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Plant hormone manipulation impacts salt spray tolerance, which preempts herbivory as a driver
of local adaptation in the yellow monkeyflower, Mimulus guttatus
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Abstract

A major challenge in evolutionary biology is identifying the selective agents and phenotypes
underlying local adaptation. Local adaptation along environmental gradients may be driven by
trade-offs in allocation to reproduction, growth, and herbivore resistance. To identify
environmental agents of selection and their phenotypic targets, we performed a manipulative
field reciprocal transplant experiment with coastal perennial and inland annual ecotypes of the
common yellow monkeyflower (Mimulus guttatus). We manipulated herbivory with exclosures
built in the field and exogenously manipulated hormones to shift allocation of plant resources
among growth, reproduction, and herbivore resistance. Our hormone treatments influenced
allocation to reproduction and phytochemical defense, but this shift was small relative to ecotype
differences in allocation. Herbivore exclosures reduced herbivory and increased fitness of plants
at the coastal site. However, this reduction in herbivory did not decrease the homesite advantage
of coastal perennials. Unexpectedly, we found that the application of exogenous gibberellin
increased mortality due to salt spray at the coastal site for both ecotypes. Our results suggest that
divergence in salt spray tolerance, potentially mediated by ecotype differences in gibberellin
synthesis or bioactivity, is a strong driver of local adaptation and preempts any impacts of
herbivory in coastal habitats that experience salt spray.

Key words: local adaptation, monkeyflower, herbivory, salt spray, gibberellin, Erythranthe
guttata

Introduction

Organisms experience dramatically different environmental conditions throughout their
geographic ranges. Spatial gradients in abiotic factors, such as temperature, salinity, and water
availability, as well as biotic factors, such as the presence of competitors, predators, and
mutualists, can generate divergent natural selection (Kawecki & Ebert, 2004; Maron et al.,
2014). This divergent selection can in turn lead to evolutionary responses in traits that increase
fitness in local environments, and result in the evolution of local adaptation (Clausen et al., 1940;
Hereford, 2009; Kawecki & Ebert, 2004; Leimu & Fischer, 2008; Wadgymar et al., 2022).
Identifying the causal environmental factors contributing to adaptation is a major challenge
because environmental conditions often co-vary and thus, experimental manipulations are
necessary to identify the environmental agents of selection (Briscoe Runquist et al., 2020;
Hargreaves et al., 2020). Likewise, the phenotypic targets of selection are challenging to identify
because traits are often highly correlated, so approaches that minimize trait correlations (e.qg.,
using hybrids) or manipulate trait variation independently of other traits are necessary to identify
adaptive traits (Wadgymar et al., 2017, 2022). Despite their importance, experiments that
simultaneously manipulate putative environmental selective agents and their phenotypic targets
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78  are uncommon (Wadgymar et al., 2017, 2022). In this study, we isolate the effect of a putative

79  selective agent, herbivory, at sites that vary in two abiotic factors, salt spray and soil moisture,

80 and manipulate trait variation using hormone applications to identify the environmental and

81  biotic drivers of local adaptation.

82

83  Traits that increase fitness on one end of an environmental gradient can reduce fitness on the

84  opposite end of that gradient, resulting in fitness trade-offs (Kawecki & Ebert, 2004). Trade-offs

85 are often caused by evolutionary changes in the allocation of limited resources to critical

86  biological functions, including growth, reproduction, and defense (Bazzaz et al., 1987; Herms &

87  Mattson, 1992). Theory predicts that resource allocation to herbivore defense should depend on

88  the risk and consequences of herbivory on fitness, and models of the evolution of plant defense

89  assume a cost to the production of herbivore defenses (Rhoades, 1979; Stamp, 2003). Within

90  species, allocation to herbivore resistance frequently trades-off with allocation to reproduction

91  (Agren & Schemske, 1993; Cipollini et al., 2017; Heil & Baldwin, 2002; Stowe & Marquis,

92  2011; Strauss et al., 2002), and increased allocation to herbivore resistance is associated with

93  longer growing seasons. This association could be driven by multiple factors, including a longer

94  period of vegetative growth and resultant longer exposure risk and apparency to herbivores

95 and/or greater herbivore pressure (Feeny, 1976; Hahn & Maron, 2016; Kooyers et al., 2017;

96 Mason & Donovan, 2015; Smilanich et al., 2016).

97

98  The physiology underlying potential trade-offs is still unclear but is likely due to the evolution of

99  plant hormone pathways in response to different environmental conditions. Recent studies have
100 shown that shifts in the allocation of resources from rapid growth to herbivore resistance are
101  made through a set of interacting gene networks (Aerts et al., 2021; Campos et al., 2016; Havko
102 etal., 2016; Huot et al., 2014; Kazan & Manners, 2012; Monson et al., 2022). Jasmonates (JA)
103 are key regulatory hormones involved in the response of plants to herbivore attack (Havko et al.,
104  2016; Zhang & Turner, 2008). While JA production increases herbivore defense, it also can
105 inhibit rapid plant growth through interactions with other gene networks (Kazan & Manners,
106  2012; Yanetal., 2007; Yang et al., 2012; Zhang & Turner, 2008). For example, the interactions
107  of JAZ (Jasmonate ZIM-domain) genes with DELLA genes in the signaling pathway of
108  Gibberellin (GA) growth hormones are thought to play a key role in mediating resource
109 allocation (Havko et al., 2016; Hou et al., 2013; Yang et al., 2012). However, evidence that
110  evolutionary changes in the GA pathway lead to changes in the relative allocation of resources to
111  rapid reproduction, long-term growth, and herbivore resistance is still lacking. Further, no study
112  that we are aware of has evaluated the physiological mechanisms underlying the evolution of
113 intraspecific trade-offs driven by allocation to growth, reproduction, and defense that occurs
114  when natural populations adapt to different habitats. Furthermore, phenotypic changes induced
115 by the exogenous application of hormones allow a powerful test linking phenotype to fitness
116  across habitats in carefully controlled field studies.
117
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An excellent system for investigating the mechanisms responsible for the evolution of adaptive
trade-offs in growth, reproduction, and resistance are locally adapted ecotypes of the yellow
monkeyflower, Mimulus guttatus (syn. Erythranthe guttata). Previous reciprocal transplant
experiments showed that the primary environmental factor contributing to local adaptation at
inland sites was the onset of summer drought (Hall & Willis, 2006; Lowry et al., 2008), while a
combination of above ground factors, including salt spray and herbivory, contributed to
adaptation in coastal habitats (Lowry et al., 2009; Popovic & Lowry, 2020). Inland populations
of M. guttatus are typically small annuals that allocate resources primarily to reproduction in
order to flower prior to the onset of summer drought. Coastal populations, which occur in
habitats with year-round soil moisture, are large obligate perennials that allocate resources
primarily to long-term growth (Baker et al., 2012; Baker & Diggle, 2011; Hall et al., 2010; Hall
& Willis, 2006; Lowry et al., 2008). Coastal populations have higher levels of phytochemical
defenses (phenylpropanoid glycosides, PPGs) and experience higher levels of herbivory than the
inland annual populations (Holeski et al., 2010, 2013; Lowry et al., 2019). In the greenhouse,
coastal populations are more responsive to exogenous applications of gibberellin (GA3) than
annuals and respond by recapitulating the elongated growth habit of inland annual populations
(Lowry et al., 2019). As a result, we hypothesize that natural variation in allocation to rapid
reproduction, long-term growth and resistance is the result of molecular changes that alter the
interactions of the gibberellin (GA) and jasmonic acid (JA) pathways.

In this study, we performed a manipulative reciprocal transplant experiment to test whether
trade-offs between allocation to vegetative growth, reproduction, and herbivore resistance
contribute to local adaptation at opposite ends of an environmental gradient. We predicted that
increased allocation to reproduction (via early flowering) would increase perennial fitness at the
inland site, where earlier flowering would rescue fitness for individuals that typically perish
before the onset of summer drought, and thus decrease annual homesite advantage. We also
expected that increased allocation to vegetative growth (via delayed flowering) and herbivore
resistance would increase annual fitness at the coast, where we expected herbivore pressure to be
higher. Finally, we predicted that reduction of herbivory via exclosures would rescue annual
fitness on the coast, and thus decrease perennial home site advantage. While our study was
designed to focus on the role of hormone manipulation on defense against herbivory, we instead
discovered that our hormone manipulations had a much larger role in causing susceptibility to
stress imposed by oceanic salt spray. This surprise discovery altered our approach to data
analysis, which we describe below in the methods and results.
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152 Materials and Methods

153 Study location

154  We performed a reciprocal transplant experiment at two sites — a coastal seep at the Bodega
155  Marine Reserve in Bodega Bay, CA (Latitude: 38.3157, longitude: —123.0686), and an inland
156  seep at the Pepperwood Preserve near Santa Rosa, CA (latitude: 38.5755, longitude: —122.7009).

157 Plant material

158  We used outbred maternal families from a coastal perennial population from Bodega Bay, CA (n
159 =5 families, BHW: 38.303783, -123.064483) and an inland annual population north of Sonoma,
160 CA (n =4 families, CAV: 38.342817, -122.4854). Outbred maternal families were generated by
161  crossing field collected maternal families in the greenhouses at Michigan State University. Seeds
162  from these outbred families were sent to UC Berkeley, planted, and placed in a 4°C cold room on
163  January 27, 2020. We staggered perennial and annual germination to synchronize their

164  development (following Popovic & Lowry, 2020). A week after beginning stratification,

165  perennial seeds were moved into a 16-hr day length growth chamber for germination. Two

166  weeks after beginning stratification, annual seeds were moved to the same 16-hr day length

167  growth chamber. Seedlings were transported from UC Berkeley to the Bodega Marine Reserve
168 (BMR) greenhouse on February 20, 2020, and then were transplanted seedlings into individual
169  cell packs over the course of a week.

170  Hormone treatments

171  We altered the allocation phenotypes of each ecotype by manipulating hormone levels of plants
172 with exogenous applications of gibberellin (GA3, a growth hormone), paclobutrazol (a GA

173  inhibitor), and methyl jasmonate (a hormone that induces herbivore resistance and antagonizes
174  GA) to test the role of those hormone pathways in adaptive trade-offs between rapid

175  reproduction versus long-term investment in vegetative growth and herbivore resistance.

176  Following a week of transplanting in the BMR greenhouse, we randomly assigned cell pack trays
177  to one of three hormone treatments or control. We sprayed plants with a 100 uM solution of
178  gibberellic acid (Consolidated Chemical Solvents LLC, following Lowry et al., 2019), 10 mM
179  methyl jasmonate (TCI America, Portland, Oregon, USA), and 14.3 mg/L solution of

180  paclobutrazol (General Hydroponics, Santa Rosa, California, USA). Concentrations of methyl
181  jasmonate and paclobutrazol were chosen after conducting dose response experiments at the
182  MSU greenhouses in winter 2019. These concentrations were chosen based on the minimum
183  concentration needed to elicit a phenotypic change relative to controls without detrimental

184  effects (e.g., leaf damage, stunting, death). Using a spray bottle, we sprayed individual plants 5
185 times, corresponding to 3.5 mL of solution. The control consisted of spraying plants with 3.5mL
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of a 0.25% ethanol solution since a dilute ethanol solution was needed to dissolve methyl
jasmonate and all hormones were dissolved in a 0.25% ethanol solution. Hormones were applied
once on a single day in the greenhouse prior to field transplanting. All trays were covered with
clear plastic domes for 24 hours and moved to different benches to prevent cross contamination.

Field planting

Prior to transplanting, we removed vegetation from ten (108cm x 84cm) plots at each site. We
dug trenches along the edge of each plot to bury the bottom of our control and exclosure
structures. At the Pepperwood Preserve, we transplanted 800 seedlings on March 9, 2020, and
200 seedlings on March 12, 2020. At the Bodega Marine Reserve, we transplanted 800 seedlings
on March 10, 2020, and 200 seedlings on March 13, 2020. Plants were fully randomized within
each block (n =100 seedlings/block) and labeled with a plastic tag.

Herbivore exclosures

To lessen the effect of herbivory and potentially measure a cost to defense production in the
absence of herbivores, we deployed herbivory exclosures on four out of ten plots at each site
(Figure 1). A previous reciprocal transplant experiment at our study sites used exclosures that
blocked all above-ground factors using agrofabric (Popovic & Lowry, 2020), and thus could not
separate the effects of salt spray and herbivory on plant fitness. Thus, we designed exclosures
that excluded many herbivores but allowed salt spray to pass through. The exclosures were 108
cm long x 84 cm deep x 87 cm tall and constructed of 3/4" pvc pipe covered with fiberglass
window-screen (18x16 mesh/inch) that was affixed with fishing line and marine epoxy. Each
exclosure had screen doors along both long sides that were attached with velcro to allow access
to the plots. The screen extended 4 inches down into the soil around the plots. To control for
shading or moisture-collection due to the screen, the remaining six plots at each site were
covered with control structures. These structures differed in that only the tops and 30 cm down
each side were covered with window screen.

Field Censuses

After transplanting, we performed regular censuses of our transplant sites recording survival, the
presence of herbivore damage, the identity of herbivores (when possible), the presence of salt-
spray damage, and the presence and number of reproductive structures (buds, flowers, and
fruits). In our census, we distinguished damage and death caused by salt spray from herbivory:
salt-damaged leaves appeared necrotic and brown and exhibited no sign of herbivore damage
(i.e., no missing tissue), when salt damage spread to the entire plant and no green tissue
remained, we considered plants to be killed by salt spray. We were prevented from accessing our
transplant sites for two weeks at Bodega Marine Reserve and seven weeks at Pepperwood
Preserve after transplanting due to the 2020 COVID-19 pandemic lockdowns. Due to site
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differences in growing season length, and restricted access due to the 2020 COVID-19
pandemic, we censused each site at different intervals and for different lengths of time
(Pepperwood Preserve (inland site):12 censuses over 139 days, Bodega Marine Reserve (coastal
site): 22 censuses over 194 days). Since we were unable to access our sites for weeks because of
the pandemic, we missed observing the first flower opening for many annual plants. For these
plants, we estimated the onset of flowering as the date we first observed any reproductive
structures. Our censuses occurred on a roughly weekly basis after we were able to re-access our
sites and we continued to estimate the onset of flowering based on the initial observation of a
bud, flower, or fruit during each census.

Plant chemistry

We sampled leaves for chemical analysis 55 to 57 and 59 to 64 days after transplanting at the
coastal and inland site, respectively. To minimize the potential effect of diurnal fluctuation in
PPGs (phenylpropanoid glycosides), we sampled from 9am until 1pm, and to minimize the effect
of leaf position, we sampled 2 leaves from the 3rd node when possible, using leaves from the 4th
and 5th nodes if leaves at the 3rd node were damaged. After sampling, leaves were flash-frozen
with liquid nitrogen and then freeze-dried. For samples that did not meet the minimum dry mass
(3mg), we either pooled them with other low-mass samples (by grouping within all fixed and
random factors as discussed below) or excluded them. Our final sample size was 216 from
Bodega (perennials only due to high annual mortality at Bodega) and 599 from Pepperwood. To
determine the PPG concentrations in sampled leaves, we ground, extracted, and prepped extract
aliquots as described in Holeski et al. (2013). We then used high-performance liquid
chromatography (HPLC) to quantify PPGs. The HPLC method is described in (Kooyers et al.,
2017) and was run on an Agilent 1260 HPLC with a diode array detector and Poroshell 120 EC-
C18 analytical column [4.611x[ 250" Imm, 2.7 um particle size]; Agilent Technologies). We
calculated concentrations of individual PPGs as verbascoside equivalents, using a standard
verbascoside solution (Santa Cruz Biotechnology, Dallas, Texas), as described in (Holeski et al.,
2013, 2014).

Statistical analyses

We performed all statistical analysis in R version 4.3.1 (R core team 2023). We addressed the
following main questions within each transplant site: Do annuals and perennials differ in
allocation to reproduction, allocation to herbivore resistance, and fitness? Do hormones and
herbivores influence allocation to reproduction, allocation to herbivore resistance, and local
adaptation?
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Measurements of allocation & adaptation

To compare allocation to reproduction, we measured the onset of flowering for each plant.
Earlier-flowering plants invest in reproductive tissues at a time when other plants are allocating
all energy to growth and defense. To compare allocation to herbivore resistance, we measured
the presence or absence of herbivore-attack for each plant and the concentration and composition
of the defensive compounds PPGs in leaves. Finally, to determine adaptation in each
environment, we measured survival across the season, the presence of flowers, and seasonal fruit
production. For annuals, these measures indicate lifetime fitness, whereas perennials that
survived the season have the potential to reproduce in subsequent years.

Univariate analysis

Within each transplant site, we fit mixed effect models for each analysis that included ecotype,
hormone treatment, and exclosure type as interactive fixed factors. The response variables were
flowering time, the presence or absence of herbivory, survival, total PPG concentration (summed
concentration for all PPG compounds), whether an individual produced a reproductive structure
(buds, flowers, or fruit), or the number of fruits produced by plants that flowered at the end of
the season. All models also included two random effects for maternal family and experimental
plot. We fit all mixed models except for the survival model with the R package glmmTMB
(Brooks et al., 2017), and modeled survival using the R package coxme (Therneau, 2022). We
identified the best fitting error distributions by evaluating model diagnostics with the R package
DHARMa (Hartig, 2022). We fit mixed models for flowering time with gaussian error
distributions, mixed models for herbivory and flowering probability with binomial error
distributions, and mixed models for log-transformed total PPGs with gamma distributions. We
modeled survival using a mixed effect Cox Proportional Hazards model, and modeled fruit
number with a zero-inflated negative binomial error distribution at the coastal site and a negative
binomial error distribution at the inland site. To prevent model overfitting, we used an analysis
of deviance (Wald x*test) to assess the significance of model terms and sequentially removed
unsupported model terms (R package car, (Fox & Weisberg, 2018). We compared fits of
complex versus reduced models using likelihood ratio tests (LRT) to find the minimum adequate
model for each response variable in each site (Tables S1 and S2). We compared treatment groups
using post-hoc tests on the minimum adequate model with the R package emmeans (Lenth et al.,
2020). No contrasts were performed on predictor variables that were not in the minimum
adequate model. We predicted the mean and 95% confidence intervals for each response variable
from our models using the R package ggeffects (Lidecke, 2018). For all non-binary response
variables, we predicted confidence intervals via bootstrapping (n=500 iterations). We plotted raw
data and predictions in ggplot2 (Wickham, 2016) and combined plots with patchwork in R
(Pedersen, 2019).
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Multivariate analysis

Within each transplant site, we modeled the concentration of all nine different PPGs (the PPG
arsenal) using mixed effect models for each analysis that included ecotype (at Pepperwood only),
hormone treatment, and exclosure type as interactive fixed factors and block as a random factor.
We fit all models with PERMANOVA with Bray-Curtis distance using the adonis2 function
from the R package vegan (Oksanen, 2016). We dropped all non-significant factors for the
minimum adequate model (Table S3). To test for homogeneity of variance among treatment
groups, which can influence inference, we used the betadisper function from the vegan package.
The only factor that had heterogeneity of variance among levels was ecotype. Due to the strength
of the signal for ecotype, and confirmation from other studies that annuals and perennials have
different PPG arsenals (Holeski et al., 2013), we are confident that differences due to ecotype are
not attributable only to heterogeneity of variance. We compared treatment groups using post-hoc
tests on the minimum adequate model with the function pairwise.adonis2 from the R package
pairwiseAdonis (Arbizu, 2019). To visualize how multivariate PPG composition is influenced by
our factors, we used non-metric multidimensional scaling (NMDS) (MetaMDS function in vegan
package with Bray-Curtis distance to determine dissimilarity) and added standard-error ellipses
at 95% confidence around the centroid of each cluster (function ordiellipse from package vegan).

Results

Do annuals and perennials differ in allocation to reproduction and
vegetative growth (through differences in the onset of flowering)? Do
hormone treatments or herbivore exclosures affect allocation?

At both sites, annuals had greater allocation to reproduction, flowering significantly earlier than
perennials. Hormones did influence this allocation slightly, though only for annuals; annuals
treated with GA (at both sites) and paclobutrazol (at the coast only) showed delayed flowering
relative to controls. Herbivory (in control structures vs exclosures) did not influence allocation to
reproduction.

At the coastal site, gibberellic acid (GA) and paclobutrazol slightly, but significantly, delayed
annual flowering time relative to control annuals (plants sprayed with 0.25% ethanol).
Paclobutrazol-treated and GA-treated annuals flowered 10-17 days later than controls (Fig. 2A,
Tukey post-hoc tests: Table S3). However these effects were small relative to ecotype
differences in flowering time: all annuals flowered 46 to 64 days earlier than their corresponding
hormone treated perennials, all significant differences (Table S4).
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At the inland site, in the control structures only, GA slightly, but significantly, delayed annual
flowering time relative to the control. GA-treated annuals in control structures flowered 9 days
later than control annuals in control structures (Fig. 2B, Tukey post-hoc tests: Table S4). Again,
this effect was small relative to ecotype differences in flowering time: all annuals flowered 39 to
62 days earlier than their corresponding hormone-treated perennials in both the exclosures and
control structures, all significant differences (Table S5).

Hormone treatments had no effect on perennial flowering time relative to controls at either
transplant site (Tables S4 & S5). Exclosures had no effect on flowering time at either transplant
site (Tables S1, S2, S4, Sb).

Do annuals and perennials differ in allocation to herbivore resistance
(via changes in the probability of herbivore attack)? Do hormone
treatments or herbivore exclosures affect allocation?

At both sites, and contrary to expectations, perennials were more likely to experience herbivory
than annuals (excluding the exclosures at the coast, in which both ecotypes experienced
equivalent chances of herbivory). GA was the only hormone to influence the probability of
herbivory, and only at the coast, where, again contrary to expectations, it reduced the probability
of herbivory for both ecotypes. This is likely due to an interaction with salt-spray resistance
rather than allocation to herbivore resistance.

Perennials were significantly more likely to be damaged by herbivores than annuals in the
control structures at the inland site, and in both control structures and exclosures at the coastal
site, but the difference between ecotypes was smaller in the exclosures (Table S6 and S7). At the
inland site, herbivores damaged 42% (126/300) of perennials and 13% (38/300) of annuals in the
control structures and 33% (65/200) of perennials and 13% (26/200) of annuals in the exclosures.
At the coastal site, herbivores damaged 74% (221/300) of perennials and 4% (12/300) of annuals
in the control structures and 48% (96/200) of perennials and 9% of annuals (17/200) in
exclosures. However, these numbers are somewhat misleading at the coastal site, since annuals
perished quickly due to salt spray and had less time to encounter herbivores and accrue
herbivory.

The mesh-size of screen used in our exclosures, while necessary to allow salt spray to enter, did
allow some small insects, including leaf miners and weevils, to enter the exclosures (or they
were present when the exclosures were erected) and damage plants mildly. As a result, our
herbivore exclosures did not significantly reduce the probability of insect herbivory for
perennials at either transplant site, although they were highly effective at reducing herbivory
from deer and voles that removed flowering stalks from plants, greatly impacting fecundity.
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At the coastal site, GA-treatment reduced the probability of herbivore attack in both annuals and
perennials, likely due to GA effects on survival and salt spray sensitivity detailed below. The
only effect of exclosure was increasing herbivory probability for GA-treated annuals, though
again this is likely due to an interaction with salt-spray (Figure 2C, Tukey post-hoc tests: Table
S6). At the inland site, hormone-treated annuals and perennials did not significantly differ from
their respective controls and exclosures did not influence the probability of herbivory for either
ecotype (Tukey post-hoc tests: Table S7).

Do annuals and perennials differ in allocation to herbivore resistance
(via changes in PPGs)? Do hormone treatments or herbivore exclosures
affect allocation?

Perennials showed greater allocation to herbivore resistance (via PPG concentration) than
annuals at the inland site, while annual mortality at the coast prevented this comparison.
Herbivory (in control structures vs exclosures) had limited impacts on PPGs, moderating the
effects of hormone treatments at the coast and influencing multivariate PPG arsenals inland. GA
influenced PPG allocation at both sites (negatively at the coast and positively inland) and methyl
jasmonate increased PPG allocation inland.

At the inland site, perennials had significantly higher total PPG concentration than annuals
(Tukey post-hoc tests: Table S9) and annuals and perennials differed in their multivariate PPG
arsenals. The effect of ecotype was generally stronger than any hormone effects. We were unable
to compare annuals and perennials at the coastal site due to high annual mortality.

At both sites, exclosures had no effect on total PPG concentration (Table S1), though exclosures
did moderate the effect of hormone treatment at the coastal site (Table S2). Exclosure did not
influence the multivariate PPG arsenal at the coastal site but did at the inland site (Table S3). At
the coast, the only effect of hormone treatment was that GA reduced total PPG concentration of
perennials in the control plots (Figure 3a, Tukey post-hoc tests, Table S8) and caused the PPG
arsenal to differ from control plants (Figure 3c, PERMANOVA pairwise, Table S10). While this
impact of GA is consistent with our predictions that GA downregulates defense-allocation, it is
also possible that the decrease in total PPG is due to increased salt-stress experienced by GA-
treated plants. Inland, hormone treatments did not influence PPGs in perennials (Figure 3Db,c,
Table S9). In annuals at the inland site, GA and MeJa increased the total concentration of PPGs
(Figure 3b, Table S10) and caused the PPG arsenal to differ (Figure 3d, PERMANOVA
pairwise, Table S11). While we expected MeJa to increase allocation to defense, we expected
GA to decrease it. However, the increase in total PPG is consistent with an increase in days to
flowering in GA-treated annuals at the inland site (these traits positively covary in annuals,
(Kooyers et al., 2020), though the mechanism for this shift is unknown.
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Do annuals and perennials differ in fitness components (survival, the
probability of flowering, and fruit number)? Do hormone treatments or
herbivore exclosures affect fitness components and homesite advantage?

Perennials survived significantly longer than annuals at both sites. At the coast, while annuals
and perennials were equally likely to flower, the vast majority of annuals were killed by salt
before producing fruits. Inland, annuals were more likely to flower and produce fruits than
perennials, though perennials that did flower produced as many fruits as annuals. Herbivory (in
control structures vs exclosures) influenced the probability of flowering and fruit production only
at the coast where herbivory resulted in reproductive failure of perennials outside of exclosures.
In general, GA had a negative effect on fitness at both sites, though impacts varied by fitness
component and ecotype across sites. At the coast, GA reduced survival relative to controls by
increasing susceptibility to salt spray and reduced the probability of flowering for both ecotypes.
Inland, GA and MeJa reduced the probability of flowering for perennials and GA reduced fruit
production in both ecotypes.

GA-treatment reduced survival due to oceanic salt spray at the coastal site

At both transplant sites, perennials had significantly higher survival by the end of the experiment
than annuals (coastal site: 1% (4/500) of annuals and 77% (383/500) of perennials survived;
inland site: 2% (10/500) of annuals and 21% (106/500) of perennials survived, Tukey post-hoc
tests: Table S12 and S13). At the coastal site, salt spray was the only source of mortality for
annuals and 93% (109/117) of the perennials that died. For the remaining 8 perennial plants, the
source of mortality was attributed to herbivory. The main source of mortality at the inland site
was the onset of summer drought.

At both transplant sites, exclosures had no effect on survival (Figure 4, Tables S1, S2 and S12).
Hormone treatments had no effect on survival at the inland site (Table S1), but GA treatment
significantly reduced survival for both ecotypes relative to their respective controls at the coastal
site (Figure 4, Table S12). GA treatment reduced survival for both ecotypes at the coastal site by
increasing susceptibility to salt spray. GA-treated perennials were also more upright compared to
prostrate controls, and elongated their stems early in development like annuals which may have
increased exposure to salt spray (Figure 5).

GA-treatment reduced flowering probability at the coastal site

Despite high mortality due to salt spray at the coastal site, annuals and perennials did not
significantly differ in the probability of flowering (Tukey post-hoc tests: Table S14). Due to their
rapid phenology, 40% (198/500) of annual transplants were able to flower prior to dying of salt
spray, although death occurred quickly after flowering so very few annuals produced fruit
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440  (detailed below). Herbivore exclosures significantly increased the probability of flowering for
441  perennials (control structures: 27% (80/300) of perennials and 26% (77/300) of annuals

442  flowered; exclosures: 74% (148/200) of perennials and 61% (121/200) of annuals flowered,

443  Table S14), which may be due to the reduction of large mammalian herbivory and/or minor

444  buffering of salt spray from condensation collecting on mesh screens. In addition, GA treatment
445  reduced the probability of flowering for both ecotypes relative to their respective controls, likely

446  due to the effect of GA on sensitivity to salt spray (Figure 6A, Table S14).
447

448 At the inland site, annuals had a significantly higher probability of flowering than perennials, and
449  exclosures had no effect on the probability of flowering for either ecotype (control structures:
450  39% (117/300) of perennials and 92% (277/300) of annuals flowered; exclosures: 66%

451  (133/200) of perennials and 100% (200/200) of annuals flowered, Tukey post-hoc tests: Table
452  S15). GA and MeJa treatment reduced the probability of flowering in perennials, but hormone
453  treatment did not affect the probability of flowering in annuals (Figure 6B, Table S15).

454  Herbivore exclosures drastically increased fruit production at the coastal site

455 At the coastal site, only plants protected by exclosures successfully produced fruit by the end of
456  the season (annuals: 0% (0/300) produced fruit in control structures and 4% (7/200) produced
457  fruits in the herbivore exclosures; perennials: 0% (0/300) produced fruit in control structures and
458  60% (119/200) produced fruits in the herbivore exclosures). The reason that none of the plants
459  outside of the exclosures produced fruits was because of complete herbivory of the

460 inflorescences of these plants by mule deer (Odocoileus hemionus). Since no plants produced
461  fruit outside of the exclosures, and few annuals produced fruit inside the exclosures (annuals in
462  exclosures: n=3 controls, n=1 GA-treated, n=3 paclobutrazol-treated), we analyzed only the

463  effect of hormone treatments on perennial fruit production inside the exclosures at the coastal
464  site (Figure 6C). Fruit production in perennial plants that flowered in exclosures at the coastal
465  site was not significantly associated with hormone treatment (Table S1).

466

467 At the inland site, 88% (265/300) of annuals and 29% (86/300) of perennials produced fruit in
468  the control structures, while 100% (200/200) of annuals and 53% (105/200) of perennials

469  produced fruit in the exclosures. The majority of plants that flowered produced fruit: 96%

470  (265/277) of annuals and 74% (86/117) of perennials that flowered produced fruit in the control
471  structures, while 100% (200/200) of annuals and 79% (105/133) of perennials that flowered

472  produced fruit in the exclosures. However, annuals and perennials that flowered did not

473  significantly differ in fruit production in either control structures (mean fruit number for

474  flowering annuals: 4.6, flowering perennials: 5.7) or exclosures (mean fruit number for flowering
475  annuals: 7.6, flowering perennials: 7.8; Tukey post-hoc tests: Table S16). GA treatment

476  significantly reduced fruit production in both ecotypes that flowered relative to their respective
477  controls (difference between control and GA-treatment for perennials: 5.8 fruit in exclosures, 2.3
478  in controls; and for annuals: 3.3 fruit in exclosures, 0.7 in controls; Figure 6; Table S16).
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479

480 DIscussion

481  Across environmental gradients, shifts in allocation between reproduction, growth, and defense
482  have been found to follow predictable patterns, suggesting that these shifts underlie local

483  adaptation (Bazzaz et al., 1987; Hahn & Maron, 2016; Ziist & Agrawal, 2017). However,

484  multiple abiotic and biotic factors co-vary across environmental gradients and multiple traits
485  often differ between locally adapted populations, making the identification of selective agents
486  and their phenotypic targets a major challenge (Wadgymar et al., 2017, 2022). In this study, we
487  used a manipulative reciprocal transplant experiment to test the hypothesis that herbivory and
488  divergence in allocation to reproductive timing, vegetative growth, and defense against

489  herbivores contributes to local adaptation across a coastal to inland environmental gradient.

490  Growing seasons are shorter in inland environments, which generates selection for earlier

491  reproduction. At our coastal site, herbivore exclosures dramatically increased fecundity of local
492  coastal perennials, but contrary to our predictions, did not contribute to local adaptation. This is
493 likely due to the abiotic effect of salt-spray pre-empting the impacts of herbivory on annuals. Our
494  hormone treatments slightly shifted allocation between vegetative growth, reproduction and

495  defense in each ecotype, but did not recapitulate the full effect size of differences previously
496  observed in controlled greenhouse conditions (Lowry et al., 2019). Nevertheless we observed
497  dramatic effects of our hormone treatments on survival and fecundity across our transplant sites.
498  Despite delaying flowering, the GA application caused obviously earlier bolting and taller

499  heights in the perennial transplants. This earlier bolting, and possibly other physiological

500 changes, may have been responsible for the increased mortality due to salt spray on the coast in
501  Dboth ecotypes, and salt spray was the primary (>99%) source of mortality for transplants at our
502  coastal site. Our results suggest that divergence in salt spray tolerance, potentially mediated by
503  ecotype differences in gibberellin synthesis/sensitivity, is an important driver of local adaptation
504  to coastal habitats.

505 Role of biotic interactions in local adaptation

506  The organisms a plant interacts with vary across the landscape, causing different selective

507  pressures (Friberg et al., 2019; Thompson, 2005; Urban, 2011). Given the differences in the
508 abiotic environment at our two sites - cool and foggy on the coast, hot and dry inland - the

509 communities of organisms which our plants interact with differ substantially. The moist coastal
510 environment has far more molluscan herbivores (snails, slugs), and a rare leaf-mining fly

511  (Eiseman et al., 2023), which we did not see at the much drier Pepperwood Preserve. VVoles and
512  deer also contribute to herbivory at the coastal site only. Given the differences in communities,
513  differences in defense-levels, and prior research suggesting differences in intensity of herbivory
514  on the coast and inland (Holeski, 2007), we predicted herbivory would be a driving factor in
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local adaptation. Remarkably, we found no effects of herbivory on local adaptation at these two
specific sites; nevertheless, we stress that insect-plant interactions regularly occur in a complex
mosaic across the landscape and vary temporally (Rotter et al., 2022).

High rate of herbivory at the coastal site did not contribute to local adaptation

At the coast, we predicted that high rates of herbivore attack would result in herbivory playing a
strong role in local adaptation. Although we observed high rates of herbivory, reducing
herbivory with exclosures did not increase local adaptation because of the effect of an abiotic
factor, oceanic salt spray. Annuals transplanted on the coast quickly exhibited necrosis from salt
spray before dying; the window that they could have received herbivory was short, and they were
likely poor quality host plants during that time. The perennials, in comparison, were larger,
healthier, and had many more days in which to encounter an herbivore and receive damage.
Ephemeral plants are more likely to escape herbivory (Feeny, 1976), and all reproductive
herbivory at the coastal site came after the median death date of our annual plants. This pattern
highlights the importance of the timing of selective events, particularly for local adaptation of
ecotypes with differing life-history strategies. The importance of fecundity versus survival are
likely to differ between ecotypes (DeMarche et al., 2016), and early-season factors (like coastal
salt spray) that impact survival might disproportionately contribute to fitness differences between
populations relative to a late season factors that influence fecundity (such as herbivory) (Crone,
2001; Wadgymar et al., 2022).

While this study suggests that herbivory is preempted from playing a role in keeping annuals out
of coastal environments, it does not mean it is unimportant. In the control structures on the coast,
perennials completely failed to reproduce due to deer herbivory of inflorescences. By virtue of
allocating growth to clonal expansion and non-reproductive tissue, perennials are likely
increasing both tolerance (Stevens et al., 2008) and temporally escaping herbivory. Some
populations are completely sterilized (i.e., all inflorescences are completely consumed by
herbivores) in certain years (Toll, pers. obs.), and thus herbivory may be an extremely strong
selective pressure in the morphology, allocation to clonal growth, and reproductive timing of
these coastal perennials. The results of this study were also clearly influenced by the close
proximity of our coastal field site to the open ocean (within 50 meters of the shoreline) While it
is common for coastal perennials to grow in close proximity to the ocean, where they are
impacted by high levels of salt spray, it is also common for them to grow slightly further inland,
where salt spray is greatly reduced (Barbour, 1978; Boyce, 1954; Du & Hesp, 2020).

Life history contributed to differences in herbivore attack at the inland site

Our finding that herbivory did not influence local adaptation inland is somewhat less surprising,
as there is evidence that herbivore damage is generally less extensive there (Holeski, 2007). It
was unexpected, however, that perennials were also more likely to be attacked by herbivores
than annuals at the inland site, as we predicted that perennials would be more resistant to
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553  herbivory due to ecotype differences in phytochemical defenses (PPGs). At our inland site,

554  however, perennials were more likely to be attacked even during periods of time when both

555  ecotypes were alive in the same site. The general (though non-significant) trend for the homesite
556  advantage of annuals to decrease in the exclosures relative to the control structures, may suggest
557 that herbivory, in some years, does contribute to local adaptation inland. Higher attack rates for
558  perennials could be due to differences in apparency caused by differences in plant size (Feeny,
559  1976), or herbivore preference due to nutritional differences or water content. In addition, while
560 PPGs are feeding deterrents to generalists, some can be feeding stimulants for specialist

561 herbivores (Holeski et al., 2013; Rotter et al., 2018), and thus perennials may be more likely to
562  get attacked by specialists. Our presence-absence measure of herbivory also may have missed
563  differences in degree of herbivory among plants that were attacked, which may have greater
564  impacts on fitness.

565 Hormone pathways underlying local adaptation

566  Oceanic salt spray sensitivity increased with gibberellin treatment

567  The most surprising result of our experiment was how dramatically GA3 application decreased
568  survival of coastal perennial genotypes at the coastal field site. Based on the patterns of damage,
569  necrosis of plant tissue, we attributed this mortality primarily to oceanic salt spray. There are two
570 non-mutually exclusive ways that GA3 could have decreased fitness in the coastal environment
571  with regard to salt spray. First, the addition of GA3 increased plant height, as evident by

572  increased internode elongation of plants (Lowry et al., 2019). Increased plant height could put
573  the aboveground portions of these plants more directly in the path of prevailing wind delivering
574  the salt spray (Zambiasi & Lowry, 2023). A second hypothesis is that the GA3 treatment may
575  directly increase susceptibility of tissues to salt spray independent of changes in plant height.
576  The second hypothesis is particularly intriguing, as it is the opposite of what would be expected
577  based on the soil salinity literature. For example, previous experiments in rice (Rodriguez et al.,
578  2006), wheat (Igbal & Ashraf, 2013), apple (X. Wang et al., 2019), cucumber (Y. Wang et al.,
579  2020), and sorghum (J. Liu et al., 2023) have all found that the application of GA3 increases
580 yields under saline conditions. The conflicting results of those studies and our experiment make
581 it clear that findings from the soil salinity literature cannot be directly extrapolated to what is
582  experienced by plants growing in coastal environments, where salt spray is a major source of
583  stress on plant aboveground tissues (Boyce, 1954; Du & Hesp, 2020; Itoh et al., 2024). The exact
584  mechanisms by which GA3 increases salt spray susceptibility are still not clear, but are an active
585  focus of our current research. One possibility is that the addition of GA3 increases stomatal size
586 and/or opening (X. Liu & Hou, 2018; Nir et al., 2017; Shohat, Cheriker, et al., 2021; Shohat,
587 Eliaz, et al., 2021), which allows for more salt spray to enter leaves.
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Oceanic salt spray preempted herbivory

Our hormone treatments altered the probability of herbivore attack at the coastal site, however,
this was not likely due to an increase in allocation to resistance. GA-treated perennials were less
likely to be attacked by herbivores (Figure 2), but were also less salt spray tolerant (Figure 4)
than control perennials at the coastal site. GA treatment was not associated with Total PPG
concentrations in the exclosures at the time of tissue sampling, but GA-treated perennials had
lower Total PPG concentrations than control perennials in the control structures at the coastal
site (Figure 3). Thus, the observed decrease in herbivory was likely due to a decrease in tissue
quality induced by salt spray stress. GA-treated plants also senesced and died faster in the control
structures at the coastal site; the median death date in the control structures was 53 days
compared to 96 days in the exclosures (Figure 4). Coastal fog sometimes condensed on the
screens that we used to exclude herbivores, which may have slightly decreased the transmission
of salt spray into exclosures. Eventually, individuals in both the exclosures and controls showed
evidence of salt spray damage and death, but the lag in the onset of damage may also partially
explain why we observed a reduction in total PPGs in the control structures but not the
exclosures at the time of sampling.

Hormone effects were attenuated in the field

Aside from salt spray tolerance, the effects of our hormone applications on measured phenotypes
were markedly weaker than we expected from greenhouse experiments. The limited impact on
flowering time and the notable impact on growth habit are consistent with a previous greenhouse
study (Lowry et al., 2019). In that same greenhouse study, however, daily spraying of GA on
perennial monkeyflowers reduced the concentration of PPGs. In our study, GA only reduced the
concentration of PPGs in the control structures at the coast (Figure 3), though it did alter the PPG
arsenal of perennials at both sites, albeit not dramatically. We also expected a greater impact of
MelJa, an antagonist of GA that induces plant defense (Baldwin, 1998; Kessler & Baldwin,
2002). This may be due in part to methodological constraints imposed by field studies. The
difficulty of preventing cross-contamination of nearby plants prevented us from repeatedly
treating our transplants with hormones after field planting, which may have weakened and/or
attenuated the effects compared with long-term applications (Hummel et al., 2009). Also,
interactions with environmental conditions in the field (e.g., short days, cold nights, and greater
temperature variation relative to greenhouse conditions) may have impacted our measured traits
more than the hormone treatments. For example, temperature interacts strongly with GA-
pathways to control phenology and development (Penfield, 2008) and PPG production in
monkeyflowers is influenced by temperature and day-length (Blanchard et al. in review). Thus,
while our finding that GA impacts local adaptation via salt-tolerance supports the value of field-
based hormone treatments, our study also suggests the need for field-based preliminary trials to
determine field-relevant doses.
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Conclusions

Interactions among hormone pathways mediate differences in allocation to growth, reproduction,
and resistance, but few studies have investigated how evolutionary changes in hormone
pathways contribute to local adaptation (James et al., 2023; Wilkinson et al., 2021). Evidence
that GA application reduced allocation to resistance in greenhouse experiments led us to
hypothesize that selection by herbivores drove the evolution of GA-suppression in coastal
perennials. Unexpectedly, we found that GA application reduced local adaptation of perennials at
the coast by making them more susceptible to salt spray and that coastal salt spray killed all
annuals. This suggests a strong role for an abiotic factor, salt spray, in selecting for differences in
GA pathway genes in coastal populations. Additionally, herbivory had a dramatic impact on
perennial fecundity at the coast, though it was precluded from contributing to local adaptation by
the salt spray induced mortality of all annuals at the coast. While our study shows how hormone
applications can be used to investigate the mechanisms underlying local adaptation, our results
also stress the importance of considering the interaction and timing of selective agents.
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639 FigurelLegends

640  Figure 1. Photographs depicting transplant sites and structures used in the reciprocal transplant
641  experiment. For our reciprocal transplant experiment, each site had ten plots, each with 100

642  plants. Each site had six control plots (with mesh tops and partially-mesh sides) and four

643  exclosure plots (fully enclosed with mesh on all sides). A control and exclosure plot are shown
644  side by side in the foreground of the inland site.

645

646  Figure2. Allocation to reproduction and defense: flowering time and probability of herbivory of
647  annuals (circles) and perennials (triangles) treated with gibberellic acid (GA, yellow),

648  paclobutrazol (Paclo, blue), and methyl jasmonate (MeJa, green), and the controls (0.25%

649  ethanol, black) in control structures and herbivore exclosures at the coastal site, Bodega Marine
650 Reserve (A & C), and the inland site, Pepperwood Preserve (B & D). Larger symbols in the

651  foreground are the mean predictions and 95% confidence intervals from the minimum adequate
652  mixed effect models, smaller and lighter symbols in the background are the raw data. Results of
653  Tukey post-hoc contrasts within each site are indicated above each prediction; shared letters

654  indicate that groups do not significantly differ, while non-overlapping letters indicate that groups
655  significantly differ within each site. Exclosure type was not plotted for flowering time on the
656  coast (A) because the minimum adequate model did not include exclosure type as a fixed effect.
657

658  Figure 3. Allocation to chemical defense: total concentration of all PPGs and differences in

659  multivariate PPG arsenals of annuals (circles) and perennials (triangles) treated with gibberellic
660 acid (GA, yellow), paclobutrazol (Paclo, blue), and methyl jasmonate (MeJa, green), and the
661  controls (0.25% ethanol, black) in control structures and herbivore exclosures at the coastal site,
662 Bodega Marine Reserve (A & C), and the inland site, Pepperwood Preserve (B & D). In the Total
663  PPG figures (A & B), larger symbols in the foreground are the mean predictions and 95%

664  confidence intervals from the minimum adequate mixed effect models, smaller and lighter

665  symbols in the background are the raw data. Exclosure type was not plotted for Total PPG at the
666  inland site (B) because the minimum adequate model did not include exclosure type as a fixed
667  effect. PPG arsenal figures (C & D) use non-metric multidimensional scaling (NMDS) with

668  Bray-curtis distance (and 95% confidence interval ellipses) to visualize multivariate differences
669  among plants. Exclosure type was either not a significant factor in the multivariate model (C ) or
670 did not interact with other fixed effects (D) and was therefore not included in these plots.

671

672

673  Figure4. GA application decreased survival at the coastal site. Survival probabilities for annual
674  (solid line) and perennial (dashed line) transplants at the coastal site, Bodega Marine Reserve
675 (A), and the inland site, Pepperwood Preserve (B). Survival probabilities and 95% confidence
676  intervals for control (black), GA (yellow), methyl jasmonate (blue) and paclobutrazol (green)
677  treatments were predicted from Cox Proportional Hazards models. At the inland transplant site
678  (B), survival probabilities and 95% confidence intervals were only plotted for ecotypes (grey)
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because the minimum adequate model did not include exclosure or hormone treatment as a fixed
effect. Results of Tukey post-hoc contrasts within each site are indicated above each final
predicted survival; shared letters indicate that groups do not significantly differ, while non-
overlapping letters indicate that groups significantly differ within each site.

Figure5. GA application on perennials resulted in stem-elongation relative to controls. The
plants pictured (on day 16 after transplantation) are from the same family and were grown in the
same plot at the coastal site.

Figure 6. Herbivore exclosures tended to increase, while GA applications tended to decrease
components of fecundity: probability of flowering and fruit number of annuals and perennials
that flowered treated with gibberellic acid (GA, yellow squares), paclobutrazol (Paclo, blue
diamond), and methyl jasmonate (MeJa, green triangle), and the controls (0.25% ethanol, black
circles) in control structures and herbivore exclosures at the coastal site, Bodega Marine Reserve
(A & C), and the inland site, Pepperwood Preserve (B & D). Larger symbols in the foreground
are the mean predictions and 95% confidence intervals from mixed effect models, smaller and
lighter symbols in the background are the raw data. Results of Tukey post-hoc contrasts within
each site are indicated above each prediction; shared letters indicate that groups do not
significantly differ, while non-overlapping letters indicate that groups significantly differ within
each site. Predictions are not plotted for fruit production at Bodega Marine reserve because no
fixed factors were in the minimum adequate model. To improve visualization, one outlier that
produced 164 fruit was not plotted at the Bodega Marine Reserve.

Coastal _ Inland

Figurel.
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