse Simpson’s Index describes state diversity within each sample type. Asterisk 1178 
denotes significant change per state in abundance between non-diseased and granuloma 1179 
samples at adjusted P value < 0.05. (B) Fractional abundance of select cell states across week 1180 
4, week 10 early, week 10 late, or non-diseased samples. Error bars indicate standard error of 1181 
the fractional abundance mean. (C) Fractional abundance between non-diseased and granuloma 1182 
samples based on inferred monocyte-derived or tissue-resident ontogeny. (D) Log-normalized 1183 
expression of canonical markers across select monocyte and macrophage markers. Error bar 1184 
represents standard error of the mean expression per subset. (E) Distribution of signature scores 1185 
across subsets. Signatures are derived from Casanova-Acebes et al. 2021 for murine and human 1186 
monocyte-derived and tissue-resident macrophages. (F) Immunofluorescence staining of CD11b, 1187 
CD163, and CD206 in macaque granulomas.   1188 
 1189 
Fig. 3. In vitro differentiation and stimulation describes in vivo transcriptional variability. 1190 
(A) NicheNet predicted ligands based on genes differentially expressed by the RM3 state. (B) 1191 
Overview of experimental setup for ex vivo primary macrophage culture, stimulation, and 1192 
sampling. (C) Number of differentially expressed (DE) genes based on time * cue interaction 1193 
model for each condition. (D) Normalized expression of DE genes for each day expressed across 1194 
the timepoints. (E) Percent of variance explained in NHP data by top 200 genes associated with 1195 
time, based on significance, compared to distribution of 1,000 random gene sets. (F) Scaled score 1196 
for each day signature across NHP myeloid states. (G) Distribution of scaled day 1 and day 7 1197 
signature scores across NHP myeloid states. (H) Percent of variance explained in NHP data by 1198 
top 200 genes associated with cytokine stimulations, compared to distribution of 1,000 random 1199 
gene sets. (I) Scaled score for each cytokine signature across NHP myeloid states. (J) Select 1200 
cytokine signature scores pseudobulked across subsets between non-diseased and granuloma 1201 
samples.  1202 
 1203 
Fig. 4. Myeloid human lung atlas suggests conserved disease-induced diversity and 1204 
transcriptional states. (A) UMAP projection of integrated human lung atlas myeloid cells (B) 1205 
CellTypist classification of cell populations across this study and human lung myeloid atlas (C) 1206 
Reanalysis (UMAP) of leprosy granuloma samples from Hughes et al. (D) CellTypist classification 1207 
of cell populations across this study and Hughes et al. (E) Comparison of cellular subset 1208 
abundance in Hughes et al across healthy and granuloma skin samples. (F) Reanalysis (UMAP) 1209 
of sarcoidosis granuloma samples from Habermann et al. (G) CellTypist classification of cell 1210 
populations across this study and Habermann et al. (H) Comparison of cellular subset abundance 1211 
in Habermann et al across healthy and sarcoidosis granuloma samples.  1212 
 1213 
Supplemental Figure Captions 1214 
 1215 
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Fig. S1. Technical assessment of ambient and batch effects. (A) Average expression of 1216 
genes in non-cellular barcodes across batches colored by ambient thresholds for variable gene 1217 
exclusion. (B) UMAP embedding and LISI metrics for week 10 cohort 2 data colored by batch.  1218 
 1219 
Fig. S2. Overview of week 10 cohort 2 infection. (A) UMAP embedding of annotated week 10 1220 
cohort 2 data colored by annotated cell type. (B) Clustered heatmap of scaled log(TP10K+1) 1221 
expression values of marker genes across annotated cell types.  1222 
 1223 
Fig. S3. Inverse Simpson’s Index across sample types. (A) Inverse Simpson’s Index 1224 
describing sample diversity across sample types, non-diseased, week 10 early, week 10 late, and 1225 
week 4. P values were adjusted using the Benjamini-Hochberg procedure. Adjusted P values are 1226 
denoted by: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. Only comparisons significant 1227 
at p < 0.05 are shown. 1228 
 1229 
Fig. S4. Immunofluorescence staining of myeloid cell markers in macaque granulomas 1230 
shows that subset-defining antigens are expressed in different granuloma locations. A 1231 
cyclic immunofluorescence staining protocol was used on a necrotic granuloma to examine the 1232 
protein expression and localization of transcriptionally defined subsets identified by scRNA-seq 1233 
analysis. Protein markers (yellow) are shown against the granuloma's DAPI-stained nuclei (blue). 1234 
The inset region represented by the black box shown in the hematoxylin and eosin-stained image 1235 
(top left) was selected to show representative granuloma regions including intact granuloma-1236 
adjacent lung (inset, top left), lymphocyte cuff and epithelioid macrophage regions (inset, middle), 1237 
and caseum (inset, bottom right). 1238 
 1239 
Fig. S5. NicheNet analysis of cytokine production. Cell-type specific analysis of gene 1240 
expression of cytokines predicted by NicheNet to be acting on RM2 cells.  1241 
 1242 
Fig. S6. Immunofluorescence staining of pSTAT1 and pSMAD3 in macaque 1243 
granulomas. Granulomas harvested from animals euthanized at (A) 4- or (B) 10-weeks post 1244 
infection were stained for pSTAT1 (green) and pSMAD3 (magenta) as surrogates for IFN-γ and 1245 
TGF-β signaling, respectively. CD11c (blue) was used as a broadly-expressed macrophage 1246 
marker (blue) and maps showing the position of the granuloma's nuclei (grey) and 1247 
pSTAT1+CD11c+ (green) and pSMAD3+CD11c+ (magenta) macrophages is shown to facilitate 1248 
visualization of each population's location (middle panels). The position of three distinct pSTAT1 1249 
phenotypes noted on the full granuloma image and zoomed in regions (right) are shown with the 1250 
region's nuclei (DAPI; grey) to show the cellularity within each region.        1251 
 1252 
Fig. S7. Alignment of NHP states with NHP states in Esaulova et al.  (A) CellTypist 1253 
classification of cell populations across this study and Esaulova et al. (B) Proportion of predicted 1254 
granuloma labels from cynomolgus subsets between control, latent, and active rhesus samples. 1255 
 1256 
Fig. S8. Alignment of NHP states with murine states. (A) Hierarchically-clustered heatmap of 1257 
AUROC values for murine subsets annotated from Pisu et al. 2020. Supplementary bar plot (right) 1258 
describes the number of DE genes per subset. (B) Hierarchically-clustered heatmap of scaled 1259 
NHP scores of murine signatures. (C) Hierarchically-clustered heatmap of scaled murine scores 1260 
of NHP signatures.  1261 
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