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ABSTRACT

Bacterial symbionts are critical members of many marine sponge holobionts. Some
sponge-associated bacterial lineages, such as Poribacteria, SAUL, and Tethybacterales
appear to have broad host ranges and associate with a diversity of sponge species, while
others are more species-specific, having adapted to the niche environment of their host.
Host-associated spirochete symbionts that are numerically dominant have been
documented in several invertebrates including termites, starfish, and corals. However,
dominant spirochete populations are rare in marine sponges, thus far only observed in
Clathrina clathrus and various species within the Latrunculiidae family, where they are
co-dominant alongside Tethybacterales symbionts. This study aimed to characterize
these spirochetes and their potential role in the host sponge. Analysis of metagenome-

assembled genomes from eight latrunculid sponges revealed that these unusual
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spirochetes are relatively recent symbionts and are phylogenetically distinct from other
sponge-associated spirochetes. Functional comparative analysis suggests that the host
sponge may have selected for these spirochetes due to their ability to produce terpenoids

and/or possible structural contributions.

IMPORTANCE

South African latrunculid sponges are host to co-dominant Tethybacterales and
Spirochete symbionts. While the Tethybacterales are broad-host range symbionts, the
spirochetes have not been reported as abundant in any other marine sponge except
Clathrina clathrus. However, spirochetes are regularly the most dominant populations in
marine corals and terrestrial invertebrates where they are predicted to serve as beneficial
symbionts. Here, we interrogated eight metagenome-assembled genomes of the
latrunculid-associated spirochetes and found that these symbionts are phylogenetically
distinct from all invertebrate-associated spirochetes. The symbiosis between the

spirochetes and their sponge host appears to have been established relatively recently.

INTRODUCTION

The development of symbiotic relationships with prokaryotes likely predates the
emergence of marine sponges (phylum Porifera) during the Cambrian explosion ~540
million years ago (1, 2) and these associations have played a critical role in the evolution
of modern sponge taxa (3, 4). Bacterial symbionts have co-evolved with their host to
perform specific, specialized services that promote the health and fithess of the host (5).

The symbionts are involved in nitrogen, sulfur, and phosphorus cycling (6-9), carbon
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cycling, detoxification (10, 11) and in some cases, the production of bioactive secondary
metabolites as chemical defenses against pathogens, predators, and competitors (12,
13). In return, the host provides its symbionts with a safe and nutrient-rich environment
that promotes the fithess and survival of the symbiont (14). The taxonomic and functional
diversity of sponge-associated microbiomes is generally host-specific, distinct from the
surrounding water column, and acquired by recruitment and enrichment from the
environment (5, 15, 16). However, there are a small number of specialized symbionts
acquired by vertical inheritance from the parent sponge that are broadly distributed across
phylogenetically distant sponge hosts (17, 18), including the Poribacteria, the “sponge-
associated unclassified lineage” (SAUL), and the recently-discovered Tethybacterales

symbionts (15, 19, 20).

The Tethybacterales represent a clade of cosmopolitan sponge-associated symbionts,
comprising three families, namely the Candidatus Persebacteraceae, Candidatus
Tethybacteraceae, and Candidatus Polydorabacteraceae (17, 20). As with the
Poribacteria and Desulfobacteria, the Tethybacterales symbionts are present in
phylogenetically diverse taxa that are primarily low-microbial abundance (LMA) sponge
species but these bacteria have also been detected in some high-microbial abundance
(HMA) species (17, 20). Characterization of metagenome-assembled genomes (MAGS)
of different species of the three Tethybacterales families and their associated hosts also
indicates that there were multiple acquisition events and that host adaptation and co-

evolution began after each acquisition event (17).
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Sponges of the family Latrunculiidae (Demospongiae, Poecilosclerida) are known to be
prolific producers of cytotoxic pyrroloiminoquinone alkaloid compounds (21-26) with
pharmaceutical potential (Reviewed in Kalinksi et al., 2022 (27)). It has recently been
discovered that there are two chemotypes present in the Tsitsikamma favus and
Tsitsikamma michaeli latrunculid sponges (21, 28). Latrunculids are LMA sponges with
highly conserved microbiomes that are dominated by Tethybacterales and Spirochete
taxa (22, 29). The Tsitsikamma favus microbiome is dominated by two sponge-specific
bacterial species defined by their 16S rRNA gene sequence, clones Sp02-1 and Sp02-3.
The Sp02-1 symbiont has been recently characterized (17) and is classified as Ca.
Ukwabelana africanus, a member of the Ca. Persebacteraceae family within the
Tethybacterales (17). The Ca. U. africanus symbiont is phylogenetically related to
symbionts in sponges across multiple orders within the Demospongiae and may be

involved in the reduction of nitrogen and sulfur in the sponge holobiont (17).

Unlike Ca. U. africanus (Sp02-1), the co-dominant spirochete (Sp02-3) is not
representative of a globally distributed, broad-host range sponge symbiont. Spirochetes
have been reported as minor members of several sponge microbiomes (30-32), but
numerically dominant populations of spirochetes in sponges have only been reported in
Latrunculiidae species endemic to the southeastern coast of South Africa, and the
distantly related Clathrina clathrus (Calcarea, Clathrinida) collected by Neulinger and
colleagues from the Adriatic Sea off the coast of Croatia (33). In addition, spirochetes,
presumed to be symbionts, have been detected in the embryonic and larval cells of the

marine sponge Mycale laevis, but their role is currently unknown (34, 35). Numerically
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97 dominant spirochete species are, however, present in several other marine invertebrates
98 including sea anemones (36) and sea stars (37, 38) where decreased abundance of
99 certain spirochete populations correlates with an increased incidence of disease (38).
100 Spirochaeta symbionts are also commonly present as dominant populations in corals
101 (39-42) and in termite guts (43), where they may be involved in the fixation of carbon or
102 nitrogen (41). A recent study investigating the association between coral hosts and their
103 associated microbiota found that Spirochaeta were most abundant in the coral skeleton,
104 hypothesizing that they may be key members in coral skeletal environment due to their
105 ability to fix carbon and nitrogen (44).
106
107 The aim of the present study was to understand the relationship between latrunculid
108 sponges and the Sp02-3 spirochete symbiont. Here we report the characterization of eight
109 spirochete MAGs from four Tsitsikamma sponge species and use comparative genomics
110 to shed light on factors that may drive their conservation. Comparative analysis relative
111  to publicly available genomes and MAGs of the Spirochaetaceae family suggests that the
112  Sp02-3 spirochetes are distinct from all other sponge-associated spirochetes.
113
114 RESULTS AND DISCUSSION
115 Previous studies identified two closely related spirochete species, Sp02-3 and Sp02-15,
116 in the T. favus microbiome (22). Subsequently, the Sp02-3 symbiont was shown to be
117  present in the microbiomes of other Tsitsikamma species and Cyclacanthia bellae (29).
118  Our aim in this study was to characterize the genome of the Sp02-3 symbiont to better

119 understand its role in the sponge holobiont.
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120

121  Survey of microbial communities in latrunculid sponges and other sponge species
122 endemic to the South African coast

123 To survey the prevalence of spirochetes in sponge collected off the South African
124  coastline, we clustered 16S rRNA gene fragment amplicons sourced from 155 marine
125 sponges and 8 seawater samples into operational taxonomic units (OTUSs) at a distance
126  of 0.03 in mothur (45). These sponges were collected primarily from reefs within Algoa
127  Bay, South Africa but also included samples from the Tsitsikamma National Park, the
128  Amathole Marine Protected Area in the Indian Ocean, and the remote Bouvet Island in
129 the Southern (Antarctic) Ocean (Table S1).

130

131 A total of 9711 OTUs were recovered from the 163 amplicon libraries. We identified
132  spirochete OTUs with classifications from alignment of the OTUs against the SILVA and
133 nr databases (Table S2). A total of 142 OTUs were classified within the Spirochaetota
134  phylum, of which only 10 had an average abundance greater then 0.01% across all
135 sponge specimens (Fig. 1A). OTU3 and OTU59 were most abundant in the Tsitsikamma
136 and Cyclacanthia sponges. These OTUs were most closely related to spirochete 16S
137  rRNA gene clones Sp02-3 and Sp02-15, previously identified in T. favus sponges (22).
138 These two OTUs were present at low abundance in the Latrunculia algoaensis and
139 Latrunculia apicalis sponge specimens (collected in Algoa Bay and the Southern Antarctic
140 Ocean), as well as in some Mycale specimens and a single sympatric Phorbus sp. sponge
141 (Fig. 1B).. As the Mycale specimens were found as encrusting species on the

142  Tsitsikamma favus sponges, we cannot discount the possibility of contamination between


https://doi.org/10.1101/2024.05.23.595633
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.23.595633; this version posted October 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

143 these two species. As we have only a single Phorbus sp. representative, additional
144  specimens will be required to determine the significance of these spirochete OTUs in this
145 genus or whether this was a result of contamination during collection. These two OTUs
146  were otherwise absent in all other non-latrunculid sponges collected from sympatric
147 regions. The presence, albeit low, of OTU3 and OTU59 in the L. apicalis sponges
148  collected just off of Bouvet Island (~ 3000 km/ 1800 miles from Algoa Bay), and the
149  presence of phylogenetically distinct spirochetes in sympatric non-latrunculid sponges of
150 Algoa Bay would suggest that these Sp02-3 and Sp02-15 spirochetes are specifically
151  associated with latrunculid sponges

152

153  Spirochete OTUs OTU105 and OTU128 were relatively abundant in other sponges
154  collected from the South African coast, and absent in latrunculid sponges, appeared more
155 sporadic in their distribution among sponge specimens (Fig. 1B). These OTUs were most
156 closely related to spirochetes detected in Spongia officinalis (OY759747.1) and
157 Astrosclera willeyana (HE985144.1) sponges, respectively (Table S2). Inspection of
158 phylogeny of these ten OTUs (Fig. 1C) revealed that six of the ten spirochete OTUs
159 formed a clade with spirochete clones previously cloned from T. favus sponges (22). Of
160 the remaining four, OTU105 and OTU128 (which were more abundant in non-Latrunculid
161 sponge specimens) were part of distant clades of other sponge associated spirochetes,
162  while OTU581 and OTU399 belonged to a clade stemming from a variety of environments
163 (Fig. 1C). Notably, a clone (Sp02sw36) isolated from the seawater extruded from

164  Tsitsikamma favus sponges in 2012 (22), was a close relative of the spirochetes
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165 associated with crown-of-thorns starfish (37), and the dominant spirochete found in C.
166 clathrus sponges (33).

167

168 Characterization of Tsitsikamma sponge-associated spirochete MAGs

169 Eight sponges including five T. favus specimens (TIC2015-050A, TIC2015-050C,
170 TIC2018-003B, TIC2018-003D, TIC2018-003M) and one each of T. michaeli (TIC2019-
171 013N), T. madiba (T1C2022-009), and T. pedunculata (TIC2022-059) were selected for
172 metagenomic analysis (Table S1). Following assembly, binning and taxonomic
173 classification, eight spirochete MAGs were identified, one from each of the eight
174  Tsitsikamma sponge metagenomes: MAGs 050A 2, 050C_7,003B_7,003D_7,003M _1,
175 059 1, 013N_1, and 009 _1 (Table 1, Table S3). The 16S rRNA and 23S rRNA gene
176  sequences from each MAG (if recovered) were aligned against the NR nucleotide

177 database via online BLASTn (46).
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178 Table 1. Characteristics of putative representative genomes of Tsitsikamma
179 sponge-associated spirochete symbiont MAGs

MAG (,\SA';S) Quality | 16S rRNA (% ID) 23S rRNA (% ID) Host Sponge
. Salinispira pacifica L21- )
003B_7 1.97 Medium N/A RPUI-D2 (89.54%) T. favus TIC2018-003B
Uncultured marine Salinispira pacifica L21-
050A_2 | 2.73 Low clone Sp02-3 RPuII)-DZp(89 54%) T. favus TIC2016_050A
(99.52%) D
Uncultured marine Salinispira pacifica L21-
003D _7 | 2.48 High clone Sp02-3 RPuFI)-DZp(BQ 58%) T. favus TIC2018-003D
(99.52%) )
. Salinispira pacifica L21-
003M_1 2.74 High N/A RPuI-D2 (89.58%) T. favus TIC2018-003M
Uncultured marine
050C_7 1.72 Medium clone Sp02-3 N/A T. favus TIC2016-050C
(99.52%)
. Salinispira pacifica L21- . .
009 1 1.47 High N/A RPuI-D2 (91.25%) T. madiba TIC2022-009
. Salinispira pacifica L21- . .
013N_1 2.33 High N/A RPUI-D2 (89.48%) T. michaeli TIC2019-013N
059 1 2.04 Medium N/A N/A T. pedunculata | TIC2022-059

180

181 The 16S rRNA gene sequences recovered from three MAGs all showed the greatest
182 sequence identity with “Uncultured marine clone Sp02-3, " representing the conserved
183  spirochete symbiont previously identified in T. favus sponges (22, 29). All recovered 23S
184 rRNA sequences shared the greatest sequence similarity with S. pacifica L21-RPul-D2.
185 This S. pacifica strain, isolated from a hypersaline microbial mat (47), was previously
186 shown to be the closest known relative of the conserved spirochete Sp02-3 clone (22,
187 29). Finally, all eight Tsitsikamma-associated spirochete MAGs were taxonomically
188 classified, via GTDB-Tk (48), within the Salinispira genus (Table S3). Therefore, we were
189 confident these MAGs represented the conserved spirochete symbiont (Sp02-3)
190 previously reported in South African latrunculid sponges.

191
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192 Phylogeny of Tsitsikamma sponge-associated spirochete MAGs

193 The 16S rRNA gene sequences recovered from three of the Tsitsikamma-associated
194  spirochete MAGs were aligned against their closest matches in the NR database, and
195 spirochetes from other marine invertebrates (37, 39), including the dominant spirochete
196 present in the distantly related Clathrina clathrus sponges (33). Inferred maximum-
197 likelihood phylogeny from the 16S rRNA gene alignment showed that the Tsitsikamma-
198 associated spirochete MAGs were distinct from all other invertebrate-associated
199 spirochetes (Fig. S1). The Tsitsikamma-associated spirochete MAGs formed a distinct
200 clade but were most closely related to spirochetes detected in non-host-associated
201 environments including hypersaline microbial mats, seawater, estuary water, and
202  volcanic mud.

203

204  Since phylogeny inferred by a single marker gene can be limited, several orthogonal
205 approaches were used to assess the phylogeny of the Tsitsikamma sponge-associated
206  spirochete symbionts using whole genome data. Initially, we employed autoMLST (49) in
207 de novo mode, with both concatenated alignment (Fig. 2A) and coalescent tree (Fig. 2B)
208 approaches, using ten MAGs/genomes acquired from other sponge hosts, Rhopaloides
209 odorabile, Ircinia ramosa, and Aplysina aerophoba (50-52), as references. The resultant
210 phylogenies from these two approaches had largely congruent topologies, with the
211  Tsitsikamma sponge-associated Sp02-3 symbionts and other sponge-associated
212  spirochetes forming two related, but distinct clades (Fig. 2). The closest relative of the
213  Tsitsikamma-associated spirochetes was Salinispira pacifica, in agreement with the 23S

214 rRNA gene phylogeny. The Tsitsikamma-associated spirochetes appeared

10
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215 phylogenetically clustered following their respective hosts, rather than geographically
216 clustered. This contrasted with other sponge-associated spirochetes that did not seem to
217  follow any discernible pattern of possible co-phylogeny or phylosymbiosis (Fig. 2).

218

219 As an orthogonal phylogenetic approach, we generated a phylogenetic tree using
220  Phylophlan3 (53) and RaxML (54) (Fig. S2). Along with the eight Tsitsikamma-associated
221  spirochete genomes and the ten genomes of spirochetes associated with other sponges,
222  we included all Spirochaetaceae genomes from the NCBI database (N=300) and all host-
223  associated spirochete MAGs from the JGI database (N=44). Again, the Tsitsikamma-
224  associated spirochetes formed a clade distinct from all other sponge-associated
225 spirochete genomes. Additionally, in this analysis, we found that a MAG present in
226 seawater (GCA 913043885.1) clustered with the other sponge-associated spirochetes.
227  The origin of this particular genome, whether from a free-living spirochete or a sponge
228 symbiont, remains uncertain due to potential annotation errors in the database. However,
229 we have opted to follow the supplied annotation and presume that this MAG is likely
230 representative of the closest free-living relative within the clade. Our phylogenetic
231 analysis incorporated all publicly available genomes and MAGSs of the Spirochaetaceae
232  phylum, and therefore this presumption is limited by the existing dataset. We calculated
233  pairwise average nucleotide identity (ANI) scores for all 363 spirochete genomes (Table
234  S4). The Tsitsikamma-associated spirochetes shared between 93.9% to 98.2% ANI with
235 each other (Table S5), and less than 75% ANI with any other spirochete, including their
236 closest relative S. pacifica.

237

11
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238 Estimated evolutionary divergence patterns of sponge-associated spirochetes
239 The divergence pattern of all sponge-associated spirochetes and their closest known
240 free-living relatives was estimated using their rate of synonymous substitutions (dS) in
241  orthologous genes present in all genomes. Visualization of the pairwise dS revealed that
242  the Tsitsikamma-associated spirochetes are evolutionarily divergent from even their
243  closest relative, S. pacifica (Fig. 3). It appears that the other sponge-associated
244  spirochetes may have begun diverging before the Tsitsikamma-associated spirochetes
245 diverged from their free-living relative. The divergence pattern of the Tsitsikamma-
246  associated spirochetes is congruent with the phylogeny of their sponge host and
247  incongruent with geographic location, suggestive of phylosymbiosis. Finally, it appears
248 thatthese spirochetes have only recently begun diverging from one another as they adapt
249  to their sponge host and that their association with latrunculid sponges is more recent
250 than that of the co-dominant Tethybacterales symbionts (17).

251

252 Comparative analysis of functional potential in spirochete genomes

253  The functional potential for all 363 spirochete genomes was predicted by assigning KEGG
254  Orthologs (KO) annotations using KofamScan (55). KO counts per genome were mapped
255  back to associated pathways detailed in the KEGG database (56) (Table S6). Dimension
256  reduction of these counts per genome revealed distinct clusters suggestive of adaptation
257  to the various environments from which these spirochetes were acquired (Fig. 4). The
258 functional potential of the Tsitsikamma-associated spirochetes was distinct from

259  spirochetes associated with other sponges and interestingly, was clustered more closely

12
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260 with the functional potential of spirochetes associated with oligochaete worms and
261  spirochetes from hypersaline lake environments (Fig. 4).

262

263 An Analysis of Similarity (ANOSIM) of the same data (Table S7) showed that the
264  functional gene repertoire of the Tsitsikamma-associated spirochetes and other sponge-
265 associated spirochetes were significantly different (p < 0.05) from one another and from
266 all other environments. However, when considering the associated R-values, the
267  Tsitsikamma-associated spirochetes may exhibit some overlap in functional potential of
268  spirochetes in hypersaline lakes (R = 0.26), sediment (R = 0.31), freshwater lakes (R =
269 0.38), termites (R = 0.47), and seawater (R=0.49). This suggests that the functional
270 repertoire of Tsitsikamma-associated spirochetes may be more akin to free-living species
271 than host-associated.

272

273  The biosynthetic potential of Sp02-3 spirochetes

274  Atotal of 581 biosynthetic gene clusters (BGCs) were detected in all spirochete genomes
275 (N=363) (Table S8) and clustered into gene cluster families (GCFs) at a maximum
276  distance of 0.3 with BiG-SCAPE (57) (Fig. 5A). Six of the eight Tsitsikamma-associated
277  spirochetes had only a single predicted BGC. The remaining two MAGs, 003B_7 and
278  050A 2, which were of medium and low quality respectively, had no detected BGCs, likely
279 due to incomplete coverage of the genomes. All six BGCs were predicted to encode a
280 terpene product and were clustered into a single GCF (GCF1). Three other GCFs (GCFs
281 2,3, and 4), consisting of terpene BGCs from other sponge-associated spirochetes, were

282 identified but did not appear to have any homology with the terpene BGC in the

13
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283  Tsitsikamma-associated Sp02-3 spirochetes (Fig. 5B). Additional BiIG-SCAPE analyses
284  were performed with less stringent cutoffs of 0.5 and 0.8, and no BGCs from other
285 spirochete genomes or the MIiBIG database were incorporated into a GCF with the
286 terpene BGCs detected in the Tsitsikamma-associated spirochetes (Table S8), indicating
287 that this BGC is likely novel. Nonetheless, the closest characterized relative of the
288  Tsitsikamma-associated spirochetes, S. pacifica, produces an orange carotenoid-like
289  pigment (terpenoid), which we assume is produced via the only terpene BGC present in
290 the S. pacifica genome. Despite the low sequence and organizational similarities, the
291 terpene, if produced in the latrunculid-associated spirochetes, may protect them or their
292  host against oxidative stress, as hypothesized for the S. pacifica bacterium (47)

293

294  In our previous studies, we have reported the existence of two chemotypes that exist in
295 the T. favus and T. michaeli sponge populations in Algoa Bay (21, 28). Chemotype |
296 represents the majority of sponges, as the sponges appear visually healthy with turgid
297  structure and their spicules are in the canonical form. Further, this Chemotype is defined
298 by the presence of a variety of discorhabdins and tsitsikammamines (28). Conversely, the
299 morphology of the Chemotype Il sponges is considered abnormal where the tissues
300 appear bruised, are soft to the touch (akin to rotten fruit), and many spicules are
301 malformed (28, 58). This chemotype is further characterized by the presence of
302 structurally simpler makaluvamines and brominated discorhabdins (21, 28).

303

304  Previous surveys of the microbial communities associated with ten T. favus sponges and

305 found no correlation between any bacterial population and the chemotypes (28). We have
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306 repeated the analysis with a larger cohort of T. favus and T. michaeli sponge specimens
307 (N = 26). Using the same 16S rRNA gene amplicon datasets as presented in Figure 1,
308 but instead including only data from the latrunculid sponges with associated chemical
309 data, the analysis was repeated and OTUs were clustered at a maximum distance of 0.01
310 (Table S9) to disentangle the two spirochete strains previously identified in latrunculid
311 sponges, Sp02-3 and Sp02-15 (22, 29). Using an Indicator Species Analysis (Table S10)
312 we found that a decrease in Sp02-3 representative OTU abundance (OTU3) and an
313 increase in Sp02-15 representative OTU abundance (OTUG6) correlated with Chemotype
314 |l sponges, relative to Chemotype | specimens (Fig. S3 A — B, Table S10).

315

316 We conducted a correlation analysis of the top 50 most abundant OTUs with relative
317 pyrroloiminoquinone abundance per sponge sample (Fig. S4, Table S11). The Sp02-3
318 spirochetes (OTU3) were positively correlated with the increased abundance of
319 Chemotype | pyrroloiminoquinones and negatively correlated with the presence of
320 Chemotype Il pyrroloiminoquinones. The converse was true of the Sp02-15 spirochetes
321 (OTU6) (Fig. S4, Table S11). As there was no evidence of BGCs for the production of
322 pyrroloiminoquinones in the spirochete MAGs, this result suggests that the switch from
323 Chemotype | to Chemotype Il (the cause of which has yet to be identified) appears to
324  negatively impact the Sp02-3 spirochete and allows the Sp02-15 spirochete to thrive in
325 place.

326

327  Since the decrease in Sp02-3 similarly correlated with the incidence of deformed spicules,

328 we considered whether it may play a role in spicule formation. The most closely related
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329 invertebrate-associated spirochete (Fig. 1 and Fig. 2) is a highly dominant and conserved
330 spirochete in Corallium rubrum corals (39, 59) This spirochete is predicted to contribute
331 to the coral’s overall health of the coral (60) and to produce a pigmented carotenoid that
332 influences the commercially prized color of this red coral, as the spirochete’s presence
333 correlates with the intensity of the observed red pigmentation (61). This spirochete was
334  primarily found in the coenenchyme of the coral (61), which houses the sclerites (spicules)
335 that are thought to act as initiation sites for the formation of the axial skeleton (62). Finally,
336 the formation of spicules in a primary coral polyp is associated with a change in color from
337  white to light pink (63). It is thus possible that the C. rubrum-associated spirochete may
338 be involved in spicule formation as shown with the calcibacteria in Hemimycale sponges
339 (pale orange to deep red in color) (64, 65), and hypothesized for the spirochetes in
340 Platygyra dadalea, Paragoniastrea australensis, and Porites lutea sponges (44). While a
341 speculative connection, as no MAG or genome is available for these spirochetes, this
342  observation has prompted us to begin metatranscriptomic studies in conjunction with
343 CARD-FISH experiments to determine the localization and potential structural role of
344  spirochetes in latrunculid sponges from the South African coastline.

345

346  Conclusion: This study shows that the conserved Sp02-3 spirochete of latrunculid
347 sponges is likely to be a relatively new symbiont that has begun co-evolving with its
348 respective sponge hosts. The Sp02-3 symbiont is distinct from all other invertebrate-
349  associated spirochetes, including non-dominant spirochetes associated with other marine
350 sponges. Assessment of their functional potential suggests that the Sp02-3 spirochetes

351 are functionally unique relative to other sponge-associated spirochetes. We found no
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352 evidence that they are directly involved in the production of the pyrroloiminoquinones
353 characteristic of their host sponges. The close phylogenetic relatedness of the latrunculid-
354  associated spirochetes to a dominant, conserved coral-associated spirochete hints at a
355 possibly structural role within the sponges. However, additional experiments will be
356 necessary to test this hypothesis.

357

358 METHODS AND MATERIALS

359 Sponge Collection and taxonomic identification.

360 Sponges were collected by SCUBA or Remotely Operated Vehicle (ROV) from multiple
361 locations within the Tsitsikamma Marine Protected Area, Algoa Bay (Port Elizabeth), the
362 Amathole Marine Protected Area (East London), and the Garden Route National Park. In
363 addition, three L. apicalis specimens were collected by trawl net off Bouvet Island in the
364  South Atlantic Ocean. Collection permits were acquired prior to collections from the
365 Department of Environmental Affairs (DEA) and the Department of Environment, Forestry
366 and Fisheries (DEFF) under permit numbers: 2015: RES2015/16 and RES2015/21; 2016:
367 RES2016/11; 2017: RES2017/43; 2018: RES2018/44; 2019: RES2019/13; 2020:
368 RES2020/31; 2021: RES2021/81; 2022: RES2022/70. Collection metadata are provided
369 in Table S1. Sponge specimens were stored on ice during collection and moved to -20
370 °C on return to the lab. Subsamples of each sponge, collected for DNA extraction, were
371 preserved in RNALater (Invitrogen) and stored at -20 °C. Sponge specimens were
372 identified through inspection of gross morphology, spicule analysis, and molecular
373 barcoding, as performed previously (21, 28, 29, 58).

374
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375 Bacterial community profiles in latrunculid sponges

376 The V4-V5 of the 16S rRNA gene was PCR amplified from 79 latrunculid sponges
377  collected between 1994 and 2022 (See Table S1 for collection data). Amplicons were
378 sequenced using the Illumina MiSeq platform and curated using mothur (v.1.48.0) (45).
379  All raw amplicon read data can be accessed under accession humber PRINA508092.
380 Briefly, sequences that were shorter than 250 nt in length, longer than 350 nt in length,
381 had homopolymeric runs of 7 nt or more, had ambiguous bases, or had a sliding window
382 quality average lower than 20, were removed from the datasets. Chimeric sequences
383 were detected using VSEARCH (66) and removed from the dataset. Sequences were
384 then classified via alignment against the SILVA database (v138.1) and any sequences
385 classified as “Chloroplast”, “Mitochondria”, “unknown”, “Archaea”, or “Eukaryota” were
386 removed. Sequences were clustered into Operational Taxonomic Units (OTUs) at a
387 distance of 0.03 and read counts thereof were converted to relative abundance (Table
388 S2). Representative sequences of each OTU were aligned against the SILVA database
389 (v138.1) in mothur and against the nt prokaryotic database using standalone blastn (67),
390 using parameters -max_hsps 1 -max_target seqs 1 to return only the first match.
391 Descriptions and isolation sources for each returned accession were retrieved using the
392 esearch, efetch and xtract methods from the stand-alone entrez package (68). Spirochete
393 OTUs were subset out and aligned with reference sequences from the NCBI nucleotide
394 database using MUSCLE (v.5.1) (69, 70) and phylogeny was inferred from the alignment
395 using the Maximume-likelihood method with 1000 bootstrap replicates in MEGA11 (71).

396 Finally, the same analysis was repeated but using only the raw amplicon read data from
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397 latrunculid sponges, and the OTUs were clustered at a distance of 0.01. in all other
398 respects, the analyses were identical.

399

400 Chemical Analysis and Chemotype Identification

401 Sponge extracts were prepared by extraction with methanol, drying i. vac. and
402  resuspension in methanol at 1-10 mg/mL. LC-MS/MS data was acquired on a Bruker ESI-
403 Q-TOF Compact (Bruker, Bremen) in positive ionization mode coupled to a Dionex
404 Ultimate3000 Chromatograph (ThermoScientific, Sunnyvale, CA, USA) and using
405 reversed-phase C18 columns and mobile phases consisting of water and acetonitrile with
406 0.1% formic acid each, using one of two methods (see Supplementary Methods for
407  details). The data was converted to mzXML format and analyzed using MZmine3 (72) to
408 assemble an aligned feature list (see Supplementary Methods for details). The feature list
409 was filtered based on comparison of m/z values and MS/MS spectra to known or putative
410 pyrroloiminoquinones. Peak area values were normalized to the overall
411 pyrroloiminoquinone signal per sample and aggregated to the pyrroloiminoquinone class
412  to summarize the latrunculid pyrroloiminoquinone profiles.

413

414  Correlation of spirochete populations and sponge chemotypes

415  An Indicator species analysis was performed using the OTUs clustered at a distance of
416 0.01 for all T. favus and T. micheali sponges for which a chemotype had been assigned
417 (16S_Chemotype_Indicator_Species_Analysis.R) to determine which OTUs, if any, were
418 associated with the two chemotypes. The co-correlation analysis of the 50 most abundant

419 OTUs (found as an average across all samples) was performed using the ‘cor’ function
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420 (73) native to R using dataframes of OTU and compound abundances as input. A 16S
421  rRNA gene sequence phylogeny was built from the representative sequences of the top
422 50 OTUs, aligned with MUSCLE (v 5.1) (69, 70), using the neighbor-joining approach with
423 1000 bootstraps in MEGA11 (71). The final tree was visualized in iTol (74) where the
424  correlation matrix and the average OTU abundance per sponge species was visualized
425 alongside the tree as datasets.

426

427 Metagenomic sequencing and analysis of individual T. favus specimens.

428 The DNA extraction and metagenomic sequencing of four Tsitsikamma favus sponges
429 that resulted in the recovery of four MAGs 050A_2, 050C 7, 003B_7, and 003D_7,
430 classified as spirochetes, is described in Waterworth et al., 2021(17). In addition to these
431 samples, four additional metagenomes of Tsitsikamma sponges (TIC2018-003M,
432  TIC2019-013N, TIC2022-009, and TIC2022-059) were sequenced. These sponges were
433  selected for sequencing based on the apparent abundance of spirochete OTUs found via
434  16S rRNA gene amplicon sequence.

435

436  Total genomic DNA (gDNA) was extracted using the Zymo Research Quick DNA
437  Fecal/Soil Microbe Miniprep Kit (Catalog number: D6012) according to the manufacturer’s
438  specifications and stored at -4 °C. Shotgun metagenomic lonTorrent libraries of 200 bp
439 reads were prepared and sequenced using an lon P1.1.17 chip. All metagenomes were
440 assembled, binned, and processed as described in Waterworth et al., 2021 (17). Four
441  additional spirochete genome MAGs (003M_1, 059 1, 013N_1, and 009 _1) were

442  extracted from the new datasets. MAGs were named after the Tsitsikamma sponge
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443 specimen from which they were extracted (e.g. 050A_2 is the MAG from sponge
444  specimen TIC2016-050A). The numbers associated with each MAG are an arbitrary
445  artifact of the binning process.

446

447  Acquisition of reference genomes and MAGs

448  Four spirochete MAGs associated with Aplysina aerophoba and Rhopaloeides odorabile
449 sponges from a study by Robbins and colleagues (75) were downloaded from

450  https://data.ace.ug.edu.au/public/sponge mags/, and five sponge-associated spirochete

451 MAGs were acquired from the China National GeneBank DataBase (CNGBdb) from
452  studies by O’Brien and colleagues (50, 51). One spirochete genome from an Aplysina
453 aerophoba sponge was additionally downloaded from the NCBI database
454 (GCA _002238925.1). Additionally, all other genomes classified within the
455  Spirochaetaceae family were downloaded from the NCBI database (N=300) and all host-
456  associated spirochete MAGs were downloaded from the JGI database (N=44). This
457  resulted in a total of 354 reference genomes (Table S3).

458

459  Characterization of MAGs and genomes

460  All scripts used for bioinformatic analyses, and their associated inputs, used in the

461 following methods can be found at https://github.com/samche42/Spirochete. All MAGs

462 and genomes used in this study were assessed using CheckM (v1.1.3) (76) and
463 taxonomically classified using GTDB-Tk (v2.3.2) (48) against the Release 214.1
464 reference database. Basic metrics such as size, number of contigs, and N50 were

465 calculated using bin_summary.py. The number of genes, pseudogenes, and coding
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466 density per genome were calculated using all_included_genome_characteristics.py. All
467 metadata per genome or MAG can be found in Table S3.

468

469 Phylogeny of spirochete genome MAGs extracted from individual Tsitsikamma
470 sponges

471 Ribosomal sequences (23S rRNA, 16S rRNA, and 5S rRNA) were extracted from
472  individual MAGs using barrnap (v 0.9) (77). The closest matches of recovered 16S
473  sequences from sponge-associated MAGs were identified using BLASTn (v 2.7.1) (67).
474  Resultant sequences were aligned using MUSCLE (v. 5.1) (69, 70) and phylogeny was
475 inferred using the Maximum-likelihood method with 1000 bootstraps in MEGAL11 (71).
476  Phylogeny of the Tsitsikamma-associated spirochete MAGs was similarly inferred using
477 whole genome data via autoMLST (49) and PhyloPhlan3 (53). Amino acid sequences
478 and nucleotide sequences for all genes were found in all genomes using prokka (v 1.13)
479  (78). The phylogeny of all 362 MAGs and genomes (8 Tsitsikamma-associated spirochete
480 MAGs and 354 references) was inferred using Phylophlan3: Phylophlan3 was run with
481  diversity set to medium, with default values in the supermatrix_aa configuration. The
482 resultant gene protein alignment was used in RaxML (v 8.2.12) (79) to build a
483  phylogenetic tree with 1000 bootstrap replicates using the PROTGAMMAAUTO model.
484 The resultant tree was visualized in iTol (74). Genomes from Myxococcota
485 (GCA_002691025.1) and Deltaproteobacteria (GCA_020632655.1) were chosen as
486  outgroups. These genomes had been downloaded from the NCBI database as their
487 metadata indicated that they were classified within the Spirochaetaceae family. However,

488 the taxonomic classification of these genomes with GTDB-Tk revealed that these
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489 genomes had likely been misclassified. These genomes were considered serendipitous
490 choices for outgroups for the Phylophlan3 analysis. AutoMLST was deployed in de novo
491 mode using concatenated alignments and coalescent trees of marker genes in two
492  separate analyses. ModelFinder and 1Q-TREE Ultrafast Bootstrap analysis were enabled
493 in both analyses. All latrunculid-associated and other sponge-associated spirochete
494  MAGs were included in this analysis. MAGs and genomes from JGI and NCBI were not
495 used in this analysis as the number of query genomes is limited to 20 so we opted to
496 include only sponge-associated spirochetes in this analysis. Resultant trees were
497 downloaded in Newick format and revisualized in iTol (74). Finally, the pairwise average
498 nucleotide identity (ANI) was calculated for all genomes using fastANI (v1.33)(80). If a
499  pairwise alignment fraction (AF) was lower than 70% (81), the associated ANI score was
500 nullified as the accuracy of the ANI score could not be trusted.

501

502 Estimated evolutionary divergence patterns of sponge-associated spirochetes
503 Using the Phylophlan3 (53) and autoMLST(49, 53) trees as guidance, orthologous genes
504 from the eight Tsitsikamma-associated spirochetes, the ten other sponge-associated
505 spirochetes, and their closest relatives were identified using OMA (v. 2.6.0) (82). A total
506 of 11 orthologs common to all genomes were found using count_OGs.py and aligned
507 using MUSCLE (v 5.1) (69, 70). The corresponding nucleotide sequence for each gene
508 was retrieved using streamlined_seqretriever.py, all stop codons were removed using
509 remove_stop_codons.py, and nucleotide sequences were aligned using MUSCLE (v 5.1)
510 (69, 70). Ortholog gene sequences were grouped per genome using

511 merge_fasta for dNdS.py. The nucleotide and amino acid sequences (per genome)
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512  were each concatenated union function from EMBOSS (83) and aligned using PAL2NAL
513 (84). The alignment was used to estimate pairwise synonymous substitution rates (dS)
514 and thereby infer the pattern of divergence between these genomes using codeml from
515 the PAML package (85).

516

517 Comparative analysis of functional potential in spirochete genomes

518 Genes were identified in all genomes/MAGs using Prokka (v 1.13) (78) and then
519 annotated against the KEGG database using KOfamSCAN (55) with detail-tsv as the
520 output format. Reliable annotations were extracted from these results based on the
521 criteria that the annotation score is greater than the estimated threshold, and then reliable
522  annotations per MAG/genome were counted and summarized using the kegg_parser.py
523  script. This produced a table of KO counts per genome that was used as input for both
524  Analysis of Similarity (ANOSIM.R) processing and dimension reduction, via UMAP (86),
525 for 3-dimensional and 2-dimensional visualizations (dimension_reduction.py). A Jupyter
526  notebook is provided in the GitHub repository for easy reproduction and an interactive 3D
527  figure. To find statistically significant KEGG-annotated drivers of the different samples,
528 we performed a re-purposed Indicator Species Analysis with the number of KEGG
529 annotations per KO per genome in place of OTU abundance. This was performed using
530 the multiplatt method from the “indicspecies” package in R (87) with 1000 permutations
531 and specifying the point biserial correlation coefficient (“r.g”) as the association index as
532 this both accounts for abundance data (rather than presence/absence data) and corrects
533 for the different number of samples per host type.

534
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535 The biosynthetic potential of sponge-associated spirochetes

536 A total of 547 biosynthetic gene clusters (BGCs) were predicted from all spirochete
537 genomes (N=363) using antiSMASH (v. 6.0.1) (88) with --cb-general --cb-knownclusters
538 --cb-subclusters --asf --pfam2go --smcog-trees options enabled and genes found with
539 prodigal. The resultant putative BGCs were clustered twice using BiG-SCAPE (v
540 1.1.5)(57) at maximum distances of 0.3, 0.5, and 0.8. Network files of non-singleton gene
541  cluster families (GCFs) were visualized in Cytoscape (89). Highlighted gene clusters of
542  interest were visualized with clinker (90). Metadata for BGCs was extracted from
543 individual GenBank files using antismash_summary.py.

544

545 DATA AVAILABILITY

546  All sequence data can be accessed under accession number PRINA508092 in the NCBI
547 SRA database. All scripts used for analysis and visualization can be accessed at

548  https://github.com/samche42/Spirochete.
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Figure 3. UPMGA representation of pairwise synonymous substitution rates (dS) of sponge-associated
spirochete genomes, based on the alignment of 11 orthologous genes. PAL2NAL (88) and CodeML (89) from the
PAML package were used to calculate pairwise dS values and the resultant matrix was visualized in MEGA11.
The Tsitsikamma-associated spirochetes are colored in blue and other sponge-associated spirochetes are
colored in purple.


https://doi.org/10.1101/2024.05.23.595633
http://creativecommons.org/licenses/by-nd/4.0/

Tsitsikamma sponge
Other sponge
Bivalve
Buffalo

o @ ° Cattle

[ ] Chicken

10 o © Deer
Elephant seal
Goat
Human
Mosquito
Oligochaete worm
Pig
Plant
Seaweed
Sheep
Termite
Tick
e o%e o0 Yak

12

:.
o000

pajeloosse }SOH

* Alkaline lake

L AL R 4 * Py Biofilm

* Freshwater lake
“ L 4 * Groundwater

Hydrocarbon

Hypersaline lake

Permafrost

Sand

Seawater

Sediment

Shale fluid

Sludge

Soil

Vent

Wastewater

L XX 226X 22 X XX 4
BulAl]-9914

~-__--" Other sponge associated

-2 0 2 4 6 8 10 12 14
X

Figure 4. UMAP dimension reduction 2-dimensional representation of KEGG-annotated gene counts in all
spirochete genomes. The isolation source of each genome is indicated by color, and shaped according to
whether the isolation source is a living host (circles) or an abiotic environment (diamonds).


https://doi.org/10.1101/2024.05.23.595633
http://creativecommons.org/licenses/by-nd/4.0/

GCA007124755.1

A GCA/DG(wseAnna GCA‘AADS 1

00356%6087694025.1  GCA_003558715.1

GCA_007124 \ / \GCA@uRB75995 1 g‘ BGC type
agh 2{ Gdf’masezoss‘ SO 2 oot 2 GOA 002313505\
\GA L003564595.1 GCA 00355237, L _ d Terpene
ach 00712&}} 4 /9en éd".ﬂ-‘”ﬁ‘ . puper.028_sub | GCA007186 °°35576'5GCA-”5251
\ GeAl yd /
L\M / \‘ﬁ 0035546?_;5 y ‘2‘0426()/-\7913030605\ / [ Type 3 PKS
GCA_ 0071%%03557?1%5 S 003565‘05 GCA_007695175.1 GCA IBBRI90385. 1
GCA 00356078511 Son 007693485 GC/A 003552185.1 Proteusin
-
o GCA 003563195.1 (§ 0035525?/51
A 0071247551 Type 1 PKS
GCA’W/“ /03552955 ! GCA“-inzs 1 GCA RIEBE6605.1 P!
GCA|
GeA 87584\ CA U8566105.1 )
GCAL007117185.1 60‘790\355—“”’5933?5‘ ﬁ--mosw GOA JO0885 ¢ +eBINEBRSE SO0BE5 1675, . Ectoine
\ Gea GCA J802787125.1
\ \,»«-»03451 GCA I0B8E2975.1 RiPP-lik
GCA_007134965.1 I -like
GCF 3 . Phosphonate
G2 0085546451 GCA 0085604751  GOACTOZRp8925.1 GCA 0475 1 GCA_003567676:0A JIUBB7245.1GCA 007 1209655CA 007116695.1 GCA007694005.1
GCA_00! ‘ / c? 008568155.1 GCA 0071283 557154 155, ‘GCA‘ S\hg)\ G 003553715 1GCA 007|gﬁ5‘ RRE aini
\ GCA )7t 2! -
| - 693% 303563155 1/ 00355@7 1‘ \ / . containing
= scamo onsssesmnm ouasaaanm4\9\5§1 AR 62 S5 003558598, { \.GGA 007128195.1 PR J—
\\ (6CA.007693945.1 | 605 0035 694005.1 19145GCA _007695285.1 . Betalactone
! GCA [007134965.1

GCA 0076933251 \

GCA 00356305809552375.1 [l \RPs-like

e 560785. 1GCA QHBRSS & 00037354
,.\atf»‘i‘gﬁqv%i.ezszsu BTG o 750075 i R 800156105.1 . Arylpolyene

CA GOER atams 6165 GCA003554645.1  GCAJOUEB57615.1 | GCA oussea19s

N \
CAOREEQS oo GOA 0088520851 GCAMBIG08SS. 1 GOA@UEA6715.1 GoAmRSa415 1 OCAIUBESO165cA 0071085, GCA@BSS155.1GCA003916695.1 W NRPs
908703765, 1 N a5
GCA| 4755.1
GOAO0BBe595.1  GCA-003552665.1 \[oo712:
b : >
GCA JOFIR8315.1 GCA 007693325, 1 GCF 2 Contig edge?
| 04 GCA 00356605; 0 14 GCA az o RUETTED 44 GCA =
/ GCA.017895855.1  GCA q}em-sm‘ \eéﬂ Bo7659 000, SiomRe eﬂ&? £ HO2006A 07855055 || ves
GCA @OB04005.1 / A \ / /
GCA_003560475.1 GCA :017936665.1 \ \ 510_mptabaf] _super.011 < No
T N GCA\-\39351 GCAL008564775.1 330Q00MBO0_14 GCA BEB46715.1 GCA J008866055.1
GCAH008857675.1 / GCA -017483165.1 575 JSEIHE-L. 030 506_metfiBatigbuper.028_sub

GCAL003563415.1

A@(SECA 000143EE5A 0217368454 003552675 57 6/5A 003552566, m sufEC AJE0RT7 3BGA @ODB7 36:45A JONIS0 4 SE5A [01741 3835 1003566 GEBA 002412826 QUDRES B0 A 003568 GRBAIGIIRA 25254 003563715, 1
[ [ | [ | [ [ [ [ [ | [ | [ |
| | | |

| | | | | | | | | | |
ecsm, A (021756 6a5A I 4 P54 [OT51] 44 GCA 80206 eRzA @291 6 6354 OTER 6 HGA 1902778 854 007695 CA5A 003446365 Q00ZE5Z:GA 007134 ¢asA D6 8954 007695285.1

33000805 _CTA W \_0217362G8A [Fotat) > 6oa J0RH 1525CA @B 30BCA 0035576 6CA (iiB1 20650 (@576 6N 9027661 8CA 0035668 TCA noassztax:n-szasss 1.030
| [ | | | ‘ | [ | | | | | |
| |

| | | | | | | | | \
GCA JIBBIIB23GE A 007695060A _003563185A_021736466CA 00356579RHDT_bi] 4G CA HBRHO0365A @BBB782G5CA_00713086CA @iiiB130CCA EIG08GCA [902B02260A 007695285CA_0035566G6CA J008E66 105" 04

B

009_1 (Tsitsikamma madiba)
009_c00050_NODE_39...region001

»>

050C_7 (Tsitsikamma favus)

050C_7_c00106_NODE_32...region001
p.6 0.50‘60 87 0.91 \ 0.77
003M_1 (Tsitsikamma favus) |
003M_1_c00004_NODE_4_...region001 ‘-4 }b‘{

.9¢ 0.68 §0.970.97 1.00 0.98 1.00 0.81 \ 0.79|'
003D_7 (Tsitsikamma favus) -
003D_7_c00005_NODE_33...region001 ‘ {{«’.
0.91 0.95 0.960.89 0.97 0.94 0.99 0.96

059_1 (Tsitsikamma michaeli)
059_c00021_NODE_96...region001

91 (T ! 4
i T Ao 95 0.86 0.75).92 0.97 0.96 0.99 0.81
013N_1 (Tsitsikamma michaeli) - ‘ .- '

013N_c00002_NODE_27...region001

GCA000507245.1 (Salinispil ifi ‘
(Satnispra pacica) i

Tsitsikamma sponge associated

051 I
N S G S ——

C—— " (|

575 concoct.030 (Ircinia ramosa)

575_concoct.030_c00086_NODE_26...region001 I ' l
¢ 0.52 MEJI | 96 0.87 8
APA bin 94 (Aplysina aerophoba) - - _
APA_bin_94_c_000000582477.region001 » |
0:52%) 9% 0.87 0.95 0.87 N
RHO3 bin 84 (Rhopaloides odorabile)

RHO3_bin_84_c00066_NODE_22...region001

QA ﬁ-ﬁb DEXED- =D
d _C-v--/ﬁ

APA bin 62 (Aplysina aerophoba)
APA_bin_62_c_000000166362.region001

0.0r0.91 1.00 1.00 0.53 1.00 1.00 00/1.00 ,

EN

0.62 0.53 072 0.75| 0.91
515 metabat2.042 (Ircinia ramosa)
515_metabat2.042_c00164_NODE_74...region001 - an e =

GCA 002238925.1 (Aplysina aerophoba)
GCA002238925.1_MPNH01000008.1.region001

510 metabat1 super.011 (Ircinia ramosa)
510 metabat1_super.011_c00024_NODE_17...region001

€409

RHO1 bin 44 (Rhopaloides odorabile)
RHO1_bin_44_c00116_NODE_65...region001

Other sponge associated

APA bin 94 (Aplysina aerophoba)
APA_bin_94_c_000000437456.region001

¥ 409

063 083 0.78 073 0.91
4-4-4—4- 4— 4-
0.58
B e nia ramose) T o> C-Qh o
0.89 0.85 |0.92 y 0.56 \ [0X:73 \ 85 0:49
QX AN I T
L ]
2.5kb 0 Identity (%) 100
Figure 5. Assessment of biosynthetic potential in spirochetes. A) Network visualization of biosynthetic gene clusters from all
spirochete genomes used in this study clustered into gene cluster families at a maximum distance of 0.3. BGCs from Tsitsikamma-
associated spirochetes are highlighted with a red outline. BGCs from all other sponge-associated spirochetes are highlighted with
a black outline. Gene cluster families (GCFs) of interest are highlighted. B) Pairwise comparison of amino-acid sequence identity
of terpene biosynthetic gene clusters from sponge-associated spirochetes. The pairwise similarity between genes is indicated
between genes, and genes are colored according to their predicted function. The GCFs to which the BGCs belong have been
indicated.


https://doi.org/10.1101/2024.05.23.595633
http://creativecommons.org/licenses/by-nd/4.0/

>

Latrunculid sponges collected from the South African coast Other sponges collected from the South African coast
§ 40
8 35 ¥ . . |
S % ol P oanrnle |
8 iy I
c 2 H
s I 1h
2 .
© 20 "
S 1,
S no! |
10 { ] 1 I 0] mo
2 1 A ! 1 |
E= I - il - "
E | | Il | I I
T o | R LAl Al axlunnli]_ NN i | I Il bam ol I
X Seawater Tsitskamma favus g _ E"E S,% Aho §  Adnelasp. 5595 § 995 § & Mycale § G5 Psamm- § 55535 Thay. 5555
madiba michaeli 55 peduncilata 5o 58 5§53 S E $205 5 893 2 g sp 2 2% ocinasp. ¥ ST T sias sp RS
gz 2% 32588 H 85g2 § 53t £ 8 g5¢ §823%2 885
H 30 2°F°R H P2 w2 3§ g o8 8 Faee 288s
4 [ 9 a < § 328 Tgg 2 ¢ 8 st £ e
3 & &z 2 °a g
5 &
5

Gémubmmﬁm
1
Isodictya sp. G
a sp.
o 5. I
a . I
Pheronema sp. I
Psammocinia sp.
Psammocinia sp. [N
Psammocinia sp. N
s». I
Tethya sp. I
Topsentia sp. IEEEG—G—
Veronga . I

— - - - - _
2020 ad Sacdga 5 didddddaagas ad sdodadodadadada
S88¢ g8 55558 5 §585586586885 a8 §a85855586568855
2295 R 2908908 © CIITOVQOOOTT 2 TITCIITCLLELLIT
XXX T 28580 5 22288 eRRIREEE SE T c 2 TSROSO G G
§88¢8 T3 22529 5 F52858583858558¢ EESSS 523830050
SEp PR EEESEEEEEEEEE 86285 ] £255¢882888¢8¢228% 85 ¢ §s22222:2¢2
5353° 23 22°6§ s 8883555553 g90¢9¢5¢ 8835n2--sssggs2e
FEEEE] 5§55 =z T 2228x 282 E EEEE FFFFFFF
5553 22 55 [oXF 3 & EESDS

55353 56 @@ 4 §500

§8§S &é

35585

OTU3 [OTU59 OTU105 llOTU128 [llOTU240 [lOTU284 OTU300 OTU399 llOTU477 OTUS581

- Outgroup: HQ241787.1 T Clone Sp02-1 | Tsit favus sponge
GU118906.1 Clone Past N02 | Porites astreoides coral

JN496749.1 Clone SBYZ 2132 | Guerrero Negro hypersaline microbial mat 07
KC009972.1 Clone 1 155 | Shallow fluidized muds off the French Guiana coast
EU386042.1 Clone MD2894-B50 | Subseafloor sediment of the South China Sea
KMB840918.1 Clone PHOS5 | Perionyx excavatus earthworm

W oTuss1

W oTU399

FN424157.1 Clone Spiro A1 | Clathrina clathrus sponge

FN424157.1 Clone Spiro I4 | Clathrina clathrus sponge

FN424157.1 Clone Spiro I3 | Clathrina clathrus sponge

FN424158.1 Clone Spiro A2 | Clathrina clathrus sponge

HQ241817.1 Uncultured marine bacterium clone Sp02sw36 | Seawater
LC490106.1 Spirochaetes bacterium COTS27 Okinawa1 | Crown-of-thorns starfish
LC490105.1 Spirochaetes bacterium COTS27 Miyazaki3 | Crown-of-thorns starfish
LC490107.1 Spirochaetes bacterium COTS27 Okinawa2 | Crown-of-thorns starfish
LC490104.1 Spirochaetes bacterium COTS27 Miyazaki2 | Crown-of-thorns starfish
LC490103.1 Spirochaetes bacterium COTS27 Miyazaki1 | Crown-of-thorns starfish
FJ529354.1 Clone E175 | Svenzea zeai sponge

WOTU105
OY759747.1 Clone 029c9a96-c795-42b2-9c0d-59f5314b817a | Spongia officinalis Sp

JX280174.1 Clone BA01-C35-seq | Ircinia felix sponge
JN596734.1 Clone XD1DO08 | Xestospongia testudinaria sponge.

HE985106.1 Clone A145/GW950 | Astrosclera willeyana sponge

WoTu128

EF076172.1 Clone AD074 | Agelas dilatata sponge

JX280241.1 Clone BA102-C14-seq | /rcinia strobilina sponge

HQ270342.1 Clone XC1C11 | Xestospongia testudinaria sponge
JN596729.1 Clone XD1F11 | Xestospongia testudinaria sponge

JN126247.1 Clone VG EF L18 | Ectyoplasia ferox larval sponge

HE985144.1 Clone A402/GW950 | Astrosclera willeyana sponge

JQ612254.1 Clone GBc085 | Geodia barretti sponge

AJ347045.1 Clone TK41 | Aplysina aerophoba sponge

GCA 002238925.1 | Aplysina aerophoba sponge

EF092219.1 Clone B255 42a | Axinella corrugata sponge

EF414144.1 Clone MPWIC A06 | Clathria prolifera sponge

EF414186.1 Clone MPWIC EO7 | Clathria prolifera sponge

FN424159.1 Uncultured Spirochaetales clone Spiro 12 | Clathrina clathrus sponge.
FN424156.1 Uncultured Spirochaetales clone Spiro I1 | Clathrina clathrus sponge
KU324276.1 Clone HYI145 Bac16s AQDS02 A04 | Santa Monica basin seep sediment
AYB05171.1 Clone LH042 | Microbial mat

NR 026300.1 Spirochaeta asiatica strain Z-7591 | Soda lake

NR 102960.1 Spirochaeta africana DSM 8902 | Alkaline lake

JX521686.1 Clone TV001 25 | Terrestrial sulfidic spring

NR 136451.1 Spirochaeta lutea strain JC230 | Soil

KT964897.1 Borrelia sp. clone denovo5472 | Corallium rubrum coral

KT964901.1 Spnrocnaeta sp. clone denovo10781 | Corallium rubrum coral
KT964893.1 bacterium clone denovo1837 | Corallium rubrum coral
HQ916637.1 C\one LGH02-B-098 | Lei-Gong-Huo mud volcano

KX014549.1 Clone Stn3 Sep 21 | Mooriganga estuary surface water

JN449894.1 Clone SBYG 2696 | Guerrero Negro hypersaline microbial mat 03
JN440289.1 Clone SBYB 3454 | Guerrero Negro hypersaline microbial mat 02

NR 134803.1 Salinispira pacifica strain L21-RPul-D2 | Hypersaline microbial mat

W oTUu59

W oTU240

0oTu3

W oTu2s4
oTUu477
W 0TU300

HQ241788.1 Clone Sp02-3 | Tsitsikamma favus sponge
HQ241782.1 Clone Sp02-15 | Tsitsikamma favus sponge

Figure 1. Spirochete population distribution in sponges collected from the South African coast and the Antarctic Southern Ocean.

A) The relative abundance of OTUs clustered at a distance of 0.03 and classified as spirochetes, B) a magnified view of the spirochete
OTUs present in non-latrunculid sponges collected from the south eastern coast of South Africa, three L. apicalis sponges collected
from the Southern Ocean, and one sympatric L. algoaensis sponge. C) Maximum-likelihood phylogeny (with 1000 bootstraps) of the top
ten most abundant spirochete OTUs recovered from the sponges included in this study.
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Figure 2. Phylogeny of sponge-associated spirochetes inferred with autoMLST in de novo mode using

A) concatenated alignment and B) coalescent tree approaches. Tsitsikamma-associated spirochetes are
highlighted in blue with their respective hosts. Other sponge-associated spirochetes are highlighted in purple
with their associated hosts. All other reference spirochete genomes are listed in the format of

"Accession number | Scientific name".
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