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Abstract 10 

Phages are ubiquitous viruses that drive bacterial evolution through infection and replication within 11 
host bacteria. Phage tailspike proteins (TSPs) are key components of phage tail structures, 12 
exhibiting polysaccharide depolymerase activity and host specificity. Despite their potential as novel 13 

antimicrobials, few TSPs have been fully characterized due to laborious detection techniques. To 14 
address this, we present TSPDB, a curated resource for rapid detection of TSPs in genomics and 15 
metagenomics sequence data. We mined public databases, obtaining 17,211 TSP sequences, 16 
which were filtered to exclude duplicates and partial sequences, resulting in 8,099 unique TSP 17 

sequences. TSPDB contains TSPs from over 400 bacterial genera, with significant diversity among 18 
them as revealed by the phylogenetic analysis. The top 13 genera represented were Gram-positive, 19 
with Bacillus, Streptococcus, and Clostridium being the most common. Of note, Phage TSPs in 20 

Gram-positive bacteria were on average 1 Kbp larger than those in Gram-negative bacteria. TSPDB 21 
has been applied in a recent study to screen phage genomes, demonstrating its potential for 22 
functional annotation. TSPDB serves as a comprehensive repository and a resource for researchers 23 

in phage biology, particularly in phage associated therapy and antimicrobial or biocontrol 24 

applications. TSPDB is compatible with bioinformatics tools for in silico detection of TSPs in 25 
genomics and metagenomic data, and is freely accessible on GitHub and Figshare, providing a 26 

valuable resource for the scientific community. 27 
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Bacteriophages (phages) are viruses that infect and replicate within host bacteria and archaea 30 

(Chatterjee and Duerkop, 2018; Dion et al., 2020). Phages are the most abundant entities in the 31 
biosphere (Dion et al., 2020) and are distributed across different biomes populated by bacterial and 32 

archaeal hosts, including the gastrointestinal tract of humans and animals, and oceanic beds 33 

(Chevallereau et al., 2022; Clokie et al., 2011). They play a vital role in the rapid evolution and 34 

adaptation of their hosts in various environments  (Dion et al., 2020). 35 

Phages exhibit high genomic, morphological, and structural diversity, composed of DNA or RNA 36 

that can be single-stranded or double-stranded and packaged into a capsid (Dion et al., 2020; 37 
Fokine and Rossmann, 2014). The structural form of the capsid was a major feature used in the 38 

taxonomic classification of phages until the advent of whole-genome sequencing, which has now 39 

become the gold standard for this classification. (Dion et al., 2020; Fokine and Rossmann, 2014; 40 
Turner et al., 2023). Phages are broadly classified as tailed or non-tailed, with double-stranded 41 

DNA tailed phages constituting about 96% of all known phages (Dion et al., 2020). Phages 42 
possess a diverse array of tail structures essential for host recognition, attachment, and 43 

penetration, making them important targets in phage therapy research (Fokine and Rossmann, 44 
2014; Gil et al., 2023). Phage infection of its host begins with the recognition of a receptor on the 45 
bacterial cell surface for attachment (Dowah and Clokie, 2018; Latka et al., 2017). To penetrate the 46 
host cell, phages must overcome various complex barriers on the bacterial cell wall, such as the 47 

outer membrane of Gram-negative bacteria and the lipoteichoic acids of Gram-positive bacteria 48 
(Chen et al., 2014; Latka et al., 2017). Phages encode virion-associated carbohydrate-degrading 49 
enzymes called depolymerases, which are distinct from the endolysins produced by phages during 50 

the lysis stage (Knecht et al., 2020; Yan et al., 2014). These depolymerases, encoded by tailspike 51 
protein (TSP) genes, recognize, bind, and degrade cell-surface associated polysaccharides, 52 
unmasking phage receptors and making them accessible for bacterial infection (Gil et al., 2023; 53 

Greenfield et al., 2019; Latka et al., 2017). 54 

Tailspike proteins are integral components of phage tail structures, and their activities as 55 

polysaccharide depolymerases are related to host specificity and infectivity (Greenfield et al., 56 

2019). A hallmark of TSPs is their host specificity, high thermostability, resistance to protease 57 
treatment, and stability in the presence of high concentrations of urea and sodium dodecyl sulfate 58 

(Chen et al., 2014). Phage TSPs possess carbohydrate depolymerase activity and recognize 59 

capsule, and lipopolysaccharides (LPS) where they cleave components of the LPS to position the 60 
phage towards a secondary membrane receptor during infection (Knecht et al., 2020). TSPs have 61 

been observed to decrease bacterial viability, leading to antimicrobial applications. For example, 62 

Ayariga and colleagues (Ayariga et al., 2021)  demonstrated that the ɛ34 phage tailspike protein 63 
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has enzymatic property as a LPS hydrolase and synergizes with Vero Cell culture supernatant in 64 

killing Salmonella Newington. The ɛ34 TSP also showed bactericidal efficacy against different 65 
Salmonella serovars in various matrices (Ibrahim et al., 2023). Miletic and colleagues (Miletic et al., 66 

2016) expressed the receptor binding domain of the Phage P22 Gp9 tailspike protein in plant 67 

tissue (Nicotiana benthamiana), and demonstrated that, upon oral administration of lyophilized 68 

leaves expressing Gp9 TSP to newly hatched chickens, Salmonella concentrations were reduced 69 
on average by approximately 0.75 log relative to controls. Others have shown that TSPs can be 70 

used to control the growth of plant pathogens. For example, expression of the Erwinia spp. phage 71 
TSP DpoEa1h in transgenic apple and pear plants significantly reduced fire blight (Erwinia 72 

amylovora) susceptibility, (Malnoy et al., 2005; Roach and Donovan, 2015) likely due to removal of 73 

the main virulence factor amylovoran and exposing the E. amylovora cells to host plant defenses 74 
(Kim et al., 2004). Finally, phage LKA1 TSP exhibits disruptive activity against biofilms while also 75 

reducing virulence in Pseudomonas in an infection model (Olszak et al., 2017). Collectively, these 76 
studies demonstrate the utility of TSPs as novel antimicrobials to control the growth of food and 77 

plant-borne pathogens in foods.  78 

Despite the known antimicrobial applications of TSPs, only a few have been fully characterized to 79 
date. This could be partly due to the laborious nature of detection techniques, which include plaque 80 
assays followed by examination under a transmission electron microscope (TEM) to identify "bulb-81 

like" baseplate structures at the base of phage tails indicative of TSPs (Bhandare et al., 2024; 82 
Knecht et al., 2020). The decreasing costs of sequencing and the availability of improved 83 
bioinformatics tools have facilitated the construction of large-scale genome and metagenome 84 

datasets (Emond-Rheault et al., 2017; Wattam et al., 2014). High-throughput in silico detection of 85 
TSP-encoding genes in genomic data would not only provide further details regarding the diversity 86 
of TSPs in virulent phages but could also be used to identify the presence of TSPs in prophages. 87 

The development of a database for TSPs would further contribute to the understanding of the 88 
structure and function of these proteins to harness their potential for diverse applications, such as 89 

the development of phage therapy for bacterial infections or phage-based biocontrol of foodborne 90 

pathogens, and drug discovery (Brives and Pourraz, 2020; Roach and Donovan, 2015). 91 

Here, we present a high-level curated resource called TSPDB for the rapid detection of tailspike 92 

proteins in multiomics sequence data. 93 

Data and Methodology 94 

Data Mining and Quality Check: The DDBJ/ENA/GenBank and UniProt databases (Sayers et al., 95 

2022; The UniProt Consortium et al., 2023) were queried for TSPs using search terms commonly 96 
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associated with tailspike proteins, such as "phage tailspike," "tail spike proteins," "phage 97 

endopeptidase," and "phage endorhamnosidase." Hits were systematically filtered to exclude 98 
duplicate results. Nucleotide sequences of TSPs were retrieved from public databases using 99 

accession numbers obtained from the database query via NCBI Entrez Programming Utilities (E-100 

utilities) (National Center for Biotechnology Information, 2023) 101 

Dataset Curation: From this exercise, 17,211 sequences were obtained from the queried public 102 
databases. Duplicated sequences were removed using thresholds of ≥ 95% nucleotide similarity 103 

and coverage with cd-hit (Li and Godzik, 2006) and Seqkit (Shen et al., 2016), resulting in 9,129 104 
unique TSP sequences (Figure 1). 105 

To assess the sequence length distribution and perform quality checks on unique TSP sequences, 106 

Gaussian distribution analysis was conducted. Sequences shorter than 400 bp, which could 107 
represent partial or incomplete sequences, were excluded from the dataset. This filtering process 108 
resulted in a total of 8,099 unique TSP sequences (Figure 1). TSP sequences with a length of 109 
≤10,000 bp were retained to include those originating from Gram-positive bacteria such as 110 

Clostridium and Streptococcus, among others (Figure 2A). Further analysis of TSP genes in the 111 
TSPDB reveals a significant difference in the sizes of TSPs between Gram-negative and Gram-112 
positive bacteria. Specifically, the average size of TSPs for Gram-negative bacteria is 2,070 bp, 113 
while the average size for Gram-positive bacteria is substantially larger, at 3,255 bp (Figure 2B). 114 

The TSPDB contains TSPs from more than 400 bacterial genera. Among these, the top 13 genera 115 
represented were Gram-positive bacteria, with TSPs from Bacillus (n=1616) being the most 116 
common, followed by Streptococcus (n=1152), Clostridium (n=683), Enterococcus (n=387), and 117 

Staphylococcus (n=372). Additionally, TSPs from Gram-negative bacterial genera, Salmonella 118 
(n=75), Escherichia (n=58), Klebsiella (n=52), and Pseudomonas (n=25) were among the top 38 119 
TSPs in the database (Figure 2C). 120 

Diversity of TSPs: To assess the diversity of the 8,099 unduplicated TSP sequences and their 121 
suitability for database creation, we employed a phylogeny-based approach. The TSP sequences 122 

were aligned using MAFFT v7.453 (Katoh, 2002), and a maximum likelihood tree with 1000 123 

bootstrap replicates for node support was constructed using FastTree v2.1.11 (Price et al., 2010). 124 
The resulting phylogenetic tree was visualized using the web-based Microreact visualization tool 125 

(Argimón et al., 2016) (Figure 2D). 126 

TSPDB Construction: The deduplicated TSP nucleotide sequences were utilized to construct the 127 
TSP database using makeblastdb (Camacho et al., 2009). This database is compatible for use with 128 
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ABRicate (https://github.com/tseemann/abricate) and other bioinformatics tools equipped with 129 

embedded BLAST algorithms, such as BLAST suites and SRST2 (Inouye et al., 2014), among 130 
others.  131 

TSPDB Application: The TSPDB was recently utilized in a study by (Bhandare et al., 2024), 132 

where the database was implemented within an ABRicate container to screen for the presence of 133 

TSPs in a collection of phage genomes using stringent parameters (≥ 90% identity and ≥ 70% 134 
coverage). Overall, the TSPDB contains a vast dataset of diverse TSPs found in phages, making it 135 

an essential tool for detecting TSPs within large genomic and metagenomic datasets. Integration of 136 
this database into phage detection tools will enhance the functional annotation of these genes. The 137 

TSPDB described here will undergo regular updates to include new TSP genes as they become 138 

available in public databases.  139 

Limitations: It is acknowledged that mis-annotation of some TSPs as hypothetical proteins or tail 140 
fibers in public databases may have resulted in the omission of certain TSP genes in this study. 141 
However, the TSPDB will be continually updated to incorporate additional TSP genes. 142 

Dataset Description: The TSPDB is freely accessible on GitHub at the following link: 143 
https://github.com/yemilawal/Tailspike-proteins or by searching for the title "TSPDB: A curated 144 
resource of tailspike proteins with potential applications in phage research" on GitHub. Additionally, 145 
accession numbers of genes encoding phage tailspike proteins in TSPDB are available on the 146 

GitHub page. A backup version is also available for download on Figshare at 147 
https://doi.org/10.6084/m9.figshare.25526323. 148 

Data Availability Statement: The datasets associated with this study are hosted in online 149 

repositories. Details of the repository/repositories and accession numbers can be found in the links 150 
provided in the manuscript. 151 
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 300 
Figure Legend 301 

Figure 1 – Workflow for the construction of the tailspike protein database (TSPDB). 302 

Figure 2 – Analysis of Phage tail spike proteins in the TSPDB. (A). Sequence length 303 

distribution of genes encoding phage TSPs contained in the TSPDB. (B). Frequency of top 37 304 
genera of host phages carrying TSPs in the TSPDB. (C). Differential TSPs size between Gram-305 
negative and Gram-positive bacteria in the TSPDB. (D). Phylogenetic diversity of the 8,099 TSPs 306 
in the TSPDB. Each node represents a unique TSP contained in the TSPDB, with nodes of similar 307 

color belonging to the same genera. The top 37 genera are displayed in colour. An interactive 308 
version of this figure is accessible through the following link - 309 
https://microreact.org/project/7Kv61nb6aRapgGgHpxsNGL-tspdb-v20. 310 
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