

1 ***Clostridioides difficile* binary toxin CDT induces biofilm-like persisting**
2 **microcolonies**

3
4 MEZA TORRES Jazmin^{1,2*}, TINEVEZ Jean-Yves³, CROZOULS Aline¹, MARY Héloïse^{4,5}, KIM
5 Minhee⁴, HUNAULT Lise⁶, CHAMORRO-RODRIGUEZ Susan¹, LEJAL Emilie⁷, ALTAMIRANO-
6 SILVA Pamela⁸, GOBAA Samy⁴, PELTIER Johann⁷, CHASSAING Benoit^{9,10} and DUPUY
7 Bruno^{1**}

8
9 ¹ Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université
10 Paris-Cité, UMR-CNRS 6047, Paris, France.

11 ² Present address: BIOASTER Technology Research Institute, Paris, France.

12 ³ Image Analysis Hub, Department of Cell Biology and Infection, Institut Pasteur, Université
13 Paris Cité Paris, France.

14 ⁴ Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell
15 Biology, Institut Pasteur, Université Paris Cité, Paris, France.

16 ⁵ Present address: Roche Pharma Research and Early Development, Institute of Human
17 Biology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

18 ⁶ Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris,
19 France.

20 ⁷ Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-
21 sur-Yvette, France.

22 ⁸ Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José,
23 Costa Rica.

24 ⁹ Microbiome-Host Interactions, Department of Microbiology, Institut Pasteur, Université Paris
25 Cité, INSERM U1306, Paris, France.

26 ¹⁰ Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM U1016, CNRS UMR 8104,
27 Université Paris Cité, Paris, France

28
29 Correspondance: *jazmin.meza-torres@pasteur.fr (J.M.T.), **bruno.dupuy@pasteur.fr (B.D)

30
31 **SUMMARY**

32 Clinical symptoms of *Clostridioides difficile* infection (CDI) range from diarrhea to
33 pseudomembranous colitis. A major challenge in managing CDI is the high rate of
34 relapse. Several studies correlate production of CDT binary toxin by clinical strains of
35 *Clostridioides difficile* with higher relapse rates. Although the mechanism of action of
36 CDT on host cells is known, its exact contribution to CDI is still unclear. To understand
37 the physiological role of CDT during CDI, we established two hypoxic relevant intestinal
38 models, Transwell and Microfluidic Intestine-on-Chip systems. Both were challenged
39 with the epidemic strain UK1 CDT⁺ and its isogenic CDT⁻ mutant. We report that CDT
40 binary toxin induces mucin-associated microcolonies that increase *C. difficile*
41 colonization and display biofilm-like properties by enhancing *C. difficile* resistance to
42 vancomycin but not to fidaxomicin, a biofilm disrupting antibiotic. Importantly, biofilm-
43 like CDT-dependent microcolonies were also observed in the caecum and colon of
44 infected mice. Hence, our study shows that CDT toxin induces biofilm-like
45 microcolonies, increasing *C. difficile* colonization and persistence.

46 **Keywords:** CDT binary toxin, *Clostridioides difficile* infection (CDI), relapse, biofilm,
47 gut persistence, mucin-associated microcolonies, antibiotic resistance.

48

49 INTRODUCTION

50 *Clostridioides difficile* is a Gram-positive, obligate anaerobic and spore forming
51 bacterium and the leading cause of antibiotic-associated diarrhea¹. Antibiotic
52 treatments altering the gut microbiota and reducing the production of secondary bile
53 acids by the commensal microbiota allow germination of *C. difficile* spores present in
54 the gut^{2,3}. The clinical manifestations of *C. difficile* infection (CDI) range from diarrhea,
55 to potentially fatal pseudomembranous colitis. Although CDI are mainly nosocomial,
56 the incidence of community-associated CDI is rising^{4,5}.

57

58 A major challenge in managing CDI is the high rate of relapse^{6–8}. Recurrent CDI (rCDI)
59 due to relapse or reinfection occur in 20-35% of cases in the two months following the
60 initial episode^{5,9,10}. After a first relapse episode, patients have a higher risk (around
61 60%) of presenting a second relapse^{5,9,11}. Recent findings indicated that spores
62 contribute to *C. difficile* persistence and rCDI¹². *C. difficile* spores are able to entry into
63 epithelial cells¹², suggesting that they are liberated into the lumen upon epithelial cell
64 renewal to potentially recolonize the host. However, inhibition of spore entry into
65 epithelial cells only delayed relapse¹³, indicating that other mechanisms are involved
66 in rCDI.

67

68 The key virulence factors of *C. difficile* involved in the host intestinal damages are the
69 two large toxins TcdA and TcdB. These toxins are encoded on a pathogenicity locus
70 (PaLoc) whose sequence variabilities define different *C. difficile* toxinotypes^{14–18}. As
71 monoglucosyltransferases, both toxins modify and inactivate Rho and Rac GTPases¹⁹,
72 triggering the disruption of the cytoskeleton, the breakdown of tight junctions and the
73 subsequent loss of epithelial integrity²⁰. In addition, 17-23% of clinical strains produce
74 a third toxin, namely the *C. difficile* transferase toxin (CDT) or binary toxin. This toxin
75 is composed of two separate toxin components: CDTa, the enzymatic ADP-ribosyl-
76 transferase that depolymerizes F-actin, and CDTb, the cellular binding component that
77 forms heptamers after proteolytic activation and translocates CDTa into the cytosol.
78 The ADP ribosylation of actin by CDTa allows the formation of long microtubules
79 protrusions that form a tentacle-like network on the surface of epithelial cells²¹. The

80 actin depolymerization also leads to a misguided secretion of vesicles containing
81 extracellular matrix (ECM) proteins such as fibronectin. Altogether, the microtubules
82 protrusions and ECM-containing vesicles increase the adherence of *C. difficile* to
83 epithelial cells^{21,22}.

84
85 Despite the advances regarding the mechanism of action of CDT on host cells, the role
86 of CDT during infection and disease remains unclear²³. To date, CDT has been shown
87 to enhance colonization²⁴ and CDT⁺ strains correlate with an increased virulence
88 leading to more severe diarrhea, increased pain, higher fatality rates and higher
89 rCDI²⁵⁻³¹. Several studies assessed the role of CDT during infection and colonization
90 but all had limitations or bias, such as the use of (i) insertional CDT gene mutants with
91 possible polar effects³¹, (ii) originally non-toxigenic TcdA-TcdB-CDT⁺ strains³², (iii) non-
92 isogenic strains³³, or (iv) a short infection time (2-3 days)³⁴.

93
94 In this study, we used *C. difficile* epidemic strain UK1 and generated *tcdA*-*tcdB*-*cdtAB*^{+/+}-
95 isogenic mutant strains to elucidate the role of CDT during CDI. We show that *C.*
96 *difficile* binary toxin CDT has a role in colonization through formation of 3D biofilm-like
97 microcolonies structures in a 2D Transwell Intestinal model (TIM), a 3D Intestine on
98 chip model (IoC) and in a mice infection model. These microcolony structures have
99 biofilm-like properties such as increased resistance to antibiotics treatments. Our
100 results support the implication of CDT in *C. difficile* long-term colonization and suggest
101 that the 3D biofilm-like CDT-dependent structures are involved in *C. difficile*
102 persistence in the gut. These findings provide evidence that CDT could play a crucial
103 role in *C. difficile* relapses.

104
105 **RESULTS**

106 **1. CDT induces mucin-associated microcolonies**

107 The CDT binary toxin triggers the formation of long microtubule protrusions and
108 secretion of ECM-containing vesicles leading to increased *C. difficile* adherence^{21,22}.
109 The impact of CDT on epithelial cells has been studied by incubating the purified binary
110 toxin with cell monolayers and *C. difficile* for short periods of time²². However, the
111 impact this toxin could have on a longer period of time has not been explored. To tackle
112 this question, we standardized two hypoxic cell culture models: a 2D Transwell
113 Intestinal Model (TIM) with polarized cells under static conditions and a 3D Intestine-

114 on Chip (IoC) microfluidic system that mimics flow and peristaltic intestinal motions.
115 Both models were established with Caco-2 cells alone or Caco-2 cells co-cultured with
116 HT29-MTX cells (mucus secreting cell-line) under hypoxia conditions (4% O₂ and 5%
117 CO₂) optimized to simultaneously maintain viability of both eukaryotic and *C. difficile*
118 cells (Fig. 1). Eukaryotic cell cytotoxicity, was monitored with lactate dehydrogenase
119 (LDH) release assays and delta values between normoxia and hypoxia were
120 calculated. Delta values ≤40% revealed that experiments of 24 or 48 h can be
121 performed with the TIM and the IoC models, respectively, under these hypoxia
122 conditions (Fig. S1A and S1B). Cell morphology, 3D or 2D structure and mucus
123 production were assessed in these conditions, using appropriate markers (Fig 1B and
124 1D).

125
126 To evaluate the role played by CDT in *C. difficile* colonization, two different strains were
127 used: the reference strain 630Δerm (TcdAB⁺CDT⁻) and the epidemic NAP1/B1/027
128 strain UK1 (TcdAB⁺CDT⁺). In order to assess CDT effects independently of TcdA and
129 TcdB cytotoxic effects, we generated *in-frame* *tcdBEA* deletion mutants in 630 Δerm
130 (630 ToxAB⁻CDT⁻) and UK1 (UK1 ToxAB⁻CDT⁺) strains (FigS2A). Then, we generated
131 an *in-frame* *cdtAB* deletion mutant in the UK1 ToxAB⁻ background (UK1 ToxAB⁻CDT⁻)
132 (FigS2A). Deletion of either PaLoc or CdtLoc genes or both had no impact on *C. difficile*
133 growth compared with the respective wild-type strains (Fig S2B). The absence of TcdA
134 or CDT in culture supernatants of the ToxAB⁻ and CDT⁻ strains, respectively, confirmed
135 the deletions (Fig S2C and S2D).

136
137 Caco-2 cells alone or co-cultured with HT29-MTX cells in the TIM model were first
138 infected with *C. difficile* mutants (10⁶ bacteria/mL) and viable vegetative cells (CFU)
139 and spores were numerated after 24h of infection (Fig S3A and S3B). No difference in
140 CFU was observed between Caco-2 cells alone and Caco-2 cells co-cultured with
141 HT29-MTX cells. The number of viable cells was similar between UK1 ToxAB⁻CDT⁻
142 and UK1 ToxAB⁻CDT⁺, with a 2-log increase at 24h, whereas no CFU increase was
143 observed for 630 ToxAB⁻CDT⁻ (Fig S3A). Next, *C. difficile* adhesion was monitored at
144 different time points (3, 6, 18 and 24h) in the TIM model. The 630 ToxAB⁻CDT⁻ strain
145 adhered much less than the two UK1 mutant strains. In addition, the UK1 ToxAB⁻CDT⁺
146 strain showed a significant better adhesion than the CDT⁻ isogenic strain at 24h post-
147 infection (p.i.) (Fig S3C). Immunofluorescence (IF) microscopy was then carried out to

148 visualize *C. difficile* cells in the TIM model. An anti-SlpA monoclonal antibody was used
149 to label *C. difficile*³⁵ and mucin was labeled with an anti-Muc-5AC antibody (Fig 2A).
150 Overall, more bacteria were observed on Caco-2 cells co-cultured with HT29-MTX
151 cells than Caco-2 cells alone at 24 h p.i. indicating that the presence of mucin producer
152 cells stimulates *C. difficile* adhesion (Fig 2A). This result is consistent with the
153 previously reported close association of *C. difficile* with mucin^{36,37}. Whereas only few
154 630 ToxAB⁻CDT⁻ and UK1 ToxAB⁻CDT⁻ were detected on Caco-2 cells co-cultured with
155 the HT29-MTX, a high number of UK1 ToxAB⁻CDT⁺ bacteria, organized as
156 microcolonies or clumps and colocalizing with Muc-5AC was observed (Fig 2A and Fig.
157 S4A). By applying a quantitative approach, we determined that the number of bacteria
158 increased up to 10 times in the presence of CDT and mucin producer cells (Fig 2B).
159 The bacterial surface of these microcolonies associated to the coculture of Caco-2 and
160 HT29-MTX cells ranged from 200 to 3000 μm^2 (Fig 2C) and suggested a 3D biofilm-
161 like structure. Consistently, mucin has recently been shown to induce formation of *C.*
162 *difficile* biofilm³⁸ and to chemoattract *C. difficile*³⁷.

163
164 To further validate that mucin-associated microcolonies formation is specifically
165 induced by the CDT toxin, we next performed a rescue experiment in the TIM model.
166 For this, we infected Caco-2 cells co-cultured with HT29-MTX cells with UK1 ToxAB⁻
167 CDT⁻ or 630 ToxAB⁻CDT⁻ strains and exogenously supplied the purified CDT toxin³⁹ at
168 6h p.i or at the time of the infection, corresponding to 18 and 24h treatment,
169 respectively. Addition of purified CDT led to the formation of strong microcolonies for
170 both CDT⁻ strains (Fig 3A and 3B). When CDT was added at 18h p.i, corresponding to
171 6h treatment, bacteria were not able to form microcolonies (Fig S5A and S5B). The
172 number of detected bacteria (up to 300 bacteria per image) and the microcolony
173 surface (up to 2000 μm^2) observed after 18h of CDT treatment (Fig. 3C and 3D) were
174 highly similar to those obtained with UK1 ToxAB⁻ CDT⁺ at 24h p.i. (Fig 2B and 2C).
175 Cell exposure to CDT during 24h dramatically increased the number of adhered
176 bacteria (up to 1000 bacteria per image) and the surface of the microcolonies (up to
177 6000 μm^2 per image) (Fig. 3B, 3C and 3D). Formation of similar mucin-associated
178 microcolonies by the strain 630 ToxAB⁻, naturally lacking the CDT toxin provides robust
179 evidence that CDT is the sole factor involved in their formation. Altogether, these
180 results strongly support that CDT toxin enhances close association of *C. difficile* with
181 host cells, increases bacterial adhesion in presence of mucin and allows subsequent

182 formation of microcolonies. These data thus suggest that the CDT-mediated
183 microcolonies could contribute to *C. difficile* gut colonization.

184

185 **2. CDT-dependent 3D microcolonies favor *C. difficile* colonization**

186 To better decipher the role played by CDT in microcolony formation and *C. difficile* gut
187 colonization, we next used the IoC model cultured with Caco-2 cells alone or in
188 combination with HT29-MTX cells. Upon the development of the 3D intestinal structure
189 (6-7 days after seeding in normoxic conditions), the IoC chips were placed in hypoxia
190 (4% of O₂) and infected with 630 ToxAB⁺CDT⁻, UK1 ToxAB⁺CDT⁻ or UK1 ToxAB⁺CDT⁺
191 for 24 to 48h. IF analyses revealed the formation of 3D microcolonies in the IoC model
192 only with Caco-2 cells co-cultured with HT29-MTX cells at 24 and 48h p.i with the CDT⁺
193 strain but not with the CDT⁻ strains (Fig. 4A and 4B, Fig. S6A and S6B). CDT⁺ strains
194 showed a higher number of detected bacteria and a higher bacterial surface when
195 compared to the CDT⁻ strains (Fig. 4C and 4D, Fig S6C and S6D). The number of
196 bacteria and surface of microcolonies observed with the IoC model at 48h. p.i.,
197 although slightly lower, were consistent with those obtained with the TIM model after
198 24h of infection (Fig 2B and 2C). Moreover, the microcolonies observed in IoC
199 colocalized with mucin as in the TIM model (Fig S4A and S4B). The delay in
200 microcolony formation in the IoC model when compared with the TIM can be explained
201 by the presence of a flow. Nonetheless, the IoC model confirms that CDT promotes *C.*
202 *difficile* colonization through the formation of 3D mucin-associated microcolonies.

203

204 **3. CDT-dependent microcolonies possess biofilm-like properties**

205 Bacteria embedded in biofilms have increased resistance to antibiotics, antimicrobial
206 peptides and oxidative stresses^{40,41}. *In vitro*, *C. difficile* biofilms display higher survival
207 than planktonic cells when exposed to antibiotics widely used to treat CDI, including
208 vancomycin^{42,43}. *C. difficile* biofilms can withstand vancomycin concentrations up to 25
209 times higher than the Minimal Inhibitory Concentration (MIC)⁴⁴. On the other hand,
210 fidaxomicin, an effective antibiotic against CDI and known to decrease rCDI, is
211 effective in disrupting *C. difficile* biofilms^{44,45}. Since CDT is a virulence factor
212 associated with higher relapse rates²⁹, we hypothesized that CDT-induced
213 microcolonies could present biofilm-like properties, enabling a better resistance of *C.*
214 *difficile* to vancomycin but not fidaxomicin. No difference in the MIC of fidaxomicin and
215 vancomycin against the planktonic cells of UK1 ToxAB⁺CDT⁺, UK1 ToxAB⁺CDT⁻ and

216 UK1 ToxAB-CDT⁺ strains grown in ADMEM medium was observed (Methods, Table
217 S3), indicating that toxin gene deletions have no impact on resistance to these
218 antibiotics. Caco-2 cells co-cultivated with HT29-MTX cells in the TIM model were then
219 infected with UK1 ToxAB-CDT⁻ and UK1 ToxAB-CDT⁺ strains. After 24h infection,
220 infected cells were treated with different concentrations of vancomycin or fidaxomicin
221 (1x, 10x and 100x MIC) and incubated for an additional 24h before measuring viable
222 CFU. No difference in CFU was observed between the two strains in absence of
223 antibiotic treatment (CTL in Fig 5A and 5B). However, the CDT⁺ strain was significantly
224 more resistant to vancomycin than the CDT⁻ strain for all concentrations tested (Fig
225 5A). Whereas no viable CDT⁻ bacteria was detected with the highest vancomycin
226 concentration, CDT⁺ bacteria were still present at a concentration of 10³ CFU/mL (Fig
227 5A). In contrast, fidaxomicin similarly impacted the viability of the CDT⁺ and CDT⁻
228 strains with a strong reduction of CFU at 1x MIC and no bacteria were detected at 10
229 or 100x MIC concentrations (Fig 5B). Our result is explained by the fact that fidaxomicin
230 is effective in eradicating *C. difficile* biofilms^{44,45}. Altogether, these experiments show
231 that CDT-induced microcolonies possess biofilm-like properties and resist to
232 vancomycin but not fidaxomicin.

233

234 **4. Mucin induces *C. difficile* biofilm formation *in vitro* and increases CDT levels**
235 Induction of *C. difficile* biofilm by the presence of Muc2 in antibiotic-treated human
236 fecal bioreactors has previously been reported by Engevik and collaborators³⁷. Since
237 biofilm formation in this study was evaluated with the CDT⁺ strain R20291, we next
238 wondered whether Muc2-dependent biofilm formation *in-vitro* was mediated by CDT.
239 To assess the role of CDT in biofilm formation, we cultured the strains 630 ToxAB⁺CDT⁻
240 , UK1 ToxAB⁺CDT⁺, UK1 ToxAB-CDT⁺ and UK1 ToxAB-CDT⁻ during 48h in the Gut
241 Microbiota Medium (GMM), a rich medium mimicking the intestinal milieu⁴⁶, alone or
242 with different types of mucins. Biofilm formation *in-vitro* was induced by the presence
243 of native mucin and type II mucin in a CDT independent manner (Fig 6A). These data
244 differ from the data obtained with the more physiologically relevant TIM and IoC models
245 where the presence of both, CDT and mucin, was required to form biofilm-like
246 microcolonies. Our result suggest that both mucin and CDT might induce *C. difficile*
247 biofilm formation by different means.

248

249 We next wondered whether mucin could have an impact on CDT production. CDT
250 levels were measured by enzyme-linked immunosorbent assay (ELISA) from
251 supernatants and pellets collected after 48h of growth in GMM alone or with mucin. In
252 both UK1 ToxAB⁺CDT⁺ and UK1ToxAB⁻CDT⁺ strains, CDT levels significantly
253 increased in the presence of type II mucin (Fig 6B). Determination of the extracellular
254 levels of CDT from supernatants of infected Caco-2 cells alone or co-cultured with
255 HT29-MTX cells in the TIM model at 24h p.i. revealed a similar increase induced by
256 the presence of mucin producer cells (Fig 6C). Thus, our data indicate that the
257 presence of mucin increases CDT extracellular levels.

258

259 **5. CDT toxin decreases mucin-related gene transcription**

260 *C. difficile* has previously been shown to adhere to human mucus and to decrease
261 mucin secretion in enteroids^{47,48}. In addition, patients with CDI present decreased
262 Muc2 levels and show alterations in mucin composition⁴⁸. We therefore sought to
263 determine whether the decreased mucin levels could be mediated by CDT. RNA were
264 extracted from Caco-2 cells co-cultured with HT29-MTX cells treated with purified CDT
265 (TIM and IoC models) and mucin mRNA levels were quantified by qRT-PCR (Fig 7).
266 Cells from CDT-treated TIM model showed a significant decrease of *Muc2* and
267 *Muc5AC* mRNA abundance genes after 6h but not 18h of CDT treatment compared to
268 untreated cells (Fig 7A). The impact of the CDT treatment was delayed in the IoC
269 model but a strong reduction of *Muc1*, *Muc2* and *Muc5AC* mRNA abundance was
270 observed after 18h treatment (Fig 7B). The similar trend observed with both models
271 indicates that CDT negatively regulates the mRNA abundance or stability of mucin-
272 related genes. Altogether our results demonstrate that CDT has a double role in
273 increasing both i) *C. difficile* adhesion to host cells leading to formation of 3D biofilm-
274 like microcolonies and ii) the closeness to epithelial cells, the main target of *C. difficile*
275 toxins, by reducing mucus production.

276

277 **6. CDT-infected mice harbor a decreased number of goblet cells, mucin 278 thickness and present higher levels of inflammatory marker lipocalin-2**

279 To determine whether CDT could influence *C. difficile* colonization and modify mucin
280 levels *in-vivo*, C57Bl/6J germ-free mice (GFM) were infected with spores purified from
281 the UK1 ToxAB⁺CDT⁺, UK1 ToxAB⁻CDT⁻ or UK1 ToxAB⁻CDT⁺ strains. Mice infected
282 with UK1 ToxAB⁺CDT⁺ were sacrificed 2 days p.i due to their rapid loss of weight of

283 around 25% (Fig S7A and S7B), as typically observed⁴⁹. The number of total cells
284 detected in the feces of mice, corresponding to the sum of vegetative cells plus spores,
285 was similar for CDT⁺ and CDT⁻ strains during CDI (Fig8A). Remarkably, on day 6 p.i,
286 the CDT⁺ strain showed significantly higher number of total cells than the CDT⁻ strain
287 (Fig8A). Accordingly, when comparing only the vegetative cells, the CDT⁻ strain
288 showed a decrease in CFU at day 6 p.i (Fig S7C). Inversely, a higher number of spores
289 was recovered from the feces of mice infected with the CDT⁻ than with the CDT⁺ strain
290 at days 6 and 7 p.i (Fig S7D). At day 8 p.i, mice infected with the CDT⁻ strain but not
291 with the CDT⁺ strain completely cleared the vegetative bacteria (Fig S7C and S7D).
292 Altogether, these results showed no significant difference in the number of vegetative
293 cells released in the feces of mice between CDT⁺ and CDT⁻ strains (Fig 8A, S7C and
294 S7D). However, CDT⁺ infected mice showed a delayed in clearing CDI compared to
295 CDT⁻ strain (Fig S7C). In addition, significant differences were observed in the caecal
296 content of mice sacrificed 13 days p.i, with a greater number of spores for the strain
297 CDT⁺ (Fig S7E), supporting a better persistence of the CDT⁺ strain in the caecum of
298 mice.

299
300 No significant difference was found in intestinal inflammation, assessed by the
301 histological score, between the CDT⁺ and CDT⁻ strains (Fig 8B). Colon and caecum
302 were recovered and fixed with Carnoy to preserve mucin structure. Periodic Acid Schiff
303 (PAS) staining in colon sections revealed a significant decrease in the number of goblet
304 cells per crypt as well as mucin thickness in mice infected with the CDT⁺ strain
305 compared to those infected with the CDT⁻ strain (Fig8C-E). This result further supports
306 that CDT induces changes in mucin.

307
308 Toxin-induced inflammation is beneficial to *C. difficile* during infection⁵⁰. In order to
309 better understand the role of CDT in the toxin-dependent intestinal inflammation, we
310 monitored the fecal lipocaline-2 (Lcn2) levels of mice infected with CDT⁺ and CDT⁻
311 strains. As expected, the strain ToxAB⁺CDT⁺ induced a huge inflammatory response
312 2 days p.i, whereas UK1 ToxAB⁻CDT⁺ and UK1 ToxAB⁻CDT⁻ strains showed
313 intermediate or low levels of Lcn2, respectively (Fig 8F). The maximum inflammation
314 occurred from day 2 p.i with a significant contribution of CDT and sustained up to day
315 13 when mice were sacrificed. Additionally, CDT levels monitored from mice feces
316 increased from 7 up to 13 days p.i, suggesting that CDT levels are persistent during

317 CDI (Fig 8G). Altogether these results show that CDT mediates changes in mucin
318 thickness, decreases the number of goblet cells and induces an inflammatory response
319 maintained throughout CDI.

320

321 **7. CDT toxin favors the formation of biofilm-like microcolonies in the caecum
322 and colon of mice, increasing *C. difficile* persistence**

323 In order to study whether CDT biofilm-like microcolonies were also formed *in vivo*, mice
324 colonic sections and caecum sections were immuno-stained 13 days p.i. Interestingly,
325 mucin-associated and embedded microcolonies were detected in the caecum and
326 colon of mice infected with *C. difficile* (Fig 9A and 9B). Moreover, the total surface of
327 these microcolonies in the colon and caecum was significantly higher in mice infected
328 with CDT⁺ than in those infected with CDT⁻, suggesting that CDT induces a better
329 colonization in colon and caecum (Fig 9C). The size of the CDT-microcolonies was
330 similar in the caecum and colon, from ~100 μm^2 up to ~7000 μm^2 per image, with a
331 mean around 1000 μm^2 (Fig 9C). The presence of CDT-associated microcolonies in
332 both the colon and caecum epithelium of mice underscores their biological importance
333 and suggests that they might be involved not only in *C. difficile* colonization but also in
334 *C. difficile* persistence.

335

336 **DISCUSSION**

337 We report here that purified or secreted *C. difficile* CDT binary toxin induces mucin-
338 associated microcolonies *in vitro*. CDT-induced microcolonies enhance *C. difficile*
339 resistance to vancomycin but not to fidaxomicin, consistent with biofilm structures.
340 Biofilm-like microcolonies are also formed *in vivo* in the caecum and colon of mice,
341 facilitating *C. difficile* colonization and potentially promoting *C. difficile* persistence in
342 mice. In addition, we showed that the presence of mucin increases CDT levels and
343 that CDT induces, in turn, transcriptional changes of mucin-related genes resulting in
344 a reduction of mucin thickness and goblet cells in the colon. Overall, we identified a
345 new role of CDT during CDI that paves the way toward a better understanding of the
346 association between CDT, the increased severity of CDI³⁰ and the elevated recurrence
347 rates of CDT⁺ strains^{29,51}.

348

349 The binary toxin CDT belongs to the family of binary actin-ADP-ribosylating toxins
350 comprising toxins of other toxigenic *Clostridia* species⁵²⁻⁵⁴ responsible of

351 gastrointestinal diseases in humans and/or animals⁵⁵. All binary toxins share the same
352 target i.e., the actin cytoskeleton⁵⁵, a recurrent target of bacterial toxins⁵⁶ that allow
353 bacteria to create a replication niche⁵⁷, prevent or induce phagocytosis or escape from
354 the host immune system^{58–60}. It has been shown that the binary toxin CDT promotes
355 F-actin depolymerization and the formation of microtubules protrusions on epithelial
356 cells thus increasing *C. difficile* adhesion to host cells. However, these studies were
357 performed either with purified CDT in the absence of *C. difficile* or with cells pre-treated
358 with CDT before infection with *C. difficile* for a brief incubation time (2h or 4h)^{21,22,61}. In
359 addition, these studies used polarized Caco-2 cells, which lack a mucus layer⁶². On
360 the contrary, our study included polarized Caco-2 cells co-cultured with HT29-MTX
361 mucus producer cells, infected with a *C. difficile* CDT⁺ or CDT⁻ strain incubated with
362 purified CDT under hypoxic conditions. Moreover, we used two models that better
363 reflect the intestinal architecture. These experimental conditions revealed for the first
364 time that CDT induced microcolonies with biofilm-like structure. We speculate that CDT
365 activity, by inducing local modifications at the infection site, including on mucin and
366 extracellular matrix, promote *C. difficile* attachment and cell growth, a prerequisite for
367 *C. difficile* biofilm formation.

368
369 Biofilms are associated with persistent infections⁶³ due in part to the capacity of
370 bacteria embedded inside biofilms to be more resistant to antibiotics⁴⁰ and host
371 immune responses⁶⁴. Thus, *C. difficile* strain R20291 is 10 times more resistant in
372 biofilm than planktonic cells to vancomycin treatment⁴² and *C. difficile* clinical isolates
373 are 100 times more tolerant to metronidazole^{43,65}. *C. difficile* biofilms also increase
374 resistance to oxygen levels, bile salts and antimicrobial peptides^{43,66}. *C. difficile* can be
375 found in multi-species biofilms formed by the gut microbiota, constituting a potential
376 reservoir leading to asymptomatic carriage and risk of recurrent infection after antibiotic
377 therapy^{43,65,67–69}. Whether formation of a *C. difficile* mono-species biofilm can trigger a
378 multispecies biofilm remains an open question. However, we know that formation of *C.*
379 *difficile* mono-species biofilm occurs *in vitro*^{68,70} and is induced in response to sub-
380 inhibitory concentrations of antibiotics or metabolites whose concentrations vary during
381 gut dysbiosis^{43,70,71}. We showed that the binary toxin CDT liberated during biofilm
382 formation regulates the expression of mucin-related genes. Since toxins A and B are
383 produced inside *C. difficile* biofilms⁷², CDT might have a dual impact by i) triggering

384 biofilm formation and ii) acting as a virulence factor by making the gut epithelium more
385 accessible to toxins A and B, thus increasing CDI severity^{27,30}.

386
387 The release of mucin and antimicrobial molecules is regulated by the commensal
388 microbiota⁷³. Pathogens can also induce changes in secretion of mucin by goblet
389 cells⁷⁴⁻⁷⁶, glycosylation of mucins⁷⁷ or reduction in mucus viscosity⁷⁸. Several studies
390 have shown that mucin facilitates *C. difficile* colonization^{37,38,47,48,79}, probably because
391 *C. difficile* binds to mucus from mice and humans^{37,47,67,80,81}. Engevik *et al.* observed
392 that *C. difficile* strain BAA-1878 can decrease Muc2 secretion when injected in human
393 intestinal organoids (HIOs)⁴⁸. They also showed a relationship between patients with
394 recurrent CDI and a decrease of Muc2 and N-acetylgalactosamine (GalNAc)
395 expression, along with an increase of N-acetylglucosamine (GlcNAc) and galactose
396 residues⁴⁸. Nonetheless, this study did not associate these changes in mucin with the
397 capacity of the *C. difficile* strain BAA-1878 to produce CDT⁸². Our data provide
398 evidence that CDT alone can directly or indirectly alter the level of intestinal mucus by
399 a mechanism that remains to be investigated. We showed a transcriptional drop of
400 mucin-associated genes in the TIM and IoC models in presence of CDT (Fig 7), and a
401 decrease in mucin thickness and goblet cells in a murine model when infected with the
402 UK1 ToxA^B-CDT⁺ strain (Fig 8). Decreasing mucin transcription through CDT could be
403 one of the mechanisms used by *C. difficile* to reach the gut epithelium. It is known that
404 *in vivo* *C. difficile* uses in priority Stickland-acceptor amino-acids such as serine,
405 proline and threonine^{49,83}. Recently, Furtado *et al.*, showed that uptake of serine and
406 threonine is upregulated in *C. difficile* in presence of mucus³⁸. Both of them are the
407 main amino-acids of the mucin peptide backbone⁸⁴. Intriguingly, lack of threonine
408 resulted in a decrease of the mucus layer and goblet producer cells⁸⁵. Therefore, we
409 can speculate that mucus-associated microcolonies of *C. difficile* result to a decrease
410 of the threonine levels leading to a reduction of the mucus layer thickness and
411 shrinkage of goblet cells⁸⁶.

412
413 Our data also showed that CDT expression is upregulated in the presence of mucin or
414 mucin sugar derivates. However, the question of which specific mucin-derived
415 monosaccharide(s) or polysaccharides(s) induce CDT expression remains open. In
416 agreement with our data, CDT levels in patients are 20-fold higher than the CDT levels
417 measured *in vitro*⁸⁷. This finding is not unprecedented since expression of the

418 cytolethal distending toxin (*cdtABC*) and vacuolating cytotoxin from *Campylobacter*
419 *jejuni*⁸⁸ are also upregulated in response to mucin. Interestingly, *C. jejuni* shows the
420 same chemotaxis towards mucin⁸⁹, as recently demonstrated for *C. difficile*⁷⁹.
421 Furthermore, toxins secreted by many pathogens can diffuse through the mucus,
422 leading to the reduction of its production and subsequently, to the disruption of the
423 epithelial barrier and intracellular tight junctions. These damages can compromise the
424 mucosal barrier and promote invasion by pathogens⁸⁶. The binary toxin CDT might be
425 strategically used by *C. difficile* to establish a biofilm embedded inside the mucus layer
426 and surrounded by microtubule protrusions. Such biofilm could promote *C. difficile*
427 persistence into the host by increasing cell surface adhesion and aggregation to resist
428 shear forces and flow⁹⁰, by allowing nutrient perfusion and providing protection against
429 antimicrobial agents^{91,92}, high oxygen tensions⁹³, bile salts, and oxygen radicals^{94,95}.
430 Within the biofilm, the CDT-mediated alteration of mucus, allows a closer proximity of
431 the main toxins with the epithelium cells, which probably participates in the disease
432 severity of patients infected by CDT⁺ strains of *C. difficile*.

433

434 Overall, our study provides new insights on the role of the binary toxin CDT during CDI,
435 supporting previous studies that correlated the production of this toxin by *C. difficile*
436 clinical strains with higher virulence and rCDI²⁵⁻³¹. The unexpected role of CDT toxin
437 in formation of biofilm-like mucin-associated microcolonies, opens new perspectives
438 regarding the methods used by enteric pathogens to create a niche in the gut
439 epithelium as a way to persist.

440 **METHODS**

441 **Bacterial strains and culture conditions**

442 Bacterial strains and plasmids used in this study are listed in table S1. *C. difficile* strains
443 were routinely cultured on BHI agar (Difco), BHI broth (Difco), or TY broth (Bacto
444 tryptone 30 g.L⁻¹, yeast extract 20 g.L⁻¹, pH 7.4) at 37°C in an anaerobic environment
445 (90% [vol/vol] N₂, 5% [vol/vol] CO₂, and 5% [vol/vol] H₂). When necessary, *C. difficile*
446 culture media were supplemented with cefoxitin (Cfx; 25 mg/liter), cycloserine (Ccs;
447 250 mg/liter), thiampenicol (Tm; 7.5 mg/liter), and erythromycin (Erm; 5 mg/liter).
448 *Escherichia coli* strains were cultured at 37°C in LB broth or LB agar (MP Biomedicals),
449 containing chloramphenicol (25 mg/liter), and when needed, ampicillin (100 mg/liter).

450

451 **Construction of *C. difficile* mutant strains**

452 All primers used in this study are listed in table S2. A pathogenicity locus (PaLoc)-
453 deleted strains of *C. difficile* 630Δerm and UK1 that lacked the *tcdB*, *tcdE* and *tcdA*
454 genes were generated⁹⁶. A CDT locus (CdtLoc)-deleted strain UK1 strain, lacking the
455 *cdtA* and *cdtB* genes (designed as CDT⁻), was then generated in the ΔtoxAB
456 background. The deletion mutants were created using a toxin-mediated allele
457 exchange method⁹⁷. Briefly, approximately 850 bp of DNA flanking the region to be
458 deleted were amplified by PCR from *C. difficile* UK1 and 630Δerm. Purified PCR
459 products were cloned into the Pmel site of the pMSR0 vector using NEBuilder HiFi
460 DNA Assembly (New England Biolabs). The resulting plasmid was transformed into *E.*
461 *coli* strain NEB10β (New England Biolabs) and insert verified by sequencing. Plasmids
462 were then transformed into *E. coli* HB101(RP4) and transferred by conjugation into the
463 appropriate *C. difficile* strains. Transconjugants were selected on BHI supplemented
464 with cycloserine, cefoxitin, and thiampenicol. Allelic exchange was performed as
465 described previously⁹⁷.

466

467 **Cell culture**

468 Caco-2 cells (clone TC-7) and HT29-MTX cells were provided by Nathalie Sauvionnet
469 from Institut Pasteur, Paris, France. Cells were grown in Advanced Dulbecco's
470 Modified Eagle Medium (ADMEM, Gibco) supplemented with 10 % FBS (fetal bovine
471 serum, Biowest) and L-glutamine (Gibco) in 5% CO₂ at 37°C. Cells were kept in culture
472 up to passage number 15.

473

474 **Germ-free mice experiments**

475 C57/BL6 6-week-old gnotobiotic male and female mice from Institut Pasteur Animal
476 facilities (Janvier Labs) were acclimated on independent isolators (one isolator per
477 strain) for a week prior to *C. difficile* challenge. Later mice were challenged with *C.*
478 *difficile* spores (2×10^3 per mice) by oral gavage. Mice health was monitored daily as
479 described previously⁹⁸. Progression of disease was assessed via Body Condition
480 Scoring and body mass measurements⁹⁹. Mice were followed to 13 days post *C.*
481 *difficile* challenge.

482

483 **Transwell intestinal model (TIM)**

484 Caco-2 cells or Caco-2-HT29-MTX co-culture, were seeded into 12-well Transwell
485 inserts (pore size 0.4 μ m, Corning) at a density of 2×10^5 cells/cm² and cultured for 18
486 days at 5% CO₂ at 37°C. Cell culture media was changed three times a week.

487

488 **Intestine-on-a-chip model (IoC)**

489 IoC-associated instrumentation and software were obtained from Emulate (Human
490 Emulation System, Boston MA). Chips were prepared following manufacturer
491 instructions and as described previously^{100,101}. Briefly, chips were activated using
492 ER1/ER2 solution (Emulate, 0.5 mg/mL) under UV for 20 minutes (36W, 365 nm) then
493 washed once with ER2 solution (Emulate), followed by 2 PBS washes (Gibco). Chips
494 were coated overnight at 4°C with ECM composed of 200 μ g/mL of human Collagen
495 IV (Sigma) + 100 μ g/mL of Matrigel (Corning). ECM materials were washed twice with
496 PBS followed by cell culture media. Caco2/TC7 cells were added to the epithelial
497 channel at a concentration of 10^6 cells/mL density. Caco2/TC7 and HT29-MTX co-
498 culture was prepared by adding 8×10^5 cells/mL of Caco2 + 2×10^5 cells/mL of HT29-
499 MTX (4:1 ratio). Cells were incubated for 1 day under static conditions at 37 °C with
500 5% CO₂. After the cells adhere to the substrate, chips were gently washed with warm
501 cell culture media to remove non-attached cells, then connected to the primed Pods
502 (Emulate). Pods-chips were kept in the Zoë (Emulate) with a flow of 30 μ L/h on the top
503 and bottom channels for 1 day, then adding a stretch (10 %, 0.15 Hz) for 6 days. Cell
504 culture medium reservoirs were refilled every 3 days.

505

506 **Lactate dehydrogenase release assays**

507 To measure Lactate dehydrogenase release from Caco-2 or Caco-2 co-cultured with
508 HT29-MTX in the TIM or IoC models, we used the commercial kit CytoTox 96 Non-
509 Radioactive Cytotoxicity Assay (Promega) according to manufacturer instructions. The
510 relative cytotoxicity obtained from cultures under normoxia conditions (at 5% CO₂) was
511 considered as 0% and these values were compared to hypoxia conditions over time
512 (4% O₂ and 5% CO₂).

513

514 **TIM infection under hypoxia**

515 *C. difficile* strains were cultured overnight (ON) on TY broth, the next day ON cultures
516 were diluted (1:50) with new fresh media to obtain exponential phase bacteria ($\lambda_{600\text{nm}}$
517 0.3 to 0.5). Bacteria were diluted to 10⁶ bacteria/mL in equilibrated ADMEM before
518 infection. Cells were equilibrated 1h before infection under hypoxia conditions (4% O₂,
519 5% CO₂), then wells were infected with 500 μL of bacterial suspension (10⁶
520 bacteria/mL).

521

522 **TIM adhesion assays**

523 Infection conditions were kept as indicated previously for TIM infection under hypoxia
524 conditions (4% O₂, 5% CO₂). After 3, 6, 18 or 24 h of incubation cells were washed
525 three times with 500uL of PBS (Gibco) to eliminate non-adherent bacteria. Cells and
526 adherent bacteria were diluted in 500 μL of PBS (Gibco) and recovered by scraping
527 the Transwell wells with 1mL tips and centrifugation (5 min at 5 000 rpm). Adherent
528 bacteria were serially diluted and plated on TY agar plates, incubated for 48 h at 37°C
529 under anaerobic conditions.

530

531 **IoC infection under hypoxia**

532 *C. difficile* strains were cultured overnight (ON) on TY broth, the next day ON cultures
533 were diluted (1:50) with new fresh media to obtain exponential phase bacteria ($\lambda_{600\text{nm}}$
534 0.3 to 0.5). Bacteria were diluted to 10⁶ bacteria/mL in equilibrated ADMEM before
535 infection. IoC were equilibrated 6h before infection by decreasing O₂ levels each hour
536 (18%, 15%, 12%, 9%, 6%, 4%; with 5% CO₂) in the housing cell culture incubator. IoC
537 chips were disconnected from the pods and infected under static conditions (no flow,
538 no stretch) with 50 μL of bacterial suspension (10⁶ bacteria/mL). After 1h 30 min, chips
539 were reconnected to the Pods and reintroduced in the Zoë with a flow of 30 $\mu\text{L}/\text{h}$ (no
540 stretch during infection).

541 **TIM and IoC immunostaining**

542 TIM and IoC were fixed with 4% of paraformaldehyde (Electron Microscopy Sciences)
543 diluted in PBS with Ca²⁺ and Mg²⁺ (Gibco) for 30 min. After fixation Transwell and chips
544 were washed three times with PBS and stored at 4°C. For the IoC transversal sections,
545 chips were cut in 300- µm thick slices using a vibrating blade microtome (VT1000S,
546 Leica). IoC sections and Transwell were permeabilized with 0.1% Triton X-100 in PBS
547 with Ca²⁺ and Mg²⁺ (Gibco) for 20 min at room temperature (RT) and then washed
548 three times with PBS. Later, blocking solution (2% BSA in PBS with Ca²⁺ and Mg²⁺)
549 was added for 1h at RT.

550

551 **Spinning disk fluorescence microscopy**

552 Images were performed in a Nikon Ti-E inverted microscope equipped with a Perfect
553 Focus System (TI-ND6-PFS Perfect Focus Unit) and a Yokogawa confocal spinning
554 disk unit (CSU-W1) using a 60X/1.42 NA oil objective. A Z-stack of 300 to 800 planes
555 with 0.3 µm z-steps was acquired sequentially in 4 channels (Da/Fi/Tr/Cy5-4x-B, Finkel
556 Quad FF01-440/521/607/700).

557

558 **Production of LMW-SIpA specific monoclonal antibodies NF10 and QD8**

559 Knock-in mice expressing human antibody variable genes for the heavy (VH) and
560 kappa light chain (Vk) were previously described^{102,103} and provided by Regeneron
561 Pharmaceuticals to be bred at Institut Pasteur. BALB/c mice were purchased from
562 Janvier Labs. All animal care and experimental procedures were conducted in
563 compliance with national guidelines. The study, registered under #210111, was
564 approved by the Animal Ethics Committee of CETEA (Institut Pasteur, Paris, France)
565 and by the French Ministry of Research. BALB/c and VelocImmune mice were injected
566 intraperitoneally on days 0, 21, and 42; with 50 µg of either recombinant LMW630
567 mixed with 200 ng/mouse pertussis toxin (Sigma-Aldrich, MO, USA) for NF10
568 production or with 50 µg of each of five recombinant LMWs in alum mixed with 200
569 ng/mouse pertussis toxin (Sigma-Aldrich, MO, USA) for QD8 production. An enzyme-
570 linked immunosorbent assay (ELISA) previously described³⁵, was performed to
571 measure serum responses to antigens and the three immunized animals with the
572 highest serum titers were boosted with the same preparation. Four days later,
573 splenocytes were fused with myeloma cells P3X63Ag8 (ATCC, France) using a
574 ClonaCell-HY Hybridoma Kit, according to the manufacturer instructions (StemCell

575 Technologies, Canada). Culture supernatants were screened using ELISA³⁵, and
576 antigen-reactive clones were expanded in serum IgG-free RPMI-1640 (Sigma-Aldrich)
577 into roller bottles at 37°C. After 14 days, the supernatants were harvested by
578 centrifugation at 2 500 rpm for 30 min and filtered through a 0.2 µm filter. Antibodies
579 were purified by Protein A affinity chromatography (AKTA, Cytiva, Germany), as
580 described previously¹⁰⁴.

581

582 **Minimal Inhibitory Concentration (MIC) determination and antibiotic resistance 583 assays**

584 MICs were determined by broth microdilution as described before¹⁰⁵. Briefly, a 96-well
585 plate containing twofold dilutions of desired antibiotic were inoculated with ON culture
586 diluted to a final $\lambda_{600\text{nm}}$ of 0.05 in ADMEM (Gibco) supplemented with 10 % FBS
587 (Biowest) and L-glutamine (Gibco). After 24 h at 37 °C, MIC was determined by
588 measuring $\lambda_{600\text{nm}}$ in a plate reader (Promega GloMax Explorer). Supplemented
589 ADMEM medium was used as a blank.

590

591 For the antibiotic resistance assays in TIM, infections were performed as indicated
592 previously and 24h p.i, antibiotics were added at 1x, 10x and 100x the MIC. MIC for
593 fidaxomicin was defined as 1 µg/mL and for vancomycin as 12.5 µg/mL. After 24h of
594 antibiotics treatment, resistant bacteria were recovered by scraping the Transwell wells
595 with 1mL tips and centrifugation (5 min at 5 000 rpm). Resistant bacteria were serially
596 diluted and plated on TY agar plates, incubated for 48 h at 37°C under anaerobic
597 conditions.

598

599 ***In vitro* biofilm assays**

600 *C. difficile* ON cultures were diluted to a final $\lambda_{600\text{nm}}$ of 0.02 into fresh equilibrated Gut
601 Microbiota Medium (GMM)⁴⁶ or GMM supplemented with mucin, 1 mL per well was
602 deposited in 24-well polystyrene tissue culture-treated plates (Falcon Clear Flat
603 Bottom) and the plates were incubated at 37 °C in anaerobic environment for 48h.
604 Type II mucin (Sigma M2378) and native mucin extracted from pork were diluted in
605 Milli-Q water (concentration 40mg/mL), autoclaved (15 min, 121°C) and added to the
606 pre-equilibrated medium (final concentration 2 mg/mL). Biofilm biomass was measured
607 using established methods⁴². Briefly, spent media was removed. Biofilms were air dried
608 and stained with crystal violet (CV; 0.2% w/v) for 10 min. CV was removed by inversion;

609 wells were washed twice with PBS and then air-dried. Dye bound to the biofilm biomass
610 was solubilized by adding 1 mL of 75% (%v/v) ethanol and the absorbance,
611 corresponding to the biofilm biomass, was measured at a $\lambda_{600\text{nm}}$ with a plate reader
612 (Promega GloMax Explorer). When needed, the solubilized dye was diluted with 75%
613 ethanol for the reading to remain in the linear range. Sterile GMM or GMM with mucin
614 was used as a blank for the assays.

615

616 **CDT toxin assays**

617 The two CDT subunits, CDTa and activated CDTb, were generated, as previously
618 described, using an *E. coli* expression system ³⁹. Briefly, the complete ORFs of CDTa
619 and CDTb were amplified by PCR from genomic DNA of *C. difficile* strain R20291
620 (GenBank: FN545816.1). Only the sequences bp 127–389 for CDTa and bp 127–2628
621 for CDTb (without the leader sequences) were cloned into the pGEX-2T vector to
622 genetically engineer the GST fusion proteins of the mature CDTa and CDTb. GST–
623 CDTa and GST–CDTb were expressed in *E. coli* following a standard protocol. Gene
624 expression was induced by 100 μM isopropyl- β -D-thiogalactopyranosid when the
625 bacterial cultures reached an $\text{OD}_{600\text{nm}}$ of 0.6. The GST fusion proteins were affinity
626 purified via glutathione-sepharose (GE Healthcare, Dornstadt, Germany) by gravity
627 flow, and the proteins were released either by thrombin (0.06U/ μg protein, 4 °C
628 overnight for CDTa) or by elution with 10 mM glutathione (CDTb). Eluted GST–CDTb
629 was directly activated by trypsin (0.2 $\mu\text{g}/\mu\text{g}$ protein, 30 min at RT). Trypsin was
630 inactivated by 2 mM 4-(2-Aminoethyl) benzensulfonylfluorid, and the solution was
631 dialyzed against PBS ON.

632

633 **ELISA-based measurement of CDT**

634 A 96-well immuno-plate (Nunc Maxisorp) was coated ON with CdtB capture antibody
635 (MBS396782, MyBioSource) diluted into PBS. Plates were washed twice (PBS + 1%
636 Tween 20). Blocking buffer (PBS + 2% BSA) was added and plates were incubated for
637 at least 1 hour at RT and washed twice. Bacterial supernatants or lysates were serially
638 diluted in PBS and incubated in coated plates for 90 min at RT. After two washes,
639 chicken anti-CdtB IgY HRP conjugated antibody (MBS396785, MyBioSource) was
640 added for 1-2 h at RT. The wells were washed four times and incubated with TMB
641 (3,3',5,5'tetramethylbenzidine) HRP substrate solution (Thermo Fisher Scientific) for 5
642 to 30 min in the dark. The stop solution (H_2SO_4 ; 0.2 M) was added into each well and

643 the absorbance of the reaction was read at 450 nm (Promega Glomax Explorer plate
644 reader).

645

646 **ELISA-based measurement of TcdA**

647 Total TcdA amount was quantified from supernatants. Briefly, 1.5 mL of culture was
648 harvested by centrifugation for 4 min at 13 000 rpm. Supernatants were collected and
649 bacterial pellets were frozen at -20 °C. The supernatants fractions were then analyzed
650 by ELISA. A 96-well immuno-plate (Nunc Maxisorp) was coated with 2 µg/mL of anti-
651 toxin A rabbit polyclonal antibody (Abcam, Inc.) ON at 4 °C. The coated wells were
652 washed and incubated with Superblock blocking buffer (Thermo Fisher Scientific) for
653 1 h. The wells were then washed and air-dried. Samples were added into the wells,
654 and the plate was incubated at 37 °C for 90 min. After washings, 0.2 µg/mL of an anti-
655 toxin A chicken horseradish peroxidase (HRP) antibody (LSBio) was added in each
656 well and the plate was incubated for 1 h at 37 °C. The wells were washed and
657 incubated with a TMB (3,3',5,5'tetramethylbenzidine) substrate solution (Thermo
658 Fisher Scientific) for 15 min in the dark. The stop solution (H₂SO₄; 0.2 M) was added
659 into each well and the absorbance of the reaction was read at 450 nm (Promega
660 Glomax Explorer plate reader).

661

662 **RNA isolation and quantitative reverse-transcriptase PCR**

663 Cells were washed once with PBS (Gibco), lysed in RLT buffer (Qiagen) and freeze at
664 -80°C until extraction was performed. RNA was extracted with RNeasy mini Kit
665 (Qiagen) following manufacturer recommendations. DNA digestion was carried out in
666 columns using RNase-free DNase set (Qiagen) and RNA clean-up with a RNeasy
667 MinElute Cleanup kit (Qiagen). The RNA yield was measured with Nanodrop. cDNA
668 was obtained with QuantiTect Reverse Transcription Kit (Qiagen) following
669 manufacturer instructions. The quantitative Real-Time PCR was performed on
670 StepOne Real-Time PCR Systems (Thermo Scientific) using SsoFast EvaGreen
671 Supermix (Bio-Rad) following manufacturer instructions. Each reaction was performed
672 in technical triplicate with 2 or 3 independent biological replicates. Data were analyzed
673 by the $\Delta\Delta Ct$ method. Gene expression levels were normalized to the *rps13* gene.

674

675 **Spore preparation**

676 Spore suspensions were prepared as previously described¹⁰⁶. Briefly, 200 µl from ON
677 cultures of *C. difficile* strains were plated on sporulation medium for *Clostridioides*
678 *difficile* (SMC) medium (9% Bacto peptone, 0.5% proteose peptone, 0.15% tris base,
679 and 0.1% ammonium sulfate) and were incubated at 37°C for 7 days under anaerobic
680 conditions. Spores were scraped off and resuspended in 2 mL of sterile ice cold water
681 and incubated for 7 days at 4°C. Cell fragments and spores were separated by
682 centrifugation using a HistoDenz (Sigma-Aldrich) gradient¹⁰⁷. Spores were
683 enumerated on TY supplemented with 1% taurocholate and kept at 4°C on glass vials.
684

685 **Ethics statement**

686 Animal studies were performed in agreement with European and French guidelines
687 (Directive 86/609/CEE and Decree 87-848 of 19 October 1987). The study received
688 the approval of the Institut Pasteur Safety Committee (Protocol n°18086) and the
689 ethical approval of the local ethical committee “Comité d’Ethique en Experimentation
690 Animale Institut Pasteur no. 89 (CETEA)” (CETEA dap190131).
691

692 **Germ-free mice infection experiments**

693 C57/BL6 7-week-old gnotobiotic male and female mice from Institut Pasteur Animal
694 facilities (Janvier Labs) were challenged with *C. difficile* spores (2x10³ per mice) by
695 oral gavage. To assess bacterial persistence, fecal pellets were collected over a 13-
696 day period (days 0, 1, 2, 6, 7, 8, 9 and 13). Fecal pellets were homogenized in the
697 anaerobic hood in 1mL of PBS, serially diluted, and plated in triplicate on BHI agar
698 containing 2% defibrinated horse blood, 0.1% taurocholate, tetracycline (5 µg/mL),
699 ciprofloxacin (5 µg/mL) cefoxitin (8 µg/mL), and cycloserine (250 µg/mL) to assess the
700 total number of CFUs. To assess the total number of spores, diluted fecal pellets were
701 incubated in ethanol (50% v/v final concentration) for at least 1h and plated in triplicates
702 using the same medium.
703

704 **Measurement of lipocalin-2 intestinal levels**

705 Frozen fecal samples were reconstituted in PBS and vortexed for 5 min to homogenize
706 the fecal suspension. Then samples were centrifuged for 10 min at 10 000 rpm and
707 4°C. Clear supernatants were collected and stored at -20°C until analysis. Lcn-2 levels
708 were estimated in the supernatants using DuoSet murine Lcn-2 ELISA kit (R&D
709 Systems). Samples from day 0 (before infection) were used as negative controls.

710 **Histological processing and staining of tissue samples**

711 Intestinal tissues were recovered, and full rolls were placed in Carnoy's fixative solution
712 (60% ethanol, 30% chloroform, and 10% glacial acetic acid) ON at 4°C. Later, ethanol
713 gradients were applied to wash fixed tissues (70%, 80%, 95% and 100 % vol/vol).
714 Tissues were embedded in ethanol/xylene (1:1) and xylene, followed by embedding in
715 Paraffin. Tissue blocks were laterally sectioned at 10 μ m and were stained with
716 hematoxylin and eosin (H&E) to asses histological score or perform immunostainings.

717

718 **Measurement of mucin thickness and goblet cells in the colon of infected mice**

719 Colonic sections were also stained with Alcian Blue, preferentially staining
720 mucopolysaccharides, and 40 crypts were randomly selected per animal to determine
721 goblet cell number per crypt.

722

723 **Image analysis of *C. difficile* biofilms in the TIM and IoC models**

724 TIM and IoC images were analyzed using the same analysis scripts, developed in
725 Python¹⁰⁸. First, 3D images were projected along Z to yield 2D multi-channel images.
726 For each image, chromatic aberration was corrected by registering the bacteria
727 channel with respect to the mucin channel, using phase cross-correlation¹⁰⁹
728 implemented in scikit-image¹¹⁰. The mucin signal was quantified by first segmenting
729 the tissue surface in the image, on the nuclei channel combined with the actin channel,
730 using an intensity threshold. The mean mucin signal and its standard deviation were
731 then measured within the resulting tissue mask. Bacteria were segmented in the far-
732 red channel using Omnipose¹¹¹. A bacterium was classified as positive for mucin if the
733 mean mucin intensity within the bacteria mask was larger than the mean mucin signal
734 in the tissue plus the standard deviation. The count of all mucin-positive and negative
735 bacteria and their total surface were then reported for each image. Results were
736 exported to ImageJ TIFFs and ImageJ ROIs with the tifffile tool¹¹² and were manually
737 inspected using Fiji¹¹³.

738

739 **Image analysis of *C. difficile* biofilms in the colon and cecum of infected mice**

740 Colon and caecum images were analyzed like TIM and IoC models with minor
741 modifications (see above). Bacteria were segmented as a mask and not as single
742 bacteria by thresholding after filtering by a 9x9 median filter and a gaussian filter with
743 $\sigma=0.5$ pixels.

744 **Statistical analysis**

745 Statistical significance was determined using unpaired *t* tests or multiple unpaired
746 Holm-Sidak *t* tests. For multiple comparisons, analysis of variance (ANOVA) was used
747 with Bonferroni's, Dunnett's or Geisser-Greenhouse correction as recommended.
748 Mann Whitney tests were performed for biofilms, mucin thickness and goblet cells
749 analyses. Statistics were completed using Prism 8.0 (GraphPad Software). Specific
750 details with regard to statistical tests, statistical significance values ("p"), sample sizes
751 ("n") and replicates are indicated in the figure legends. For all analysis, significance
752 was considered as p<0.05.

753

754 **Data and code availability**

755 The full code for the image analysis performed in this paper is available publicly at
756 <https://gitlab.pasteur.fr/iah-public/clostridioides-difficile-binary-toxin-cdt-induces-biofilm-like-persisting-microcolonies>

758

759 **ACKNOWLEDGMENTS**

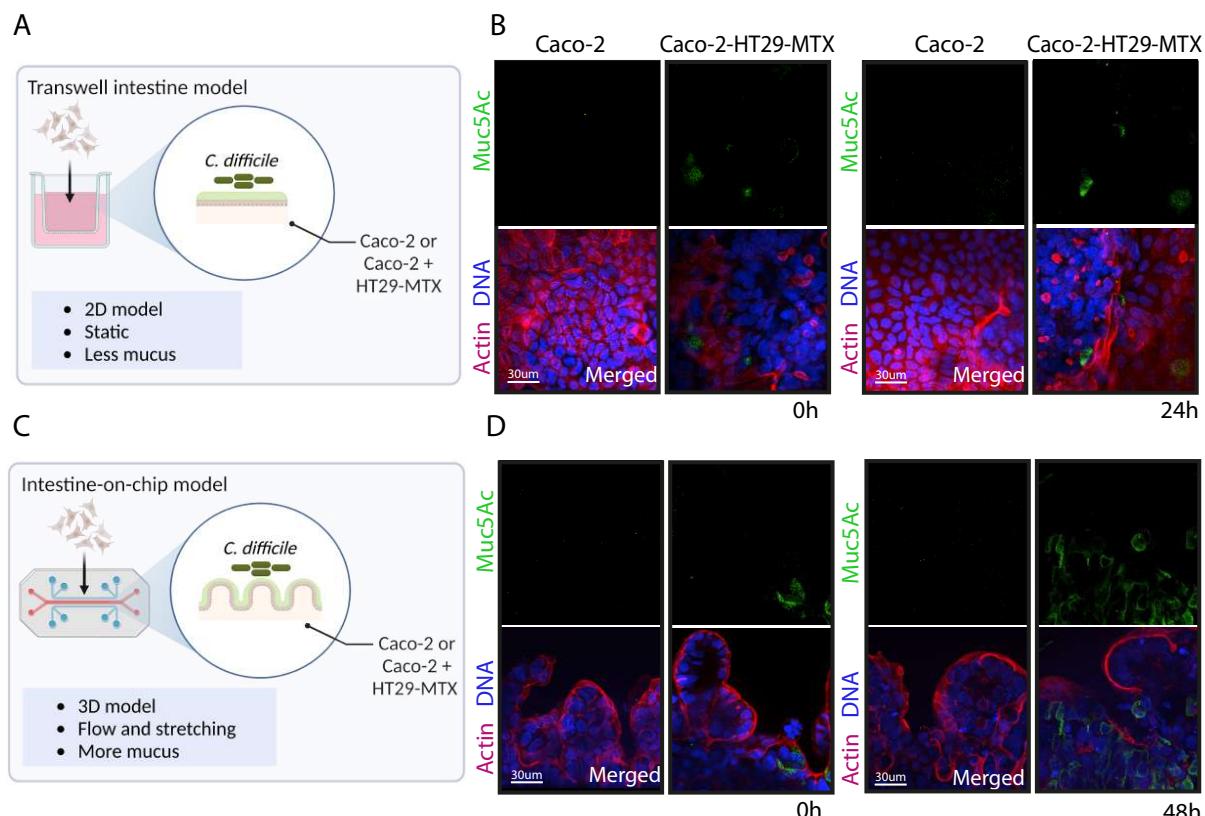
760 We thank Nathalie Sauvonnet and Valérie Malarde for their great support and advices
761 with transwell and organ on chip models. We also thank Ralf Gerhard for providing us
762 the purified CDT toxin. We thank Martine Jacob, Céline Mulet, and Thierry Pedron for
763 their technical support with the mice experiments. We thank David Hardy, Sabine
764 Maurin, Magali Tichit and Mélanie Juchet-Martin for their expertise and technical
765 support with histological experiments. We thank Jost Enninga and Laurent Audry for
766 their help and advices with spinning disk microscopy. Funding: This work was
767 supported by the Institut Pasteur, the "Integrative Biology of Emerging Infectious
768 Diseases" (LabEX IBEID) funded in the framework of the French Government's
769 "Programme Investissements d'Avenir" and the Agence National de la Recherche in
770 the framework of the: ANR-20-CE15-0022 (DifBioRel) to J.M.T. and B.D., and ANR-
771 20-CE15-0003 (Difficross) to J.P. Institut Carnot Pasteur Microbe & Santé supported
772 Emulate chips purchase. We acknowledge the France-Biolimaging infrastructure
773 supported by the French National Research Agency (ANR-10-INBS-04).

774

775 **AUTHOR CONTRIBUTIONS**

776 Conceptualization J.M.T and B. D.; Investigation J.M.T. (Transwell and organ on chip
777 model's standardization, mice and infection experiments, immunostaining,

778 microscopy, and qRT-PCR); B.C. (histological analysis); H.M., M.K. (Organ on chip
779 seeding and maintenance); J.P., P.A.S., E.L. (mutants); S.C.R., A.C. (*in vitro* biofilm,
780 ELISAS and growth curves); L.H. (production of monoclonal antibodies); Data
781 analyses J.M.T., B.D., B.C.; Image analysis J.Y.T.; Writing-Original Draft J.M.T. and
782 B.D.; Writing-Review & Editing J.M.T., B.D., B.C., J.P., S.G., J.Y.T.; Supervision J.M.T
783 and B. D.


784

785 **DECLARATION OF INTERESTS**

786 The authors declare no competing interests.

787

788 **FIGURES**

789

790 **Figure 1. Establishment of hypoxic intestinal models to study the role of the CDT binary**
791 **toxin during *C. difficile* infection.** (A) Schematic representation of a Transwell Intestine

792 Model (TIM) composed of Caco-2 cells alone or with HT29-MTX cells under hypoxia conditions

793 (4% O₂, 5% CO₂). (B) Representative 3D reconstructed images of uninfected TIM under

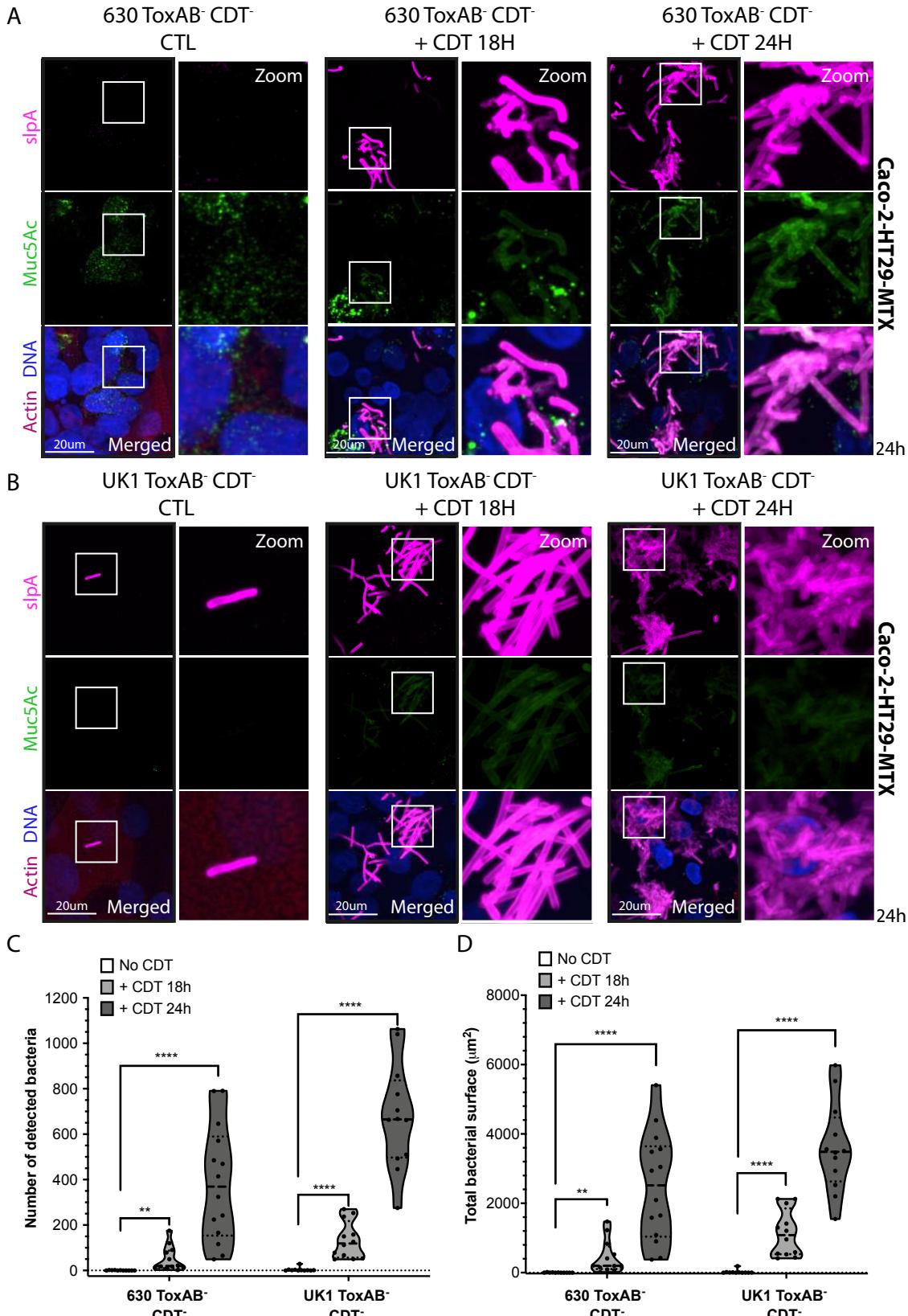
794 normoxia conditions (T0h, 5% CO₂) and under hypoxia conditions (T24h, 4% O₂, 5% CO₂) (C).

795 Schematic representation of the Intestine-on-chip model (IoC) composed of Caco-2 cells alone

796 or with HT29-MTX cells under hypoxia conditions (4% O₂, 5% CO₂). (D) Representative 3D

797 reconstructed images of uninfected IoC under normoxia conditions (T0h, 5% CO₂) and under

798 hypoxia conditions (T48h, 4% O₂, 5% CO₂). DNA was labelled with DAPI (blue), mucin with


799 anti-Muc-5AC AF488 (green) and actin with phalloidin rhodamine (red).

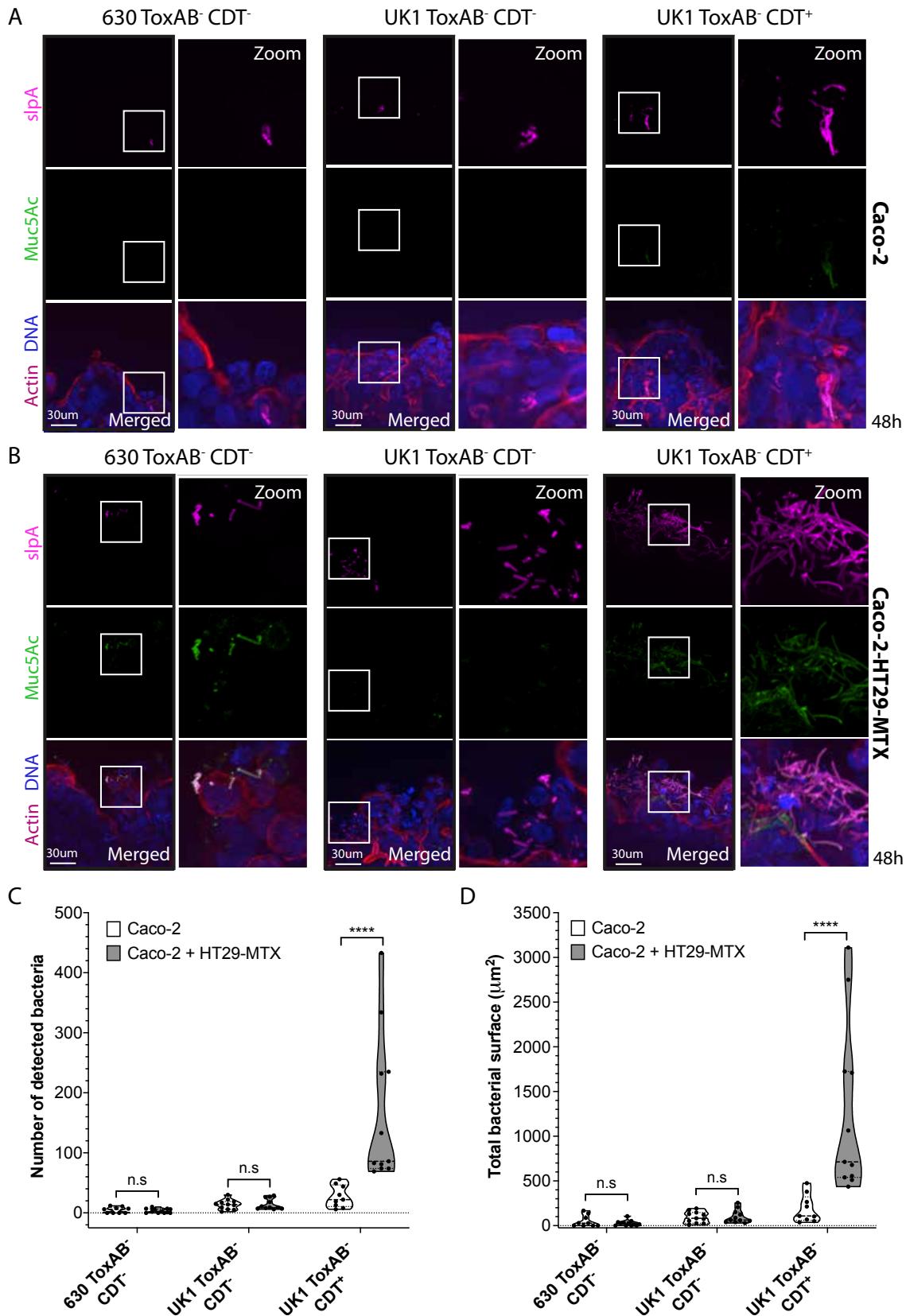
800

801
802
803
804
805
806
807

808 **Figure 2. *C. difficile* forms CDT-mediated microcolonies in a Transwell Intestine model**
809 **at 24h p.i.** (A) Representative 3D reconstructed images of Caco-2 alone or with HT29-MTX
810 cells infected with 630 ToxAB⁻CDT⁻, UK1 ToxAB⁻CDT⁻, or UK1 ToxAB⁻CDT⁺ during 24h under
811 hypoxic conditions (4% O₂, 5% CO₂). DNA was labelled with DAPI (blue), mucin with anti-Muc-
812 5AC AF488 (green), actin with phalloidin rhodamine (red) and *C. difficile* with anti-SlpA³⁵
813 AF647 (magenta). (B) Number of bacteria detected 24h p.i in Caco-2 cells alone or with HT29-
814 MTX cells infected with different *C. difficile* strains as indicated. (C) Total bacteria surface
815 detected 24h p.i in Caco-2 cells alone or with HT29-MTX cells infected with different *C. difficile*
816 strains as indicated. The number of bacteria and total bacterial surface detected are reported
817 for each image and at least 10 images were quantified per condition. Each black circle in the
818 graph represents one image. Data and quantifications are representative of 3 independent
819 biological replicates. Multiple unpaired *t* tests were performed and statistical significance is
820 represented with **** (p<0.0001).
821

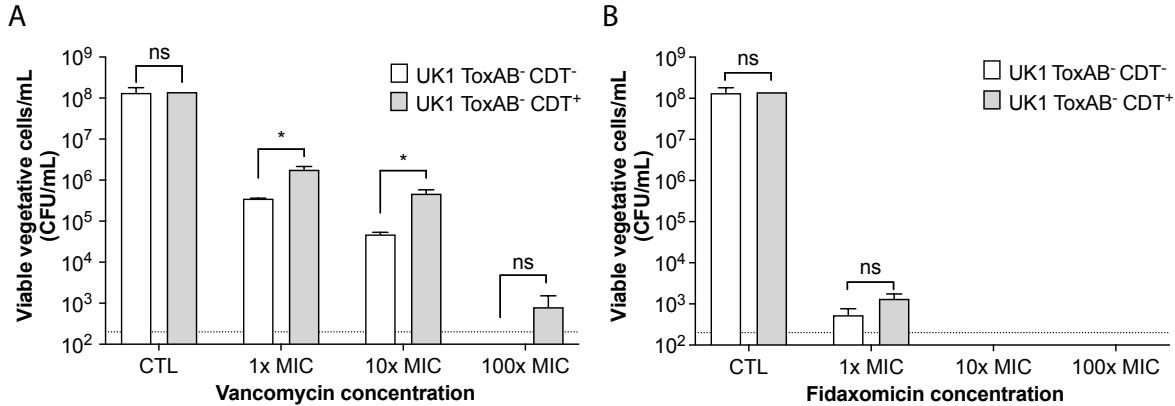
822

823


824

825

826


827 **Figure 3. Purified CDT toxin induces microcolonies formation in CDT⁻ strains in the**
828 **Transwell intestine model.** Representative 3D reconstructed images of Caco-2 cocultured
829 with HT29-MTX cells infected with (A) 630 ToxAB⁻CDT⁻ or (B) UK1 ToxAB⁻CDT⁻ during 24h
830 under hypoxic conditions (4% O₂, 5% CO₂). Infected intestinal cells were exposed to CdtA
831 (200ng/mL) and activated CdtB (400 ng/mL) during 18h or 24h. DNA was labelled with DAPI
832 (blue), mucin with anti-Muc5AC AF488 (green), actin with phalloidin rhodamine (red) and *C.*
833 *difficile* with anti-SlpA³⁵ AF647 (magenta). (C) Number of bacteria detected 24h p.i in Caco-2
834 cells cocultured with HT29-MTX cells infected with *C. difficile* strains as indicated. (D) Total
835 bacteria surface detected 24h p.i in cells infected with *C. difficile* strains as indicated. The
836 number of bacteria and total bacterial surface detected are reported for each image and at
837 least 10 images were quantified per condition. Each black circle in the graph represents one
838 image. Data and quantifications are representative of 3 independent biological replicates.
839 Multiple unpaired *t* tests were performed and statistical significance is represented with
840 **(p≤0.01), **** (p≤0.0001).

841

842
843
844
845
846

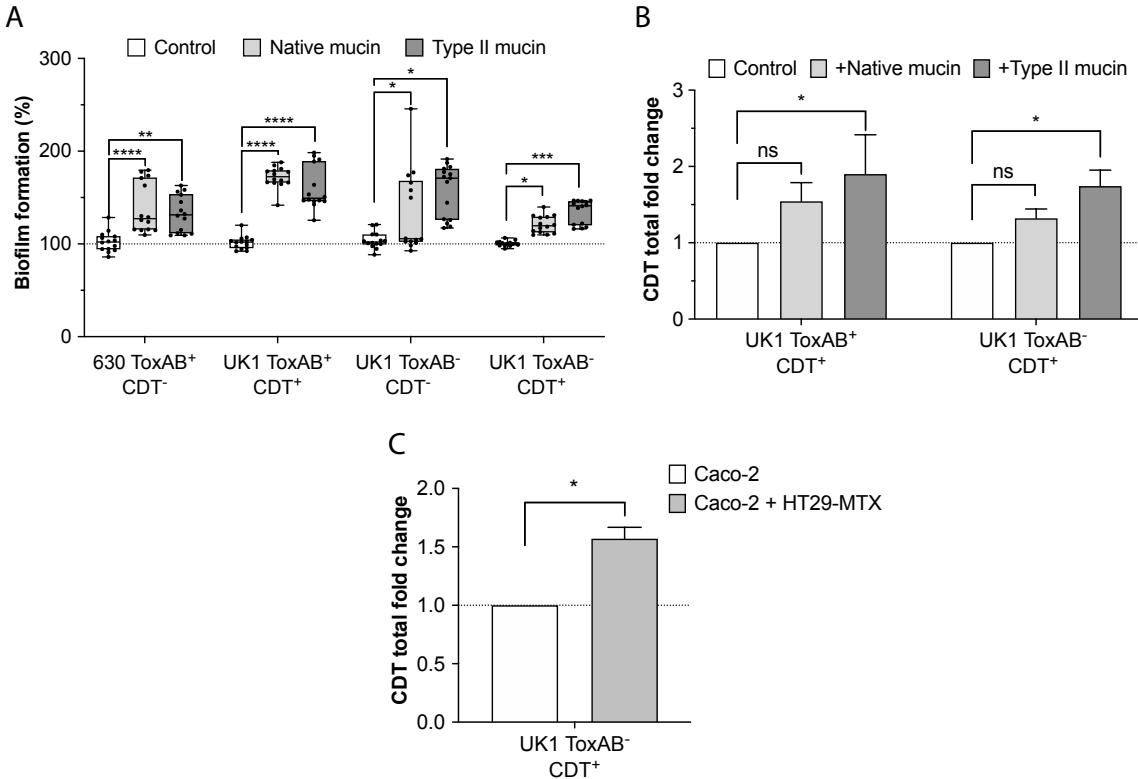
847 **Figure 4. *C. difficile* forms CDT-mediated microcolonies in an Intestine-on-chip model**
848 **at 48h p.i.** (A) Representative 3D reconstructed images of Caco-2 cells (A) or Caco-2 cells
849 cocultured with HT29-MTX cells (B) infected with 630 ToxAB⁻CDT⁻, UK1 ToxAB⁻CDT⁻ or UK1
850 ToxAB⁻CDT⁺ during 48h under hypoxic conditions (4% O₂, 5% CO₂). DNA was labelled with
851 DAPI (blue), mucin with anti-Muc5AC AF488 (green), actin with phalloidin rhodamine (red) and
852 *C. difficile* with anti-SlpA AF647 (magenta). (C) Number of bacteria detected 48h p.i in Caco-
853 2 cells alone or with HT29-MTX cells infected with *C. difficile* strains as indicated. (D) Total
854 bacteria surface detected 48h p.i in Caco-2 cells alone or with HT29-MTX cells infected with
855 *C. difficile* strains as indicated. The number of bacteria and total bacterial surface detected are
856 reported for each image and at least 10 images were quantified per condition. Each black circle
857 in the graph represents one image. Data and quantifications are representative of 2
858 independent biological replicates. Multiple unpaired *t* tests were performed and statistical
859 significance is represented with **** (p<0.0001).
860

861
862 **Figure 5. CDT-induced microcolonies enhance *C. difficile* resistance to vancomycin but**

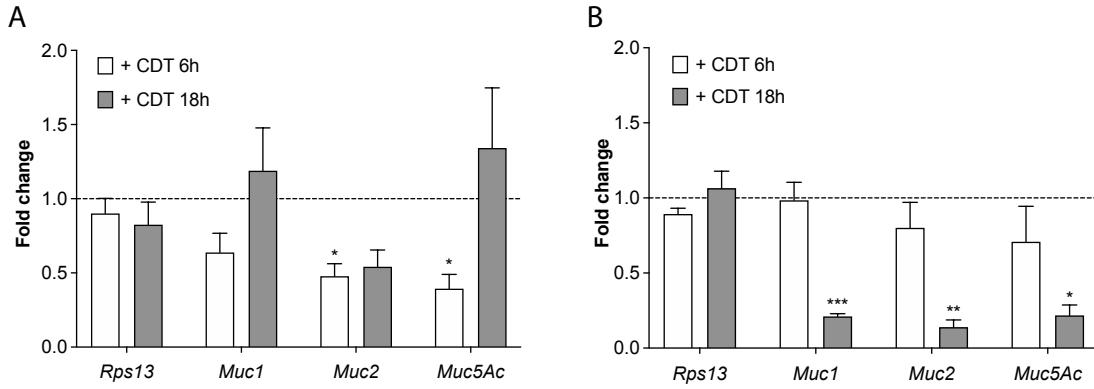
863 not fidaxomicin. Caco-2 cocultured with HT29-MTX cells in the TIM model were infected with

864 UK1 ToxAB⁻CDT⁻ and UK1 ToxAB⁻CDT⁺, 24h p.i infected cells were treated with different

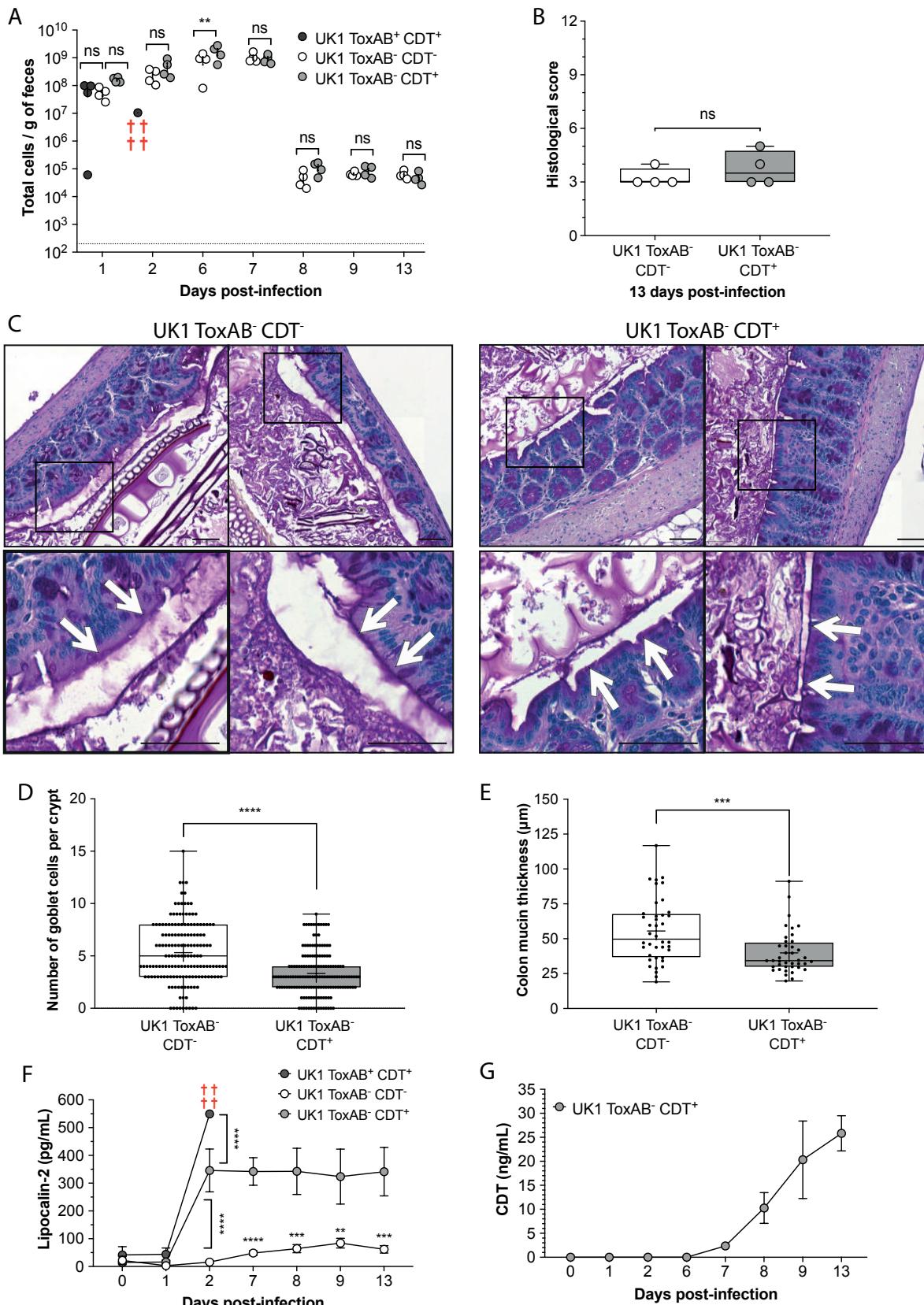
865 concentrations of vancomycin (A) or fidaxomicin (B) for additional 24h. Viable vegetative cells


866 were recovered 48h p.i. The vancomycin and fidaxomicin concentrations used were 1x, 10x

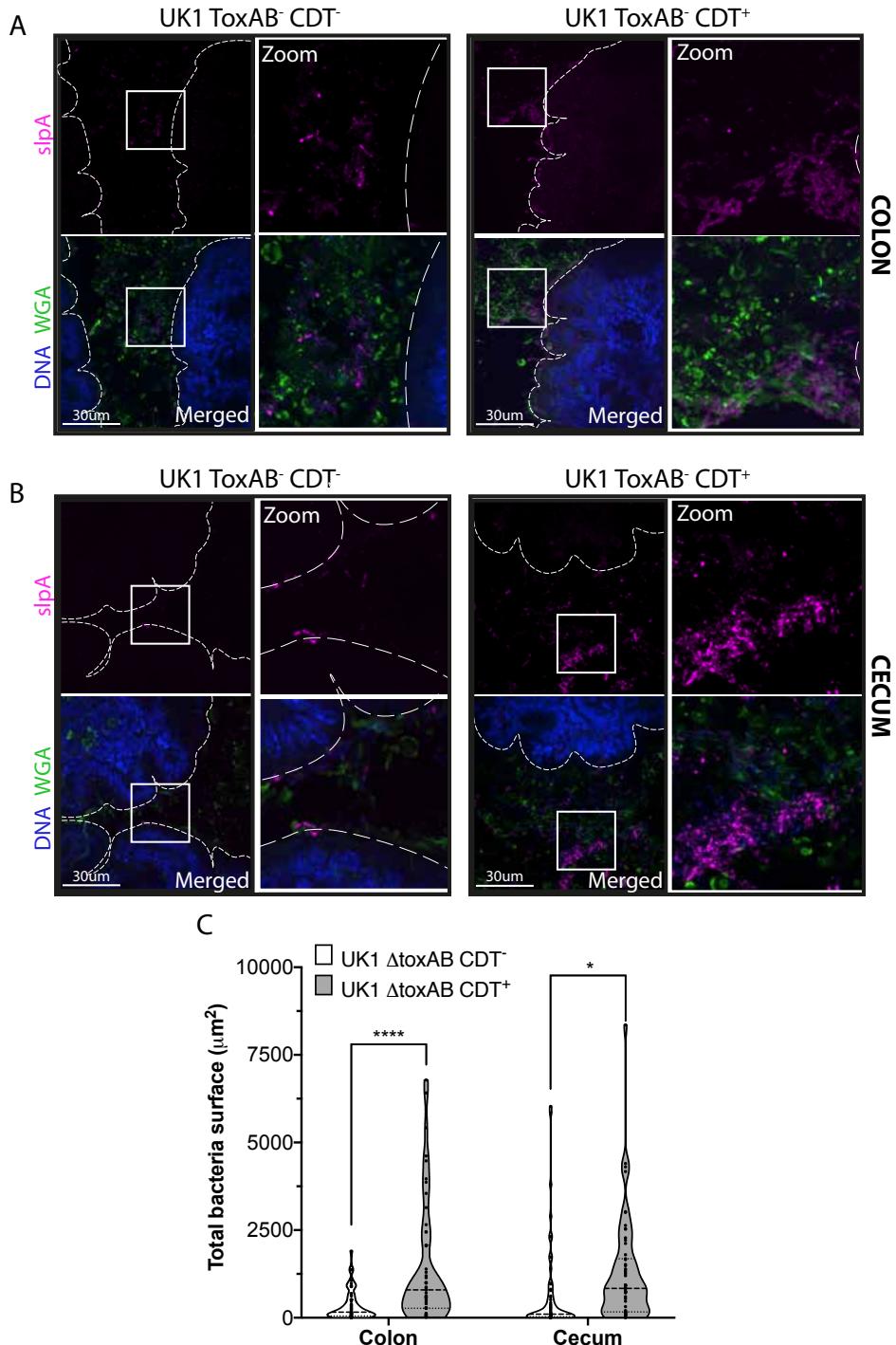
867 and 100x times higher than the MIC. Data represents mean with SEM from 3 independent


868 biological replicates. Multiple unpaired *t* tests were performed and statistical significance is

869 represented with * (p<0.05).


870

871 **Figure 6. Mucin triggers *C. difficile* biofilm formation *in vitro* and increases the levels of**
872 **CDT toxin.** (A) Biofilm formation evaluated by crystal violet biofilm assay. Strains were grown
873 during 48h in GMM medium alone (Control) or with native mucin from pork or mucin type II.
874 The mean OD of biofilm from strains grown in GMM alone is adjusted to 100%. Minimum-
875 maximum boxplot show 3 independent biological replicates with 14-15 technical replicates
876 (black squares). Mann-Whitney U test was performed and statistical significance is
877 represented (*p <0.05, ** p <0.01, ***p <0.001, ****p <0.0001). (B) CDT toxin ELISA
878 represented as total CDT fold change. Strains were grown during 48h in GMM medium alone
879 (Control) or GMM with native or mucin type II. The level of CDT assayed from crude extracts
880 and supernatant were normalized to the OD_{600nm} of bacteria cultures. Data represents mean
881 with SEM from 3 independent experiments. A 2-Way ANOVA with Bonferroni correction was
882 performed (ns: not statistically significant, *p <0.05). (C) CDT toxin ELISA represented as total
883 CDT fold change. CDT was measured from supernatants recovered 24h p.i from Caco-2 alone
884 or co-cultured with HT29-MTX cells in the TIM model infected with UK1 ToxAB⁻CDT⁺. Data
885 represents mean with SEM from 2 independent experiments. An unpaired t test was performed
886 and statistical significance is represented (* p<0.05).
887



890
891 **Figure 7. Cells treated with purified CDT reduce the transcription of mucin-associated**
892 **genes.** Caco-2 cells cocultured with HT29-MTX cells were treated or not with CdtA (200ng/mL)
893 and activated CdtB (400 ng/mL), and mRNA levels of treated or not treated cells were
894 quantified by qRT-PCR in (A) the Transwell intestine model (TIM) or (B) the Intestine-on-chip
895 model (IoC). Data represents mean with SEM from 3 independent biological replicates (TIM)
896 or 2 independent biological replicates (IoC) with 3 technical replicates. Data is normalized to
897 not treated cells and represented as fold change relative to the housekeeping gene *Rps13*. A
898 2-way ANOVA with Geisser-Greenhouse correction test was performed and statistical
899 significance is represented (* p<0.05, ** p <0.01 and, ***p <0.001).

900
901
902
903
904

905 **Figure 8. The CDT toxin increases gut inflammation and decreases mucin thickness and**
906 **goblet cells numbers.** (A) C57Bl/6J Germ-free mice were infected with purified spores from
907 UK1 ToxAB⁺CDT⁺, UK1 ToxAB⁻CDT⁻ or UK1 ToxAB⁻CDT⁺ and the total number of CFUs
908 (vegetative cells + spores) in feces was assessed at different days p.i. (B) Histological score
909 13 days p.i. (C) Representative images of mucin thickness (black bars) and goblet cells (dark
910 purple) from mouse colonic sections 13 days p.i stained with PAS. (D) Quantification of number
911 of goblet cells per crypt from mouse colonic sections 13 days p.i. (E) Quantification of mucin
912 thickness from mouse colonic sections 13 days p.i. (F) Fecal lipocaline-2 levels detected by
913 ELISA before (day 0 and 1) and during *C. difficile* infection (day 2, 6, 7, 8, 9 and 13). (G) Fecal
914 CDT levels detected by ELISA before infection (day 0 and 1) and during *C. difficile* infection
915 (day 2, 6, 7, 8, 9 and 13). Data represents mean with SEM (F, G). Multiple unpaired *t* tests (A,
916 B, F) or Mann Whitney tests were performed (D, E) and statistical significance is represented
917 with * p<0.05, ** p <0.01, ***p <0.001 and, **** p<0.0001. ns: no statistical significance.
918

919
920 **Figure 9. The CDT toxin promotes the formation of biofilm-like microcolonies in the**
921 **caecum and colon of mice.** (A) Mouse colonic and (B) caecum sections were immunostained
922 13 days p.i. DNA was labelled with DAPI (blue), mucus layer with the lectin WGA AF488
923 (green), and *C. difficile* was labelled with anti-slpA AF647 (magenta). (C) Total bacterial
924 surface per image was quantified from mice colonic and caecum sections 13 days p.i. Data
925 and quantifications are representative of at least 13 images quantified per mice (four mice per
926 condition, scale bar 30 μm). Each black square in the graph represents one image ($n \geq 52$).
927 Multiple unpaired *t* tests were performed and statistical significance is represented (* $p < 0.05$,
928 **** $p < 0.0001$).

929

930 **REFERENCES**

- 931 1. Rupnik, M., Wilcox, M.H., and Gerding, D.N. (2009). *Clostridium difficile* infection: new
932 developments in epidemiology and pathogenesis. *Nat Rev Microbiol* 7, 526–536.
933 <https://doi.org/10.1038/nrmicro2164>.
- 934 2. Winston, J.A., and Theriot, C.M. (2020). Diversification of host bile acids by members of
935 the gut microbiota. *Gut Microbes* 11, 158–171.
936 <https://doi.org/10.1080/19490976.2019.1674124>.
- 937 3. Weingarden, A.R., Chen, C., Bobr, A., Yao, D., Lu, Y., Nelson, V.M., Sadowsky, M.J., and
938 Khoruts, A. (2014). Microbiota transplantation restores normal fecal bile acid composition
939 in recurrent *Clostridium difficile* infection. *American Journal of Physiology-Gastrointestinal
940 and Liver Physiology* 306, G310–G319. <https://doi.org/10.1152/ajpgi.00282.2013>.
- 941 4. Fu, Y., Luo, Y., and Grinspan, A.M. (2021). Epidemiology of community-acquired and
942 recurrent *Clostridioides difficile* infection. *Therap Adv Gastroenterol* 14,
943 175628482110162. <https://doi.org/10.1177/17562848211016248>.
- 944 5. Feuerstadt, P., Theriault, N., and Tillotson, G. (2023). The burden of CDI in the United
945 States: a multifactorial challenge. *BMC Infect Dis* 23, 132. <https://doi.org/10.1186/s12879-023-08096-0>.
- 946 6. Barbut, F., Richard, A., Hamadi, K., Chomette, V., Burghoffer, B., and Petit, J.-C. (2000).
947 Epidemiology of Recurrences or Reinfections of *Clostridium difficile*-Associated Diarrhea.
948 *J Clin Microbiol* 38, 2386–2388.
- 949 7. Marsh, J.W., Arora, R., Schlackman, J.L., Shutt, K.A., Curry, S.R., and Harrison, L.H.
950 (2012). Association of Relapse of *Clostridium difficile* Disease with BI/NAP1/027. *J Clin
951 Microbiol* 50, 4078–4082. <https://doi.org/10.1128/JCM.02291-12>.
- 952 8. Johnson, S. (2009). Recurrent *Clostridium difficile* infection: A review of risk factors,
953 treatments, and outcomes. *Journal of Infection* 58, 403–410.
954 <https://doi.org/10.1016/j.jinf.2009.03.010>.
- 955 9. Kelly, C.P. (2012). Can we identify patients at high risk of recurrent *Clostridium difficile*
956 infection? *Clinical Microbiology and Infection* 18, 21–27. <https://doi.org/10.1111/1469-0691.12046>.
- 956 10. Aslam, S., Hamill, R.J., and Musher, D.M. (2005). Treatment of *Clostridium difficile*-
957 associated disease: old therapies and new strategies. *The Lancet Infectious Diseases* 5,
958 549–557. [https://doi.org/10.1016/S1473-3099\(05\)70215-2](https://doi.org/10.1016/S1473-3099(05)70215-2).
- 959 11. McFarland, L.V., Elmer, G.W., and Surawicz, C.M. (2002). Breaking The Cycle: Treatment
960 Strategies for 163 Cases of Recurrent *Clostridium difficile* Disease. *American Journal of
961 Gastroenterology* 97, 1769–1775. <https://doi.org/10.1111/j.1572-0241.2002.05839.x>.
- 962 12. Castro-Córdova, P., Mora-Uribe, P., Reyes-Ramírez, R., Cofré-Araneda, G., Orozco-
963 Aguilar, J., Brito-Silva, C., Mendoza-León, M.J., Kuehne, S.A., Minton, N.P., Pizarro-
964 Guajardo, M., et al. (2021). Entry of spores into intestinal epithelial cells contributes to
965 recurrence of *Clostridioides difficile* infection. *Nat Commun* 12, 1140.
966 <https://doi.org/10.1038/s41467-021-21355-5>.
- 967 13. Castro-Córdova, P., Mora-Uribe, P., Reyes-Ramírez, R., Cofré-Araneda, G., Orozco-
968 Aguilar, J., Brito-Silva, C., Mendoza-León, M.J., Kuehne, S.A., Minton, N.P., Pizarro-
969 Guajardo, M., et al. (2021). Entry of spores into intestinal epithelial cells contributes to
970 recurrence of *Clostridioides difficile* infection. *Nat Commun* 12, 1140.
971 <https://doi.org/10.1038/s41467-021-21355-5>.
- 972 14. Carter, G.P., Chakravorty, A., Pham Nguyen, T.A., Mileto, S., Schreiber, F., Li, L., Howarth,
973 P., Clare, S., Cunningham, B., Sambol, S.P., et al. (2015). Defining the Roles of TcdA and
974 TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host
975

978 Response during *Clostridium difficile* Infections. *mBio* 6, e00551-15.
979 <https://doi.org/10.1128/mBio.00551-15>.

980 15. Kuehne, S.A., Cartman, S.T., Heap, J.T., Kelly, M.L., Cockayne, A., and Minton, N.P.
981 (2010). The role of toxin A and toxin B in *Clostridium difficile* infection. *Nature* 467, 711–
982 713. <https://doi.org/10.1038/nature09397>.

983 16. Rupnik, M. (2008). Heterogeneity of large clostridial toxins: importance of *Clostridium*
984 *difficile* toxinotypes. *FEMS Microbiol Rev* 32, 541–555. <https://doi.org/10.1111/j.1574-6976.2008.00110.x>.

985 17. Aktories, K., Schwan, C., and Jank, T. (2017). *Clostridium difficile* Toxin Biology. *Annu. Rev. Microbiol.* 71, 281–307. <https://doi.org/10.1146/annurev-micro-090816-093458>.

986 18. Eckert, C., Emirian, A., Le Monnier, A., Cathala, L., De Montclos, H., Goret, J., Berger, P.,
987 Petit, A., De Chevigny, A., Jean-Pierre, H., et al. (2015). Prevalence and pathogenicity of
988 binary toxin–positive *Clostridium difficile* strains that do not produce toxins A and B. *New*
989 *Microbes and New Infections* 3, 12–17. <https://doi.org/10.1016/j.nmni.2014.10.003>.

990 19. Just, I., Selzer, J., Wilm, M., Eichel-Streiber, C. von, Mann, M., and Aktories, K. (1995).
991 Glucosylation of Rho proteins by *Clostridium difficile* toxin B. *Nature* 375, 500–503.
992 <https://doi.org/10.1038/375500a0>.

993 20. Thelestam, M., and Chaves-Olarte, E. (2000). Cytotoxic Effects of the *Clostridium difficile*
994 Toxins. In *Clostridium difficile Current Topics in Microbiology and Immunology*, K. Aktories
995 and T. D. Wilkins, eds. (Springer Berlin Heidelberg), pp. 85–96.
996 https://doi.org/10.1007/978-3-662-06272-2_4.

997 21. Schwan, C., Stecher, B., Tzivelekis, T., van Ham, M., Rohde, M., Hardt, W.-D., Wehland,
998 J., and Aktories, K. (2009). *Clostridium difficile* Toxin CDT Induces Formation of
999 Microtubule-Based Protrusions and Increases Adherence of Bacteria. *PLoS Pathog* 5,
1000 e1000626. <https://doi.org/10.1371/journal.ppat.1000626>.

1001 22. Schwan, C., Kruppke, A.S., Nölke, T., Schumacher, L., Koch-Nolte, F., Kudryashev, M.,
1002 Stahlberg, H., and Aktories, K. (2014). *Clostridium difficile* toxin CDT hijacks microtubule
1003 organization and reroutes vesicle traffic to increase pathogen adherence. *Proc. Natl. Acad. Sci. U.S.A.* 111, 2313–2318. <https://doi.org/10.1073/pnas.1311589111>.

1004 23. Aktories, K., Papatheodorou, P., and Schwan, C. (2018). Binary *Clostridium difficile* toxin
1005 (CDT) - A virulence factor disturbing the cytoskeleton. *Anaerobe* 53, 21–29.
1006 <https://doi.org/10.1016/j.anaerobe.2018.03.001>.

1007 24. Androga, G.O., Knight, D.R., Hutton, M.L., Mileto, S.J., James, M.L., Evans, C., Lyras, D.,
1008 Chang, B.J., Foster, N.F., and Riley, T.V. (2019). In silico, in vitro and in vivo analysis of
1009 putative virulence factors identified in large clostridial toxin-negative, binary toxin-
1010 producing *C. difficile* strains. *Anaerobe* 60, 102083.
1011 <https://doi.org/10.1016/j.anaerobe.2019.102083>.

1012 25. Bacci, S., Mølbak, K., Kjeldsen, M.K., and Olsen, K.E.P. (2011). Binary Toxin and Death
1013 after *Clostridium difficile* Infection. *Emerg. Infect. Dis.* 17, 976–982.
1014 <https://doi.org/10.3201/eid1706.101483>.

1015 26. McEllistrem, M.C., Carman, R.J., Gerding, D.N., Genheimer, C.W., and Zheng, L. (2005).
1016 A Hospital Outbreak of *Clostridium difficile* Disease Associated with Isolates Carrying
1017 Binary Toxin Genes. *Clinical Infectious Diseases* 40, 265–272.
1018 <https://doi.org/10.1086/427113>.

1019 27. Barbut, F. (2005). Clinical features of *Clostridium difficile*-associated diarrhoea due to
1020 binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. *Journal of Medical*
1021 *Microbiology* 54, 181–185. <https://doi.org/10.1099/jmm.0.45804-0>.

1022

1023

1024

1025 28. Barbut, F., Gariazzo, B., Bonné, L., Lalande, V., Burghoffer, B., Luiuz, R., and Petit, J.-C.
1026 (2007). Clinical Features of *Clostridium difficile* -Associated Infections and Molecular
1027 Characterization of Strains: Results of a Retrospective Study, 2000-2004. *Infect. Control*
1028 *Hosp. Epidemiol.* 28, 131–139. <https://doi.org/10.1086/511794>.

1029 29. Stewart, D.B., Berg, A., and Hegarty, J. (2013). Predicting Recurrence of *C. difficile* Colitis
1030 Using Bacterial Virulence Factors: Binary Toxin Is the Key. *J Gastrointest Surg* 17, 118–
1031 125. <https://doi.org/10.1007/s11605-012-2056-6>.

1032 30. Berry, C.E., Davies, K.A., Owens, D.W., and Wilcox, M.H. (2017). Is there a relationship
1033 between the presence of the binary toxin genes in *Clostridium difficile* strains and the
1034 severity of *C. difficile* infection (CDI)? *Eur J Clin Microbiol Infect Dis* 36, 2405–2415.
1035 <https://doi.org/10.1007/s10096-017-3075-8>.

1036 31. Kuehne, S.A., Collery, M.M., Kelly, M.L., Cartman, S.T., Cockayne, A., and Minton, N.P.
1037 (2014). Importance of Toxin A, Toxin B, and CDT in Virulence of an Epidemic *Clostridium*
1038 *difficile* Strain. *The Journal of Infectious Diseases* 209, 83–86.
1039 <https://doi.org/10.1093/infdis/jit426>.

1040 32. Androga, G.O., Knight, D.R., Hutton, M.L., Mileto, S.J., James, M.L., Evans, C., Lyras, D.,
1041 Chang, B.J., Foster, N.F., and Riley, T.V. (2019). In silico, in vitro and in vivo analysis of
1042 putative virulence factors identified in large clostridial toxin-negative, binary toxin-
1043 producing *C. difficile* strains. *Anaerobe* 60, 102083.
1044 <https://doi.org/10.1016/j.anaerobe.2019.102083>.

1045 33. Mileto, S.J., Jardé, T., Childress, K.O., Jensen, J.L., Rogers, A.P., Kerr, G., Hutton, M.L.,
1046 Sheedlo, M.J., Bloch, S.C., Shupe, J.A., et al. (2020). *Clostridioides difficile* infection
1047 damages colonic stem cells via TcdB, impairing epithelial repair and recovery from
1048 disease. *Proc. Natl. Acad. Sci. U.S.A.* 117, 8064–8073.
1049 <https://doi.org/10.1073/pnas.1915255117>.

1050 34. Cowardin, C.A., Buonomo, E.L., Saleh, M.M., Wilson, M.G., Burgess, S.L., Kuehne, S.A.,
1051 Schwan, C., Eichhoff, A.M., Koch-Nolte, F., Lyras, D., et al. (2016). The binary toxin CDT
1052 enhances *Clostridium difficile* virulence by suppressing protective colonic eosinophilia. *Nat*
1053 *Microbiol* 1, 16108. <https://doi.org/10.1038/nmicrobiol.2016.108>.

1054 35. Hunault, L., England, P., Barbut, F., Iannascoli, B., Godon, O., Déjardin, F., Thomas, C.,
1055 Dupuy, B., Guo, C., Macdonald, L., et al. (2024). A monoclonal antibody collection for *C.*
1056 *difficile* typing ? *Gut Pathog* 16, 4. <https://doi.org/10.1186/s13099-023-00592-7>.

1057 36. Soavelomandroso, A.P., Gaudin, F., Hoys, S., Nicolas, V., Vedantam, G., Janoir, C., and
1058 Bouttier, S. (2017). Biofilm Structures in a Mono-Associated Mouse Model of *Clostridium*
1059 *difficile* Infection. *Front Microbiol* 8, 2086. <https://doi.org/10.3389/fmicb.2017.02086>.

1060 37. Engevik, M.A., Engevik, A.C., Engevik, K.A., Auchtung, J.M., Chang-Graham, A.L., Ruan,
1061 W., Luna, R.A., Hyser, J.M., Spinler, J.K., and Versalovic, J. (2021). Mucin-Degrading
1062 Microbes Release Monosaccharides That Chemoattract *Clostridioides difficile* and
1063 Facilitate Colonization of the Human Intestinal Mucus Layer. *ACS Infect Dis* 7, 1126–1142.
1064 <https://doi.org/10.1021/acsinfecdis.0c00634>.

1065 38. Furtado, K.L., Plott, L.M., Markovetz, M.R., Powers, D.A., Wang, H., Hill, D.B., Papin, J.A.,
1066 Allbritton, N.L., and Tamayo, R. (2024). *Clostridioides difficile* -mucus interactions
1067 encompass shifts in gene expression, metabolism, and biofilm formation (Microbiology)
1068 <https://doi.org/10.1101/2024.02.01.578425>.

1069 39. Beer, L.-A., Tatge, H., Schneider, C., Ruschig, M., Hust, M., Barton, J., Thiemann, S.,
1070 Fühner, V., Russo, G., and Gerhard, R. (2018). The Binary Toxin CDT of *Clostridium*
1071 *difficile* as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains.
1072 *Toxins* 10, 225. <https://doi.org/10.3390/toxins10060225>.

1073 40. Mah, T.-F. (2012). Biofilm-specific antibiotic resistance. Future Microbiology 7, 1061–1072.
1074 https://doi.org/10.2217/fmb.12.76.

1075 41. Flemming, H.-C., and Wingender, J. (2010). The biofilm matrix. Nat Rev Microbiol 8, 623–
1076 633. https://doi.org/10.1038/nrmicro2415.

1077 42. Thapa, T., Leuzzi, R., Ng, Y.K., Baban, S.T., Adamo, R., Kuehne, S.A., Scarselli, M.,
1078 Minton, N.P., Serruto, D., and Unnikrishnan, M. (2013). Multiple Factors Modulate Biofilm
1079 Formation by the Anaerobic Pathogen Clostridium difficile. Journal of Bacteriology 195,
1080 545–555. https://doi.org/10.1128/JB.01980-12.

1081 43. Dubois, T., Tremblay, Y.D.N., Hamiot, A., Martin-Verstraete, I., Deschamps, J., Monot, M.,
1082 Briandet, R., and Dupuy, B. (2019). A microbiota-generated bile salt induces biofilm
1083 formation in Clostridium difficile. npj Biofilms Microbiomes 5, 14.
1084 https://doi.org/10.1038/s41522-019-0087-4.

1085 44. James, G.A., Chesnel, L., Boegli, L., deLancey Pulcini, E., Fisher, S., and Stewart, P.S.
1086 (2018). Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment. J
1087 Antimicrob Chemother 73, 102–108. https://doi.org/10.1093/jac/dkx353.

1088 45. Hamada, M., Yamaguchi, T., Ishii, Y., Chono, K., and Tateda, K. (2020). Inhibitory effect
1089 of fidaxomicin on biofilm formation in Clostridioides difficile. J Infect Chemother 26, 685–
1090 692. https://doi.org/10.1016/j.jiac.2020.02.014.

1091 46. Goodman, A.L., Kallstrom, G., Faith, J.J., Reyes, A., Moore, A., Dantas, G., and Gordon,
1092 J.I. (2011). Extensive personal human gut microbiota culture collections characterized and
1093 manipulated in gnotobiotic mice. Proc. Natl. Acad. Sci. U.S.A. 108, 6252–6257.
1094 https://doi.org/10.1073/pnas.1102938108.

1095 47. Engevik, M., Ganesh, B., Morra, C., Luk, B., and Versalovic, J. (2015). Modulation and
1096 adherence of intestinal mucus by commensal bacteria and the pathogen *C. difficile*.
1097 FASEB J. 29. https://doi.org/10.1096/fasebj.29.1_supplement.1007.4.

1098 48. Engevik, M.A., Yacyshyn, M.B., Engevik, K.A., Wang, J., Darien, B., Hassett, D.J.,
1099 Yacyshyn, B.R., and Worrell, R.T. (2015). Human *Clostridium difficile* infection: altered
1100 mucus production and composition. American Journal of Physiology-Gastrointestinal and
1101 Liver Physiology 308, G510–G524. https://doi.org/10.1152/ajpgi.00091.2014.

1102 49. Girinathan, B.P., DiBenedetto, N., Worley, J.N., Peltier, J., Arrieta-Ortiz, M.L., Immanuel,
1103 S.R.C., Lavin, R., Delaney, M.L., Cummins, C.K., Hoffman, M., et al. (2021). In vivo
1104 commensal control of Clostridioides difficile virulence. Cell Host & Microbe 29, 1693–
1105 1708.e7. https://doi.org/10.1016/j.chom.2021.09.007.

1106 50. Fletcher, J.R., Pike, C.M., Parsons, R.J., Rivera, A.J., Foley, M.H., McLaren, M.R.,
1107 Montgomery, S.A., and Theriot, C.M. (2021). Clostridioides difficile exploits toxin-mediated
1108 inflammation to alter the host nutritional landscape and exclude competitors from the gut
1109 microbiota. Nat Commun 12, 462. https://doi.org/10.1038/s41467-020-20746-4.

1110 51. Barbut, F., Richard, A., Hamadi, K., Chomette, V., Burghoffer, B., and Petit, J.-C. (2000).
1111 Epidemiology of Recurrences or Reinfections of *Clostridium difficile* -Associated Diarrhea.
1112 J Clin Microbiol 38, 2386–2388. https://doi.org/10.1128/JCM.38.6.2386-2388.2000.

1113 52. Barth, H., Preiss, J.C., Hofmann, F., and Aktories, K. (1998). Characterization of the
1114 Catalytic Site of the ADP-Ribosyltransferase Clostridium botulinum C2 Toxin by Site-
1115 directed Mutagenesis. Journal of Biological Chemistry 273, 29506–29511.
1116 https://doi.org/10.1074/jbc.273.45.29506.

1117 53. Stiles, B.G., and Wilkins, T.D. (1986). Purification and characterization of *Clostridium*
1118 *perfringens* iota toxin: dependence on two nonlinked proteins for biological activity. Infect
1119 Immun 54, 683–688. https://doi.org/10.1128/iai.54.3.683-688.1986.

1120 54. Simpson, L.L., Stiles, B.G., Zepeda, H., and Wilkins, T.D. (1989). Production by
1121 Clostridium spiroforme of an iota-like toxin that possesses mono(ADP-ribosyl)transferase
1122 activity: identification of a novel class of ADP-ribosyltransferases. *Infect Immun* 57, 255–
1123 261. <https://doi.org/10.1128/iai.57.1.255-261.1989>.

1124 55. Stiles, B., Pradhan, K., Fleming, J., Samy, R., Barth, H., and Popoff, M. (2014). Clostridium
1125 and *Bacillus* Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being. *Toxins* 6,
1126 2626–2656. <https://doi.org/10.3390/toxins6092626>.

1127 56. Aktories, K., Schwan, C., Papatheodorou, P., and Lang, A.E. (2012). Bidirectional attack
1128 on the actin cytoskeleton. Bacterial protein toxins causing polymerization or
1129 depolymerization of actin. *Toxicon* 60, 572–581.
1130 <https://doi.org/10.1016/j.toxicon.2012.04.338>.

1131 57. Meresse, S., Unsworth, K.E., Habermann, A., Griffiths, G., Fang, F., Martinez-Lorenzo,
1132 M.J., Waterman, S.R., Gorvel, J.-P., and Holden, D.W. (2001). Remodelling of the actin
1133 cytoskeleton is essential for replication of intravacuolar *Salmonella*. *Cell Microbiol* 3, 567–
1134 577. <https://doi.org/10.1046/j.1462-5822.2001.00141.x>.

1135 58. Al-Mohanna, F.A., Ohishi, I., and Hallett, M.B. (1987). Botulinum C₂ toxin potentiates
1136 activation of the neutrophil oxidase. Further evidence of a role for actin polymerization.
1137 *FEBS Letters* 219, 40–44. [https://doi.org/10.1016/0014-5793\(87\)81187-0](https://doi.org/10.1016/0014-5793(87)81187-0).

1138 59. Patel, J.C., and Galán, J.E. (2005). Manipulation of the host actin cytoskeleton by
1139 *Salmonella* — all in the name of entry. *Current Opinion in Microbiology* 8, 10–15.
1140 <https://doi.org/10.1016/j.mib.2004.09.001>.

1141 60. Black, D.S., and Bliska, J.B. (2000). The RhoGAP activity of the *Yersinia*
1142 *pseudotuberculosis* cytotoxin YopE is required for antiphagocytic function and virulence.
1143 *Molecular Microbiology* 37, 515–527. <https://doi.org/10.1046/j.1365-2958.2000.02021.x>.

1144 61. Papatheodorou, P., Hornuss, D., Nölke, T., Hemmasi, S., Castonguay, J., Picchianti, M.,
1145 and Aktories, K. (2013). *Clostridium difficile* Binary Toxin CDT Induces Clustering of the
1146 Lipolysis-Stimulated Lipoprotein Receptor into Lipid Rafts. *mBio* 4, e00244-13.
1147 <https://doi.org/10.1128/mBio.00244-13>.

1148 62. Béduneau, A., Tempesta, C., Fimbel, S., Pellequer, Y., Jannin, V., Demarne, F., and
1149 Lamprecht, A. (2014). A tunable Caco-2/HT29-MTX co-culture model mimicking variable
1150 permeabilities of the human intestine obtained by an original seeding procedure. *European*
1151 *Journal of Pharmaceutics and Biopharmaceutics* 87, 290–298.
1152 <https://doi.org/10.1016/j.ejpb.2014.03.017>.

1153 63. Conlon, B.P., Rowe, S.E., and Lewis, K. (2015). Persister Cells in Biofilm Associated
1154 Infections. In *Biofilm-based Healthcare-associated Infections Advances in Experimental*
1155 *Medicine and Biology*, G. Donelli, ed. (Springer International Publishing), pp. 1–9.
1156 https://doi.org/10.1007/978-3-319-09782-4_1.

1157 64. Hall-Stoodley, L., and Stoodley, P. (2009). Evolving concepts in biofilm infections. *Cell*
1158 *Microbiol* 11, 1034–1043. <https://doi.org/10.1111/j.1462-5822.2009.01323.x>.

1159 65. Crowther, G.S., Chilton, C.H., Todhunter, S.L., Nicholson, S., Freeman, J., Baines, S.D.,
1160 and Wilcox, M.H. (2014). Development and Validation of a Chemostat Gut Model To Study
1161 Both Planktonic and Biofilm Modes of Growth of *Clostridium difficile* and Human
1162 Microbiota. *PLoS ONE* 9, e88396. <https://doi.org/10.1371/journal.pone.0088396>.

1163 66. Dawson, L.F., Peltier, J., Hall, C.L., Harrison, M.A., Derakhshan, M., Shaw, H.A.,
1164 Fairweather, N.F., and Wren, B.W. (2021). Extracellular DNA, cell surface proteins and c-
1165 di-GMP promote biofilm formation in *Clostridioides difficile*. *Sci Rep* 11, 3244.
1166 <https://doi.org/10.1038/s41598-020-78437-5>.

1167 67. Semenyuk, E.G., Poroyko, V.A., Johnston, P.F., Jones, S.E., Knight, K.L., Gerding, D.N.,
1168 and Driks, A. (2015). Analysis of Bacterial Communities during *Clostridium difficile*
1169 Infection in the Mouse. *Infect Immun* 83, 4383–4391. <https://doi.org/10.1128/IAI.00145-15>.

1170 68. Donelli, G., Vuotto, C., Cardines, R., and Mastrantonio, P. (2012). Biofilm-growing
1171 intestinal anaerobic bacteria. *FEMS Immunol Med Microbiol* 65, 318–325.
1172 <https://doi.org/10.1111/j.1574-695X.2012.00962.x>.

1173 69. Frost, L.R., Cheng, J.K.J., and Unnikrishnan, M. (2021). *Clostridioides difficile* biofilms: A
1174 mechanism of persistence in the gut? *PLoS Pathog* 17, e1009348.
1175 <https://doi.org/10.1371/journal.ppat.1009348>.

1176 70. Vuotto, C., Moura, I., Barbanti, F., Donelli, G., and Spigaglia, P. (2016). Subinhibitory
1177 concentrations of metronidazole increase biofilm formation in *Clostridium difficile* strains.
1178 *Pathogens and Disease* 74, ftv114. <https://doi.org/10.1093/femspd/ftv114>.

1179 71. Auria, E., Deschamps, J., Briandet, R., and Dupuy, B. (2023). Extracellular succinate
1180 induces spatially organized biofilm formation in *Clostridioides difficile*. *Biofilm* 5, 100125.
1181 <https://doi.org/10.1016/j.biofil.2023.100125>.

1182 72. Semenyuk, E.G., Laning, M.L., Foley, J., Johnston, P.F., Knight, K.L., Gerding, D.N., and
1183 Driks, A. (2014). Spore Formation and Toxin Production in *Clostridium difficile* Biofilms.
1184 *PLoS ONE* 9, e87757. <https://doi.org/10.1371/journal.pone.0087757>.

1185 73. Cash, H.L., Whitham, C.V., Behrendt, C.L., and Hooper, L.V. (2006). Symbiotic Bacteria
1186 Direct Expression of an Intestinal Bactericidal Lectin. *Science* 313, 1126–1130.
1187 <https://doi.org/10.1126/science.1127119>.

1188 74. Dohrman, A., Miyata, S., Gallup, M., Li, J.-D., Chapelin, C., Coste, A., Escudier, E., Nadel,
1189 J., and Basbaum, C. (1998). Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-
1190 positive and Gram-negative bacteria. *Biochimica et Biophysica Acta (BBA) - Molecular
1191 Basis of Disease* 1406, 251–259. [https://doi.org/10.1016/S0925-4439\(98\)00010-6](https://doi.org/10.1016/S0925-4439(98)00010-6).

1192 75. Liévin-Le Moal, V., Servin, A.L., and Coconnier-Polter, M.-H. (2005). The increase in mucin
1193 exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins
1194 induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that
1195 inhibits the cell-entry of *Listeria monocytogenes*: Mucins and inhibition of *Listeria* invasion.
1196 *Cellular Microbiology* 7, 1035–1048. <https://doi.org/10.1111/j.1462-5822.2005.00532.x>.

1197 76. Lindén, S.K., Florin, T.H.J., and McGuckin, M.A. (2008). Mucin Dynamics in Intestinal
1198 Bacterial Infection. *PLoS ONE* 3, e3952. <https://doi.org/10.1371/journal.pone.0003952>.

1199 77. Yamauchi, J., Kawai, Y., Yamada, M., Uchikawa, R., Tegoshi, T., and Arizono, N. (2006).
1200 Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal
1201 epithelium during infection with the nematode *Nippostrongylus brasiliensis* in rat. *APMIS*
1202 114, 270–278. https://doi.org/10.1111/j.1600-0463.2006.apm_353.x.

1203 78. Celli, J.P., Turner, B.S., Afdhal, N.H., Keates, S., Ghiran, I., Kelly, C.P., Ewoldt, R.H.,
1204 McKinley, G.H., So, P., Erramilli, S., et al. (2009). *Helicobacter pylori* moves through
1205 mucus by reducing mucin viscoelasticity. *Proc. Natl. Acad. Sci. U.S.A.* 106, 14321–14326.
1206 <https://doi.org/10.1073/pnas.0903438106>.

1207 79. Engevik, M.A., Danhof, H.A., Auchtung, J., Endres, B.T., Ruan, W., Bassères, E., Engevik,
1208 A.C., Wu, Q., Nicholson, M., Luna, R.A., et al. (2021). *Fusobacterium nucleatum* Adheres
1209 to *Clostridioides difficile* via the RadD Adhesin to Enhance Biofilm Formation in Intestinal
1210 Mucus. *Gastroenterology* 160, 1301-1314.e8.
1211 <https://doi.org/10.1053/j.gastro.2020.11.034>.

1212 80. Gomez-Trevino, M., Boureau, H., Karjalainen, T., and Bourlioux, P. (1996). *Clostridium*
1213 *difficile* Adherence to Mucus: Results of an *in vivo* and *ex vivo* Assay. *Microbial Ecology in*
1214 *Health and Disease* 9, 329–334. <https://doi.org/10.3109/08910609609166474>.

1215 81. Eveillard, M., Fourel, V., Bare, M., Kernéis, S., Coconnier, M., Karjalainen, T., Bourlioux, P., and Servin, A.L. (1993). Identification and characterization of adhesive factors of *Clostridium difficile* involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT29 cells in culture. *Molecular Microbiology* 7, 371–381. <https://doi.org/10.1111/j.1365-2958.1993.tb01129.x>.

1220 82. Stubbs, S., Rupnik, M., Gibert, M., Brazier, J., Duerden, B., and Popoff, M. (2000). Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of *Clostridium difficile*. *FEMS Microbiology Letters* 186, 307–312. <https://doi.org/10.1111/j.1574-6968.2000.tb09122.x>.

1224 83. Neumann-Schaal, M., Jahn, D., and Schmidt-Hohagen, K. (2019). Metabolism the *Difficile* Way: The Key to the Success of the Pathogen *Clostridioides difficile*. *Front Microbiol* 10, 219. <https://doi.org/10.3389/fmicb.2019.00219>.

1227 84. Arike, L., and Hansson, G.C. (2016). The Densely O-Glycosylated MUC2 Mucin Protects the Intestine and Provides Food for the Commensal Bacteria. *Journal of Molecular Biology* 428, 3221–3229. <https://doi.org/10.1016/j.jmb.2016.02.010>.

1230 85. Law, G.K., Bertolo, R.F., Adjiri-Awere, A., Pencharz, P.B., and Ball, R.O. (2007). Adequate oral threonine is critical for mucin production and gut function in neonatal piglets. *American Journal of Physiology-Gastrointestinal and Liver Physiology* 292, G1293–G1301. <https://doi.org/10.1152/ajpgi.00221.2006>.

1234 86. McGuckin, M.A., Lindén, S.K., Sutton, P., and Florin, T.H. (2011). Mucin dynamics and enteric pathogens. *Nat Rev Microbiol* 9, 265–278. <https://doi.org/10.1038/nrmicro2538>.

1236 87. Carman, R.J., Stevens, A.L., Lyerly, M.W., Hiltonsmith, M.F., Stiles, B.G., and Wilkins, T.D. (2011). *Clostridium difficile* binary toxin (CDT) and diarrhea. *Anaerobe* 17, 161–165. <https://doi.org/10.1016/j.anaerobe.2011.02.005>.

1239 88. Tu, Q.V., McGuckin, M.A., and Mendz, G.L. (2008). *Campylobacter jejuni* response to human mucin MUC2: modulation of colonization and pathogenicity determinants. *J Med Microbiol* 57, 795–802. <https://doi.org/10.1099/jmm.0.47752-0>.

1242 89. Hugdahl, M.B., Beery, J.T., and Doyle, M.P. (1988). Chemotactic behavior of *Campylobacter jejuni*. *Infect Immun* 56, 1560–1566. <https://doi.org/10.1128/iai.56.6.1560-1566.1988>.

1245 90. Bakshani, C.R., Morales-Garcia, A.L., Althaus, M., Wilcox, M.D., Pearson, J.P., Bythell, J.C., and Burgess, J.G. (2018). Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. *npj Biofilms Microbiomes* 4, 14. <https://doi.org/10.1038/s41522-018-0057-2>.

1249 91. Falavigna, M., Stein, P., Flaten, G., and Di Cagno, M. (2020). Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin. *Pharmaceutics* 12, 168. <https://doi.org/10.3390/pharmaceutics12020168>.

1253 92. Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., and Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. *Nat Rev Microbiol* 14, 563–575. <https://doi.org/10.1038/nrmicro.2016.94>.

1256 93. Zeitouni, N.E., Chotikatum, S., Von Köckritz-Blickwede, M., and Naim, H.Y. (2016). The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. *Mol Cell Pediatr* 3, 14. <https://doi.org/10.1186/s40348-016-0041-y>.

1259 94. Gong, D.H., Turner, B., Bhaskar, K.R., and Lamont, J.T. (1990). Lipid binding to gastric mucin: protective effect against oxygen radicals. *American Journal of Physiology-Gastrointestinal and Liver Physiology* 259, G681–G686. <https://doi.org/10.1152/ajpgi.1990.259.4.G681>.

1263 95. Ogasawara, Y., Namai, T., Yoshino, F., Lee, M.-C., and Ishii, K. (2007). Sialic acid is an
1264 essential moiety of mucin as a hydroxyl radical scavenger. *FEBS Letters* 581, 2473–2477.
1265 <https://doi.org/10.1016/j.febslet.2007.04.062>.

1266 96. Dupuy, B., and Sonenshein, A.L. (1998). Regulated transcription of *Clostridium difficile*
1267 toxin genes. *Molecular Microbiology* 27, 107–120. <https://doi.org/10.1046/j.1365-2958.1998.00663.x>.

1269 97. Peltier, J., Hamiot, A., Garneau, J.R., Boudry, P., Maikova, A., Hajnsdorf, E., Fortier, L.-
1270 C., Dupuy, B., and Soutourina, O. (2020). Type I toxin-antitoxin systems contribute to the
1271 maintenance of mobile genetic elements in *Clostridioides difficile*. *Commun Biol* 3, 718.
1272 <https://doi.org/10.1038/s42003-020-01448-5>.

1273 98. Burkholder, T., Foltz, C., Karlsson, E., Linton, C.G., and Smith, J.M. (2012). Health
1274 Evaluation of Experimental Laboratory Mice. *CP Mouse Biology* 2, 145–165.
1275 <https://doi.org/10.1002/9780470942390.mo110217>.

1276 99. Ullman-Culleré, M.H., and Foltz, C.J. (1999). Body condition scoring: a rapid and accurate
1277 method for assessing health status in mice. *Lab Anim Sci* 49, 319–323.

1278 100. Grassart, A., Malardé, V., Gobaa, S., Sartori-Rupp, A., Kerns, J., Karalis, K., Marteyn,
1279 B., Sansonetti, P., and Sauvionnet, N. (2019). Bioengineered Human Organ-on-Chip
1280 Reveals Intestinal Microenvironment and Mechanical Forces Impacting *Shigella* Infection.
1281 *Cell Host & Microbe* 26, 435–444.e4. <https://doi.org/10.1016/j.chom.2019.08.007>.

1282 101. Boquet-Pujadas, A., Feaugas, T., Petracchini, A., Grassart, A., Mary, H., Manich, M.,
1283 Gobaa, S., Olivo-Marin, J.-C., Sauvionnet, N., and Labruyère, E. (2022). 4D live imaging
1284 and computational modeling of a functional gut-on-a-chip evaluate how peristalsis
1285 facilitates enteric pathogen invasion. *Sci. Adv.* 8, eabo5767.
1286 <https://doi.org/10.1126/sciadv.abo5767>.

1287 102. Macdonald, L.E., Karow, M., Stevens, S., Auerbach, W., Poueymirou, W.T.,
1288 Yasenchak, J., Frendewey, D., Valenzuela, D.M., Giallourakis, C.C., Alt, F.W., et al.
1289 (2014). Precise and *in situ* genetic humanization of 6 Mb of mouse immunoglobulin genes.
1290 *Proc. Natl. Acad. Sci. U.S.A.* 111, 5147–5152. <https://doi.org/10.1073/pnas.1323896111>.

1291 103. Murphy, A.J., Macdonald, L.E., Stevens, S., Karow, M., Dore, A.T., Pobursky, K.,
1292 Huang, T.T., Poueymirou, W.T., Esau, L., Meola, M., et al. (2014). Mice with megabase
1293 humanization of their immunoglobulin genes generate antibodies as efficiently as normal
1294 mice. *Proc. Natl. Acad. Sci. U.S.A.* 111, 5153–5158.
1295 <https://doi.org/10.1073/pnas.1324022111>.

1296 104. Balbino, B., Herviou, P., Godon, O., Stackowicz, J., Goff, O.R.-L., Iannascoli, B.,
1297 Sterlin, D., Brûlé, S., Millot, G.A., Harris, F.M., et al. (2020). The anti-IgE mAb omalizumab
1298 induces adverse reactions by engaging Fcγ receptors. *Journal of Clinical Investigation*
1299 130, 1330–1335. <https://doi.org/10.1172/JCI129697>.

1300 105. Mah, T.-F. (2014). Establishing the Minimal Bactericidal Concentration of an
1301 Antimicrobial Agent for Planktonic Cells (MBC-P) and Biofilm Cells (MBC-B). *JoVE*, 50854.
1302 <https://doi.org/10.3791/50854>.

1303 106. Alves Feliciano, C., Douché, T., Gai Gianetto, Q., Matondo, M., Martin-Verstraete, I.,
1304 and Dupuy, B. (2019). CotL, a new morphogenetic spore coat protein of *Clostridium*
1305 *difficile*. *Environ Microbiol* 21, 984–1003. <https://doi.org/10.1111/1462-2920.14505>.

1306 107. Dembek, M., Stabler, R.A., Witney, A.A., Wren, B.W., and Fairweather, N.F. (2013).
1307 Transcriptional Analysis of Temporal Gene Expression in Germinating *Clostridium difficile*
1308 630 Endospores. *PLoS ONE* 8, e64011. <https://doi.org/10.1371/journal.pone.0064011>.

1309 108. Parada, C., Banavar, S.P., Khalilian, P., Rigaud, S., Michaut, A., Liu, Y., Joshy, D.M.,
1310 Campàs, O., and Gros, J. (2022). Mechanical feedback defines organizing centers to drive

1311 digit emergence. Developmental Cell 57, 854-866.e6.
1312 <https://doi.org/10.1016/j.devcel.2022.03.004>.

1313 109. Kuglin, C.D., and Hines, D.C. (1975). The Phase Correlation Image Alignment Method.
1314 In Proceeding IEEE Int. Conf. Cybern. Soc., pp. 163–165.

1315 110. Van Der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D.,
1316 Yager, N., Gouillart, E., and Yu, T. (2014). scikit-image: image processing in Python. PeerJ
1317 2, e453. <https://doi.org/10.7717/peerj.453>.

1318 111. Cutler, K.J., Stringer, C., Lo, T.W., Rappez, L., Stroustrup, N., Brook Peterson, S.,
1319 Wiggins, P.A., and Mougous, J.D. (2022). Omnipose: a high-precision morphology-
1320 independent solution for bacterial cell segmentation. Nat Methods 19, 1438–1448.
1321 <https://doi.org/10.1038/s41592-022-01639-4>.

1322 112. Gohlke, C. (2023). cgohlke/tifffile: v2023.4.12. Version v2023.4.12 (Zenodo).
1323 <https://doi.org/10.5281/ZENODO.7823954> <https://doi.org/10.5281/ZENODO.7823954>.

1324 113. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1325 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
1326 platform for biological-image analysis. Nat Methods 9, 676–682.
1327 <https://doi.org/10.1038/nmeth.2019>.

1328