

1 Early-Life Gut Inflammation Drives Sex-Dependent Shifts in the
2 Microbiome-Endocrine-Brain Axis
3

4 Olivia Sullivan^{1,2, †}, Claire Sie^{3,†}, Katharine M. Ng³, Sophie Cotton³, Cal Rosete², Jordan E.
5 Hamden^{2,4}, Ajay Paul Singh⁵, Kristen Lee^{2,4}, Jatin Choudhary², Jennifer Kim^{1,2}, Huaxu Yu⁶,
6 Charlotte A. Clayton³, Natalia A. Carranza Garcia³, Kateryna Voznyuk², Brian D. Deng³, Nadine
7 Plett², Sana Arora², Hans Ghezzi⁷, Tao Huan⁶, Kiran K. Soma^{1,2,8}, John-Paul J. Yu⁵, Carolina
8 Tropini^{3,9,10*}, Annie Vogel Ciernia^{1,2,4*}

9 ¹Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada

10 Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver,
11 Canada

12 ³Department of Microbiology & Immunology, University of British Columbia, Vancouver,
13 Canada

14 ⁴Department of Biochemistry and Molecular Biology, University of British Columbia,
15 Vancouver, Canada

16 ⁵Department of Radiology, University of Wisconsin School of Medicine and Public Health,
17 Madison, Wisconsin, USA.

18 ⁶Department of Chemistry, University of British Columbia, Vancouver, Canada

19 ⁷Department of Bioinformatics, University of British Columbia, Vancouver, Canada

20 ⁸Department of Psychology, University of British Columbia, Vancouver Canada

21 ⁹School of Biomedical Engineering, University of British Columbia, Vancouver, Canada

22 ¹⁰Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR),
23 Toronto, Canada
24

25 [†]Co-first authors

26 *Corresponding Authors:

27 Carolina Tropini

28 Life Sciences Centre, Rm 3557
29 2350 Health Sciences Mall
30 Vancouver, British Columbia V6T 1Z3

31 carolina.tropini@ubc.ca

32 Annie Vogel Ciernia
33 Centre for Brain Health
34 2215 Wesbrook Mall
35 Vancouver, BC V6T2A1
36 annie.ciernia@ubc.ca

37 **CRediT authorship contribution statement:**

38 OS: Methodology, Formal Analysis, Investigation, Data Curation, Writing - Original Draft,
39 Writing - Review & Editing, Visualization
40 CS: Methodology, Formal Analysis, Investigation, Writing - Original Draft, Writing - Review
41 & Editing, Visualization
42 KN: Methodology, Formal Analysis, Investigation, Data Curation
43 SC: Investigation, Data Curation, Writing - Review & Editing
44 CR: Methodology, Formal Analysis, Investigation, Data Curation, Writing - Original Draft,
45 Writing - Review & Editing
46 JEH: Investigation, Formal Analysis, Writing - Original Draft, Writing - Review & Editing
47 APS: Investigation, Formal Analysis
48 KL: Methodology, Investigation
49 JC: Investigation, Formal Analysis
50 JK: Investigation, Writing – Review & Editing
51 HY: Investigation, Formal Analysis
52 CAC: Investigation, Data Curation
53 NACG: Methodology
54 BDD: Investigation
55 NP: Formal Analysis
56 KV: Investigation
57 SA: Investigation
58 HG: Investigation, Writing – Review & Editing
59 TH: Formal Analysis
60 KS: Methodology, Writing - Review & Editing
61 JP: Resources, Writing – original draft, Writing– review & editing, Supervision, Project
62 administration, Funding acquisition
63 CT: Conceptualization, Resources, Writing – original draft, Writing– review & editing,
64 Supervision, Project administration, Funding acquisition.
65 AVC: Conceptualization, Resources, Visualization, Writing – original draft, Formal Analysis,
66 Writing– review & editing, Supervision, Project administration, Funding acquisition.
67

68 **Declarations of interest:** none

69 **Word count:** 13,787

70 **Keywords:** gut-brain axis, inflammatory bowel disease, gut inflammation, microglia, androgens,
71 sexual behaviours, microbiome, development

72 **Highlights**

73 Early-life gut inflammation produces sex-specific effects on i) microbiome, ii) sex hormones and
74 iii) behaviour.

75

76 Both sexes show disrupted gut bacterial members that regulate sex hormone levels.

77

78 Male mice demonstrate deficits in mate seeking, which may be mediated by reduced androgen
79 levels.

80
81 Both male and female mice demonstrate shifts in hippocampal microglial morphology.
82
83

84 **Abstract**

85 Despite recent advances in understanding the connection between the gut microbiota and the
86 adult brain, there remains a wide knowledge gap in how gut inflammation impacts brain
87 development. We hypothesized that intestinal inflammation in early life would negatively affect
88 neurodevelopment through dysregulation of microbiota communication to the brain. We
89 therefore developed a novel pediatric chemical model of inflammatory bowel disease (IBD), an
90 incurable condition affecting millions of people worldwide. IBD is characterized by chronic
91 intestinal inflammation, and has comorbid symptoms of anxiety, depression and cognitive
92 impairment. Significantly, 25% of patients with IBD are diagnosed during childhood, and the
93 effect of chronic inflammation during this critical period of development is largely unknown.
94 This study investigated the effects of early-life gut inflammation induced by DSS (dextran
95 sulfate sodium) on a range of microbiota, endocrine, and behavioral outcomes, focusing on sex-
96 specific impacts. DSS-treated mice exhibited increased intestinal inflammation, altered
97 microbiota membership, and changes in microbiota-mediated circulating metabolites. The
98 majority of behavioral measures were unaffected, with the exception of impaired mate-seeking
99 behaviors in DSS-treated males. DSS-treated males also showed significantly smaller
100 seminal vesicles, lower circulating androgens, and decreased intestinal hormone-activating
101 enzyme activity. In the brain, microglia morphology was chronically altered with DSS treatment
102 in a sex-specific manner. The results suggest that early-life gut inflammation causes changes in
103 gut microbiota composition, affecting short-chain fatty acid (SCFA) producers and
104 glucuronidase (GUS) activity, correlating with altered SCFA and androgen levels. The findings
105 emphasize the developmental sensitivity to inflammation-induced changes in endocrine
106 signalling and underscore long-lasting physiological and microbiome changes associated with
107 juvenile IBD.
108

109 **Introduction**

110 Inflammatory bowel disease (IBD) is a group of chronic gastrointestinal (GI) tract conditions
111 that affects over 6.8 million people globally and remains incurable (Alatab et al., 2020). The risk
112 of IBD is correlated with industrialization and, as such, is globally rising in prevalence (Kaplan
113 and Windsor, 2021). Genetic factors account for less than one-third of IBD risk, underscoring the
114 importance of environmental factors such as gut microbiota composition, dietary habits,
115 smoking, and stress levels on disease development (Ananthakrishnan, 2013; Ye et al., 2015).
116 Individuals with IBD frequently undergo cycles of intense inflammatory flare-ups and remission
117 periods (Roda et al., 2020). Over 25% of patients with IBD are diagnosed during childhood or
118 adolescence with symptoms that persist through adulthood (Däbritz et al., 2017). Importantly,
119 little is known about the specific impacts of pediatric-onset IBD on the developing brain.
120 Children and adolescents with IBD have an increased risk of developing anxiety and depression,
121 experience a lower quality of life, and face educational and social challenges along with mild
122 cognitive impairments (Attree et al., 2003; Mackner et al., 2013; Thavamani et al., 2019).
123 Furthermore, neuroimaging studies in adult female and male patients with IBD have revealed

124 altered brain structure and function (Bao et al., 2015; Lv et al., 2017) some of which correlate
125 with neuropsychiatric impairments (Hou et al., 2020), highlighting the need for similar research
126 in pediatric populations.

127 Research into inflammatory phenotypes through various animal models – including genetic,
128 chemically induced, and adoptive transfer T cell models – has significantly advanced our
129 understanding of IBD (Wirtz and Neurath, 2007). The widely-used dextran sodium sulfate
130 (DSS)-induced colitis model damages the gut epithelial lining and mimics the gut inflammation
131 and microbiota changes seen in human ulcerative colitis (UC), one of the two main types of IBD
132 (Chassaing et al., 2014). Adult mice treated with DSS have increased anxiety (Nyuyki et al.,
133 2018) and reduced sucrose preference, indicative of a depression endophenotype (Zhou et al.,
134 2023). Additionally, active gut inflammation in adult mice led to anxiety-like behavior and
135 recognition memory impairments (Emge et al., 2016) and social impairments (Brown et al.,
136 2024). Importantly, anxiety and memory deficits were reversed upon resolution of acute
137 inflammation (Emge et al., 2016), which is encouraging for therapeutic resolution of
138 neurophysiological symptoms in humans with IBD. While DSS-colitis studies predominantly
139 focus on adult rodents and capture many of the extraintestinal manifestations of IBD seen in
140 adult human patients, research in juvenile rodent models remains limited. In contrast to adult
141 mice, a recent DSS-colitis model in juvenile mice revealed persistent cognitive deficits and
142 anxiety-like behaviors even upon GI-symptom resolution (Salvo et al., 2020). These observations
143 suggest that GI inflammation during developmental periods may have unique and long-lasting
144 effects on brain development, leading to distinct behavioral impacts in adulthood.

145 How GI inflammation triggers brain and behavior dysfunction is not well understood, but is
146 theorized to involve altered signaling along the gut-brain-axis. The gut microbiota can signal to
147 the brain by immune cell trafficking, peripheral nerve activity, and release of metabolites that
148 circulate to the brain (Banfi et al., 2021; Günther et al., 2021). One of the key brain cells
149 responsive to gut microbe derived metabolites are microglia, the brain's resident innate immune
150 cells. Microglia sculpt synaptic physiology during brain development (Sullivan and Ciernia,
151 2022), are acutely sensitive to changes in microbiota in early life (Erny et al., 2015; Thion et al.,
152 2017) and are chronically functionally altered from early life inflammation (Vogel Ciernia et al.,
153 2018). Microbiota-derived short chain fatty acids (SCFAs) can enter the blood stream and cross
154 the blood brain barrier to impact microglia development and function (Cryan and Dinan, 2012;
155 Erny et al., 2015; Sullivan and Ciernia, 2022). In both adult and juvenile IBD mouse models,
156 microglia adopt a pro-inflammatory phenotype characterized by altered cellular morphology and
157 increased pro-inflammatory cytokine secretion (Caetano-Silva et al., 2024; Gampierakis et al.,
158 2021; Salvo et al., 2020; Sroor et al., 2019; Talley et al., 2021). Together, this suggests that early
159 life changes to microbiota-derived signalling to brain microglia may negatively impact brain
160 development in IBD.

161 Beyond impacting brain function and behavior, pediatric IBD poses several unique challenges in
162 other aspects of development, including delayed onset of puberty in both males and females
163 (Ballinger et al., 2003). While undernutrition was initially thought to be the main driver of
164 delayed puberty, restoring nutritional status fails to normalize the timing of puberty onset,
165 suggesting the involvement of additional factors (Azooz et al., 2001; Brain and Savage, 1994;
166 DeBoer et al., 2010; Deboer and Li, 2011). Animal models of IBD have linked intestinal
167 inflammation to disruption in testosterone levels, estrogen receptor function, and reproductive

168 organ size, with effects that extend beyond what is seen with undernutrition alone (Azooz et al.,
169 2001; Ballinger et al., 2003; DeBoer et al., 2010; Deboer and Li, 2011). Similarly, findings in
170 human studies show that some patients with IBD (Klaus et al., 2008; Tigas and Tsatsoulis, 2012)
171 and irritable bowel syndrome (Rastelli et al., 2022) have disrupted sex hormone levels and higher
172 rates of sexual dysfunction (Chen et al., 2024; Gaidos et al., 2020). One connection between
173 inflammation and altered hormone levels is thought to be mediated by the gut microbiota, which
174 acts as a regulator of estrogen and androgen synthesis and metabolism (Colldén et al., 2019; He
175 et al., 2021; Maffei et al., 2022; Neuman et al., 2015). In mouse models of IBD, the loss of
176 bacterial species such as *Faecalibacterium prausnitzii* (Sokol et al., 2008) and *Roseburia*
177 *hominis*, known for producing anti-inflammatory SCFAs, is associated with changes in sex
178 hormone levels (Sui et al., 2021; Torres et al., 2018). The depletion of specific bacteria such as
179 *F. prausnitzii* in IBD, which are crucial for converting estrogen to its active form, can directly
180 impact hormone availability, potentially affecting the onset and progression of sexual
181 development (Ervin et al., 2019). Additionally, the recent discovery of testosterone-degrading
182 bacteria such as *Mycobacterium* contributing to inflammation in IBD underscores the
183 microbiota's profound impact on sexual development, suggesting avenues for targeted microbial
184 interventions to mitigate impairments in IBD (Li et al., 2022; Naser et al., 2014). Altogether,
185 these studies highlight the complex relationships between the gut microbiota and sexual
186 development (Lavelle and Sokol, 2020; Machiels et al., 2014).

187 There is a critical gap in understanding the interactions between early life intestinal
188 inflammation, brain function, and reproductive development. To bridge this gap, here we
189 introduce a mouse model of pediatric-onset IBD that captures recurrent episodes of gut
190 inflammation throughout childhood and adolescence, modeling the human condition. In both
191 sexes, we assessed the acute and chronic effects of early-life gut inflammation on gut microbiota
192 composition, short-chain fatty acid production, a wide variety of behaviors, sex steroid levels,
193 brain white matter tract integrity and microglial morphology, offering a comprehensive view of
194 IBD's impact on juvenile development. Our findings reveal novel sex-specific changes in
195 reproductive behavior, alterations in microbiota metabolites and hormone signaling, and
196 microglial morphology adaptations. These results highlight the unique long-term consequences
197 for human patients with early-onset IBD, emphasizing a need for early diagnosis and
198 microbiome-targeted intervention strategies.

199 **Methods**

200 *Animals*

201 Experimentally naïve 3-week-old C57BL/6J wildtype mice (strain #000664, Jackson
202 Laboratories) were housed in groups of 3-5 with sex and treatment-matched cage mates. Mice
203 were housed in ventilated cages under a 12:12 light-dark cycle with lights on at 0700h and lights
204 off at 1900h in a temperature (22°C) and humidity (40-60%) controlled environment. Purina
205 LabDiet 5k67 diet and reverse osmosis chlorinated water were given *ad libitum* throughout the
206 experiment unless stated otherwise for specific tasks. All housing conditions and testing
207 procedures were in accordance with the guidelines of the Canadian Council on Animal Care, and
208 all protocols were approved by the Animal Care Committee of the University of British
209 Columbia (*protocols A19-0078, A23-0115, and A23-0086*).

210 *Pediatric IBD mouse model*

211 Mice randomly assigned to the treatment groups were administered three rounds of 5-day
212 treatments of 3-3.5% colitis-grade DSS (36-50 kDa, MP Biomedicals #160110) while the vehicle
213 control group (VEH) received water only. Due to the reported batch-dependent effects of DSS,
214 the optimal concentration of DSS to cause colitis was determined in preceding pilot experiments
215 (Eichele and Kharbanda, 2017). The treatment periods occurred during postnatal days (P) P21-
216 26, P42-47, and P63-68 (Figure 1A). During treatment and for three days following each
217 treatment, mice were weighed daily to monitor for weight loss (Supplemental Table 2). Regular
218 monitoring of weight was continued during the recovery period intervals. One cohort of mice
219 was euthanized three days after the final DSS treatment on P71 (n=4-5/treatment/sex). The
220 remaining two cohorts of mice underwent behavioral testing as young adults between P85-P130
221 (n=11-13/treatment/sex).

222 *Serum and organ collection*

223 Animals were deeply anesthetized with 5% isoflurane, and blood was collected by cardiac
224 puncture. Whole blood was collected into BD Microtainer™ Serum Separator Tubes (BD) and
225 allowed to coagulate for at least 30 minutes at room temperature according to manufacturer
226 instructions. To isolate serum for later analyses, blood samples were spun down at 1200 x g for
227 20 minutes at 4°C, and the serum was removed and placed in a new tube for storage at -80°C.
228 Animals were then transcardially perfused with 1X phosphate buffered saline (PBS). Intestinal
229 measures were conducted as follows: first, intestines were dissected out from the gastroduodenal
230 junction to the rectum. Colon length was then measured from the ileocecal junction to the
231 rectum. The contents of the cecum were gently scraped and collected into a sterile tube, then
232 immediately flash-frozen on dry ice. The colon was manipulated into rolls in histological
233 cassettes and immediately fixed in freshly prepared Methacarn solution (60% dry methanol, 30%
234 chloroform, 10% glacial acetic acid) (Ng and Tropini, 2021). Brains were collected and drop
235 fixed in 4% paraformaldehyde (PFA) for 24 hours at 4°C and then transferred to 30% sucrose
236 solution and kept at 4°C until sectioned. For brain connectivity analysis, mice were perfused
237 with PBS followed by 4% PFA and brains were dissected out and then stored in 4% PFA until
238 scanning.

239 *Gut staining and histological scoring*

240 Within 2 weeks of fixation in Methacarn solution, intestinal tissues were processed and
241 infiltrated with paraffin wax as previously described (Ng and Tropini, 2021). Briefly, tissues
242 were washed twice with absolute methanol for 30 minutes each, followed by two washes with
243 absolute ethanol for 20 minutes each. Next, tissues were washed twice with xylene for 15
244 minutes before being placed in melted paraffin wax and incubated for 2 hours at 60°C. Samples
245 were then sent to the BC Children's Hospital Histology Core for embedding in paraffin wax and
246 sectioning into 4 – 5 µm sections. Histological staining was performed with hematoxylin and
247 eosin as previously described (Stahl et al., 2017). Finally, slides were imaged using a
248 PANNORAMIC® MIDI II (3DHISTECH).

249 *Mucus and bacteria visualization*

250 Visualization of gut microbes was performed as previously described (Ng and Tropini, 2021).
251 Briefly, to deparaffinize tissues, slides were heated at 60°C in Coplin jars for 10 minutes,
252 followed by incubation in xylene that was pre-warmed to 60°C. A second xylene wash was
253 performed at room temperature for 10 minutes, then slides were placed in 99.5% ethanol for 5
254 minutes. After allowing slides to air-dry, tissues were encircled using a liquid blocker PAP pen.
255 FISH probe hybridization solution (20 mM Tris-HCl, pH 7.4; 0.9 M NaCl; 0.1% sodium
256 dodecylsulfate in nuclease-free water) was pre-warmed to 50°C before addition of Eub-388 (5'-
257 AF488-GCTGCCTCCGTAGGAGT-3') to a final concentration of 10 ng/µL (Amann et al.,
258 1990). Slides were then incubated for 3 hours at 50°C in a humid chamber. Following incubation,
259 tissues were washed once with FISH washing buffer (20 mM Tris-HCl, pH 7.4; 0.9 M NaCl, pre-
260 warmed to 50°C) for 10 minutes at 50°C, then additionally with 1x PBS. DNA and intestinal
261 mucus were counter-stained using 10 µg/mL DAPI and 40 µg/mL UEA-1-Rhodamine Red
262 respectively in PBS for 45 minutes at 4°C. Finally, slides were washed thrice with PBS before
263 mounting with ProLong Gold AntiFade mounting medium (Invitrogen). Fluorescence images
264 were captured using a Zeiss LSM900 confocal microscope using a 100x objective lens.

265 *Microbiome sequencing and analysis*

266 Microbiome composition was determined via sequencing of the 16S rRNA hypervariable region.
267 Total DNA was extracted from 30-60 mg of cecal contents using the DNeasy PowerSoil Pro kit
268 (Qiagen) in accordance with manufacturer protocols. Quantification of extracted DNA
269 concentration prior to library preparation was performed using the Quant-iT™ dsDNA HS Assay
270 (Thermo Fisher). 16S library preparation was conducted at either the Gut4Health facility at BC
271 Children's Hospital or the Biofactorial High-Throughput Biology (Bio!) Facility at the
272 University of British Columbia. For samples collected 3 days after cessation of DSS, library
273 preparation targeting the V4 hypervariable region of the 16S rRNA gene was performed at the
274 Gut4Health facility using established protocols (De Wolfe and Wright, 2023). Amplification of
275 the V4 region was performed with 515F/926R primers (515F, 5'-
276 GTGYCAGCMGCCGCGTAA-3'; 926R, 5'-CCGYCAATTYMTTTRAGTT-3'). Pooled
277 libraries were then submitted to the Bio! facility, where sequencing was performed on the
278 Illumina MiSeq™ platform with v2 2 x 250 bp paired-end read chemistry. For all other samples,
279 library preparation targeting the V4-V5 16S rRNA genes was performed at the Bio! Facility as
280 previously described (Ng et al., 2023), and sequencing was run on the Illumina MiSeq™
281 platform with v3 2 x 300 bp paired-end read chemistry. FASTQC (Andrews, 2010) was run on
282 the generated FASTQ files to assess read quality. Reads were then imported into QIIME2-2023.2
283 for subsequent analyses (Bolyen et al., 2019). Denoising and quality filtering was performed
284 using DADA2 (via q2-dada2), and reads were trimmed to remove primer sequences while
285 maintaining mean Phred quality scores >Q30 (Callahan et al., 2016). Multiple sequence
286 alignment and phylogenetic tree generation was performed using MAFFT (via q2-alignment) and
287 FastTree2 respectively (via q2-phylogeny) (Katoh et al., 2002; Price et al., 2010). Using the
288 QIIME classification plugin (q2-feature-classifier), amplicon sequence variants (ASVs) were
289 classified via a naïve Bayes machine-learning taxonomic classifier against the SILVA 138 99%
290 identity reference sequence database (Quast et al., 2013).

291 Further analyses were conducted using R v4.2.2 (R Core team, 2021). Analyses were visualized
292 through the tidyverse (Wickham et al., 2019) and ggplot2 (Hadley, 2016) packages. For sample
293 rarefaction, calculation, and visualization of alpha and beta diversity metrics, the phyloseq

294 (McMurdie and Holmes, 2013), ggpubr (Kassambara, 2023), and vegan (Dixon, 2003) packages
295 were employed. Differential abundance analysis (DAA) was conducted using the
296 metagenomeseq package (Paulson et al., 2013) and Analysis of Composition of Microbiomes
297 (ANCOM) (Mandal et al., 2015) packages through the microbiomeMarker package (Cao et al.,
298 2022). The relative abundance of those taxa identified as significantly differentially abundant
299 were then plotted with FDR-corrected p-values obtained with metagenomeseq. Differentially
300 abundant taxa were plotted using the ComplexHeatmap (Gu et al., 2016) package. The relative
301 abundance of select differentially abundant taxa was then plotted against serum hormone and
302 SCFA concentrations, and Spearman's correlation was calculated using smplot2 (Min and Zhou,
303 2021).

304 *Behavior testing*

305 All behavior testing was performed under white light (600 lux) between the hours of 0900-1800
306 except for the sucrose preference test, which is a 24-hour task. Animals were habituated to the
307 researchers after the anxiety tasks but prior to all other tests through 3 days of handling (1-2
308 min/mouse). For each behavior task, animals were first habituated to room conditions for 30
309 minutes before testing. For all tasks that did not involve bedding, the apparatus was cleaned with
310 diluted saber solution (Vert-2-Go saber diluted 1:16 in water) between mice and between stages.
311 ANY-maze tracking software (Stoelting) was used to record videos and track animal movement
312 during the task. Mice began testing 17 days following the final round of DSS with the exception
313 of a subset cohort, which underwent only the urine preference test and mating behavior test
314 beginning 28 days following the final round of DSS treatment.

315 Urine Preference Test (UPT)

316 Mice were placed in the centre of an open-top box (40 cm x 40 cm x 40 cm, L x W x H)
317 containing two 10 cm diameter inverted pencil cups in opposite corners. A petri dish with
318 blotting paper (1 cm²) was placed under each pencil cup. Mice were given a 10-minute
319 habituation period where 20 µL of deionized water was dropped onto both blotting papers.
320 Following habituation, mice were given another 10-minutes to explore the two cups, this time
321 with 20 µL of pooled male or female C57BL/6 mouse urine dropped onto one of the blotting
322 papers and 20 µL of deionized water dropped onto the other. In the final stage, mice were given
323 another 10-minutes to explore the two cups, with the urine cup location and urine sex switching
324 from the previous stage (Malkesman et al., 2010). Presentation order of same or opposite sex
325 urine as well as location of urine in the first and second stages was counterbalanced across mice
326 and treatment conditions. ANY-maze tracked the total investigation time when the test mouse's
327 nose was within 1 cm of the inverted pencil cup. Exclusion criteria for data collected during the
328 urine preference test include side preference during habituation (defined as a discrimination
329 index (DI) over 20 or under -20, where DI is the difference in time spent investigating the
330 stimulus cups divided by the total time spent investigating) and side preference exceeding three
331 standard deviations from the mean.

332 Mounting Behavior

333 Sexually inexperienced VEH- and DSS-treated male mice were paired with a novel sexually
334 experienced C57BL/6 female mouse in an empty 35 cm x 20 cm x 15 cm (L x W x H) clear
335 plastic box. ANY-maze (Stoelting) was used to record a 15-minute free interaction period.
336 Videos were hand-scored for the frequency and duration of male mounting by a researcher blind

337 to treatment conditions. Mounting behavior was defined as male contact with two paws on the
338 front or back of the female as previously described (Bayless et al., 2023).

339 Open Field Test

340 The open field was performed in an open-topped grey Plexiglass arena (65 cm x 65 cm x 40 cm;
341 L x W x H). Mice were placed in the centre of the arena and given 20 minutes to freely explore.
342 ANY-maze tracked the total distance travelled and the amount of time spent in the inner and
343 outer zones. The outer zone was defined at 8 cm from the wall of the apparatus.

344 Elevated Plus Maze

345 The plus-shaped apparatus was elevated 50 cm above the floor and had two open arms and two
346 closed arms, both 30 cm x 8 cm (L x W). The closed arms were surrounded by 15 cm high walls.
347 Mice were placed in the centre of the apparatus and allowed to freely explore for 5 minutes.
348 ANY-maze tracked the total distance travelled and the amount of time spent in the open arms
349 and closed arms.

350 Three Chamber Test

351 The test apparatus was an open-topped rectangular box (60 cm x 40 cm x 22 cm ; L x W x H)
352 divided lengthwise into three identically sized compartments (Yang et al., 2011). The task
353 consisted of three 10-minute phases: habituation, sociability, and social novelty. The sociability
354 and social novelty phases require sex and age matched stimulus mice. The novel mouse was not
355 a cage mate of the familiar mouse in the social novelty phase. Prior to the task, stimulus mice
356 spent 20 minutes/day for 3 days habituating to sitting under inverted pencil cups.

357 ANY-maze was used to track distance travelled, time in each chamber, and time spent
358 investigating the cup in each phase of the task. When the mouse's nose was within 1 cm of the
359 pencil cup and pointing directly at it, investigation was scored. Looking above or lateral to the
360 cup and climbing on top of the object were not counted as investigation.

361 Olfaction Habituation-Dishabituation Test

362 The olfaction test was performed as previously described (Yang and Crawley, 2009). Briefly,
363 mice were habituated to a clean cage without bedding for 30 minutes prior to being repeatedly
364 presented a cotton swab with non-social (vanilla or banana extract diluted 1:1000 in water) and
365 social odours (swab of cage bottom of novel mouse). The order of odour presentation was: water,
366 vanilla extract, banana extract, same sex mice, opposite sex mice. Videos were recorded and
367 hand-scored by researchers blinded to experimental conditions for the time spent investigating
368 each odoured cotton swab, defined as the nose within 1 cm of the swab. Biting and otherwise
369 playing with the cotton swab was not counted as olfaction investigation.

370 Object Location Memory (OLM) Test

371 The OLM test was performed in an open-topped Plexiglass square box (40 cm x 40 cm x 40 cm ;
372 L x W x H) lined with bedding ~1 cm in depth. Bedding was kept in the same box each day. One
373 wall of the box was lined with duct tape as a visual cue. The OLM took 8 days in total with 6
374 days of habituation, 1 day of training and 1 day of testing (Vogel-Ciernia and Wood, 2014).
375 Identical cylindrical spice tins filled with cement were used as training objects and were cleaned
376 with diluted saber solution between trials and allowed to fully dry before re-use. The 5-minute

377 testing phase took place 24 hours after training where one object was moved to a novel location
378 and the other remained in the original training location.

379 ANY-maze tracked the total distance travelled on all 8 days. ANY-maze tracked investigation
380 time and the number of investigations of each object on training and testing days. Investigation
381 time was scored when the mouse's nose was within 1 cm of the object and pointing directly at
382 the object. Looking over or past the object and climbing on top of the object were not counted as
383 investigation. For the training and testing days, a discrimination index (DI) was calculated where
384 DI is the difference in time spent investigating the moved object and the unmoved object divided
385 by the total time spent investigating both objects x100.

386 Mice who had a DI over 20 or under -20 during the training phase were determined as having an
387 innate preference and excluded from final analysis. Mice who explored the objects more or less
388 than 3 standard deviations from the mean were also excluded from analysis as we have done
389 previously (Vogel-Ciernia and Wood, 2014).

390 **Self-Grooming and Forced Grooming**

391 Mice were individually placed in a new cage without bedding. After a 5 minute habituation
392 period, the cumulative time spent naturally self-grooming was recorded for 5 minutes. The mice
393 were then lightly sprayed with water from a mist bottle and forced self-grooming was scored in
394 the following 5 minutes. All hand scoring of grooming behavior was performed by a researcher
395 blinded to experimental conditions.

396 **Forced Swim Test**

397 Mice were placed individually into 1 L glass beakers filled with 900 mL of water at a
398 temperature of 23-25°C. Mice were recorded for 6 minutes and then removed from the water as
399 previously described(Can et al., 2011). The last 4 minutes of footage was hand-scored for time
400 spent immobile, defined as the absence of escape-related movements. The hand-scorer was
401 blinded to experimental conditions.

402 ***Sex steroid quantification***

403 Serum (10 μ L) was pipetted into 2 mL polypropylene bead ruptor tubes with 5 ceramic zirconium
404 oxide beads (Hamden et al., 2021, 2019). Calibration curves (0.05 – 1000 pg), blanks, and
405 quality controls were extracted alongside samples via liquid-liquid extraction and analyzed by
406 specific and ultrasensitive LC-MS/MS as before (Hamden et al., 2021). Progesterone,
407 testosterone (T), androstenedione (AE), 5 α -dihydrotestosterone (DHT), and 17 β -estradiol (E₂)
408 were measured using multiple reaction monitoring with 2 mass transitions for each analyte.
409 Deuterated internal standards (progesterone-d9, testosterone-d5, and 17 β -estradiol-d4) were
410 included in all standards, blanks, controls, and samples to correct for analyte loss and matrix
411 effects. Steroid concentrations were acquired by a Sciex 6500 Qtrap triple quadrupole tandem
412 mass spectrometer. A steroid was considered non-detectable if either the quantifier or qualifier
413 transition was not present. If 50% or more of the values in a group were detectable, then missing
414 values were replaced with the lower limit of quantification/ $\sqrt{2}$ (Handelsman and Ly, 2019)
415 (Handelsman and Ly 2019). DHT and E₂ were non-detectable in all samples, and AE was non-
416 detectable in all female samples.

417 *Brain microglia immunofluorescence staining*

418 After PFA fixation and sucrose cryoprotection, brain hemispheres were embedded in Optimal
419 Cutting Temperature (OCT) compound (Scigen, 23-730-625), cryosectioned at 30 μ m, and
420 stored in 1X PBS at 4°C. For staining, free-floating sections were permeabilized with 1X PBS +
421 0.5% Triton X-100 for 5 minutes and then washed 3 x 5 minutes with 1X PBS. Sections were
422 placed in a blocking solution (5% normal donkey serum, and 1% bovine serum albumin
423 dissolved in 1X PBS + 0.03% Triton) for 1 hour at room temperature with gentle shaking and
424 then incubated with anti-IBA1 primary antibody (chicken; Synaptic Systems (234009); 1:1000)
425 for 48 hours. Sections were washed 3 x 5 minutes in 1X PBS + 0.03% Triton and then incubated
426 in a donkey anti-chicken secondary antibody (Alexa Fluor® 488 Jackson ImmunoResearch
427 (703545185); 1:500) and DAPI (Biolegend (422801); 1:1000) for two hours at room temperature
428 on a gentle tilt. Sections were washed 3 x 5 minutes in 1X PBS + 0.03% Triton and 1x 5 minutes
429 in 1X PBS and then mounted onto glass slides and coverslipped using Invitrogen ProLong Glass
430 Antifade Mountant (Invitrogen, P36984).

431 *Reverse transcription quantitative polymerase chain reaction*

432 At time of euthanasia, the hippocampus tissue was dissected, snap frozen on dry ice and stored at
433 -80°C until RNA extraction. Total RNA was isolated and water blanks using a Monarch® Total
434 RNA Miniprep Kit (New England Biolabs, Whitby, ON) and RNA quantity and quality were
435 confirmed by Nanodrop spectrophotometer. Complementary DNA (cDNA) was reverse
436 transcribed using a LunaScript RT Supermix Kit (New England Biolabs, Ipswich, MA). The
437 amount of RNA used for reverse transcription was normalized (227 – 400ng) and experimenters
438 were blinded to treatment group and sex during RNA isolation and cDNA synthesis.
439 Transcripts (*Tlr4*, *Nod1*, *Nod2*, *Il1 β* , *Tnfa*, *Il6*) were quantified via SYBR Green assays
440 (Integrated DNA Technologies, Inc., Coralville, IA) (Table 1). Relative expression levels of the
441 reference gene and genes of interest were assessed using Luna® Universal qPCR Master Mix
442 (New England Biolabs, Whitby, ON). Samples were run in duplicate. A reference gene (*Hprt*)
443 was measured in each sample. Negative controls (water blanks, no reverse transcriptase controls)
444 confirmed the specificity of assays. Melt curve analyses verified that the expected targets were
445 amplified. One sample was excluded from the Male DSS *Nod1* analysis due to lack of specificity
446 in the melt curve.

Gene	Forward	Reverse
<i>Tlr4</i>	GAAGCTTGAATCCCTGCATAG	AGCTCAGATCTATGTTCTGGTTG
<i>Il1β</i>	TGGCAACTGTTCTGAACCTCA	GGGTCCGTCAACTCAAAGAAC
<i>Tnfa</i>	GGGTGATCGGTCCCCAAA	TGAGGGTCTGGGCCATAGAA
<i>Il6</i>	CGATGATGCACTTGCAGAAA	ACTCCAGAAGACCAGAGGAA
<i>Nod1</i>	TTCCTCACATAGCACCTTCAC	TCAATGACTATGGCGTGCAG
<i>Nod2</i>	CGAAGCCAACCTCCAGAA	TCGCAGAAGGACTCAAGAGA
<i>Hprt</i>	CAGTACAGCCCCAAAATGGTTA	AGTCTGGCCTGTATCCAACA

447 Table 1. RT-qPCR primers.

448 The cycle threshold (Ct) of the reference gene *Hprt* for each treatment group and sex were
449 analyzed by two-tailed t-test to determine whether expression of reference gene differed between
450 VEH and LPS groups. There was no significant difference between VEH and DSS groups for the
451 females nor males (p = .76 and .31, respectively). The mean of the reference gene was used to

452 calculate the ΔC_q and ΔC_q values were normalized to the VEH group within each sex. Statistics
453 were run and data were graphed using the fold change for each transcript within each sex. Data
454 were analyzed for an effect of treatment by unpaired t-tests.

455 *Microglial morphology analysis*

456 Slides were imaged using the Zeiss AxioScan7 slide scanner microscope at 20X magnification.
457 Maximum intensity extended depth of focus (EDF) images were acquired from Z-stacks
458 containing 16 slices at a step size of 1 μ m. EDF images were created using maximum projection
459 settings and converted to tiffs using ZEN (Zeiss). Maximum projection EDF images compile the
460 pixels of highest intensity at any given z-stack position and construct a new 2D image retaining
461 the 3D information. The hippocampus and hypothalamus anatomical regions were traced using
462 the FASTMAP FIJI plugin with reference to the Allen Brain Atlas (Terstege et al., 2022). Within
463 these segmented regions, microglial morphology was analyzed using the pipeline described in
464 Kim et al., 2024 using MicrogliaMorphology (ImageJ tool) and MicrogliaMorphologyR (R package)
465 (Kim et al., 2024a) which uses Image-J plugins Skeletonize (2D/3D) and AnalyzeSkeleton (2D/3D)
466 (Arganda-Carreras et al., 2010) to collect 27 metrics of morphology per microglial cell
467 (Supplemental Figure 4A). We conducted dimensionality reduction using principal component analysis
468 followed by k-means clustering on the first three principal components (Supplemental Figure 4C) to
469 define four morphological classes within our dataset (hypertrophic, rod-like, ramified, ameboid). We
470 identified the optimal clustering parameter using exploratory data analysis methods including the within
471 sum of squares and silhouette methods (Supplemental Figure 4B). We assigned cluster identities by
472 examining the relationship between each cluster and the 27 morphological features (Supplemental Figure
473 4D) and by using the ColorByCluster feature in MicrogliaMorphology to visually examine the different
474 cluster morphologies (Figure 7A).

475 We then calculated the percentage of cells in each morphology cluster for each treatment and sex using
476 the 'clusterpercentage' function within MicrogliaMorphologyR. To assess how cluster membership
477 changes with treatment for each sex, we fit a generalized linear mixed model using a beta distribution to
478 model the percentage of cluster membership as a factor of Cluster identity and DSS treatment with
479 MouseID as a repeated measure ("percentage ~ Cluster*treatment + (1|MouseID)") using the
480 'stats_cluster.animal' function from MicrogliaMorphologyR, which is wrapped around the glmmTMB R
481 package (Brooks et al., 2017). We ran a 2-way Analysis of Deviance (Type II Wald chisquare test) test on
482 the model to assess the contribution of Cluster and treatment interactions. Tests between treatment
483 conditions were corrected for multiple comparisons across Clusters (~treatment|Cluster) using the Sidak
484 method and q-values < 0.05 were considered statistically significant.

485 *Short and medium chain fatty acid quantification*

486 Serum samples were stored in -80 freezer prior to lipid extraction. A total of 50 μ L of serum was
487 mixed with 450 μ L ice-cold methanol, vortexed for 10 seconds, and incubated at -20 $^{\circ}$ C for 4
488 hours for protein precipitation. Samples were then centrifuged at 14,000 rpm at 4 $^{\circ}$ C for 15
489 minutes, and the supernatant were collected and dried down via SpeedVac at 4 $^{\circ}$ C. The dried
490 extract was reconstituted in 100 μ L of water and acetonitrile solution (1:1, v:v) for LC-MS
491 analysis. Quality control (QC) samples were prepared by pooling 20 μ L aliquot from each
492 sample to monitor the instrument performance and optimize the injection volume. A method
493 blank sample was prepared using the identical analytical workflow but without serum. An UHR-

494 QqTOF (Ultra-High Resolution Qq-Time-Of-Flight) Impact II (Bruker Daltonics, Bremen,
495 Germany) mass spectrometry interfaced with an Agilent 1290 Infinity II Ultrahigh-Performance
496 Liquid Chromatography (UHPLC) system (Agilent Technologies, Santa Clara, CA, USA) was
497 used for analysis. LC separation was achieved using a Waters reversed phase (RP) UPLC
498 Acquity BEH C18 Column (1.7 μ m, 1.0 mm \times 100 mm, 130 \AA) (Milford, MA, USA) maintained
499 at 25 $^{\circ}$ C. The mobile phase A was 5% ACN in H₂O with 10 mM ammonium acetate (pH = 9.8,
500 adjusted ammonium hydroxide) and the mobile phase B was 95% ACN in H₂O. The LC gradient
501 was set as follow: 0 min, 5% B; 8 min, 40% B; 14 min, 70% B; 20 min, 95% B; 23 min, 95% B;
502 24 min, 5% B; 33 min, 5% B. The flow rate was 0.1 mL/min. Negative ion mode was applied
503 with the following MS settings: dry gas temperature, 220 $^{\circ}$ C; dry gas flow, 7 L/min; nebulizer
504 gas pressure, 1.6 bar; capillary voltage, 3000 V. External calibration was applied using sodium
505 formate to ensure the *m/z* accuracy before sample analysis.

506 SCFA and MCFA measurements from cecal contents were obtained as follows. In brief, 20-40
507 mg of cecal contents were mixed with 0.4 – 0.8 mL of 25% phosphoric acid in water (LabChem).
508 Sample mixtures were thoroughly homogenized via vortexing, then centrifuged at 15,000 x g for
509 10 minutes at 4 $^{\circ}$ C. Following centrifugation, the sample supernatant was transferred to a new
510 tube, then centrifuged again at 15,000 x g for 10 minutes at 4 $^{\circ}$ C. The resulting supernatant was
511 then frozen at -20 $^{\circ}$ C before being sent to the University of Alberta Agricultural, Food &
512 Nutritional Science (AFNS) Chromatography Facility for volatile fatty acid (VFA) analysis using
513 gas chromatography/mass spectrometry (GC/MS) as previously described (Ng et al., 2023).
514 There, the supernatant was filtered through 0.45 μ m filters and mixed in a 4:1 ratio with internal
515 standard solution (24.5 mmol/L isocaproic acid). The samples were then injected into a
516 Stabilwax-DA column (length: 30 m, inner diameter: 0.53 mm, film thickness: 0.5 μ m, Restek
517 Corporation) on a Bruker Scion 456 GC with a model 8400 autosampler (Bruker Ltd) using a
518 helium carrier gas. The samples were run using a 10 mL/min constant flow with a 5:1 split ratio
519 with a column temperature gradient as follows: 80 $^{\circ}$ C initial temperature, immediately increased
520 to 180 $^{\circ}$ C at 20 $^{\circ}$ C/min, then held for 3 min at 180 $^{\circ}$ C. The injector and detector temperature were
521 at 250 $^{\circ}$ C. The peaks were analyzed using CompassCDS software. The concentration of
522 SCFAs/MCFAs per sample was then normalized to mass of the cecal contents for statistical
523 testing.

524 *Bacterial culturing and preparation for SCFA quantification*

525 Selected bacterial strains (Table 2) from public culture collections and lab strain libraries were
526 cultured anaerobically in a vinyl anaerobic chamber maintained with an atmosphere of 5% CO₂,
527 5% H₂, and 90% N₂ for 1-5 days (Coy Lab Products, Grass Lake, MI, USA) on pre-reduced
528 Anaerobic Akkermansia Media plates (AAM:18.5 g/L Brain Heart Infusion, 5.0 g/L Yeast
529 Extract, 8.5 g/L Tryptone, 1.5 g/L Soytone, 2.5 g/L NaCl, 3.75 g/L K₂HPO₄, 1.75 g/L D-glucose,
530 0.4 g/L Na₂CO₃, 1.0 mg/L Hemin, 0.5 g/L L-Cysteine HCl, 0.5 mg/L Vitamin K1, and 3% v/v
531 heat-inactivated fetal calf serum supplemented with 15 g/L Agar) until visible colonies were
532 observed. Subsequently, strains were inoculated in AAM for 3 days (or 1 day for fast-growing
533 strains) before being centrifuged at 6000 xg for 5 minutes to remove bacteria. 1 mL of bacterial
534 supernatants was then combined with 200 μ L of 25% v/v phosphoric acid before being frozen and
535 quantified at the AFNS Chromatography Facility as described above.

Strain	Culture Collection	Reference number
--------	--------------------	------------------

<i>Eubacterium eligens</i>	DSMZ	3376
<i>Eubacterium ventriosum</i>	DSMZ	3988
<i>Eubacterium hallii</i>	DSMZ	3353
<i>Eubacterium biforme</i>	DSMZ	3989
<i>Eubacterium rectale</i>	ATCC	33656
<i>Roseburia inulinivorans</i>	DSMZ	16841
<i>Ruminococcus lactaris</i>	ATCC	29176
<i>Ruminococcus torques</i>	ATCC	27756
<i>Ruminococcus gnavus</i>	ATCC	29149
<i>Ruminococcus bromii</i>	ATCC	27255
<i>Lactobacillus salivarius</i> HA-118	Probiotic	
<i>Lactobacillus acidophilus</i> A118	Probiotic	
<i>Lactobacillus reuteri</i> NM12	CIAMIB	(Wong et al., 2022)
<i>Lactobacillus murinus</i> NM26	CIAMIB	(Wong et al., 2022)
<i>Lactobacillus murinus</i> NM28	CIAMIB	(Wong et al., 2022)
<i>Lactobacillus johnsonii</i> NM60	CIAMIB	(Wong et al., 2022)
<i>Lactobacillus intestinalis</i> NM61	CIAMIB	(Wong et al., 2022)
<i>Akkermansia muciniphila</i>	ATCC	BAA-835
<i>Escherichia coli</i> NM84	CIAMIB	(Wong et al., 2022)
<i>Bacteroides thetaiotaomicron</i> 8702		(Han et al., 2021)
<i>Bacteroides thetaiotaomicron</i> 8713		(Han et al., 2021)
<i>Bacteroides thetaiotaomicron</i> 3731		(Ng et al., 2023)
<i>Bacteroides thetaiotaomicron</i> VPI 5482		(Ng et al., 2023)

536

537 Table 2. Cultured bacterial strains used for *in vitro* SCFA measurements.

538 *Bacterial metagenomics shotgun sequencing and analysis*

539 DNA from cecal contents collected from mice 3 days after cessation of the third round of DSS
540 was extracted and quantified as described above in “*Microbiome sequencing and analysis*”.
541 Shotgun metagenomics library preparation was done using the Illumina DNA Prep library
542 preparation kit in accordance with manufacturer instructions, and sequencing was then
543 performed on the Illumina NextSeq™ platform with 2x150 bp paired-end read chemistry.
544 Library preparation and sequencing were performed at the UBC Sequencing + Bioinformatics
545 Consortium.

546 For shotgun sequencing analysis, the quality of raw reads was evaluated using FASTQC v0 12.1
547 (Andrews, 2010) and MultiQC v 1.19 (Ewels et al., 2016). Data was then run through
548 SqueezeMeta v 1.6.5 pipeline in coassembly mode (Tamames and Puente-Sánchez, 2019). The
549 coassembly method pools reads from all samples to create a single shared metagenome
550 assembly. Briefly, sequences were trimmed and quality-filtered using Trimmomatic (Bolger et
551 al., 2014); metagenome assembly was performed using Megahit (Li et al., 2015); ORF and rRNA
552 prediction was done using Prodigal (Hyatt et al., 2010) and barrnap (Seemann, 2024),
553 respectively before classification was performed using RDP classifier (Wang et al., 2007);
554 Diamond software (Buchfink et al., 2015) was used to assign taxonomy against the Genbank nr
555 database, COGs/NOGs against the eggNOG database (Huerta-Cepas et al., 2016) and KEGG ID
556 against the KEGG database (Kanehisa and Goto, 2000); gene coverage and abundance

557 estimation were performed by mapping individual reads to the reference coassembly contig using
558 Bowtie2 (Langmead and Salzberg, 2012). Finally, SqueezeMeta outputs were analyzed using the
559 SQMTools package (Puente-Sánchez et al., 2020). Normalization of gene abundance was
560 performed using trimmed mean of M-values (TMM) with the edgeR package (Robinson et al.,
561 2009) and plotted using ComplexHeatmap (Gu et al., 2016). The TMM method of normalization
562 can robustly account for differences in sequencing depth between samples by adjusting raw
563 counts using a unique scaling factor for each sample. The scaling factor is derived by comparing
564 gene abundances against a reference sample (which is automatically determined to be the sample
565 that has the 75th percentile of log-counts closest to the median across all samples), then using a
566 weighted trimmed mean over the log-transformed fold-change differences between the sample
567 and the reference.

568 *β-glucuronidase assay*

569 Beta-glucuronidase activity was measured using the QuantiChrom™ β-Glucuronidase Assay Kit
570 (BioAssay Systems, San Francisco, CA, USA). Cecal contents collected from mice acutely
571 following DSS (P71) and after ~40 days of recovery (P110) were processed as follows: 10-50
572 mg of cecal contents were aliquoted and suspended in 600 µl of sterile dH₂O. Samples were then
573 homogenized at 30 Hz for 2 minutes using the TissueLyser II (QIAGEN) before being
574 centrifuged at 1000 xg for 1 minute at 4°C to remove cecal debris without pelleting bacteria. The
575 supernatant was then centrifuged at 13000 xg for 5 minutes at 4°C. The pelleted bacteria were
576 then resuspended in 600 µl of chilled sterile dH₂O and vortexed for 10 seconds. Bacterial lysis
577 was achieved through 3 rounds of sonication at 50 watts for 20 seconds each using an XL2020
578 sonicator equipped with a Microtip™ (Misonix, Farmingdale, NY, USA). Samples were diluted
579 1:2-1:10 as needed before performing the β-glucuronidase activity assay according to
580 manufacturer instructions. Enzyme activity was normalized to total protein concentration in each
581 sample, measured using the Pierce BCA Protein Assay Kit (ThermoFisher).

582 *MRI acquisition and data processing*

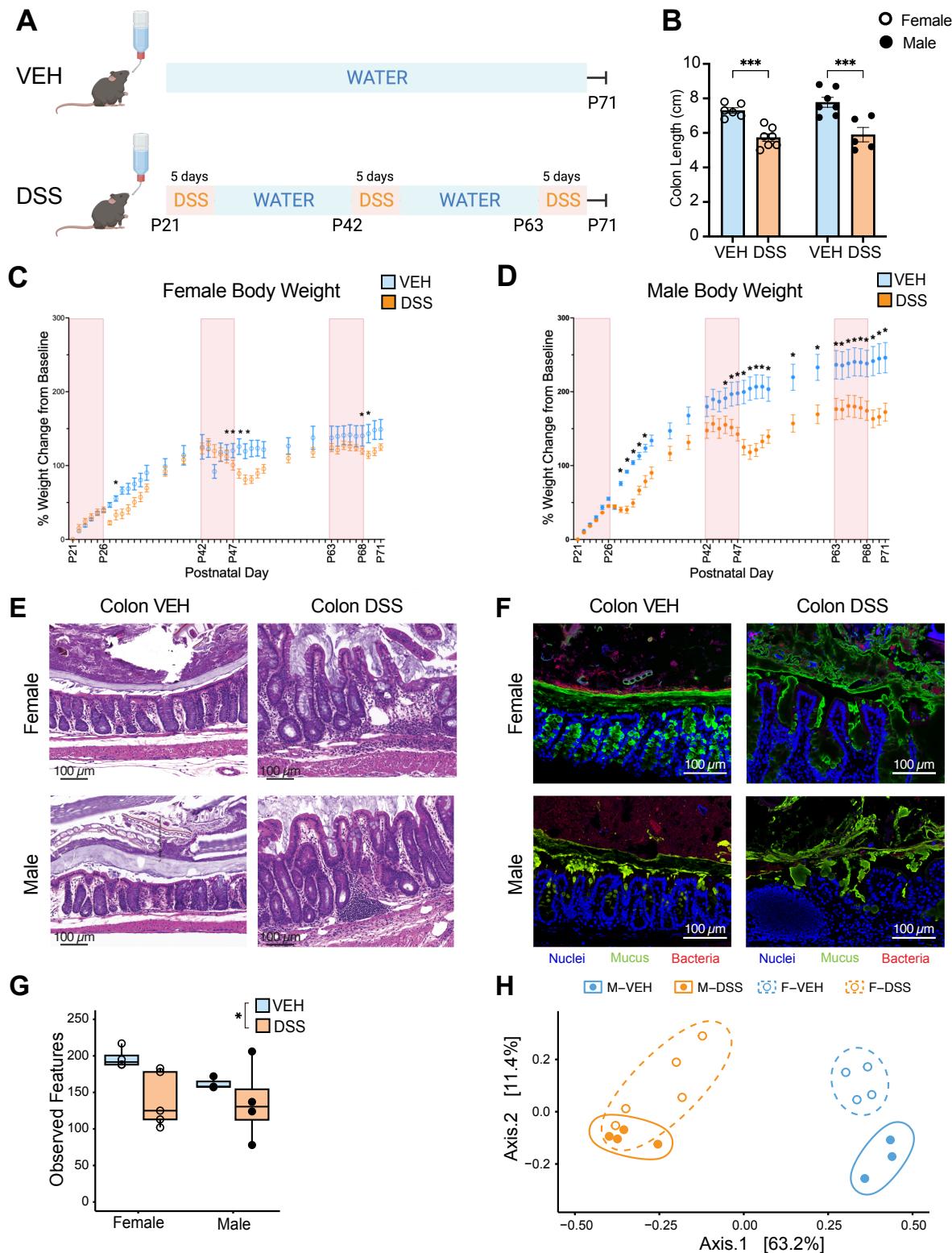
583 *Ex vivo* imaging and analysis, including standard data preprocessing and region of interest (ROI)
584 analyses, were performed as previously described (Yi et al., 2019). Briefly, brains were extracted
585 from the cranial vault between P95 and P130 and post fixed in 4% PFA (n = 54; 13 vehicle per
586 sex, 14 DSS per sex). Brains were placed in a custom-built holder immersed in Fluorinert (FC-
587 3283, 3M, St. Paul, MN, USA) and imaged with a 4.7-T Agilent MRI system with a 3.5 cm
588 diameter quadrature volume RF coil. Multi-slice, diffusion-weighted, spin echo images were
589 used to acquire 10 nondiffusion weighted images ($b=0\text{ s}\cdot\text{mm}^{-2}$) and 75 diffusion-weighted
590 images (25: $b=800\text{ s}\cdot\text{mm}^{-2}$, 50: $b=2,000\text{ s}\cdot\text{mm}^{-2}$), using non-collinear diffusion-weighting
591 directions. Diffusion imaging was performed with a TE/TR=24.17/2000-ms, FOV=30×30 mm²,
592 and a matrix=192×192 reconstructed to 256×256 for an isotropic voxel size of 0.25-mm over two
593 signal averages. Raw data files were converted to NIfTI format and FSL was used to correct for
594 eddy current artifacts (Smith et al., 2004). A DTI-based mouse brain atlas (Jiang and Johnson,
595 2011) was used as a study space template and to define regions of interest (ROI) including the
596 left and right hippocampus, frontal association cortex, striatum, amygdala, thalamus, and
597 hypothalamus. Multi-shell diffusion data were fit with the Microstructure Diffusion Toolbox
598 (MDT) (Harms et al., 2017) to the neurite orientation dispersion and density imaging (NODDI)
599 model (Zhang et al., 2012). An additional compartment of isotropic restriction was included to

600 account for potential fixative effects as recommended (Alexander et al., 2010). The mean values
601 for neurite density index (NDI) and orientation dispersion index (ODI), which represent indices
602 of intracellular and extracellular diffusion respectively, were calculated in each ROI using
603 Pyradiomics (van Griethuysen et al., 2017) and compared among experimental groups.

604 *Statistical analyses*

605 Statistics and graphs were created with GraphPad Prism 10.1.1 (GraphPad Software), Python 3.8
606 and RStudio software (RStudio Team, 2022). A repeated measures ANOVA was used to assess
607 body weight changes during treatment. All organ comparisons, SCFA measurements, gut
608 microbial β -glucuronidase (GUS) activity measurements, and almost all behavioral tests were
609 assessed using a two-way ANOVA to assess main effects of treatment and sex and Šidák
610 corrected post-hoc comparisons were performed to determine statistical significance within sex if
611 main effects or interactions were observed. The urine preference test was assessed by comparing
612 each group to chance (50%) using a single sample t-test. To directly compare preferences
613 between treatments, an unpaired two-tailed t-test was conducted. Steroid levels were analyzed by
614 Mann-Whitney U. Statistical significance of alpha diversity metrics (Observed features) was
615 assessed using a two-way ANOVA to assess main effects of treatment and sex. Beta diversity
616 metrics were evaluated using PERMANOVA analysis. FDR-corrected p-values obtained from
617 DAA with metagenomeseq were reported.

618 For the MRI analysis, a 2×2 analysis of variance (ANOVA) was used to determine the effect of
619 treatment, biological sex, and their interactions on the ROI values. The effects of ROI laterality
620 and imaging age effects were regressed from the data before the ANOVA was performed as
621 these effects were not pertinent to the tested hypotheses. Benjamini-Hochberg false discovery
622 rate (FDR) procedure was used to control for multiple hypothesis testing across ROIs within
623 each imaging signal. Statistical significance of an ANOVA is defined as an FDR adjusted p-
624 value $<.05$. Post-hoc pairwise difference testing was performed using Fisher's LSD test Partial η^2
625 explains how much of the unexplained variance in the model is described by the addition of that
626 variable into the model. The plotted imaging metric values represent the metric values after the
627 laterality and batch effects have been removed.


628

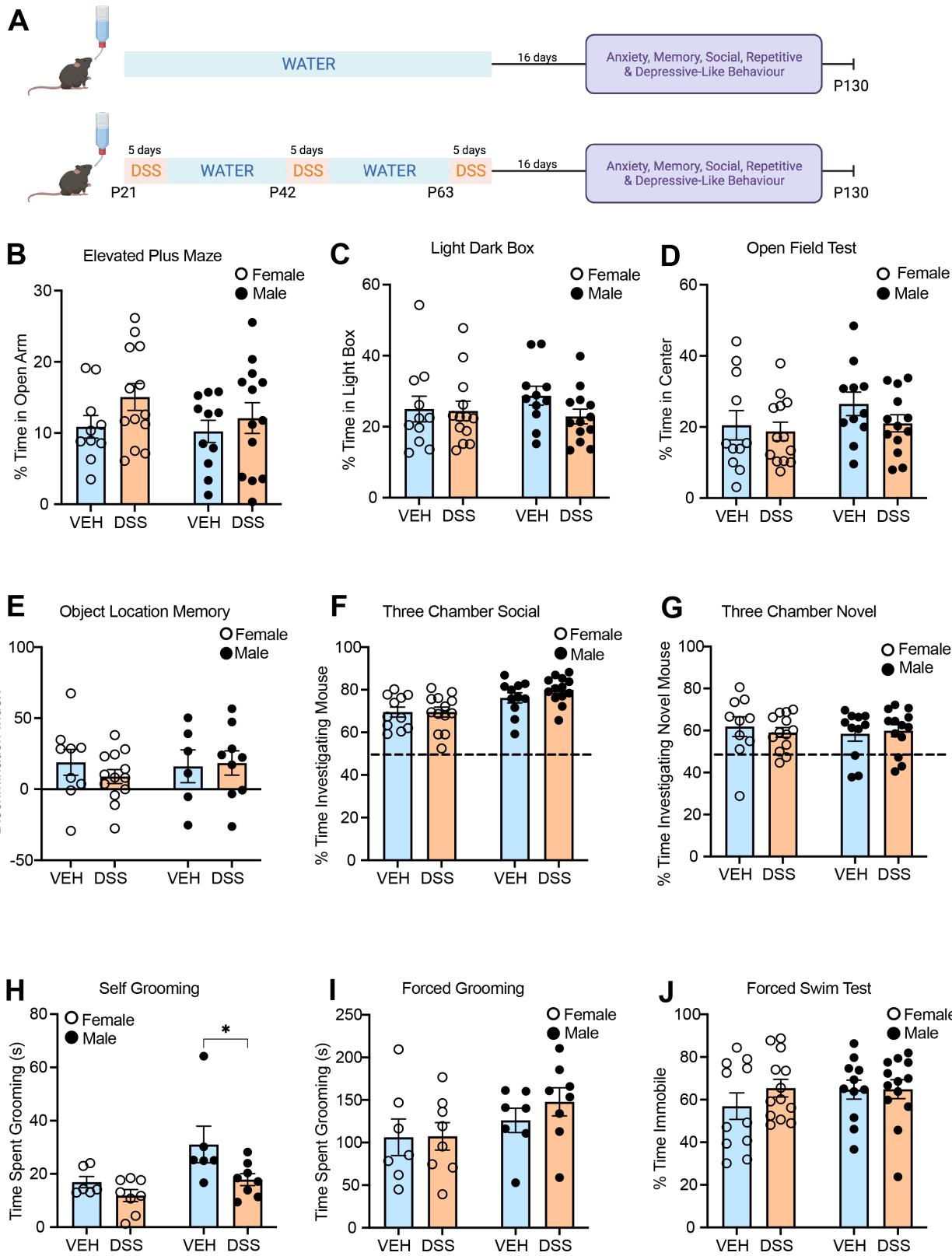
629 **Results**

630 *An early-life DSS model of pediatric IBD*

631 To establish a model of juvenile-onset IBD that mimics the remitting and recurrent cycles of gut
632 inflammation often observed in juvenile patients with IBD, we administered DSS in drinking
633 water repeatedly across early postnatal development starting on postnatal day 21 (P21) (Figure
634 1A). Colon length is indicative of inflammatory state, with colon shortening being induced by
635 effective DSS treatment (Chassaing et al., 2014). Three days after the final treatment, colon
636 length was significantly decreased by DSS in both sexes (main effect of treatment ($F(1, 21) =$
637 $39.30, p=.0001$) (Figure 1B). Both female ($p=.009$) and male ($p=.0002$) mice treated with DSS
638 had colon lengths that were significantly shorter than untreated mice, indicating successful
639 induction of intestinal inflammation in our model. Furthermore, body weights were recorded

640 throughout the treatment period (Chassaing et al., 2014) (Figures 1C, D). Female mice showed
641 mild weight loss in response to DSS, with only the second round producing significant decreases
642 from VEH littermates (treatment x day interaction $F(50,714) = 6.693, p < .0001$) (Figure 1C).
643 Conversely, male DSS-treated mice showed more dramatic weight loss across the three treatment
644 periods (treatment x day interaction $F(50,686) = 12.372, p < .0001$) (Figure 1D). To further
645 investigate inflammation caused by repeated administration of DSS, we examined the
646 histological architecture of colonic tissues using hematoxylin and eosin staining. Following
647 chronic DSS treatment, the gut epithelial layer was disturbed, showing increased crypt length
648 (crypt abscess), depletion of mucus-producing goblet cells, increased incidence of inflammatory
649 cell infiltration, and ruffling of the normally smooth epithelium (Figures 1E, F). Furthermore,
650 UEA-1 lectin staining targeting the intestinal mucus layer revealed that DSS-treated juvenile
651 mice experienced profound alterations in mucus structure, with loss of the normal striated bilayer
652 organization (Ng and Tropini, 2021) (Figure 1F). Finally, to examine changes to gut microbiota
653 composition caused by repeated cycles of early life inflammation, we performed 16S rRNA
654 sequencing targeting the bacterial V4-V5 variable regions. Consistent with previous studies in
655 adult mice, DSS treatment resulted in significant losses to microbiota alpha diversity, with the
656 number of observed features, a proxy for the number of bacterial species present (Kleine
657 Bardenhorst et al., 2022), being significantly decreased in DSS-treated animals compared to
658 vehicle (significant effect of treatment $F(1,12) = 5.3, p = .0387$) (Figure 1G) (Munyaka et al.,
659 2016). Similarly, between-group microbiota compositional differences were revealed to be
660 significantly different when compared using calculated Bray-Curtis distance matrices (treatment
661 x sex interaction $F(1,12) = 3.2158, p < .046$) (Figure 1H). Altogether, these results suggest that
662 our DSS colitis model of juvenile IBD induces profound physiological and microbiological
663 changes to the gut.

664

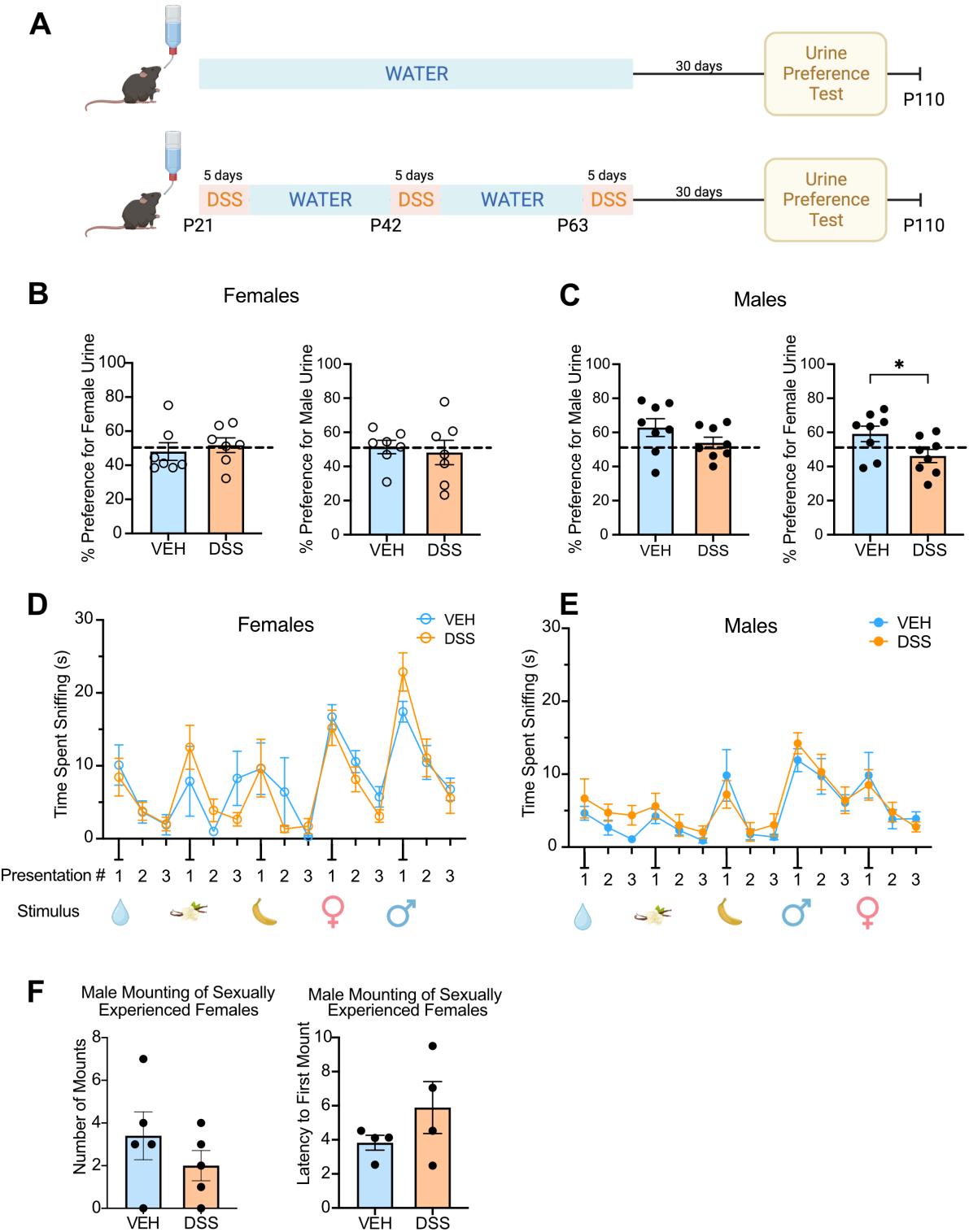

665 **Figure 1. Juvenile mouse DSS treatment models early-life intestinal inflammation.** *A.*
666 Experimental schematic. Control mice were given water throughout (VEH), while treatment

667 mice were given 3 rounds of 5-day long DSS treatments beginning at P21, P42, and P63 (DSS).
668 *B.* Post-treatment colon lengths measured at P71, three days after the final round of DSS, were
669 shorter in DSS-treated mice. Each graph bar and error bar represent the mean \pm SEM, n=5-
670 7/group. *C, D.* Female and male percent weight change from baseline (P21) starting weight. Each
671 point and error bar represents the mean \pm SEM, n=11-13/group. *E.* Representative images of
672 hematoxylin and eosin-stained colonic tissues from mice collected at P71 confirm that DSS
673 treatment induced intestinal inflammation. Scale bar, 100 μ m. *F.* Representative fluorescence *in*
674 *situ* hybridization (FISH) images from VEH and DSS treated mice shows gut disruption in DSS
675 treated mice. Scale bar, 100 μ m. Colors: host tissue (DAPI, blue), mucus (UEA-1, green), and
676 bacteria (Eub-338, red). *G.* Microbiota alpha diversity as measured by number of observed
677 unique features (a proxy for number of species) per sample is significantly lower in DSS-treated
678 mice, n=3-5/group. *H.* Principal Component Analysis of Bray-Curtis diversity index shows
679 separation by DSS treatment, n=3-5/group. * $p<.05$. *** $p<.0001$.

680

681 *Early-life DSS affects self-grooming behavior in male mice*

682 Previous work in early life gut-inflammatory models, including those for IBD, identified altered
683 mouse behavior (Salvo et al., 2020). To fully profile behavioral phenotypes in our pediatric IBD
684 model, we performed a battery of behavioral testing beginning 17 days after DSS treatment to
685 examine anxiety-like (elevated plus maze, light-dark box, open field test), memory (spatial
686 object location), sociability and social memory (three chamber task), repetitive behavior (self-
687 grooming), and depression-like behaviors (forced swim). Unlike previous reports, we did not
688 observe any significant effects of treatment for either sex in most of these tests (Figure 2 and
689 Supplemental Table 1), with the single exception of decreased self-grooming (main effect of
690 treatment ($F(1, 24) = 6.514, p=.018$)) in the DSS-treated males ($p=.031$). There were no
691 significant main effects of treatment or interactions with treatment on distance travelled or total
692 exploration on any of the tasks (Supplemental Figure 1 and Supplemental Table 1). This suggests
693 that the majority of behaviors examined are not impacted by previous repeated bouts of
694 postnatal gut inflammation in early-life, potentially due to the normal development of most
695 neuronal circuits prior to treatment beginning at P21.



698 **Figure 2. Early-life DSS treatment has minimal impacts on adult anxiety, social, memory,**
699 **and depression-like behaviors.** *A.* Experimental design. After a 16-day recovery period, a
700 behavioral battery compared VEH and DSS treated mice on *B.* the elevated plus maze (n=10-
701 13/group) *C.* the light dark box (n=11-13/group) *D.* the open field test (n=11-13/group) *E.* the
702 object location memory test (24hr) (n=6-13/group) *F.* the three-chamber social task (n=11-
703 13/group) *G.* the three-chamber novel social task (n=10-13/group) *H.* self-grooming (n=6-
704 8/group) *I.* forced grooming (n=7-8/group) and *J.* the forced swim test (n=11-13/group). All
705 graph bars and error bars represent the mean \pm SEM. * p <.05

706

707 *Early-life DSS disrupts male preference for female odour*

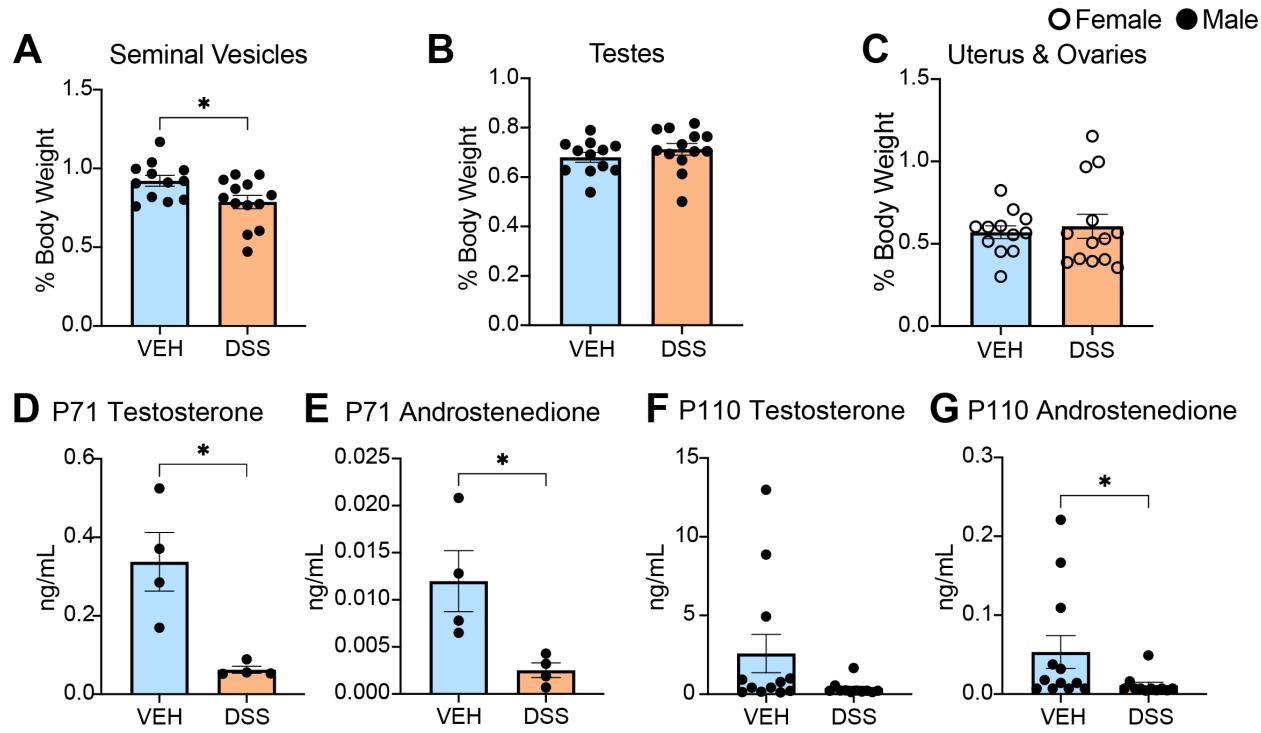
708 To test the impact of repeated bouts of inflammation on sexual behaviors in our model, ~1 month
709 following DSS, mice were given a preference test for same- or opposite-sex urine (Figure 3A).
710 Female VEH- and DSS-treated mice both failed to show a significant preference for either same-
711 sex urine (VEH one sample t-test vs 50% $t(6) = 0.383, p = .714$ or DSS one sample t-test vs 50%
712 $t(6) = 0.406, p = .70$) or opposite-sex urine (VEH one sample t-test vs 50% $t(6) = 0.350, p = .74$ or
713 one sample t-test vs 50% DSS $t(6) = 0.256, p = .81$) compared to water (Figure 3B). In contrast,
714 male VEH-treated mice showed a significant preference for same-sex urine compared to water
715 (one sample t-test vs 50% $t(7) = 2.468, p = .04$) and a trend for a preference for opposite-sex urine
716 $t(7) = 1.972, p = .086$. However, male DSS-treated mice failed to show a preference for same-sex
717 urine ($t(7) = 1.153, p = .29$) as well as opposite-sex urine over water ($t(7) = 0.99, p = .36$) (Figure
718 3C). When comparing preferences directly, there was no significant difference in VEH-treated
719 and DSS-treated males in their preference for male urine ($t(14) = 1.45, p = .17$). However, VEH-
720 treated males showed a significantly higher preference for female urine than DSS-treated males
721 ($t(14) = 2.16, p = .048$) (Figure 3C). Together, these data demonstrate that DSS treatment
722 produced a significant deficit in opposite-sex scent-seeking behaviors, a key aspect of mate-
723 seeking behavior in male rodents (Malkesman et al., 2010).

724

725 **Figure 3. Early-life DSS treatment induces male sex-specific impairments in mate-seeking**
 726 **behavior.** A. Experimental design. After a 30-day recovery period, mate-seeking behavior was

727 assessed by the Urine Preference Test. *B*. Female mice showed no preference for female or male
728 urine over water and VEH and DSS female mice performed similarly. n=7/group. Each graph bar
729 and error bar represent the mean \pm SEM. Dotted line is 50% preference. *C*. Male VEH mice
730 significantly preferred both male and female urine over water (above 50% dotted line). DSS
731 treated males showed no preference for urine over water. n=8/group. *D, E*. Olfactory habituation-
732 dishabituation test for females (*D*) and males (*E*) revealed no differences between DSS- and
733 VEH- treated mice and normal exploration, habituation and then dishabituation patterns for each
734 odour n=6-7/group. *F*. DSS and VEH male mice showed similar number of mounts and latency
735 to first mount a sexually experienced female. n=4-5/group. * $p<0.05$.

736 To verify that deficits in the urine preference test in DSS-treated males were not due to
737 impairments in olfaction, we performed the olfaction habituation-dishabituation task (Yang and
738 Crawley, 2009).-We tested two extract odours (vanilla and banana) and two social odours (one
739 same sex and one opposite sex novel mouse odours). Both treatment groups and sexes showed
740 the expected patterns of active exploration of each odour followed by habituation across repeated
741 trials and then active exploration of the next novel odour (dishabituation) (Figure 3D and E and
742 supplemental Table 1), indicating that DSS treatment did not negatively impact odour processing
743 or recognition. Together, these findings demonstrate a long-term shift in male-specific
744 preferences for female odours following early-life gut inflammation.


745 To further explore impacts on consummatory mating behaviors, we compared sexually naïve
746 mounting behavior of the VEH- and DSS-treated male mice when paired with a sexually
747 experienced untreated female wildtype control mouse. Over a 15-minute mating session, DSS-
748 treated male mice showed no significant differences in copulatory behaviors compared to VEH
749 males including frequency of mounting ($t(8) = 1.06, p=.32$) and latency to first mount ($t(6) =$
750 $1.30, p=.42$) (Figure 3F). Together, this suggests that early-life DSS treatment has specific
751 deficits on mate-seeking through olfactory cues and not on consummatory sexual behavior.

752

753 *Early-life intestinal inflammation disrupts androgens in males*

754 Given the observed differences in urine odor preferences, we investigated reproductive organ
755 development in DSS- and VEH- treated mice. Male and female reproductive organs were
756 collected following behavior testing and weighed (P110). In males, there was a significant
757 decrease in the weight of the androgen-sensitive seminal vesicles in the DSS-treated animals
758 compared to VEH ($t(23) = 2.44, p=.03$) (Figure 4A). However, there was no significant
759 difference in testes weight between treatments ($t(23) = 1.05, p=.30$) (Figure 4B). In females, we
760 observed no difference in uterus weight ($t(23) = 0.42, p=.68$) (Figure 4C). To further investigate
761 the impairment in male seminal vesicle development, we examined changes in circulating steroid
762 hormones in VEH- and DSS-treated male mice both acutely (P71, 3 days after final DSS
763 treatment) (Figure 4D, E) and chronically (after behavioral testing, P110) (Figure 4F, G). At the
764 acute timepoint (P71), the DSS-treated males showed a significant decrease in serum
765 testosterone ($U = 0, p = .03$) and androstenedione ($U = 0, p = .03$) levels. This decrease was
766 maintained through behavioral testing for androstenedione ($U = 27, p = .01$) but not for
767 testosterone ($U = 46, p = .22$). There were no significant differences in serum progesterone in
768 males at either timepoint and no impacts in females for androstenedione, testosterone, or

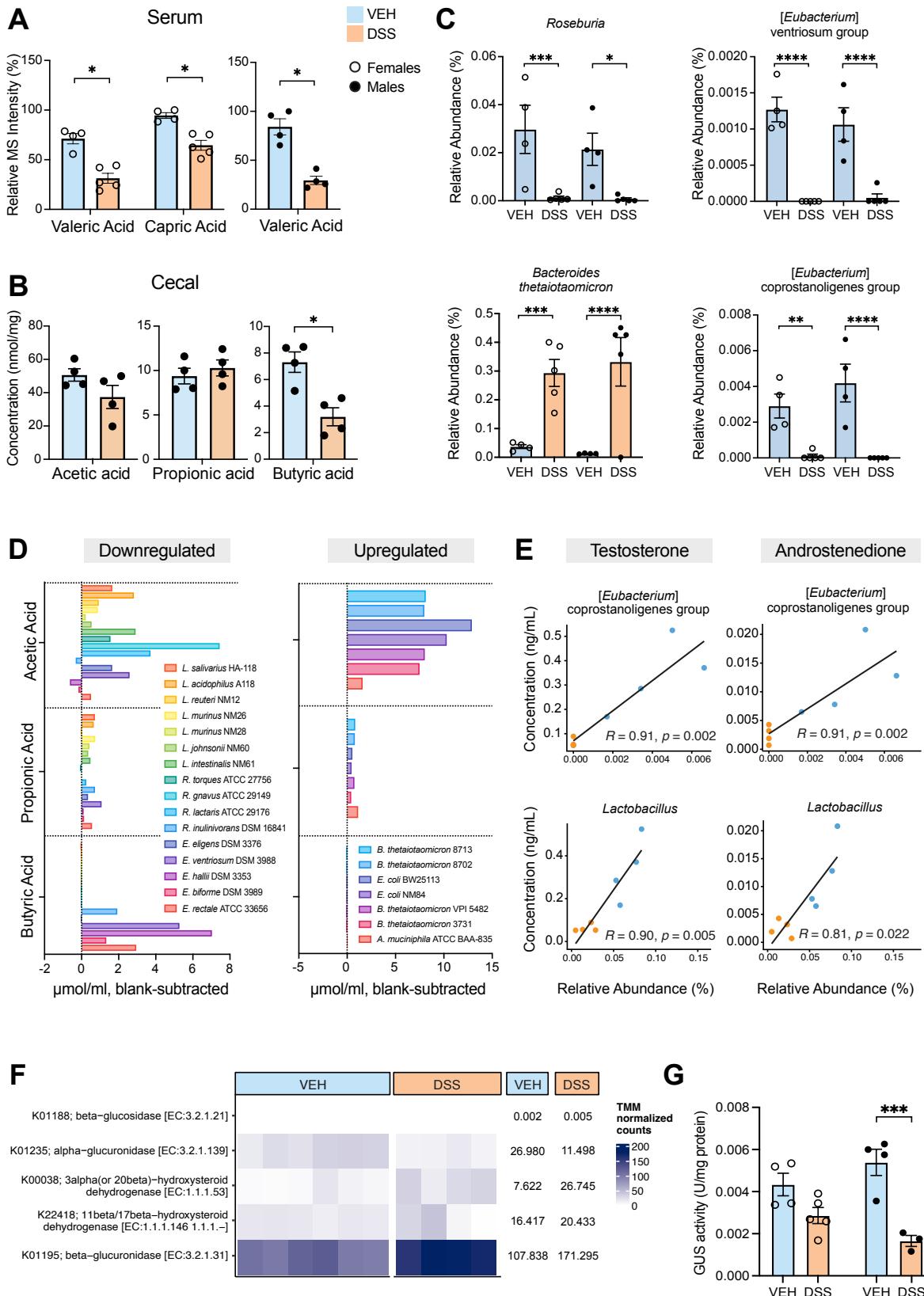
769 progesterone (Supplemental Figure 2). All together, these data indicate that early-life DSS
770 treatment reduces male reproductive organs, potentially through reduced levels of circulating
771 androgens.

772 **Figure 4. Early-life DSS treatment induces male sex-specific impairments in reproductive physiology.** A. Seminal vesicles were significantly lower in weight in DSS-treated male mice than VEH-treated mice at P110. n=12-13/group. B. There were no significant differences in testes weight between DSS- and VEH-treated males at P110. n=12-13/group. C. No significant differences in uterus and ovaries weights between DSS- and VEH-treated females were observed at P110. n=12-13/group. D-E. 3 days after the last DSS treatment (P71), male serum testosterone (D) and androstenedione (E) levels were significantly lower in DSS- than in VEH-treated mice. n=4/group. F-G. Following the last behavioral experiment (P110), male serum testosterone (D) levels were not significantly different between VEH and DSS mice, but androstenedione (E) levels were significantly lower in DSS- than in VEH-treated mice. n=12-13/group. Each graph bar and error bar represent the mean \pm SEM. *p<0.05.

784

785 *Early-life intestinal inflammation alters SCFA/MCFA production and gut microbiome*
786 *composition to favor decreased abundance of SCFA/MCFA-producing taxa*

787 Since we observed changes in microbiome composition immediately following DSS treatment,
788 we then examined circulating short and medium-chain fatty acids (SCFAs and MCFAs
789 respectively) (Figure 5A), which are produced by the gut microbiota. Importantly, SCFAs are
790 known to be disrupted in patients with IBD and can alter sex steroids (Acharya et al., 2024) and
791 brain function (Cryan and Dinan, 2012; Erny et al., 2015; Sullivan and Ciernia, 2022). Acutely

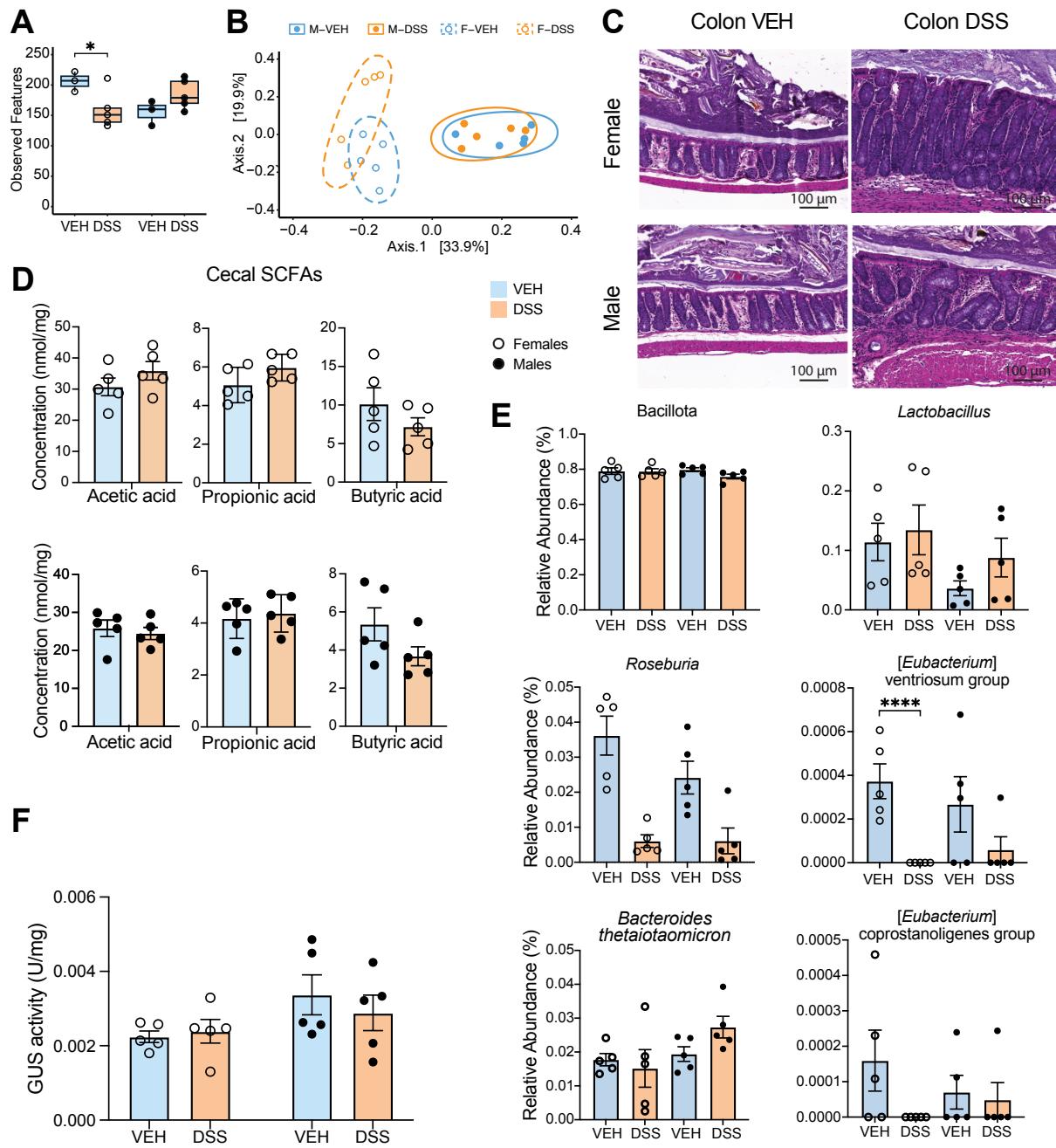

792 following the last round of DSS (P71), DSS treatment significantly reduced female ($p = .014$)
793 and male ($p = .037$) serum levels of valeric acid (see Supplemental Table 1 for full statistics). In
794 females, DSS also decreased serum levels of capric acid ($p = .022$) (Figure 5A). Interestingly, we
795 found no significant differences in levels of acetic, propionic, and butyric acid, which are the
796 most abundant SCFAs and play important roles in maintaining intestinal homeostasis (Venegas
797 et al., 2019). We also measured SCFA/MCFA levels in cecal contents, where butyric acid was
798 the only SCFA that was significantly different between VEH- and DSS-treated males ($p = .0498$)
799 (Figure 5B, see Supplemental Table 1 for full statistics). Critically, butyric acid is an important
800 anti-inflammatory agent that is known to be reduced in patients with IBD (Hodgkinson et al.,
801 2023).

802 We then investigated whether SCFA-producing bacteria were differentially present in VEH- and
803 DSS-treated mice acutely following the last round of DSS at P71 (Figure 5C, Supplemental
804 Figure 3A). Differential abundance analysis revealed that DSS-treated female mice possessed
805 decreased relative abundance of many bacteria genera belonging to the phylum *Bacillota*
806 (Supplemental Figure 3B, See Supplemental Statistics Table for full list), which contains many
807 SCFA-producing bacterial species (Fusco et al., 2023; Mandal et al., 2015). Indeed, the relative
808 abundance of *Bacillota* was moderately correlated with cecal acetic ($R = 0.54, p = .005$) and
809 butyric acid ($R = 0.76, p < .001$) levels (Supplemental Figure 3C). Specifically, DSS-treated
810 mice possessed decreased relative abundance of the genus *Roseburia* ($p_{females} = .0039, p_{males} =$
811 $.0201$) along with several *Eubacterium* groups ([*Eubacterium*] ventriosum group, $p_{females} < .0001$,
812 $p_{males} < .0001$; [*Eubacterium*] xylanophilum group, $p_{females} < .0001, p_{males} = .0062$; [*Eubacterium*]
813 coprostanoligenes group, $p_{females} = .0059, p_{males} < .0001$) – bacterial taxa that are known to
814 produce SCFAs (Figure 5C, D, Supplemental Figure 3B) (Akhtar et al., 2021; Fusco et al., 2023;
815 Mirzaei et al., 2021; Ziętek et al., 2021). Differential abundance analysis also revealed that the
816 species *Bacteroides thetaiotaomicron* ($p_{females} = .0001, p_{males} < .0001$) and *Akkermansia*
817 *muciniphila* ($p_{females} < .0001, p_{males} = ns$) were enriched in DSS-treated mice, bacteria not known
818 to produce butyric acid (Effendi et al., 2022; Kim et al., 2021). To investigate these correlations,
819 we cultured a variety of strains belonging the above identified taxa, then measured production of
820 SCFAs *in vitro* (Figure 5D). This analysis revealed that *Eubacterium* sp. and *Roseburia* sp. are
821 both capable of producing butyric acid and are depleted following DSS treatment, potentially
822 contributing to the decreased concentration of butyric acid in cecal contents. Interestingly, strains
823 that are both more (*Bacteroides* sp. and *Akkermansia* sp.) and less (*Ruminococcus* sp. and
824 *Lactobacillus* sp.) abundant after DSS treatment were capable of producing acetic acid, which
825 may contribute to the lack of significant difference in cecal acetic acid concentration following
826 DSS.

827 Due to the differences observed in mating behaviour and circulating sex hormone levels
828 following DSS treatment, we also examined the potential role of the DSS-altered microbiome in
829 driving these phenotypes. Of the differentially abundant taxa observed, we noted that many have
830 been shown to express β -glucuronidases (GUS) and β -glucosidases, enzymes that convert
831 conjugated hormones to their active form (Ervin et al., 2019; Patel et al., 2023). Strikingly, the
832 relative abundance of several GUS-producing taxa was correlated with serum testosterone and
833 androstenedione concentrations (Figure 5E). For instance, the relative abundance of
834 [*Eubacterium*] coprostanoligenes group was positively correlated with androgen levels
835 (androstenedione, $R = 0.91, p = .002$; testosterone, $R = 0.91, p = .002$). Similarly, the relative
836 abundance of *Lactobacillus* was positively correlated with serum androstenedione ($R = 0.81, p =$

837 .022) and testosterone ($R = 0.90, p = .005$). In contrast, the relative abundance of *Bacteroides*
838 *thetaiotaomicron*, which is known to express a sulfotransferase that can deactivate hormones
839 (Cotton et al., 2023), was negatively correlated with testosterone concentrations ($R = -0.74, p =$
840 $.046$) (Supplemental Figure 3D).

841 Following this observation, we performed shotgun metagenomic sequencing analysis to examine
842 the genomic potential of the microbiota to express hormone-modifying and degrading enzymes
843 (Figure 5F). Supporting the genetic potential of the microbiota in our mice to modify active
844 levels of hormones, we found the presence of genes mapping to various hydroxysteroid
845 dehydrogenases (K00038 and K22418) as well as β -glucuronidase (K01195). Importantly,
846 genomic potential is not a predictor of expression levels or enzyme activity due to various pre-
847 and post-translational regulatory mechanisms. Therefore, we aimed to measure GUS activity
848 directly from cecal contents using a fluorometric molecule conjugated to a glucuronide.
849 Interestingly, GUS activity was significantly decreased in males ($p = .0006$) following DSS
850 treatment, with activity in females trending lower as well ($p = .0856$) (Figure 5G). Taken
851 together, these findings indicate that early life inflammation alters microbiome composition,
852 leading to differences in SCFA producers and GUS activity which correlates with SCFA and
853 androgen levels.


855 **Figure 5. Early-life DSS treatment causes decreases in short- and medium-chain fatty acid**
856 **levels and relative abundance of associated microbiota.** *A.* Serum levels of valeric and caproic
857 acid were significantly lower in DSS-treated females compared to VEH at P71. Valeric acid was
858 also significantly lower in DSS-treated male serum. n=4-5/group. See Supplement for full set of
859 serum statistics. *B.* Cecal levels SCFAs at P71, represented in nmol/mg of contents.
860 Concentration of butyric acid was significantly different in DSS-treated males compared to VEH
861 at P71. n=4-5/group. See Supplement for full set of cecal SCFA statistics. *C.* Relative abundance
862 of select SCFA-producing bacteria. n=4-5/group. *D.* *In vitro* SCFA production from bacterial
863 genera represented in the experimental microbiota. *E.* Correlation of select bacteria with serum
864 testosterone and androstenedione concentrations in males. n=4/group. *F.* Metagenomic
865 abundance of steroid-modifying and steroid-degrading enzymes normalized by TMM, trimmed
866 mean of M-values. Numbers represent mean TMM-normalized counts per treatment for each
867 enzyme. n=4-6/treatment. *G.* GUS activity in cecal contents was significantly lower in DSS-
868 treated males. Activity was measured from cecal contents and normalized to total protein. n=3-
869 5/group. Error bars in bar plots represent SEM. *p<0.05, ***p<.001, ****p<.0001.

870

871 *Early life intestinal inflammation causes long-lasting physiological differences and changes to*
872 *gut microbiota composition*

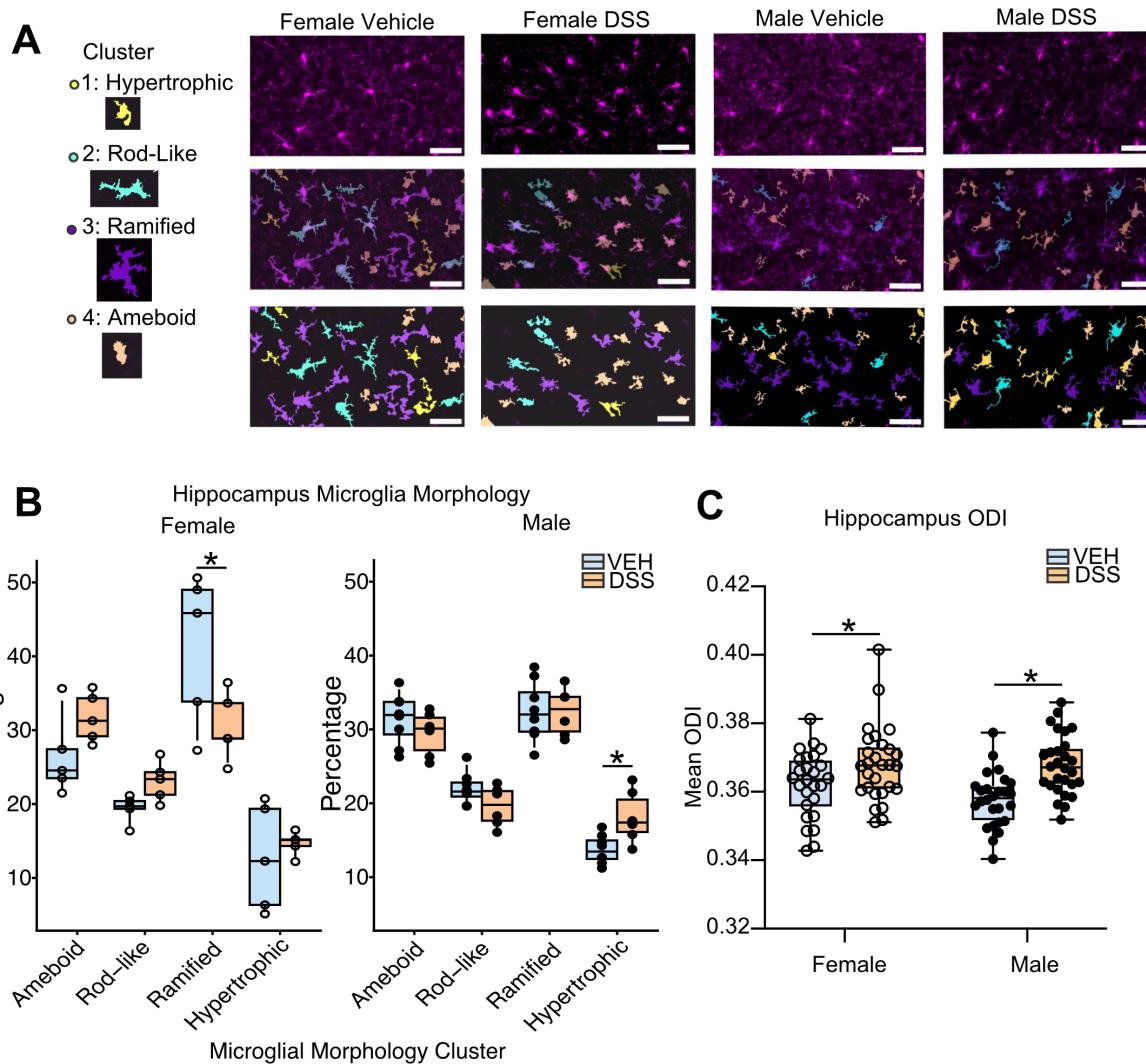
873 Having observed changes in microbially-produced and modified metabolites and bacterial
874 abundance acutely post-inflammation, we sought to measure whether they persisted into
875 adulthood (P110). We first examined microbiome diversity as an indicator of overall lasting
876 effect of DSS. At P110, the number of observed microbiota features remained significantly
877 decreased in female DSS-treated mice compared to VEH ($p = .0207$) (Figure 6A). Additionally,
878 although microbiota compositions (as calculated using Bray-Curtis distances) became more
879 similar between DSS-treated and VEH mice, differences in sex and treatment remained
880 significant (PERMANOVA, $p_{\text{sex}} = .001$, $p_{\text{treatment}} = .004$) (Figure 6B). Consistent with these long-
881 lasting microbiota changes, analysis of colon histology revealed that DSS-treated colons at P110
882 retained several indicators of inflammation at sparsely found regions throughout the gut,
883 specifically intestinal crypt hyperplasia and increased immune cell infiltration (representative
884 images shown, Figure 6C). Nevertheless, the majority of the epithelium along the length of the

885 colon appeared to have recovered after ~40 days post cessation of DSS

886

887 **Figure 6. Early-life DSS treatment causes long-lasting physiological differences and**
 888 **changes to microbiota composition. A. Diversity of microbiota composition ~30 days after**
 889 **cessation of DSS at P110, measured in number of unique features per sample. n=5/group. B.**
 890 **Principle Component Analysis of Bray-Curtis diversity index at P110. n=5/group. C.**

891 Representative histological images of hematoxylin and eosin-stained colons at P110. *D.* Cecal
892 concentrations of SCFAs at P110. n=5/group. See Supplement for full set of cecal
893 measurements. *E.* Relative abundance bar plots of select SCFA-producing bacteria. n=5/group.
894 *F.* GUS activity in cecal contents at P110. Activity measured from cecal contents and normalized
895 to total protein/sample. n=5/group. * $p<.05$, *** $p<.0001$. Error bars in bar plots represent SEM.


896

897 Following these observations, we next sought to examine whether gut bacteria and microbial
898 signaling molecules showed long-lasting changes after recovery. First, we found that there were
899 no significant differences in cecal SCFA levels between VEH- and DSS-treated mice at P110
900 (Figure 6D). Consistent with these results, we found that many of the differentially abundant
901 SCFA-producing taxa identified to be differentially present at P71 such as *Eubacterium*
902 coprostanoligenes group and *Roseburia* were no longer significantly different between
903 treatments. In addition, there were fewer significantly different taxa identified at P110 (Figure
904 6E) compared to the P71 (Supplementary Statistics Table, Supplemental Figure 3A) acute
905 timepoint, indicating that the microbiome composition shifted towards recovery. Of the taxa that
906 remained differentially abundant, *Eubacterium ventriosum* group ($p_{females} < .0001$) is a known
907 SCFA-producing taxa (Figure 6E). Second, we measured GUS activity from cecal contents at
908 this timepoint and found that, consistent with a shift towards recovery, GUS activity was no
909 longer depleted in DSS-treated animals (Figure 6F). Ultimately, these findings support the notion
910 that early life inflammation causes acute changes to the microbiome and microbial signaling
911 molecules, some of which may equilibrate in absence of further inflammation in adulthood.

912

913 *Early-life intestinal inflammation disrupts microglial morphology and brain connectivity in both*
914 *sexes*

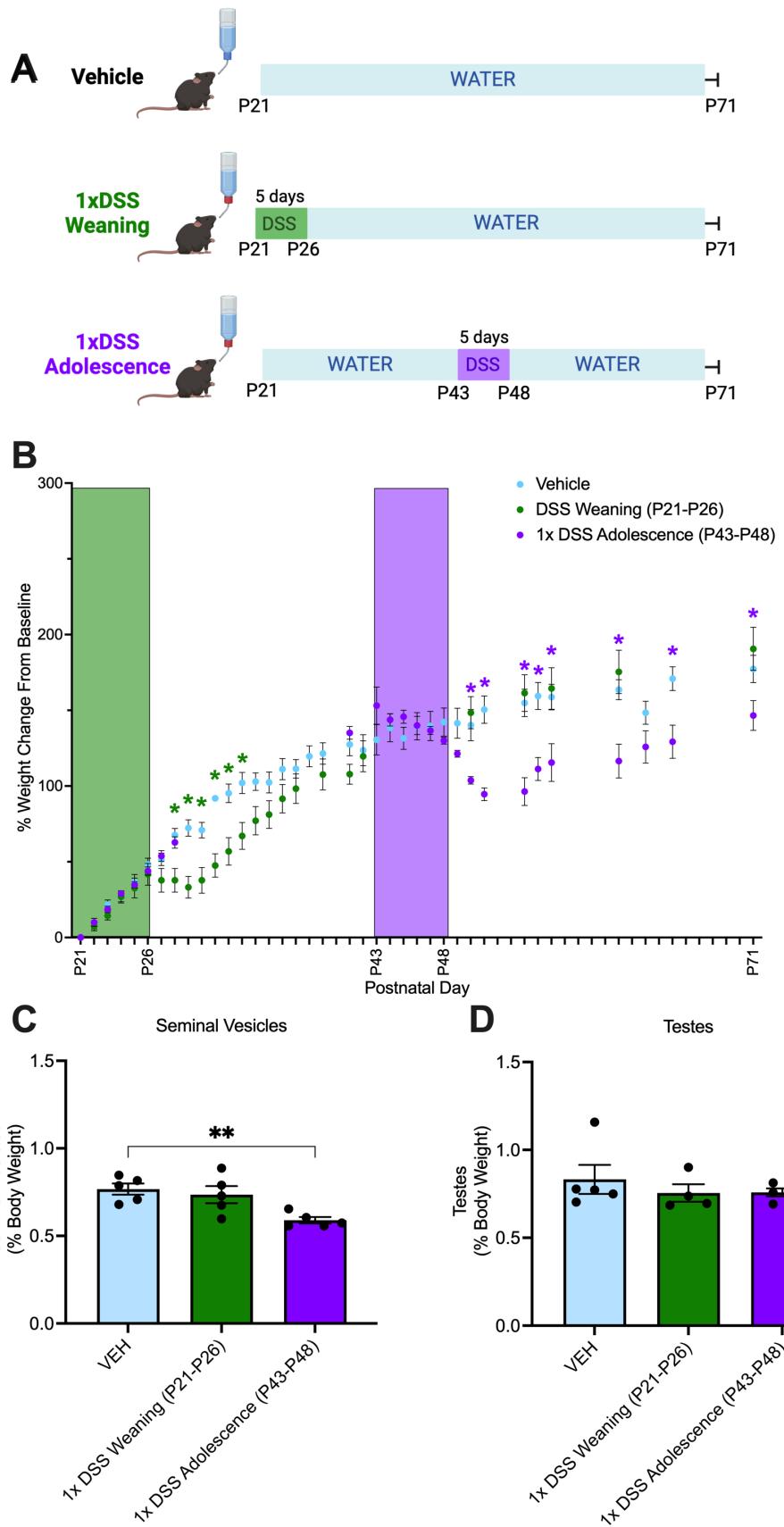
915 SCFAs have been shown to alter microglial morphology and function (Erny et al., 2015). We
916 therefore examined changes in microglial activation state in several brain regions. Using
917 MicrogliaMorphology and MicrogliaMorphologyR (Kim et al., 2024a), we measured 27
918 morphological features from 12,318 microglia in the dorsal hippocampus (average of 513 per
919 mouse) (Figure 7), 5,971 microglia in the hypothalamus (average of 426 per mouse) and 8,482
920 microglia in the cortex (average of 446 per mouse) (Supplemental Figure 4). We identified four
921 clusters of different morphologies (Figure 7A, Supplemental Figure 4D) including microglia
922 showing ameboid, ramified, rod-like and hypertrophic characteristics. Within the dorsal
923 hippocampus there was a significant treatment by cluster interaction within each sex
924 (Supplemental Table 1). Sidak corrected posthoc tests identified a significant decrease in
925 ramified microglia in DSS-treated females (Figure 7B). In males there was a significant increase
926 in hypertrophic microglia in the DSS-treated males. There were no significant differences in
927 hypothalamic or cortical microglia between treatments within either sex (Supplemental Figure
928 4G, H). We further examined expression of cytokine genes and several immune receptors in
929 brain tissue of DSS and VEH treated mice (Supplemental Figure 5). There were no significant
930 differences between treatments within either sex, indicating that the sex-specific impacts of early
931 life DSS treatment on microglia were not solely driven by neuroinflammation.

932

933 **Figure 7. Long-Term Microglial Morphology and Extraneurite Microstructure Changes**
934 **Following Early-Life DSS.** *A.* Clusters were assigned to morphology descriptions based on
935 relationship to individual metrics (see supplemental Figure 4). *B.* Example images from dorsal
936 hippocampus of female (P110) and male (P72 and P110) vehicle and DSS treated mice reveals
937 sex-specific changes in microglial morphology. Top panel is IBA1 staining. Middle panel is the
938 overlay with individual cell morphology clusters and the bottom panel is the individual cell
939 labels for each cluster. All scale bars are 50 μ m. *B.* Quantification of the percentage of microglia
940 within each cluster between treatment conditions for females and males. DSS significantly
941 decreased the proportion of ramified microglia in females and increased hypertrophic microglia
942 in males. $n=4-8/\text{group}$ *C.* Orientation dispersion index (ODI) was calculated for the bilateral
943 hippocampus across all samples. Data points are mean ODI values from each sample. Both males
944 and females had significant increases in ODI in the DSS treatment when compared to treatment
945 with the vehicle alone. $n= 25-28/\text{group}$ $* = p < .05$, $*** = p < .001$.

946

947 *Clinical-translational quantitative neuroimaging reveals extraneuritic hippocampal*
948 *microstructural changes following early life inflammation in both sexes*


949 We performed ex-vivo multicompartment (MC) diffusion MRI and fit it to the neurite orientation
950 and dispersion index (NODDI) model to assess and compare microstructural changes across
951 biologically relevant regions (hippocampus, amygdala, striatum, thalamus, hypothalamus, frontal
952 association cortex) between the VEH- and DSS-treated mice. MC diffusion MRI enables non-
953 invasive characterization of neuronal cytoarchitecture at the mesoscale (1- 100 μ m). Specifically,
954 NODDI diffusion MRI permits non-invasive quantification of neuronal microstructure by
955 measuring neurite density and cellular and morphometric changes occurring in the extra-
956 neuronal space. In our imaging experiments, the mean orientation dispersion index (ODI, extra-
957 neurite) and mean neurite density index (NDI, intra-neurite) values were tested using a 2x2
958 ANOVA considering the effects of treatment and sex. For ODI, a significant main effect of
959 treatment was identified in the hippocampus (FDR-adjusted $p = .0002$, partial $\eta^2 = .1560$)
960 (Figure 7D). Post-hoc testing identified that both males and females had a significant increase in
961 their ODI value when treated with DSS compared to VEH (males: Fisher's LSD $p = .0001$;
962 females: Fisher's LSD $p = .0269$). Additionally, a significant main effect of treatment was found
963 in the thalamus (FDR-adjusted $p = .0095$, partial $\eta^2 = .0822$) (Supplemental Figure 6). Post-hoc
964 testing indicated that females had a significant increase in their ODI value when treated with
965 DSS compared to VEH, but that the increase in males did not reach significance (males: Fisher's
966 LSD $p = .2353$; females: Fisher's LSD $p = .0023$). No significant treatment by sex interactions
967 were identified in either the thalamus or hippocampus. No significant treatment or treatment by
968 sex interaction effects were found in the frontal association cortex, amygdala, striatum, and
969 hypothalamus. Furthermore, for NDI, no significant effects were identified in any of the regions
970 of interest. Supplemental Table 1 contains the full findings for all regions tested.

971

972 *Early-life intestinal inflammation specifically during adolescence decreases seminal vesicle*
973 *weight*

974 To examine whether the developmental timing of one DSS treatment is sufficient to induce
975 impairments in male sex organ development, we treated male mice with DSS for 5 days either at
976 weaning (1xDSS Weaning) or during adolescence (1xDSS Adolescence) and collected seminal
977 vesicles at P71 (Figure 8). We found that DSS treatment produced significant decreases in body
978 weight (treatment x day interaction $F(46, 318) = 15.111, p < .0001$) following DSS treatment in
979 both groups (Figure 8 and Supplemental Table S1 and S2). DSS treatment during adolescence
980 significantly decreased seminal vesicle weights, highlighting this developmental period as
981 specifically sensitive to inflammatory effects on endocrine function ($F(2, 12) = 7.514, p = .009$,
982 $p = .0075$). Conversely, DSS treatment during weaning did not alter seminal vesicle weight at P71
983 ($p = .7565$). Furthermore, there was no difference in testes weight between treatments $F(2, 11)$
984 $= .575, p = .5788$.

985

987 **Figure 8.** DSS Treatment During Adolescence Decreases Seminal Vesicle Weight. *A.* Male mice
988 were treated with a single pulse of DSS at either weaning (P21-26) or adolescence (P43-48) and
989 were euthanized on P71. *B.* Body weight decreases following DSS treatment for the weaning
990 group at P28-33 and following DSS treatment for the adolescent group beginning on P50 through
991 the remainder of the experiment. *p<0.05 Sidak corrected posthoc tests. *C.* Seminal vesicle
992 weights were significantly lower in the adolescent DSS treatment group compared to vehicle
993 controls. *D.* Testes weights were not significantly different across treatments. n=4/group. Each
994 graph bar and error bar represent the mean ± SEM. *p<.05.

995

996 Discussion

997 The incidence of IBD is high and increasing, especially in early life (Benchimol et al., 2017,
998 2014; Ng et al., 2017), and the disease is particularly challenging when it develops in children.
999 Delay in the onset and progression through puberty is common in this population, and can result
1000 in reduced adult height and sexual immaturity (Gupta et al., 2020). In this study, we assessed the
1001 microbiome, intestinal, endocrine, brain, and behavioral effects of repeated DSS-induced gut
1002 inflammation in early life by developing a novel model of juvenile IBD. While early life gut
1003 inflammation did not impair the majority of the adult rodent behavioral repertoire, we identified
1004 a unique deficit in preference for female urine in DSS-treated male mice. These deficits in mate-
1005 seeking behavior corresponded to a decrease in seminal vesicle size, blunted circulating levels of
1006 androgen hormones and SCFAs, an altered gut microbiota, and altered hormone-modifying
1007 enzyme activity. Microglia were altered in the hippocampus, indicating hippocampal dysfunction
1008 may contribute to reproductive behavioral deficits in males (Kight and McCarthy, 2020).

1009 In our model, DSS significantly decreased seminal vesicle weight (Figure 4A), circulating sex
1010 hormone levels (Figure 4D-E), and impaired male-specific preference for female urine (Figure
1011 3C) – a key aspect of mate-seeking behavior in rodents (Keller et al., 2008; Malkesman et al.,
1012 2010). These differences were not driven by impaired olfactory discrimination, as both sexes and
1013 treatments performed normally on the olfactory habituation-dishabituation paradigm (Figure 3D-
1014 E). In both adolescent males and females with IBD, puberty onset is often delayed and
1015 progression through puberty is often prolonged, especially in patients with disease relapses
1016 (Hildebrand et al., 1994). Furthermore, adults with IBD report increased rates of sexual
1017 dysfunction (Bel et al., 2015), and infertility in both men (Hammami and Mahadevan, 2020) and
1018 women (Zhang et al., 2021; Zhao et al., 2019). This is consistent with findings from our study,
1019 where we found that DSS-treated male mice had decreased androgen hormones (Figure 4D-E)
1020 that may have directly contributed to the decrease in seminal vesicle weight (Yamane et al.,
1021 1986). Additionally, we observed that seminal vesicles in DSS-treated male mice were often not
1022 descended fully within the abdominal cavity (data not shown), and that a single DSS treatment
1023 during adolescence was sufficient to cause a decrease in seminal vesicle size (Figure 8C). While
1024 we did not observe direct impacts on male mounting behavior, future work will be required to
1025 fully examine the impacts of early life DSS on adult male reproduction and fertility.

1026 Research suggests that hormone supplementation could potentially alleviate symptoms of IBD
1027 (Nasser et al., 2015; Rosen et al., 2015). However, the use of hormone supplementation in
1028 adolescents with IBD is contentious and can pose substantial risks due to potential side effects

1029 such as weight gain, mood changes, sleep disruption, and increased susceptibility to infections
1030 (Bishop et al., 2014). This necessitates new, non-hormone based therapies for treating adolescent
1031 IBD. The microbiota represents a potential lever for management of IBD-mediated alterations in
1032 hormones and development. Germ-free mice are known to have changes in sex hormones and
1033 pubertal onset (Markle et al., 2013; Weger et al., 2019), suggesting that the gut microbiome
1034 regulates sex hormone levels of the host. Furthermore, sex hormones can in turn regulate the gut
1035 microbiome and gastrointestinal transit time (Rastelli et al., 2022). This bidirectional relationship
1036 develops during puberty (Korpela et al., 2021). In both sexes, puberty is marked by increasing
1037 abundance of estrogen-metabolizing Clostridia and decreasing abundance of Bacteroidia
1038 (Korpela et al., 2021). Specific gut microbiota members can also secrete β -glucuronidase and β -
1039 glucosidase enzymes that deconjugate inactivated estrogens and androgens back to their active
1040 form (Ervin et al., 2019; Patel et al., 2023). These re-activated hormones are then secreted back
1041 into the circulating blood, where they can act throughout the body. In humans, estrogen levels
1042 are strongly and significantly associated with fecal Clostridia taxa, including three genera in the
1043 Ruminococcaceae family (Flores et al., 2012). This suggests that gut microbial families such as
1044 Ruminococcaceae may directly influence levels of host sex-hormones such as estrogen.
1045 Disruption of β -glucuronidase-producing microbiota results in a reduction in circulating
1046 estrogens (Baker et al., 2017), impairing the feedback loop between sex hormone levels and gut
1047 microbiota composition. In our novel model of pediatric IBD, we report differences in the key β -
1048 glucuronidase-expressing genus *Roseburia* acutely following the final round of DSS treatment,
1049 along with several *Eubacterium* groups that are known to deconjugate estrogens (Figure 5C)
1050 (Ervin et al., 2019). The relative abundance of these taxa were positively correlated with serum
1051 testosterone and androstenedione concentrations (Figure 5E), highlighting the potential
1052 involvement of these gut microbes in regulating systemic hormone levels. In addition, we
1053 observed significant decreases in cecal β -glucuronidase activity in DSS-treated males, with
1054 activity also trending lower in DSS-treated females (Figure 5G). Subsequently, we found that
1055 after resolution of inflammation, the microbiome shifts towards recovery – with most of the
1056 alterations in microbiome composition and microbial signalling molecules resolving (Figure 6).
1057 Together, these findings suggest that future microbiota-targeted therapeutics specifically
1058 impacting hormone-regulating microbes could potentially offset the negative effects of IBD on
1059 sexual health.

1060 How changes in gut inflammation drive endocrine, brain and behavior changes is not well
1061 understood, but metabolite signalling molecules have been proposed as a potential link between
1062 all three systems (Silva et al., 2020). A number of metabolites have been implicated in IBD
1063 pathogenesis, including SCFAs, secondary bile acids (SBA) and tryptophan (Lavelle and Sokol,
1064 2020; Sinha et al., 2020). These microbiota-derived metabolic signals can cross the blood-brain
1065 barrier (Mertens et al., 2017; Mitchell et al., 2011; Wenzel et al., 2020) and are critical for
1066 normal microglial development, gene regulation and metabolism (Erny et al., 2021, 2015; Thion
1067 et al., 2017). In our study, we found more differences in SCFA/MCFA abundances at the acute
1068 timepoint in the serum of DSS mice compared to VEH than in cecal contents (Figure 5A-B).
1069 This difference could be due to SCFAs being absorbed by host cells for use as energy sources. In
1070 particular, intestinal epithelial cells utilize SCFAs (particularly butyric acid) as a main source of
1071 energy, causing the concentration of SCFAs in the blood to decrease compared to what is
1072 measured in the cecum (den Besten et al., 2013). It has also been shown that butyrate uptake by
1073 colonocytes is impaired in inflamed IBD patient tissues (Thibault et al., 2010). Thus, DSS-
1074 induced inflammation could cause decoupling of cecal and serum SCFA concentrations. The

1075 reduced levels of some SCFAs observed in our pediatric IBD model may be responsible for the
1076 abnormal microglial morphology we observed (Figure 7B-C), with potential negative impacts on
1077 microglial regulation of neural circuit formation during formative years in childhood and
1078 adolescence (Sullivan and Ciernia, 2022). While previous work has shown that DSS can increase
1079 microglial inflammatory gene expression acutely in adult animals, with males showing a stronger
1080 response than females (Caetano-Silva et al., 2024), we did not observe changes in cytokine
1081 expression in our experiments (Supplemental Figure 5). However, prior work on the impacts of
1082 SCFAs on neuroinflammation is mixed. For example, increasing dietary fiber can offset the
1083 impacts of aging on microglial gene expression (Vailati-Riboni et al., 2022); however, a high
1084 fiber diet enhanced microglial inflammatory gene expression in an adult DSS model (Caetano-
1085 Silva et al., 2024) and acetate treatment exacerbated pathology in an Alzheimer's disease mouse
1086 model (Erny et al., 2021), suggesting more work is needed to understand how SCFAs modulate
1087 microglia. We found decreases in valeric acid in both males and females treated with DSS.
1088 Valerate, a ester of valeric acid, suppressed inflammation induced microglial phagocytosis in an
1089 immortalized human microglia cell line (Wenzel et al., 2020). Consistent with these findings, we
1090 observed decreased proportions of ramified microglia in DSS-treated females (Figure 7B,
1091 indicating a decrease in homeostatic microglia. We also observed an increase in hypertrophic
1092 microglia in DSS-treated males (Figure 7B), a phenotype observed previously during
1093 neuroinflammation(Kim et al., 2024b). Together, these findings suggest that early life gut
1094 inflammation can alter metabolite signaling to the brain, influencing microglial morphology in a
1095 sex-specific manner. Future work will be needed to connect the alterations in SCFA directly to
1096 microglial morphological state shifts and functions related to behaviors during development.

1097

1098 In order to test the therapeutic efficacy of any future intervention in humans, diagnostic
1099 biomarkers and biomarkers of therapeutic response are critically needed. Herein, we
1100 demonstrated that early-life DSS treatment altered increased extra-neurite signal in NODDI
1101 within the hippocampus and thalamus, but not other brain regions. The NODDI model is has
1102 been used previously to calculate the diffusion signal specific to intra-neurite and extra-neurite
1103 compartments of the brain and is sensititve to various neuropathological states (Barnett et al.,
1104 2019; Singh et al., 2023; Stowe et al., 2024; Yi et al., 2022). Consistent with our prior work (Yi
1105 et al., 2019), changes in the ODI signal alone are consistent with its sensitivity to microglial
1106 morphology and density (Figure 7C). Importantly, this imaging technique is being developed for
1107 use in humans (Garcia-Hernandez et al., 2022), paving the way for future studies to examine
1108 microglial changes in humans with IBD.

1109 Finally, our main behavioral battery tested mouse anxiolytic, repetitive, cognitive, social and
1110 depressive-like behavior and found no significant differences between control and DSS-treated
1111 mice (Figure 2). This is in contrast to previous findings (Salvo et al., 2020), where 5 days of DSS
1112 at weaning (P21) resulted in adult (P56+) behavioral deficits on the novel object recognition task
1113 and light-dark task. This finding is rather unique in that the majority of adult DSS models show
1114 altered anxiety and memory only during active inflammation (Emge et al., 2016) and would be
1115 consistent with our findings that after recovery behavior is largely normal. One of the major
1116 differences between our work in Salvo et al., 2020 is that we used three repeated DSS treatments.
1117 The chronic nature of the current study may have induced resiliency and a faster recovery than in
1118 a single DSS treatment. Previous work in adult mice comparing one versus repeated rounds of

1119 DSS treatment found that acute-treated mice showed impairments in memory, repetitive,
1120 depression and anxiety like behaviors while chronically treated mice only showed deficits in
1121 repetitive behaviors (Matisz et al., 2020). The authors suggest that the lack of behavior deficits in
1122 the repeated DSS treatment group may have been due to an adaptive or tolerizing effect of
1123 repeated DSS cycles (Matisz et al., 2020). Similar findings in adult mice treated with repeated
1124 rounds of DSS found no changes in locomotion, anxiety, depression or compulsive like
1125 behaviors. However, they did find lasting alterations in social interactions (Brown et al., 2024),
1126 which we did not observe. Salvo et al. did not examine sex-specific behaviors in their model; in
1127 contrast, we have observed impacts specifically on male development. When we specifically
1128 treated adolescent mice with DSS we found impacts on seminal vesicle development (Figure 8C)
1129 similar to those observed after three rounds of DSS (Figure 4A), suggesting that DSS impacts on
1130 male sexual development are driven by impacts during adolescence. Future work is required to
1131 replicate and extend our findings to identify how timing of DSS treatment impacts reproductive
1132 health including the onset of puberty and life-long fertility.

1133 The incidence of pediatric onset IBD disease has doubled in the last 10 years (Ashton and Beattie,
1134 2024), and young children with IBD often have more severe disease and more frequent health
1135 visits than adults (Benchimol et al., 2011). Their illness also imposes a large emotional and
1136 financial toll on families and caregivers (Herzer et al., 2011). Developing effective treatments for
1137 adolescents with IBD holds great promise, as reducing inflammation early in the disease course
1138 may prevent long-term complications, need for surgery, and hospitalization. Our novel mouse
1139 model of pediatric onset IBD, which captures alterations in the microbiome, microbial signaling
1140 molecules and brain-behavior disruption, represents a unique avenue for advancing our
1141 mechanistic understanding of IBD in this key subpopulation. Our findings open the door for new
1142 treatment avenues for therapeutics targeted to adolescents with IBD, with minimal side effects
1143 and maximal benefits for growth, development, and quality of life.

1144

1145 **Funding**

1146 Research Corporation for Science Advancement, Scialog SA-MND-2021-001 (to CT, JPY) and
1147 Scialog SA-MND-2023-028a and SA-MND-2023-035c (to AVC). Canadian Institutes of Health
1148 Research (CIHR) Project Grant (to AVC, CT), Michael Smith Foundation Health Research
1149 Scholar Award (to CT, AVC), Canada Tier 2 Research Chair, Quantitative Microbiota Biology
1150 for Health Applications (to CT), Canada Tier 2 Research Chair, Understanding Gene Expression
1151 in the Brain (to AVC), Paul Allen Distinguished Investigator Award (to CT), Johnson & Johnson
1152 WiSTEM2D Award (to CT), Brain Canada Future Leaders Award (to AVC), Research
1153 Corporation for Science Advancement Award (to AVC), UBC DMCBH pilot award (to AVC),
1154 National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
1155 (RGPIN-2020-04895) (to TH), PEO International Peace Scholarship and World Universities
1156 Ramsay Postgraduate Scholarship (to SC). None of the funding sources influenced any aspect of
1157 the study design, data collection, analysis, interpretation or writing of the manuscript.

1158
1159

1160 **Acknowledgements**

1161 The authors acknowledge that the land we performed this research on is the traditional, ancestral,
1162 and unceded territory of the xwməθkwəy̓əm (Musqueam) Nation. The land it is situated on has
1163 always been a place of learning for the Musqueam people, who for millennia have passed on in
1164 their culture, history, and traditions from one generation to the next on this site. We encourage
1165 others to learn more about the native lands in which they live and work at <https://native-land.ca/>.

1166 This work would not be possible without the help of numerous core facilities. In particular, the
1167 authors would like to acknowledge the staff at the Centre for Disease Modeling (CDM) at UBC,
1168 Ingrid Barta at UBC Animal Care Services (ACS) Histology, and the UBC Biofactorial High-
1169 Throughput Biology Facility, supported by the University of British Columbia Global Research
1170 Excellence Biological Resilience Initiative. Thank you to the Djavad Mowafaghian Centre for
1171 Brain Health NeuroImaging and NeuroComputation Core (NINC) for data storage and
1172 computational resources. This research was supported in part through computational resources
1173 and services provided by the Advanced Research Computing at the University of British
1174 Columbia. Additionally, we would like to thank the Kopp Lab at UBC for allowing use of their
1175 tissue processor, embedder, microtome, and slide scanner. Finally, this work received support
1176 from the BC Children's Hospital Histology Core, Dr. Andy Sham, Dr. Catherine Chan, and the
1177 team from the Gut4Health Microbiome Core Facility at the BC Children's Hospital Research
1178 Institute, Lisa Nikolai from the Chromatography Facility at the Faculty of Agricultural, Life &
1179 Environmental Sciences at the University of Alberta, and Dr. Ian Nation from Animal Pathology
1180 Services Ltd. (Canmore, Alberta). Thank you to Dr. Shelly McErlane for consultation on sex
1181 organ collection in mice. Thank you to the Centre for Disease Modeling staff and animal
1182 technicians for assistance with mouse experiments and animal care.

1183
1184

References

1185 Acharya, A., Shetty, S.S., Kumari N, S., 2024. Role of gut microbiota derived short chain fatty
1186 acid metabolites in modulating female reproductive health. *Human Nutrition &*
1187 *Metabolism* 36, 200256. <https://doi.org/10.1016/j.hnm.2024.200256>

1188 Akhtar, M., Chen, Y., Ma, Z., Zhang, X., Shi, D., Khan, J.A., Liu, H., 2021. Gut microbiota-derived
1189 short chain fatty acids are potential mediators in gut inflammation. *Anim Nutr* 8, 350–
1190 360. <https://doi.org/10.1016/j.aninu.2021.11.005>

1191 Alatab, S., Sepanlou, S.G., Ikuta, K., Vahedi, H., Bisignano, C., Safiri, S., Sadeghi, A., Nixon, M.R.,
1192 Abdoli, A., Abolhassani, H., Alipour, V., Almadi, M.A.H., Almasi-Hashiani, A.,
1193 Anushiravani, A., Arabloo, J., Atique, S., Awasthi, A., Badawi, A., Baig, A.A.A., Bhala, N.,
1194 Bijani, A., Biondi, A., Borzì, A.M., Burke, K.E., Carvalho, F., Daryani, A., Dubey, M.,
1195 Eftekhari, A., Fernandes, E., Fernandes, J.C., Fischer, F., Haj-Mirzaian, Arvin, Haj-
1196 Mirzaian, Arya, Hasanzadeh, A., Hashemian, M., Hay, S.I., Hoang, C.L., Househ, M.,
1197 Ilesanmi, O.S., Balalami, N.J., James, S.L., Kengne, A.P., Malekzadeh, M.M., Merat, S.,
1198 Meretoja, T.J., Mestrovic, T., Mirrakhimov, E.M., Mirzaei, H., Mohammad, K.A., Mokdad,
1199 A.H., Monasta, L., Negoi, I., Nguyen, T.H., Nguyen, C.T., Pourshams, A., Poustchi, H.,
1200 Rabiee, M., Rabiee, N., Ramezanizadeh, K., Rawaf, D.L., Rawaf, S., Rezaei, N., Robinson,
1201 S.R., Ronfani, L., Saxena, S., Sepehrimanesh, M., Shaikh, M.A., Sharafi, Z., Sharif, M.,
1202 Siabani, S., Sima, A.R., Singh, J.A., Soheili, A., Sotoodehmanesh, R., Suleria, H.A.R.,
1203 Tesfay, B.E., Tran, B., Tsoi, D., Vacante, M., Wondmieneh, A.B., Zarghi, A., Zhang, Z.-J.,

1204 Dirac, M., Malekzadeh, R., Naghavi, M., 2020. The global, regional, and national burden
1205 of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic
1206 analysis for the Global Burden of Disease Study 2017. *The Lancet Gastroenterology &*
1207 *Hepatology* 5, 17–30. [https://doi.org/10.1016/S2468-1253\(19\)30333-4](https://doi.org/10.1016/S2468-1253(19)30333-4)

1208 Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B.,
1209 2010. Orientationally invariant indices of axon diameter and density from diffusion MRI.
1210 *Neuroimage* 52, 1374–1389. <https://doi.org/10.1016/j.neuroimage.2010.05.043>

1211 Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A., 1990.
1212 Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for
1213 analyzing mixed microbial populations. *Appl Environ Microbiol* 56, 1919–1925.
1214 <https://doi.org/10.1128/aem.56.6.1919-1925.1990>

1215 Ananthakrishnan, A.N., 2013. Environmental Risk Factors for Inflammatory Bowel Disease.
1216 *Gastroenterol Hepatol (N Y)* 9, 367–374.

1217 Andrews, S., 2010. FastQC: A Quality Control tool for High Throughput Sequence Data [WWW
1218 Document]. FASTQC: A Quality Control tool for High Throughput Sequence Data. URL
1219 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (accessed 5.15.24).

1220 Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., Ortiz-De-Solorzano, C., 2010.
1221 3D reconstruction of histological sections: Application to mammary gland tissue.
1222 *Microscopy Research and Technique* 73, 1019–1029.
1223 <https://doi.org/10.1002/jemt.20829>

1224 Ashton, J.J., Beattie, R.M., 2024. Inflammatory bowel disease: recent developments. *Arch Dis
1225 Child* 109, 370–376. <https://doi.org/10.1136/archdischild-2023-325668>

1226 Attree, E.A., Dancey, C.P., Keeling, D., Wilson, C., 2003. Cognitive Function in People With
1227 Chronic Illness: Inflammatory Bowel Disease and Irritable Bowel Syndrome. *Applied
1228 Neuropsychology* 10, 96–104. https://doi.org/10.1207/S15324826AN1002_05

1229 Azooz, O.G., Farthing, M.J.G., Savage, M.O., Ballinger, A.B., 2001. Delayed puberty and response
1230 to testosterone in a rat model of colitis. *American Journal of Physiology-Regulatory,
1231 Integrative and Comparative Physiology* 281, R1483–R1491.
1232 <https://doi.org/10.1152/ajpregu.2001.281.5.R1483>

1233 Baker, J.M., Al-Nakkash, L., Herbst-Kralovetz, M.M., 2017. Estrogen–gut microbiome axis:
1234 Physiological and clinical implications. *Maturitas* 103, 45–53.
1235 <https://doi.org/10.1016/j.maturitas.2017.06.025>

1236 Ballinger, A.B., Savage, M.O., Sanderson, I.R., 2003. Delayed Puberty Associated with
1237 Inflammatory Bowel Disease. *Pediatr Res* 53, 205–210.
1238 <https://doi.org/10.1203/01.PDR.0000047510.65483.C9>

1239 Banfi, D., Moro, E., Bosi, A., Bistolfi, M., Cerantola, S., Crema, F., Maggi, F., Giron, M.C.,
1240 Giaroni, C., Baj, A., 2021. Impact of Microbial Metabolites on Microbiota–Gut–Brain Axis
1241 in Inflammatory Bowel Disease. *Int J Mol Sci* 22, 1623.
1242 <https://doi.org/10.3390/ijms22041623>

1243 Bao, C.H., Liu, P., Liu, H.R., Wu, L.Y., Shi, Y., Chen, W.F., Qin, W., Lu, Y., Zhang, J.Y., Jin, X.M.,
1244 Wang, X.M., Zhao, J.M., Liu, X.M., Tian, J., Wu, H.G., 2015. Alterations in brain grey
1245 matter structures in patients with Crohn's disease and their correlation with
1246 psychological distress. *Journal of Crohn's and Colitis*. <https://doi.org/10.1093/ecco-jcc/jjv057>

1248 Bayless, D.W., Davis, C.-H.O., Yang, R., Wei, Y., de Andrade Carvalho, V.M., Knoedler, J.R., Yang,
1249 T., Livingston, O., Lomvardas, A., Martins, G.J., Vicente, A.M., Ding, J.B., Luo, L., Shah,
1250 N.M., 2023. A neural circuit for male sexual behavior and reward. *Cell* 186, 3862-
1251 3881.e28. <https://doi.org/10.1016/j.cell.2023.07.021>

1252 Bel, L.G.J., Vollebregt, A.M., Van der Meulen-de Jong, A.E., Fidder, H.H., Ten Hove, W.R., Vliet-
1253 Vlieland, C.W., Ter Kuile, M.M., de Groot, H.E., Both, S., 2015. Sexual Dysfunctions in
1254 Men and Women with Inflammatory Bowel Disease: The Influence of IBD-Related
1255 Clinical Factors and Depression on Sexual Function. *J Sex Med* 12, 1557–1567.
1256 <https://doi.org/10.1111/jsm.12913>

1257 Benchimol, E.I., Bernstein, C.N., Bitton, A., Carroll, M.W., Singh, H., Otley, A.R., Vutcovici, M., El-
1258 Matary, W., Nguyen, G.C., Griffiths, A.M., Mack, D.R., Jacobson, K., Mojaverian, N.,
1259 Tanyingoh, D., Cui, Y., Nugent, Z.J., Coulombe, J., Targownik, L.E., Jones, J.L., Leddin, D.,
1260 Murthy, S.K., Kaplan, G.G., 2017. Trends in epidemiology of pediatric inflammatory
1261 bowel disease in Canada: Distributed network analysis of multiple population-based
1262 provincial health administrative databases. *American Journal of Gastroenterology* 112,
1263 1120–1134. <https://doi.org/10.1038/ajg.2017.97>

1264 Benchimol, E.I., Manuel, D.G., Guttmann, A., Nguyen, G.C., Mojaverian, N., Quach, P., Mack,
1265 D.R., 2014. Changing age demographics of inflammatory bowel disease in Ontario,
1266 Canada: A population-based cohort study of epidemiology trends. *Inflammatory Bowel
1267 Diseases*. <https://doi.org/10.1097/MIB.0000000000000103>

1268 Benchimol, E.I., To, T., Griffiths, A.M., Rabeneck, L., Guttmann, A., 2011. Outcomes of pediatric
1269 inflammatory bowel disease: Socioeconomic status disparity in a universal-access
1270 healthcare system. *Journal of Pediatrics* 158.
1271 <https://doi.org/10.1016/j.jpeds.2010.11.039>

1272 Bishop, J., Lemberg, D., Day, A., 2014. Managing inflammatory bowel disease in adolescent
1273 patients. *Adolesc Health Med Ther* 5, 1–13. <https://doi.org/10.2147/AHMT.S37956>

1274 Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina
1275 sequence data. *Bioinformatics* 30, 2114–2120.
1276 <https://doi.org/10.1093/bioinformatics/btu170>

1277 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H.,
1278 Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A.,
1279 Brislaw, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope,
1280 E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C.,
1281 Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson,
1282 D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower,
1283 C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe,
1284 C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciol, T., Kreps, J., Langille, M.G.I.,
1285 Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D.,
1286 McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T.,
1287 Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L.,
1288 Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S.,
1289 Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R.,
1290 Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-
1291 Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel,

1292 M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis,
1293 A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., Caporaso, J.G., 2019.
1294 Reproducible, interactive, scalable and extensible microbiome data science using QIIME
1295 2. *Nat Biotechnol* 37, 852–857. <https://doi.org/10.1038/s41587-019-0209-9>

1296 Brain, C.E., Savage, M.O., 1994. Growth and puberty in chronic inflammatory bowel disease.
1297 *Baillieres Clin Gastroenterol* 8, 83–100. [https://doi.org/10.1016/s0950-3528\(06\)80020-5](https://doi.org/10.1016/s0950-3528(06)80020-5)

1298 Brooks, M.E., Kristensen, K., Benthem, K.J. van, Magnusson, A., Berg, C.W., Nielsen, A., Skaug,
1299 H.J., Mächler, M., Bolker, B.M., 2017. glmmTMB Balances Speed and Flexibility Among
1300 Packages for Zero-inflated Generalized Linear Mixed Modeling. *The R Journal* 9, 378–
1301 400.

1302 Brown, D.G., Murphy, M., Cadeddu, R., Bell, R., Weis, A., Chiaro, T., Klag, K., Morgan, J., Coon,
1303 H., Stephens, W.Z., Bortolato, M., Round, J.L., 2024. Colitis reduces active social
1304 engagement in mice and is ameliorated by supplementation with human microbiota
1305 members. *Nat Commun* 15, 2769. <https://doi.org/10.1038/s41467-024-46733-7>

1306 Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND.
1307 *Nat Methods* 12, 59–60. <https://doi.org/10.1038/nmeth.3176>

1308 Caetano-Silva, M.E., Rund, L., Vailati-Riboni, M., Matt, S., Soto-Diaz, K., Beever, J., Allen, J.M.,
1309 Woods, J.A., Steelman, A.J., Johnson, R.W., 2024. The emergence of inflammatory
1310 microglia during gut inflammation is not affected by FFAR2 expression in intestinal
1311 epithelial cells or peripheral myeloid cells. *Brain Behav Immun* 118, 423–436.
1312 <https://doi.org/10.1016/j.bbi.2024.03.016>

1313 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016.
1314 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods* 13,
1315 581–583. <https://doi.org/10.1038/nmeth.3869>

1316 Can, A., Dao, D.T., Arad, M., Terrillion, C.E., Piantadosi, S.C., Gould, T.D., 2011. The Mouse
1317 Forced Swim Test. *JoVE* 3638. <https://doi.org/10.3791/3638>

1318 Cao, Y., Dong, Q., Wang, D., Zhang, P., Liu, Y., Niu, C., 2022. microbiomeMarker: an
1319 R/Bioconductor package for microbiome marker identification and visualization.
1320 *Bioinformatics* 38, 4027–4029. <https://doi.org/10.1093/bioinformatics/btac438>

1321 Chassaing, B., Aitken, J.D., Malleshappa, M., Vijay-Kumar, M., 2014. Dextran Sulfate Sodium
1322 (DSS)-Induced Colitis in Mice. *Curr Protoc Immunol* 104, Unit-15.25.
1323 <https://doi.org/10.1002/0471142735.im1525s104>

1324 Chen, D., Zhou, C., Luo, Q., Chen, C., Liu, G., 2024. A Mendelian randomization study on causal
1325 effects of inflammatory bowel disease on the risk of erectile dysfunction. *Sci Rep* 14,
1326 2137. <https://doi.org/10.1038/s41598-024-52712-1>

1327 Colldén, H., Landin, A., Wallenius, V., Elebring, E., Fändriks, L., Nilsson, M.E., Ryberg, H.,
1328 Poutanen, M., Sjögren, K., Vandenput, L., Ohlsson, C., 2019. The gut microbiota is a
1329 major regulator of androgen metabolism in intestinal contents. *American Journal of
1330 Physiology-Endocrinology and Metabolism* 317, E1182–E1192.
1331 <https://doi.org/10.1152/ajpendo.00338.2019>

1332 Cotton, S., Clayton, C.A., Tropini, C., 2023. Microbial endocrinology: the mechanisms by which
1333 the microbiota influences host sex steroids. *Trends in Microbiology* 31, 1131–1142.
1334 <https://doi.org/10.1016/j.tim.2023.03.010>

1335 Cryan, J.F., Dinan, T.G., 2012. Mind-altering microorganisms: The impact of the gut microbiota
1336 on brain and behaviour. *Nature Reviews Neuroscience* 13, 701–712.
1337 <https://doi.org/10.1038/nrn3346>

1338 Däbritz, J., Gerner, P., Enninger, A., Claßen, M., Radke, M., 2017. Inflammatory Bowel Disease in
1339 Childhood and Adolescence. *Dtsch Arztebl Int* 114, 331–338.
1340 <https://doi.org/10.3238/arztebl.2017.0331>

1341 De Wolfe, T.J., Wright, E.S., 2023. Multi-factorial examination of amplicon sequencing
1342 workflows from sample preparation to bioinformatic analysis. *BMC Microbiol* 23, 107.
1343 <https://doi.org/10.1186/s12866-023-02851-8>

1344 Deboer, M.D., Li, Y., 2011. Puberty Is Delayed in Male Mice With Dextran Sodium Sulfate Colitis
1345 Out of Proportion to Changes in Food Intake, Body Weight, and Serum Levels of Leptin.
1346 *Pediatr Res* 69, 34–39. <https://doi.org/10.1203/PDR.0b013e3181ffee6c>

1347 DeBoer, M.D., Li, Y., Cohn, S., 2010. Colitis causes delay in puberty in female mice out of
1348 proportion to changes in leptin and corticosterone. *J Gastroenterol* 45, 277–284.
1349 <https://doi.org/10.1007/s00535-009-0192-x>

1350 den Besten, G., van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.-J., Bakker, B.M., 2013. The
1351 role of short-chain fatty acids in the interplay between diet, gut microbiota, and host
1352 energy metabolism. *Journal of Lipid Research* 54, 2325–2340.
1353 <https://doi.org/10.1194/jlr.R036012>

1354 Dixon, P., 2003. VEGAN, a package of R functions for community ecology. *Journal of Vegetation
1355 Science* 14, 927–930. <https://doi.org/10.1111/j.1654-1103.2003.tb02228.x>

1356 Effendi, R.M.R.A., Anshory, M., Kalim, H., Dwiyana, R.F., Suwarsa, O., Pardo, L.M., Nijsten,
1357 T.E.C., Thio, H.B., 2022. *Akkermansia muciniphila* and *Faecalibacterium prausnitzii* in
1358 Immune-Related Diseases. *Microorganisms* 10, 2382.
1359 <https://doi.org/10.3390/microorganisms10122382>

1360 Eichele, D.D., Kharbanda, K.K., 2017. Dextran sodium sulfate colitis murine model: An
1361 indispensable tool for advancing our understanding of inflammatory bowel diseases
1362 pathogenesis. *World J Gastroenterol* 23, 6016–6029.
1363 <https://doi.org/10.3748/wjg.v23.i33.6016>

1364 Emge, J.R., Huynh, K., Miller, E.N., Kaur, M., Reardon, C., Barrett, K.E., Gareau, M.G., 2016.
1365 Modulation of the microbiota-gut-brain axis by probiotics in a murine model of
1366 inflammatory bowel disease. *American Journal of Physiology-Gastrointestinal and Liver
1367 Physiology* 310, G989–G998. <https://doi.org/10.1152/ajpgi.00086.2016>

1368 Erny, D., De Angelis, A.L.H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H.,
1369 Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E.,
1370 Garrett, W.S., McCoy, K.D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., Prinz, M.,
1371 2015. Host microbiota constantly control maturation and function of microglia in the
1372 CNS. *Nature Neuroscience* 18, 965–977. <https://doi.org/10.1038/nn.4030>

1373 Erny, D., Dokalis, N., Mezö, C., Castoldi, A., Mossad, O., Staszewski, O., Frosch, M., Villa, M.,
1374 Fuchs, V., Mayer, A., Neuber, J., Sosat, J., Tholen, S., Schilling, O., Vlachos, A., Blank, T.,
1375 Agüero, M.G. de, Macpherson, A.J., Pearce, E.J., Prinz, M., 2021. Microbiota-derived
1376 acetate enables the metabolic fitness of the brain innate immune system during health
1377 and disease. *Cell Metabolism* 33, 2260–2276.e7.
1378 <https://doi.org/10.1016/j.cmet.2021.10.010>

1379 Ervin, S.M., Li, H., Lim, L., Roberts, L.R., Liang, X., Mani, S., Redinbo, M.R., 2019. Gut microbial β -
1380 glucuronidases reactivate estrogens as components of the estrobolome that reactivate
1381 estrogens. *Journal of Biological Chemistry* 294, 18586–18599.
1382 <https://doi.org/10.1074/jbc.RA119.010950>

1383 Ewels, P., Magnusson, M., Lundin, S., Käller, M., 2016. MultiQC: summarize analysis results for
1384 multiple tools and samples in a single report. *Bioinformatics* 32, 3047–3048.
1385 <https://doi.org/10.1093/bioinformatics/btw354>

1386 Flores, R., Shi, J., Fuhrman, B., Xu, X., Veenstra, T.D., Gail, M.H., Gajer, P., Ravel, J., Goedert, J.J.,
1387 2012. Fecal microbial determinants of fecal and systemic estrogens and estrogen
1388 metabolites: a cross-sectional study. *Journal of Translational Medicine* 10, 253.
1389 <https://doi.org/10.1186/1479-5876-10-253>

1390 Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., Lener, E., Mele, M.C.,
1391 Gasbarrini, A., Collado, M.C., Cammarota, G., Ianiro, G., 2023. Short-Chain Fatty-Acid-
1392 Producing Bacteria: Key Components of the Human Gut Microbiota. *Nutrients* 15, 2211.
1393 <https://doi.org/10.3390/nu15092211>

1394 Gaidos, J.K.J., Naik, K., Dave, J., Yao, M., Hou, J.K., Cipher, D.J., Smith, A.D., Feagins, L.A., 2020.
1395 High Prevalence of Male Sexual Dysfunction in a Prospective Multicenter VA
1396 Inflammatory Bowel Disease Population. *Crohns Colitis* 360 2, otaa004.
1397 <https://doi.org/10.1093/crocol/ota004>

1398 Gampierakis, I.-A., Koutmani, Y., Semitekolou, M., Morianos, I., Polissidis, A., Katsouda, A.,
1399 Charalampopoulos, I., Xanthou, G., Gravanis, A., Karalis, K.P., 2021. Hippocampal neural
1400 stem cells and microglia response to experimental inflammatory bowel disease (IBD).
1401 *Mol Psychiatry* 26, 1248–1263. <https://doi.org/10.1038/s41380-020-0651-6>

1402 Garcia-Hernandez, R., Cerdán Cerdá, A., Trouve Carpena, A., Drakesmith, M., Koller, K., Jones,
1403 D.K., Canals, S., De Santis, S., 2022. Mapping microglia and astrocyte activation in vivo
1404 using diffusion MRI. *Science Advances* 8, eabq2923.
1405 <https://doi.org/10.1126/sciadv.abq2923>

1406 Gu, Z., Eils, R., Schlesner, M., 2016. Complex heatmaps reveal patterns and correlations in
1407 multidimensional genomic data. *Bioinformatics* 32, 2847–2849.
1408 <https://doi.org/10.1093/bioinformatics/btw313>

1409 Günther, C., Rothhammer, V., Karow, M., Neurath, M., Winner, B., 2021. The Gut-Brain Axis in
1410 Inflammatory Bowel Disease—Current and Future Perspectives. *Int J Mol Sci* 22, 8870.
1411 <https://doi.org/10.3390/ijms22168870>

1412 Gupta, N., Lustig, R.H., Andrews, H., Sylvester, F., Keljo, D., Goyal, A., Gokhale, R., Patel, A.S.,
1413 Guthery, S., Leu, C.-S., 2020. Introduction to and Screening Visit Results of the
1414 Multicenter Pediatric Crohn's Disease Growth Study. *Inflammatory Bowel Diseases* 26,
1415 1945–1950. <https://doi.org/10.1093/ibd/izaa023>

1416 Hadley, W., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

1417 Hamden, J.E., Gray, K.M., Salehzadeh, M., Kachkovski, G.V., Forys, B.J., Ma, C., Austin, S.H.,
1418 Soma, K.K., 2021. Steroid profiling of glucocorticoids in microdissected mouse brain
1419 across development. *Developmental Neurobiology* 81, 189–206.
1420 <https://doi.org/10.1002/dneu.22808>

1421 Hamden, J.E., Salehzadeh, M., Jalabert, C., O'Leary, T.P., Snyder, J.S., Gomez-Sanchez, C.E.,
1422 Soma, K.K., 2019. Measurement of 11-dehydrocorticosterone in mice, rats and

1423 songbirds: Effects of age, sex and stress. *General and Comparative Endocrinology* 281,
1424 173–182. <https://doi.org/10.1016/j.ygcen.2019.05.018>

1425 Hammami, M.B., Mahadevan, U., 2020. Men With Inflammatory Bowel Disease: Sexual
1426 Function, Fertility, Medication Safety, and Prostate Cancer. *Am J Gastroenterol* 115,
1427 526–534. <https://doi.org/10.14309/ajg.00000000000000515>

1428 Han, S., Treuren, W.V., Fischer, C.R., Merrill, B.D., DeFelice, B.C., Sanchez, J.M., Higginbottom,
1429 S.K., Guthrie, L., Fall, L.A., Dodd, D., Fischbach, M.A., Sonnenburg, J.L., 2021. A
1430 metabolomics pipeline for mechanistic interrogation of the gut microbiome. *Nature* 595,
1431 415. <https://doi.org/10.1038/s41586-021-03707-9>

1432 Handelsman, D.J., Ly, L.P., 2019. An Accurate Substitution Method To Minimize Left Censoring
1433 Bias in Serum Steroid Measurements. *Endocrinology* 160, 2395–2400.
1434 <https://doi.org/10.1210/en.2019-00340>

1435 Harms, R.L., Fritz, F.J., Tobisch, A., Goebel, R., Roebroeck, A., 2017. Robust and fast nonlinear
1436 optimization of diffusion MRI microstructure models. *Neuroimage* 155, 82–96.
1437 <https://doi.org/10.1016/j.neuroimage.2017.04.064>

1438 He, S., Li, H., Yu, Z., Zhang, F., Liang, S., Liu, H., Chen, H., Lü, M., 2021. The Gut Microbiome and
1439 Sex Hormone-Related Diseases. *Frontiers in Microbiology* 12.

1440 Herzer, M., Denson, L.A., Baldassano, R.N., Hommel, K.A., 2011. Patient and parent
1441 psychosocial factors associated with health-related quality of life in pediatric
1442 inflammatory bowel disease. *Journal of Pediatric Gastroenterology and Nutrition* 52,
1443 295–299. <https://doi.org/10.1097/MPG.0b013e3181f5714e>

1444 Hildebrand, H., Karlberg, J., Kristiansson, B., 1994. Longitudinal growth in children and
1445 adolescents with inflammatory bowel disease. *J Pediatr Gastroenterol Nutr* 18, 165–173.
1446 <https://doi.org/10.1097/00005176-199402000-00008>

1447 Hodgkinson, K., El Abbar, F., Dobranowski, P., Manoogian, J., Butcher, J., Figeys, D., Mack, D.,
1448 Stintzi, A., 2023. Butyrate's role in human health and the current progress towards its
1449 clinical application to treat gastrointestinal disease. *Clinical Nutrition* 42, 61–75.
1450 <https://doi.org/10.1016/j.clnu.2022.10.024>

1451 Hou, J., Dodd, K., Nair, V.A., Rajan, S., Beniwal-Patel, P., Saha, S., Prabhakaran, V., 2020.
1452 Alterations in brain white matter microstructural properties in patients with Crohn's
1453 disease in remission. *Scientific Reports*. <https://doi.org/10.1038/s41598-020-59098-w>

1454 Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T.,
1455 Mende, D.R., Sunagawa, S., Kuhn, M., Jensen, L.J., von Mering, C., Bork, P., 2016.
1456 eggNOG 4.5: a hierarchical orthology framework with improved functional annotations
1457 for eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Research* 44, D286–D293.
1458 <https://doi.org/10.1093/nar/gkv1248>

1459 Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. Prodigal:
1460 prokaryotic gene recognition and translation initiation site identification. *BMC
1461 Bioinformatics* 11, 119. <https://doi.org/10.1186/1471-2105-11-119>

1462 Jiang, Y., Johnson, G.A., 2011. Microscopic diffusion tensor atlas of the mouse brain.
1463 *NeuroImage* 56, 1235–1243. <https://doi.org/10.1016/j.neuroimage.2011.03.031>

1464 Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids
1465 Research* 28, 27–30. <https://doi.org/10.1093/nar/28.1.27>

1466 Kaplan, G.G., Windsor, J.W., 2021. The four epidemiological stages in the global evolution of
1467 inflammatory bowel disease. *Nat Rev Gastroenterol Hepatol* 18, 56–66.
1468 <https://doi.org/10.1038/s41575-020-00360-x>

1469 Kassambara, A., 2023. *ggpubr: “ggplot2” Based Publication Ready Plots [WWW Document]*. URL
1470 <https://rpkgs.datanovia.com/ggpubr/>

1471 Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple
1472 sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30, 3059–
1473 3066. <https://doi.org/10.1093/nar/gkf436>

1474 Keller, M., Baum, M.J., Bakker, J., 2008. Olfactory Control of Sex-Recognition and Sexual
1475 Behavior in Mice, in: Hurst, J.L., Beynon, R.J., Roberts, S.C., Wyatt, T.D. (Eds.), *Chemical
1476 Signals in Vertebrates 11*. Springer, New York, NY, pp. 241–250.
1477 https://doi.org/10.1007/978-0-387-73945-8_23

1478 Kight, K.E., McCarthy, M.M., 2020. Androgens and the developing hippocampus. *Biol Sex Differ*
1479 11, 30. <https://doi.org/10.1186/s13293-020-00307-6>

1480 Kim, J., Pavlidis, P., Ciernia, A.V., 2024a. Development of a high-throughput pipeline to
1481 characterize microglia morphological states at a single-cell resolution. *eNeuro*.
1482 <https://doi.org/10.1523/ENEURO.0014-24.2024>

1483 Kim, J., Sullivan, O., Lee, K., Jao, J., Tamayo, J., Madany, A.M., Wong, B., Ashwood, P., Ciernia,
1484 A.V., 2024b. Repeated LPS induces training and tolerance of microglial responses across
1485 brain regions. <https://doi.org/10.1101/2024.04.08.588502>

1486 Kim, K., Choe, D., Song, Y., Kang, M., Lee, S.-G., Lee, D.-H., Cho, B.-K., 2021. Engineering
1487 *Bacteroides thetaiotaomicron* to produce non-native butyrate based on a genome-scale
1488 metabolic model-guided design. *Metabolic Engineering* 68, 174–186.
1489 <https://doi.org/10.1016/j.ymben.2021.10.005>

1490 Klaus, J., Reinshagen, M., Adler, G., Boehm, B., von Tirpitz, C., 2008. Bones and Crohn's:
1491 Estradiol deficiency in men with Crohn's disease is not associated with reduced bone
1492 mineral density. *BMC Gastroenterol* 8, 48. <https://doi.org/10.1186/1471-230X-8-48>

1493 Kleine Bardenhorst, S., Vital, M., Karch, A., Rübsamen, N., 2022. Richness estimation in
1494 microbiome data obtained from denoising pipelines. *Computational and Structural
1495 Biotechnology Journal* 20, 508–520. <https://doi.org/10.1016/j.csbj.2021.12.036>

1496 Korpela, K., Kallio, S., Salonen, A., Hero, M., Kukkonen, A.K., Miettinen, P.J., Savilahti, E., Kohva,
1497 E., Kariola, L., Suutela, M., Tarkkanen, A., de Vos, W.M., Raivio, T., Kuitunen, M., 2021.
1498 Gut microbiota develop towards an adult profile in a sex-specific manner during
1499 puberty. *Sci Rep* 11, 23297. <https://doi.org/10.1038/s41598-021-02375-z>

1500 Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9,
1501 357–359. <https://doi.org/10.1038/nmeth.1923>

1502 Lavelle, A., Sokol, H., 2020. Gut microbiota-derived metabolites as key actors in inflammatory
1503 bowel disease. *Nature Reviews Gastroenterology and Hepatology* 17, 223–237.
1504 <https://doi.org/10.1038/s41575-019-0258-z>

1505 Li, D., Liu, C.-M., Luo, R., Sadakane, K., Lam, T.-W., 2015. MEGAHIT: an ultra-fast single-node
1506 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
1507 *Bioinformatics* 31, 1674–1676. <https://doi.org/10.1093/bioinformatics/btv033>

1508 Li, D., Liu, R., Wang, M., Peng, R., Fu, S., Fu, A., Le, J., Yao, Q., Yuan, T., Chi, H., Mu, X., Sun, T.,
1509 Liu, H., Yan, P., Wang, S., Cheng, S., Deng, Z., Liu, Z., Wang, G., Li, Y., Liu, T., 2022. 3β-

1510 Hydroxysteroid dehydrogenase expressed by gut microbes degrades testosterone and is
1511 linked to depression in males. *Cell Host & Microbe* 30, 329-339.e5.
1512 <https://doi.org/10.1016/j.chom.2022.01.001>

1513 Lv, K., Fan, Y.H., Xu, L., Xu, M.S., 2017. Brain changes detected by functional magnetic
1514 resonance imaging and spectroscopy in patients with Crohn's disease. *World Journal of*
1515 *Gastroenterology*. <https://doi.org/10.3748/wjg.v23.i20.3607>

1516 Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K.,
1517 Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., Vermeire, S.,
1518 2014. A decrease of the butyrate-producing species *Roseburia hominis* and
1519 *Faecalibacterium prausnitzii* defines dysbiosis in patients with ulcerative colitis. *Gut* 63,
1520 1275–1283. <https://doi.org/10.1136/gutjnl-2013-304833>

1521 Mackner, L.M., Greenley, R.N., Szigethy, E., Herzer, M., Deer, K., Hommel, K.A., 2013.
1522 *Psychosocial Issues in Pediatric Inflammatory Bowel Disease: A Clinical Report of the*
1523 *North American Society for Pediatric Gastroenterology, Hepatology and Nutrition.* *J*
1524 *Pediatr Gastroenterol Nutr* 56, 449–458.
1525 <https://doi.org/10.1097/MPG.0b013e3182841263>

1526 Maffei, S., Forini, F., Canale, P., Nicolini, G., Guiducci, L., 2022. Gut Microbiota and Sex
1527 Hormones: Crosstalk Players in Cardiometabolic and Cardiovascular Disease.
1528 *International Journal of Molecular Sciences* 23, 7154.
1529 <https://doi.org/10.3390/ijms23137154>

1530 Malkesman, O., Scattoni, M.L., Paredes, D., Tragon, T., Pearson, B., Shaltiel, G., Chen, G.,
1531 Crawley, J.N., Manji, H.K., 2010. The Female Urine Sniffing Test: A Novel Approach for
1532 Assessing Reward-Seeking Behavior in Rodents. *Biol Psychiatry* 67, 864–871.
1533 <https://doi.org/10.1016/j.biopsych.2009.10.018>

1534 Mandal, S., Van Treuren, W., White, R.A., Eggesbø, M., Knight, R., Peddada, S.D., 2015. Analysis
1535 of composition of microbiomes: a novel method for studying microbial composition.
1536 *Microb Ecol Health Dis* 26, 27663. <https://doi.org/10.3402/mehd.v26.27663>

1537 Markle, J.G.M., Frank, D.N., Mortin-Toth, S., Robertson, C.E., Feazel, L.M., Rolle-Kampczyk, U.,
1538 von Bergen, M., McCoy, K.D., Macpherson, A.J., Danska, J.S., 2013. Sex Differences in
1539 the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. *Science*
1540 339, 1084–1088. <https://doi.org/10.1126/science.1233521>

1541 Matisz, C.E., Vicentini, F.A., Hirota, S.A., Sharkey, K.A., Gruber, A.J., 2020. Behavioral
1542 adaptations in a relapsing mouse model of colitis. *Physiol Behav* 216, 112802.
1543 <https://doi.org/10.1016/j.physbeh.2020.112802>

1544 McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible Interactive Analysis
1545 and Graphics of Microbiome Census Data. *PLOS ONE* 8, e61217.
1546 <https://doi.org/10.1371/journal.pone.0061217>

1547 Mertens, K.L., Kalsbeek, A., Soeters, M.R., Eggink, H.M., 2017. Bile Acid Signaling Pathways from
1548 the Enterohepatic Circulation to the Central Nervous System. *Frontiers in Neuroscience*
1549 11.

1550 Min, S.H., Zhou, J., 2021. smplot: An R Package for Easy and Elegant Data Visualization. *Front.*
1551 *Genet.* 12. <https://doi.org/10.3389/fgene.2021.802894>

1552 Mirzaei, R., Bouzari, B., Hosseini-Fard, S.R., Mazaheri, M., Ahmadyousefi, Y., Abdi, M., Jalalifar,
1553 S., Karimitabar, Z., Teimoori, A., Keyvani, H., Zamani, F., Yousefimashouf, R., Karampoor,

1554 S., 2021. Role of microbiota-derived short-chain fatty acids in nervous system disorders.
1555 *Biomed Pharmacother* 139, 111661. <https://doi.org/10.1016/j.biopha.2021.111661>

1556 Mitchell, R.W., On, N.H., Del Bigio, M.R., Miller, D.W., Hatch, G.M., 2011. Fatty acid transport
1557 protein expression in human brain and potential role in fatty acid transport across
1558 human brain microvessel endothelial cells. *J Neurochem* 117, 735–746.
1559 <https://doi.org/10.1111/j.1471-4159.2011.07245.x>

1560 Munyaka, P.M., Rabbi, M.F., Khafipour, E., Ghia, J., 2016. Acute dextran sulfate sodium (DSS)-
1561 induced colitis promotes gut microbial dysbiosis in mice. *J. Basic Microbiol.* 56, 986–998.
1562 <https://doi.org/10.1002/jobm.201500726>

1563 Naser, S.A., Sagrampsingh, S.R., Naser, A.S., Thanigachalam, S., 2014. *Mycobacterium avium*
1564 subspecies paratuberculosis causes Crohn's disease in some inflammatory bowel
1565 disease patients. *World J Gastroenterol* 20, 7403–7415.
1566 <https://doi.org/10.3748/wjg.v20.i23.7403>

1567 Nasser, M., Haider, A., Saad, F., Kurtz, W., Doros, G., Fijak, M., Vignozzi, L., Gooren, L., 2015.
1568 Testosterone therapy in men with Crohn's disease improves the clinical course of the
1569 disease: data from long-term observational registry study. *Horm Mol Biol Clin Investig*
1570 22, 111–117. <https://doi.org/10.1515/hmbci-2015-0014>

1571 Neuman, H., Debelius, J.W., Knight, R., Koren, O., 2015. Microbial endocrinology: the interplay
1572 between the microbiota and the endocrine system. *FEMS Microbiology Reviews* 39,
1573 509–521. <https://doi.org/10.1093/femsre/fuu010>

1574 Ng, K.M., Pannu, S., Liu, S., Burckhardt, J.C., Hughes, T., Van Treuren, W., Nguyen, J., Naqvi, K.,
1575 Nguyen, B., Clayton, C.A., Pepin, D.M., Collins, S.R., Tropini, C., 2023. Single-strain
1576 behavior predicts responses to environmental pH and osmolality in the gut microbiota.
1577 *mBio* 14, e00753-23. <https://doi.org/10.1128/mbio.00753-23>

1578 Ng, K.M., Tropini, C., 2021. Visualization of Gut Microbiota-host Interactions via Fluorescence In
1579 Situ Hybridization, Lectin Staining, and Imaging. *JoVE (Journal of Visualized Experiments)*
1580 e62646. <https://doi.org/10.3791/62646>

1581 Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R.,
1582 Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y., Kaplan, G.G., 2017. Worldwide incidence
1583 and prevalence of inflammatory bowel disease in the 21st century: a systematic review
1584 of population-based studies. *The Lancet*. [https://doi.org/10.1016/S0140-6736\(17\)32448-0](https://doi.org/10.1016/S0140-6736(17)32448-0)

1585 Nyuyki, K.D., Cluny, N.L., Swain, M.G., Sharkey, K.A., Pittman, Q.J., 2018. Altered brain
1586 excitability and increased anxiety in mice with experimental colitis: Consideration of
1587 hyperalgesia and sex differences. *Frontiers in Behavioral Neuroscience* 12, 1–11.
1588 <https://doi.org/10.3389/fnbeh.2018.00058>

1589 Patel, J., Chaudhary, H., Rajput, K., Parekh, B., Joshi, R., 2023. Assessment of gut microbial β -
1590 glucuronidase and β -glucosidase activity in women with polycystic ovary syndrome. *Sci
1591 Rep* 13, 11967. <https://doi.org/10.1038/s41598-023-39168-5>

1592 Paulson, J.N., Stine, O.C., Bravo, H.C., Pop, M., 2013. Differential abundance analysis for
1593 microbial marker-gene surveys. *Nat Methods* 10, 1200–1202.
1594 <https://doi.org/10.1038/nmeth.2658>

1596 Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2 – Approximately Maximum-Likelihood
1597 Trees for Large Alignments. PLOS ONE 5, e9490.
1598 <https://doi.org/10.1371/journal.pone.0009490>

1599 Puente-Sánchez, F., García-García, N., Tamames, J., 2020. SQMtools: automated processing and
1600 visual analysis of 'omics data with R and anvi'o. BMC Bioinformatics 21, 358.
1601 <https://doi.org/10.1186/s12859-020-03703-2>

1602 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O.,
1603 2013. The SILVA ribosomal RNA gene database project: improved data processing and
1604 web-based tools. Nucleic Acids Res 41, D590–D596.
1605 <https://doi.org/10.1093/nar/gks1219>

1606 R Core team, 2021. R: A language and environment for statistical computing [WWW
1607 Document]. URL <https://www.r-project.org/> (accessed 4.1.23).

1608 Rastelli, D., Robinson, A., Lagomarsino, V.N., Matthews, L.T., Hassan, R., Perez, K., Dan, W., Yim,
1609 P.D., Mixer, M., Prochera, A., Shepherd, A., Sun, L., Hall, K., Ballou, S., Lembo, A., Nee, J.,
1610 Rao, M., 2022. Diminished androgen levels are linked to irritable bowel syndrome and
1611 cause bowel dysfunction in mice. J Clin Invest 132, e150789.
1612 <https://doi.org/10.1172/JCI150789>

1613 Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2009. edgeR: a Bioconductor package for
1614 differential expression analysis of digital gene expression data. Bioinformatics 26, 139.
1615 <https://doi.org/10.1093/bioinformatics/btp616>

1616 Roda, G., Chien Ng, S., Kotze, P.G., Argollo, M., Panaccione, R., Spinelli, A., Kaser, A., Peyrin-
1617 Biroulet, L., Danese, S., 2020. Crohn's disease. Nat Rev Dis Primers 6, 1–19.
1618 <https://doi.org/10.1038/s41572-020-0156-2>

1619 Rosen, M.J., Dhawan, A., Saeed, S.A., 2015. Inflammatory Bowel Disease in Children and
1620 Adolescents. JAMA Pediatr 169, 1053–1060.
1621 <https://doi.org/10.1001/jamapediatrics.2015.1982>

1622 Salvo, E., Stokes, P., Keogh, C.E., Brust-Mascher, I., Hennessey, C., Knotts, T.A., Sladek, J.A.,
1623 Rude, K.M., Swedek, M., Rabasa, G., Gareau, M.G., 2020. A murine model of pediatric
1624 inflammatory bowel disease causes microbiota-gut-brain axis deficits in adulthood. Am J
1625 Physiol Gastrointest Liver Physiol 319, G361–G374.
1626 <https://doi.org/10.1152/ajpgi.00177.2020>

1627 Seemann, T., 2024. tseemann/barrnap.

1628 Silva, Y.P., Bernardi, A., Fozza, R.L., 2020. The Role of Short-Chain Fatty Acids From Gut
1629 Microbiota in Gut-Brain Communication. Frontiers in Endocrinology 11.
1630 <https://doi.org/10.3389/fendo.2020.00025>

1631 Sinha, S.R., Haileselassie, Y., Nguyen, L.P., Tropini, C., Wang, M., Becker, L.S., Sim, D., Jarr, K.,
1632 Spear, E.T., Singh, G., Namkoong, H., Bittinger, K., Fischbach, M.A., Sonnenburg, J.L.,
1633 Habtezion, A., 2020. Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes
1634 Intestinal Inflammation. Cell Host Microbe 27, 659-670.e5.
1635 <https://doi.org/10.1016/j.chom.2020.01.021>

1636 Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H.,
1637 Bannister, P.R., De Luca, M., Drobniak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers,
1638 J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in functional

1639 and structural MR image analysis and implementation as FSL. *Neuroimage* 23 Suppl 1,
1640 S208-219. <https://doi.org/10.1016/j.neuroimage.2004.07.051>

1641 Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L.G., Gratadoux, J.J.,
1642 Blugeon, S., Bridonneau, C., Furet, J.P., Corthier, G., Granette, C., Vasquez, N., Pochart,
1643 P., Trugnan, G., Thomas, G., Blottière, H.M., Doré, J., Marteau, P., Seksik, P., Langella, P.,
1644 2008. *Faecalibacterium prausnitzii* is an anti-inflammatory commensal bacterium
1645 identified by gut microbiota analysis of Crohn disease patients. *Proceedings of the*
1646 *National Academy of Sciences of the United States of America* 105, 16731–16736.
1647 <https://doi.org/10.1073/pnas.0804812105>

1648 Sroor, H.M., Hassan, A.M., Zenz, G., Valadez-Cosmes, P., Farzi, A., Holzer, P., El-Sharif, A.,
1649 Gomaa, F.A.-Z.M., Kargl, J., Reichmann, F., 2019. Experimental colitis reduces microglial
1650 cell activation in the mouse brain without affecting microglial cell numbers. *Sci Rep* 9,
1651 20217. <https://doi.org/10.1038/s41598-019-56859-0>

1652 Stahl, M., Graef, F.A., Vallance, B.A., 2017. Mouse Models for *Campylobacter jejuni* Colonization
1653 and Infection, in: Butcher, J., Stintzi, A. (Eds.), *Campylobacter Jejuni: Methods and*
1654 *Protocols*. Springer, New York, NY, pp. 171–188. https://doi.org/10.1007/978-1-4939-6536-6_15

1655 Sui, Y., Wu, J., Chen, J., 2021. The Role of Gut Microbial β -Glucuronidase in Estrogen
1656 Reactivation and Breast Cancer. *Front Cell Dev Biol* 9, 631552.
1657 <https://doi.org/10.3389/fcell.2021.631552>

1658 Sullivan, O., Ciernia, A.V., 2022. Work hard, play hard: how sexually differentiated microglia
1659 work to shape social play and reproductive behavior. *Frontiers in Behavioral*
1660 *Neuroscience* 16.

1661 Talley, S., Valiauga, R., Anderson, L., Cannon, A.R., Choudhry, M.A., Campbell, E.M., 2021. DSS-
1662 induced inflammation in the colon drives a proinflammatory signature in the brain that
1663 is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod. *Journal*
1664 *of Neuroinflammation* 18, 263. <https://doi.org/10.1186/s12974-021-02317-6>

1665 Tamames, J., Puente-Sánchez, F., 2019. SqueezeMeta, A Highly Portable, Fully Automatic
1666 Metagenomic Analysis Pipeline. *Front. Microbiol.* 9.
1667 <https://doi.org/10.3389/fmicb.2018.03349>

1668 Terstege, D.J., Oboh, D.O., Epp, J.R., 2022. FASTMAP: Open-Source Flexible Atlas Segmentation
1669 Tool for Multi-Area Processing of Biological Images. *eNeuro* 9, ENEURO.0325-21.2022.
1670 <https://doi.org/10.1523/ENEURO.0325-21.2022>

1671 Thavamani, A., Umapathi, K.K., Khatana, J., Gulati, R., 2019. Burden of Psychiatric Disorders
1672 among Pediatric and Young Adults with Inflammatory Bowel Disease: A Population-
1673 Based Analysis. *Pediatr Gastroenterol Hepatol Nutr* 22, 527–535.
1674 <https://doi.org/10.5223/pghn.2019.22.6.527>

1675 Thibault, R., Blachier, F., Darcy-Vrillon, B., de Coppet, P., Bourreille, A., Segain, J.-P., 2010.
1676 Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport
1677 deficiency. *Inflamm Bowel Dis* 16, 684–695. <https://doi.org/10.1002/ibd.21108>

1678 Thion, M.S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., Blecher, R., Ulas, T.,
1679 Squarzoni, P., Hoeffel, G., Coupier, F., Siopi, E., David, F.S., Scholz, C., Shihui, F., Lum, J.,
1680 Amoyo, A.A., Larbi, A., Poidinger, M., Buttgereit, A., Lledo, P.-M., Greter, M., Chan,
1681 J.K.Y., Amit, I., Beyer, M., Schultze, J.L., Schlitzer, A., Pettersson, S., Ginhoux, F., Garel, S.,

1682

1683 2017. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. *Cell*
1684 1–17. <https://doi.org/10.1016/j.cell.2017.11.042>

1685 Tigas, S., Tsatsoulis, A., 2012. Endocrine and metabolic manifestations in inflammatory bowel
1686 disease. *Ann Gastroenterol* 25, 37–44.

1687 Torres, P.J., Siakowska, M., Banaszewska, B., Pawelczyk, L., Duleba, A.J., Kelley, S.T., Thackray,
1688 V.G., 2018. Gut Microbial Diversity in Women With Polycystic Ovary Syndrome
1689 Correlates With Hyperandrogenism. *J Clin Endocrinol Metab* 103, 1502–1511.
1690 <https://doi.org/10.1210/jc.2017-02153>

1691 Vailati-Riboni, M., Rund, L., Caetano-Silva, M.E., Hutchinson, N.T., Wang, S.S., Soto-Díaz, K.,
1692 Woods, J.A., Steelman, A.J., Johnson, R.W., 2022. Dietary Fiber as a Counterbalance to
1693 Age-Related Microglial Cell Dysfunction. *Front Nutr* 9, 835824.
1694 <https://doi.org/10.3389/fnut.2022.835824>

1695 van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan,
1696 R.G.H., Fillion-Robin, J.-C., Pieper, S., Aerts, H.J.W.L., 2017. Computational Radiomics
1697 System to Decode the Radiographic Phenotype. *Cancer Res* 77, e104–e107.
1698 <https://doi.org/10.1158/0008-5472.CAN-17-0339>

1699 Venegas, D.P., Fuente, M.K.D. la, Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen,
1700 H.J.M., Faber, K.N., Hermoso, M.A., 2019. Short Chain Fatty Acids (SCFAs)-Mediated Gut
1701 Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases.
1702 *Frontiers in Immunology* 10, 277. <https://doi.org/10.3389/fimmu.2019.00277>

1703 Vogel Ciernia, A., Careaga, M., LaSalle, J.M., Ashwood, P., 2018. Microglia from offspring of
1704 dams with allergic asthma exhibit epigenomic alterations in genes dysregulated in
1705 autism. *Glia* 66, 505–521. <https://doi.org/10.1002/glia.23261>

1706 Vogel-Ciernia, A., Wood, M.A., 2014. Examining object location and object recognition memory
1707 in mice. *Current Protocols in Neuroscience* 2014, 8.31.1-8.31.17.
1708 <https://doi.org/10.1002/0471142301.ns0831s69>

1709 Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naïve Bayesian Classifier for Rapid
1710 Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Applied and*
1711 *Environmental Microbiology* 73, 5261–5267. <https://doi.org/10.1128/AEM.00062-07>

1712 Weger, B.D., Gobet, C., Yeung, J., Martin, E., Jimenez, S., Betrisey, B., Foata, F., Berger, B.,
1713 Balvay, A., Foussier, A., Charpagne, A., Boizet-Bonhoure, B., Chou, C.J., Naef, F., Gachon,
1714 F., 2019. The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene
1715 Expression and Metabolism. *Cell Metab* 29, 362–382.e8.
1716 <https://doi.org/10.1016/j.cmet.2018.09.023>

1717 Wenzel, T.J., Gates, E.J., Ranger, A.L., Klegeris, A., 2020. Short-chain fatty acids (SCFAs) alone or
1718 in combination regulate select immune functions of microglia-like cells. *Mol Cell*
1719 *Neurosci* 105, 103493. <https://doi.org/10.1016/j.mcn.2020.103493>

1720 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G.,
1721 Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller,
1722 K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C.,
1723 Woo, K., Yutani, H., 2019. Welcome to the Tidyverse. *Journal of Open Source Software*
1724 4, 1686. <https://doi.org/10.21105/joss.01686>

1725 Wirtz, S., Neurath, M.F., 2007. Mouse models of inflammatory bowel disease. Advanced Drug
1726 Delivery Reviews, Prediction of Therapeutic and Drug Delivery Outcomes Using Animal
1727 Models 59, 1073–1083. <https://doi.org/10.1016/j.addr.2007.07.003>

1728 Wong, E.O.-Y., Brownlie, E.J.E., Ng, K.M., Kathirgamanathan, S., Yu, F.B., Merrill, B.D., Huang,
1729 K.C., Martin, A., Tropini, C., Navarre, W.W., 2022. The CIAMIB: a Large and Metabolically
1730 Diverse Collection of Inflammation-Associated Bacteria from the Murine Gut. *mBio* 13,
1731 e02949-21. <https://doi.org/10.1128/mbio.02949-21>

1732 Yamane, T., Kitamura, Y., Terada, N., Matsumoto, K., 1986. Proliferative response of seminal
1733 vesicle cells to androgen and estrogen in neonatally castrated mice. *Journal of Steroid
1734 Biochemistry* 24, 703–708. [https://doi.org/10.1016/0022-4731\(86\)90846-0](https://doi.org/10.1016/0022-4731(86)90846-0)

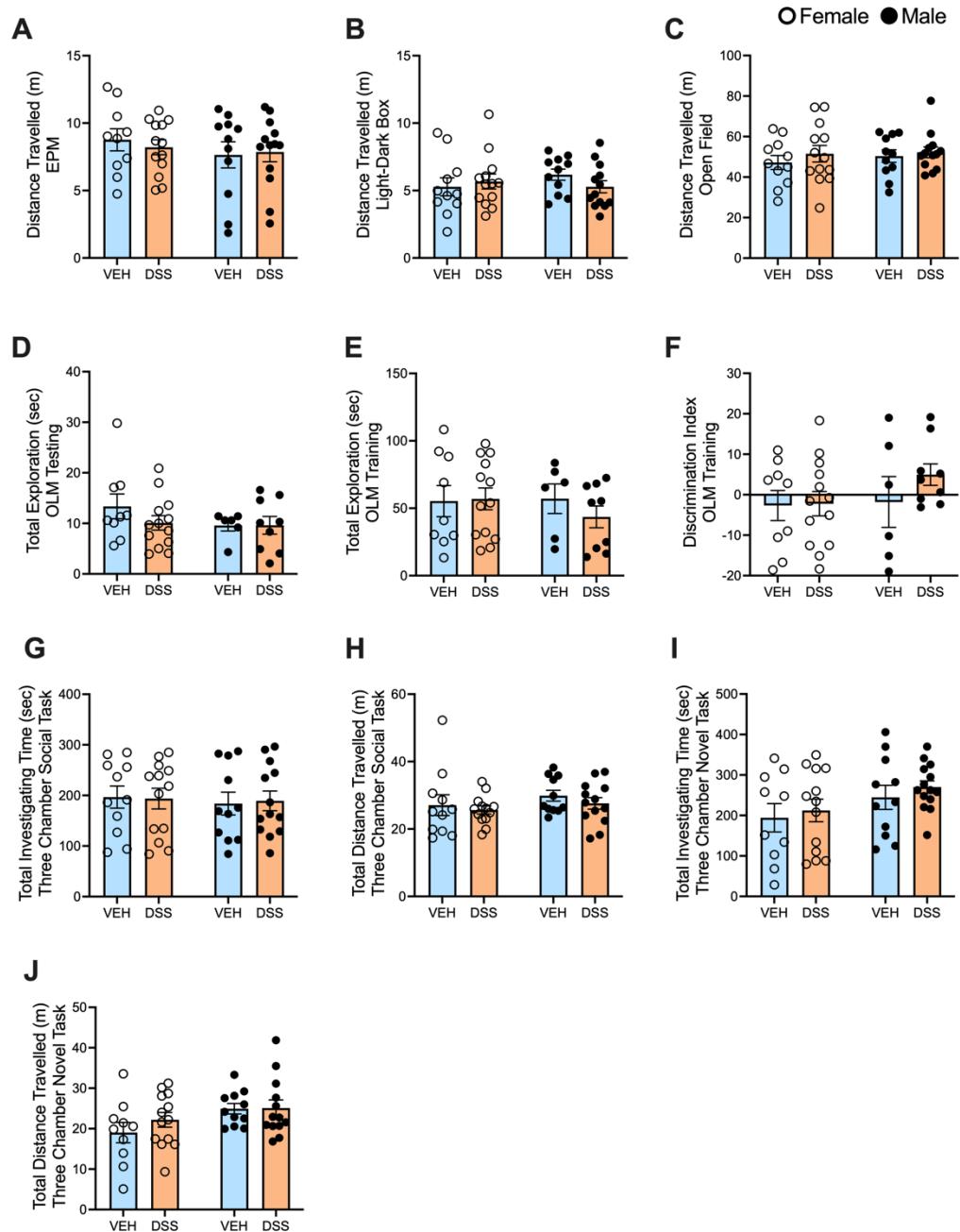
1735 Yang, M., Crawley, J.N., 2009. Simple behavioral assessment of mouse olfaction. *Curr Protoc
1736 Neurosci Chapter 8, Unit 8.24.* <https://doi.org/10.1002/0471142301.ns0824s48>

1737 Ye, Y., Pang, Z., Chen, W., Ju, S., Zhou, C., 2015. The epidemiology and risk factors of
1738 inflammatory bowel disease. *Int J Clin Exp Med* 8, 22529–22542.

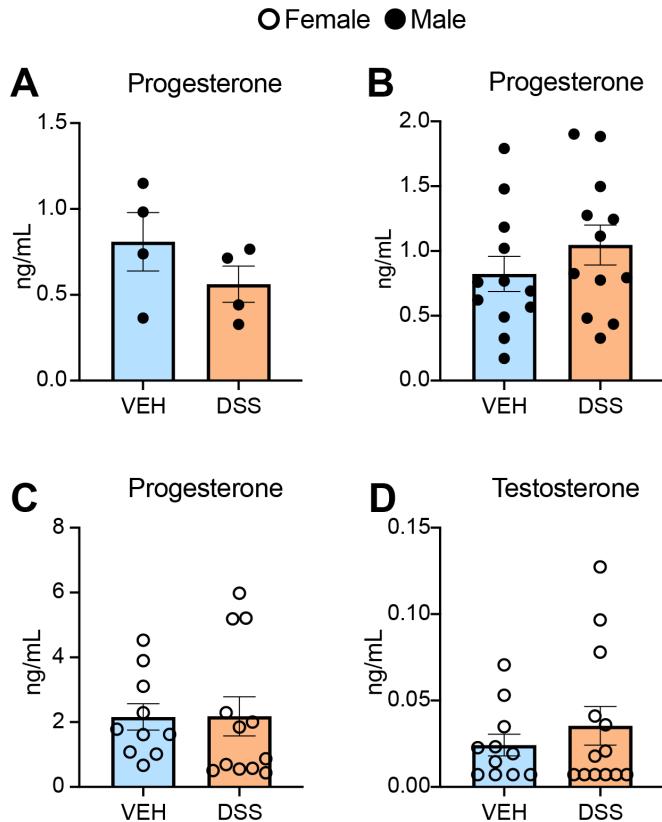
1739 Yi, S.Y., Barnett, B.R., Torres-Velázquez, M., Zhang, Y., Hurley, S.A., Rowley, P.A., Hernando, D.,
1740 Yu, J.-P.J., 2019. Detecting Microglial Density With Quantitative Multi-Compartment
1741 Diffusion MRI. *Front Neurosci* 13, 81. <https://doi.org/10.3389/fnins.2019.00081>

1742 Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: practical in
1743 vivo neurite orientation dispersion and density imaging of the human brain. *Neuroimage*
1744 61, 1000–1016. <https://doi.org/10.1016/j.neuroimage.2012.03.072>

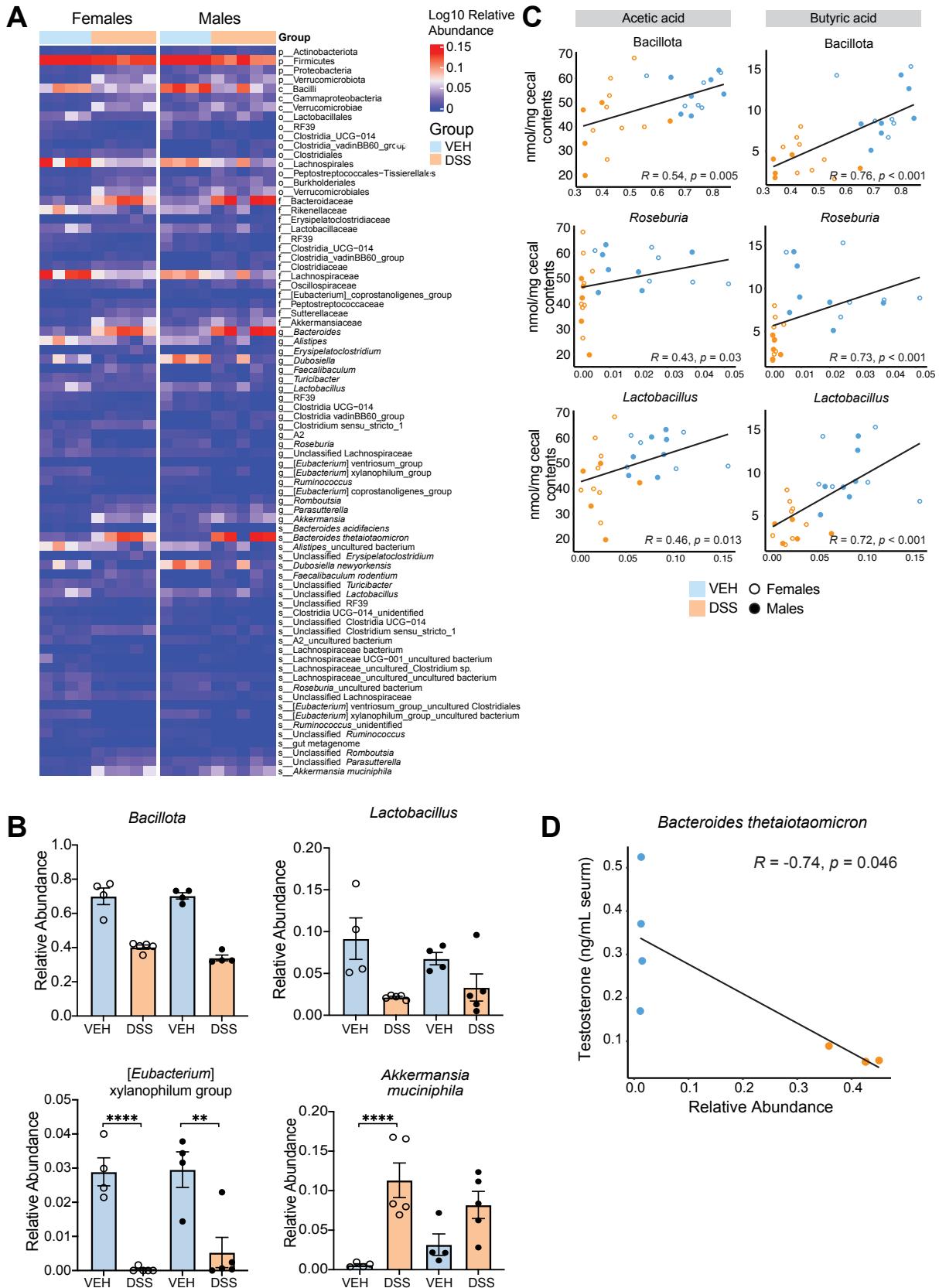
1745 Zhang, J., Wei, S., Zeng, Q., Wu, X., Gan, H., 2021. Prevalence and risk factors of sexual
1746 dysfunction in patients with inflammatory bowel disease: systematic review and meta-
1747 analysis. *Int J Colorectal Dis* 36, 2027–2038. [https://doi.org/10.1007/s00384-021-03958-y](https://doi.org/10.1007/s00384-021-03958-
1748 y)

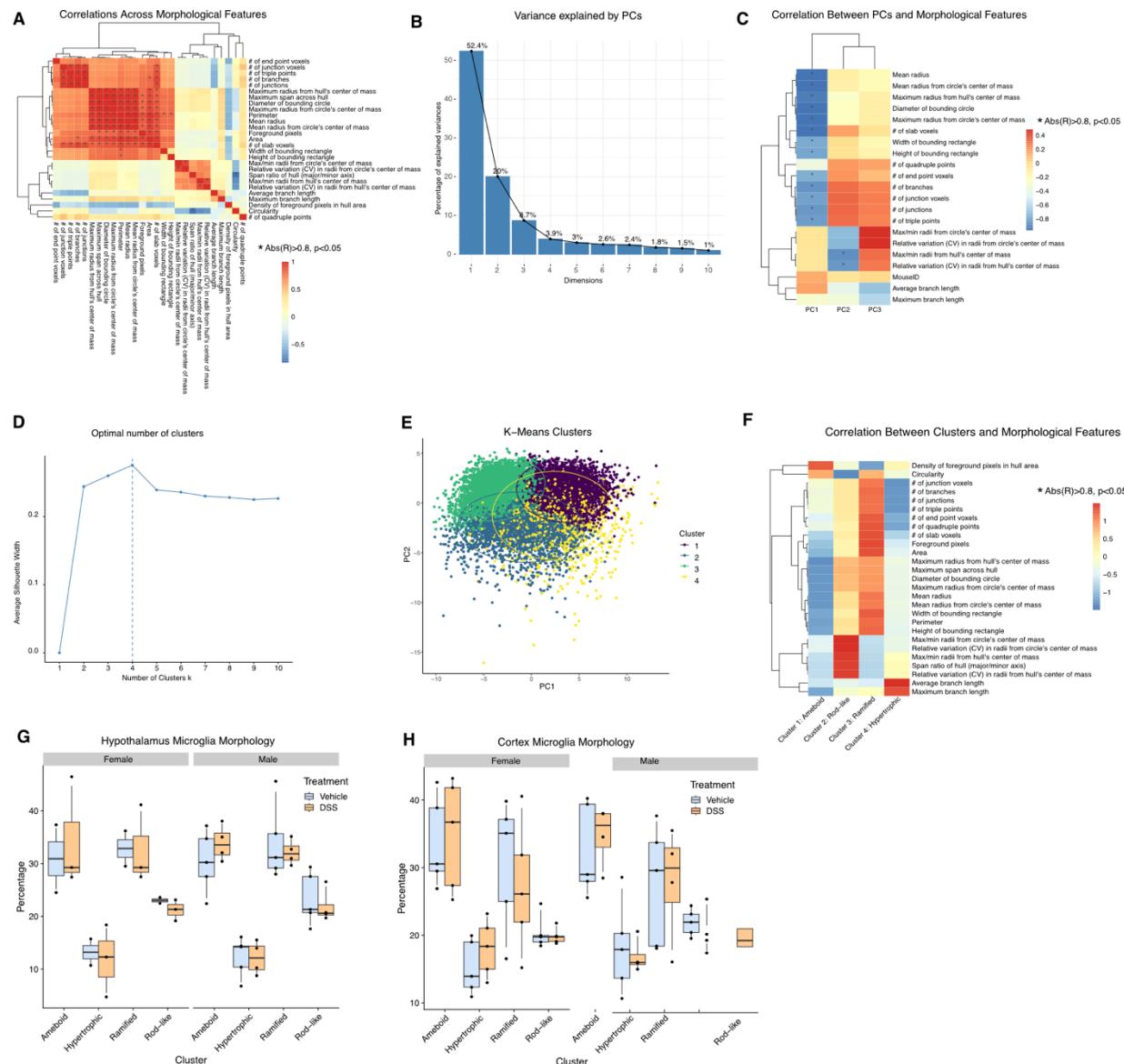

1749 Zhao, S., Wang, J., Liu, Y., Luo, L., Zhu, Z., Li, E., Luo, J., Zhao, Z., 2019. Inflammatory Bowel
1750 Diseases Were Associated With Risk of Sexual Dysfunction in Both Sexes: A Meta-
1751 analysis. *Inflamm Bowel Dis* 25, 699–707. <https://doi.org/10.1093/ibd/izy345>

1752 Zhou, Y., Ji, G., Yang, X., Chen, Z., Zhou, L., 2023. Behavioral abnormalities in C57BL/6 mice with
1753 chronic ulcerative colitis induced by DSS. *BMC Gastroenterology* 23, 84.
1754 <https://doi.org/10.1186/s12876-023-02718-2>

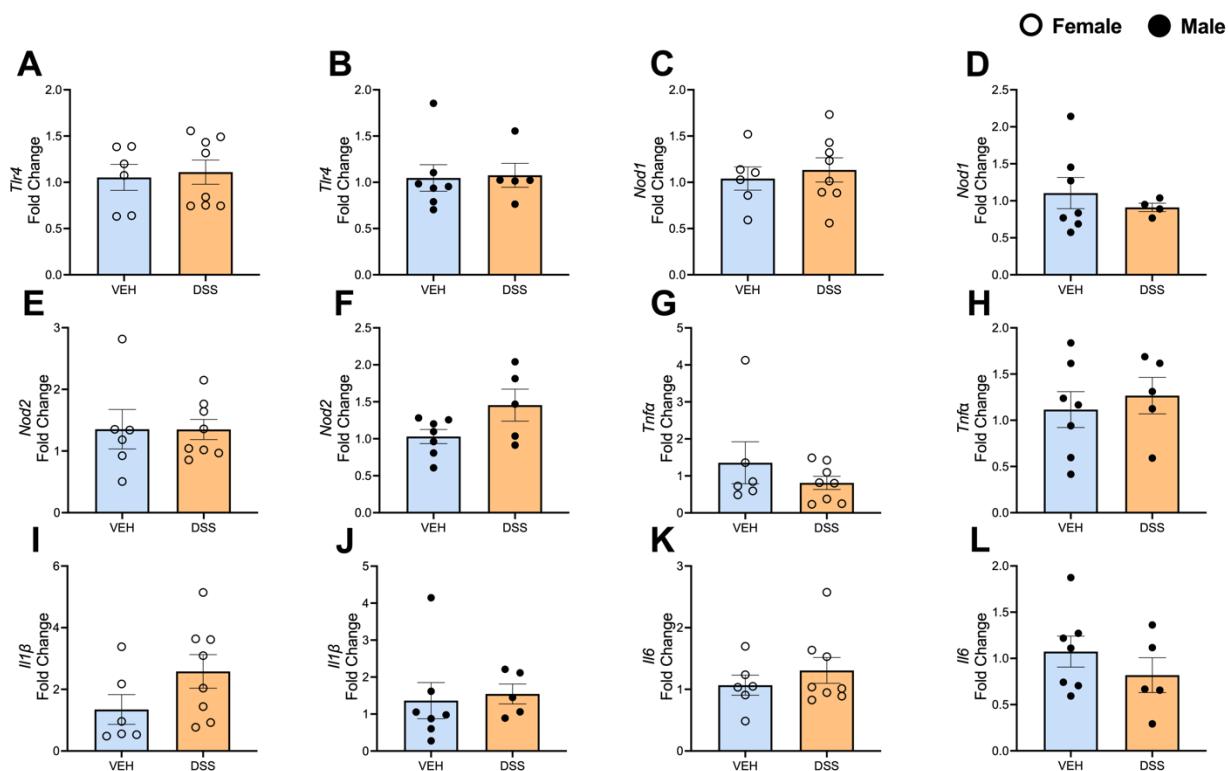

1755 Ziętek, M., Celewicz, Z., Szczyko, M., 2021. Short-Chain Fatty Acids, Maternal Microbiota and
1756 Metabolism in Pregnancy. *Nutrients* 13, 1244. <https://doi.org/10.3390/nu13041244>

1757

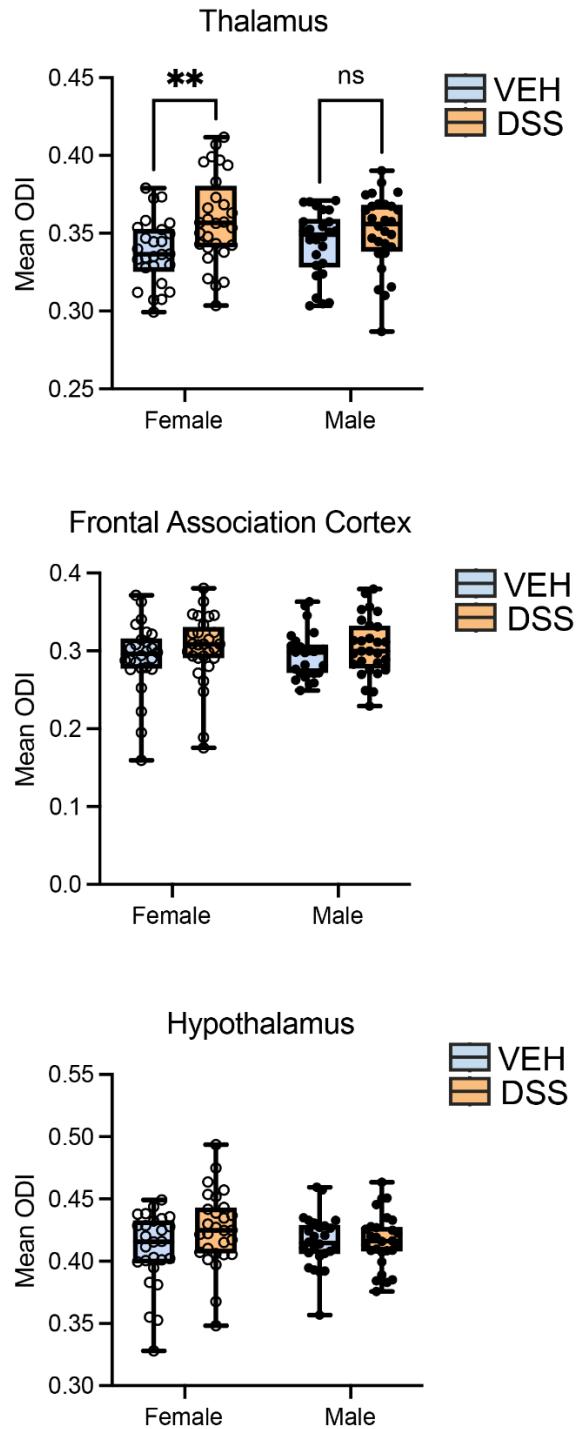

1758


Supplemental Figure 1. DSS treatment did not alter distance travelled or exploration behavior. There are no significant main effects of treatment or interactions with treatment and sex. *A.* Total distance traveled in meters (m) in the A. elevated plus maze n=10-13/group, *B.* light-dark box task n=11-13/group and *C.* open field n=11-13/group. Total investigation time in seconds for object location memory *D.* testing and n=6-13/group. *E.* training n=6-13/group. *F.* Discrimination Index for OLM training n=6-13/group. *G.* Total investigation time in the 3 chamber social task in seconds. n=11-13/group. *H.* Total distance travelled in meters for the three chamber social task. n=11-13/group. *I.* Total investigation time in the 3 chamber novel task in seconds. n=10-13/group. *H.* Total distance travelled in meters for the three chamber novel task. n=10-13/group. Each bar and error bar represent the mean \pm SEM.

Supplemental Figure 2. Effects of DSS treatment on male and female steroid levels. *A.* Three days after the last DSS treatment (P71), male serum progesterone levels were not significantly different between VEH and DSS treated males. n=4/group. *B.* Following the last behavioural test (P110), male serum progesterone levels were not significantly different between VEH and DSS treated males. n=12/group. *C-D.* Following the last behavioural test (P110), female serum progesterone (C) and testosterone (D) levels were not significantly different between VEH and DSS treated females. n=10-12/group. Androstenedione levels were non-detectable in VEH and DSS treated females. Each bar and error bar represent the mean \pm SEM.



Supplemental Figure 3. Relative abundance of select microbial taxa correlate with cecal SCFA and serum testosterone concentrations acutely following DSS. *A.* Heatmap of differentially abundant gut bacterial taxa identified by differential abundance testing at P71. n=4-5/group. *B.* Relative abundance of *Bacillota*, *Lactobacillus*, *Eubacterium xylophilum* group, and *Akkermansia muciniphila*. n=4-5/group. *C.* Correlation of relative abundance of *Bacillota*, *Roseburia*, and *Lactobacillus* vs. acetic and butyric acid concentrations in cecal contents at P71. *R* values from Spearman's correlation. n=5-8/group. *D.* Correlation of relative abundance of the species *Bacteroides thetaiotaomicron* vs. serum testosterone levels at P71. n=4/group. Error bars in bar plots represent SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.



Supplemental Figure 4. Microglial Morphology Analysis. *A.* Correlations between individual microglial morphology metrics. *B.* Percentage of variance explained by each principal component (PC) after clustering the 27 features. The first 3 PCs capture ~85% of the total variance and were

used for k-means clustering. C. The correlation between each PC and individual metrics. D. The silhouette plot reveals an optimal number of 4 clusters. E. K means clustering of 4 morphologyc clusters. F. Clusters were assigned morphology names based on their relationship to each individual metric. G. Percentage of hypothalamic microglia in each cluster between treatment groups for females and males. No significant differences were identified between treatments for either sex. n=2-5/group H. Percentage of cerebral cortical microglia in each cluster between treatment groups for females and males. No significant differences were identified between treatments for either sex. n=3-5/group.

Supplemental Figure 5. Gene Expression is Not Altered in Hippocampal Tissue from DSS and VEH treated male and female mice. Expression by RT-qPCR for *Tlr4* in A. females and B. males. Expression by RT-qPCR for *Nod1* in C. females and D. males. Expression by RT-qPCR for *Nod2* in E. females and F. males. Expression by RT-qPCR for *Tnfa* in G. females and H. males. Expression by RT-qPCR for *Il1b* in I. females and J. males. Expression by RT-qPCR for *Il6* in K. females and L. males. Fold change calculated to VEH controls within each sex for each gene. n=6-8/group. Each bar and error bar represent the mean \pm SEM.

Supplemental Figure 6. Orientation dispersion index (ODI) was calculated for the thalamus, frontal association cortex, and hypothalamus. Data points are mean ODI values from each sample. A significant effect of treatment was identified in the thalamus, and post-hoc tests found a significant increase for DSS females compared to VEH females. $n= 25-28/\text{group}$ ** $p < 0.01$, Fisher's LSD test.