

1 TSPDB: A curated resource of tailspike proteins with 2 potential applications in phage research

3 *Opeyemi U. Lawal*^{1*} and *Lawrence Goodridge*^{1*}

4 ¹Canadian Research Institute for Food Safety (CRIFS), Department of Food Science, University of
5 Guelph, Ontario, Canada. N1G 2W1

6 *Correspondence:

7 *Dr. Opeyemi U. Lawal:* lawal@uoguelph.ca

8 *Dr. Lawrence Goodridge:* goodridl@uoguelph.ca

9

10 **Abstract**

11 Phages are ubiquitous viruses that drive bacterial evolution through infection and replication within
12 host bacteria. Phage tailspike proteins (TSPs) are key components of phage tail structures,
13 exhibiting polysaccharide depolymerase activity and host specificity. Despite their potential as novel
14 antimicrobials, few TSPs have been fully characterized due to laborious detection techniques. To
15 address this, we present TSPDB, a curated resource for rapid detection of TSPs in genomics and
16 metagenomics sequence data. We mined public databases, obtaining 17,211 TSP sequences,
17 which were filtered to exclude duplicates and partial sequences, resulting in 8,099 unique TSP
18 sequences. TSPDB contains TSPs from over 400 bacterial genera, with significant diversity among
19 them as revealed by the phylogenetic analysis. The top 13 genera represented were Gram-positive,
20 with *Bacillus*, *Streptococcus*, and *Clostridium* being the most common. Of note, Phage TSPs in
21 Gram-positive bacteria were on average 1 Kbp larger than those in Gram-negative bacteria. TSPDB
22 has been applied in a recent study to screen phage genomes, demonstrating its potential for
23 functional annotation. TSPDB serves as a comprehensive repository and a resource for researchers
24 in phage biology, particularly in phage associated therapy and antimicrobial or biocontrol
25 applications. TSPDB is compatible with bioinformatics tools for *in silico* detection of TSPs in
26 genomics and metagenomic data, and is freely accessible on GitHub and Figshare, providing a
27 valuable resource for the scientific community.

28 **Keywords:** Phage, tailspike proteins, genomics, big data, data mining

29 **Background**

30 Bacteriophages (phages) are viruses that infect and replicate within host bacteria and archaea
31 (Chatterjee and Duerkop, 2018; Dion et al., 2020). Phages are the most abundant entities in the
32 biosphere (Dion et al., 2020) and are distributed across different biomes populated by bacterial and
33 archaeal hosts, including the gastrointestinal tract of humans and animals, and oceanic beds
34 (Chevallereau et al., 2022; Clokie et al., 2011). They play a vital role in the rapid evolution and
35 adaptation of their hosts in various environments (Dion et al., 2020).

36 Phages exhibit high genomic, morphological, and structural diversity, composed of DNA or RNA
37 that can be single-stranded or double-stranded and packaged into a capsid (Dion et al., 2020;
38 Fokine and Rossmann, 2014). The structural form of the capsid was a major feature used in the
39 taxonomic classification of phages until the advent of whole-genome sequencing, which has now
40 become the gold standard for this classification. (Dion et al., 2020; Fokine and Rossmann, 2014;
41 Turner et al., 2023). Phages are broadly classified as tailed or non-tailed, with double-stranded
42 DNA tailed phages constituting about 96% of all known phages (Dion et al., 2020). Phages
43 possess a diverse array of tail structures essential for host recognition, attachment, and
44 penetration, making them important targets in phage therapy research (Fokine and Rossmann,
45 2014; Gil et al., 2023). Phage infection of its host begins with the recognition of a receptor on the
46 bacterial cell surface for attachment (Dowah and Clokie, 2018; Latka et al., 2017). To penetrate the
47 host cell, phages must overcome various complex barriers on the bacterial cell wall, such as the
48 outer membrane of Gram-negative bacteria and the lipoteichoic acids of Gram-positive bacteria
49 (Chen et al., 2014; Latka et al., 2017). Phages encode virion-associated carbohydrate-degrading
50 enzymes called depolymerases, which are distinct from the endolysins produced by phages during
51 the lysis stage (Knecht et al., 2020; Yan et al., 2014). These depolymerases, encoded by tailspike
52 protein (TSP) genes, recognize, bind, and degrade cell-surface associated polysaccharides,
53 unmasking phage receptors and making them accessible for bacterial infection (Gil et al., 2023;
54 Greenfield et al., 2019; Latka et al., 2017).

55 Tailspike proteins are integral components of phage tail structures, and their activities as
56 polysaccharide depolymerases are related to host specificity and infectivity (Greenfield et al.,
57 2019). A hallmark of TSPs is their host specificity, high thermostability, resistance to protease
58 treatment, and stability in the presence of high concentrations of urea and sodium dodecyl sulfate
59 (Chen et al., 2014). Phage TSPs possess carbohydrate depolymerase activity and recognize
60 capsule, and lipopolysaccharides (LPS) where they cleave components of the LPS to position the
61 phage towards a secondary membrane receptor during infection (Knecht et al., 2020). TSPs have
62 been observed to decrease bacterial viability, leading to antimicrobial applications. For example,
63 Ayariga and colleagues (Ayariga et al., 2021) demonstrated that the $\epsilon34$ phage tailspike protein

64 has enzymatic property as a LPS hydrolase and synergizes with Vero Cell culture supernatant in
65 killing *Salmonella* Newington. The ε34 TSP also showed bactericidal efficacy against different
66 *Salmonella* serovars in various matrices (Ibrahim et al., 2023). Miletic and colleagues (Miletic et al.,
67 2016) expressed the receptor binding domain of the Phage P22 Gp9 tailspike protein in plant
68 tissue (*Nicotiana benthamiana*), and demonstrated that, upon oral administration of lyophilized
69 leaves expressing Gp9 TSP to newly hatched chickens, *Salmonella* concentrations were reduced
70 on average by approximately 0.75 log relative to controls. Others have shown that TSPs can be
71 used to control the growth of plant pathogens. For example, expression of the *Erwinia* spp. phage
72 TSP DpoEa1h in transgenic apple and pear plants significantly reduced fire blight (*Erwinia*
73 *amylovora*) susceptibility, (Malnoy et al., 2005; Roach and Donovan, 2015) likely due to removal of
74 the main virulence factor amylovoran and exposing the *E. amylovora* cells to host plant defenses
75 (Kim et al., 2004). Finally, phage LKA1 TSP exhibits disruptive activity against biofilms while also
76 reducing virulence in *Pseudomonas* in an infection model (Olszak et al., 2017). Collectively, these
77 studies demonstrate the utility of TSPs as novel antimicrobials to control the growth of food and
78 plant-borne pathogens in foods.

79 Despite the known antimicrobial applications of TSPs, only a few have been fully characterized to
80 date. This could be partly due to the laborious nature of detection techniques, which include plaque
81 assays followed by examination under a transmission electron microscope (TEM) to identify "bulb-
82 like" baseplate structures at the base of phage tails indicative of TSPs (Bhandare et al., 2024;
83 Knecht et al., 2020). The decreasing costs of sequencing and the availability of improved
84 bioinformatics tools have facilitated the construction of large-scale genome and metagenome
85 datasets (Emond-Rheault et al., 2017; Wattam et al., 2014). High-throughput *in silico* detection of
86 TSP-encoding genes in genomic data would not only provide further details regarding the diversity
87 of TSPs in virulent phages but could also be used to identify the presence of TSPs in prophages.
88 The development of a database for TSPs would further contribute to the understanding of the
89 structure and function of these proteins to harness their potential for diverse applications, such as
90 the development of phage therapy for bacterial infections or phage-based biocontrol of foodborne
91 pathogens, and drug discovery (Brives and Pourraz, 2020; Roach and Donovan, 2015).

92 Here, we present a high-level curated resource called TSPDB for the rapid detection of tailspike
93 proteins in multiomics sequence data.

94 **Data and Methodology**

95 *Data Mining and Quality Check*: The DDBJ/ENA/GenBank and UniProt databases (Sayers et al.,
96 2022; The UniProt Consortium et al., 2023) were queried for TSPs using search terms commonly

97 associated with tailspike proteins, such as "phage tailspike," "tail spike proteins," "phage
98 endopeptidase," and "phage endorhamnosidase." Hits were systematically filtered to exclude
99 duplicate results. Nucleotide sequences of TSPs were retrieved from public databases using
100 accession numbers obtained from the database query via NCBI Entrez Programming Utilities (E-
101 utilities) (National Center for Biotechnology Information, 2023)

102 **Dataset Curation:** From this exercise, 17,211 sequences were obtained from the queried public
103 databases. Duplicated sequences were removed using thresholds of $\geq 95\%$ nucleotide similarity
104 and coverage with cd-hit (Li and Godzik, 2006) and Seqkit (Shen et al., 2016), resulting in 9,129
105 unique TSP sequences (**Figure 1**).

106 To assess the sequence length distribution and perform quality checks on unique TSP sequences,
107 Gaussian distribution analysis was conducted. Sequences shorter than 400 bp, which could
108 represent partial or incomplete sequences, were excluded from the dataset. This filtering process
109 resulted in a total of 8,099 unique TSP sequences (**Figure 1**). TSP sequences with a length of
110 $\leq 10,000$ bp were retained to include those originating from Gram-positive bacteria such as
111 *Clostridium* and *Streptococcus*, among others (**Figure 2A**). Further analysis of TSP genes in the
112 TSPDB reveals a significant difference in the sizes of TSPs between Gram-negative and Gram-
113 positive bacteria. Specifically, the average size of TSPs for Gram-negative bacteria is 2,070 bp,
114 while the average size for Gram-positive bacteria is substantially larger, at 3,255 bp (**Figure 2B**).

115 The TSPDB contains TSPs from more than 400 bacterial genera. Among these, the top 13 genera
116 represented were Gram-positive bacteria, with TSPs from *Bacillus* (n=1616) being the most
117 common, followed by *Streptococcus* (n=1152), *Clostridium* (n=683), *Enterococcus* (n=387), and
118 *Staphylococcus* (n=372). Additionally, TSPs from Gram-negative bacterial genera, *Salmonella*
119 (n=75), *Escherichia* (n=58), *Klebsiella* (n=52), and *Pseudomonas* (n=25) were among the top 38
120 TSPs in the database (**Figure 2C**).

121 **Diversity of TSPs:** To assess the diversity of the 8,099 unduplicated TSP sequences and their
122 suitability for database creation, we employed a phylogeny-based approach. The TSP sequences
123 were aligned using MAFFT v7.453 (Katoh, 2002), and a maximum likelihood tree with 1000
124 bootstrap replicates for node support was constructed using FastTree v2.1.11 (Price et al., 2010).
125 The resulting phylogenetic tree was visualized using the web-based Microreact visualization tool
126 (Argimón et al., 2016) (**Figure 2D**).

127 **TSPDB Construction:** The deduplicated TSP nucleotide sequences were utilized to construct the
128 TSP database using makeblastdb (Camacho et al., 2009). This database is compatible for use with

129 ABRicate (<https://github.com/tseemann/abricate>) and other bioinformatics tools equipped with
130 embedded BLAST algorithms, such as BLAST suites and SRST2 (Inouye et al., 2014), among
131 others.

132 **TSPDB Application:** The TSPDB was recently utilized in a study by (Bhandare et al., 2024),
133 where the database was implemented within an ABRicate container to screen for the presence of
134 TSPs in a collection of phage genomes using stringent parameters ($\geq 90\%$ identity and $\geq 70\%$
135 coverage). Overall, the TSPDB contains a vast dataset of diverse TSPs found in phages, making it
136 an essential tool for detecting TSPs within large genomic and metagenomic datasets. Integration of
137 this database into phage detection tools will enhance the functional annotation of these genes. The
138 TSPDB described here will undergo regular updates to include new TSP genes as they become
139 available in public databases.

140 **Limitations:** It is acknowledged that mis-annotation of some TSPs as hypothetical proteins or tail
141 fibers in public databases may have resulted in the omission of certain TSP genes in this study.
142 However, the TSPDB will be continually updated to incorporate additional TSP genes.

143 **Dataset Description:** The TSPDB is freely accessible on GitHub at the following link:
144 <https://github.com/yemilawal/Tailspike-proteins> or by searching for the title "TSPDB: A curated
145 resource of tailspike proteins with potential applications in phage research" on GitHub. Additionally,
146 accession numbers of genes encoding phage tailspike proteins in TSPDB are available on the
147 GitHub page. A backup version is also available for download on Figshare at
148 <https://doi.org/10.6084/m9.figshare.25526323>.

149 **Data Availability Statement:** The datasets associated with this study are hosted in online
150 repositories. Details of the repository/repositories and accession numbers can be found in the links
151 provided in the manuscript.

152 **Funding:** This work was supported by the Canada First Research Excellence Fund, and a Natural
153 Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to LG.

154 **Author Contributions:** OL: Conceptualization, Data curation, Formal analysis, Investigation,
155 Methodology, Validation, Visualization, Writing – original draft and review and editing; LG:
156 Conceptualization, Writing – review and editing, Funding acquisition and Resources

157 **Conflict of Interest:** The authors declare that the research was conducted in the absence of any
158 commercial or financial relationships that could be construed as a potential conflict of interest.

159 **Publisher's Note.** All claims expressed in this article are solely those of the authors and do not
160 necessarily represent those of their affiliated organizations, or those of the publisher, the editors,
161 and the reviewers. Any product that may be evaluated in this article, or claim that may be made by
162 its manufacturer, is not guaranteed, or endorsed by the publisher.

163 **References**

164 Argimón, S., Abudahab, K., Goater, R.J.E., Fedosejev, A., Bhai, J., Glasner, C., Feil, E.J., Holden,
165 M.T.G., Yeats, C.A., Grundmann, H., Spratt, G., Aanensen, D.M., 2016. Microreact:
166 visualizing and sharing data for genomic epidemiology and phylogeography. *Microbial
167 Genomics* 2, 1–11. <https://doi.org/10.1099/mgen.0.000093>

168 Ayariga, J.A., Gildea, L., Wu, H., Villafane, R., 2021. The $\varepsilon34$ Phage Tailspike Protein: An In vitro
169 Characterization, Structure Prediction, Potential Interaction with *S. newington* LPS and
170 Cytotoxicity Assessment to Animal Cell Line. *Journal of Clinical Trials* 11, 1–18.

171 Bhandare, S., Lawal, O.U., Colavecchio, A., Cadieux, B., Zahirovich-Jovich, Y., Zhong, Z.,
172 Tompkins, E., Amitrano, M., Kukavica-Ibrulj, I., Boyle, B., Wang, S., Levesque, R.C.,
173 Delaquis, P., Danyluk, M., Goodridge, L., 2024. Genomic and Phenotypic Analysis of
174 *Salmonella enterica* Bacteriophages Identifies Two Novel Phage Species. *Microorganisms*
175 12, 1–17. <https://doi.org/doi.org/10.3390/microorganisms12040695>

176 Brives, C., Pourraz, J., 2020. Phage therapy as a potential solution in the fight against AMR:
177 obstacles and possible futures. *Palgrave Commun* 6, 100. <https://doi.org/10.1057/s41599-020-0478-4>

178 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.,
179 2009. BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421.
180 <https://doi.org/10.1186/1471-2105-10-421>

181 Chatterjee, A., Duerkop, B.A., 2018. Beyond bacteria: Bacteriophage-eukaryotic host interactions
182 reveal emerging paradigms of health and disease. *Frontiers in Microbiology* 9, 1–8.
183 <https://doi.org/10.3389/fmicb.2018.01394>

184 Chen, C., Bales, P., Greenfield, J., Heselpoth, R.D., Nelson, D.C., Herzberg, O., 2014. Crystal
185 Structure of ORF210 from *E. coli* O157:H1 Phage CBA120 (TSP1), a Putative Tailspike
186 Protein. *PLoS ONE* 9, e93156. <https://doi.org/10.1371/journal.pone.0093156>

188 Chevallereau, A., Pons, B.J., van Houte, S., Westra, E.R., 2022. Interactions between bacterial
189 and phage communities in natural environments. *Nat Rev Microbiol* 20, 49–62.
190 <https://doi.org/10.1038/s41579-021-00602-y>

191 Clokie, M.R.J., Millard, A.D., Letarov, A.V., Heaphy, S., 2011. Phages in nature. *Bacteriophage* 1,
192 31–45.

193 Dion, M.B., Oechslin, F., Moineau, S., 2020. Phage diversity, genomics and phylogeny. *Nat Rev
194 Microbiol* 18, 125–138. <https://doi.org/10.1038/s41579-019-0311-5>

195 Dowah, A.S.A., Clokie, M.R.J., 2018. Review of the nature, diversity and structure of
196 bacteriophage receptor binding proteins that target Gram-positive bacteria. *Biophys Rev*
197 10, 535–542. <https://doi.org/10.1007/s12551-017-0382-3>

198 Emond-Rheault, J.-G., Jeukens, J., Freschi, L., Kukavica-Ibrulj, I., Boyle, B., Dupont, M.-J.,
199 Colavecchio, A., Barrere, V., Cadieux, B., Arya, G., Bekal, S., Berry, C., Burnett, E.,
200 Cavestri, C., Chapin, T.K., Crouse, A., Daigle, F., Danyluk, M.D., Delaquis, P., Dewar, K.,
201 Doualla-Bell, F., Fliss, I., Fong, K., Fournier, E., Franz, E., Garduno, R., Gill, A., Gruenheid,
202 S., Harris, L., Huang, C.B., Huang, H., Johnson, R., Joly, Y., Kerhoas, M., Kong, N.,
203 Lapointe, G., Larivière, L., Loignon, S., Malo, D., Moineau, S., Mottawea, W.,
204 Mukhopadhyay, K., Nadon, C., Nash, J., Ngueng Feze, I., Ogunremi, D., Perets, A., Pilar,
205 A.V., Reimer, A.R., Robertson, J., Rohde, J., Sanderson, K.E., Song, L., Stephan, R.,
206 Tamber, S., Thomassin, P., Tremblay, D., Usongo, V., Vincent, C., Wang, S., Weadge,
207 J.T., Wiedmann, M., Wijnands, L., Wilson, E.D., Wittum, T., Yoshida, C., Youfsi, K., Zhu, L.,
208 Weimer, B.C., Goodridge, L., Levesque, R.C., 2017. A Syst-OMICS Approach to Ensuring
209 Food Safety and Reducing the Economic Burden of Salmonellosis. *Frontiers in
210 Microbiology* 8.

211 Fokine, A., Rossmann, M.G., 2014. Molecular architecture of tailed double-stranded DNA phages.
212 *Bacteriophage* 4, e28281. <https://doi.org/10.4161/bact.28281>

213 Gil, J., Paulson, J., Brown, M., Zahn, H., Nguyen, M.M., Eisenberg, M., Erickson, S., 2023.
214 Tailoring the Host Range of Ackermannviridae Bacteriophages through Chimeric Tailspike
215 Proteins. *Viruses* 15, 286. <https://doi.org/10.3390/v15020286>

216 Greenfield, J., Shang, X., Luo, H., Zhou, Y., Heselpoth, R.D., Nelson, D.C., Herzberg, O., 2019.
217 Structure and tailspike glycosidase machinery of ORF212 from *E. coli* O157:H7 phage
218 CBA120 (TSP3). *Sci Rep* 9, 7349. <https://doi.org/10.1038/s41598-019-43748-9>

219 Ibrahim, I., Ayariga, J.A., Xu, J., Adebanjo, A., Robertson, B.K., Samuel-Foo, M., Ajayi, O.S., 2023.
220 CBD resistant *Salmonella* strains are susceptible to epsilon 34 phage tailspike protein.
Front. Med. 10, 1075698. <https://doi.org/10.3389/fmed.2023.1075698>

222 Inouye, M., Dashnow, H., Raven, L.-A., Schultz, M.B., Pope, B.J., Tomita, T., Zobel, J., Holt, K.E.,
223 2014. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs.

224 Katoh, K., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast
225 Fourier transform. *Nucleic Acids Research* 30, 3059–3066.
226 <https://doi.org/10.1093/nar/gkf436>

227 Kim, W.-S., Salm, H., Geider, K., 2004. Expression of bacteriophage ϕ Ea1h lysozyme in
228 *Escherichia coli* and its activity in growth inhibition of *Erwinia amylovora*. *Microbiology* 150,
229 2707–2714. <https://doi.org/10.1099/mic.0.27224-0>

230 Knecht, L.E., Veljkovic, M., Fieseler, L., 2020. Diversity and Function of Phage Encoded
231 Depolymerases. *Front. Microbiol.* 10, 2949. <https://doi.org/10.3389/fmicb.2019.02949>

232 Latka, A., Maciejewska, B., Majkowska-Skrobek, G., Briers, Y., Drulis-Kawa, Z., 2017.
233 Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers
234 during the infection process. *Appl Microbiol Biotechnol* 101, 3103–3119.
235 <https://doi.org/10.1007/s00253-017-8224-6>

236 Li, W., Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein
237 or nucleotide sequences. *Bioinformatics* 22, 1658–1659.
238 <https://doi.org/10.1093/bioinformatics/btl158>

239 Malnoy, M., Faize, M., Venisse, J.-S., Geider, K., Chevreau, E., 2005. Expression of viral EPS-
240 depolymerase reduces fire blight susceptibility in transgenic pear. *Plant Cell Rep* 23, 632–
241 638. <https://doi.org/10.1007/s00299-004-0855-2>

242 Miletic, S., Simpson, D.J., Szymanski, C.M., Deyholos, M.K., Menassa, R., 2016. A Plant-
243 Produced Bacteriophage Tailspike Protein for the Control of *Salmonella*. *Front. Plant Sci.* 6.
244 <https://doi.org/10.3389/fpls.2015.01221>

245 National Center for Biotechnology Information, 2023. Entrez Programming Utilities Help [Internet].
246 National Center for Biotechnology Information, Bethesda.

247 Olszak, T., Shneider, M.M., Latka, A., Maciejewska, B., Browning, C., Sycheva, L.V., Cornelissen,
248 A., Danis-Wlodarczyk, K., Senchenkova, S.N., Shashkov, A.S., Gula, G., Arabski, M.,
249 Wasik, S., Miroshnikov, K.A., Lavigne, R., Leiman, P.G., Knirel, Y.A., Drulis-Kawa, Z.,
250 2017. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces
251 *Pseudomonas* virulence. *Sci Rep* 7, 16302. <https://doi.org/10.1038/s41598-017-16411-4>

252 Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2 - Approximately maximum-likelihood trees
253 for large alignments. *PLoS ONE* 5, 1–10. <https://doi.org/10.1371/journal.pone.0009490>

254 Roach, D.R., Donovan, D.M., 2015. Antimicrobial bacteriophage-derived proteins and therapeutic
255 applications. *Bacteriophage* 5, e1062590. <https://doi.org/10.1080/21597081.2015.1062590>

256 Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk,
257 K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z.,
258 Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams, R.,
259 Trawick, B.W., Pruitt, K.D., Sherry, S.T., 2022. Database resources of the national center
260 for biotechnology information. *Nucleic Acids Research* 50, D20–D26.
261 <https://doi.org/10.1093/nar/gkab1112>

262 Shen, W., Le, S., Li, Y., Hu, F., 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q
263 File Manipulation. *PLoS ONE* 11, e0163962. <https://doi.org/10.1371/journal.pone.0163962>

264 The UniProt Consortium, Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Ahmad, S., Alpi,
265 E., Bowler-Barnett, E.H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T.,
266 Ebenezer, T., Fan, J., Garmiri, P., da Costa Gonzales, L.J., Hatton-Ellis, E., Hussein, A.,
267 Ignatchenko, A., Insana, G., Ishtiaq, R., Joshi, V., Jyothi, D., Kandasamy, S., Lock, A.,
268 Luciani, A., Lugaric, M., Luo, J., Lussi, Y., MacDougall, A., Madeira, F., Mahmoudy, M.,
269 Mishra, A., Moulang, K., Nightingale, A., Pundir, S., Qi, G., Raj, S., Raposo, P., Rice, D.L.,
270 Saidi, R., Santos, R., Speretta, E., Stephenson, J., Totoo, P., Turner, E., Tyagi, N.,
271 Vasudev, P., Warner, K., Watkins, X., Zaru, R., Zellner, H., Bridge, A.J., Aimo, L., Argoud-
272 Puy, G., Auchincloss, A.H., Axelsen, K.B., Bansal, P., Baratin, D., Batista Neto, T.M.,
273 Blatter, M.-C., Bolleman, J.T., Boutet, E., Breuza, L., Gil, B.C., Casals-Casas, C., Echioukh,
274 K.C., Coudert, E., Cuche, B., de Castro, E., Streicher, A., Famiglietti, M.L., Feuermann,
275 M., Gasteiger, E., Gaudet, P., Gehant, S., Gerritsen, V., Gos, A., Gruaz, N., Hulo, C., Hyka-
276 Nouspikel, N., Jungo, F., Kerhornou, A., Le Mercier, P., Lieberherr, D., Masson, P., Morgat,
277 A., Muthukrishnan, V., Paesano, S., Pedruzzi, I., Pilbout, S., Pourcel, L., Poux, S., Pozzato,
278 M., Pruess, M., Redaschi, N., Rivoire, C., Sigrist, C.J.A., Sonesson, K., Sundaram, S., Wu,
279 C.H., Arighi, C.N., Arminski, L., Chen, C., Chen, Y., Huang, H., Laiho, K., McGarvey, P.,
280 Natale, D.A., Ross, K., Vinayaka, C.R., Wang, Q., Wang, Y., Zhang, J., 2023. UniProt: the
281 Universal Protein Knowledgebase in 2023. *Nucleic Acids Research* 51, D523–D531.
282 <https://doi.org/10.1093/nar/gkac1052>

283 Turner, D., Shkoporov, A.N., Lood, C., Millard, A.D., Dutilh, B.E., Alfenas-Zerbini, P., Van Zyl, L.J.,
284 Aziz, R.K., Oksanen, H.M., Poranen, M.M., Kropinski, A.M., Barylski, J., Brister, J.R.,
285 Chanisvili, N., Edwards, R.A., Enault, F., Gillis, A., Knezevic, P., Krupovic, M., Kurtböke, I.,
286 Kushkina, A., Lavigne, R., Lehman, S., Lobocka, M., Moraru, C., Moreno Switt, A.,
287 Morozova, V., Nakavuma, J., Reyes Muñoz, A., Rūmnieks, J., Sarkar, B., Sullivan, M.B.,
288 Uchiyama, J., Wittmann, J., Yigang, T., Adriaenssens, E.M., 2023. Abolishment of
289 morphology-based taxa and change to binomial species names: 2022 taxonomy update of

290 the ICTV bacterial viruses subcommittee. Arch Virol 168, 74.
291 <https://doi.org/10.1007/s00705-022-05694-2>
292 Wattam, A.R., Abraham, D., Dalay, O., Disz, T.L., Driscoll, T., Gabbard, J.L., Gillespie, J.J.,
293 Gough, R., Hix, D., Kenyon, R., Machi, D., Mao, C., Nordberg, E.K., Olson, R., Overbeek,
294 R., Pusch, G.D., Shukla, M., Schulman, J., Stevens, R.L., Sullivan, D.E., Vonstein, V.,
295 Warren, A., Will, R., Wilson, M.J.C., Yoo, H.S., Zhang, C., Zhang, Y., Sobral, B.W., 2014.
296 PATRIC, the bacterial bioinformatics database and analysis resource. Nucl. Acids Res. 42,
297 D581–D591. <https://doi.org/10.1093/nar/gkt1099>
298 Yan, J., Mao, J., Xie, J., 2014. Bacteriophage Polysaccharide Depolymerases and Biomedical
299 Applications. BioDrugs 28, 265–274. <https://doi.org/10.1007/s40259-013-0081-y>
300

301 **Figure Legend**

302 **Figure 1 – Workflow for the construction of the tailspike protein database (TSPDB).**

303 **Figure 2 – Analysis of Phage tail spike proteins in the TSPDB.** (A). Sequence length
304 distribution of genes encoding phage TSPs contained in the TSPDB. (B). Frequency of top 37
305 genera of host phages carrying TSPs in the TSPDB. (C). Differential TSPs size between Gram-
306 negative and Gram-positive bacteria in the TSPDB. (D). Phylogenetic diversity of the 8,099 TSPs
307 in the TSPDB. Each node represents a unique TSP contained in the TSPDB, with nodes of similar
308 color belonging to the same genera. The top 37 genera are displayed in colour. An interactive
309 version of this figure is accessible through the following link -
310 <https://microreact.org/project/7Kv61nb6aRapgGgHpxsNGL-tspdb-v20>.

311

312

GenBank, UniProt

Search terms

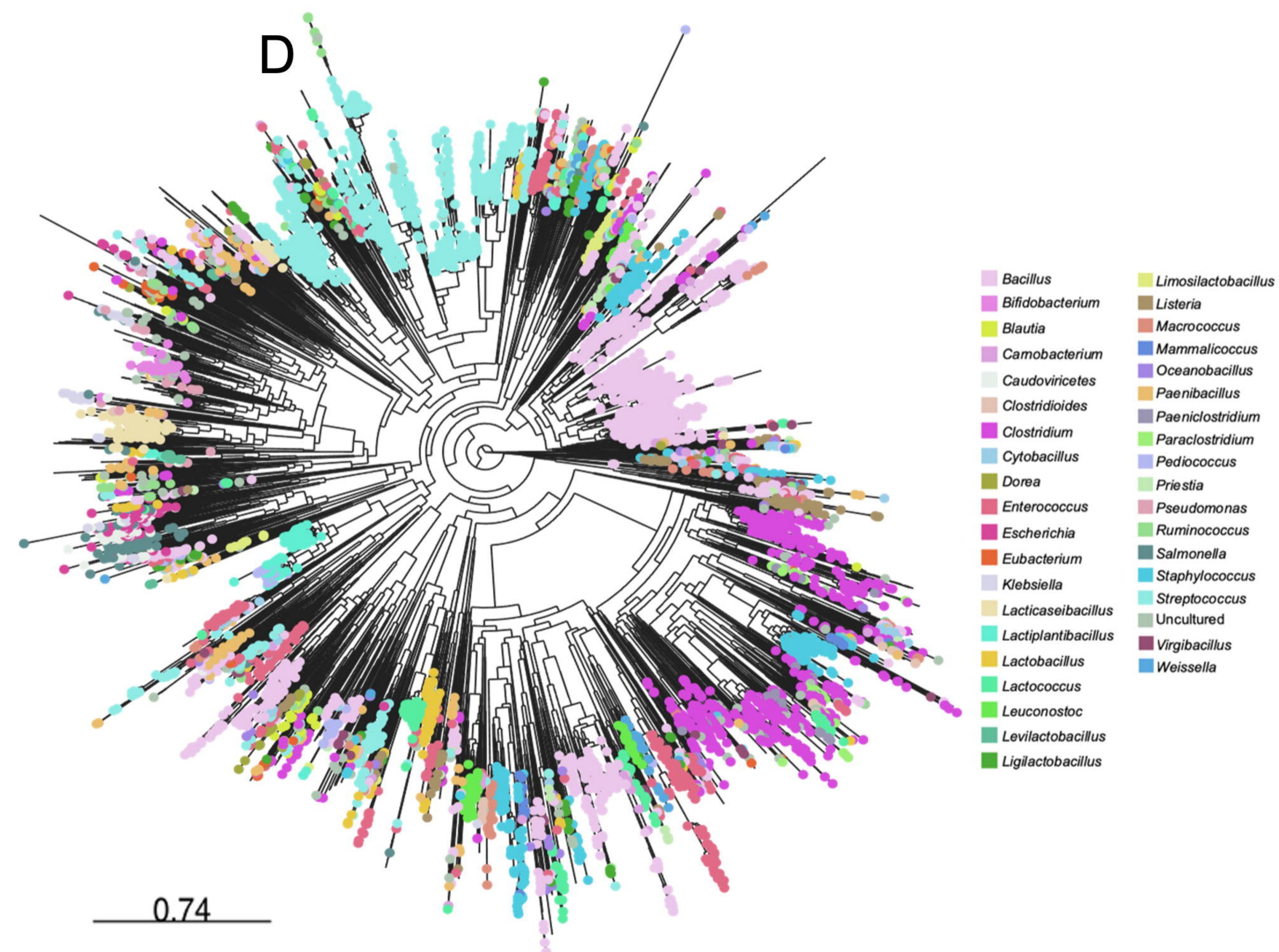
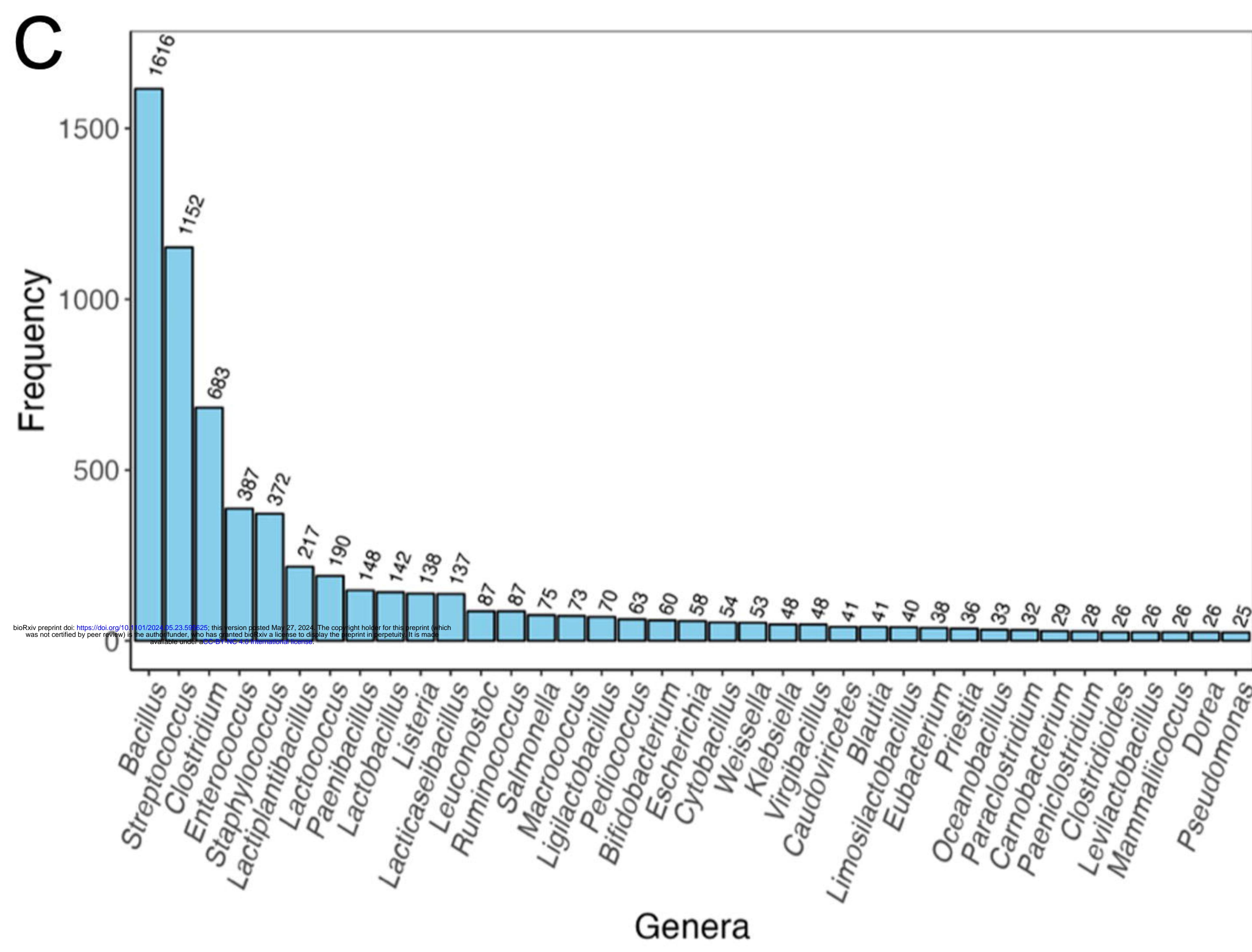
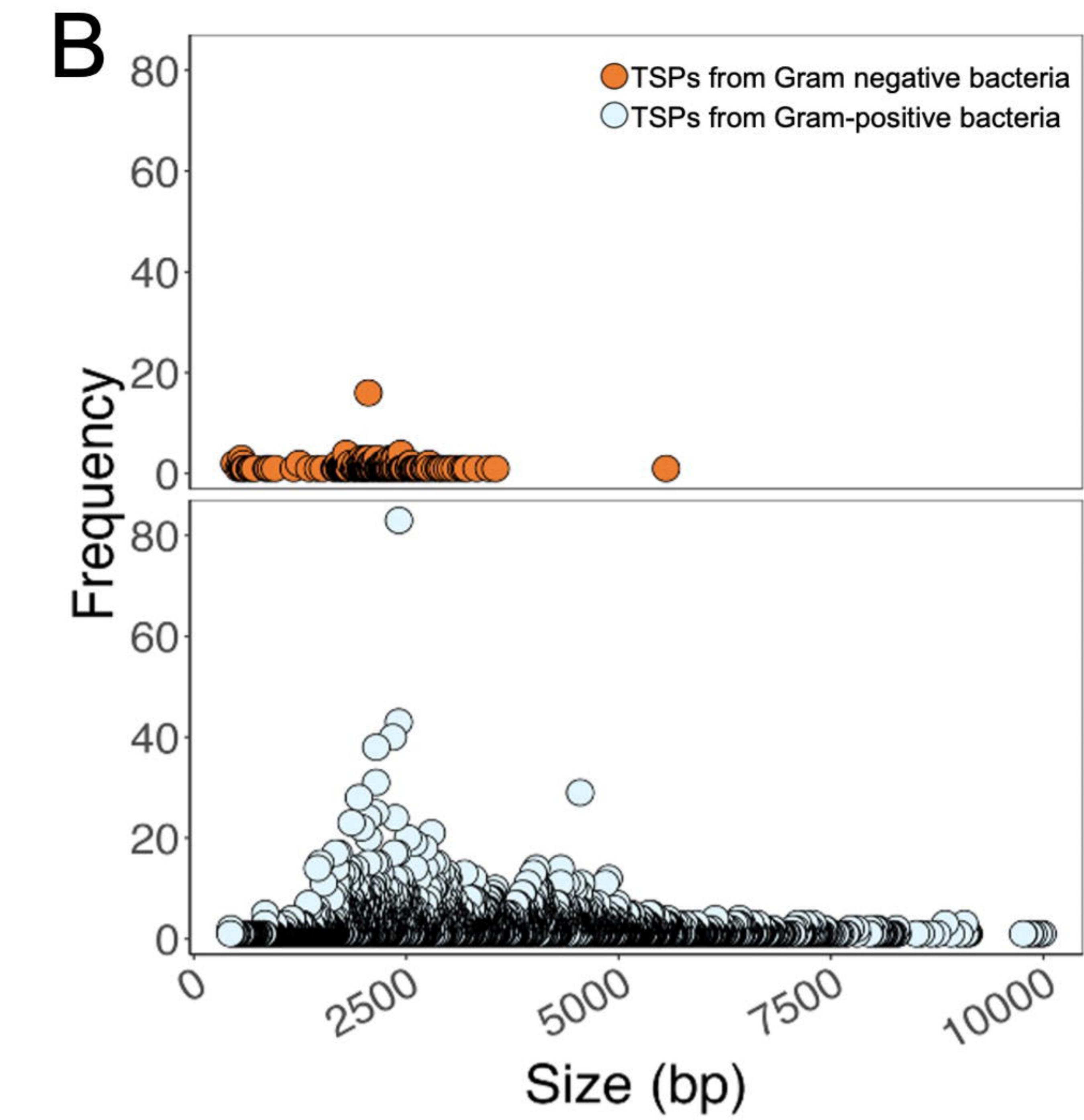
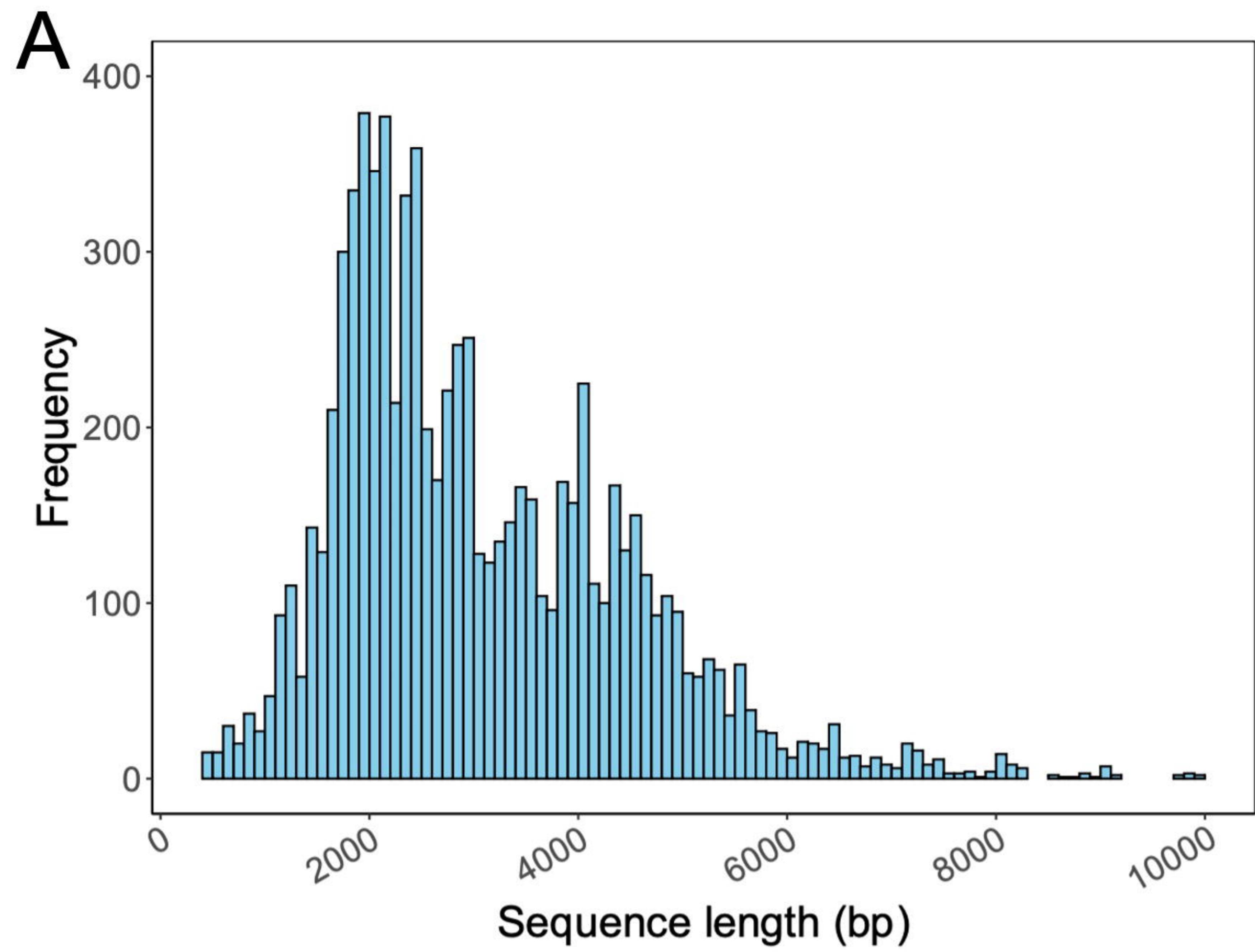
- ✓ phage tailspike
- ✓ tail spike proteins
- ✓ phage endopeptidase
- ✓ phage endorhamnosidase

E-utilities

17, 211 TSPs

Filtering by
annotation

Deduplication





≥ 95% cut off (cd-hit, Seqkit)

Filtering by size
(<400 bp)

8,099 TSPs

makeblastdb

TSPDB

