

1 **Quantification of rose rosette emaravirus (RRV) titers in eriophyoid
2 mites: insights into viral dynamics and vector competency**

3

4 **Tobiasz Druciarek^{1,2*}, Alejandro Rojas³, Ioannis Tzanetakis¹**

5 *Correspondence: Tobiasz Druciarek, tzdrucia@uark.edu

6 ¹ Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA

7 ² Department of Plant Protection, Warsaw University of Life Sciences, Warsaw, Poland

8 ³ Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA

9

10 **Abstract**

11 Understanding the interaction between rose rosette emaravirus (RRV) and its vectors is
12 pivotal in addressing the epidemic outbreak of rose rosette disease. This study employed
13 quantitative real-time RT-PCR to assess RRV genome copy numbers in *Phyllocoptes*
14 *fructiphilus* and *P. adalius*, providing insights into the viral dynamics and vector competency.
15 Our findings suggest active virus replication within *P. fructiphilus*, a confirmed vector
16 species, unlike *P. adalius*, highlighting its non-vector status. Furthermore, the study
17 highlights the variability in virus concentration in mites over time, underlining possible
18 developmental stage-specific response and influence of mite lifestyle on RRV retention and
19 replication. This research is the first step in understanding the virus-mite interactome, which
20 is essential for developing effective management strategies against rose rosette disease.

21

22 **Keywords** *Emaravirus rosae*, *Phyllocoptes fructiphilus*, *Phyllocoptes adalius*, interactome,
23 virus titration

24

25

26

27

28 **INTRODUCTION**

29 Eriophyoid mites (phylum Arthropoda; class Arachnida) are the smallest arthropod virus
30 vectors and cause significant losses in food, tree and ornamental crops worldwide [1,2].
31 Approximately 5000 species of eriophyoids have been described, but the actual number of
32 these mites is hypothesized to be significantly greater [3,4]. As of 2024, eriophyoid mites are
33 verified or suspected vectors of ~40 plant viruses [5–8]; however, in the metagenomics era,
34 the rate of identifying vectors is not keeping up with the increasing number of virus
35 discoveries [9,10]. There is an even greater knowledge gap in understanding the
36 dissemination mechanisms of eriophyoid-transmitted viruses [6].

37 The negative-sense, single-stranded RNA (-ssRNA) genus *Emaravirus* (family
38 *Fimoviridae*; order *Bunyavirales*) is an emerging group of eriophyoid-transmitted viruses
39 comprising more than 30 classified and putative species with worldwide distribution and
40 economic impact [2,11]. *Emaravirus rosae* (member: rose rosette emaravirus, RRV) is
41 considered one of the most economically significant emaraviruses, as infected plants die
42 within two to five years after the onset of symptoms [5], affecting the profitability and
43 sustainability of commercial operations and landscapers in the United States [7,12].

44 RRV is vectored by *Phyllocoptes fructiphilus* Keifer [13] and the recently identified
45 *Phyllocoptes arcani* Druciarek, Lewandowski & Tzanetakis [14,7]. It remains unclear whether
46 the virions are transiently and reversibly retained or if they circulate and replicate within the
47 mite's body. This study tested the hypothesis of RRV replication in the mite body by
48 assessing the genome copy numbers in a vector (*P. fructiphilus*) and a non-vector (*P.*
49 *adalius*). This research provides a deeper understanding of the molecular interactions
50 between RRV and mites and offers new perspectives on the factors influencing the
51 dissemination of RRV.

52

53 **METHODS**

54 **Maintenance of mites and plants**

55 The avirulent *P. adalius* and *P. fructiphilus* colonies used previously [7] were maintained on
56 potted KnockOut® roses (*Rosa × hybrida* 'Radrazz') and tested as described previously [13].
57 RRV was maintained on infected KnockOut® roses by *P. fructiphilus*-mediated transmission.
58 The RRV isolate obtained from these plants was Sanger-sequenced and matched isolates
59 available in NCBI. Mite colonies and RRV-source plants were maintained in separate
60 environmental growth chambers (14L:10D, 20°C, 70% RH) and monitored for several
61 months before being used in experiments.

62 **Construction of standard curves**

63 Standard curves were generated for each target to determine the absolute number of RRV
64 genome copies in mites. The emaravirus-specific primer PDA213 [15] was used for reverse
65 transcription (RT), generating cDNA from viruliferous *P. fructiphilus* specimen as described
66 below. An amplicon encompassing the virus target region was generated, whereas, for an
67 internal control/reference gene, an amplicon targeting the 18S rDNA region of the mite was
68 also obtained (supplemental material). DNA concentrations of sequenced amplicons were
69 determined with a Qubit 3.0 fluorometer (Life Technologies), and the copy number of each
70 target was calculated using the formula: $V_c = (C_a \times N_A) / (l_a \times m_b)$, where V_c is the number of
71 virus copies/μL, C_a is the amplicon concentration in ng, N_A is the Avogadro's constant (6.02
72 $\times 10^{23}$), l_a is the amplicon length in base pairs, and m_b is the molecular mass of 1 bp in
73 ng/mol (660×10^9). Tenfold dilutions (10^6 - 10^2 copies) were prepared, and RT-qPCR was
74 performed with two technical replicates, as described below. Curves were constructed by
75 plotting the *quantification cycle* (C_q) values versus the log10 of the target copy number. The
76 amplification efficiency (E) of each assay was calculated using the equation $E = 10^{(-1/S)}$,
77 where S is the slope of the corresponding curve.

78 **Quantification of RRV titer**

79 Quantification of viral and reference gene copies was performed using a modified version of
80 the direct RT-PCR method described previously [6] with standards and cDNAs from mite
81 and plant samples assayed by qPCR (supplemental material). Samples were analyzed in
82 two technical replicates for RRV RNA3 and mite 18S rDNA. No-template controls, RRV-free

83 rose, and non-viruliferous *P. fructiphilus* mites were included in the experiments to assess
84 contamination and specificity, respectively. C_q values from RRV-containing samples were
85 compared with standard curves to determine the absolute quantities of the targets, with the
86 values normalized by quantities of the corresponding reference gene.

87 **RRV titer in mites over time**

88 Immature mites (larvae) from each avirulent colony were transferred to modified Munger
89 cells (60/cell) [16] containing detached, RRV-infected leaflets and kept for 24 hours in cells
90 placed in an environmental growth chamber (14L:10D, 27°C, 63% RH) for virus acquisition.
91 There were eight cells for *P. adalius* and 12 for *P. fructiphilus*. On the second day, two mites
92 from each cell were transferred to tubes containing TE buffer and stored at -80°C for
93 subsequent analysis. The remaining mites were subsequently moved to a new cell with a
94 detached, RRV-free leaflet for 24 hours. This process of collecting two individuals and
95 transferring the remaining mites to a new cell with a detached, RRV-free leaflet continued
96 daily until day 8 (Fig. 1). Consequently, 16 mites per day were collected and analyzed for *P.*
97 *adalius*, and 24 per day were collected and analyzed for *P. fructiphilus*. Additionally, 16 and
98 24 mites, respectively, were collected from the mite stock colonies just before their initial
99 transfer to the RRV-infected leaflets for virus acquisition. We collected and analyzed 144 *P.*
100 *adalius* and 216 *P. fructiphilus* individuals throughout the experiment.

101 **Statistical analyses**

102 The resulting qPCR runs were extracted using batch processing mode in CFX Maestro v2.3
103 (Bio-Rad, Hercules, CA) and imported into R version 4.2.1 (R Core Team, Vienna, Austria).
104 Since there are multiple independent qPCR runs, tenfold standards (10⁶-10² copies) were
105 included on every plate for RRV and mite rDNA. The data was analyzed to determine
106 whether there were differences between plates before combining the data for further
107 analysis. A linear model was employed, using C_t values as the response variable and log-
108 transformed copies as a factor while treating the plate as a random factor. This approach
109 was used to assess variability across plates before merging the results for comprehensive
110 analysis.

111 For the merged data, an infection coefficient (IC) was calculated as follows:
112 IC = RRV/mite rDNA concentration. An additional approach to assess infection efficacy was
113 to use a normalized Infection Coefficient (nIC), defined as dividing the C_t value of the vector
114 by the C_t value for the cDNA of RRV (nIC = C_t mite/ C_t RRV).

115 Linear regression analysis was performed to assess the concentration of virus in
116 each mite species. Total DNA was quantified from the host mites via qPCR, and the results
117 were compared with the corresponding virus concentrations estimated via RT-qPCR. A
118 constant was added to all virus samples to adjust for zero values, and DNA concentrations
119 for viruses and mites were log10 transformed. A Pearson correlation was calculated to
120 determine whether there was a significant correlation between the two variables. To
121 investigate the differences in the infection coefficient or virus concentration across the eight
122 feeding events (days), the infection coefficient was analyzed over eight days (events). A
123 repeated measures analysis was performed to identify any differences across these events.
124 Both the mite species and the acquisition events were treated as factors in a two-way
125 ANOVA for repeated measures. Significant effects were further evaluated using post-hoc
126 tests, specifically pairwise comparisons with adjustments using the Bonferroni method for
127 multiple comparisons. All analyses were conducted using R version 4.2.

128

129 **RESULTS**

130 **Infection coefficient**

131 The factor corresponding to the independent plate was included as a random factor in the
132 analysis, explaining only 0.013 and 0.015 of the variances in the virus and mite rDNA
133 concentrations, respectively. Additionally, the homogeneity of the regression slopes across
134 both assays was tested and found to be statistically insignificant (RRV $p= 0.328$, mite rDNA
135 $p= 0.808$) (S. Fig. 1).

136 Analysis of the change in virus concentration in response to the rDNA concentration
137 of each of the two mite species revealed that for RRV - *P. adalius* rDNA concentration had a

138 statistically insignificant regression ($R^2=0.045$, $p= 0.29$), suggesting that the virus did not
139 replicate in the mites (Fig. 2). In contrast, a positive correlation was observed between RRV
140 and *P. fructiphilus* rDNA ($R^2=0.36$, $p= 2.2e^{-16}$; Fig. 2), indicating that the virus concentration
141 increases as it replicates.

142 The normalized infection coefficient showed that both species acquired RRV (Fig. 3).
143 The overall infection coefficient varied between 0.3 and 0.6, with *P. adalius* displaying
144 greater variability. Most feeding events yielded similar results; however, on day 5, the
145 infection coefficient for *P. fructiphilus* surpassed that for *P. adalius*. Repeated measures
146 analysis of these fluctuations indicated significant differences in the infection coefficient at
147 days 0, 1, 2, 5, and 8 (Fig. 4). In particular, *P. adalius* had higher coefficients on days 1 and
148 2, although the difference was less significant than that in the instances where *P. fructiphilus*
149 dominated (days 0, 5, and 8). While the trend was consistent for the initial events, day 5
150 marked a notable increase ($p= 1.35e^{-14}$) in the virus concentration for *P. fructiphilus*.

151

152 **DISCUSSION**

153 Our study advances the understanding of virus dynamics by quantitatively monitoring virus
154 concentrations over time in mites transiently exposed to RRV-infected tissue. We cleared the
155 digestive tract and prevented further uptake of infected plant material by transferring mites to
156 virus-free tissues daily and quantifying the viral concentrations. The use of *P. adalius*, a non-
157 vector species, and *P. fructiphilus*, a verified RRV vector, provided a new perspective on
158 vector competency and virus-mite interaction dynamics (Fig. 2) [6,7,13].

159 The quantitative assay enabled RRV and mite rDNA assessment, revealing
160 acquisition by both species (Figs. 3 and 4). The infection coefficient, derived from RRV/rDNA
161 concentrations and C_t value ratios, revealed new aspects of RRV dynamics. Notably, there
162 was a positive correlation between the virus concentration and the vector rDNA
163 concentration in *P. fructiphilus*; as the number of rDNA copies increased (presumably,
164 immature mites develop into adults), as did the virus concentration within the mite, indicating

165 replication of RRV in a verified vector. These results agree with those reported previously
166 [6], in which amplicons were obtained from *P. fructiphilus* but not *P. adalius* individuals.

167 The variability in the infection coefficient, especially the spike in *P. fructiphilus* on day
168 5, suggests factors influencing RRV dynamics at different mite developmental stages (Fig.
169 5). Interestingly, on day 5, RRV transmission was also reported previously [13]. Considering
170 the developmental times for life stages previously reported for both species [16,17], it is
171 highly probable that by day 5, mites had reached an adult stage. We initiated the study with
172 cohorts of immature individuals to ensure virus acquisition and that enough individuals were
173 alive throughout the experiment. However, our methodology also had several limitations, as
174 it prevented us from verifying the specific life stage at sampling, which could have provided
175 detailed insights into the stage-specific virus response.

176 The variability observed during the first two days (Fig. 5) may have resulted from the
177 different lifestyles of the studied eriophyoid species [18]. *P. adalius*, as a vagrant, is adapted
178 to the flat leaf surface of a rearing arena. In contrast, a refuge-seeking lifestyle of *P.*
179 *fructiphilus*, which often involves seeking refuge in areas such as flower buds and petiole
180 bases, may lead to less frequent feeding on the arena, as these mites spend more time
181 searching for shelter [19,20]. Both mite species demonstrated the ability to carry RRV for
182 more than a week. The higher variability in *P. adalius* might indicate different mechanisms of
183 RRV retention. Comparisons can be drawn with other plant-infecting members of the
184 *Bunyavirales* and especially orthotospoviruses (family *Tospoviridae*). It has been shown that
185 transmission dynamics differ significantly between vector species of tomato spotted wilt
186 orthotospovirus (TSWV), the better-studied member of the group [21]. In the case of TSWV,
187 vector competence is influenced by virus replication in larvae and migration to salivary
188 glands. It is unclear whether emaraviruses, similar to orthotospoviruses, require acquisition
189 during the larval, nymphal or adult stages [22] for successful transmission and whether the
190 ability to acquire the virus changes as mites develop [23,24].

191 Emaraviruses and orthotospoviruses are characterized by similar genome structures
192 and virion architectures, leading researchers to suggest that emaraviruses might be

193 transmitted in a persistent, propagative manner, as observed for orthotospoviruses [25].
194 While some studies suggest a persistent, propagative mode [13,26], others propose a
195 semipersistent mode [27]. Our study provides evidence for the replication of RRV in *P.*
196 *fructiphilus*. However, these attributes and transmission characteristics may not be
197 consistent across different emaravirus/vector/host pathosystems.

198 Our current understanding of the virus-mite interactome is nascent. A knowledge gap
199 exists concerning the intricate transmission mechanisms and molecular determinants of
200 virus dissemination in mites [6,28]. Addressing these gaps is crucial for devising innovative,
201 selective, and durable control measures similar to other groups of viral pathogens [29–32].
202 Outbreaks of known and emerging arthropod-borne diseases, such as rose rosette, are
203 increasing in frequency and scale due to factors associated with climate change, human
204 demographics, and globalization of trade [33,34]. Our methodology, which involves
205 quantifying virus concentrations in individual mites, offers new insight into eriophyoid-borne
206 diseases. The presented approach is versatile enough for further analysis and applicable to
207 other pathosystems. This study is a step toward enhancing our understanding of virus
208 dynamics in mites and can be used to develop practical tools to combat the threats they
209 pose to agriculture and biodiversity.

210

211 **Supplementary Information**

212 **Additional file 1** Primers and probes used in the experiments, sequences of targeted
213 regions, details on quantification of RRV titer using direct RT-qPCR and TaqMan assay, and
214 qPCR standard curves generated for multiple independent runs.

215

216 **Funding information**

217 TZD was supported by the National Science Centre in Poland (Polonez Bis-1 grant number
218 2021/43/P/NZ9/03267), and IET was supported by the United States National Institute of
219 Food and Agriculture project ARK02850 and the Arkansas Agricultural Experimental Station.

220 **Author contributions**

221 T.D. and I.T. conceived, designed and conducted experiments. A.R., T.D. and I.T. analyzed
222 the data. All participated in writing the paper and internal review. All authors have read and
223 approved the final manuscript.

224

225 **Conflicts of interest**

226 The authors declare that there are no conflicts of interest.

227

228 **References**

- 229 1. Büttner C, Landgraf M, Fernandez Colino HL, von Bargen S, Bandte M. Chapter 3 - Virus
230 diseases of forest and urban trees. In: Asiegbu FO, Kovalchuk A, editors. Forest Microbiology
231 [Internet]. Academic Press; 2023 [cited 2023 May 2]. p. 61–97. (Forest Microbiology; vol. 3).
232 Available from: <https://www.sciencedirect.com/science/article/pii/B9780443186943000110>
- 233 2. Rehanek M, Karlin DG, Bandte M, Al Kubrusli R, Nourinejhad Zarghani S, Candresse T, et al. The
234 Complex World of Emaraviruses—Challenges, Insights, and Prospects. *Forests*. 2022
235 Nov;13(11):1868.
- 236 3. Xue XF, Yao LF, Yin Y, Liu Q, Li N, Hoffmann AA, et al. Macroevolutionary analyses point to a key
237 role of hosts in diversification of the highly speciose eriophyoid mite superfamily. *Molecular
238 Phylogenetics and Evolution*. 2023 Feb 1;179:107676.
- 239 4. Stenger DC, Hein GL, Tatineni S, French R. CHAPTER 18: Eriophyid Mite Vectors of Plant Viruses.
240 In: Drake C. Stenger, Gary L. Hein, Satyanarayana Tatineni, Roy French, editors. *Vector-
241 Mediated Transmission of Plant Pathogens* [Internet]. The American Phytopathological Society;
242 2016 [cited 2021 Apr 8]. p. 263–74. (General Plant Pathology). Available from:
243 <https://apsjournals.apsnet.org/doi/abs/10.1094/9780890545355.018>
- 244 5. Bello PLD, Thekke-Veetil T, Druciarek T, Tzanetakis IE. Transmission attributes and resistance to
245 rose rosette virus. *Plant Pathology*. 2018;67(2):499–504.
- 246 6. Druciarek T, Lewandowski M, Tzanetakis I. A new, sensitive and efficient method for taxonomic
247 placement in the Eriophyoidea and virus detection in individual eriophyoids. *Exp Appl Acarol*.
248 2019 Jun;78(2):247–61.
- 249 7. Druciarek T, Lewandowski M, Tzanetakis IE. Identification of a second vector for rose rosette
250 virus. *Plant Dis*. 2023 Feb 1;107(8):2313–5.
- 251 8. Druciarek T, Sierra-Mejia A, Zagrodzki SK, Singh S, Ho T, Lewandowski M, et al. *Phyllocoptes
252 parviflori* is a distinct species and a vector of the pervasive blackberry leaf mottle associated
253 virus. *Infection, Genetics and Evolution*. 2024 Jan 1;117:105538.
- 254 9. Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P, van der Vlugt R, et al.
255 Illuminating an Ecological Blackbox: Using High Throughput Sequencing to Characterize the

256 Plant Virome Across Scales. *Frontiers in Microbiology* [Internet]. 2020 [cited 2023 May 2];11.
257 Available from: <https://www.frontiersin.org/articles/10.3389/fmicb.2020.578064>

258 10. Villamor DEV, Keller KE, Martin R, Tzanetakis IE. Comparison of high throughput sequencing to
259 standard protocols for virus detection in berry crops. *Plant Disease* [Internet]. 2021 Jul 20
260 [cited 2021 Nov 15]; Available from: <https://apsjournals.apsnet.org/doi/10.1094/PDIS-05-21-0949-RE>

262 11. Olmedo-Velarde A, Ochoa-Corona FM, Larrea-Sarmiento AE, Elbeaino T, Flores F. In-silico
263 prediction of RT-qPCR-high resolution melting for broad detection of emaraviruses. *PLOS ONE*.
264 2023 May 8;18(5):e0272980.

265 12. Windham MT, Evans T, Collins S, Lake JA, Lau J, Riera-Lizarazu O, et al. Field Resistance to Rose
266 Rosette Disease as Determined by Multi-Year Evaluations in Tennessee and Delaware.
267 *Pathogens*. 2023 Mar;12(3):439.

268 13. Di Bello PL, Thekke-Veetil T, Druciarek T, Tzanetakis IE. Transmission attributes and resistance
269 to rose rosette virus. *Plant Pathol*. 2018 Feb;67(2):499–504.

270 14. Druciarek T, Lewandowski M, Tzanetakis I. Molecular phylogeny of *Phyllocoptes* associated
271 with roses discloses the presence of a new species. *Infection, Genetics and Evolution*. 2021 Nov
272 1;95:105051.

273 15. Di Bello PL, Ho T, Tzanetakis IE. The evolution of emaraviruses is becoming more complex:
274 seven segments identified in the causal agent of Rose rosette disease. *Virus Research*. 2015
275 Dec 2;210:241–4.

276 16. Druciarek T, Lewandowski M, Kozak M. Demographic parameters of *Phyllocoptes adalius*
277 (Acar: Eriophyoidea) and influence of insemination on female fecundity and longevity. *Exp
278 Appl Acarol*. 2014 Jul 1;63(3):349–60.

279 17. Kassar A, Amrine JW. Rearing and development of *Phyllocoptes fructiphilus*
280 (Acar: Eriophyidae). *Entomological News*. 1990;101(5):276–82.

281 18. Sabelis MW, Bruin J. 1.5.3. Evolutionary ecology: Life history patterns, food plant choice and
282 dispersal. In: Lindquist EE, Sabelis MW, Bruin J, editors. *World Crop Pests* [Internet]. Elsevier;
283 1996 [cited 2021 May 4]. p. 329–66. (Eriophyoid Mites Their Biology, Natural Enemies and
284 Control; vol. 6). Available from:
285 <https://www.sciencedirect.com/science/article/pii/S1572437996800200>

286 19. Keifer HH. Eriophyid studies VII. *Bull Calif Dept Agri*. 1939;(28):484–505.

287 20. Keifer HH. Eriophyid studies VIII. *Bull Calif Dept Agri*. 1940;(29):21–46.

288 21. Nagata T, Inoue-Nagata AK, van Lent J, Goldbach R, Peters D. Factors determining vector
289 competence and specificity for transmission of Tomato spotted wilt virus. *Journal of General
290 Virology*. 2002;83(3):663–71.

291 22. Mou DF, Chen WT, Li WH, Chen TC, Tseng CH, Huang LH, et al. Transmission mode of
292 watermelon silver mottle virus by *Thrips palmi*. *PLOS ONE*. 2021 Mar 3;16(3):e0247500.

293 23. Rotenberg D, Jacobson AL, Schnieweis DJ, Whitfield AE. Thrips transmission of tospoviruses.
294 *Current Opinion in Virology*. 2015 Dec 1;15:80–9.

295 24. Wetering F van de, Goldbach R, Peters D. Tomato spotted wilt tospovirus ingestion by first
296 instar larvae of *Frankliniella occidentalis* is a prerequisite for transmission. *Phytopathology*.
297 1996;86:900–5.

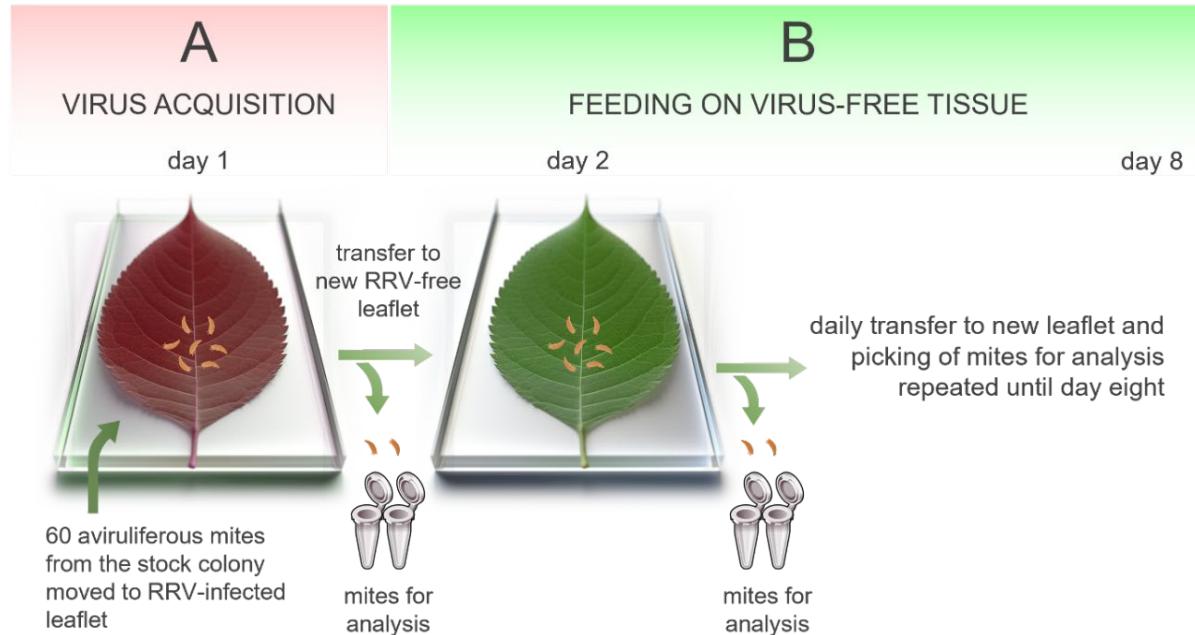
298 25. Chen Y, Dessau M, Rotenberg D, Rasmussen DA, Whitfield AE. Chapter Two - Entry of
299 bunyaviruses into plants and vectors. In: Kielian M, Mettenleiter TC, Roossinck MJ, editors.
300 *Advances in Virus Research* [Internet]. Academic Press; 2019 [cited 2021 Jul 7]. p. 65–96. (Virus
301 Entry; vol. 104). Available from:
302 <https://www.sciencedirect.com/science/article/pii/S0065352719300181>

303 26. Martelli GP, Elbeaino T, Digiaro M. Fig mosaic. *Protezione delle Colture*. 2013;(No.1):20–6.

304 27. Kulkarni NK, Kumar PL, Muniyappa V, Jones AT, Reddy DVR. Transmission of Pigeon pea sterility
305 mosaic virus by the Eriophyid Mite, *Aceria cajani* (Acari: Arthropoda). *Plant Disease*. 2002 Dec
306 1;86(12):1297–302.

307 28. de Lillo E, Freitas-Astúa J, Kitajima EW, Ramos-González PL, Simoni S, Tassi AD, et al.
308 Phytophagous mites transmitting plant viruses: update and perspectives. *Entomologia
309 Generalis*. 2021 Oct 29;439–62.

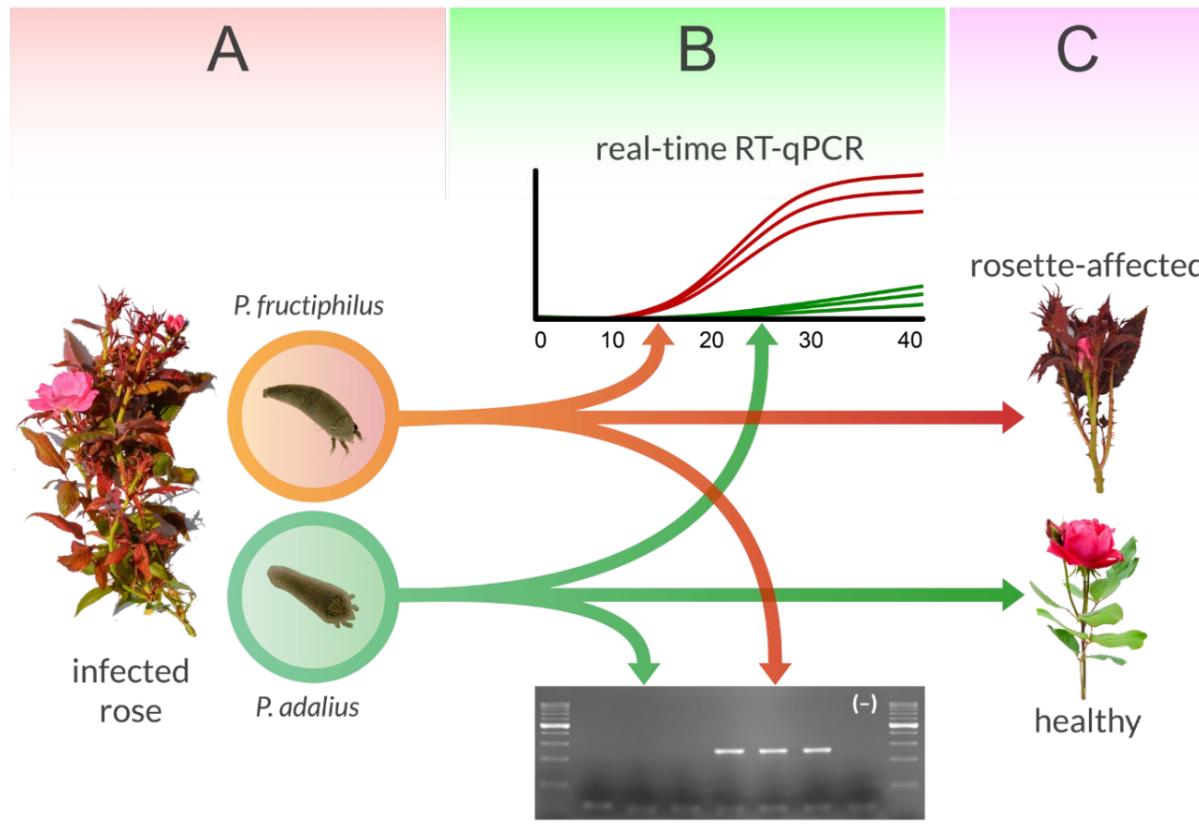
310 29. Montero-Astúa M, Rotenberg D, Leach-Kieffaber A, Schnieweis BA, Park S, Park JK, et al.
311 Disruption of Vector Transmission by a Plant-Expressed Viral Glycoprotein. *MPMI*. 2014 Mar
312 1;27(3):296–304.


313 30. Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses
314 as a novel strategy to control vector-borne disease. *Current Opinion in Insect Science*. 2020 Jun
315 1;39:50–6.

316 31. Tabein S, Jansen M, Noris E, Vaira AM, Marian D, Behjatnia SAA, et al. The Induction of an
317 Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous
318 Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target
319 Region. *Front Plant Sci*. 2020 Nov 26;11:533338.

320 32. Zhou J, Tzanetakis IEY 2020. Transmission blockage of an orthotospovirus using synthetic
321 peptides. *Journal of General Virology*. 2020;101(1):112–21.

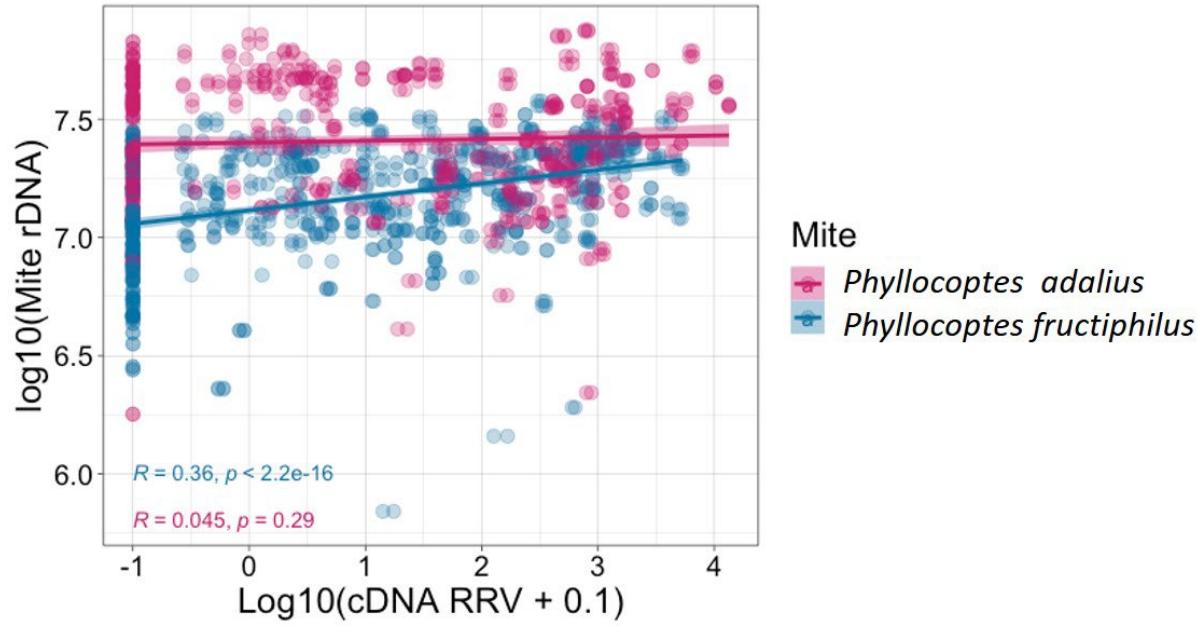
322 33. Jones RAC, Naidu RA. Global Dimensions of Plant Virus Diseases: Current Status and Future
323 Perspectives. *Annu Rev Virol*. 2019 Sep 29;6(1):387–409.

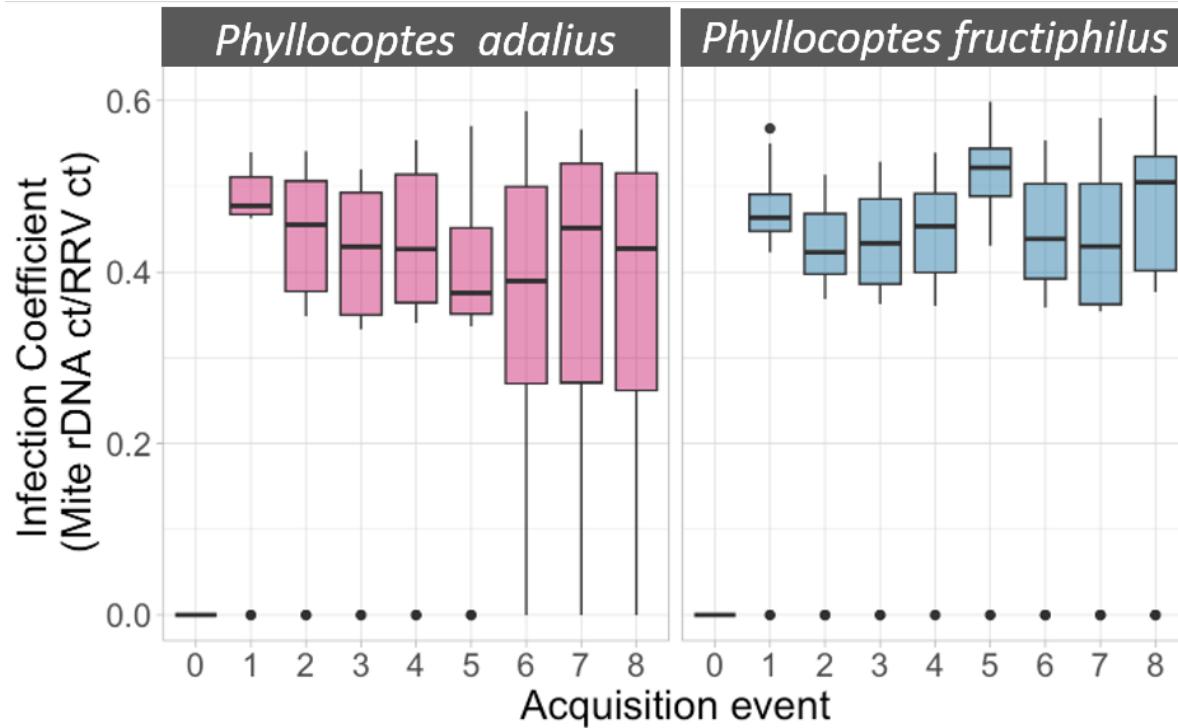

324 34. Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, et al. Climate change
325 impacts on plant pathogens, food security and paths forward. *Nat Rev Microbiol*. 2023 May
326 2;1–17.

327

328 **Fig. 1** Schematic representation of rose rosette emaravirus (RRV) quantification assay. **A**,
329 Virus acquisition by immature mites moved to RRV-infected material and fed for 24 hours. **B**,
330 Daily transfer of developing mites to new, RRV-free tissue with two mites taken daily for
331 analysis. The artwork was partially produced using the Midjourney bot via a Discord server
332 at <https://discord.com/invite/midjourney>

333




334

335 **Fig. 2** Schematic representation of rose rosette emaravirus (RRV) transmission competency
336 by eriophyoid mites. **A**, RRV might be acquired by both *Phyllocoptes* species feeding on
337 infected rose plants. **B**, However, only *P. fructiphilus* has enough of a virus load to obtain a
338 positive amplicon in semi-quantitative RT-PCR [6], and the RT-qPCR assay suggested
339 replication in this species. **C**, Transfer of viruliferous mites to recipient plants results in
340 successful transmission and development of symptoms only in the case of *P. fructiphilus* [7]

341

342

360

361 **Fig. 4** Box plot of the normalized infection coefficient of rose rosette emaravirus to

362 *Phyllocoptes adalius* and *P. fructiphilus* per acquisition event. Dots represent outliers

363

364

365

366

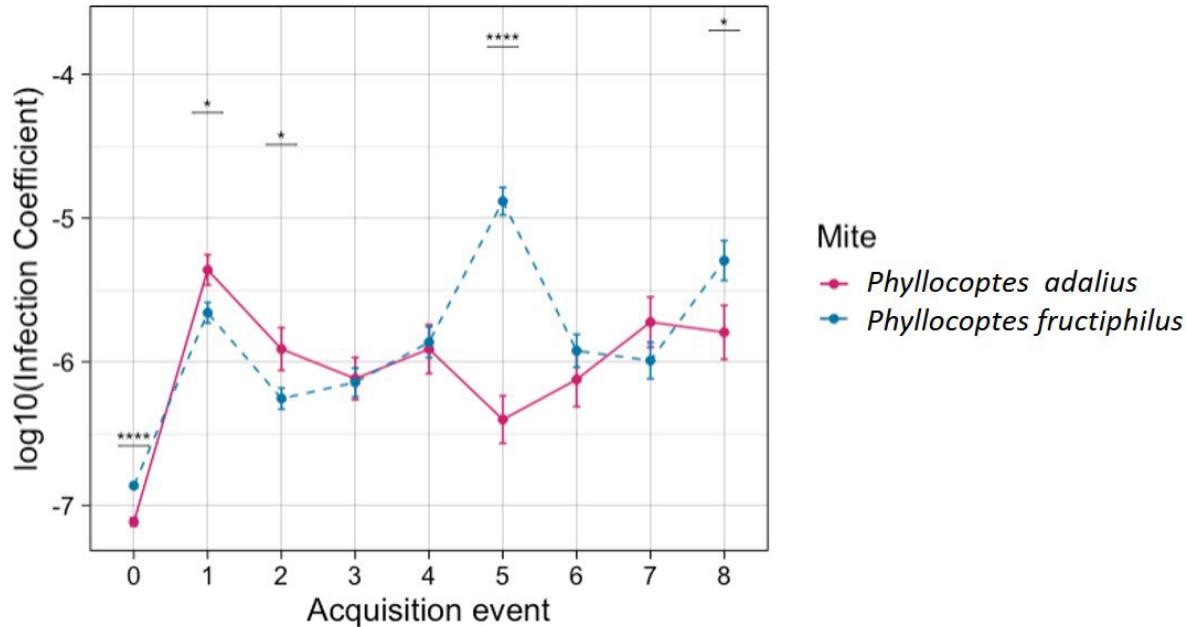
367

368

369

370

371


372

373

374

375

376

377 **Fig. 5** Acquisition event dynamics of rose rosette emaravirus (RRV) log10 infection
378 coefficient derived from the cDNA RRV divided by the mite rDNA. Points represent the
379 means of 16 and 24 individual mites for *Phyllocoptes adalius* and *P. fructiphilus*,
380 respectively, and error bars represent standard errors. Significant differences per event were
381 calculated with a pairwise test, and p-values were adjusted with Bonferroni correction.
382 (Significance levels: *=0.05, **=0.01, ***=0.001, ****=0.0001)