

1 **The unique and enigmatic spirochete symbiont of latrunculid sponges**

2 **Samantha C. Waterworth^{a,b}, Gabriella M. Solomons^a, Jarmo-Charles J. Kalinski^{a,c},**

3 **Luthando S. Madonsela^a, Shirley Parker-Nance^{a,d,e}, Rosemary A. Dorrington* a, e**

4 ^a Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South
5 Africa

6 ^b Current address: National Cancer Institute, Frederick, Maryland, USA

7 ^c Current address: Department of Biochemistry, University of California, Riverside,
8 California, USA

9 ^d South African Environmental Observation Network, Elwandle Coastal Node, Port
10 Elizabeth, South Africa

11 ^e South African Institute for Aquatic Biodiversity, Makhanda, South Africa

12

13 **Running title:** Spirochete symbionts in latrunculid sponges

14 ***Address correspondence to:** Rosemary A. Dorrington, r.dorrington@ru.ac.za

15

16 **ABSTRACT**

17 Bacterial symbionts are critical members of many marine sponge holobionts. Some
18 sponge-associated bacterial lineages, such as Poribacteria, SAUL, and Tethybacterales
19 appear to have broad host ranges and associate with a diversity of sponge species, while
20 others are more species-specific, having adapted to the niche environment of their host.

21 Host-associated spirochete symbionts that are numerically dominant have been
22 documented in several invertebrates including termites, starfish, and corals. However,

23 dominant spirochete populations are rare in marine sponges, thus far only observed in
24 *Clathrina clathrus* and various species within the Latrunculiidae family, where they are

25 co-dominant alongside Tethybacterales symbionts. This study aimed to characterize
26 these spirochetes and their potential role in the host sponge. Analysis of metagenome-
27 assembled genomes from eight latrunculid sponges revealed that these unusual

28 spirochetes are relatively recent symbionts and are phylogenetically distinct from other
29 sponge-associated spirochetes. Functional comparative analysis suggests that the host
30 sponge may have selected for these spirochetes due to their ability to produce terpenoids
31 and/or possible structural contributions.

32

33 **IMPORTANCE**

34 South African latrunculid sponges are host to co-dominant Tethybacterales and
35 Spirochete symbionts. While the Tethybacterales are broad-host range symbionts, the
36 spirochetes have not been reported as abundant in any other marine sponge except
37 *Clathrina clathrus*. However, spirochetes are regularly the most dominant populations in
38 marine corals and terrestrial invertebrates where they are predicted to serve as beneficial
39 symbionts. Here, we interrogated eight metagenome-assembled genomes of the
40 latrunculid-associated spirochetes and found that these symbionts are phylogenetically
41 distinct from all invertebrate-associated spirochetes. The symbiosis between the
42 spirochetes and their sponge host appears to have been established relatively recently.

43

44 **INTRODUCTION**

45 The development of symbiotic relationships with prokaryotes likely predates the
46 emergence of marine sponges (phylum Porifera) during the Cambrian explosion ~540
47 million years ago (1, 2) and these associations have played a critical role in the evolution
48 of modern sponge taxa (3, 4). Bacterial symbionts have co-evolved with their host to
49 perform specific, specialized services that promote the health and fitness of the host (5).
50 The symbionts are involved in nitrogen, sulfur, and phosphorus cycling (6–9), carbon

51 cycling, detoxification (10, 11) and in some cases, the production of bioactive secondary
52 metabolites as chemical defenses against pathogens, predators, and competitors (12,
53 13). In return, the host provides its symbionts with a safe and nutrient-rich environment
54 that promotes the fitness and survival of the symbiont (14). The taxonomic and functional
55 diversity of sponge-associated microbiomes is generally host-specific, distinct from the
56 surrounding water column, and acquired by recruitment and enrichment from the
57 environment (5, 15, 16). However, there are a small number of specialized symbionts
58 acquired by vertical inheritance from the parent sponge that are broadly distributed across
59 phylogenetically distant sponge hosts (17, 18), including the Poribacteria, the “sponge-
60 associated unclassified lineage” (SAUL), and the recently-discovered Tethybacterales
61 symbionts (15, 19, 20).

62
63 The Tethybacterales represent a clade of cosmopolitan sponge-associated symbionts,
64 comprising three families, namely the *Candidatus* Persebacteraceae, *Candidatus*
65 Tethybacteraceae, and *Candidatus* Polydorabacteraceae (17, 20). As with the
66 Poribacteria and Desulfobacteria, the Tethybacterales symbionts are present in
67 phylogenetically diverse taxa that are primarily low-microbial abundance (LMA) sponge
68 species but these bacteria have also been detected in some high-microbial abundance
69 (HMA) species (17, 20). Characterization of metagenome-assembled genomes (MAGs)
70 of different species of the three Tethybacterales families and their associated hosts also
71 indicates that there were multiple acquisition events and that host adaptation and co-
72 evolution began after each acquisition event (17).

73

74 Sponges of the family Latrunculiidae (Demospongiae, Poecilosclerida) are known to be
75 prolific producers of cytotoxic pyrroloiminoquinone alkaloid compounds (21–26) with
76 pharmaceutical potential (Reviewed in Kalinksi et al., 2022 (27)). It has recently been
77 discovered that there are two chemotypes present in the *Tsitsikamma favus* and
78 *Tsitsikamma michaeli* latrunculid sponges (21, 28). Latrunculids are LMA sponges with
79 highly conserved microbiomes that are dominated by Tethybacterales and Spirochete
80 taxa (22, 29). The *Tsitsikamma favus* microbiome is dominated by two sponge-specific
81 bacterial species defined by their 16S rRNA gene sequence, clones Sp02-1 and Sp02-3.
82 The Sp02-1 symbiont has been recently characterized (17) and is classified as *Ca.*
83 *Ukwabelana africanus*, a member of the *Ca. Persebacteraceae* family within the
84 Tethybacterales (17). The *Ca. U. africanus* symbiont is phylogenetically related to
85 symbionts in sponges across multiple orders within the Demospongiae and may be
86 involved in the reduction of nitrogen and sulfur in the sponge holobiont (17).

87
88 Unlike *Ca. U. africanus* (Sp02-1), the co-dominant spirochete (Sp02-3) is not
89 representative of a globally distributed, broad-host range sponge symbiont. Spirochetes
90 have been reported as minor members of several sponge microbiomes (30–32), but
91 numerically dominant populations of spirochetes in sponges have only been reported in
92 Latrunculiidae species endemic to the southeastern coast of South Africa, and the
93 distantly related *Clathrina clathrus* (Calcarea, Clathrinida) collected by Neulinger and
94 colleagues from the Adriatic Sea off the coast of Croatia (33). In addition, spirochetes,
95 presumed to be symbionts, have been detected in the embryonic and larval cells of the
96 marine sponge *Mycale laevis*, but their role is currently unknown (34, 35). Numerically

97 dominant spirochete species are, however, present in several other marine invertebrates
98 including sea anemones (36) and sea stars (37, 38) where decreased abundance of
99 certain spirochete populations correlates with an increased incidence of disease (38).
100 Spirochaeta symbionts are also commonly present as dominant populations in corals
101 (39–42) and in termite guts (43), where they may be involved in the fixation of carbon or
102 nitrogen (41). A recent study investigating the association between coral hosts and their
103 associated microbiota found that Spirochaeta were most abundant in the coral skeleton,
104 hypothesizing that they may be key members in coral skeletal environment due to their
105 ability to fix carbon and nitrogen (44).

106
107 The aim of the present study was to understand the relationship between Iatrunculid
108 sponges and the Sp02-3 spirochete symbiont. Here we report the characterization of eight
109 spirochete MAGs from four *Tsitsikamma* sponge species and use comparative genomics
110 to shed light on factors that may drive their conservation. Comparative analysis relative
111 to publicly available genomes and MAGs of the Spirochaetaceae family suggests that the
112 Sp02-3 spirochetes are distinct from all other sponge-associated spirochetes.

113
114 **RESULTS AND DISCUSSION**
115 Previous studies identified two closely related spirochete species, Sp02-3 and Sp02-15,
116 in the *T. favus* microbiome (22). Subsequently, the Sp02-3 symbiont was shown to be
117 present in the microbiomes of other *Tsitsikamma* species and *Cyclacanthia bellae* (29).
118 Our aim in this study was to characterize the genome of the Sp02-3 symbiont to better
119 understand its role in the sponge holobiont.

120

121 **Survey of microbial communities in latrunculid sponges and other sponge species**
122 **endemic to the South African coast**

123 To survey the prevalence of spirochetes in sponge collected off the South African
124 coastline, we clustered 16S rRNA gene fragment amplicons sourced from 155 marine
125 sponges and 8 seawater samples into operational taxonomic units (OTUs) at a distance
126 of 0.03 in mothur (45). These sponges were collected primarily from reefs within Algoa
127 Bay, South Africa but also included samples from the Tsitsikamma National Park, the
128 Amathole Marine Protected Area in the Indian Ocean, and the remote Bouvet Island in
129 the Southern (Antarctic) Ocean (Table S1).

130

131 A total of 9711 OTUs were recovered from the 163 amplicon libraries. We identified
132 spirochete OTUs with classifications from alignment of the OTUs against the SILVA and
133 nr databases (Table S2). A total of 142 OTUs were classified within the Spirochaetota
134 phylum, of which only 10 had an average abundance greater than 0.01% across all
135 sponge specimens (Fig. 1A). OTU3 and OTU59 were most abundant in the *Tsitsikamma*
136 and *Cyclacanthia* sponges. These OTUs were most closely related to spirochete 16S
137 rRNA gene clones Sp02-3 and Sp02-15, previously identified in *T. favus* sponges (22).
138 These two OTUs were present at low abundance in the *Latrunculia algoensis* and
139 *Latrunculia apicalis* sponge specimens (collected in Algoa Bay and the Southern Antarctic
140 Ocean), as well as in some *Mycale* specimens and a single sympatric *Phorbus* sp. sponge
141 (Fig. 1B).. As the *Mycale* specimens were found as encrusting species on the
142 *Tsitsikamma favus* sponges, we cannot discount the possibility of contamination between

143 these two species. As we have only a single *Phorbus* sp. representative, additional
144 specimens will be required to determine the significance of these spirochete OTUs in this
145 genus or whether this was a result of contamination during collection. These two OTUs
146 were otherwise absent in all other non-latrunculid sponges collected from sympatric
147 regions. The presence, albeit low, of OTU3 and OTU59 in the *L. apicalis* sponges
148 collected just off of Bouvet Island (~ 3000 km/ 1800 miles from Algoa Bay), and the
149 presence of phylogenetically distinct spirochetes in sympatric non-latrunculid sponges of
150 Algoa Bay would suggest that these Sp02-3 and Sp02-15 spirochetes are specifically
151 associated with latrunculid sponges

152

153 Spirochete OTUs OTU105 and OTU128 were relatively abundant in other sponges
154 collected from the South African coast, and absent in latrunculid sponges, appeared more
155 sporadic in their distribution among sponge specimens (Fig. 1B). These OTUs were most
156 closely related to spirochetes detected in *Spongia officinalis* (OY759747.1) and
157 *Astrosclera willeyana* (HE985144.1) sponges, respectively (Table S2). Inspection of
158 phylogeny of these ten OTUs (Fig. 1C) revealed that six of the ten spirochete OTUs
159 formed a clade with spirochete clones previously cloned from *T. favus* sponges (22). Of
160 the remaining four, OTU105 and OTU128 (which were more abundant in non-Latrunculid
161 sponge specimens) were part of distant clades of other sponge associated spirochetes,
162 while OTU581 and OTU399 belonged to a clade stemming from a variety of environments
163 (Fig. 1C). Notably, a clone (Sp02sw36) isolated from the seawater extruded from
164 *Tsitsikamma favus* sponges in 2012 (22), was a close relative of the spirochetes

165 associated with crown-of-thorns starfish (37), and the dominant spirochete found in *C.*
166 *clathrus* sponges (33).

167

168 **Characterization of *Tsitsikamma* sponge-associated spirochete MAGs**

169 Eight sponges including five *T. favus* specimens (TIC2015-050A, TIC2015-050C,
170 TIC2018-003B, TIC2018-003D, TIC2018-003M) and one each of *T. michaeli* (TIC2019-
171 013N), *T. madiba* (TIC2022-009), and *T. pedunculata* (TIC2022-059) were selected for
172 metagenomic analysis (Table S1). Following assembly, binning and taxonomic
173 classification, eight spirochete MAGs were identified, one from each of the eight
174 *Tsitsikamma* sponge metagenomes: MAGs 050A_2, 050C_7, 003B_7, 003D_7, 003M_1,
175 059_1, 013N_1, and 009_1 (Table 1, Table S3). The 16S rRNA and 23S rRNA gene
176 sequences from each MAG (if recovered) were aligned against the NR nucleotide
177 database via online BLASTn (46).

178 **Table 1. Characteristics of putative representative genomes of *Tsitsikamma***
179 **sponge-associated spirochete symbiont MAGs**

MAG	Size (Mbp)	Quality	16S rRNA (% ID)	23S rRNA (% ID)	Host	Sponge
003B_7	1.97	Medium	N/A	<i>Salinispira pacifica</i> L21-RPul-D2 (89.54%)	<i>T. favus</i>	TIC2018-003B
050A_2	2.73	Low	Uncultured marine clone Sp02-3 (99.52%)	<i>Salinispira pacifica</i> L21-RPul-D2 (89.54%)	<i>T. favus</i>	TIC2016_050A
003D_7	2.48	High	Uncultured marine clone Sp02-3 (99.52%)	<i>Salinispira pacifica</i> L21-RPul-D2 (89.58%)	<i>T. favus</i>	TIC2018-003D
003M_1	2.74	High	N/A	<i>Salinispira pacifica</i> L21-RPul-D2 (89.58%)	<i>T. favus</i>	TIC2018-003M
050C_7	1.72	Medium	Uncultured marine clone Sp02-3 (99.52%)	N/A	<i>T. favus</i>	TIC2016-050C
009_1	1.47	High	N/A	<i>Salinispira pacifica</i> L21-RPul-D2 (91.25%)	<i>T. madiba</i>	TIC2022-009
013N_1	2.33	High	N/A	<i>Salinispira pacifica</i> L21-RPul-D2 (89.48%)	<i>T. michaeli</i>	TIC2019-013N
059_1	2.04	Medium	N/A	N/A	<i>T. pedunculata</i>	TIC2022-059

180
181 The 16S rRNA gene sequences recovered from three MAGs all showed the greatest
182 sequence identity with "Uncultured marine clone Sp02-3," representing the conserved
183 spirochete symbiont previously identified in *T. favus* sponges (22, 29). All recovered 23S
184 rRNA sequences shared the greatest sequence similarity with *S. pacifica* L21-RPul-D2.
185 This *S. pacifica* strain, isolated from a hypersaline microbial mat (47), was previously
186 shown to be the closest known relative of the conserved spirochete Sp02-3 clone (22,
187 29). Finally, all eight *Tsitsikamma*-associated spirochete MAGs were taxonomically
188 classified, via GTDB-Tk (48), within the *Salinispira* genus (Table S3). Therefore, we were
189 confident these MAGs represented the conserved spirochete symbiont (Sp02-3)
190 previously reported in South African latrunculid sponges.

191

192 **Phylogeny of *Tsitsikamma* sponge-associated spirochete MAGs**

193 The 16S rRNA gene sequences recovered from three of the *Tsitsikamma*-associated
194 spirochete MAGs were aligned against their closest matches in the NR database, and
195 spirochetes from other marine invertebrates (37, 39), including the dominant spirochete
196 present in the distantly related *Clathrina clathrus* sponges (33). Inferred maximum-
197 likelihood phylogeny from the 16S rRNA gene alignment showed that the *Tsitsikamma*-
198 associated spirochete MAGs were distinct from all other invertebrate-associated
199 spirochetes (Fig. S1). The *Tsitsikamma*-associated spirochete MAGs formed a distinct
200 clade but were most closely related to spirochetes detected in non-host-associated
201 environments including hypersaline microbial mats, seawater, estuary water, and
202 volcanic mud.

203

204 Since phylogeny inferred by a single marker gene can be limited, several orthogonal
205 approaches were used to assess the phylogeny of the *Tsitsikamma* sponge-associated
206 spirochete symbionts using whole genome data. Initially, we employed autoMLST (49) in
207 *de novo* mode, with both concatenated alignment (Fig. 2A) and coalescent tree (Fig. 2B)
208 approaches, using ten MAGs/genomes acquired from other sponge hosts, *Rhopaloides*
209 *odorabile*, *Ircinia ramosa*, and *Aplysina aerophoba* (50–52), as references. The resultant
210 phylogenies from these two approaches had largely congruent topologies, with the
211 *Tsitsikamma* sponge-associated Sp02-3 symbionts and other sponge-associated
212 spirochetes forming two related, but distinct clades (Fig. 2). The closest relative of the
213 *Tsitsikamma*-associated spirochetes was *Salinispira pacifica*, in agreement with the 23S
214 rRNA gene phylogeny. The *Tsitsikamma*-associated spirochetes appeared

215 phylogenetically clustered following their respective hosts, rather than geographically
216 clustered. This contrasted with other sponge-associated spirochetes that did not seem to
217 follow any discernible pattern of possible co-phylogeny or phylosymbiosis (Fig. 2).

218

219 As an orthogonal phylogenetic approach, we generated a phylogenetic tree using
220 Phylophlan3 (53) and RaxML (54) (Fig. S2). Along with the eight *Tsitsikamma*-associated
221 spirochete genomes and the ten genomes of spirochetes associated with other sponges,
222 we included all Spirochaetaceae genomes from the NCBI database (N=300) and all host-
223 associated spirochete MAGs from the JGI database (N=44). Again, the *Tsitsikamma*-
224 associated spirochetes formed a clade distinct from all other sponge-associated
225 spirochete genomes. Additionally, in this analysis, we found that a MAG present in
226 seawater (GCA 913043885.1) clustered with the other sponge-associated spirochetes.
227 The origin of this particular genome, whether from a free-living spirochete or a sponge
228 symbiont, remains uncertain due to potential annotation errors in the database. However,
229 we have opted to follow the supplied annotation and presume that this MAG is likely
230 representative of the closest free-living relative within the clade. Our phylogenetic
231 analysis incorporated all publicly available genomes and MAGs of the Spirochaetaceae
232 phylum, and therefore this presumption is limited by the existing dataset. We calculated
233 pairwise average nucleotide identity (ANI) scores for all 363 spirochete genomes (Table
234 S4). The *Tsitsikamma*-associated spirochetes shared between 93.9% to 98.2% ANI with
235 each other (Table S5), and less than 75% ANI with any other spirochete, including their
236 closest relative *S. pacifica*.

237

238 **Estimated evolutionary divergence patterns of sponge-associated spirochetes**

239 The divergence pattern of all sponge-associated spirochetes and their closest known
240 free-living relatives was estimated using their rate of synonymous substitutions (dS) in
241 orthologous genes present in all genomes. Visualization of the pairwise dS revealed that
242 the *Tsitsikamma*-associated spirochetes are evolutionarily divergent from even their
243 closest relative, *S. pacifica* (Fig. 3). It appears that the other sponge-associated
244 spirochetes may have begun diverging before the *Tsitsikamma*-associated spirochetes
245 diverged from their free-living relative. The divergence pattern of the *Tsitsikamma*-
246 associated spirochetes is congruent with the phylogeny of their sponge host and
247 incongruent with geographic location, suggestive of phylosymbiosis. Finally, it appears
248 that these spirochetes have only recently begun diverging from one another as they adapt
249 to their sponge host and that their association with latrunculid sponges is more recent
250 than that of the co-dominant Tethybacterales symbionts (17).

251

252 **Comparative analysis of functional potential in spirochete genomes**

253 The functional potential for all 363 spirochete genomes was predicted by assigning KEGG
254 Orthologs (KO) annotations using KofamScan (55). KO counts per genome were mapped
255 back to associated pathways detailed in the KEGG database (56) (Table S6). Dimension
256 reduction of these counts per genome revealed distinct clusters suggestive of adaptation
257 to the various environments from which these spirochetes were acquired (Fig. 4). The
258 functional potential of the *Tsitsikamma*-associated spirochetes was distinct from
259 spirochetes associated with other sponges and interestingly, was clustered more closely

260 with the functional potential of spirochetes associated with oligochaete worms and
261 spirochetes from hypersaline lake environments (Fig. 4).

262
263 An Analysis of Similarity (ANOSIM) of the same data (Table S7) showed that the
264 functional gene repertoire of the *Tsitsikamma*-associated spirochetes and other sponge-
265 associated spirochetes were significantly different ($p < 0.05$) from one another and from
266 all other environments. However, when considering the associated R-values, the
267 *Tsitsikamma*-associated spirochetes may exhibit some overlap in functional potential of
268 spirochetes in hypersaline lakes ($R = 0.26$), sediment ($R = 0.31$), freshwater lakes ($R =$
269 0.38), termites ($R = 0.47$), and seawater ($R=0.49$). This suggests that the functional
270 repertoire of *Tsitsikamma*-associated spirochetes may be more akin to free-living species
271 than host-associated.

272
273 **The biosynthetic potential of Sp02-3 spirochetes**
274 A total of 581 biosynthetic gene clusters (BGCs) were detected in all spirochete genomes
275 ($N=363$) (Table S8) and clustered into gene cluster families (GCFs) at a maximum
276 distance of 0.3 with BiG-SCAPE (57) (Fig. 5A). Six of the eight *Tsitsikamma*-associated
277 spirochetes had only a single predicted BGC. The remaining two MAGs, 003B_7 and
278 050A_2, which were of medium and low quality respectively, had no detected BGCs, likely
279 due to incomplete coverage of the genomes. All six BGCs were predicted to encode a
280 terpene product and were clustered into a single GCF (GCF1). Three other GCFs (GCFs
281 2, 3, and 4), consisting of terpene BGCs from other sponge-associated spirochetes, were
282 identified but did not appear to have any homology with the terpene BGC in the

283 *Tsitsikamma*-associated Sp02-3 spirochetes (Fig. 5B). Additional BiG-SCAPE analyses
284 were performed with less stringent cutoffs of 0.5 and 0.8, and no BGCs from other
285 spirochete genomes or the MiBIG database were incorporated into a GCF with the
286 terpene BGCs detected in the *Tsitsikamma*-associated spirochetes (Table S8), indicating
287 that this BGC is likely novel. Nonetheless, the closest characterized relative of the
288 *Tsitsikamma*-associated spirochetes, *S. pacifica*, produces an orange carotenoid-like
289 pigment (terpenoid), which we assume is produced via the only terpene BGC present in
290 the *S. pacifica* genome. Despite the low sequence and organizational similarities, the
291 terpene, if produced in the latrunculid-associated spirochetes, may protect them or their
292 host against oxidative stress, as hypothesized for the *S. pacifica* bacterium (47)

293
294 In our previous studies, we have reported the existence of two chemotypes that exist in
295 the *T. favus* and *T. michaeli* sponge populations in Algoa Bay (21, 28). Chemotype I
296 represents the majority of sponges, as the sponges appear visually healthy with turgid
297 structure and their spicules are in the canonical form. Further, this Chemotype is defined
298 by the presence of a variety of discorhabdins and tsitsikammamines (28). Conversely, the
299 morphology of the Chemotype II sponges is considered abnormal where the tissues
300 appear bruised, are soft to the touch (akin to rotten fruit), and many spicules are
301 malformed (28, 58). This chemotype is further characterized by the presence of
302 structurally simpler makaluvamines and brominated discorhabdins (21, 28).

303
304 Previous surveys of the microbial communities associated with ten *T. favus* sponges and
305 found no correlation between any bacterial population and the chemotypes (28). We have

306 repeated the analysis with a larger cohort of *T. favus* and *T. michaeli* sponge specimens
307 (N = 26). Using the same 16S rRNA gene amplicon datasets as presented in Figure 1,
308 but instead including only data from the latrunculid sponges with associated chemical
309 data, the analysis was repeated and OTUs were clustered at a maximum distance of 0.01
310 (Table S9) to disentangle the two spirochete strains previously identified in latrunculid
311 sponges, Sp02-3 and Sp02-15 (22, 29). Using an Indicator Species Analysis (Table S10)
312 we found that a decrease in Sp02-3 representative OTU abundance (OTU3) and an
313 increase in Sp02-15 representative OTU abundance (OTU6) correlated with Chemotype
314 II sponges, relative to Chemotype I specimens (Fig. S3 A – B, Table S10).

315

316 We conducted a correlation analysis of the top 50 most abundant OTUs with relative
317 pyrroloiminoquinone abundance per sponge sample (Fig. S4, Table S11). The Sp02-3
318 spirochetes (OTU3) were positively correlated with the increased abundance of
319 Chemotype I pyrroloiminoquinones and negatively correlated with the presence of
320 Chemotype II pyrroloiminoquinones. The converse was true of the Sp02-15 spirochetes
321 (OTU6) (Fig. S4, Table S11). As there was no evidence of BGCs for the production of
322 pyrroloiminoquinones in the spirochete MAGs, this result suggests that the switch from
323 Chemotype I to Chemotype II (the cause of which has yet to be identified) appears to
324 negatively impact the Sp02-3 spirochete and allows the Sp02-15 spirochete to thrive in
325 place.

326

327 Since the decrease in Sp02-3 similarly correlated with the incidence of deformed spicules,
328 we considered whether it may play a role in spicule formation. The most closely related

329 invertebrate-associated spirochete (Fig. 1 and Fig. 2) is a highly dominant and conserved
330 spirochete in *Corallium rubrum* corals (39, 59) This spirochete is predicted to contribute
331 to the coral's overall health of the coral (60) and to produce a pigmented carotenoid that
332 influences the commercially prized color of this red coral, as the spirochete's presence
333 correlates with the intensity of the observed red pigmentation (61). This spirochete was
334 primarily found in the coenenchyme of the coral (61), which houses the sclerites (spicules)
335 that are thought to act as initiation sites for the formation of the axial skeleton (62). Finally,
336 the formation of spicules in a primary coral polyp is associated with a change in color from
337 white to light pink (63). It is thus possible that the *C. rubrum*-associated spirochete may
338 be involved in spicule formation as shown with the calcibacteria in *Hemimycale* sponges
339 (pale orange to deep red in color) (64, 65), and hypothesized for the spirochetes in
340 *Platygyra dadalea*, *Paragoniastrea australensis*, and *Porites lutea* sponges (44). While a
341 speculative connection, as no MAG or genome is available for these spirochetes, this
342 observation has prompted us to begin metatranscriptomic studies in conjunction with
343 CARD-FISH experiments to determine the localization and potential structural role of
344 spirochetes in latrunculid sponges from the South African coastline.

345

346 **Conclusion:** This study shows that the conserved Sp02-3 spirochete of latrunculid
347 sponges is likely to be a relatively new symbiont that has begun co-evolving with its
348 respective sponge hosts. The Sp02-3 symbiont is distinct from all other invertebrate-
349 associated spirochetes, including non-dominant spirochetes associated with other marine
350 sponges. Assessment of their functional potential suggests that the Sp02-3 spirochetes
351 are functionally unique relative to other sponge-associated spirochetes. We found no

352 evidence that they are directly involved in the production of the pyrroloiminoquinones
353 characteristic of their host sponges. The close phylogenetic relatedness of the latrunculid-
354 associated spirochetes to a dominant, conserved coral-associated spirochete hints at a
355 possibly structural role within the sponges. However, additional experiments will be
356 necessary to test this hypothesis.

357

358 **METHODS AND MATERIALS**

359 **Sponge Collection and taxonomic identification.**

360 Sponges were collected by SCUBA or Remotely Operated Vehicle (ROV) from multiple
361 locations within the Tsitsikamma Marine Protected Area, Algoa Bay (Port Elizabeth), the
362 Amathole Marine Protected Area (East London), and the Garden Route National Park. In
363 addition, three *L. apicalis* specimens were collected by trawl net off Bouvet Island in the
364 South Atlantic Ocean. Collection permits were acquired prior to collections from the
365 Department of Environmental Affairs (DEA) and the Department of Environment, Forestry
366 and Fisheries (DEFF) under permit numbers: 2015: RES2015/16 and RES2015/21; 2016:
367 RES2016/11; 2017: RES2017/43; 2018: RES2018/44; 2019: RES2019/13; 2020:
368 RES2020/31; 2021: RES2021/81; 2022: RES2022/70. Collection metadata are provided
369 in Table S1. Sponge specimens were stored on ice during collection and moved to -20
370 °C on return to the lab. Subsamples of each sponge, collected for DNA extraction, were
371 preserved in RNALater (Invitrogen) and stored at -20 °C. Sponge specimens were
372 identified through inspection of gross morphology, spicule analysis, and molecular
373 barcoding, as performed previously (21, 28, 29, 58).

374

375 **Bacterial community profiles in latrunculid sponges**

376 The V4-V5 of the 16S rRNA gene was PCR amplified from 79 latrunculid sponges
377 collected between 1994 and 2022 (See Table S1 for collection data). Amplicons were
378 sequenced using the Illumina MiSeq platform and curated using mothur (v.1.48.0) (45).
379 All raw amplicon read data can be accessed under accession number PRJNA508092.
380 Briefly, sequences that were shorter than 250 nt in length, longer than 350 nt in length,
381 had homopolymeric runs of 7 nt or more, had ambiguous bases, or had a sliding window
382 quality average lower than 20, were removed from the datasets. Chimeric sequences
383 were detected using VSEARCH (66) and removed from the dataset. Sequences were
384 then classified via alignment against the SILVA database (v138.1) and any sequences
385 classified as “Chloroplast”, “Mitochondria”, “unknown”, “Archaea”, or “Eukaryota” were
386 removed. Sequences were clustered into Operational Taxonomic Units (OTUs) at a
387 distance of 0.03 and read counts thereof were converted to relative abundance (Table
388 S2). Representative sequences of each OTU were aligned against the SILVA database
389 (v138.1) in mothur and against the nt prokaryotic database using standalone blastn (67),
390 using parameters -max_hsps 1 -max_target_seqs 1 to return only the first match.
391 Descriptions and isolation sources for each returned accession were retrieved using the
392 esearch, efetch and xtract methods from the stand-alone entrez package (68). Spirochete
393 OTUs were subset out and aligned with reference sequences from the NCBI nucleotide
394 database using MUSCLE (v. 5.1) (69, 70) and phylogeny was inferred from the alignment
395 using the Maximum-likelihood method with 1000 bootstrap replicates in MEGA11 (71).
396 Finally, the same analysis was repeated but using only the raw amplicon read data from

397 latrunculid sponges, and the OTUs were clustered at a distance of 0.01. in all other
398 respects, the analyses were identical.

399

400 **Chemical Analysis and Chemotype Identification**

401 Sponge extracts were prepared by extraction with methanol, drying *i. vac.* and
402 resuspension in methanol at 1-10 mg/mL. LC-MS/MS data was acquired on a Bruker ESI-
403 Q-TOF Compact (Bruker, Bremen) in positive ionization mode coupled to a Dionex
404 Ultimate3000 Chromatograph (ThermoScientific, Sunnyvale, CA, USA) and using
405 reversed-phase C18 columns and mobile phases consisting of water and acetonitrile with
406 0.1% formic acid each, using one of two methods (see Supplementary Methods for
407 details). The data was converted to mzXML format and analyzed using MZmine3 (72) to
408 assemble an aligned feature list (see Supplementary Methods for details). The feature list
409 was filtered based on comparison of *m/z* values and MS/MS spectra to known or putative
410 pyrroloiminoquinones. Peak area values were normalized to the overall
411 pyrroloiminoquinone signal per sample and aggregated to the pyrroloiminoquinone class
412 to summarize the latrunculid pyrroloiminoquinone profiles.

413

414 **Correlation of spirochete populations and sponge chemotypes**

415 An Indicator species analysis was performed using the OTUs clustered at a distance of
416 0.01 for all *T. favus* and *T. micheali* sponges for which a chemotype had been assigned
417 (16S_Chemotype_Indicator_Species_Analysis.R) to determine which OTUs, if any, were
418 associated with the two chemotypes. The co-correlation analysis of the 50 most abundant
419 OTUs (found as an average across all samples) was performed using the 'cor' function

420 (73) native to R using dataframes of OTU and compound abundances as input. A 16S
421 rRNA gene sequence phylogeny was built from the representative sequences of the top
422 50 OTUs, aligned with MUSCLE (v 5.1) (69, 70), using the neighbor-joining approach with
423 1000 bootstraps in MEGA11 (71). The final tree was visualized in iTol (74) where the
424 correlation matrix and the average OTU abundance per sponge species was visualized
425 alongside the tree as datasets.

426

427 **Metagenomic sequencing and analysis of individual *T. favus* specimens.**

428 The DNA extraction and metagenomic sequencing of four *Tsitsikamma favus* sponges
429 that resulted in the recovery of four MAGs 050A_2, 050C_7, 003B_7, and 003D_7,
430 classified as spirochetes, is described in Waterworth et al., 2021(17). In addition to these
431 samples, four additional metagenomes of *Tsitsikamma* sponges (TIC2018-003M,
432 TIC2019-013N, TIC2022-009, and TIC2022-059) were sequenced. These sponges were
433 selected for sequencing based on the apparent abundance of spirochete OTUs found via
434 16S rRNA gene amplicon sequence.

435

436 Total genomic DNA (gDNA) was extracted using the Zymo Research Quick DNA
437 Fecal/Soil Microbe Miniprep Kit (Catalog number: D6012) according to the manufacturer's
438 specifications and stored at -4 °C. Shotgun metagenomic IonTorrent libraries of 200 bp
439 reads were prepared and sequenced using an Ion P1.1.17 chip. All metagenomes were
440 assembled, binned, and processed as described in Waterworth et al., 2021 (17). Four
441 additional spirochete genome MAGs (003M_1, 059_1, 013N_1, and 009_1) were
442 extracted from the new datasets. MAGs were named after the *Tsitsikamma* sponge

443 specimen from which they were extracted (e.g. 050A_2 is the MAG from sponge
444 specimen TIC2016-050A). The numbers associated with each MAG are an arbitrary
445 artifact of the binning process.

446

447 **Acquisition of reference genomes and MAGs**

448 Four spirochete MAGs associated with *Aplysina aerophoba* and *Rhopaloeides odorabile*
449 sponges from a study by Robbins and colleagues (75) were downloaded from
450 https://data.ace.uq.edu.au/public/sponge_mags/, and five sponge-associated spirochete
451 MAGs were acquired from the China National GeneBank DataBase (CNCBdb) from
452 studies by O'Brien and colleagues (50, 51). One spirochete genome from an *Aplysina*
453 *aerophoba* sponge was additionally downloaded from the NCBI database
454 (GCA_002238925.1). Additionally, all other genomes classified within the
455 Spirochaetaceae family were downloaded from the NCBI database (N=300) and all host-
456 associated spirochete MAGs were downloaded from the JGI database (N=44). This
457 resulted in a total of 354 reference genomes (Table S3).

458

459 **Characterization of MAGs and genomes**

460 All scripts used for bioinformatic analyses, and their associated inputs, used in the
461 following methods can be found at <https://github.com/samche42/Spirochete>. All MAGs
462 and genomes used in this study were assessed using CheckM (v1.1.3) (76) and
463 taxonomically classified using GTDB-Tk (v2.3.2) (48) against the Release 214.1
464 reference database. Basic metrics such as size, number of contigs, and N50 were
465 calculated using bin_summary.py. The number of genes, pseudogenes, and coding

466 density per genome were calculated using all_included_genome_characteristics.py. All
467 metadata per genome or MAG can be found in Table S3.

468

469 **Phylogeny of spirochete genome MAGs extracted from individual *Tsitsikamma*
470 sponges**

471 Ribosomal sequences (23S rRNA, 16S rRNA, and 5S rRNA) were extracted from
472 individual MAGs using barrnap (v 0.9) (77). The closest matches of recovered 16S
473 sequences from sponge-associated MAGs were identified using BLASTn (v 2.7.1) (67).

474 Resultant sequences were aligned using MUSCLE (v. 5.1) (69, 70) and phylogeny was
475 inferred using the Maximum-likelihood method with 1000 bootstraps in MEGA11 (71).

476 Phylogeny of the *Tsitsikamma*-associated spirochete MAGs was similarly inferred using
477 whole genome data via autoMLST (49) and PhyloPhlan3 (53). Amino acid sequences
478 and nucleotide sequences for all genes were found in all genomes using prokka (v 1.13)

479 (78). The phylogeny of all 362 MAGs and genomes (8 *Tsitsikamma*-associated spirochete
480 MAGs and 354 references) was inferred using Phylophlan3: Phylophlan3 was run with

481 diversity set to medium, with default values in the supermatrix_aa configuration. The
482 resultant gene protein alignment was used in RaxML (v 8.2.12) (79) to build a
483 phylogenetic tree with 1000 bootstrap replicates using the PROTGAMMAAUTO model.

484 The resultant tree was visualized in iTol (74). Genomes from Myxococcota
485 (GCA_002691025.1) and Deltaproteobacteria (GCA_020632655.1) were chosen as

486 outgroups. These genomes had been downloaded from the NCBI database as their
487 metadata indicated that they were classified within the Spirochaetaceae family. However,
488 the taxonomic classification of these genomes with GTDB-Tk revealed that these

489 genomes had likely been misclassified. These genomes were considered serendipitous
490 choices for outgroups for the Phylophlan3 analysis. AutoMLST was deployed in *de novo*
491 mode using concatenated alignments and coalescent trees of marker genes in two
492 separate analyses. ModelFinder and IQ-TREE Ultrafast Bootstrap analysis were enabled
493 in both analyses. All *latrunculid*-associated and other sponge-associated spirochete
494 MAGs were included in this analysis. MAGs and genomes from JGI and NCBI were not
495 used in this analysis as the number of query genomes is limited to 20 so we opted to
496 include only sponge-associated spirochetes in this analysis. Resultant trees were
497 downloaded in Newick format and visualized in iTol (74). Finally, the pairwise average
498 nucleotide identity (ANI) was calculated for all genomes using fastANI (v1.33)(80). If a
499 pairwise alignment fraction (AF) was lower than 70% (81), the associated ANI score was
500 nullified as the accuracy of the ANI score could not be trusted.

501
502 **Estimated evolutionary divergence patterns of sponge-associated spirochetes**
503 Using the Phylophlan3 (53) and autoMLST(49, 53) trees as guidance, orthologous genes
504 from the eight *Tsitsikamma*-associated spirochetes, the ten other sponge-associated
505 spirochetes, and their closest relatives were identified using OMA (v. 2.6.0) (82). A total
506 of 11 orthologs common to all genomes were found using count_OGs.py and aligned
507 using MUSCLE (v 5.1) (69, 70). The corresponding nucleotide sequence for each gene
508 was retrieved using streamlined_seqretriever.py, all stop codons were removed using
509 remove_stop_codons.py, and nucleotide sequences were aligned using MUSCLE (v 5.1)
510 (69, 70). Ortholog gene sequences were grouped per genome using
511 merge_fasta_for_dNdS.py. The nucleotide and amino acid sequences (per genome)

512 were each concatenated union function from EMBOSS (83) and aligned using PAL2NAL
513 (84). The alignment was used to estimate pairwise synonymous substitution rates (dS)
514 and thereby infer the pattern of divergence between these genomes using codeml from
515 the PAML package (85).

516

517 **Comparative analysis of functional potential in spirochete genomes**

518 Genes were identified in all genomes/MAGs using Prokka (v 1.13) (78) and then
519 annotated against the KEGG database using KOfamSCAN (55) with detail-tsv as the
520 output format. Reliable annotations were extracted from these results based on the
521 criteria that the annotation score is greater than the estimated threshold, and then reliable
522 annotations per MAG/genome were counted and summarized using the kegg_parser.py
523 script. This produced a table of KO counts per genome that was used as input for both
524 Analysis of Similarity (ANOSIM.R) processing and dimension reduction, via UMAP (86),
525 for 3-dimensional and 2-dimensional visualizations (dimension_reduction.py). A Jupyter
526 notebook is provided in the GitHub repository for easy reproduction and an interactive 3D
527 figure. To find statistically significant KEGG-annotated drivers of the different samples,
528 we performed a re-purposed Indicator Species Analysis with the number of KEGG
529 annotations per KO per genome in place of OTU abundance. This was performed using
530 the multiplatt method from the “indicspecies” package in R (87) with 1000 permutations
531 and specifying the point biserial correlation coefficient (“r.g”) as the association index as
532 this both accounts for abundance data (rather than presence/absence data) and corrects
533 for the different number of samples per host type.

534

535 **The biosynthetic potential of sponge-associated spirochetes**

536 A total of 547 biosynthetic gene clusters (BGCs) were predicted from all spirochete
537 genomes (N=363) using antiSMASH (v. 6.0.1) (88) with --cb-general --cb-knownclusters
538 --cb-subclusters --ASF --pfam2go --smcog-trees options enabled and genes found with
539 prodigal. The resultant putative BGCs were clustered twice using BiG-SCAPE (v
540 1.1.5)(57) at maximum distances of 0.3, 0.5, and 0.8. Network files of non-singleton gene
541 cluster families (GCFs) were visualized in Cytoscape (89). Highlighted gene clusters of
542 interest were visualized with clinker (90). Metadata for BGCs was extracted from
543 individual GenBank files using `antismash_summary.py`.

544

545 **DATA AVAILABILITY**

546 All sequence data can be accessed under accession number PRJNA508092 in the NCBI
547 SRA database. All scripts used for analysis and visualization can be accessed at
548 <https://github.com/samche42/Spirochete>.

549

550 **ACKNOWLEDGEMENTS**

551 We would like to acknowledge Gwynneth Matcher (South African Institute for Aquatic
552 Biodiversity, Aquatic Genomics Research Platform), Carel van Heerden and Alvera
553 Vorster (Stellenbosch University Central Analytical Facility) for next-generation
554 sequencing technical support. We thank Ryan Palmer and Koos Smith (African
555 Coelacanth Ecosystem Programme) for logistics and technical support during sponge
556 collections. We thank the South African Environmental Observation Network, Elwandle
557 Coastal Node, and the Shallow Marine and Coastal Research Infrastructure for the use

558 of their research platforms and infrastructure for their assistance in SCUBA collections
559 and logistical support. This research was supported by South African National Research
560 Foundation grants to R.A.D., including the South Africa Research Chair Initiative
561 (SARChI) grant (UID: 87583) and the SARChI-led Communities of Practice Programme
562 (UID: 110612). S.C.W. was supported by an NRF Innovation and Rhodes University
563 Henderson Ph.D. scholarships. G.M.S. and L.M. were supported by NRF Masters and
564 PhD scholarships, respectively. S.P.-N. Was supported by an NRF PDP scholarship (UID:
565 101038). J.C.J.K. was supported by funding awarded to R.A.D. by the South African
566 Medical Research Council as well as the UK Medical Research Council, with funds
567 received from the UK Government's Newton Fund (Grant No.: 96185). We declare no
568 competing interests, financial or otherwise, in relation to the work described here. The
569 opinions expressed and conclusions arrived at are those of the authors and are not
570 necessarily to be attributed to any of the above-mentioned donors.

571

572 REFERENCES

573

574 1. Botting JP, Nettersheim BJ. 2018. Searching for sponge origins. *Nat Ecol Evol*.

575 2. Botting JP, Muir LA. 2018. Early sponge evolution: A review and phylogenetic framework.
576 *Palaeoworld* 27:1–29.

577 3. Wilkinson CR, Smith DC. 1997. Immunological evidence for the Precambrian origin of bacterial
578 symbioses in marine sponges. *Proceedings of the Royal Society of London Series B Biological
579 Sciences* 220:509–518.

580 4. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. 2002. Molecular
581 evidence for a uniform microbial community in sponges from different oceans. *Appl Environ Microbiol*
582 68:4431–4440.

583 5. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM,
584 López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D,
585 Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel
586 U, Webster NS. 2016. Diversity, structure and convergent evolution of the global sponge
587 microbiome. *Nat Commun* 7:11870.

588 6. Jensen S, Fortunato SAV, Hoffmann F, Hoem S, Rapp HT, Øvreås L, Torsvik VL. 2017. The
589 Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms
590 Emphasizing Groups Involved in Sulfur Cycle. *Microb Ecol* 73:668–676.

591 7. Karimi E, Slaby BM, Soares AR, Blom J, Hentschel U, Costa R. 2018. Metagenomic binning reveals
592 versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine
593 sponges. *FEMS Microbiol Ecol* 94.

594 8. Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT. 2015. Phosphorus sequestration
595 in the form of polyphosphate by microbial symbionts in marine sponges. *Proc Natl Acad Sci U S A*
596 112:4381–4386.

597 9. Zhang F, Jonas L, Lin H, Hill RT. 2019. Microbially mediated nutrient cycles in marine sponges.
598 *FEMS Microbiol Ecol* 95.

599 10. de Voogd NJ, Cleary DFR, Polónia ARM, Gomes NCM. 2015. Bacterial community composition and
600 predicted functional ecology of sponges, sediment and seawater from the thousand islands reef
601 complex, West Java, Indonesia. *FEMS Microbiol Ecol* 91.

602 11. Hentschel U, Usher KM, Taylor MW. 2006. Marine sponges as microbial fermenters. *FEMS Microbiol*
603 *Ecol* 55:167–177.

604 12. Helber SB, Hoeijmakers DJJ, Muhando CA, Rohde S, Schupp PJ. 2018. Sponge chemical defenses
605 are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. *PLoS One*
606 13:e0197617.

607 13. Lopanik NB. 2014. Chemical defensive symbioses in the marine environment. *Funct Ecol* 28:328–
608 340.

609 14. Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. 2020. Characterization of
610 a sponge microbiome using an integrative genome-centric approach. *ISME J* 14:1100–1110.

611 15. Astudillo-García C, Slaby BM, Waite DW, Bayer K, Hentschel U, Taylor MW. 2018. Phylogeny and
612 genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges.
613 *Environ Microbiol* 20:561–576.

614 16. Wang Y, Gong L, Gao Z, Wang Y, Zhao F, Fu L, Li X. 2023. Host-specific bacterial communities
615 associated with six cold-seep sponge species in the South China Sea. *Front Mar Sci* 10.

616 17. Waterworth SC, Parker-Nance S, Kwan JC, Dorrington RA. 2021. Comparative genomics provides
617 insight into the function of broad-host range sponge symbionts. *MBio*
618 <https://doi.org/10.1128/mbio.01577-21>.

619 18. Fieth RA, Gauthier M-EA, Bayes J, Green KM, Degnan SM. 2016. Ontogenetic changes in the
620 bacterial symbiont community of the tropical demosponge *Amphimedon queenslandica*:
621 Metamorphosis is a new beginning. *Front Mar Sci* 3.

622 19. Fieseler Lars, Horn Matthias, Wagner Michael, Hentschel Ute. 2004. Discovery of the Novel
623 Candidate Phylum “Poribacteria” in Marine Sponges. *Appl Environ Microbiol* 70:3724–3732.

624 20. Taylor JA, Palladino G, Wemheuer B, Steinert G, Sipkema D, Williams TJ, Thomas T. 2021.
625 Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent
626 clade of sponge symbionts. *ISME J* 15:503–519.

627 21. Kalinski J-CJ, Krause RWM, Parker-Nance S, Waterworth SC, Dorrington RA. 2021. Unlocking the
628 Diversity of Pyrroloiminoquinones Produced by Latrunculid Sponge Species. *Mar Drugs* 19:68.

629 22. Walmsley TA, Matcher GF, Zhang F, Hill RT, Davies-Coleman MT, Dorrington RA. 2012. Diversity of
630 bacterial communities associated with the Indian Ocean sponge *Tsitsikamma favus* that contains the

631 bioactive pyrroloiminoquinones, tsitsikammamine A and B. *Mar Biotechnol* 14:681–691.

632 23. Hooper GJ, Davies-Coleman MT, Kelly-Borges M, Coetzee PS. 1996. New alkaloids from a South
633 African latrunculid sponge. *Tetrahedron Lett* 37:7135–7138.

634 24. Antunes EM, Copp BR, Davies-Coleman MT, Samaai T. 2005. Pyrroloiminoquinone and related
635 metabolites from marine sponges. *ChemInform* 36.

636 25. Botić T, Defant A, Zanini P, Žužek MC, Frangež R, Janussen D, Kersken D, Knez Ž, Mancini I,
637 Sepčić K. 2017. Discorhabdin alkaloids from Antarctic *Latrunculia* spp. sponges as a new class of
638 cholinesterase inhibitors. *Eur J Med Chem* 136:294–304.

639 26. Ford J, Capon RJ. 2000. Discorhabdin R: a new antibacterial pyrroloiminoquinone from two
640 latrunculid marine sponges, *Latrunculia* sp. and *Negombata* sp. *J Nat Prod* 63:1527–1528.

641 27. Kalinski J-CJ, Polyzois A, Waterworth SC, Siwe Noundou X, Dorrington RA. 2022. Current
642 Perspectives on Pyrroloiminoquinones: Distribution, Biosynthesis and Drug Discovery Potential.
643 *Molecules* 27.

644 28. Kalinski J-CJ, Waterworth SC, Noundou XS, Jiwaji M, Parker-Nance S, Krause RWM, McPhail KL,
645 Dorrington RA. 2019. Molecular Networking Reveals Two Distinct Chemotypes in
646 Pyrroloiminoquinone-Producing *Tsitsikamma favus* Sponges. *Mar Drugs* 17.

647 29. Matcher GF, Waterworth SC, Walmsley TA, Matsatsa T, Parker-Nance S, Davies-Coleman MT,
648 Dorrington RA. 2017. Keeping it in the family: Coevolution of latrunculid sponges and their dominant
649 bacterial symbionts. *Microbiologyopen* 6.

650 30. Villegas-Plazas M, Wos-Oxley ML, Sanchez JA, Pieper DH, Thomas OP, Junca H. 2019. Variations
651 in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge *Xestospongia muta* with
652 Season and Depth. *Microb Ecol* 78:243–256.

653 31. Isaacs LT, Kan J, Nguyen L, Videau P, Anderson MA, Wright TL, Hill RT. 2009. Comparison of the
654 bacterial communities of wild and captive sponge *Clathria prolifera* from the Chesapeake Bay. *Mar*

655 Biotechnol 11:758–770.

656 32. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution,
657 ecology, and biotechnological potential. *Microbiol Mol Biol Rev* 71:295–347.

658 33. Neulinger SC, Stöhr R, Thiel V, Schmaljohann R, Imhoff JF. 2010. New phylogenetic lineages of the
659 Spirochaetes phylum associated with Clathrina species (Porifera). *J Microbiol* 48:411–418.

660 34. Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. 2022. Global patterns in symbiont selection and
661 transmission strategies in sponges. *Front Ecol Evol* 10.

662 35. Riesgo A, Taboada S, Sánchez-Vila L, Solà J, Bertran A, Avila C. 2015. Some like it fat: comparative
663 ultrastructure of the embryo in two demosponges of the genus *Mycale* (order Poecilosclerida) from
664 Antarctica and the Caribbean. *PLoS One* 10:e0118805.

665 36. Bonacolta AM, Connelly MT, Rosales SM, Del Campo J, Traylor-Knowles N. 2021. The starlet sea
666 anemone, *Nematostella vectensis*, possesses body region-specific bacterial associations with
667 spirochetes dominating the capitulum. *FEMS Microbiol Lett* 368.

668 37. Wada N, Yuasa H, Kajitani R, Gotoh Y, Ogura Y, Yoshimura D, Toyoda A, Tang S-L, Higashimura Y,
669 Sweatman H, Forsman Z, Bronstein O, Eyal G, Thongtham N, Itoh T, Hayashi T, Yasuda N. 2020. A
670 ubiquitous subcuticular bacterial symbiont of a coral predator, the crown-of-thorns starfish, in the
671 Indo-Pacific. *Microbiome* 8:123.

672 38. Høj L, Levy N, Baillie BK, Clode PL, Strohmaier RC, Siboni N, Webster NS, Uthicke S, Bourne DG.
673 2018. Crown-of-thorns sea star *Acanthaster* cf. *Solaris* has tissue-characteristic microbiomes with
674 potential roles in health and reproduction. *Appl Environ Microbiol* 84.

675 39. van de Water JAJM, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D, Ferrier-Pagès C.
676 2016. Spirochaetes dominate the microbial community associated with the red coral *Corallium*
677 *rubrum* on a broad geographic scale. *Sci Rep* 6:27277.

678 40. Wessels W, Sprungala S, Watson S-A, Miller DJ, Bourne DG. 2017. The microbiome of the octocoral

679 Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress.

680 FEMS Microbiol Ecol 93.

681 41. Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW. 2016. Coral-Associated

682 Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species. Front Microbiol 7:458.

683 42. Park JS, Han J, Suh S-S, Kim H-J, Lee T-K, Jung SW. 2022. Characterization of bacterial

684 community structure in two alcyonacean soft corals (Litophyton sp. and Sinularia sp.) from Chuuk,

685 Micronesia. Coral Reefs 41:563–574.

686 43. Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. 2001. Nitrogen fixation by

687 symbiotic and free-living spirochetes. Science 292:2495–2498.

688 44. Ricci F, Tandon K, Black JR, Lê Cao K-A, Blackall LL, Verbruggen H. 2022. Host traits and

689 phylogeny contribute to shaping coral-bacterial symbioses. mSystems 7:e0004422.

690 45. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB,

691 Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009.

692 Introducing mothur: open-source, platform-independent, community-supported software for

693 describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.

694 46. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a

695 better web interface. Nucleic Acids Res 36:W5-9.

696 47. Ben Hania W, Joseph M, Schumann P, Bunk B, Fiebig A, Spröer C, Klenk H-P, Fardeau M-L, Spring

697 S. 2015. Complete genome sequence and description of *Salinispira pacifica* gen. nov., sp. nov., a

698 novel spirochaete isolated from a hypersaline microbial mat. Stand Genomic Sci 10:7.

699 48. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes

700 with the Genome Taxonomy Database. Bioinformatics <https://doi.org/10.1093/bioinformatics/btz848>.

701 49. Alanjary M, Steinke K, Ziemert N. 2019. AutoMLST: an automated web server for generating multi-

702 locus species trees highlighting natural product potential. Nucleic Acids Res 47:W276–W282.

703 50. O'Brien PA, Andreakis N, Tan S, Miller DJ, Webster NS, Zhang G, Bourne DG. 2021. Testing
704 cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. *Mol Ecol*
705 30:3768–3782.

706 51. O'Brien PA, Tan S, Frade PR, Robbins SJ, Engelberts JP, Bell SC, Vanwonterghem I, Miller DJ,
707 Webster NS, Zhang G, Bourne DG. 2023. Validation of key sponge symbiont pathways using
708 genome-centric metatranscriptomics. *Environ Microbiol* 25:3207–3224.

709 52. Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. 2017. Metagenomic binning of a marine sponge
710 microbiome reveals unity in defense but metabolic specialization. *ISME J* 11:2465–2478.

711 53. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M, Cumbo F,
712 May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E, Knight R, Mirarab S, Huttenhower C, Segata N.
713 2020. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using
714 PhyloPhlAn 3.0. *Nat Commun* 11:2500.

715 54. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-
716 friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 35:4453–4455.

717 55. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. 2020.
718 KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold.
719 *Bioinformatics* 36:2251–2252.

720 56. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res*
721 28:27–30.

722 57. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, De Los
723 Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, Roeters A, Lokhorst W, Fernandez-Guerra A,
724 Cappelini LTD, Goering AW, Thomson RJ, Metcalf WW, Kelleher NL, Barona-Gomez F, Medema
725 MH. 2020. A computational framework to explore large-scale biosynthetic diversity. *Nat Chem Biol*
726 16:60–68.

727 58. Parker-Nance S, Hilliar S, Waterworth S, Walmsley T, Dorrington R. 2019. New species in the
728 sponge genus *Tsitsikamma* (Poecilosclerida, Latrunculiidae) from South Africa. *Zookeys* 874:101–
729 126.

730 59. van de Water JAJM, Voolstra CR, Rottier C, Cocito S, Peirano A, Allemand D, Ferrier-Pagès C.
731 2018. Seasonal stability in the microbiomes of temperate gorgonians and the red coral *Corallium*
732 *rubrum* across the Mediterranean sea. *Microb Ecol* 75:274–288.

733 60. Tignat-Perrier R, van de Water JAJM, Allemand D, Ferrier-Pagès C. 2023. Holobiont responses of
734 mesophotic precious red coral *Corallium rubrum* to thermal anomalies. *Environ Microbiome* 18.

735 61. van de Water JAJM, Allemand D, Ferrier-Pagès C. 2024. Bacterial symbionts of the precious coral
736 *Corallium rubrum* are differentially distributed across colony-specific compartments and differ among
737 colormorphs. *Environ Microbiol Rep* 16.

738 62. Perrin J, Vielzeuf D, Ricolleau A, Dallaporta H, Valton S, Floquet N. 2015. Block-by-block and layer-
739 by-layer growth modes in coral skeletons. *Am Mineral* 100:681–695.

740 63. Giordano B, Bramanti L, Perrin J, Kahramanoğulları O, Vielzeuf D. 2023. Early stages of
741 development in Mediterranean red coral (*Corallium rubrum*): The key role of sclerites. *Front Mar Sci*
742 10.

743 64. Uriz MJ, Agell G, Blanquer A, Turon X, Casamayor EO. 2012. Endosymbiotic calcifying bacteria: a
744 new cue to the origin of calcification in metazoa? *Evolution* 66:2993–2999.

745 65. Garate L, Sureda J, Agell G, Uriz MJ. 2017. Endosymbiotic calcifying bacteria across sponge
746 species and oceans. *Sci Rep* 7:43674.

747 66. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: A versatile open source tool for
748 metagenomics. *PeerJ* 4:e2584.

749 67. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+:
750 architecture and applications. *BMC Bioinformatics* 10:421.

751 68. Maglott D, Ostell J, Pruitt KD, Tatusova T. 2005. Entrez Gene: gene-centered information at NCBI.

752 Nucleic Acids Res 33:D54-8.

753 69. Edgar RC. 2022. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of

754 sequence homology and phylogeny. Nat Commun 13:6968.

755 70. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

756 Nucleic Acids Res 32:1792–1797.

757 71. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version

758 11. Mol Biol Evol 38:3022–3027.

759 72. Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund TS, Bushuiev R, Murray KJ,

760 Hoffmann N, Lu M, Sarvepalli A, Zhang Z, Fleischauer M, Dührkop K, Wesner M, Hoogstra SJ, Rudt

761 E, Mokshyna O, Brungs C, Ponomarov K, Mutabdzija L, Damiani T, Pudney CJ, Earll M, Helmer PO,

762 Fallon TR, Schulze T, Rivas-Ubach A, Bilbao A, Richter H, Nothias L-F, Wang M, Orešić M, Weng J-

763 K, Böcker S, Jeibmann A, Hayen H, Karst U, Dorrestein PC, Petras D, Du X, Pluskal T. 2023.

764 Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41:447–449.

765 73. Langfelder P, Horvath S. 2012. Fast R Functions for Robust Correlations and Hierarchical

766 Clustering. J Stat Softw 46.

767 74. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display

768 and annotation. Nucleic Acids Res 49:W293–W296.

769 75. Robbins SJ, Song W, Engelberts JP, Glasl B, Slaby BM, Boyd J, Marangon E, Botté ES, Laffy P,

770 Thomas T, Webster NS. 2021. A genomic view of the microbiome of coral reef demosponges. ISME

771 J 15:1641–1654.

772 76. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the

773 quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res

774 25:1043–1055.

775 77. Seemann T. 2013. barrnap 0.9: rapid ribosomal RNA prediction. Google Scholar.

776 78. Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 30:2068–2069.

777 79. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large

778 phylogenies. *Bioinformatics* 30:1312–1313.

779 80. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI

780 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun* 9:5114.

781 81. Gosselin S, Fullmer MS, Feng Y, Gogarten JP. 2022. Improving Phylogenies Based on Average

782 Nucleotide Identity, Incorporating Saturation Correction and Nonparametric Bootstrap Support. *Syst*

783 *Biol* 71:396–409.

784 82. Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Warwick Vesztrocy A, Dalquen DA, Müller S,

785 Telford MJ, Glover NM, Dylus D, Dessimoz C. 2019. OMA standalone: orthology inference among

786 public and custom genomes and transcriptomes. *Genome Res* 29:1152–1163.

787 83. Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software

788 Suite. *Trends Genet* 16:276–277.

789 84. Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments

790 into the corresponding codon alignments. *Nucleic Acids Res* 34:W609-12.

791 85. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24:1586–1591.

792 86. McInnes L, Healy J, Saul N, Großberger L. 2018. UMAP: Uniform Manifold Approximation and

793 Projection. *J Open Source Softw* 3:861.

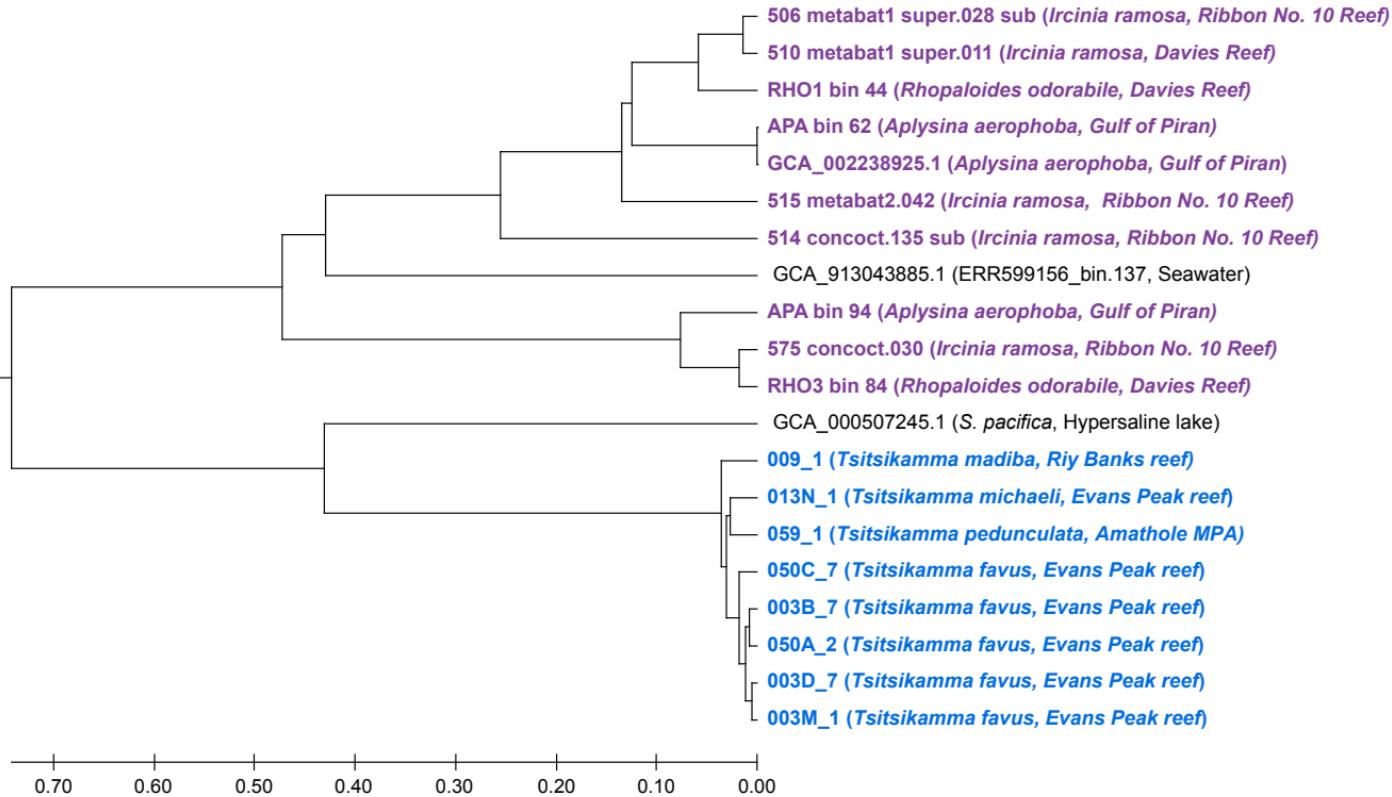
794 87. De Cáceres M, Legendre P. 2009. Associations between species and groups of sites: indices and

795 statistical inference. *Ecology* 90:3566–3574.

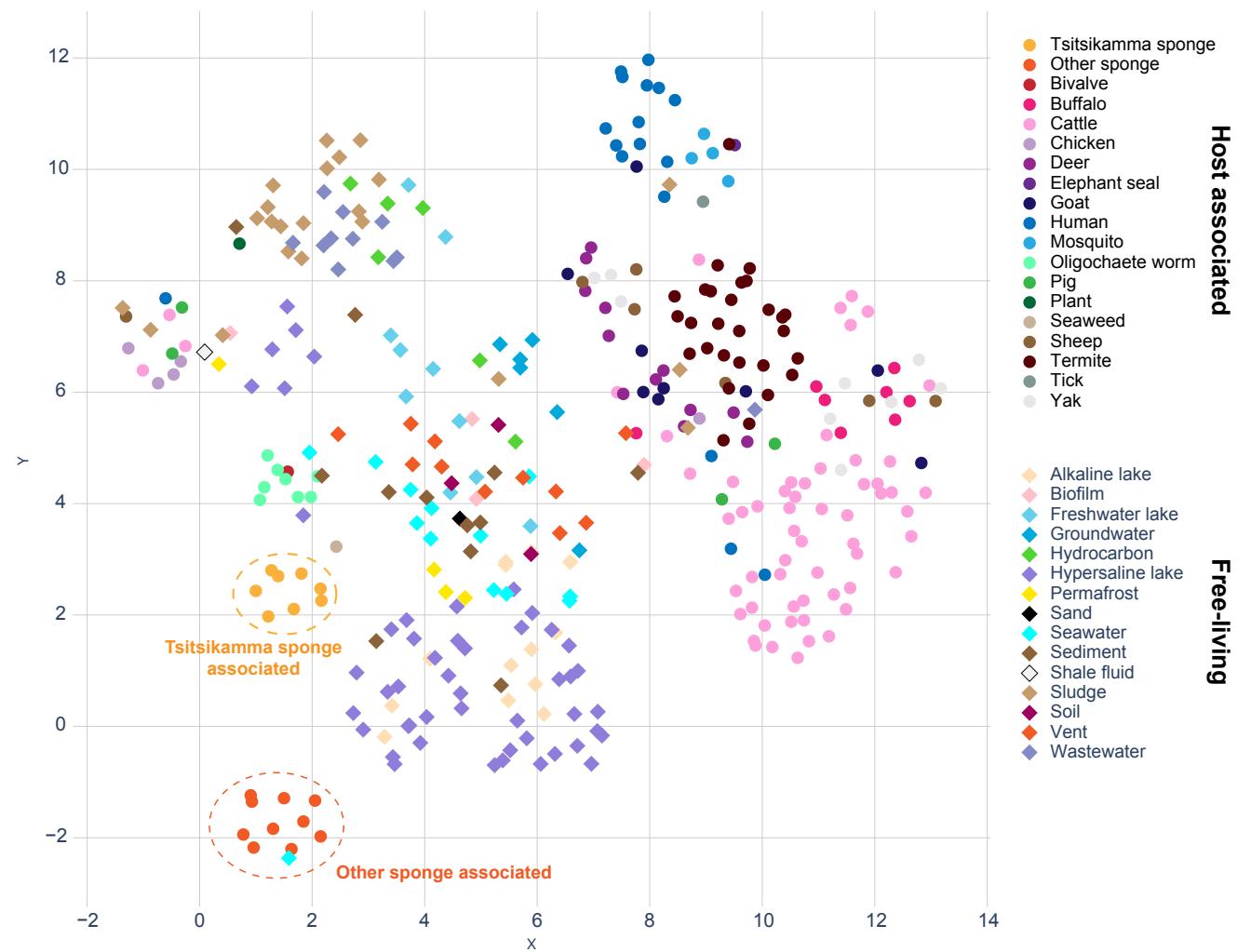
796 88. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021.

797 antiSMASH 6.0: improving cluster detection and comparison capabilities. *Nucleic Acids Res*

798 49:W29–W35.


799 89. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T.

800 2003. Cytoscape: a software environment for integrated models of biomolecular interaction


801 networks. *Genome Res* 13:2498–2504.

802 90. Gilchrist CLM, Chooi Y-H. 2021. Clinker & clustermap.js: Automatic generation of gene cluster

803 comparison figures. *Bioinformatics* <https://doi.org/10.1093/bioinformatics/btab007>.

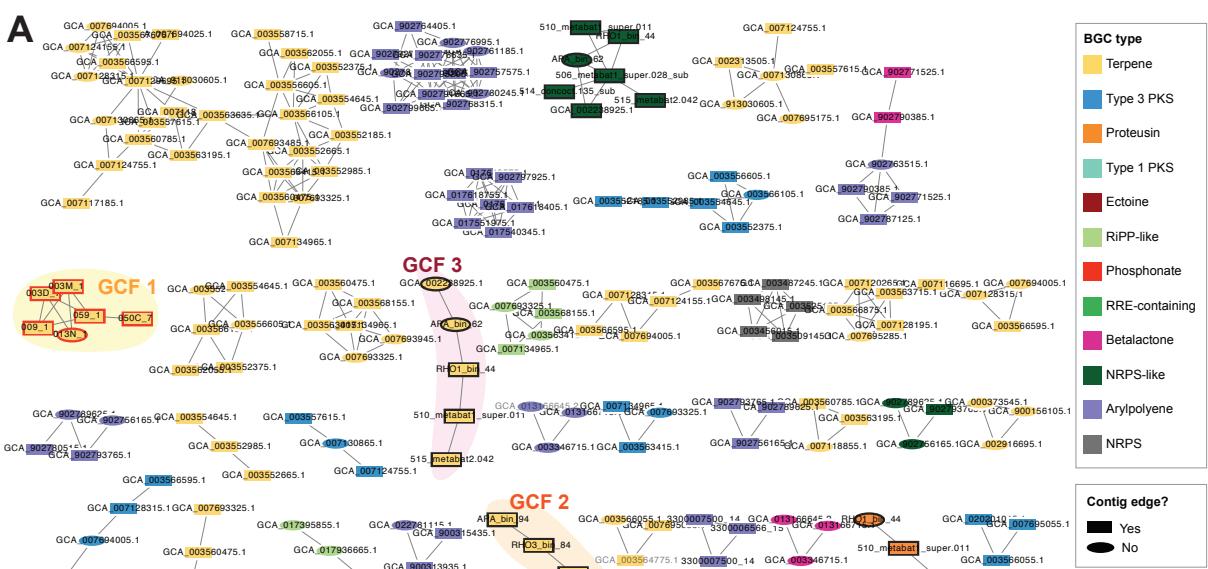


Figure 3. UPMGA representation of pairwise synonymous substitution rates (dS) of sponge-associated spirochete genomes, based on the alignment of 11 orthologous genes. PAL2NAL (88) and CodeML (89) from the PAML package were used to calculate pairwise dS values and the resultant matrix was visualized in MEGA11. The *Tsitsikamma*-associated spirochetes are colored in blue and other sponge-associated spirochetes are colored in purple.

Figure 4. UMAP dimension reduction 2-dimensional representation of KEGG-annotated gene counts in all spirochete genomes. The isolation source of each genome is indicated by color, and shaped according to whether the isolation source is a living host (circles) or an abiotic environment (diamonds).

A

BGC type

Terpene

Type 3 PKS

Proteusin

Type 1 PKS

Ectoine

RIPP-like

Phosphonate

RRE-containing

Betalactone

NRPS-like

Arylpolyene

NRPS

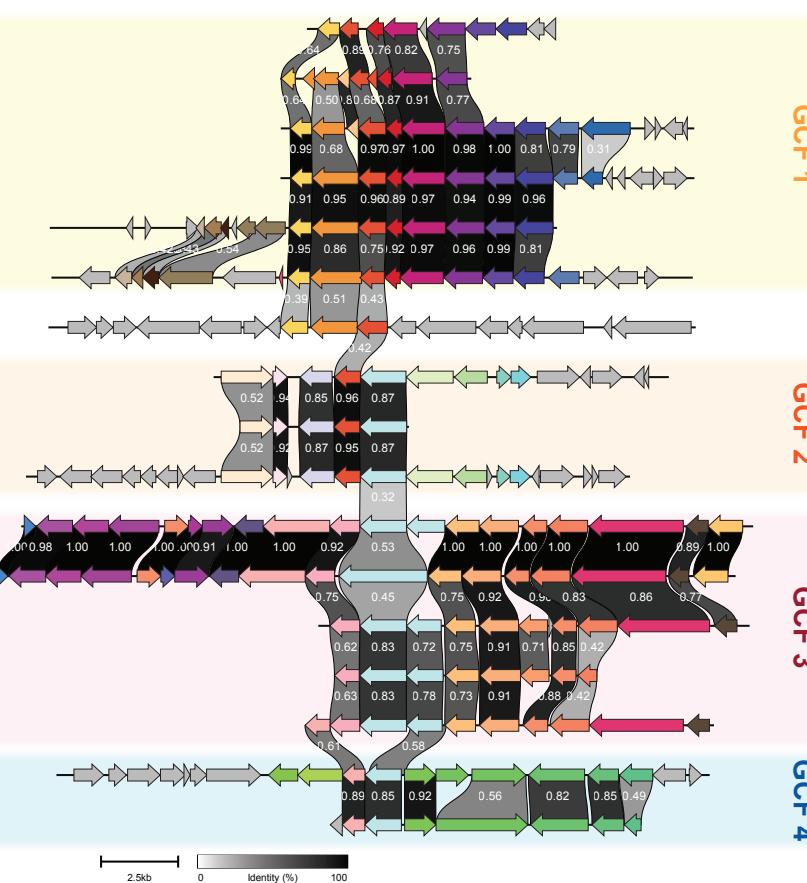
Contig edge?

Yes

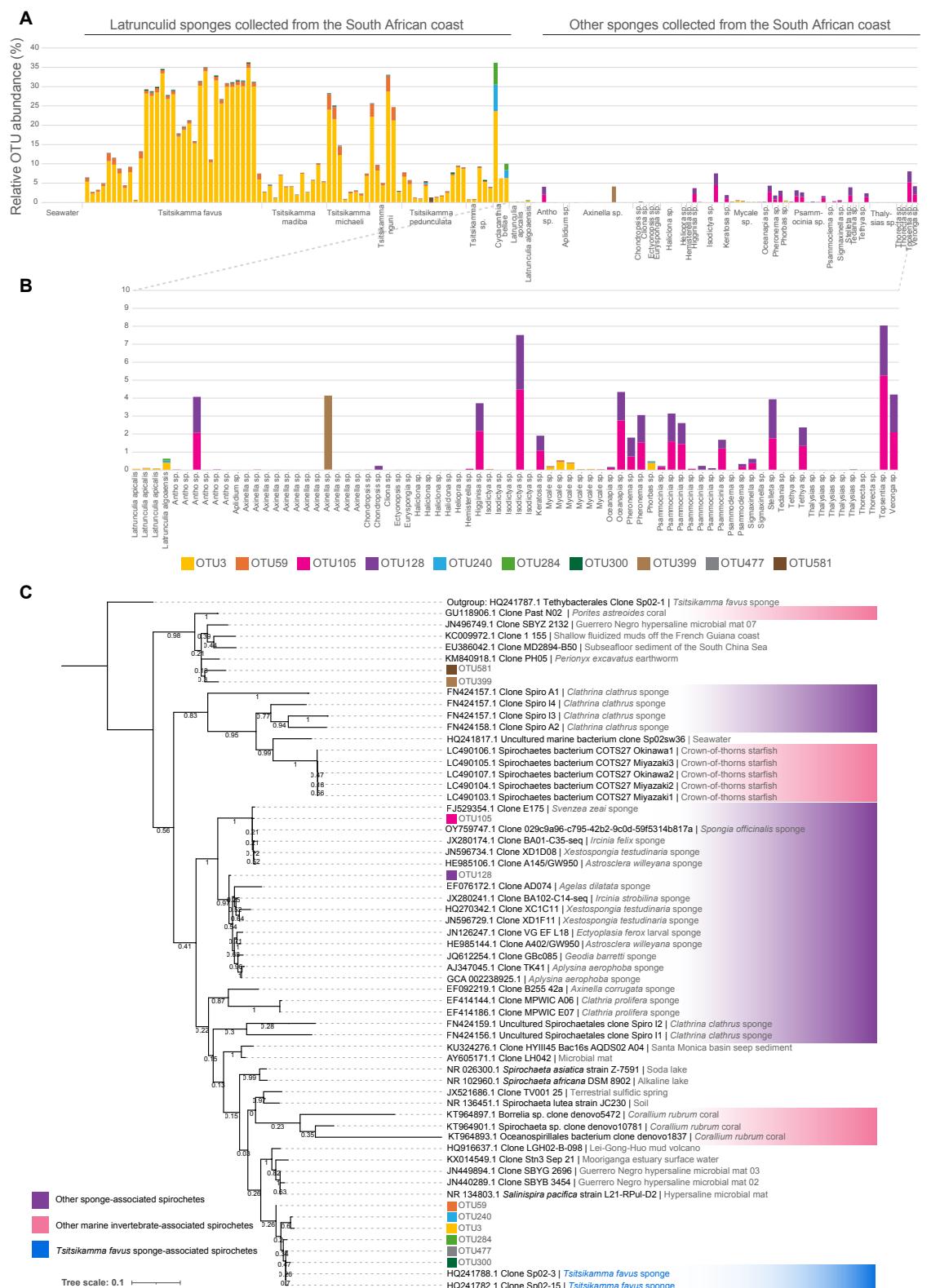
No

GCF 3

GCF 2


GCF 4

B


Tsitsikamma sponge associated

009_1 (*Tsitsikamma madiba*)
009_00050_NODE_39...region001050C_7 (*Tsitsikamma favus*)
050C_7_000106_NODE_32...region001003M_1 (*Tsitsikamma favus*)
003M_1_c00004_NODE_4...region001003D_7 (*Tsitsikamma favus*)
003D_7_c00005_NODE_33...region001059_1 (*Tsitsikamma michaelli*)
059_00021_NODE_96...region001013N_1 (*Tsitsikamma michaelli*)
013N_c00002_NODE_27...region001GCA000507245.1 (*Salinistira pacifica*)
CP006339.1.1-20990

Other sponge associated

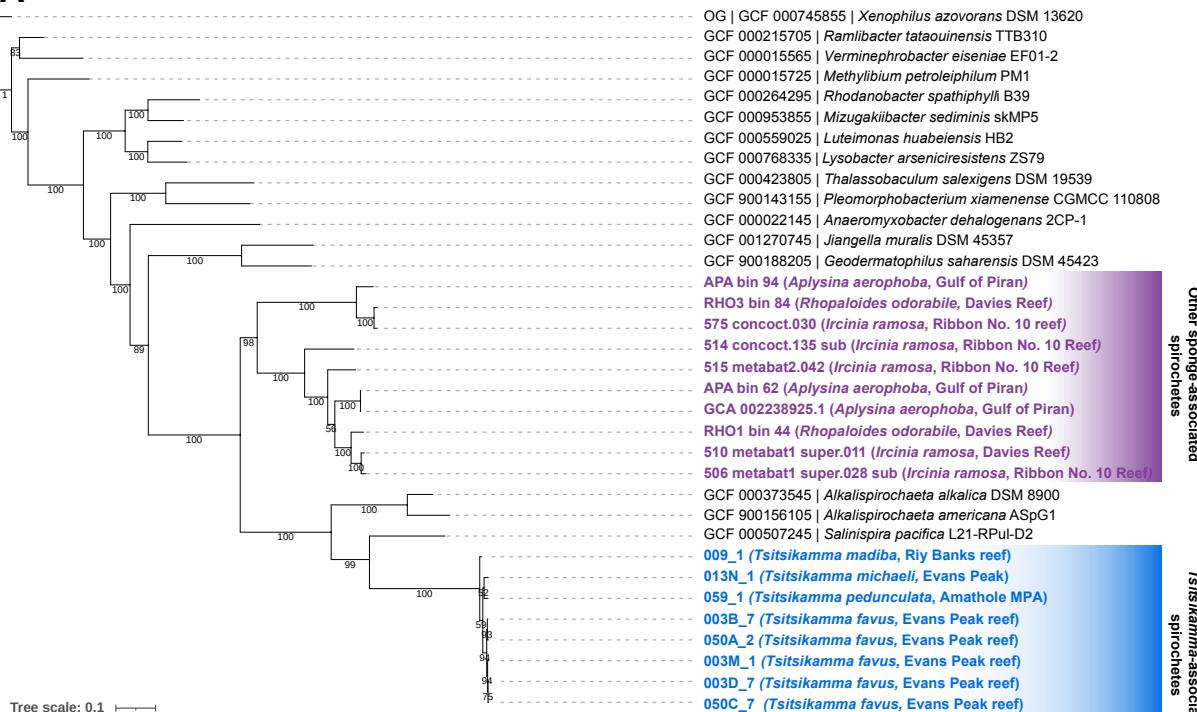

575 concoct.030 (*Ircinia ramosa*)
575_concoct.030_c000086_NODE_26...region001APA bin 94 (*Aplysina aerophoba*)
APA_bin_94_c_000000582477.region001RHO3 bin 84 (*Rhopaloides odorabile*)
RHO3_bin_84_c00006_NODE_22...region001APA bin 62 (*Aplysina aerophoba*)
APA_bin_62_c_000000166362.region001GCA 002238925.1 (*Aplysina aerophoba*)
GCA002238925.1_MPNH01000008.1.region001510 metabat1 super.011 (*Ircinia ramosa*)
510_metabat1_super.011_c00024_NODE_17...region001515 metabat2.042 (*Ircinia ramosa*)
515_metabat2.042_c00164_NODE_74...region001RHO1 bin 44 (*Rhopaloides odorabile*)
RHO1_bin_44_c00116_NODE_65...region001575 concoct.030 (*Ircinia ramosa*)
575_concoct.030_c00016_NODE_34...region001APA bin 94 (*Aplysina aerophoba*)
APA_bin_94_c_000000437456.region001

Figure 5. Assessment of biosynthetic potential in spirochetes. A) Network visualization of biosynthetic gene clusters from all spirochete genomes used in this study clustered into gene cluster families at a maximum distance of 0.3. BGCs from Tsitsikamma-associated spirochetes are highlighted with a red outline. BGCs from all other sponge-associated spirochetes are highlighted with a black outline. Gene cluster families (GCFs) of interest are highlighted. B) Pairwise comparison of amino-acid sequence identity between genes, and genes are colored according to their predicted function. The GCFs to which the BGCs belong have been indicated.

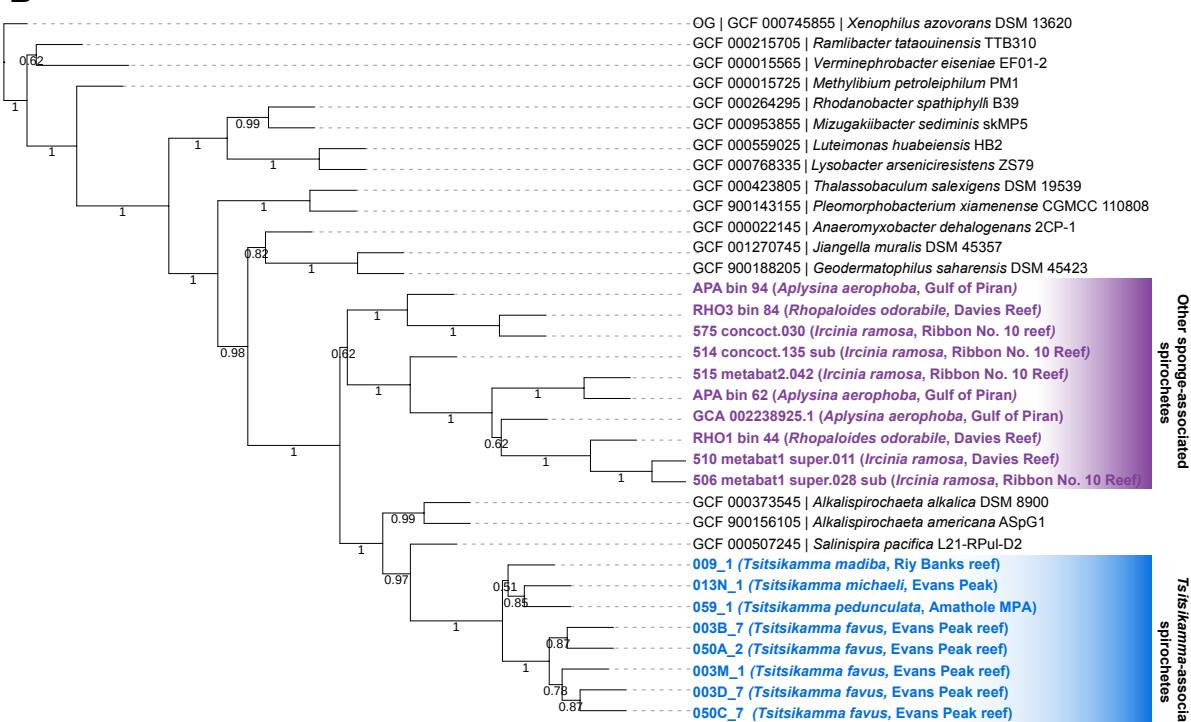


Figure 1. Spirochete population distribution in sponges collected from the South African coast and the Antarctic Southern Ocean. A) The relative abundance of OTUs clustered at a distance of 0.03 and classified as spirochetes, B) a magnified view of the spirochete OTUs present in non-latrunculid sponges collected from the south eastern coast of South Africa, three *L. apicalis* sponges collected from the Southern Ocean, and one sympatric *L. algoensis* sponge. C) Maximum-likelihood phylogeny (with 1000 bootstraps) of the top ten most abundant spirochete OTUs recovered from the sponges included in this study.

A

B

Figure 2. Phylogeny of sponge-associated spirochetes inferred with autoMLST in de novo mode using A) concatenated alignment and B) coalescent tree approaches. Tsitsikamma-associated spirochetes are highlighted in blue with their respective hosts. Other sponge-associated spirochetes are highlighted in purple with their associated hosts. All other reference spirochete genomes are listed in the format of "Accession number | Scientific name".