

# 1      **Dating the origin of a viral** 2      **domestication event in parasitoid** 3      **wasps attacking Diptera**

4      **Benjamin Guinet<sup>1,2,3\*</sup>, Jonathan Vogel<sup>4</sup>, Ralph S. Peters<sup>4</sup>, Jan Hrcek<sup>5</sup>, Matthew L.**  
5      **Buffington<sup>6</sup>, Julien Varaldi<sup>1,\*</sup>**

6      <sup>1</sup>Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622  
7      Villeurbanne, France; <sup>2</sup>Centre for Palaeogenetics, Stockholm, Sweden; <sup>3</sup>Department of  
8      Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden;  
9      <sup>4</sup>Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn,  
10     Adenauerallee 160, 53113 Bonn, Germany; <sup>5</sup>Biology Centre of the Czech Academy of  
11     Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech  
12     Republic; <sup>6</sup>USDA-ARS Systematic Entomology Laboratory, Washington D.C., USA.

13

---

**Code availability:** Produced  
codes can be available on  
[Viral\\_domestication\\_Eucoilini\\_up](#).

**Data availability:** Preprocessed  
data can be available under the  
NCBI BioProject PRJNA831620.

**Competing interests:** The  
author declare no competing  
interests.

## 14      **Abstract**

15      Over the course of evolution, hymenopteran parasitoids have developed a close relationship with  
16      heritable viruses, sometimes even integrating viral genes into their chromosomes. For example, in  
17      *Drosophila* parasitoids belonging to the Leptopilina genus, 13 viral genes from the Filamentoviridae  
18      family have been integrated and domesticated to deliver immunosuppressive factors to host immune  
19      cells, thereby protecting parasitoid offspring from host immune responses. The present study aims to  
20      comprehensively characterise this domestication event in terms of the viral genes involved, the wasp  
21      diversity affected by this event, and its chronology. Our genomic analysis of 41 Cynipoidea wasps from  
22      six subfamilies revealed 18 viral genes that were endogenised during the early radiation of the  
23      Eucoilini+Trichoplastini clade around 75 million years ago. Wasps from this highly diverse clade develop  
24      not only from *Drosophila* but also from a variety of Schizophora. This event coincides with the radiation  
25      of Schizophora, a highly speciose Diptera clade, suggesting that viral domestication facilitated wasp  
26      diversification in response to host diversification. Additionally, at least one viral gene was replaced by  
27      another Filamentovirus gene in one of the species, highlighting the dynamic nature of viral  
28      endogenisation. This study highlights the impact of viral domestication on the diversification of parasitoid  
29      wasps.

30

---

### 31 1. Introduction

32 Parasitoid wasps exhibit remarkable species richness, constituting a major component of insect biodiversity [30]. Their  
33 biology is characterized by a peculiar reproductive strategy, wherein the parasitoid wasp larvae develop in (endoparasitoid)  
34 or on (ectoparasitoid) their host, mostly other insects. Because they usually ultimately kill their hosts, they are major  
35 players in the regulation of insect communities. Throughout evolution, endoparasitoid wasps have maintained a special  
36 relationship with viruses. This is evident not only from the abundance and diversity of "free-living" heritable viruses that  
37 are injected during oviposition into their hosts [46], [17], [85],[20],[86, 36] but also from the abundance of endogenous viral  
38 elements found in their genomes. In line with this idea, it was recently found that Hymenoptera with an endoparasitoid  
39 lifestyle had a higher propensity to endogenize (i.e. integrate into their chromosomes) and domesticate (i.e. retain by  
40 selection) genes acquired from dsDNA viruses, compared with ectoparasitoids or free-living Hymenoptera [37]. Some  
41 of these endogenous viral elements (EVEs) have played an essential role in the interaction between these wasps and  
42 immunity of their hosts. In some wasps, entire viral machineries have been domesticated, resulting in the production  
43 of "virus-like structures" (VLS) in the reproductive apparatus of females. These VLS enable the delivery of either DNA  
44 encoding immunosuppressive factors or immunosuppressive proteins to the host's immune system [10, 88, 63, 16, 22].  
45 When VLS contain DNA, in systems known as polydnnaviruses (PDVs), the DNA integrates into the host hemocyte's  
46 DNA, gets expressed [18] and subsequently influences the host's physiology and behaviour, ultimately favoring the  
47 development of wasp offspring [18, 57]. Alternatively, when VLS contain proteins in systems known as virus-like particles  
48 (VLPs), the viral machinery facilitates the entry of virulence proteins into host immune cells, thereby suppressing the  
49 host immune response [67],[24]. The domestication of viruses has probably contributed to adaptive radiation observed  
50 in some highly speciose clades of endoparasitoid wasps, for instance in the microgastroid complex (Ichneumonoidea:  
51 Braconidae) following domestication of an ancestral nudivirus [66], [10].

52 Recently, a new case of viral domestication has been put forward in the *Drosophila* parasitoids belonging to the  
53 genus *Leptopilina* (Figitidae)[22]. Since the 1980's, it was recognized that *Leptopilina* females protect their offspring  
54 by producing VLPs in their venom gland, but the evolutionary origin of the genes responsible for their production was  
55 unknown [67, 68, 34]. The analysis of their genomes revealed the presence of 13 EVEs that are clustered in the wasp  
56 genome, with some level of synteny conservation among species, supporting the hypothesis of a single endogenization  
57 event pre-dating the diversification of *Leptopilina* species [22]. However, the wasp diversity affected by this domestication  
58 event and its chronology remain unclear.

59 These EVEs are specifically expressed in the venom gland during the early pupal stage of the wasp when VLPs are  
60 synthesized. Furthermore, a viral DNA polymerase (LbFVorf58) most likely amplifies some of the EVEs (10/13) resulting  
61 in a concordant peak in DNA copy number and transcripts levels [22]. The intact open reading frames and the very low  
62 *dN/dS* values for all 13 EVEs further indicate that these genes are under strong purifying selection since their entry in  
63 wasp genomes. Finally, one of these EVEs (LbFVorf85) has been detected as a protein in purified VLPs, providing further  
64 evidence for the involvement of these EVEs in VLP production. Once formed in the venom gland, VLPs are injected into  
65 the host along with the egg, allowing the delivery of proteins to host immune cells, ultimately protecting the developing  
66 parasitoid from the host immune response [67, 64, 64]. The ancestral virus that provided *Leptopilina* species with these  
67 genes belongs to a recently proposed new family of dsDNA viruses, i.e. the Filamentoviridae [36]. Filamentoviridae  
68 appear to be specialized on hymenopteran parasitoids, as suggested but the fact that all known Filamentovirus only  
69 infect endoparasitoid wasps and that endogenous versions of filamentous genes are preferentially and often found in  
70 the genomes of Hymenoptera with endoparasitoid lifestyle, such as for instance *Dolichomitus*sp. (Ichneumonidae) [15]  
71 and *Platygaster orseoliae* (Platygastridae) [37][36], while they are extremely rare in the genomes of non-parasitoid  
72 hymenopterans [36].

73 So far, all examined species within *Leptopilina* (6 species) tested positive for these Filamentovirus EVEs (FV EVEs).  
74 Two species, attacking similar hosts, belonging to the related genus *Ganaspis*, were negative [22]. This suggests that the  
75 endogenization event occurred within Figitidae after the split between *Ganaspis* and *Leptopilina* species (approximately  
76 around 91.1 mya, [11]) but before the diversification of *Leptopilina* (<40 mya, [11]). However, because *Ganaspis* is quite  
77 distantly related to *Leptopilina*, and because several intermediate clades interleaved between those taxa were not tested,  
78 the breadth of the Figitidae diversity concerned by this event is currently unknown. In addition, despite the absence  
79 of FV-derived genes in *Ganaspis*, it is still possible that the domestication is predating the split between *Ganaspis*

80 and *Leptopilina*, if a subsequent loss in *Ganaspis* did occur. Additionally, since only one Filamentoviridae genome  
81 was available at the time that the *Leptopilina* genomes were screened for viral genes, we can expect the discovery of  
82 additional genes, now that more FV have been sequenced [36]. In short, our understanding of this major endogenization  
83 event remains incomplete both in terms of the diversity of wasps involved and the viral genes involved.

84 Figitidae are the most speciose family within Cynipoidea superfamily and play an important ecological role in a wide  
85 range of environments by controlling the populations of their widely distributed and diversified hosts [14]. Most of them  
86 are koinobiont endoparasitoids (meaning they allow the host to continue development while the parasitoid larva grows)  
87 attacking larvae of Schizophora flies. These flies account for one-third of fly diversity within Cyclorrhapha, with over  
88 55,000 known species [6] and are encountered in all parts of the world in various habitats encompassing leaf-mines,  
89 decaying fruits, dung or carcass [70]. The known diversity of Figitidae is also remarkable knowing the challenge of  
90 morphological identification in this clade [53], with more than 1700 species described for Figitidae. Within the Figitidae  
91 family, the Eucoilinae subfamily, to which *Leptopilina* belongs, stands out as the most species-rich, with around 1000  
92 described species, constituting the major part of Figitidae diversity [29, 69, 71].

93 In this paper, we first tested whether the viral domestication documented in *Leptopilina* sp. is restricted to Figitidae  
94 attacking *Drosophila* larvae living in decaying organic matter, as *Leptopilina* species do, or is rather shared with other  
95 Figitidae with different ecology (i.e. attacking non-*Drosophila* hosts and/or living in different habitats). Second, we asked  
96 the question : if a new wasp species turn out to share the same orthologous EVEs, will they also be associated with VLP  
97 production?

98 To address these questions, the presence of FV-like EVEs was first investigated in 26 Figitidae species covering  
99 most of the Figitidae diversity using a combination of PCR and whole genome sequencing. The results revealed a  
100 single ancestral endogenization event in the common ancestor of all Eucoilini+Trichoplastini, including *Drosophila* and  
101 non-*Drosophila* parasitoids, that occurred around 76.4 million years ago during the late Cretaceous period, roughly  
102 coinciding with the timing of Schizophora hosts diversification. Furthermore, we bring to light some unpublished results  
103 from a 1999 PhD thesis showing that the most early diverging species of this virus-bearing clade, do also produce VLPs.  
104 Using the whole genomes dataset, we additionally identify new genes (apart from the 13 genes identified by [22]) that  
105 derive from the same ancestral endogenization event, thanks to recent advances in the delineation of Filamentovirus  
106 diversity [36]. A second independent endogenization event involving a close relative of LbFV was also observed in one  
107 species, which likely resulted in the replacement of a gene acquired from the ancestral event. These results support the  
108 critical role played by Filamentovirus core genes in the production of VLPs in endoparasitoids and their diversification.

## 109 2. Results

### 110 (a) All Eucoilini+Trichoplastini species contain filamentoviridae genes in their chromosomes

111 In order to investigate the distribution of Filamentoviridae-derived genes among Figitidae wasps (+four additional outgroup  
112 species belonging to Liopteridae and Cynipidae), a PCR screening was conducted on 41 specimens representing 20  
113 genera divided into 6 subfamilies, i.e., around 145 mya of wasp evolution [11] (FigureS2,FigureS3). As expected from  
114 previous results, the three *Leptopilina* species were positive, while *Ganaspis* was negative. In addition, we found that  
115 *Trybliographa* sp. was also positive (FigureS2). Following this preliminary PCR screening, we sequenced and assembled  
116 the genomes of *Trybliographa* sp., along with two related wasps belonging to the Trichoplastini: *Rhoptromeris* sp. and  
117 *Trichoplasta* sp. that were selected because of their position in between *Leptopilina* sp. and *Trybliographa* sp.. We also  
118 included in our analysis the most basal *Leptolamina* sp. of uncertain tribe [12, 84] and the published genome assemblies  
119 of *Leptopilina* (for which we utilized the long read assemblies for *L. heterotoma* and *L. boulardi*), as well as the genome  
120 assemblies of *Ganaspis* and *Synergus* (Cynipidae: Ceropresini). The assemblies of the nine species ranged from  
121 354.80 Mb to 935.64 Mb, with a minimum of 93.8% BUSCO genes (Complete and fragmented) (see TableS1 for all  
122 assemblies details). Using the predicted proteins from 7 Filamentoviridae viruses genomes as queries [36], we found  
123 significant viral hits in 6 out of 11 genomes: *L. boulardi*, *L. heterotoma*, *L. clavipes*, *Trybliographa* sp., *Rhoptromeris* sp.,  
124 and *Trichoplasta* sp. (Figure1-A). On the contrary, no viral hits were detected in the *Synergus* and *Ganaspis* genomes,  
125 nor in that of *Leptolamina*. In total, for the six positive-tested genomes, we identified 153 putative EVEs deriving from the  
126 integration of 25 Filamentovirus genes (FigureS1). Overall we found 25.6 EVEs/genomes (sd=14.68) with the highest  
127 number of EVEs in *L. boulardi* (n=54) and the lowest in *Trichoplasta* (n=15). For detailed filamentous gene alignments,

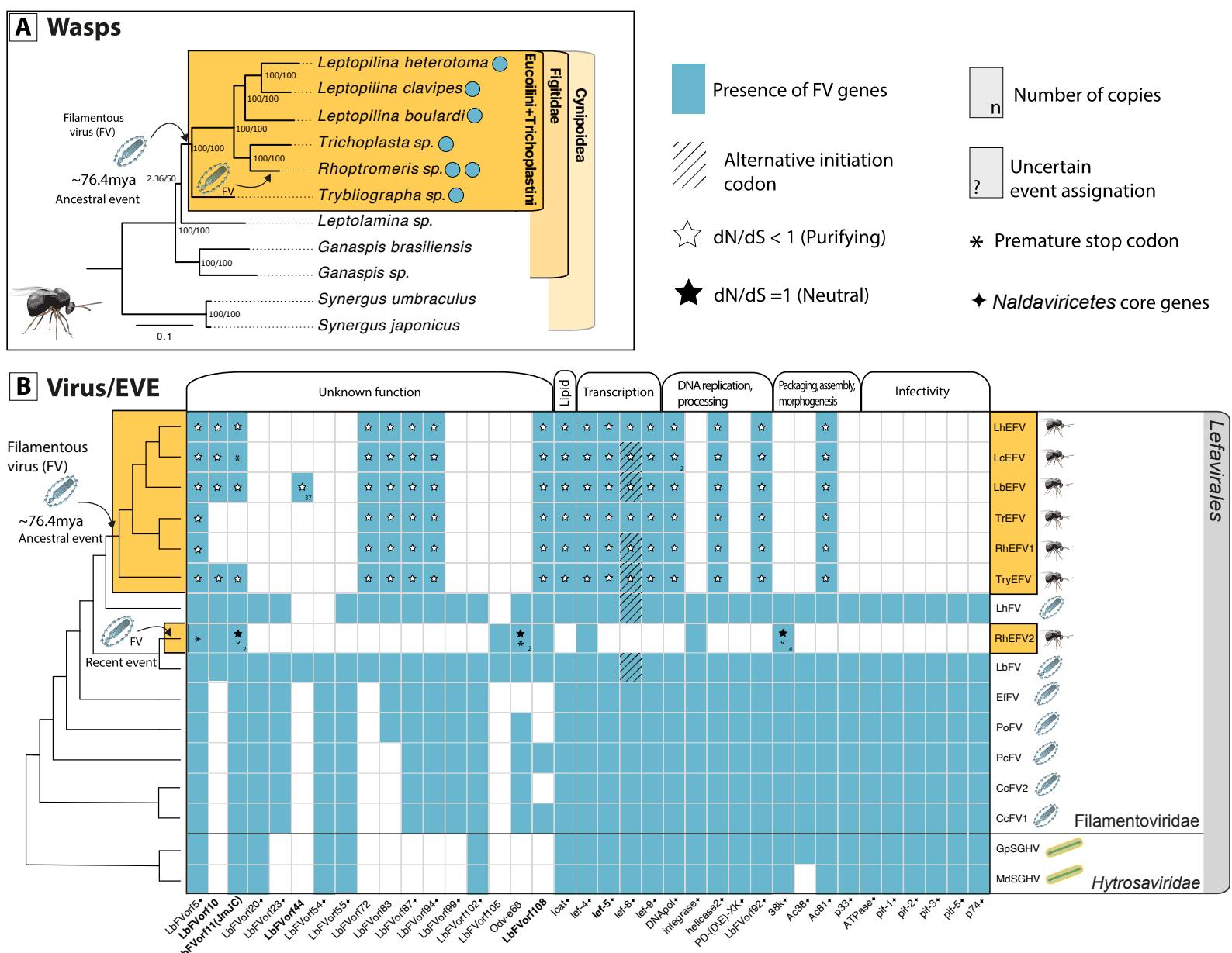
128 see FiguresS13. All 107 scaffolds containing the candidate EVEs had coverage and GC profiles similar to those of  
129 BUSCO scaffolds, providing evidence for their integration within wasp chromosomes (FigureS4). In addition, 55 out of the  
130 107 EVE-containing scaffolds, also harbored at least one eukaryotic gene or transposable element, further supporting  
131 their chromosomal integration into wasp chromosomes.

132 **(b) Two independent integration of Filamentovirus occurred in Eucoilini+Trichoplastini.**

133 Analyzing each of the 25 individual gene phylogenies revealed three topologies that will be briefly described below  
134 (FigureS5, see supplementary material for additional phylogenies).

135 In **type I** phylogenies, all Eucoilini+Trichoplastini sequences formed a monophyletic clade nested within a Filamentovirus  
136 clade, branching with Leptopilina heterotoma Filamentous virus (LhFV). These phylogenies are consistent with a single  
137 endogenization event occurring before the divergence of the 6 species and involving a LhFV-like donor.

138 In **type II** phylogenies, a single sequence from *Rhoptromeris* was nested within a Filamentovirus clade, typically branching  
139 with Leptopilina boulardi Filamentous virus (LbFV). These phylogenies suggested a single endogenization event  
140 specific to *Rhoptromeris* involving a LbFV-like donor.

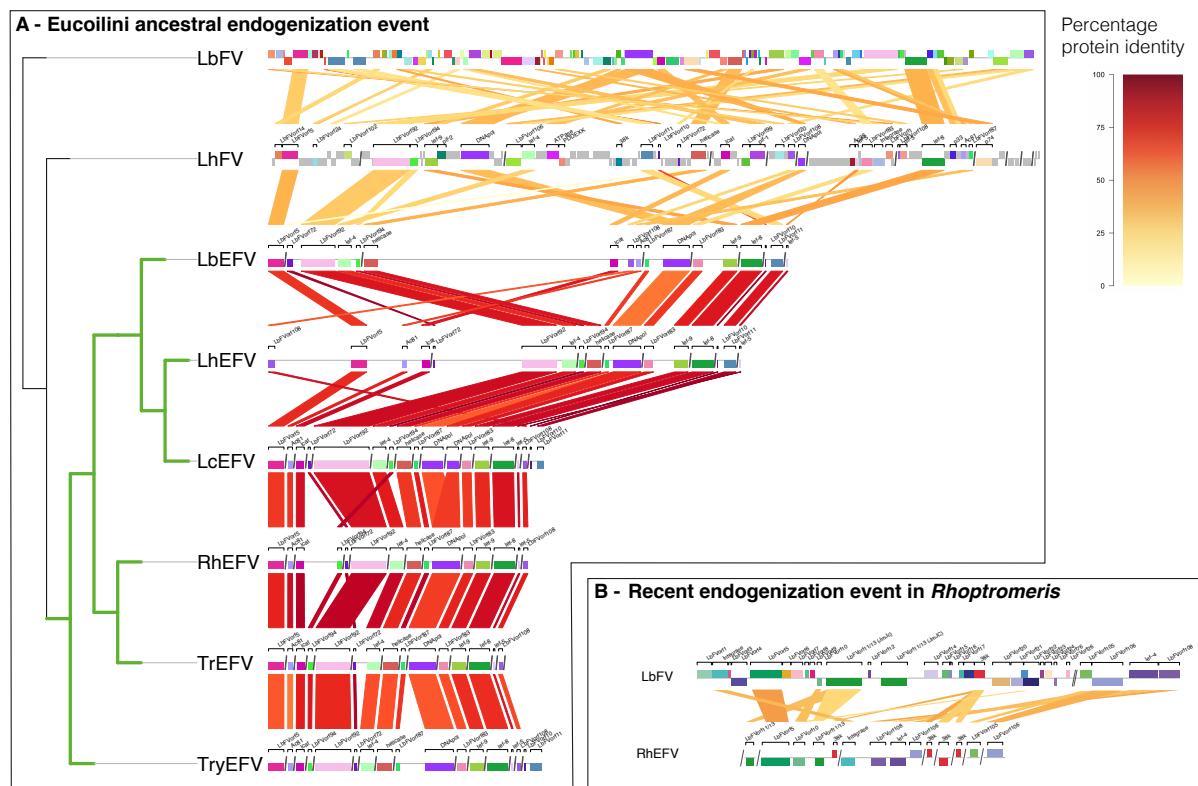

141 In **type III** phylogenies, both type I and type II patterns were observed, indicating an endogenization event involving  
142 a LhFV-like donor in the common ancestor of Eucoilini+Trichoplastini species (as in type I) and a second event in the  
143 branch leading to *Rhoptromeris* involving a LbFV-like donor (as in type II).

144 Out of the 25 genes, five were left unclassified because of insufficient signal, while 12 exhibited type I, 3 exhibited type II,  
145 and 5 exhibited type III patterns. All filamentous gene phylogenies can be found in FigureS14.

146

147 The gene-level phylogenetic analysis thus strongly suggests that two independent endogenization events did occur in  
148 this wasp clade: an ancestral event almost basal to the Eucoilini+Trichoplastini and another one more recent and specific  
149 to *Rhoptromeris*.

150 Because EVEs that are physically close to each other (in the same scaffold) are likely to have been acquired during  
151 the same endogenization event, we used this closeness as a criterion to group them. 71 out of the 153 EVEs were  
152 found to co-occur on the same scaffolds in one or the other genome assemblies (Figure2). As expected, this genomic-  
153 location-based grouping systematically grouped together genes with similar phylogenies supporting the hypothesis that  
154 co-location indeed indicates common evolutionary history. This way, it was possible to assign two unresolved gene  
155 phylogenies to the two events (LbFVorf44 in the ancestral event and LbFVorf105 in the recent *Rhoptromeris* event).  
156 Finally, integrating both phylogenetic and co-location information, we were able to assign 150 of the 153 FV-EVEs to  
157 the two independent events. In the end, we estimated that 18 and 9 Filamentovirus genes have been jointly acquired  
158 following respectively the first and second endogenization events. Note that the set of Filamentovirus genes acquired  
159 during these events overlap by five genes (those having "type III" phylogenies). Within each event, the gene phylogenies  
160 exhibited congruence, further supporting a shared evolutionary scenario for the different genes assigned to each event.  
161 We will respectively name these two independent endogenization events: *ancestral event* and *recent event* in the  
162 following sections.




**Figure 1. Domestication of Filamentoviridae (FV) in Eucollini+Trichoplastini wasps.** (A) The phylogeny of the Cynipoidea has been estimated using 1,000 Busco genes. Confidence scores (aLRT%/ultra-bootstrap support%) are shown at each node. Blue circles indicate the presence of FV EVE in a genome. (B) The heatmap represents the distribution of viral ORF in Hyetrosaviridae virus and Filamentoviridae virus, as well as the distribution of endogenous viral elements (EVEs) from Filamentovirus origin in Eucollini wasps. All 29 core Filamentovirus genes (with a black diamond next to the gene name) are depicted, whether endogenized or not. The cladogram phylogeny of the virus and EVEs is reported on the left and has been made according to the results from the FigureS6. The rows represent the viral or Eucollini+Trichoplastini species, and the columns represent the viral ORFs distributed according to their potential functions. When the box is hashed, it indicates that the predicted FV has an alternative start codon. A white star indicates evidence for purifying selection ( $dN/dS < 1$ ) while a black star indicates no evidence for selection ( $dN/dS = 1$ ). When multiple paralog EVEs can be found in a species, its number is displayed in the bottom right corner. Asterisk corresponds to the presence of premature stop codons in the EVEs. When multiple copies are present, a semi-asterisk indicates that some copies have a premature stop codon, while at least one copy has a complete ORFs. When an EVE could not be assigned to a particular event, a question mark is displayed in the bottom left corner. Gene names highlighted in bold are the EVEs from the ancestral event that are newly described in this study.

163 (b1) First ancestral endogenization event within the Eucoilini+Trichoplastini common ancestor

164 The first ancestral event, in the common ancestor of the 6 Eucoilini species, involved the endogenization of 18  
165 filamentous genes, including the 13 genes previously identified as domesticated in *Leptopilina* species [22]. Concaten-  
166 nating the 15 genes shared by all Eucoilini+Trichoplastini species produced a consistent phylogenetic signal, with  
167 Eucoilini+Trichoplastini species forming a highly supported monophyletic clade (bootstrap score =100) nested within  
168 Filamentovirus diversity, with LhFV being the closest relative (Figure1-B). As expected from a single endogenization  
169 event, the phylogeny of the EVES mirrors the evolutionary history of the species (see Figure1-A and B).

Moreover, the presence of a few conserved gene synteny blocks across Eucoilini+Trichoplastini genomes further supports the conclusion of a single event of endogenization. Notably, gene synteny was particularly evident in the best-assembled genomes of *L. boulardi* and *L. heterotoma*. In both genomes, we observed co-localizations of various genes, such as LbFVorf92/Lef4, DNAPol/LbFVorf87, LbFVorf83/Lef9, and LCAT/LbFVorf108/Ac81 (Figure2-A). We also noted a significant gene association between LbFVORF10 and LbFVORF11. This association was not only observed in the free-living viruses LbFV and LhFV but also consistently found in *Leptopilina* species and in the *Trybliographa* genome (Figure2-A).



**Figure 2. Comparative genomics of wasp scaffolds sharing similarities with filamentous ORFs.** LbFV (*Leptopilina boulardi* Filamentous virus), LhFV (*Leptopilina heterotoma* Filamentous virus), LbEFV (*Leptopilina boulardi* EVEs), LhEFV (*Leptopilina heterotoma* EVEs), LcEFV (*Leptopilina clavipes* EVEs), RhEFV (*Rhoptromeris* EVEs), TrEFV (*Trichoplasma* EVEs), TryEFV (*Trybliographa* EVE). The phylogenetic tree on the left has been made according to the results from the FigureS6. Green and black branches correspond to Eucoilini+Trichoplastini and Filamentous branches, respectively. The red/yellow color code depicts the percentage of protein identity between homologous sequence pairs (viral or virally-derived loci). Colored boxes identify the virally-derived genes and their orientation (above: sense, below: antisense). Gray connections indicate homology between non virally-derived regions. The figure has been drawn using the genoPlotR package [39]. The scaffolds are ordered from left to right in an arbitrary manner.

Overall, the EVEs identified in the ancestral event were enriched for core viral genes (defined at the level of *Nal-daviricetes*) with 12 core genes among the 18 EVEs (compared with a putative donor virus such as LhFV with 110

179 genes and 29 core genes, Fisher test, odd-ratio=5.5, p-value=0.001753). These genes are likely involved in cholesterol  
180 metabolism, DNA replication and processing, transcription, packaging and assembly, morphogenesis and unknown  
181 functions (Figure1). This enrichment in core genes is in line with the data obtained on other cases of viral domestication  
182 in parasitic wasps [10, 88, 63, 16] and suggests that core viral functions are crucial for the production of virus-like particles.

183

184 In comparison with our previous study [22], we identified five additional genes acquired during the same ancestral  
185 event (Figure1- highlighted in bold), three of which were shared by all Eucoilini+Trichoplastini species. The gene names,  
186 their putative functions, and their phylogenies can be found in FigureS14 and the alignments in FiguresS13. These  
187 additional genes are briefly described below.

188

189 One of these genes, **LbFVorf108**, is shared by all species from this event (except for *Leptolamina*) and localized next  
190 to previously documented EVEs in some of the wasp assemblies (Figure2-A). The presence of complete open reading  
191 frames (ORF) and indications of strong purifying selection ( $dN/dS=0.2792$  (SE=0.03)) in all Eucoilini+Trichoplastini EVEs  
192 suggests that LbFVorf108 is functional in Eucoilini+Trichoplastini genomes. However, its function is unknown, as no  
193 homologues other than Filamentoviridae are available in public databases.

194

195 The **LbFVorf10** and **LbFVorf11 (JmJC)** were consistently found next to each other on the same wasps scaffolds  
196 (Figure2-A, B). Both genes are also next to each other in the genomes of their closest relatives LhFV and LbFV, which  
197 further suggests they entered into wasp genomes together during each of the two independant events. They have been  
198 jointly lost in the related *Trichoplasta* sp. and *Rhoptromeris* sp.. All LbFVorf10 EVEs presented a complete ORF and a  
199  $dN/dS$  analysis on the EVEs suggested strong purifying selection (mean  $dN/dS=0.1654$  (SE=0.033)). HHpred analysis  
200 revealed homology between LbFVorf10 and a Glycoprotein containing a Zinc finger domain from a Hantavirus protein  
201 (Evalue 5.9e-8) (TableS3). Homologs of LbFVorf11 in *L. heterotoma* and *Trybliographa* sp. were under purifying selection  
202 but showed either no signs of purifying selection or even premature stop codons in the other *Leptopilina* genome.  
203 Interestingly, the phylogeny built on LbFVorf11 homologs suggests that the gene was acquired by Filamentoviridae from  
204 eukaryotes. This suggests a two-step integration process from eukaryotes to Filamentoviruses and then to the genomes  
205 of wasps (see FigureS14-3).

206

207 A **Lef-5** homolog was shared by all species (apart from *Leptolamina*). Interestingly, in both LbFV and LhFV, *Lef-5*  
208 has an alternative start codon TTG. This feature was conserved in the genomes of the wasps at the exception of *L.*  
209 *heterotoma* and *Trichoplasta* sp. that encode a classic ATG start codon and of *Leptopilina clavipes* that encodes the  
210 alternative start codon CTG. The endogenized *Lef-5* showed a complete ORF and  $dN/dS$  analysis suggests they are  
211 under strong purifying selection (mean  $dN/dS=0.1118$  (SE=0.03)). This gene might be involved in RNA polymerase  
212 initiation transcription factor, as in baculoviruses [82].

213

214 **LbFVorf44** EVE was found only in *Leptopilina boulardi*. It had multiple paralogs (n=36) distributed in 23 scaffolds.  
215 One of the LbFVorf44 copies co-occurred in the same scaffold as the *lef-8* EVE. This finding suggests an integration of  
216 *LbFVorf44* along with the other genes during the same event, followed by several duplications. A  $dN/dS$  analysis of these  
217 paralogs suggests that they evolve under purifying selection (mean  $dN/dS=0.3004$ , (SE= 0.077)). This gene has no  
218 known homologs in public databases.

219

## 220 **(b2) Second recent endogenization event unique to the *Rhoptromeris* genome**

221 The second recent event detected specifically in the *Rhoptromeris* species, involved 9 filamentous genes that ultimately  
222 led to the presence of 16 EVEs (this count is higher due to the presence of paralogs). Four of these genes were specific  
223 to *Rhoptromeris*, while five were detected in both the first and second events (Figure1). The phylogeny constructed on the  
224 concatenated EVEs positions *Rhoptromeris* outside the Eucoilini clade, close to LbFV species, indicating acquisition from  
225 an independent event involving a virus related to LbFV, rather than LhFV. Among the EVEs, 7 out of 16 had premature  
226 stop codons or incomplete ORFs, suggesting non-functionality for some copies. However, the remaining 9 EVEs may still  
227 be functional since they had complete open reading frames. Interestingly, LbFVorf10 probably replaced the homologous

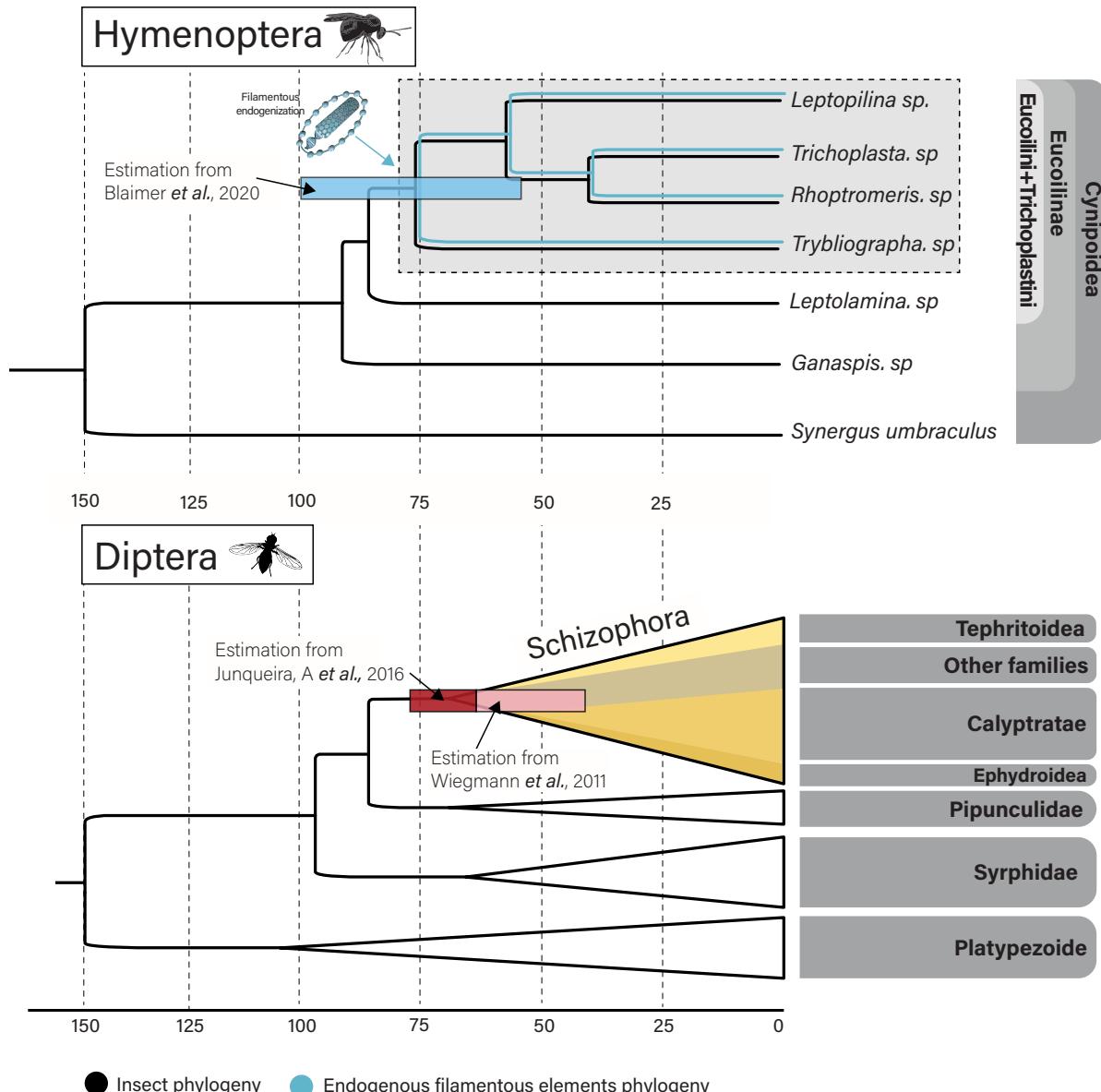
228 EVE from the first event in *Rhoptromeris* (Figure2-A). Similarly to the first ancestral event, LbFVorf10 and LbFVorf11  
229 were also found next to each other in the *Rhoptromeris* genome, as they are in the genome of their closest relative LbFV,  
230 again suggesting that they entered jointly into wasp chromosomes. *Integrase* and LbFVorf106 (*Odv-e66*) were unique to  
231 *Rhoptromeris* (Figure2-A). No evidence of selective pressure was observed on the *Odv-e66* EVE (dN/dS not different  
232 from 1). The same dN/dS analysis was not feasible on the *Integrase* gene, due to the absence of paralogs.

233 **(c) All EVEs of the first ancestral endogenization event show signs of domestication**

234 The dN/dS values obtained for the 18 EVEs acquired during the first ancestral event were low (mean=0.18, sd=0.084),  
235 and within the range of values observed for the highly conserved BUSCO genes (FigureS7). However, EVEs on  
236 average had a slightly higher dN/dS values compared to BUSCO genes (T.test two-sided, df=1015, p-value = 6.442e-09),  
237 suggesting either a lower stabilizing selection intensity or diversifying selection in some sites. In total, 2,354 codons (out  
238 of 7,233) showed evidence of purifying selection (see supplementary excel table): Contrast\_FEL\_table), while 23 were  
239 likely evolving under diversifying selection, possibly indicating some interactions with host proteins (FigureS8).

240 **(d) The basal *Trybliographa* produce VLPs, as *Leptopilina* species do**

241 In discussion with colleagues at the University of Rennes (France) who provided us with some of the *Trybliographa*  
242 *rapae* samples used in this study, we were informed that virus-like particles (VLPs) had been discovered during Nabila  
243 Kacem-Haddj El Mrabet's doctoral thesis, which was defended at the same university in 1999 (ref). Since this part of the  
244 thesis has never been published in a journal, we have asked the author to reproduce here the main results obtained (see  
245 full details of results in supplemental informations)


246 This PhD project was initially motivated by an applied perspective, since this endoparasitoid wasp attacks the most  
247 important root herbivore in *Brassica* crops, i.e., the cabbage root fly *Delia radicum*. By transmission electron microscopy  
248 investigations, two types of viral-like structures were detected in *Trybliographa rapae*. One is produced in the venom  
249 gland (also called the unpaired gland, FigureS10), similarly to VLPs found in *Leptopilina* sp., while the other is formed  
250 in the paired gland (FigureS11). The particles secreted by the venom gland accumulate in the reservoir, in the same  
251 way as the VLPs found in *Leptopilina* sp and were morphologically very similar to the VLPs produced by *Leptopilina* sp.  
252 (FigureS10). Both types of particles were found in the ovipositor canal, suggesting that they are both injected with the  
253 eggs during oviposition (FigureS10-I and FigureS11-J). While particles produced by the paired gland are abundantly  
254 present on the egg surface after oviposition (FigureS11 B-C-D), the ones produced by the venom gland were not found  
255 in contact with the parasitoid egg after oviposition, like in *Leptopilina*. As no evidence of encapsulation was observed  
256 in several hundred eggs analyzed in the course of this thesis, the researchers attributed an immunosuppressive role  
257 to these viral particles. In conclusion, the data accumulated so far show that all wasps concerned by the ancestral  
258 endogenization event, including the most basal one, do produce VLPs that share evident morphological and life-history  
259 features.

260 **(e) Timing of the endogenization events**

261 Previous analysis based on fossil calibration at the scale of the Cynipoidea estimated that the common ancestor of  
262 *Leptopilina*, *Trichoplasta*, *Rhoptromeris* and *Trybliographa* lived in the Cretaceous period, approximately 76 million years  
263 ago (55-100 mya) [11]. Since our analysis shows that the endogenization event (event I) took place in this same common  
264 ancestor, we estimate that this major endogenization event occurred at this time period. Based on the same rationale,  
265 we estimated that the second endogenization event which only concerns *Rhoptromeris* occurred in the last 40 million  
266 years (22-59 mya) since this is the time period of the split between *Rhoptromeris* and *Trichoplasta* sp.

267 **3. Discussion**

268 In this study, we analyzed the diversity of cynipoid wasps observed to have a viral domestication event initially reported  
269 in *Leptopilina* [22]. From previous work, it was established that (i) VLPs does protect the eggs from encapsulation in  
270 *Leptopilina* species [67], and that (ii) in *Leptopilina boulardi*, for which various experimentations and genomic analysis  
271 have been conducted, this VLP production was linked to the presence of 13 virally-derived genes [22]. Because all  
272 *Leptopilina* species analyzed so far do produce VLPs [22] and because all *Leptopilina* genomes analyzed so far do



**Figure 3. Calibrated phylogenies for Eucoilinae parasitoids, and their dipteran hosts.** Black branches correspond to Hymenoptera (up) or Diptera (bottom) branches, while blue branches illustrate the presence of the endogenous viral genes. Trees were reproduced using the following sources : [11] for Hymenoptera datation, and [90, 42] for the Diptera datation. The corresponding credibility intervals are shown in red tons for the Schizophora node age and in blue for the Eucoilini+Trichoplastini node age.

273 contain the same conserved LbFV-like genes, it was concluded that all *Leptopilina* species rely on those viral genes  
274 to produce the VLPs [22]. Here, after analyzing wasp genomes from 5 Figitidae subfamilies, we propose to extend  
275 this reasoning to the whole clade of Eucoilini+Trichoplastini. Indeed, in this clade, all species share a set of 15 highly  
276 conserved viral genes (including the 13 previously identified by [22]), and most importantly, the most basal species within  
277 this clade, namely *Trybliographa* sp. do produce VLPs (Kacem-Haddj El Mrabet's PhD research). This finding thus  
278 suggests that VLP production is a common feature shared by all species of this clade, not only *Leptopilina* species,  
279 supporting the hypothesis that these virally-derived genes are responsible for VLPs production.

280 Building on the recent sequencing of additional LbFV-related viruses [36], this analysis also provided a comprehensive  
281 view of the set of viral genes involved in this event. Five additional viral genes endogenized during the same event were  
282 identified, including a *Naldaviricetes* core gene involved in transcription (lef5). The overall picture is that all the core  
283 genes involved in transcription, as well as some essential genes involved in DNA replication (including the viral DNA  
284 polymerase), have been retained by selection in all wasp genomes of this clade. This conservation strongly suggests that  
285 this machinery is essential for wasp fitness and is likely involved in genomic amplification and associated transcription of  
286 virally-derived genes, as observed in the venom gland of developing *L. boulardi* females [22]. Additionally, the Ac81  
287 gene which plays a crucial role in baculovirus envelopment [23] is shared by all wasp genomes. This suggests it plays a  
288 critical role in the the production of VLP envelope, as also attested by the presence of its proteinic product in mature  
289 particles purified from *Leptopilina* species [22]. Both features (transcriptomic and amplification machineries on one side  
290 and presence of Ac81) are shared with other VLP systems previously described in the distantly related Ichneumonoidea  
291 *Venturia canescens* [63] and *Fopius arisanus* [16]. On the contrary, the picture is completely different on *per os* infectivity  
292 factors (PIFs), which are major players for the entry of baculovirus into insect cells. While both *Venturia* and *Fopius*  
293 systems genomes do encode most of the known PIFs, none are encoded by the Eucoilini+Trichoplastini genomes.  
294 Knowing that VLP from *Leptopilina* permit the delivery of virulence proteins into *Drosophila* immune cells [21], this  
295 indicates that other mechanisms not relying on pif proteins have been recruited in Eucoilini+Trichoplastini.

296 The best understood case of viral domestication in parasitoids involves Braconidae belonging to the microgastroid  
297 complex. In this system, the (braco-)virus has been acquired by the ancestral wasps around 103 mya from a nudivirus  
298 ancestor [58, 10]. Among the subfamilies that compose this clade, the Microgastrinae is by far the most speciose and  
299 has rapidly radiated around 50 mya [58]. It has been hypothesized that this rapid radiation is correlated with a rapid  
300 radiation in their lepidopteran hosts which are also very diverse [54]. One hypothesis that was put forward to explain  
301 the diversification of this particular subfamily compared to Cheloninae, is that they develop from inside Lepidoptera  
302 larvae (while Cheloninae develop from within the eggs) and as such are exposed to the host immune system, since  
303 eggs are much less active immunologically than larvae. The idea is that endoparasitoids attacking larvae require specific  
304 adaptation for each host species attacked, thus favoring ecological speciation process.

305 Similar to microgastroids, we found that ancestral filamentovirus domestication also affected a diverse, albeit smaller,  
306 clade of wasps (the Eucoilini and Trichoplastini tribes) that diversified around 75 mya. All these species are koinobiont  
307 endoparasitoids that attack the larvae of distinct species of Schizophora Diptera in various environments [13]. For  
308 instance, *Leptopilina* develops from Drosophilidae, *Rhoptromeris* from Chloropidae flies, *Trybliographa* from Anthomyiidae  
309 flies, and *Trichoplasta* develops from Drosophilidae, Muscidae, and Lonchaeidae flies [13]. It is interesting to note that  
310 the Schizophora clade, which is the most species-rich group in Cyclorrhapha [6], underwent a rapid radiation just after  
311 the Cretaceous-Paleogene (K-Pg) crisis, starting around 65 to 68 million years ago depending on the estimates [42,  
312 90]. The domestication of the virus in Eucoilini+Trichoplastini thus coincides quite well with this period [13]. We can  
313 speculate that the acquisition of the virus favored the adaptation to these various hosts, allowing the wasps to cope with  
314 the specificities of each host immune system.

315 The lack of evidence for filamentovirus domestication in *Ganaspis* is remarkable. Members of this genus tend to  
316 parasitize the same hosts as *Leptopilina*, often in direct competition with them [52, 1, 60]. In some cases it appears  
317 *Ganaspis* can actually push *Leptopilina* from a given niche space (Spotted Wing *Drosophila* working group, unpublished  
318 data). As such, we predict another form of host immune system manipulation is at play within *Ganaspis*, and certainly  
319 worthy of additional study.

320 Finally, our analysis also provided evidence for a second event of endogenization involving a closely related donor  
321 virus, also belonging to the newly proposed Filamentoviridae family [36]. While we estimate that the major endogenisation

322 event occurred approximately 75 million years ago, soon after the separation of the Eucoilini+Trichoplastini lineage, the  
323 more recent endogenisation took place in the last 40 million years, within the branch leading to the genus *Rhoptromeris*.  
324 It is unclear whether this second event provided selective advantage to the wasps, since dN/dS analysis was only  
325 possible for a few genes having a few paralogs and did not provide evidence for purifying selection. However, it is still  
326 possible that some genes acquired during the ancestral endogenization event that were subsequently lost in this clade  
327 were replaced by genes from this second endogenization event.

328 In conclusion, this study shows that the newly proposed viral family Filamentoviridae [36], which is involved in both  
329 events, has a long and intimate history of association with endoparasitoid wasps. More generally, this work combined  
330 with previous literature [10, 63, 88, 16, 37] show that DNA viruses associated with parasitoid wasps had a strong impact  
331 on the evolution and diversification of the parasitoid lifestyle in very distant wasp clades.

## 332 4. Methods & Materials

### 333 41 *Cynipoidea* specimens extractions

334 All extractions were performed with the NucleoSpin Tissue Macherey kit. 31/41 Cynipoidea specimens were extracted  
335 with the whole body, while 10/41 were extracted with the metasoma in order to keep the upper body for morphological  
336 identification (when only one individual was available). Consequently, we adapted the volumes according to the selected  
337 tissues, in the following we call the volumes for the full bodies "c", and the metasoma "a". The bodies or metasoma were  
338 manually crushed with a piston in a 1.5ML eppendorf tube with proteinase K (c:180µL / a:60µL) and T1 buffer (c:25µL /  
339 a:8µL) and then incubated at 56 °C for 3h. The lysates were then mixed and buffer B3 (c:200µL / a:70µL) was added  
340 and incubated at 70 °C for 10 min. The solution was then bound to a silica column, washed with buffer BW (a:500µL /  
341 c:250µL) and buffer B5 (a:600µL / c:300µL) and finally eluted in 20µL of TE.

### 342 PCR amplification of ORF96

343 Based on the sequences of *L. boulardi*, *L. heterotoma* and *L. clavipes*, we used the same LbFV\_ORF96 primers as in  
344 [22] (ATTGGTGAAATTCAATCGTC and TCATTCATTGCAATAATTGTG). LbFV\_ORF96 was used as a primer because  
345 it is the most conserved EVE due to its strong purifying selection compared to the other 12 documented EVEs [22]. They  
346 amplified a 411bp internal fragment of the coding sequence. PCR reaction was performed in a 50µL volume containing  
347 10µM primers, 10mM dNTPs, and 0.5µL of Taq DNA polymerase with the following cycling conditions : 95 C 30", 48 C  
348 30", 72 C 60" (40 cycles). The CO1 marker was correctly amplified in 33 out of 41 specimens, indicating that extraction  
349 was satisfying, at least for these specimens. Finally, because we had sometimes several specimens per species, all  
350 species but two could be analyzed with at least one specimen.

### 351 Genome sampling, assembly quality check

352 The DNA of single female was extracted using the same protocol from *Rhoptromeris*, *Trybliographa*, *Leptolamina* and  
353 *Trichoplasta*. TruSeq Nano DNA (350) Illumina libraries were built and sequenced with 30 Gb per sample 60M(R1+R2) at  
354 Macrogen (Amsterdam, Netherlands). The paired-end reads (2x150bp) were cleared from duplicates using SuperDeduper  
355 v1.3.0 [62] (-f nodup), and quality trimmed using Fastp v0.22.0 (-cut\_tail -length\_required 100 -correction). The assembly  
356 was done using Megahit v1.2.9 [50] (-kmin-1pass), a scaffolding step was done using SOAPdenovo-fusion (-D -s) and  
357 we obtained a scaffolded homozygous genome assembly using the Redundans pipeline [65] (default parameters). The  
358 genome assembly quality check was done using the BUSCO pipeline v 5.3.0 [74] (-m genome) on both Hymenoptera  
359 and Arthropoda databases, and assembly statistics were computed using Quast [38] (default parameters) (see genome  
360 statistics and accessions on TableS1).

### 361 LbFV-like ORF homology sequence research

362 We screened all Cynipoidea genomes for the presence of ORFs from LbFV-like virus genomes. The sequence homology  
363 search was performed using the Mmseqs2 search algorithm [75] (evalue max = 0.001 -s 7), using as queries all the  
364 predicted proteins from the *Naldaviricetes* (see details in [36]) and as database the 11 Cynipoidea genomes. In order  
365 to infer the phylogenetic relationships between the endogenized sequences and free-living viruses, we first sought to  
366 gather the homologous ORFs between them. To do this, we performed a blastp between all ORFs with the mmseqs2

367 search algorithm (min bit = 50, min evalue = 1e-04). We then formed clusters between all genes that had at least one  
368 homology with one of the members, following the same pipeline used in [36].

### 369 **Endogenization arguments**

370 A way to rule out contaminating scaffolds was to look for the presence of insects genes along the scaffolds containing  
371 candidate EVEs, assuming that the presence of several insect genes in a viral scaffold is unlikely (except for specific  
372 giant viruses or specific insect genes such as apoptotic genes). Eukaryotic genes research was made using the MetaEuk  
373 easy-predict workflow [49] (default parameters) followed by the taxocontig workflow that allows to assign taxonomic  
374 labels to the predicted MetaEuk proteins. For each contig, we adopted a majority voting strategy among the taxonomically  
375 labeled protein to assign taxonomy to the contig. As an example, a contig was tagged as "Eukaryota origin" if at least  
376 50% of the labels assigned to the encoded proteins were "Eukaryota".

377 We also used the presence of transposable elements in contigs as a marker of its eukaryotic nature. Indeed, so far,  
378 very few viral genomes have been shown to contain transportable elements [55, 31, 33, 32, 51]. Thus, the probability  
379 for a viral EVE to be flanked by a TE is low, even more so if the number of flanking TEs is greater than 1. These  
380 results suggest that TE insertions rarely reach high frequencies in viral populations, due to the fact that the majority  
381 of endogenizations of TEs in viral genomes are deleterious and are quickly eliminated by selection [33, 32]. We thus  
382 looked for TE sequence homology in the scaffolds harboring candidate EVEs (see details in M.M Transposable elements'  
383 detection and analysis) and identified the scaffolds presenting one or more TE.

### 384 **LbFV-like EVEs phylogenies and Event assignations**

385 To reconstruct the phylogenetic history of each EVE originating from Filamentoviruses (n=25), we first aligned the protein  
386 sequences using ClustalO (v1.2.4)[73] and then inferred the phylogenies using Iqtree (v2.1.2) [56] (options :m MFP -alrt  
387 5000 -bb 5000). The phylogenetic tree was then used to infer endogenization events involving Eucoilini+Trichoplastini  
388 species. It is expected that such events will be represented by a monophyletic clade of related wasp species nested  
389 within a clade of Filamentoviruses. Within each phylogenetic tree, we grouped all Eucoilini+Trichoplastini wasp species  
390 into a single event, if they formed a monophyletic clade with a bootstrap score greater than 80.

### 391 **Aggregation of different EVEs in a single endogenization event**

392 In case multiple EVEs arrived together into the ancestral wasp genome, we expect to find signs of shared synteny  
393 between descendant species. To uncover this, we conducted the equivalent of an all vs all TblastX (Mmseqs2 search  
394 –search-type 4, max Evalue =1e-07) between all the candidate loci within a putative event (deduced from the phylogenetic  
395 inference), and then looked for hits (HSPs) between homologous EVEs around the insertions. Because it is possible to  
396 find homology between two genomic regions that do not correspond to an orthology relationship, for example because  
397 of the presence of conserved domains, we had to define a threshold to identify with confidence the orthology signal.  
398 We therefore conducted simulations to define this value, based on the well-assembled genome of *Cotesia congregata*  
399 (GCA\_905319865.3) by simply performing the same all vs all blast analysis against itself (as if the two species considered  
400 had the same genome). Based on this, we defined two types of simulated EVEs, (i) independently endogenized  
401 EVEs in the genomes of the two "species". This is simply simulated by randomly selecting two different regions in  
402 the genomes, and (ii) a shared simulated EVE that was acquired by their common "ancestor". This is simulated by  
403 selecting the same random genomic location in both "genomes". We then counted the total length of the HSPs found  
404 around the simulated insertions all along the corresponding scaffold (i and ii). As the result will obviously depend on  
405 scaffold length, we performed these simulations on several scaffold lengths (100000000bp, 10000000bp, 1000000bp,  
406 100000bp and 10000bp). We conducted 500 simulations in each scenario, and we measured the cumulative length of  
407 homologous sequences, where homologous sequences are defined by sequences having a bit score > 50. We then  
408 defined a threshold for each window's size in order to minimize for the false-positive (FP) and maximize true-positifs  
409 (TP) (thresholds 100000000bp = 172737bp (FP = 0.012, TP= 0.922); 10000000bp = 74262 bp (FP= 0.012, TP=0.878) ;  
410 1000000bp = 21000 bp (FP=0.014, TP=0.28); 100000bp = 1332 bp (FP= 0.012 TP= 0.198) and 10000bp = 180 bp (FP=  
411 0.008, TP= 0.208)). This way, the EVEs could be "aggregated" into single events.

412 **Acknowledgment**

413 This work was performed using the computing facilities of the CC LBBE/PRABI. We thank Denis Poinsot for providing  
414 specimens of *Trybliographa* sp. as well as Anne-Marie Coretesor for allowing us to consult the PhD manuscript of Nabila  
415 Kacem - Haddj El Mrabet.

416 **Data accessibility**

417 All scripts used in this paper can be found on the GitHub page: [https://github.com/GrendelAnonymous/Viral\\_domestication\\_Eucoilini\\_sup](https://github.com/GrendelAnonymous/Viral_domestication_Eucoilini_sup)  
418 All information regarding loci studied and predicted from this article can be found in TableS2.  
419 All Eucoilini genome assemblies as well as raw data can be found under the Bioproject ID number : PRJNA831620.

420

421 **Author contributions**

422 B.G. : Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources;  
423 Software; Validation; Visualization; Writing – original draft; Writing – review editing ; J.Vo. : Resources; Writing – review  
424 editing; R.P. : Resources; Writing – review editing ; J.H. : Resources; Writing – review editing ; M.L.B. : Resources;  
425 Writing – review editing ; J.Va. : Methodology ; Resources ; Validation ; Visualization ; Writing – review editing.

426 **Funding**

427 This work was supported by recurrent fundings to the GEI team of the LBBE (UMR CNRS 5558).

## References

[1] Paul K Abram, Michelle T Franklin, Tracy Hueppelsheuser, Juli Carrillo, Emily Grove, Paula Eraso, Susanna Acheampong, Laura Keery, Pierre Girod, Matt Tsuruda, Martina Clausen, Matthew L Buffington, and Chandra E Moffat. "Adventive Larval Parasitoids Reconstruct Their Close Association with Spotted-Wing Drosophila in the Invaded North American Range". In: *Environmental Entomology* 51.4 (2022). Ed. by Angel Acebes-Doria, pp. 670–678. ISSN: 0046-225X, 1938-2936. DOI: 10.1093/ee/nvac019. URL: <https://academic.oup.com/ee/article/51/4/670/6589800>.

[2] Margaret K. Arnold and G. Barson. "Occurrence of viruslike particles in midgut epithelial cells of the large elm bark beetle, *scolytus scolytus*". In: *Journal of Invertebrate Pathology* 29.3 (1977), pp. 373–381. ISSN: 00222011. DOI: 10.1016/S0022-2011(77)80046-3. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0022201177800463>.

[3] Sassan Asgari and Otto Schmidt. "Passive protection of eggs from the parasitoid, *Cotesia rubecula*, in the host, *Pieris rapae*". In: *Journal of Insect Physiology* 40.9 (1994), pp. 789–795. ISSN: 00221910. DOI: 10.1016/0022-1910(94)90008-6. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022191094900086>.

[4] L. Bailey, J.M. Carpenter, and R.D. Woods. "Properties of a filamentous virus of the honey bee (*Apis mellifera*)". In: *Virology* 114.1 (1981), pp. 1–7. ISSN: 00426822. DOI: 10.1016/0042-6822(81)90247-6. URL: <https://linkinghub.elsevier.com/retrieve/pii/0042682281902476>.

[5] R Barbier and J.P Rimbault. "Formation of spherulules around the egg-shell in *Leptomastix dactylopii* (Hymenoptera, Encyrtidae)." In: *Bulletin de la Société Zoologique de France* (1985), pp. 339–346.

[6] Keith M. Bayless, Michelle D. Trautwein, Karen Meusemann, Seungwan Shin, Malte Petersen, Alexander Donath, Lars Podsiadlowski, Christoph Mayer, Oliver Niehuis, Ralph S. Peters, Rudolf Meier, Sujatha Narayanan Kutty, Shanlin Liu, Xin Zhou, Bernhard Misof, David K. Yeates, and Brian M. Wiegmann. "Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylogenomics". In: *BMC Biol* 19.1 (2021), p. 23. ISSN: 1741-7007. DOI: 10.1186/s12915-020-00944-8. URL: <https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00944-8>.

[7] O Bedwin. "An insect glycoprotein: a study of the particles responsible for the resistance of a parasitoid's egg to the defence reactions of its insect host". In: *Proc. R. Soc. Lond. B* 205.1159 (1979), pp. 271–286. ISSN: 0080-4649, 2053-9193. DOI: 10.1098/rspb.1979.0065. URL: <https://royalsocietypublishing.org/doi/10.1098/rspb.1979.0065>.

[8] Catherine Bélieau, Alejandro Cohen, Don Stewart, Georges Periquet, Abdeldjalid Djoumad, Lisa Kuhn, Don Stoltz, Brian Boyle, Anne-Nathalie Volkoff, Elisabeth A. Herniou, Jean-Michel Drezen, and Michel Cusson. "Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors". In: *J. Virol.* 89.17 (2015). Ed. by G. McFadden, pp. 8909–8921. ISSN: 0022-538X, 1098-5514. DOI: 10.1128/JVI.01001-15. URL: <http://jvi.asm.org/lookup/doi/10.1128/JVI.01001-15>.

[9] A. Bezier, M. Annaheim, J. Herbiniere, C. Wetterwald, G. Gyapay, S. Bernard-Samain, P. Wincker, I. Roditi, M. Heller, M. Belghazi, R. Pfister-Wilhem, G. Periquet, C. Dupuy, E. Huguet, A.-N. Volkoff, B. Lanzrein, and J.-M. Drezen. "Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus". In: *Science* 323.5916 (2009), pp. 926–930. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1166788. URL: <http://www.sciencemag.org/cgi/doi/10.1126/science.1166788>.

[10] Annie Bézier, Juline Herbinière, Beatrice Lanzrein, and Jean-Michel Drezen. "Polydnavirus hidden face: The genes producing virus particles of parasitic wasps". In: *Journal of Invertebrate Pathology* 101.3 (2009), pp. 194–203. ISSN: 00222011. DOI: 10.1016/j.jip.2009.04.006. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0022201109000895>.

[11] Bonnie B. Blaimer, Dietrich Gotzek, Séan G. Brady, and Matthew L. Buffington. "Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps". In: *BMC Evol Biol* 20.1 (2020), p. 155. ISSN: 1471-2148. DOI: 10.1186/s12862-020-01716-2. URL: <https://bmcevolbiol.biomedcentral.com/articles/10.1186/s12862-020-01716-2>.

[12] Matthew L Buffington, Matthias Forshage, Johan Liljeblad, Chang-Ti Tang, and Simon Van Noort. "World Cynipoidea (Hymenoptera): A Key to Higher-Level Groups". In: *Insect Systematics and Diversity* 4.4 (2020). Ed. by Heather Hines, p. 1. ISSN: 2399-3421. DOI: 10.1093/isd/ixa003. URL: <https://academic.oup.com/isd/article/doi/10.1093/isd/ixa003/5865384>.

[13] Matthew L. Buffington, Séan G. Brady, Shelah I. Morita, and Simon Van Noort. "Divergence estimates and early evolutionary history of Figitidae (Hymenoptera: Cynipoidea)". In: *Systematic Entomology* 37.2 (2012), pp. 287–304. ISSN: 0307-6970, 1365-3113. DOI: 10.1111/j.1365-3113.2012.00617.x. URL: <https://resjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-3113.2012.00617.x>.

[14] Matthew L. Buffington, Johan A. A. Nylander, and John M. Heraty. "The phylogeny and evolution of Figitidae (Hymenoptera: Cynipoidea)". In: *Cladistics* 23.5 (2007), pp. 403–431. ISSN: 0748-3007, 1096-0031. DOI: 10.1111/j.1096-0031.2007.00153.x. URL: <https://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.2007.00153.x>.

[15] Gaelen R Burke, Heather M Hines, and Barbara J Sharanowski. "The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps". In: *Genome Biology and Evolution* 13.7 (2021). Ed. by Marta Wayne, evab105. ISSN: 1759-6653. DOI: 10.1093/gbe/evab105. URL: <https://academic.oup.com/gbe/article/doi/10.1093/gbe/evab105/6275680>.

[16] Gaelen R Burke, Tyler J Simmonds, Barbara J Sharanowski, and Scott M Geib. "Rapid Viral Symbiogenesis via Changes in Parasitoid Wasp Genome Architecture". In: *Molecular Biology and Evolution* 35.10 (2018). Ed. by Amanda Larracuente, pp. 2463–2474. ISSN: 0737-4038, 1537-1719. DOI: 10.1093/molbev/msy148. URL: <https://academic.oup.com/mbe/article/35/10/2463/5058060>.

[17] Isaura de Buron and Nancy E. Beckage. "Characterization of a polydnavirus (PDV) and virus-like filamentous particle (VLFP) in the braconid wasp *Cotesia congregata* (Hymenoptera: Braconidae)". In: *Journal of Invertebrate Pathology* 59.3 (1992), pp. 315–327. ISSN: 00222011. DOI: 10.1016/0022-2011(92)90139-U. URL: <https://linkinghub.elsevier.com/retrieve/pii/002220119290139U>.

[18] G. Chevignon, J. Theze, S. Cambier, J. Poulain, C. Da Silva, A. Bezier, K. Musset, S. J. M. Moreau, J.-M. Drezen, and E. Huguet. "Functional Annotation of *Cotesia congregata* Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues". In: *Journal of Virology* 88.16 (2014), pp. 8795–8812. ISSN: 0022-538X, 1098-5514. DOI: 10.1128/JVI.00209-14. URL: <https://jvi.asm.org/lookup/doi/10.1128/JVI.00209-14>.

<http://jvi.asm.org/cgi/doi/10.1128/JVI.00209-14>.

[19] Hsiling Chiu, Jorge Morales, and Shubha Govind. "Identification and immuno-electron microscopy localization of p40, a protein component of immunosuppressive virus-like particles from Leptopilina heterotoma, a virulent parasitoid wasp of *Drosophila*". In: *Journal of General Virology* 87.2 (2006), pp. 461–470. ISSN: 0022-1317, 1465-2099. DOI: 10.1099/vir.0.81474-0. URL: <https://www.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.81474-0>.

[20] Kelsey A. Coffman, Quinn M. Hankinson, and Gaelen R. Burke. "A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps". In: *Proc. Natl. Acad. Sci. U.S.A.* 119.16 (2022), e2120048119. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.2120048119. URL: <https://pnas.org/doi/full/10.1073/pnas.2120048119>.

[21] Dominique Colinet, Antonin Schmitz, Delphine Depoix, Didier Crochard, and Marylène Poirié. "Convergent Use of RhoGAP Toxins by Eukaryotic Parasites and Bacterial Pathogens". In: *PLoS Pathog* 3.12 (2007). Ed. by David S Schneider, e203. ISSN: 1553-7374. DOI: 10.1371/journal.ppat.0030203. URL: <https://dx.plos.org/10.1371/journal.ppat.0030203>.

[22] D Di Giovanni, D Lepetit, B Guinet, B Bennetot, M Boulesteix, Y Couté, O Bouchez, M Ravellec, and J Varaldi. "A behavior-manipulating virus relative as a source of adaptive genes for *Drosophila* parasitoids". In: *Molecular Biology and Evolution* (2020). Ed. by Harmit Malik, msaa030. ISSN: 0737-4038, 1537-1719. DOI: 10.1093/molbev/msaa030. URL: <https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msaa030/5733738>.

[23] Fang Dong, Jinwen Wang, Riqiang Deng, and Xunzhang Wang. "Autographa californica multiple nucleopolyhedrovirus gene ac81 is required for nucleocapsid envelopment". In: *Virus Research* 221 (2016), pp. 47–57. ISSN: 01681702. DOI: 10.1016/j.virusres.2016.05.005. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0168170216301058>.

[24] Jean-Michel Drezen, Annie Bézier, Gaelen R Burke, and Michael R Strand. "Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors". In: *Current Opinion in Insect Science* 49 (2022), pp. 93–100. ISSN: 22145745. DOI: 10.1016/j.cois.2021.12.003. URL: <https://linkinghub.elsevier.com/retrieve/pii/S2214574521001322>.

[25] S. Dupas, M. Brehelin, F. Frey, and Y. Carton. "Immune suppressive virus-like particles in a *Drosophila* parasitoid: significance of their intraspecific morphological variations". In: *Parasitology* 113.3 (1996), pp. 207–212. ISSN: 0031-1820, 1469-8161. DOI: 10.1017/S0031182000081981. URL: [https://www.cambridge.org/core/product/identifier/S0031182000081981/type/journal\\_article](https://www.cambridge.org/core/product/identifier/S0031182000081981/type/journal_article).

[26] KM Edson. "Virus-like and membrane-bound particles in the venom apparatus of a parasitoid wasp (Hymenoptera: Braconidae)[Meteorus leviventris]". In: *Proceedings meeting Electron Microscopy Society of America* (1981).

[27] I. Feddersen, K. Sander, and O. Schmidt. "Virus-like particles with host protein-like antigenic determinants protect an insect parasitoid from encapsulation". In: *Experientia* 42.11-12 (1986), pp. 1278–1281. ISSN: 0014-4754, 1420-9071. DOI: 10.1007/BF01946422. URL: <http://link.springer.com/10.1007/BF01946422>.

[28] J A G W Fleming. "Polydnnaviruses: Mutualists and Pathogens". In: *Annu. Rev. Entomol.* 37.1 (1992), pp. 401–425. ISSN: 0066-4170, 1545-4487. DOI: 10.1146/annurev.en.37.010192.002153. URL: <https://www.annualreviews.org/doi/10.1146/annurev.en.37.010192.002153>.

[29] F.M. Fontal-Cazalla, M.L. Buffington, G. Nordlander, J. Liljeblad, P. Ros-Farre, J.L. Nieves-Aldrey, J. Pujade-Villar, and F. Ronquist. "Phylogeny of the Eucoilinae (Hymenoptera: Cynipoidea: Figitidae)". In: *Cladistics* 18.2 (2002), pp. 154–199. ISSN: 0748-3007, 1096-0031. DOI: 10.1111/j.1096-0031.2002.tb00147.x. URL: <https://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.2002.tb00147.x>.

[30] Andrew A Forbes, Robin K Bagley, Marc A Beer, Alaine C Hippee, and Heather A Widmayer. "1 Quantifying the unquantifiable: 2 why Hymenoptera – not Coleoptera – is the most speciose animal order". In: (2018), p. 36.

[31] Clément Gilbert, Aurélien Chateigner, Lise Ernenwein, Valérie Barbe, Annie Bézier, Elisabeth A. Herniou, and Richard Cordaux. "Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons". In: *Nat Commun* 5.1 (2014), p. 3348. ISSN: 2041-1723. DOI: 10.1038/ncomms4348. URL: <http://www.nature.com/articles/ncomms4348>.

[32] Clément Gilbert and Richard Cordaux. "Viruses as vectors of horizontal transfer of genetic material in eukaryotes". In: *Current Opinion in Virology* 25 (2017), pp. 16–22. ISSN: 18796257. DOI: 10.1016/j.coviro.2017.06.005. URL: <https://linkinghub.elsevier.com/retrieve/pii/S1879625716301900>.

[33] Clément Gilbert, Jean Peccoud, Aurélien Chateigner, Bouziane Moumen, Richard Cordaux, and Elisabeth A. Herniou. "Continuous Influx of Genetic Material from Host to Virus Populations". In: *PLoS Genet* 12.2 (2016). Ed. by Harmit S. Malik, e1005838. ISSN: 1553-7404. DOI: 10.1371/journal.pgen.1005838. URL: <https://dx.plos.org/10.1371/journal.pgen.1005838>.

[34] Gwenaëlle Gueguen, Roma Rajwani, Indira Paddibhatla, Jorge Morales, and Shubha Govind. "VLPs of Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the heterotoma clade". In: *Virus Research* 160.1-2 (2011), pp. 159–165. ISSN: 01681702. DOI: 10.1016/j.virusres.2011.06.005. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0168170211002280>.

[35] F.S. Guillot and S.B. Vinson. "The rôle of the calyx and poison gland of *Car diochiles nigriceps* in the host-parasitoid relationship". In: *Journal of Insect Physiology* 18.7 (1972), pp. 1315–1321. ISSN: 00221910. DOI: 10.1016/0022-1910(72)90260-0. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022191072902600>.

[36] Benjamin Guinet, Matthieu Leobold, Elisabeth A Herniou, Pierrick Bloin, Nelly Burlet, Justin Bredlau, Vincent Navratil, Marc Ravellec, Rustem Uzbekov, Karen Kester, Dawn Gundersen Rindal, Jean-Michel Drezen, Julien Varaldi, and Annie Bézier. "A novel and diverse family of filamentous DNA viruses associated with parasitic wasps". In: *Virus Evolution* 10.1 (2024), veae022. ISSN: 2057-1577. DOI: 10.1093/ve/veae022. URL: <https://academic.oup.com/ve/article/doi/10.1093/ve/veae022/7644867>.

[37] Benjamin Guinet, David Lepetit, Sylvain Charlat, Peter N Buhl, David G Notton, Astrid Cruaud, Jean-Yves Rasplus, Julia Stigenberg, Damien M De Vienne, Bastien Boussau, and Julien Varaldi. "Endoparasitoid lifestyle promotes endogenization and domestication of dsDNA viruses". In: *eLife* 12 (2023), e85993. ISSN: 2050-084X. DOI: 10.7554/eLife.85993. URL: <https://elifesciences.org/articles/85993>.

[38] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. "QUAST: quality assessment tool for genome assemblies". In: *Bioinformatics* 29.8 (2013), pp. 1072–1075. ISSN: 1460-2059, 1367-4803. doi: 10.1093/bioinformatics/btt086. URL: <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btt086>.

[39] L. Guy, J. Roat Kultima, and S. G. E. Andersson. "genoPlotR: comparative gene and genome visualization in R". In: *Bioinformatics* 26.18 (2010), pp. 2334–2335. ISSN: 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btq413. URL: <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq413>.

[40] John J. Hamm, Eloise L. Styer, and W. Joe Lewis. "A baculovirus pathogenic to the parasitoid *Microplitis croceipes* (Hymenoptera: Braconidae)". In: *Journal of Invertebrate Pathology* 52.1 (1988), pp. 189–191. ISSN: 00222011. doi: 10.1016/0022-2011(88)90123-1. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022201188901231>.

[41] Richard L. Jones and W. J. Lewis. "Physiology of the host-parasite relationship between *Heliothis zea* and *Microplitis croceipes*". In: *Journal of Insect Physiology* 17.5 (1971), pp. 921–927. ISSN: 00221910. doi: 10.1016/0022-1910(71)90108-9. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022191071901089>.

[42] Ana Carolina M. Junqueira, Ana Maria L. Azeredo-Espin, Daniel F. Paulo, Marco Antonio T. Marinho, Lynn P. Tomsho, Daniela I. Drautz-Moses, Rikky W. Purbojati, Aakrosh Ratan, and Stephan C. Schuster. "Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity". In: *Scientific Reports* 6.1 (2016), p. 21762. ISSN: 2045-2322. doi: 10.1038/srep21762. URL: <https://www.nature.com/articles/srep21762>.

[43] Hideo Kitano. "The role of *Apantelis glomeratus* venom in the defensive response of its host, *Pieris rapae crucivora*". In: *Journal of Insect Physiology* 32.4 (1986), pp. 369–375. ISSN: 00221910. doi: 10.1016/0022-1910(86)90050-8. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022191086900508>.

[44] P. J. Krell. "Replication of Long Virus-like Particles in the Reproductive Tract of the Ichneumonid Wasp *Diadegma terebrans*". In: *Journal of General Virology* 68.5 (1987), pp. 1477–1483. ISSN: 0022-1317, 1465-2099. doi: 10.1093/jgv/68.5.1477. URL: <https://academic.oup.com/jgv/article-lookup/doi/10.1093/jgv/68.5.1477>.

[45] Peter J. Krell and Donald B. Stoltz. "Virus-like particles in the ovary of an ichneumonid wasp: Purification and preliminary characterization". In: *Virology* 101.2 (1980), pp. 408–418. ISSN: 00426822. doi: 10.1016/0042-6822(80)90454-7. URL: <https://linkinghub.elsevier.com/retrieve/pii/0042682280904547>.

[46] Pauline O. Lawrence. "Non-poly-DNA viruses, their parasitic wasps, and hosts". In: *Journal of Insect Physiology* 51.2 (2005), pp. 99–101. ISSN: 00221910. doi: 10.1016/j.jinsphys.2004.12.012. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0022191005000193>.

[47] Pauline O. Lawrence and Debra Akin. "Virus-like particles from the poison glands of the parasitic wasp *Biosteres longicaudatus* (Hymenoptera: Braconidae)". In: *Can. J. Zool.* 68.3 (1990), pp. 539–546. ISSN: 0008-4301, 1480-3283. doi: 10.1139/z90-079. URL: <http://www.nrcresearchpress.com/doi/10.1139/z90-079>.

[48] Fabrice Legeai, Bernardo F. Santos, Stéphanie Robin, Anthony Bretaudeau, Rebecca B. Dikow, Claire Lemaitre, Véronique Jouan, Marc Ravallac, Jean-Michel Drezen, Denis Tagu, Frédéric Baudat, Gabor Gyapay, Xin Zhou, Shanhua Liu, Bruce A. Webb, Séan G. Brady, and Anne-Nathalie Volkoff. "Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps". In: *BMC Biol.* 18.1 (2020), p. 89. ISSN: 1741-7007. doi: 10.1186/s12915-020-00822-3. URL: <https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00822-3>.

[49] Eli Levy Karin, Milot Mirdita, and Johannes Söding. "MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics". In: *Microbiome* 8.1 (2020), p. 48. ISSN: 2049-2618. doi: 10.1186/s40168-020-00808-x. URL: <https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00808-x>.

[50] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. "MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph". In: *Bioinformatics* 31.10 (2015), pp. 1674–1676. ISSN: 1460-2059, 1367-4803. doi: 10.1093/bioinformatics/btv033. URL: <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv033>.

[51] Vincent Loiseau, Elisabeth A Herniou, Yannis Moreau, Nicolas Lévéque, Carine Meignin, Laurent Daefller, Brian Federici, Richard Cordaux, and Clément Gilbert. "Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses". In: *Virus Evolution* 6.1 (2020), vez060. ISSN: 2057-1577. doi: 10.1093/vez/vez060. URL: <https://academic.oup.com/vez/article/doi/10.1093/vez/vez060/5716172>.

[52] Chia-Hua Lue, Amy C. Driskell, Jeff Leips, and Matthew L. Buffington. "Review of the genus *Leptopilina* (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern United States, including three newly described species". In: *Journal of Hymenoptera Research* 53 (2016), pp. 35–76. ISSN: 1314-2607, 1070-9428. doi: 10.3897/jhr.53.10369. URL: <http://jhr.pensoft.net/articles.php?id=10369>.

[53] Chia-Hua Lue, Matthew L. Buffington, Sonja Scheffer, Matthew Lewis, Tyler A. Elliott, Amelia R. I. Lindsey, Amy Driskell, Anna Jandova, Masahito T. Kimura, Yves Carton, Robert R. Kula, Todd A. Schlenke, Mariana Mateos, Shubha Govind, Julien Varaldi, Emilio Guerrieri, Massimo Giorgini, Xingeng Wang, Kim Hoelmer, Kent M. Daane, Paul K. Abram, Nicholas A. Paradies, Joel J. Brown, Melanie Thierry, Marylène Poirié, Paul Goldstein, Scott E. Miller, W. Daniel Tracey, Jeremy S. Davis, Francis M. Jiggins, Bregje Wertheim, Owen T. Lewis, Jeff Leips, Phillip P. A. Staniczenko, and Jan Hrcek. "DROP: Molecular voucher database for identification of *Drosophila* parasitoids". In: *Molecular Ecology Resources* 21.7 (2021), pp. 2437–2454. ISSN: 1755-098X, 1755-0998. doi: 10.1111/1755-0998.13435. URL: <https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13435>.

[54] Patrick Mardulyn and James B. Whitfield. "Phylogenetic Signal in the COI, 16S, and 28S Genes for Inferring Relationships among Genera of Microgastrinae (Hymenoptera: Braconidae): Evidence of a High Diversification Rate in This Group of Parasitoids". In: *Molecular Phylogenetics and Evolution* 12.3 (1999), pp. 282–294. ISSN: 10557903. doi: 10.1006/mpev.1999.0618. URL: <https://linkinghub.elsevier.com/retrieve/pii/S1055790399906188>.

[55] David Wayne Miller and Lois K. Miller. "A virus mutant with an insertion of a copia-like transposable element". In: *Nature* 299.5883 (1982), pp. 562–564.

ISSN: 0028-0836, 1476-4687. DOI: 10.1038/299562a0. URL: <http://www.nature.com/articles/299562a0>.

[56] Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Woodhams, Arndt von Haeuser, and Robert Lanfear. "Corrigendum to: IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era". In: *Molecular Biology and Evolution* 37.8 (2020), pp. 2461–2461. ISSN: 0737-4038, 1537-1719. DOI: 10.1093/molbev/msaa131. URL: <https://academic.oup.com/mbe/article/37/8/2461/5859215>.

[57] Héloïse Muller, Mohamed Amine Chebbi, Clémence Bouzar, George Périquet, Taiadjana Fortuna, Paul-André Calatayud, Bruno Le Ru, Julius Obonyo, Laure Kaiser, Jean-Michel Drezen, Elisabeth Huguet, and Clément Gilbert. "Genome-Wide Patterns of Bracovirus Chromosomal Integration into Multiple Host Tissues during Parasitism". In: *J Virol* 95.22 (2021). Ed. by Colin R. Parrish, e00684–21. ISSN: 0022-538X, 1098-5514. DOI: 10.1128/JVI.00684-21. URL: <https://jvi.asm.org/doi/10.1128/JVI.00684-21>.

[58] Nicholas Murphy, Jonathan C. Banks, James B. Whitfield, and Andrew D. Austin. "Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage". In: *Molecular Phylogenetics and Evolution* 47.1 (2008), pp. 378–395. ISSN: 10557903. DOI: 10.1016/j.ympev.2008.01.022. URL: <https://linkinghub.elsevier.com/retrieve/pii/S1055790308000444>.

[59] Suha Naser-Khdour, Bui Quang Minh, Wenqi Zhang, Eric A Stone, and Robert Lanfear. "The Prevalence and Impact of Model Violations in Phylogenetic Analysis". In: *Genome Biology and Evolution* 11.12 (2019). Ed. by David Bryant, pp. 3341–3352. ISSN: 1759-6653. DOI: 10.1093/gbe/evz193. URL: <https://academic.oup.com/gbe/article/11/12/3341/5571717>.

[60] Fumiaki Y. Nomano, Nazuki Kasuya, Akira Matsuura, Awit Suwito, Hideyuki Mitsui, Matthew L. Buffington, and Masahito T. Kimura. "Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia". In: *Applied Entomology and Zoology* 52.3 (2017), pp. 429–437. ISSN: 0003-6862, 1347-605X. DOI: 10.1007/s13355-017-0493-0. URL: <http://link.springer.com/10.1007/s13355-017-0493-0>.

[61] M. O. Odindo, C. C. Payne, N. E. Crook, and P. Jarrett. "Properties of a Novel DNA Virus from the Tsetse Fly, *Glossina pallidipes*". In: *Journal of General Virology* 67.3 (1986), pp. 527–536. ISSN: 0022-1317, 1465-2099. DOI: 10.1099/0022-1317-67-3-527. URL: <https://www.microbiologyresearch.org/content/journal/jgv/10.1099/0022-1317-67-3-527>.

[62] Kristen R. Petersen, David A. Streett, Alida T. Gerritsen, Samuel S. Hunter, and Matthew L. Settles. "Super deduper, fast PCR duplicate detection in fastq files". In: *Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics*. Atlanta Georgia: ACM, 2015, pp. 491–492. ISBN: 978-1-4503-3853-0. DOI: 10.1145/2808719.2811568. URL: <https://dl.acm.org/doi/10.1145/2808719.2811568>.

[63] Apolline Pichon, Annie Bézier, Serge Urbach, Jean-Marc Aury, Véronique Jouan, Marc Ravellec, Julie Guy, François Cousserans, Julien Thézé, Jérémie Gauthier, Edith Demettre, Sandra Schmieder, François Wurmser, Vronick Sibut, Marylène Poirié, Dominique Colinet, Corinne da Silva, Arnaud Couloux, Valérie Barbe, Jean-Michel Drezen, and Anne-Nathalie Volkoff. "Recurrent DNA virus domestication leading to different parasite virulence strategies". In: *Sci. Adv.* 1.10 (2015), e1501150. ISSN: 2375-2548. DOI: 10.1126/sciadv.1501150. URL: <http://advances/sciencemag.org/lookup/doi/10.1126/sciadv.1501150>.

[64] Marylène Poirié, Dominique Colinet, and Jean-Luc Gatti. "Insights into function and evolution of parasitoid wasp venoms". In: *Current Opinion in Insect Science* 6 (2014), pp. 52–60. ISSN: 22145745. DOI: 10.1016/j.cois.2014.10.004. URL: <https://linkinghub.elsevier.com/retrieve/pii/S2214574514001060>.

[65] Leszek P. Pryszzcz and Toni Gabaldón. "Redundans: an assembly pipeline for highly heterozygous genomes". In: *Nucleic Acids Res* 44.12 (2016), e113–e113. ISSN: 0305-1048, 1362-4962. DOI: 10.1093/nar/gkw294. URL: <https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw294>.

[66] Donald L. J. Quicke. *The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology*. 1st ed. Wiley, 2014. ISBN: 978-1-118-90705-4 978-1-118-90708-5. DOI: 10.1002/9781118907085. URL: <https://onlinelibrary.wiley.com/doi/book/10.1002/9781118907085>.

[67] R M Rizki and T M Rizki. "Parasitoid virus-like particles destroy *Drosophila* cellular immunity". In: *Proc. Natl. Acad. Sci. U.S.A.* 87.21 (1990), pp. 8388–8392. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.87.21.8388. URL: <https://pnas.org/doi/full/10.1073/pnas.87.21.8388>.

[68] R M Rizki and T M Rizki. "Selective destruction of a host blood cell type by a parasitoid wasp". In: *Proc. Natl. Acad. Sci. U.S.A.* 81.19 (1984), pp. 6154–6158. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.81.19.6154. URL: <https://pnas.org/doi/full/10.1073/pnas.81.19.6154>.

[69] Fredrik Ronquist. "Phylogeny and early evolution of the Cynipoidea (Hymenoptera)". In: *System Entomol* 20.4 (1995), pp. 309–335. ISSN: 0307-6970, 1365-3113. DOI: 10.1111/j.1365-3113.1995.tb00099.x. URL: <https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3113.1995.tb00099.x>.

[70] Fredrik Ronquist. "Phylogeny, classification and evolution of the Cynipoidea". In: *Zool Scripta* 28.1-2 (1999), pp. 139–164. ISSN: 0300-3256, 1463-6409. DOI: 10.1046/j.1463-6409.1999.00022.x. URL: <http://doi.wiley.com/10.1046/j.1463-6409.1999.00022.x>.

[71] Fredrik Ronquist, José-Luis Nieves-Aldrey, Matthew L. Buffington, Zhiwei Liu, Johan Liljeblad, and Johan A. A. Nylander. "Phylogeny, Evolution and Classification of Gall Wasps: The Plot Thickens". In: *PLOS ONE* 10.5 (2015). Ed. by Carlos López-Vaamonde, e0123301. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0123301. URL: <https://dx.plos.org/10.1371/journal.pone.0123301>.

[72] J. Russo, S. Dupas, F. Frey, Y. Carlton, and M. Brehelin. "Insect immunity: early events in the encapsulation process of parasitoid (*Leptopilina boulardi*) eggs in resistant and susceptible strains of *Drosophila*". In: *Parasitology* 112.1 (1996), pp. 135–142. ISSN: 0031-1820, 1469-8161. DOI: 10.1017/S0031182000065173. URL: [https://www.cambridge.org/core/product/identifier/S0031182000065173/type/journal\\_article](https://www.cambridge.org/core/product/identifier/S0031182000065173/type/journal_article).

[73] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus, Weizhong Li, Rodrigo Lopez, Hamish McWilliam, Michael Remmert, Johannes Söding, Julie D Thompson, and Desmond G Higgins. "Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega". In: *Mol Syst Biol* 7.1 (2011), p. 539. ISSN: 1744-4292, 1744-4292. DOI: 10.1038/msb.2011.75. URL: <https://doi.org/10.1038/msb.2011.75>.

//onlinelibrary.wiley.com/doi/10.1038/msb.2011.75.

[74] Felipe A. Simão, Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva, and Evgeny M. Zdobnov. "BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs". In: *Bioinformatics* 31.19 (2015), pp. 3210–3212. ISSN: 1367-4803, 1460-2059. DOI: 10.1093/bioinformatics/btv351. URL: <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv351>.

[75] Martin Steinegger and Johannes Söding. "MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets". In: *Nat Biotechnol* 35.11 (2017), pp. 1026–1028. ISSN: 1087-0156, 1546-1696. DOI: 10.1038/nbt.3988. URL: <http://www.nature.com/articles/nbt.3988>.

[76] D. B. Stoltz and J. B. Whitfield. "Viruses and virus-like entities in the parasitic Hymenoptera". In: *Journal of Hymenoptera Research* (1992), pp. 125–139.

[77] Donald B. Stoltz. "A putative baculovirus in the ichneumonid parasitoid, *Mesoleius tenthredinis*". In: *Can. J. Microbiol.* 27.1 (1981), pp. 116–122. ISSN: 0008-4166, 1480-3275. DOI: 10.1139/m81-018. URL: <http://www.nrcresearchpress.com/doi/10.1139/m81-018>.

[78] Donald B. Stoltz and Gary Faulkner. "Apparent replication of an unusual virus-like particle in both a parasitoid wasp and its host". In: *Can. J. Microbiol.* 24.12 (1978), pp. 1509–1514. ISSN: 0008-4166, 1480-3275. DOI: 10.1139/m78-241. URL: <http://www.nrcresearchpress.com/doi/10.1139/m78-241>.

[79] Donald B. Stoltz and S. Bradleigh Vinson. "Viruses and Parasitism in Insects". In: *Advances in Virus Research*. Vol. 24. Elsevier, 1979, pp. 125–171. ISBN: 978-0-12-039824-9. DOI: 10.1016/S0065-3527(08)60393-0. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0065352708603930>.

[80] Donald B. Stoltz, S. Bradleigh Vinson, and Edmund A. MacKinnon. "Baculovirus-like particles in the reproductive tracts of female parasitoid wasps". In: *Can. J. Microbiol.* 22.7 (1976), pp. 1013–1023. ISSN: 0008-4166, 1480-3275. DOI: 10.1139/m76-148. URL: <http://www.nrcresearchpress.com/doi/10.1139/m76-148>.

[81] Eloise L. Styler, John J. Hamm, and Donald A. Nordlund. "A new virus associated with the parasitoid *Cotesia marginiventris* (Hymenoptera: Braconidae): Replication in noctuid host larvae". In: *Journal of Invertebrate Pathology* 50.3 (1987), pp. 302–309. ISSN: 00222011. DOI: 10.1016/0022-2011(87)90096-6. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022201187900966>.

[82] Jin Su, Oliver Lung, and Gary W. Blisard. "The *Autographa californica* multiple nucleopolyhedrovirus lef-5 gene is required for productive infection". In: *Virology* 416.1-2 (2011), pp. 54–64. ISSN: 00426822. DOI: 10.1016/j.virol.2011.04.019. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0042682211001991>.

[83] Toshiharu Tanaka. "Effect of the venom of the endoparasitoid, *Apanteles kariyai* Watanabe, on the cellular defence reaction of the host, *Pseudaletia separata* Walker". In: *Journal of Insect Physiology* 33.6 (1987), pp. 413–420. ISSN: 00221910. DOI: 10.1016/0022-1910(87)90020-5. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022191087900205>.

[84] Simon Van Noort, Matthew L. Buffington, and Matthias Forshage. "Afrotropical Cynipoidea (Hymenoptera)". In: *ZooKeys* 494 (2015), pp. 1–176. ISSN: 1313-2970, 1313-2989. DOI: 10.3897/zookeys.493.6353. URL: <http://zookeys.pensoft.net/articles.php?id=5015>.

[85] Julien Varaldi, Pierre Fouillet, Marc Ravellec, Miguel López-Ferber, Michel Boulétreau, and Frédéric Fleury. "Infectious Behavior in a Parasitoid". In: *Science* 302.5652 (2003), pp. 1930–1930. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1088798. URL: <https://www.science.org/doi/10.1126/science.1088798>.

[86] Julien Varaldi, David Lepetit, Nelly Burlet, Camille Faber, Bérénice Baretje, and Roland Allemand. "Community structure of heritable viruses in a *Drosophila*-parasitoids complex". In: *Peer Community Journal* 4 (2024), e16. ISSN: 2804-3871. DOI: 10.24072/pcjournal.371. URL: <https://peercommunityjournal.org/articles/10.24072/pcjournal.371/>.

[87] S. Bradleigh Vinson. "Factors involved in successful attack on *Heliothis virescens* by the parasitoid *Cardiochiles nigriiceps*". In: *Journal of Invertebrate Pathology* 20.1 (1972), pp. 118–123. ISSN: 00222011. DOI: 10.1016/0022-2011(72)90091-2. URL: <https://linkinghub.elsevier.com/retrieve/pii/0022201172900912>.

[88] Anne-Nathalie Volkoff, Véronique Jouan, Serge Urbach, Sylvie Samain, Max Bergoin, Patrick Wincker, Edith Demmette, François Cousserans, Bertille Provost, Fasseli Coulibaly, Fabrice Legaï, Catherine Bélieau, Michel Cusson, Gabor Gyapay, and Jean-Michel Drezen. "Analysis of Virion Structural Components Reveals Vestiges of the Ancestral Ichnovirus Genome". In: *PLoS Pathog* 6.5 (2010). Ed. by Sasan Asgari, e1000923. ISSN: 1553-7374. DOI: 10.1371/journal.ppat.1000923. URL: <https://dx.plos.org/10.1371/journal.ppat.1000923>.

[89] J.B. Whitfield. "Parasitoids, polydnaviruses and endosymbiosis". In: *Parasitology Today* 6.12 (1990), pp. 381–384. ISSN: 01694758. DOI: 10.1016/0169-4758(90)90146-U. URL: <https://linkinghub.elsevier.com/retrieve/pii/016947589090146U>.

[90] Brian M. Wiegmann, Michelle D. Trautwein, Isaac S. Winkler, Norman B. Barr, Jung-Wook Kim, Christine Lambkin, Matthew A. Bertone, Brian K. Cassel, Keith M. Bayless, Alysha M. Heimberg, Benjamin M. Wheeler, Kevin J. Peterson, Thomas Pape, Bradley J. Sinclair, Jeffrey H. Skevington, Vladimir Blagoderov, Jason Caravas, Sujatha Narayanan Kutty, Urs Schmidt-Ott, Gail E. Kampmeier, F. Christian Thompson, David A. Grimaldi, Andrew T. Beckenbach, Gregory W. Courtney, Markus Friedrich, Rudolf Meier, and David K. Yeates. "Episodic radiations in the fly tree of life". In: *Proc. Natl. Acad. Sci. U.S.A.* 108.14 (2011), pp. 5690–5695. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.1012675108. URL: <https://pnas.org/doi/full/10.1073/pnas.1012675108>.

## 429 Supplemental informations

430 The following section is a translation of the original PhD thesis made by Nabila Kacem - Haddj El Mrabet in 1999 related  
431 to the identification of virus-like structures (VLS) in *Trybliographa rapae*.

432 **Immune Interactions in the *Delia radicum* *Trybliographa rapae* system : evidence of two types of**  
433 **particle by female adnexal glands**

434 **Introduction**

435 While ectoparasitoids behave as micropredators consuming their host from the outside, endoparasitoids immersed in the  
436 host's internal environment are exposed to immune reactions triggered by their infestation. Endoparasitoid Hymenoptera  
437 have a variety of strategies for thwarting the host's response to parasitoid eggs and larvae. These strategies range  
438 from oviposition behavior, enabling the egg to be deposited in areas of least host reaction [41, 35, 87], to the release of  
439 immunosuppressive substances or liquid particulate secretions from the adnexal glands of the reproductive apparatus  
440 [76, 68, 67, 47]. Viral particle production has been described in the ovarian calyx of the Braconidae [83, 28] and in the  
441 follicular cells of the Encyrtidae *Leptomastix dactylopii* (Hymenoptera: Encyrtidae) [5] and in the venom gland reservoir in  
442 the Eucoilidae *Leptopilina boulardi* and *Leptopilina heterotoma* (Hymenoptera: Figitidae) [68, 67, 72, 25]. Parasitoids and  
443 viruses co-evolve [89]. *Trybliographa rapae* (Hymenoptera: Figitidae) is a larvophagous endoparasitoid of the cabbage  
444 maggot *Delia radicum* (Diptera: Anthomyiidae) in which we have never found any evidence of encapsulation, suggesting  
445 the existence of a protective system. This work, using scanning and transmission electron microscopy techniques,  
446 studies the tracking of the *T. rapae* egg from the genital tract to 96 h after oviposition in the *D. radicum* larva, as well as  
447 the ultrastructure of the adnexal glands of the female genital tract.

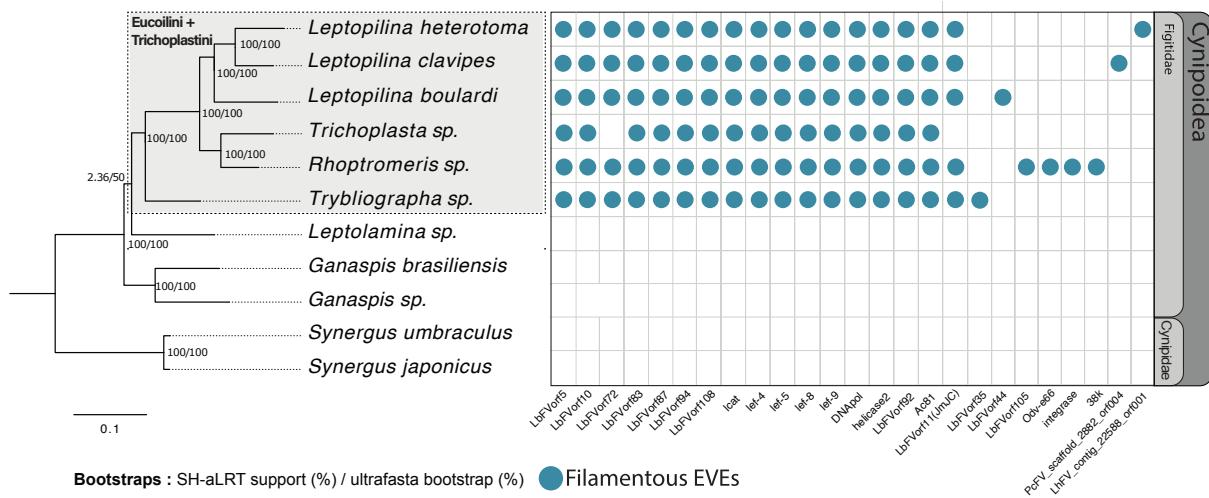
448 **Materials and methods**

449 The Breton strain of *T. rapae* was reared on *D. radicum* larvae infesting Cruciferae roots using the technique described  
450 by [59]. Two other strains, one from Quebec and reared in the laboratory, and the other wild strain obtained from Finland,  
451 were used. Second-stage host larvae are subjected to parasitism by females for 5 min. This short time allows us to  
452 determine the precise time between egg laying and recovery. Ovarian eggs are obtained by dissection of the ovary, and  
453 laid eggs by dissection of the parasitized larvae. These dissections are carried out in Ringer's physiological fluid. The  
454 laid eggs observed are 5 min, 24h, 48h, 72h and 96h old.

455 Samples observed by scanning electron microscopy are fixed with 2.5% glutaraldehyde buffered with sodium  
456 cacodylate for one hour, then dehydrated for 10 min in baths of 70°, 80°, 90°, 95° and twice 100° alcohol, followed by 100°  
457 acetone. They were then dried using the CO critical point technique, liquid dried on a Balzers CPD10, then metallized  
458 with palladium gold using a cathodic sputter and observed on a JEOL JSM 6400. Samples observed by transmission  
459 electron microscopy (ovipositor sections, laid eggs and odd and even adnexal glands) are fixed with cacodylate-buffered  
460 glutaraldehyde 2.5, placed in a 2% buffered osmium tetroxide solution for 1 h and dehydrated with pure acetone. They are  
461 embedded in Epon-Araldite. Semi-fine sections are taken on a Reichert OM.U2 ultramicrotome. Sections are stained  
462 with 1% toluidine blue and observed by Phillips CM - 12 transmission electron microscopy. The laid egg was also  
463 observed 24 hours after oviposition using light microscopy.

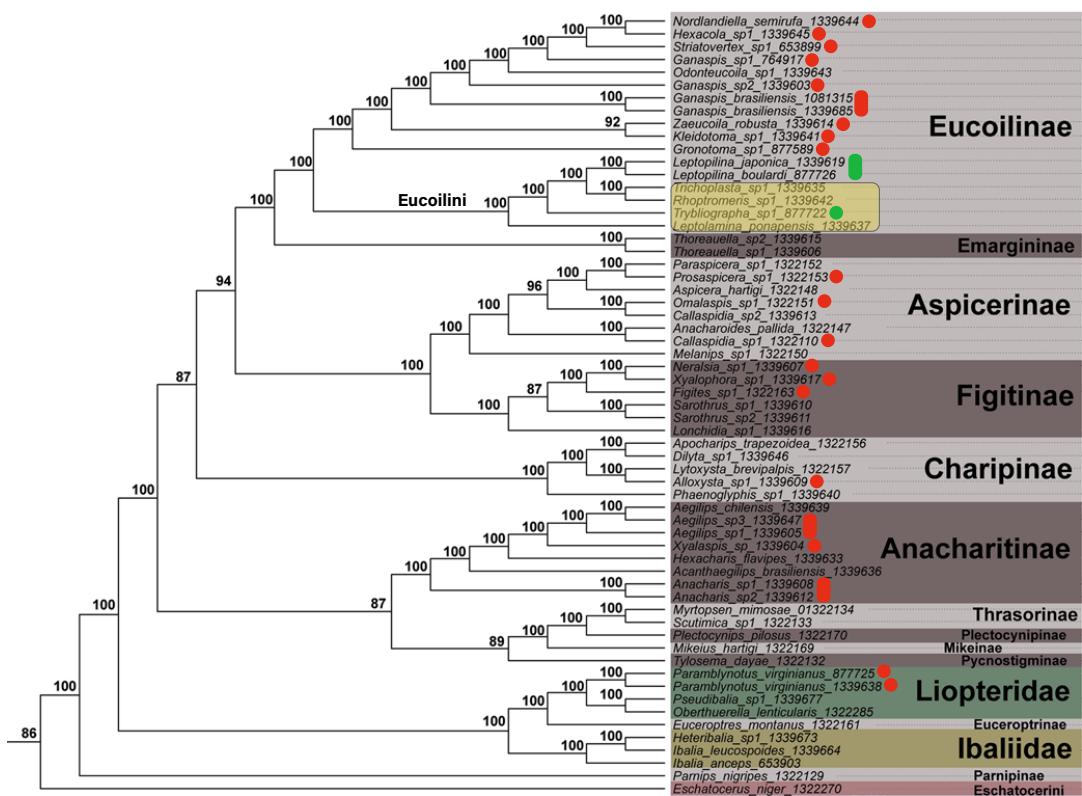
464 **Results**

465 The ovarian wall egg, freed from surrounding follicular cells, shows a regularly and strongly wrinkled exochorion  
466 (FigureS11-A). The newly laid egg is completely covered by a dense coating of viscous-pasty particles ranging in size  
467 from 0.20 µm to 0.42 µm in length (FigureS11-B). Twenty-four hours after oviposition, the hydropic egg has greatly  
468 increased in volume as a result of the detachment occurring between oviposition, exochorion and endochorion. The  
469 space thus created is filled with fluids from the internal environment of the parasitized larva that has passed through  
470 the exochorion. The yolk of the bulbar part of the *T. rapae* pedicellate egg remains contained within the endochorion  
471 (FigureS11-C). As the volume of the egg increases, the exochorion unfolds, causing a change in the particle coating  
472 (FigureS11-D). The particles, now ranging in size from 0.57 µm to 1.14 µm, organize themselves into a network, with  
473 connecting bridges appearing between the particles in the Breton strain (FigureS11-D), the Quebec strain (FigureS11-E)  
474 and the Finnish strain (FigureS11-F). Forty-eight hours after oviposition, the phenomenon of egg hydropic is complete;  
475 the particles reach their greatest spread and measure 1.3 µm to 2 µm in diameter (FigureS11-G). In cross-section, the  
476 48h-old particles, which appear hollowed out, are surrounded by a double membrane and rest closely on the exochorion  
477 (FigureS11-H). The lumen of the paired gland shows grains of secretion (FigureS11-I). Their size, 2.4 µm in diameter, is  
478 comparable to that of the particles found on the egg laid 5 minutes ago. These agglomerated secretions are found in  
479 the ovipositor canal (FigureS11-J); the cluster slides over the ctenidia carried by the inner face of the valves delimiting


480 the canal. The venom gland (odd-numbered) has three easily distinguishable parts: the distal part is 480  $\mu\text{m}$  long and  
481 corresponds to the gland itself, the narrow middle part is 320  $\mu\text{m}$  long and corresponds to the canal, and the swollen  
482 proximal part or reservoir varies from 320 to 500  $\mu\text{m}$  depending on the quantity of venom stored. The inner surface of the  
483 gland displays two types of secretory pores. Type A pores appear on the inner surface in the form of nipples 2  $\mu\text{m}$  in  
484 diameter, pierced by a central orifice 0.3  $\mu\text{m}$  in diameter, which certainly allows secretions to escape (FigureS10-A).  
485 Type B pores are found on the entire inner surface in the form of rounded cavities 3.3  $\mu\text{m}$  in diameter (FigureS10-B). In  
486 cross-section (FigureS10-C), these pores are composed of crypt-like secretory units discharging their products into the  
487 matrix-filled glandular lumen. In the distal pores, easily recognizable particles can be found (FigureS10-D). At the same  
488 distal level of the gland, higher magnification reveals the isolation and grouping of the constituent elements (FigureS10-E)  
489 of the particles (FigureS10-F). These roughly spherical particles vary in diameter from 0.6 to 1.2  $\mu\text{m}$ . In the middle part of  
490 the gland, they are well individualized and distinct from their substrate (FigureS10-G). In the proximal part, or reservoir, of  
491 the venom gland, they remain unchanged (FigureS10-H). A semi-fine section of the ovipositor stylet shows the presence  
492 of these particles in the oviposition canal (FigureS10-I). These particles, whose formation is followed from the apex to  
493 the venom gland reservoir, are expelled by the ovipositor; however, they were not found in contact with the laid egg.

#### 494 Discussion

495 The presence of "Virus-Like Particles" has been reported in many Braconidae: *Biosteres longicaudatus* [47], *Microplitis*  
496 *mediator* (Walker) [83], *Microplitis croceipes* (Cresson) [40], *Apanteles melanoscelus* [78], *Apanteles congregatus*  
497 (Say) [80], *Apanteles glomeratus* [43], *Apanteles hyphantriae* (Riley) [79], *Cardiochiles nigriceps*, *Microplitis croceipes*,  
498 *Chelonus texanus* and *Cotesia rubecula* [3]. Some Ichneumonidae, including *Venturia canescens* [7, 27], *Hyposoter*  
499 *exiguae* [45] and a single Encyrtidae, *Leptomastix dactylopii* [5], also possess virus particles. Virus particles are always  
500 replicated in Ichneumonidae and most often in Braconidae at the ovarian calyx. In the latter, replication of two types of  
501 particles in *Biosteres longicaudatus* [47] takes place in the adnexal glands. Particle replication occurs in the follicular cells  
502 of the Encyrtidae *Leptomastix dactylopii* [5] and in the epithelial cells of the adnexal glands associated with the female  
503 reproductive tract in the Figitidae *Leptopilina boulardi* and *Leptopilina heterotoma*. Several types of virus are involved in  
504 suppressing the host's immune system. Baculoviruses are found in the Braconidae; these membrane-enveloped virions  
505 are cylindrical nucleocapsids 40 nm in diameter, containing a genome composed of a circular DNA strand that replicates  
506 in the cell nucleus. PolyDNA viruses are highly unusual viral entities [79, 28, 76]. Their genome is made up of several  
507 dozen circular double-stranded DNA molecules. Other so-called rod-shaped particles are assimilated to VLPs [44, 81,  
508 61, 4, 77, 2]; they differ in size from the VLPs found in the accessory glands of *Biosteres longicaudatus* [47, 26]. Our  
509 work shows the formation of 2 types of particles in *T. rapae*, formed in two different sites: the odd gland (venom gland)  
510 and the even gland (uterine gland). These 2 particle types are found in the ovipositor canal. The type produced by the  
511 paired gland (uterine gland) is easily found on the laid egg of all three strains of *T. rapae*.


512 It therefore provides close protection for the egg. The type produced by the odd-numbered gland, on the other  
513 hand, is not found on the egg, suggesting that these particles are dispersed within the host larva. Since no evidence  
514 of host aggression or encapsulation was observed on several hundred laid eggs, we attribute to these most likely viral  
515 particles an immunosuppressive role in host reactions. *T. rapae* thus appears to be the first Figitidae and the second  
516 parasitoid species to possess two identified types of particles produced by the even and odd glands of the reproductive  
517 tract. In *Biosteres longicaudatus* (Hymenoptera: Braconidae), both types of particle originate from the filaments of the  
518 accessory gland and Dufour's gland, considered to form part of the venomous apparatus [47]. The comparison of the  
519 various situations described in the field of virus-parasitoid interactions calls for a homogenization of the qualification  
520 by the various authors of the accessory glands in general, in order to better understand the strategies put in place by  
521 co-evolution, and which may eventually contribute to the ongoing systematic revision of the species concerned.

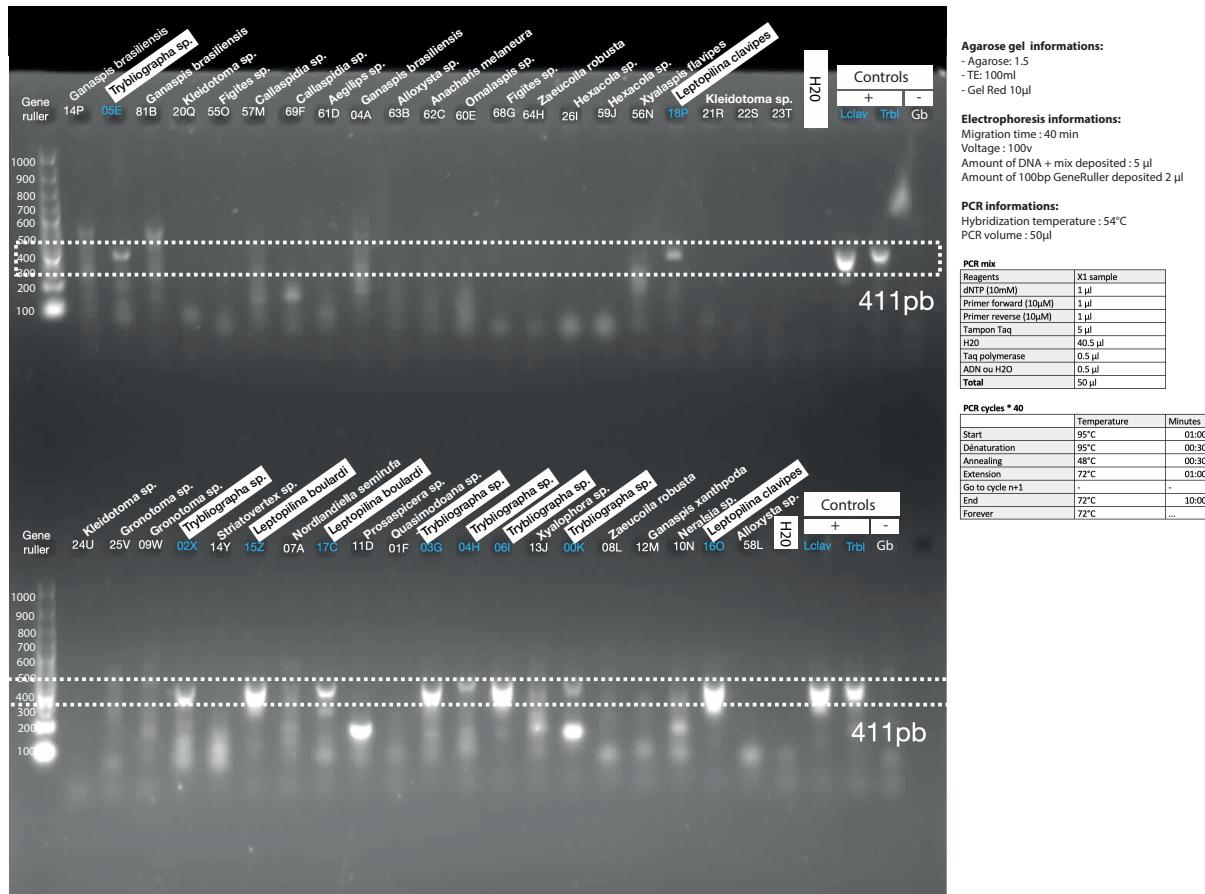
522 **Supplementary figures**



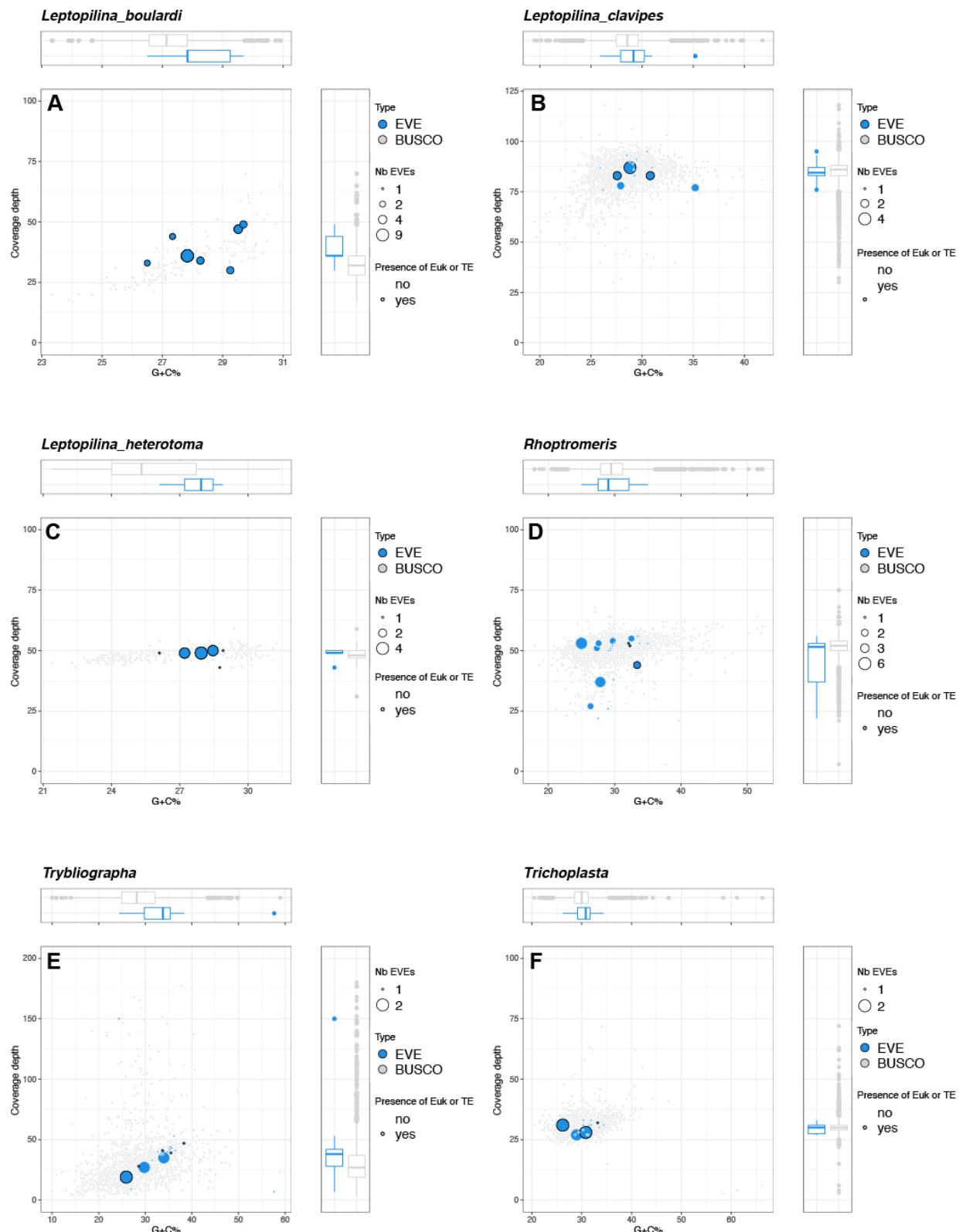
**Figure S1. Filamentous EVE distribution among Cynipoidea species.** The phylogeny of the Cynipoidea has been estimated using 1,000 Busco genes. Confidence scores (aLRT%/ultra-bootstrap support%) are shown at each node. Each row represents a Cynipoidea species, whereas each column represents a filamentous EVE. Blue circles indicate the presence of EVE in a genome, whereas white boxes indicate its absence.

# Figitidae

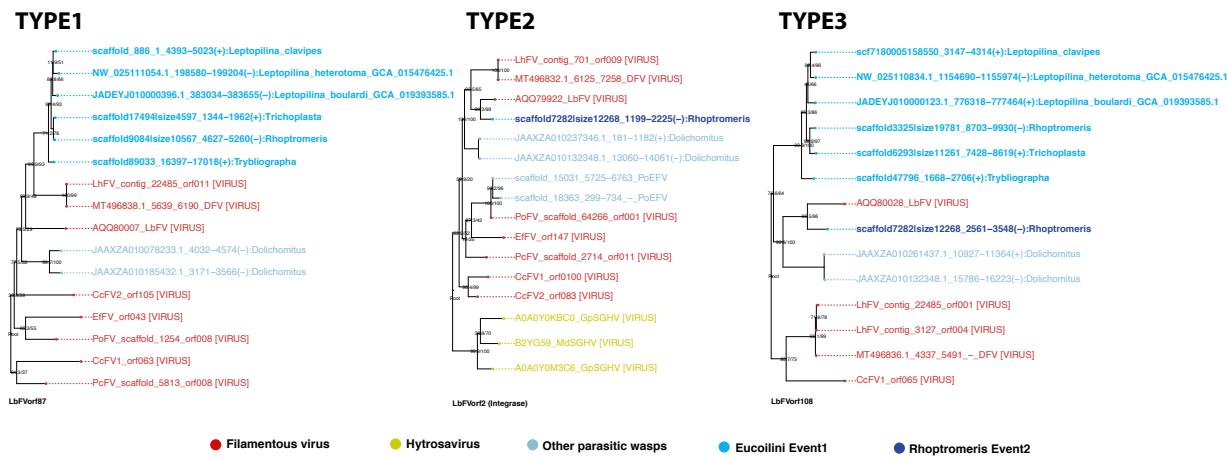



## LbFVORF96 PCR amplification

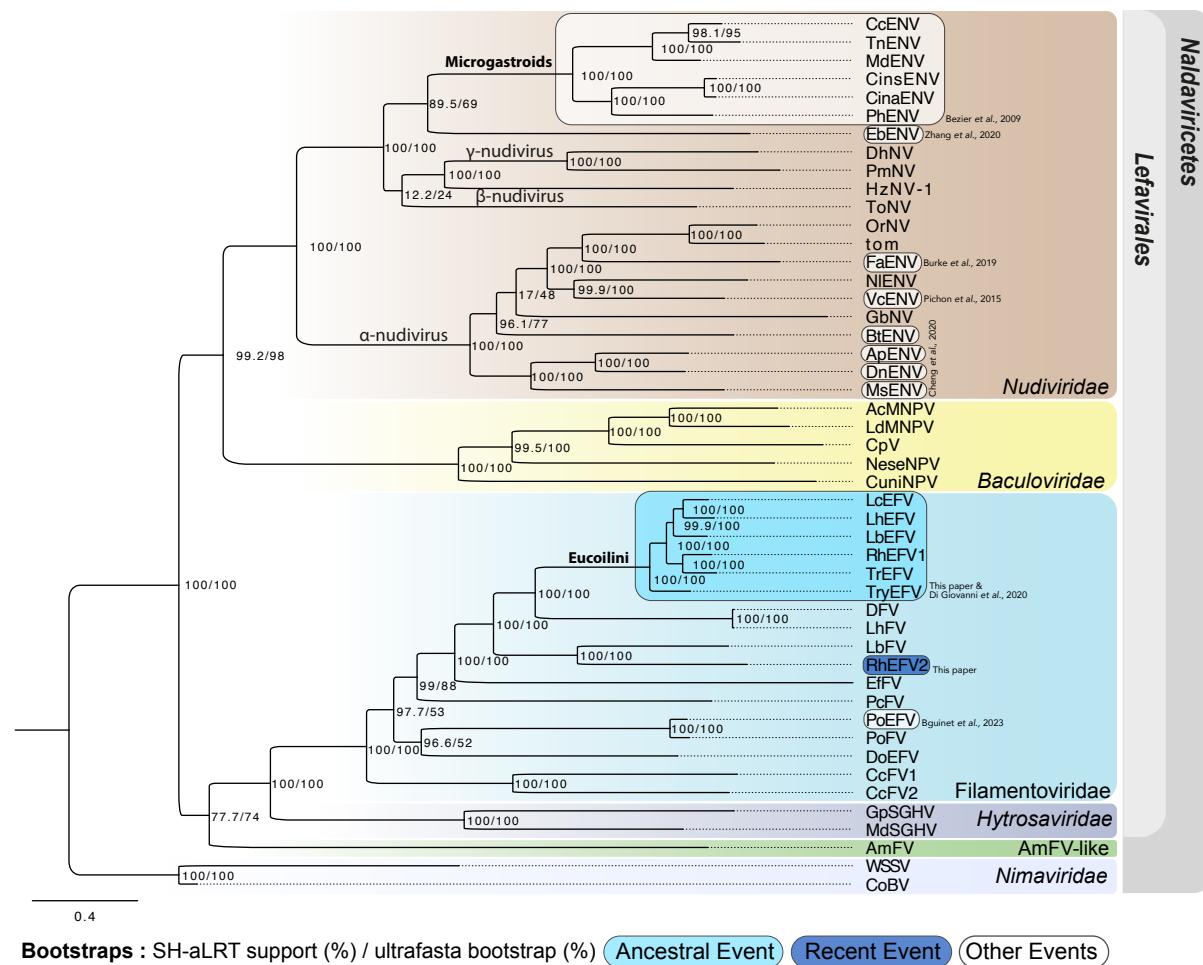
Positive


Negative

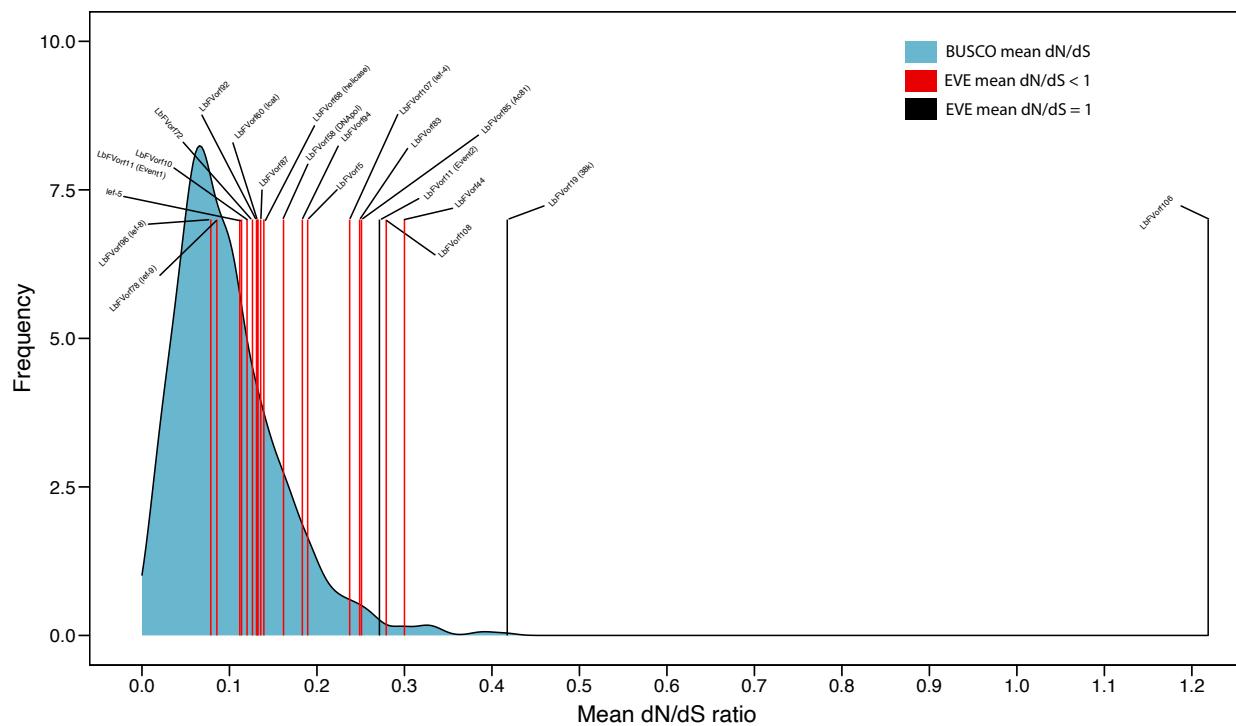
Sequenced genomes


**Figure S2. Figitidae phylogenetic tree with all sampled species.** The figure is modified from the previous work of [11]. Positive PCR amplification of ORF96 for each genus is displayed in green, while negative in red. This only concerns genus in the phylogeny, it does not mean the specific taxa as been tested. To see the specific species tested, please refer to the (FigureS3). Genus that were newly sequenced and assembled are in yellow box, this includes *Leptolamina*, *Trybliographa*, *Trichoplasta* and *Rhoptromeris*.




**Figure S3. ORF96 PCR results.** Positive PCR amplification of ORF96 is displayed by a blue number and a white box. The size of amplicons can be found thanks to PCR ladder on the left side of the figure. The expected ORF96 amplicon size was 411bp and is delimited with the doted white rectangles. Control abbreviations : Gb=*Ganaspis brasiliensis*, Lclav=*Leptopilina clavipes*, Trbl=*Trybliographa*. Information about the PCR mix, programs electrophoresis concentration are displayed next to the electrophoresis picture,

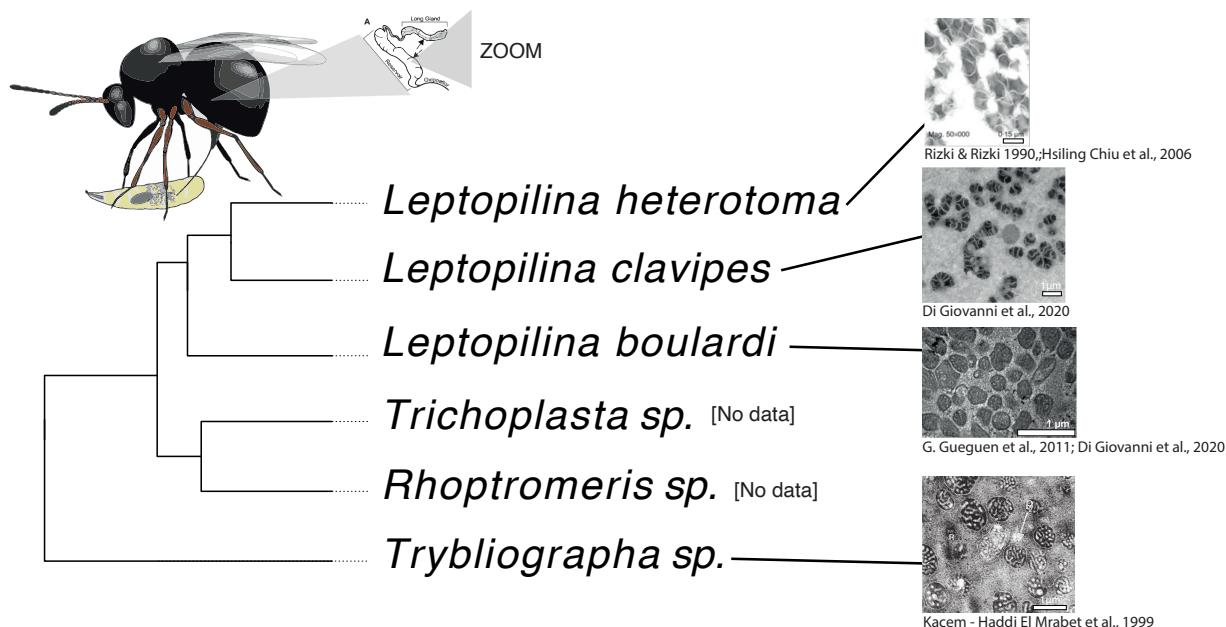



**Figure S4. Coverage and G+C% content of scaffold harboring filamentous EVEs.** General features of scaffolds containing single copy universal arthropod genes (BUSCO gene set, in grey). Scaffolds containing filamentous virally-derived loci are in blue. The size of the dots corresponds to the number of candidate EVEs inside the scaffold. The dots circled in black correspond to scaffolds that contain one or more eukaryotic genes and/or one or more repeat elements. (A) *L. boulardi*; (B) *L. clavipes*; (C) *L. heterotoma*; (D) *Rhoptromeris* sp.; (E) *Trybliographa*; (F) *Trichoplasta*.

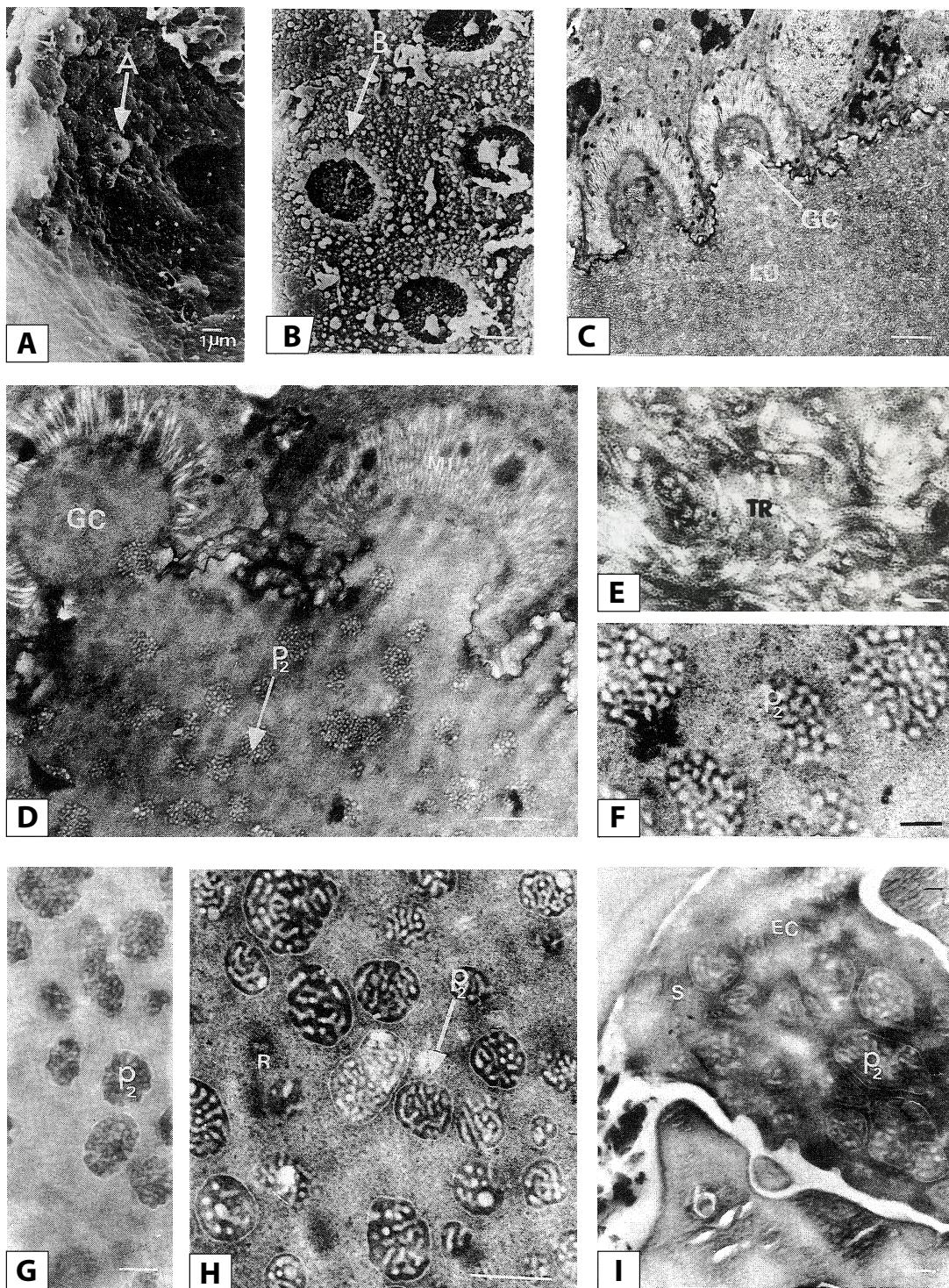



**Figure S5. Example of individual gene phylogenies observed.** Phylogenies include sequences from free-living viruses such as Filamentoviruses (in red) and Hytrosavirus (in yellow) and sequences from parasitic wasps in blue tones. EVEs assigned to the first ancestral endogenization event within the Eucoilini tribe are depicted in light blue, while the EVEs assigned from the recent endogenization event in the *Rhoptromeris* genome are depicted in dark blue. Three types of phylogenies are present in the 25 gene phylogenies of the analysis. The type1 corresponds to a single endogenization event that occurred in the ancestor of all Eucoilini species and involving a LhFV-like donor. The Type2 suggests another independent event that occurred in the *Rhoptromeris* branch, involving a LbFV-like donor. The type3 phylogenies suggest that both events occurred.

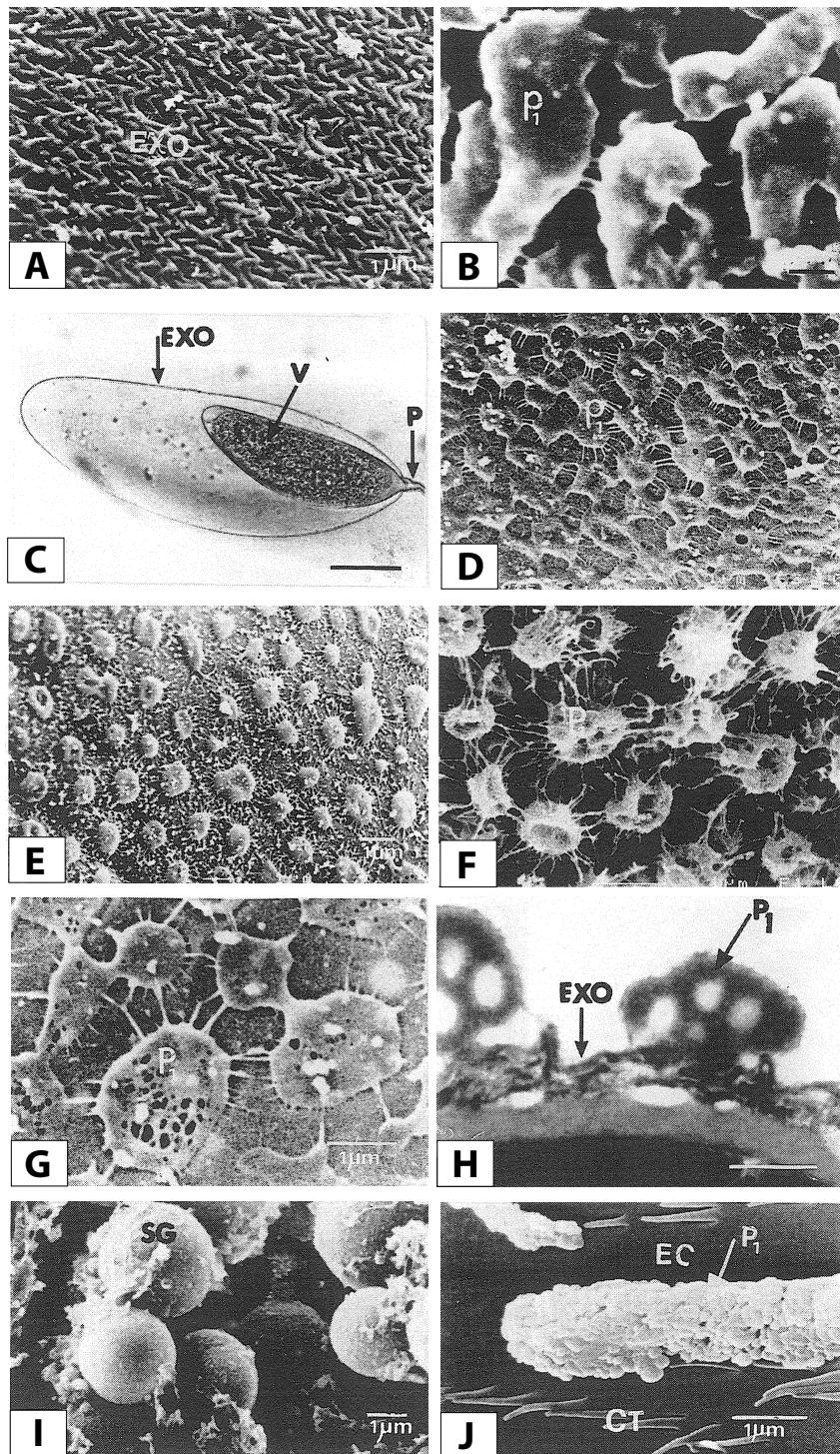



**Figure S6. Phylogenetic tree inference of the Naldaviricetes.** The phylogeny was inferred by maximum likelihood with 113 concatenated amino-acid sequences (25,382 amino-acid sites including only homologous clusters with at least 4 sequences) of 47 viruses. Confidence scores (aLRT%/ultra-bootstrapping support%) are shown at each node. The scale bar indicates the average number of amino acid substitutions per site. The phylogeny includes free-living viruses from the families *Baculoviridae* (yellow), *Nudiviridae* (brown), *Hytrosaviridae* (purple), *Nimaviridae* (light purple), *Filamentoviridae* (light blue) and the *AmFV* virus (green). All previously documented viral endogenization events are highlighted in white boxes, while the newly described events in this paper are highlighted in blue tones (light blue for the first ancestral event in *Eucoilini*, and dark blue from the recent endogenization event in the *Rhoptromeris*).



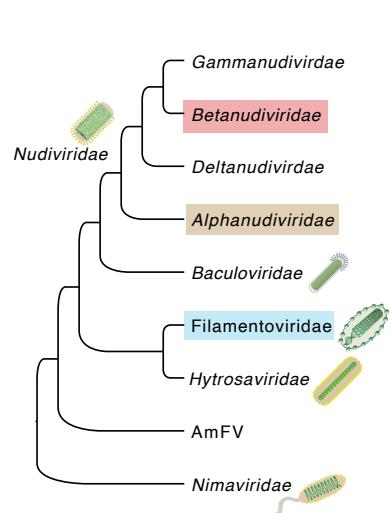

**Figure S7. Virally derived genes are under strong purifying selection in Eucoilini wasp genomes.**  $dN/dS$  ratio for a set of 1000 universal arthropod genes (blue density curve) and for 18 virally derived genes found in *Leptopilina*, *Trybliographa*, *Trichoplasta*, and *Rhoptromeris* species (indicated by the red lines). Red lines indicate  $dN/dS$  significantly below 1 while black lines indicate  $dN/dS = 1$ . The labels above the lines indicate the number of the ORF within the LbFV genome, and the putative protein names are indicated between parenthesis.




**Figure S8.  $dN/dS$  profiles for the 18 filamentous genes endogenized in Eucoilini wasps.** The  $dN/dS$  values were estimated for each codon position of the endogenous filamentous viral elements using FEL method. Sites inferred to be under positive or negative selection are displayed in green and red respectively ( $pvalue < 0.05$ ), while sites evolving under neutrality are displayed in black.



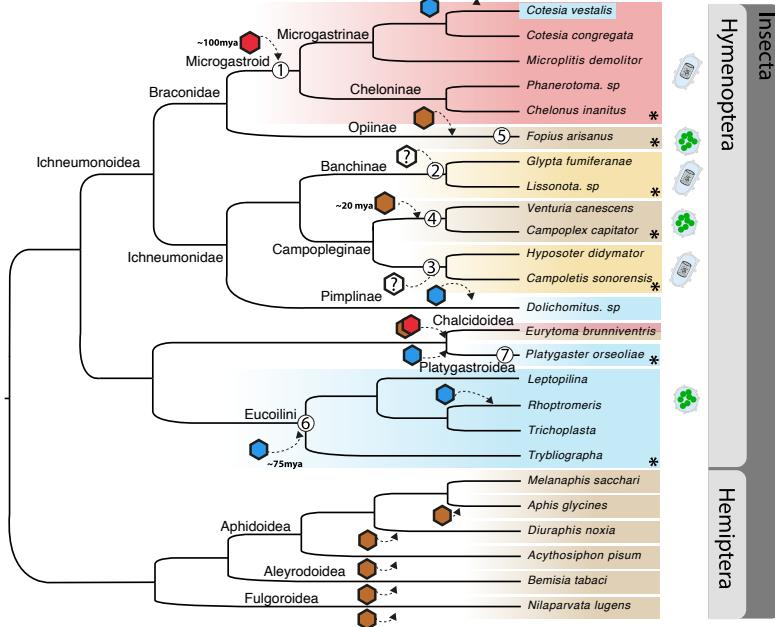
**Figure S9. Summary on VLPs production in the venom gland of Eucoilini species.** TEM figures are from [19, 22, 34], and K.Haddj E PhD 1999 respectively. To our knowledge, no data are available for *Trichoplasta* and *Rhoptromeris* genus. The cartoon in the upper left corner illustrates the location of the tissue used for the TEM investigations (reservoir of the venom gland). Cladogram extracted from the phylogeny presented in FigureS1



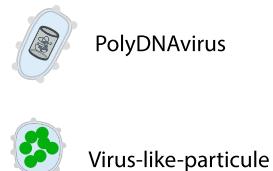

**Figure S10. Transmission electron micrographs of sections of *Trybliographa rapae* venom gland.** **A** Relief type A pore at the distal end of the inner side of the venom gland, **B** Type B pore at the distal end of the gland, **C** Cross-section of the glandular units at the distal end, the lumen of the gland is filled by a membrane frame, **E** Detail of the membrane frame, **F** Individualization of virus-like particles (VLPs) in the distal part of the odd gland, **G** Presence of virus-like particles in the lumen of the middle part of the venom gland, **H** Appearance of particles in the lumen of the venom gland reservoir, **I** Presence of VLPs in the egg-laying canal. A: type A pore, B: type B pore, EC: oviposition canal, EXO: exochorion, GC: glandular cells, LU: gland lumen, MI: microvilli, p2: type 2 particles, R: reservoir, S: secretions, TR: frame. Pictures from the PhD thesis manuscript of Nabila Kacem-Haddj El Mrabet, 1999



**Figure S11. Transmission electron micrographs of sections of *Trybliographa rapae* uterine gland.** **A** The exochorion of the ovarian egg, **B** Coating of the egg surface with particles 5 min after oviposition. The chorion has a dense coating of viscous substance, **C** General appearance of the *T. rapae* egg 24 hours after oviposition; **D** Surface of an egg 24 hours after laying from a Breton strain; **E** Surface of an egg 24 hours after laying from a Quebec strain, **F** Surface of an egg 24 hours after laying from a Finnish strain, **G** Egg 48 hours after laying, **H** Egg 48h after oviposition in semi-fine section showing the viral-like particles found on its surface, **I** Secretion grains of the paired gland, **J** Presence of particles in the middle part of the ovipositor at the level of the oviposition canal lined with ctenidia. CT: Ctenidia, EC: oviposition canal, EXO: exochorion, FC : folded chorion, P: pedicel, p1: type 2 particles, p2: type 2 particles, SG: secretion grains. Pictures from the PhD thesis manuscript of Nabila Kacem-Haddj El Mrabet, 1999


## A-Virus phylogeny




### Viral families



## B-Insect phylogeny



### Virus-like structures (VLS)



Donnor viruses

→ Endogenisation event

\* Domestication event

**Figure S12. Summary of endogenized and domesticated viral elements of dsDNA viruses in arthropods.** **A** - Phylogeny of viruses of the class *Naldaviricetes*, with the virus clades involved in endogenisation phenomena coloured. **B** - Phylogeny of insects including Hymenoptera and Hemiptera having integrated and/or domesticated genetic material from viruses of the class *Naldaviricetes*. Event (1) corresponds to the domestication event of a betanudivirus in the common ancestor of Microgastroids, about 100 million years ago, which allows the production of PDVs [9]. Event (2) corresponds to the domestication of an unknown virus in the ancestor of at least two species of the Banchinae family which is independent of event (3) in which another unknown virus was domesticated in species of the Campopleginae family. Both allow the production of PDVs [8, 15, 48]. Event (4) corresponds to a domestication event of a betanudivirus that took place about 20 million years ago and is found in the genome of *V.canescens* and *C.capitator* and allows the production of VLPs [63] (PhD thesis of Alexandra Cerqueira de Araujo). Event (5) corresponds to a domestication event of a betanudivirus that took place in the genome of *F.arisanus* and allows the production of VLPs [16]. Event (6) corresponds to a domestication event of a Filamentoviridae close to LhFV that occurred around 75 million years ago in part of the Eucoilini species described in the present paper, allowing the production of VLPs at least in *L.boulardi* and *T.rapae*. Another independent event involving a Filamentovirus close to LbFV also occurred within the *Rhoptromeris* genus. Event (7) corresponds to the endogenization and probably domestication of a Filamentoviridae closely related to PoFV that occurred recently within the *Porseoliae* genome [37]. All the other unnumbered events correspond to independent *a priori* events that show no trace of domestication.