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Summary 

The ability to form episodic memories and later imagine them is integral to the human experience, 

influencing our recollection of the past and our ability to envision the future. While research on 

spatial navigation in rodents suggests the involvement of the medial temporal lobe (MTL), 

especially the hippocampus, in these cognitive functions, it is uncertain if these insights apply to 

the human MTL, especially regarding imagination and the reliving of events. Importantly, by 

involving human participants, imaginations can be explicitly instructed and their mental 

experiences verbally reported. In this study, we investigated the role of hippocampal theta 

oscillations in both real-world and imagined navigation, leveraging motion capture and intracranial 

electroencephalographic recordings from individuals with chronically implanted MTL electrodes 

who could move freely. Our results revealed intermittent theta dynamics, particularly within the 

hippocampus, which encoded spatial geometry and partitioned navigational routes into linear 

segments during real-world navigation. During imagined navigation, theta dynamics exhibited 

similar, repetitive patterns despite the absence of external environmental cues. Furthermore, a 

computational model, generalizing from real-world to imagined navigation, successfully 

reconstructed participants’ imagined positions using neural data. These findings offer unique 

insights into the neural mechanisms underlying human navigation and imagination, with 

implications for understanding episodic memory formation and retrieval in real-world settings.  

 

Keywords: real-world spatial navigation, episodic memory, imagination, intracranial EEG, 

medial temporal lobe, theta oscillations, motion capture  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.23.595237doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.23.595237
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2/32 
 

Introduction 

Human cognition is a complex interplay of processes, with the formation of episodic memories 

and the imaginative capacity to revisit, manipulate, and extrapolate from these memories 

representing two of its most fundamental aspects. These cognitive functions lie at the core of 

human experience, shaping our recollection of past experiences and our ability to construct visions 

of the future. While a significant portion of research focuses on understanding the neural dynamics 

underlying these processes in the context of spatial navigation in freely moving rodents, it is widely 

held that the medial temporal lobe (MTL), particularly the hippocampus, plays a central role 1,2. 

Previous research in rodents has identified “place cells” tuned to specific locations, forming 

neuronal sequences spanning entire movement3–6. Importantly, these neuronal sequences persist 

during immobile periods7–10, implying internal generation and making them well-suited for 

organizing episodic memories3,11,12, mentally simulating these memories 13, and planning future 

behaviors3,14. However, it remains unclear whether such mechanisms exist in humans during real-

world ambulatory navigation and especially during overt, on-demand imagination or re-

experiencing of episodic memories.  

To coordinate hippocampal neuronal sequences15–19, theta oscillations within the frequency range 

of ~4 to 12 Hz20 hold significance, as their disruption can lead to spatial memory impairments2,21,22. 

In humans, hippocampal theta oscillations manifest in brief bouts rather than continuously, as 

observed in rodents, during both virtual and real-world navigation23–26. This cross-species 

difference raises uncertainty regarding whether these intermittent bouts in humans can adequately 

support neuronal sequences and subsequent segmentation of distinct episodic events during real-

world navigation. Furthermore, whether hippocampal theta bouts can be internally generated and 

segment episodic memories, such as during imagination, remains entirely unknown. Identifying 

such mechanisms would provide first-in-human insights into the shared neural organization 

principles between real-world spatial navigation and episodic memory3,11, effectively bridging 

decades of findings across species and integrating spatial navigation and episodic memory 

research.  

In the current study, we compared theta dynamics in the human MTL between real-world and 

imagined navigation. Imagined navigation involved episodic memories characterized by distinct 

temporal features, facilitating a direct comparison to real-world navigation. To explore this, we 

examined intracranially recorded neural oscillations from five participants who had undergone 

chronic implantation of the responsive neurostimulation device, RNS System (NeuroPace, Inc.), 

for the treatment of epilepsy27. Specifically, we directly compared MTL theta dynamics during 

real-world navigation to periods where participants mentally simulated navigating the exact same 

routes while walking on a treadmill. 

We observed theta dynamics within the MTL that varied depending on the participant’s position 

within segments of the navigational routes, effectively encoding the spatial geometry of those 

routes. These theta dynamics demonstrated temporal consistency across individual trials, were 

consistently observed in all participants, and occurred during imagined navigation while walking 

on a treadmill. We further demonstrated the feasibility of estimating relative positions within 

navigational route segments using theta dynamics of real-world navigation and applied this model 

to accurately reconstruct imagined positions.  
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Fig. 1| Experimental paradigm. (A), Participants completed a spatial navigation task that involved the learning of 

two distinct routes: a leftward route represented in light blue and a rightward route represented in dark blue. (B), An 

illustrative time-lapse motion capture shows an exemplified participant navigating the rightward route. Treadmill 

walking trials were interspersed with real-world walks. During treadmill walking, participants were instructed to 

mentally simulate their previous or upcoming route. Initially, before their real-world navigation walks, participants 

engaged in treadmill walking without the additional component of imagined navigation. (C), Pre-operative magnetic 

resonance image and post-operative computed tomography (inset) were used to identify the location of intracranial 

electrode contacts. Electrode locations of four electrode contacts (comprising two bipolar channels) in the 

hippocampus from an example participant are indicated in red. (D), Intracranial EEG (iEEG) was continuously 

recorded during both real-world and imagined navigation. Exemplary broadband iEEG activity (gray) during real-

world navigation is superimposed with the filtered signal (magenta) within the theta band (4-12 Hz). 
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Results 

Theta dynamics during real-world navigation 

We investigated whether neural dynamics in the human MTL are influenced by position, time, or 

progress on specific spatial routes, building upon previous research3,28,29,7,30,6,11,9. To achieve this, 

we tasked participants with walking along two distinct spatial trajectories (Fig. 1 A-D). Since the 

angles and locations of turns on these routes were not visible during real-world navigation, 

participants had to learn and remember the walking patterns, with turns serving as critical retrieval 

points. Theta dynamics (3-12 Hz) were extracted from iEEG data recorded from chronically 

implanted electrodes (Fig. 1 C, D). All participants were able to successfully learn the navigational 

routes as instructed (Fig. 2A, Fig. S1). By synchronizing and aligning iEEG and motion capture 

data, we were able to compare theta dynamics with the positions along each spatial route.  

We observed an increase in MTL theta amplitudes at upcoming turns just before the completion 

of a linear segment within a walking route (Fig. 2B-D). This pattern remained consistent across all 

five participants while they navigated both left and right walking routes (Fig. S3, 6A). 

Interestingly, participant 2 consistently incorporated an additional turn not originally part of the 

route, and this effect was still observed. We further confirmed that theta activity aligned to route 

segments through time-frequency analyses (Fig. 2D). For theta frequency ranges at the subject-

specific level see Table 1 and methods for details. Notably, theta activity reached its peak 

significantly before the actual physical turns occurred (-0.93 ± 0.77 s, p < 0.001), as captured by 

hip rotation (Figure 2E, Fig. S4C). As participants approached a turn, they naturally reduced their 

walking speed. Concurrently, there was a significant increase in theta power preceding this 

deceleration, and this pattern was consistent with other behavioral variables, including head 

rotation, body turning, and eye movements (Fig. S8, S9, Table S2). Thus, these theta dynamics 

cannot be easily attributed to confounding factors such as walking speed, heading, hip rotation, or 

eye movements.  

Consistent with previous findings23–26, theta activities appeared in brief bouts rather than as 

continuous oscillations, as seen in rodents. We analyzed the timing of these bouts on a single-trial 

level and observed their alignment with upcoming turns (Fig. 3B). Strikingly, the percentage of 

trials in which theta bouts occurred at specific time points closely mirrored the trial-averaged theta 

dynamics (Fig. S2). This finding suggests that theta bouts exhibited task-related alignment across 

trials. More specifically, these bouts aligned with particular instances along the navigational 

routes, effectively dividing participants’ movement trajectories into distinct linear segments.  
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Fig. 2| Theta dynamics during real-world navigation. (A), Distinct lines illustrate the average walking routes of 

each individual participant. (B), Time-frequency plots of exemplary hippocampal activity reveal task-related and 

temporally organized theta oscillations during both left and right walks (top and bottom panels, respectively). Black 

vertical lines demarcate where turns occured in the routes. (C), Theta activity (z-scored) within the left anterior 

hippocampus (group average, one channel per participant) is overlaid onto the motion trajectories, demonstrating 

heightened theta power as participants approached upcoming turns. (D), Average time-frequency activity aligned with 

all turns confirms the engagement and the temporal relationship of theta activity preceding turns (time = 0). (E), Mean 

theta activity ± standard error (for frequency ranges see Table 1) juxtaposed with the speed and angular velocity of 

the hips, averaged across the group and aligned to turns (time = 0). 
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Shared neural dynamics in real and imagined navigation  

The dynamics within the hippocampus are known for their capacity to encode task-related 

structures associated with position, time, and, in a broader sense, sequences. Building upon the 

knowledge that hippocampal neuronal dynamics can be internally generated7,9,8,10, we investigated 

whether MTL oscillatory dynamics exhibit similarities during real-world and imagined navigation. 

To explore this, we incorporated intervals of real-world navigation trials interspersed with 

treadmill walking periods. During the initial treadmill walks (control trials), participants were not 

given any explicit instructions other than to walk at a steady speed. However, on the later treadmill 

walks (imagination trials), they were instructed to recollect their previous or upcoming routes 

while walking at the same steady speed. Each treadmill condition consisted of 24 trials, resulting 

in a total of 72 trials (24 trials each for control, imagination left route, imagination right route, 

Table S1). 

Given the pronounced presence of task-related structured theta dynamics during real-world 

navigation, we explored whether analogous temporal patterns were evident during imagined 

navigation. Our analysis showed that the temporal consistency across trials (Fig. 3B, Fig. S6B) 

was significantly higher for theta dynamics during imagined navigation (p < 0.001) compared to 

the control condition of sole treadmill walking (Fig. 3D). The highest level of temporal consistency 

was observed during real-world navigation, whereas this consistency was absent during sole 

treadmill walking (p = 0.96). We did not find an effect of the time reference (previous/upcoming 

route) of imaginations but a modest (p = 0.023) session effect, consistent with learning throughout 

the experiment (Fig. S5A, B). Next, we examined the congruence of functional anatomy within 

the MTL during both real-world and imagined navigation. Our analysis revealed a spatial 

correlation in the temporal consistency values (r = 0.67, p = 0.006) between these conditions. 

Notably, recording channels demonstrating heightened temporal consistency during real-world 

navigation, such as within the left anterior hippocampus, were found to manifest a similar pattern 

during imagined navigation, suggesting the involvement of comparable functional networks in 

both modes of navigation (Fig. 3E).  

As a means to validate participants’ engagement in imagining the distinct navigational routes, we 

examined their eye movements. During real-world navigation, participants tended to focus their 

gaze ahead on the walking path, resulting in relatively higher probabilities of left or right gazes for 

leftward and rightward walks, respectively. While this effect was less pronounced during imagined 

navigations, subtle eye movements still differentiated between imagined left and right routes 

(Fig. S7). However, we did not find a direct effect of eye movements on theta amplitudes during 

imaginations (p = 0.58). Instead, we observed that theta dynamics were primarily related to the 

relative position within the route segments (p = 0.006), mirroring the patterns observed during 

real-world navigation. The impact of relative position during imagined navigation was 

significantly larger than that of eye movements (p = 0.003), indicating that eye movements did not 

drive the effect (Fig. S9C, D). We next explored the feasibility of estimating positions of real-

world walks from theta dynamics and assessed whether such reconstructions could generalize to 

imagined navigation.  
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Fig. 3| Comparative theta dynamics of real-world and imagined navigation. (A), Theta activity (weighted sum of 

all channels) averaged across the group during real-world navigation superimposed on the mean motion trajectory of 

all participants. (B), The temporal consistency of theta dynamics was assessed by calculating the correlation between 

mean signals obtained from randomly dividing the data (trials) into two halves (A and B). (C), Theta activity (weighted 

sum of all channels) averaged across the group during imagined navigation rendered on the group mean motion 

trajectory. Note that theta activity tended to increase earlier during imagined turns compared to real-world turns. 

(D), Temporal consistency of theta dynamics was significantly higher during both imagined and real-world navigation 

when compared to sole treadmill walking. Data from each of the 18 intracranial electrode channels is represented by 

individual circles. (E), Notably, temporal consistency was spatially correlated between real-world and imagined 

navigation. Electrodes showing higher consistency in theta dynamics during real-world navigation also demonstrated 

comparable consistency during imagined navigation, suggesting the presence of analogous functional networks 

engaged in both types of navigation. Interestingly, the highest consistency electrodes were located in the left anterior 

hippocampus (red circles), in contrast to other regions within the MTL (blue circles). 
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Reconstructing imagined positions 

We examined the feasibility of reconstructing participants' route progression based on neural 

activity patterns. This exploration was motivated by the observation that both real-world and 

imagined navigation induced temporally structured theta dynamics within the MTL. To this end, 

we investigated whether these theta dynamics encoded the inherent task structure of the routes as 

illustrated in Fig. 4A. These routes were designed with five linear segments connected by four 

turns. Upon accounting for variations in segment lengths, it became evident that theta amplitudes 

were consistently modulated across the segments. However, distinct recording electrodes exhibited 

peak activations at slightly varying positions within a route segment (Fig. 4C). In light of this 

finding, we developed a model that considered the unique timings of each electrode to capture the 

relative positions of route segments, treating them as two-dimensional circular variables, a 

methodology based on prior research31. Utilizing a linear regression model, we used theta 

dynamics from all MTL channels as predictors and using the task structure (comprising cosine and 

-sine phase alignment) as response variables. Regression coefficients were learned from subsets 

of the data, and the model’s ability to generalize to unseen trials was tested (using 10 x 10 cross-

validation) to prevent overfitting. Our results indicated that relative segment positions could be 

reconstructed better than chance (p < 0.001) during real-world navigation. The performance of the 

reconstruction was evaluated as normalized probability densities for each relative position within 

a segment. The time-resolved reconstruction revealed that position estimates matched not only at 

upcoming turns but encompassed the entire segment of a route (Fig. 4D). Overall reconstruction 

errors were quantified as the angle between actual and estimated positions because relative 

positions were treated as circular variables (Fig. 4D). 

We applied the position reconstruction model, which was initially trained on real-world walking 

data, to imagined navigation data. In real-world walking, position and time are linearly related due 

to well-defined walking velocities. However, in imagined navigation, the imagined velocity is not 

directly available. We also anticipated that the timing of imagination may not precisely match that 

of real walks. While the task structure remains consistent during imagination, route segments may 

undergo stretching and bending. To address this, we aligned estimated imagined positions and the 

task structure using linear time warping. After alignment, we found that the position estimation 

model effectively generalized to imagination trials not used in the model’s training and alignment 

procedure (10 x 10 cross-validation). The reconstruction errors for imagined positions were 

significantly smaller (p < 0.001) than those derived from the control condition, where imaginations 

were absent but physical behavior was identical (Fig. 4 D, E). Theta dynamics exhibited a 

significant correlation between real-world and imagined navigation (r = 0.30, p = 0.003) and were 

related to the maze structure (Fig. 4A) for both real-world (r = 0.51, p < 0.001) and imagined 

navigation (r=0.29, p = 0.010), but no such correlation was observed during sole treadmill walking 

(r = -0.01, p = 0.528). Cross-correlations between theta and maze geometry revealed four lateral 

peaks at multiple integers of the segments’ lengths, reflecting the four turns on each walking route 

(Fig. 4B). These results indicate that theta dynamics within distinct segments were similar and 

repeated themselves along the entire movement trajectory when accounting for varying segment 

lengths. 
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Fig. 4| Reconstructing relative position from neural dynamics. (A), Model of the navigational maze structure 

represented as a sinusoidal pattern peaking at turns. (B), Cross-correlation analysis between theta dynamics and the 

maze structure revealed a significant correlation (lag = 0) for both real-world and imagined navigation, while sole 

treadmill walking did not exhibit such a correlation. The similarity and repetition of theta dynamics in each maze 

segment led to four lateral peaks in the cross-correlations at lags that matched the length of one segment on a walking 

route. (C), Theta dynamics are illustrated as a function of relative position within all segments across all 18 electrode 

channels. Notably, the timing of theta dynamics varied across channels, roughly following a cosine or sine wave 

pattern (white lines). These two orthogonal theta modulations effectively encoded relative position as a circular 

variable. (D), Reconstruction of relative segment positions from theta dynamics depicted using 2D histograms that 

show both the actual and estimated positions. Color-coded representations illustrate the probabilities of all possible 

combinations of actual and estimated positions. An ideal reconstruction outcome would manifest as a diagonal pattern. 

During real-world navigation, the estimated positions (cross-validated) clustered closely around the actual physical 

positions within each segment (left panel). During imagined navigation, the estimated positions also aligned 

consistently with the positions estimated from the duration of the imagination periods particularly at the beginning 

and end of each route segment (mid-panel), illustrating heightened accuracy in those instances. However, during sole 

treadmill walking where imagined navigation was absent, reconstruction failed to yield accurate results (right panel). 

(E), Histograms depicting the errors in reconstruction (measured in degrees as a circular variable) for each condition 

revealed distinct patterns. In both real-world (left panel) and imagined (middle panel) navigation conditions, the errors 

clustered around zero, indicating accurate reconstruction. However, during sole treadmill walking (right panel), this 

clustering around zero was absent, signifying less accurate reconstruction.  
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Discussion 

Using rare mobile iEEG recordings in freely-moving human participants, we demonstrated that 

intermittent theta dynamics in the human MTL are well suited to internally organizing the 

recollection of past episodes or imagination of future behaviors. Specifically, our findings revealed 

that transient theta oscillations aligned at upcoming turns during real-world navigation, moments 

which served as critical retrieval points essential for transitioning between navigational route 

segments. These dynamics exhibited a similar temporal pattern during episodic imagination of 

previous and upcoming routes. The presence of comparable characteristics during both real-world 

and imagined navigation suggests neural progression along abstract geometries delineating 

multipartite imagined routes into more elementary sections. Notably, this repetitive temporal 

structure was absent when individuals engaged in treadmill walking alone, where mental 

recapitulation of previously learned spatial routes was absent despite identical physical behavior.  

Our finding of structured theta bouts during imagined navigation suggests that hippocampal 

networks can internally generate neural dynamics representing distinct sections of a task. This task 

structure may involve sequences of route segments linked by action points, such as turns observed 

in real-world navigation or event timing during imagination and cognitive tasks with non-spatial 

components. These findings align with prior rodent studies demonstrating the ability of 

hippocampal networks to internally generate neuronal sequences7,8, with theta oscillations crucial 

for their temporal organization15–19. It is conceivable that the transient theta oscillations we report 

here in humans could reflect neuronal populations overrepresenting forthcoming turns, marking 

the transitions between segments. Indeed, hippocampal place cells and other spatially-tuned cell 

types can bias their activity toward behaviorally relevant locations or moments32,9,10. In 

navigational tasks featuring repetitive segments, such as ours, place cells and grid cells tend to 

form repetitive firing sequences that reset at turning points within a maze30. Task-related theta 

dynamics observed during imagined navigation also complement recent research suggesting that 

hippocampal theta oscillations play a key role in dynamically exploring locations related to both 

current and hypothetical behaviors in rodents18,33. Internally generated dynamics such as these are 

particularly relevant for episodic memory retrieval, where sensory input may be minimal. 

These findings also resonate with studies on event boundaries delineating ongoing experiences34–

36. In our current study, turns can be interpreted as event boundaries, which are predictable since 

they are defined by participants' actions. This partitioning of navigational routes into segments 

also deepens our understanding of the human MTL, showing theta oscillations can adhere to 

abstract maze geometry rather than physical environmental constraints. Such partitioning might 

enable flexible combination of previously experienced fragmented episodes to adapt to dynamic 

real-world task demands. Moreover, the reassembly of neural sequences through transitions might 

facilitate hippocampal circuitry to generate novel trajectories relevant to envisioning future 

behaviors. Theta bouts preceding turns also complement prior findings of theta bouts occurring 

after cognitive boundaries during movie watching37. While self-generated actions are predictable, 

the cuts between movie scenes are not, explaining the temporal alignment of theta bouts before 

versus after such boundaries in proactive versus passive behavioral paradigms.  

Recent studies on simulated navigation have indicated that memory is a primary driver of 

hippocampal theta oscillations in humans38. Our study goes further to describe the fine-grained 

temporal structure of theta dynamics, which partitioned participants’ trajectories into discrete 

segments during real-world and imagined navigation. We did not find differences in the temporal 

consistency of imagined previous versus upcoming routes. These results suggest that MTL 
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dynamics are similar between actual, recapitulated, and possible future behaviors. It is worth 

noting that we instructed participants to imagine their movements along the navigational routes on 

the same time scale as during real-world navigation. Episodic memory recall is typically 

temporally compressed38, potentially leading to more events and theta bouts per second, resulting 

in elevated average theta power. Moreover, increased theta power has also been reported during 

spatial memory retrieval in stationary, view-based navigational tasks39,40. Consistent with 

functional neuroimaging research on egocentric navigation strategies 41, sequence 

representation42, and imagination of events43,44, our study identified the most structured activity in 

the left anterior hippocampus. 

Our findings open up exciting future research in the realms of real-world spatial navigation, 

episodic memory, and imaginable behaviors. The non-continuous nature of human theta 

oscillations reported in our study presents an opportunity to delve into the timing and structure of 

these transient oscillations in various cognitive tasks and behaviors. Subsequent studies could 

elucidate the neuronal generators of hippocampal theta bouts by simultaneously examining single 

neurons and local field potentials in freely moving humans45, which could shed light on the 

relationship between distinct functional cell types, theta bouts, and different navigational 

strategies. Real-world spatial navigation paradigms, in particular, offer a valuable platform for 

uncovering neural activation patterns relative to task-specific variables. These patterns enable 

comparisons between navigational and cognitive tasks with similar temporal organization. In 

studies involving human participants, imaginations can be explicitly instructed and verbally 

reported, allowing for the investigation of the neural mechanisms underlying abstract, 

hypothetical, or unprecedented future scenarios, paralleling real-world behaviors. 

In summary, our findings highlight the role of transient theta oscillations in partitioning complex 

navigational routes and episodes into discrete segments, showing a striking similarity in real-world 

and imagined navigation. This suggests a common neural organization framework underlying both 

types of navigation independent of environmental constraints. The close resemblance between 

real-world and imagined navigation aligns with the notion that the neural mechanisms and 

functional architecture of memory may have evolved from those initially developed for spatial 

navigation3,12. Together with our findings, these parallels underscore the possibility that MTL 

dynamics contribute to the temporal organization across various cognitive domains, including 

spatial navigation, episodic memory, and the contemplation of conceivable future scenarios. 
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Materials and Methods 

 

Participants 

Five participants (24-40 years old; three males, two females) who had been chronically implanted 

with the FDA-approved RNS System (NeuroPace, Inc.) for the treatment of pharmaco-resistant 

focal epilepsy27 volunteered for this study. The electrode placements were determined exclusively 

by clinical treatment criteria. Individuals with electrodes implanted in the MTL and low rates of 

epileptic activities were recruited for the study. Prior to participation, all individuals willingly 

provided informed consent, following a protocol approved by the UCLA Medical Institutional 

Review Board (IRB). 

Real-world and imagined navigation tasks 

Participants were tasked with traversing two routes (as illustrated in Fig. 1A and B) within an 

indoor room (measuring 14.6 × 13.5 m2), each route featuring four turns. Initially, these route 

shapes were displayed on a tablet screen. Precise tracking of their walking patterns was achieved 

through the use of motion capture technology. At the beginning of each recording, participants 

learned to walk along these patterns without any visible cues about the route’s shapes or the 

position of the turns. Subsequently, feedback was provided after each walking trial by overlaying 

their real movement trajectories onto the prescribed ideal routes displayed on the tablet interface, 

allowing for them to improve their behavior on the next trial. This initial learning phase included 

the presence of six (three per route) paper cut-out objects positioned along the route. An auditory 

cue was introduced after random delays during the third segment of each left or right route 

(following the second turn). Participants were then instructed to determine their relative position 

to the nearest object by pressing the appropriate left/middle/right button on a wireless handheld 

mouse, corresponding to the first/second/third object on their route. A second auditory cue 

signified the accuracy of their response following the button press. This learning phase concluded 

once participants demonstrated consistent proficiency in navigating these routes. Subsequently, 

the objects were then removed, requiring participants to rely on memory for walking routes and 

object locations. Proceeding the learning phase, and during the main experiment, visual feedback 

was limited, provided only after completing three left and three right walks, serving as regular 

indicators of their navigation performance.  

Real-world navigation trials were interspersed with periods of treadmill walking. These treadmill 

periods were organized into three distinct blocks over the course of the experiment. Each block 

consisted of 12 left and 12 right real-world walks, alternating with 24 treadmill walks. Every real-

world walk was either preceded or followed by a treadmill walking trial. During the first block of 

the experiment, participants engaged in treadmill walking devoid of any supplementary tasks. This 

experimental condition was consistently initiated first, ensuring a baseline of unspecific treadmill 

walking. Notably, the mention of imagined navigation was omitted to guarantee a naïve experience 

of sole treadmill walking. In the subsequent two blocks of the experiment (second and third), 

participants were instructed to mentally navigate their preceding or upcoming walking routes while 

walking on the treadmill. The utilization of imagined previous and upcoming routes served to 
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investigate the distinction between remembering past spatial trajectories and simulating future 

ones. 

These later two blocks were randomized across participants so that they imagined their 

previous/upcoming routes during the second/third block, respectively. The imagination periods 

commenced upon activating the treadmill, and participants signaled the completion of their 

imagined routes by pressing a button on a wireless handheld mouse. Overall, participants 

completed a total of 108 walks, including 36 left, 36 right, and 36 imagined walks. The treadmill 

trials were distributed as follows: 24 imagined left, 24 imagined right, and 24 sole treadmill walks 

without any imagination involved. These imagination trials were further divided into 24 instances 

of imagining a previous route and 24 instances of imagining an upcoming route. The exact numbers 

of trials are listed in Table S1. 

Unity application 

We developed an application using Unity (version 2021.19f1) to control the experimental 

paradigm, initiate and stop motion tracking recordings, and capture participants' behavioral 

responses. In order to facilitate seamless communication, we established a two-way interaction 

between the Unity application and the motion tracking software (as detailed below). This enabled 

the Unity application to initiate motion capture recordings and concurrently receive real-time 

motion data. Motion tracking data was integrated into Unity, enabling the logging of participants’ 

walking trajectories and positions. This data served as the foundation for visualizing both the actual 

and ideal walking trajectories, offering participants valuable feedback. For the self-location sub-

task, auditory cues were generated based on participants’ positions. Using a wireless handheld 

mouse, participants' responses were collected and transmitted, subsequently being recorded and 

stored within the same Unity application for analysis. 

Motion capture 

To capture participants’ movements, we used the OptiTrack system (Natural Point, Inc.). This 

setup involved thirty high-resolution infrared cameras strategically positioned on the walls. These 

cameras recorded the entire laboratory space at a rate of 120 Hz, ensuring precise tracking with 

sub-millimeter precision. Positions and orientations of the hips, legs, and feet were tracked using 

a lower-body skeleton fitted to the Helen Heyes marker set. Additionally, head positions and 

orientation were captured using a rigid body. The gathered motion capture data was analyzed and 

exported using Motive 3.0 software. Motion capture signals were smoothed with a Gaussian filter 

using a window size of 0.2 seconds for noise suppression. All walking trajectories are shown in 

Fig. S1. Movement speed was calculated as positional change in meters per second. Head and hip 

rotation were quantified as absolute values of angular velocities derived from the head and hip 

angular orientations (Yaw). 

iEEG recording 

The responsive neurostimulation (RNS) System (NeuroPace, Inc.), approved by the US Food and 

Drug Administration (FDA), was specifically designed to treat pharmaco-resistant focal epilepsy. 

This system is engineered to detect epileptic activity and respond in a closed-loop manner by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.23.595237doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.23.595237
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21/32 
 

delivering precise electrical stimulation, effectively mitigating the risk of seizures. Notably, the 

RNS System is implanted chronically, affording the ability to record iEEG activity while 

individuals move freely (46). In our study, every participant had two depth electrode leads, each 

comprising four electrode contacts spaced at intervals of 10 mm. We selected specific contacts in 

each individual based on their location in the MTL to record from up to four bipolar channels in 

each participant. Data acquisition occurred at a sampling rate of 250 Hz, using the RNS-320 model 

configured to operate within the broadest available bandwidth, spanning 1-90 Hz. 

iEEG data analyses 

iEEG data was synchronized with motion capture and eye tracking using network time protocol 

(NTP)-generated markers on all devices46. All signals were aligned accordingly and resampled to 

a frequency of 250 Hz. Time-frequency (TF) analyses were conducted through the utilization of 

continuous wavelet transform and analytic Morse wavelets, characterized by a symmetry 

parameter of three and time-bandwidth product set to 60. For frequency bin specification, we 

employed ten voices per octave within the range of 1 to 90 Hz. Time-varying amplitudes were 

computed for each frequency. Given the slightly varying durations of real and imagined walking, 

we employed dynamic time warping to align real walking trials to each other and identify the turns 

on each walk. This information was then used to linearly adjust motion tracking and time-varying 

frequency amplitudes, aligning them with the mean timing of all trials. Subsequently, we averaged 

all trials for left and right walks. The wavelet power was graphically represented in Fig. 2B and 

utilized to determine frequency spectra in the Fig. S2A through temporal average. Throughout 

other analyses, we normalized time-frequency amplitudes via z-scoring to account for disparate 

signal strengths across different recording channels. The theta frequency range was identified for 

each individual by locating the spectral peak in the 3 to 12 Hz range. The neighboring lower and 

higher spectral minima determined the exact theta range centered around theta peaks. Individual 

theta ranges are listed in Table S1. 

Time-varying theta amplitudes were rendered on the motion trajectories to directly illustrate their 

relations to the positions in each walking route. To evaluate if the theta dynamics are temporally 

structured across trials, we computed the data's temporal consistency by correlating mean signals 

from randomly splitting trials in each condition in half. The average values of 1000 random splits 

for each channel were then statistically compared between conditions (Fig. 3D, Fig. S5A, B).  We 

correlated the temporal consistency values between real-world and imagined walks to investigate 

whether temporally structured theta dynamics appear at spatially similar sited in both conditions 

(Fig. 3E).  

Individual subject data were aligned the same manner as single trials, using dynamic time warping 

to match movement trajectories, followed by linear time warping for the time-frequency 

amplitudes. To present theta dynamics at the group level, the average time and movement 

trajectories were employed. To analyze the likeness of theta dynamics within each segment of a 

walking route, we abstracted the navigational task structure with a sinusoidal pattern that peaks at 

each turn. This approach allowed each segment to possess the same pattern but scaled by its length 

or relative time. The phase of this sinusoidal pattern corresponded directly to the relative position 

within a segment. Subsequently, after accounting for segment length discrepancies, we computed 
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the cross-correlation between theta dynamics and the task structure. The central peak of the 

resulting cross-correlogram served as a metric of the correlation between theta dynamics and the 

task structure, effectively depicting the geometry and resultant timing across each walking route. 

Additionally, any side peaks in the cross-correlogram indicated similarities between theta 

dynamics and shifted task structures, denoting recurring patterns in the data.  

By aligning all segments, we were able to calculate the average theta modulation pattern contingent 

on the relative positions within each segment across all recording channels. Theta dynamics at 

different electrodes exhibited peaks at marginally distinct relative positions. A modulation akin to 

a cosine wave would align precisely with the task structure, while a modulation similar to a -sine 

wave would be orthogonal to it, as depicted in Fig. 4C. The synergy of these two orthogonal 

components makes them apt for encoding relative position as a circular variable. Leveraging 

Euler's formula, the relative position can be mathematically derived as the angle formed between 

these two orthogonal components.  

We established a straightforward linear regression model to examine the feasibility of 

reconstructing the relative position from theta dynamics. This model encodes the relative segment 

position as a circular variable, generated through the weighted summation of the theta dynamics 

of all 18 channels within the MTL. The task structure was used as a response variable to estimate 

the cosine and -sine modulated components. To prevent overfitting, we used cross-validation 

(10 folds repeated 10 times) to determine the regression weights. Subsequently, we tested whether 

the positions estimated from unseen trials aligned with the actual motion capture data. The 

outcome of this assessment was the computation of estimation errors, which represented the 

differences between actual and estimated positions. 

During real-world navigation trials, we were able to use motion capture to account for minor 

variations in timing and movement trajectories between trials. However, for the imagined 

navigation trials, this information was naturally absent. To address this, we instructed participants 

to mentally navigate the routes in the same manner they did during real-world walking trials. The 

treadmill played a pivotal role in these trials and conditions, preserving gait patterns without actual 

progression through space. Rather than relying on motion capture, we recorded the durations 

between the start and completion of imaginations, which were defined by the onset of the treadmill 

and the button press reported by participants. During movement, position and time are linearly 

related through velocity. However, during mental navigation, the imagined velocity of the 

participant is not directly observable. Imagination trials were aligned via linear time warping for 

each participant and subsequently averaged across trials. To ensure consistency across the group, 

participants' data were adjusted to match the grand average imagination time, yielding a uniform 

duration. Given the potential variance in imagined velocity profiles across participants and 

conditions, our aim was to synchronize theta dynamics during imaginations with the navigational 

task structure of the imagined routes (as depicted in Fig. 4A). Although the exact timing of 

imagination remained unknown, we capitalized on the structural framework of each imagined 

route, characterized by five segments connected through four turns.  

We utilized the position estimation model developed from our real-world walking data to derive 

an initial estimate of imagined positions. Subsequently, we used dynamic time warping to align 
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these estimated relative positions with the task structure, allowing for a maximal time shift of 

±2 seconds. This alignment procedure was applied for each participant while maintaining the 

relative timing between recording channels within each participant. In order to prevent overfitting, 

we employed cross-validation involving 10 folds repeated 10 times to learn the temporal 

relationship from sub-partitions of the data. This trained alignment was then assessed for its 

applicability to previously unseen imagination trials, serving as a test of the alignment algorithm’s 

generalizability. The outcomes of these generalizations are presented throughout the manuscript. 

It’s worth noting that this alignment procedure remains valid only if the theta dynamics from 

different imagination trials exhibit similarities. The same procedures for position estimation and 

time alignment were applied to the sole treadmill walking data, serving as control analyses. By 

ensuring that results from all conditions were temporally aligned, we were able to calculate 

position reconstruction errors across all conditions using the actual positions recorded during real-

world navigation trials (Fig. 4E). Because the relative position was modeled as a circular variable, 

we show reconstruction errors as polar histograms of angles between actual and estimated 

positions. 

We detected transient theta oscillations lasting at least two cycles and exceeding the 95% 

confidence interval of frequency-specific power using the eBOSC toolbox 47,48. From these 

detections, we computed the prevalence for each condition and frequency bin (Fig. S2A) as the 

percentage of times when a given oscillation was detected. Furthermore, we quantified the 

percentage of trials in which transient theta oscillations were detected for every time point along a 

navigational route, resulting in the theta rate (Fig. S2B). To explore the potential influence of eye 

movements on MTL recordings, we computed average TF activities aligned to the onset of eye 

saccades and juxtaposed these plots with the ones aligned to turns (Fig. S8). In order to match the 

number of turns and saccades, four saccadic events were randomly selected in each trial. The 

temporal relation of behavioral variables and theta dynamics was quantified by calculating cross-

correlations of each channel’s theta dynamics and behavioral variables (Fig. S9A, C), averaged 

across trials.  

Electrode localization 

Post-operative computed tomography (CT) scans were utilized to locate the leads and contacts of 

the electrodes. To achieve precise anatomical localization for each recording contact, co-

registration was performed by aligning the CT scans with pre-operative magnetic resonance 

images (T1- and/or T2-weighted scans), following a previously established procedure 49. 

Recording sites within the MTL included the hippocampus, amygdala, parahippocampal cortex, 

and perirhinal cortex (Table S1). Recording contacts situated outside the MTL were excluded from 

further analyses.  

Detection of epileptic events 

Epileptic events, including interictal epileptiform discharges (IED), were identified using 

established methods 50 and tailored for RNS data (24, 25). In brief, two distinct thresholds were 

computed, and samples that surpassed either threshold were designated as IED periods and 

subsequently excluded from further analyses. For this analysis, we computed the envelope of 
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broadband iEEG (1-90 Hz) and filtered (15-80 Hz) signals. The thresholds for IED identification 

were determined as five times the median values of these signals. To capture both the up and down-

ramping epileptic activities before and after IED periods, we extended the identified periods by 

256 ms (64 samples) in both directions. In cases where an IED period encompassed over 50% of 

a trial’s duration, the entire trial was omitted from the analysis. In total, 3.8 ± 3.0% (median ± SD) 

of the data were identified as IED periods. This relatively low percentage is attributed to our 

deliberate selection of participants with a limited number of epileptic events per day. 

Eye tracking 

Eye movements were tracked using the Pupil Labs Invisible glasses (Pupil Labs GmbH). The eye 

data was captured at a frequency of 200 Hz with a resolution of 192 x 192 pixels and synchronized 

with a scene camera, which sampled the surroundings at 30 Hz, offering a resolution of 1088 x 

1080 pixels. To merge these two data streams into coherent gaze position data, we used the Pupil 

Cloud software 51. Saccadic eye movements were identified using the ClusterFix toolbox 52. To 

assess gaze densities, we computed 2D histograms, subsequently smoothed using a Gaussian 

kernel featuring a standard deviation of 1 pixel. These gaze densities were normalized relative to 

the expected value of a uniform distribution. The average gaze point in each participant’s visual 

view was identified to align and center individual gaze densities across participants and conditions. 

Differences in gaze densities were computed by subtracting gaze densities during left and right 

real-world and imagined walks (Fig. S7). 

Statistical comparisons 

To quantify the temporal consistency of theta dynamics, we employed a methodology involving 

the correlation of mean signals derived from randomly dividing the data into two halves. 

Specifically, trial numbers were randomly grouped into two data sets, the average signals from 

each group computed, and then linearly correlated using the Pearson correlation coefficient. This 

procedure was repeated 1000 times to yield a robust measure of how theta dynamics from one 

randomly selected half of the trials were associated with the other half. The experimental 

conditions were compared using multi-level block permutation tests53,54 while restricting 

exchangeability blocks to each participant (Fig. 3D, Fig. S5A, B). The temporal consistency 

values for each channel were then subjected to correlation to explore the presence of temporally 

structured theta dynamics at spatially similar locations across different conditions. The statistical 

significance of this correlation was evaluated using linear mixed effect models using the 

participant numbers as a grouping variable (Fig. 3E). These tests were applied to account for the 

grouped nature of our recordings consisting of multiple electrodes grouped per participant. 

Nonparametric permutation tests were employed to determine the significance of theta amplitudes 

dependent on positions along the routes. Multiple comparisons were corrected using cluster-level 

statistics 53. First, the mean theta dynamics across channels were computed. Second, a permutation 

distribution was obtained by sign flipping of randomly selected half of the channels and subsequent 

averaging, repeated 1000 times. Third, a primary threshold of p = 0.05 was applied to identify 

clusters of significant activity. Fourth, these cluster sizes were compared against the clusters of the 
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permutation distribution and were only considered significant when surviving a secondary p = 0.05 

(cluster) threshold correcting for multiple comparisons (Fig. S4B).  

We utilized nonparametric permutation tests to compare the position reconstruction errors against 

the control condition, which was sole treadmill walking. Specifically, we randomly re-assigned 

the labels of reconstruction errors for the real-world and control conditions and averaged them 

10,000 times, resulting in a permutation distribution. The actual reconstruction errors were then 

compared to this permutation distribution. The same procedure was analogously applied to the 

imagined navigation data. The probabilities of reconstructed positions (as depicted in Fig. 4D) 

were normalized relative to the expected value of a uniform distribution. This scale indicates by 

which factor the position reconstruction results exceed this chance distribution. 

We tested for a significant correlation between theta dynamics of real-world and imagined 

navigation of trials generalizing the alignment procedure. This correlation was compared to values 

computed from randomly shifting the real- and imagined navigation data 10,000 times to disrupt 

their temporal relationship (Fig. S5C). The same analyses were performed to assess the correlation 

of theta dynamics and the maze structure (Fig. 4D). 

Additionally, we computed linear regression models of theta dynamics and behavioral variables 

on a single trial level for each recording electrode. Subsequently, we tested the effects on the group 

level and compared the resulting regression coefficients using multi-level block permutation tests 

while controlling for multiple comparisons 53,54. 
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Fig. S1. | Motion capture data. Average walking routes (N = 5 participants) of each participant shown in 

a group plot (top left). Walking trajectories of each trial for every participant (P1 P5) shown in light/dark 

blue for the left/right route, respectively. 

 

Fig. S2. | Power spectra and theta dynamics. (A), Normalized power spectra averaged across participants 

for real-world, imagined navigation and the control condition (top). Prevalence of oscillatory bouts 

(bottom). (B), Theta amplitude dynamics and time-resolved theta rates z-scored for comparison (left), and 

theta rates shown as detection percentages across trials (right) for left (top) and right (bottom) walks. 
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Fig. S3. | Individual theta activity patterns. Mean group and individual participant (P1-5) theta activity 

patterns within the left anterior hippocampus (top left panel) superimposed onto the mean behavioral 

motion trajectories, illustrating an increase in theta power as each of the participants approaches upcoming 

turns. 

 

 

Fig. S4. | Theta activity and timing of effect. (A), Superimposed averaged theta activity across all channels 

on the mean motion trajectories. (B), Statistically significant theta clusters (p < 0.05, determined through a 

cluster-based permutation test). (C), Average theta activity aligned with turns depicted in blue, while 

individual electrode data is presented in grey. Triangles indicate that peak theta activity precedes turns in 

17 out of 18 channels. 
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Fig. S5 | Theta dynamics across conditions. (A), Temporal consistency, measured using a correlation 

coefficient (corr), during imagination of previous (past) and upcoming (future) routes. (B), Temporal 

consistency observed within the first and second imagination sessions. (C), Permutation distribution and 

actual correlation value between theta dynamics of real- and imagined navigation (red line). 

 

 

Fig. S6 | Individual subject analyses. (A), Mean theta activity across channels for each participant (P1-

P5) aligned to turns (t = 0). Black bars on top of the plots indicate significant periods. (B), Temporal 

consistency assessed for each participant. Individual circles represent data from correlations computed by 

randomly half-split data a thousand times. Differences between conditions are significant (p < 0.001) in 

every subject. 
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Fig. S7 | Gaze densities. Shown are the 2D histograms, centered at participants’ natural fixation point 

within their field of view. During real-world navigation on the left or right route, participants tended to 

direct their gaze more towards the respective left or right directions. Similarly, during imagined navigation, 

participants exhibited a slight bias in their gaze towards the left or right visual field, depending on whether 

they were simulating a left or right route. This pattern of gaze behavior confirmed their active engagement 

in the task. 

 

 

Fig. S8 | MTL oscillatory activity aligned to turns and saccades. Time-frequency activity aligned to 

turns (A) and saccades (B) during real-world navigation. Time-frequency activity aligned to eye movements 

(saccades) during imagined navigation (C) and the control navigation condition of treadmill walking 

without imagination (D). Note that the well-pronounced theta activities precede physical turns but not 

saccades. 
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Fig. S9 | Relation of theta dynamics to behavioral variables. (A), Cross-correlation of theta dynamics 

and behavioral variables during real-world navigation. Colored lines illustrate the group average, while 

grey lines represent standard errors across the folds of cross-validation for each behavioral variable 

(position [pos], eye speed, head rotation, hip rotation, and movement speed [v]). Negative lags indicate that 

theta dynamics preceded the behavioral signals. An overview of temporal relationships for each behavioral 

variable is summarized in the top left panel, showing that theta activities peaked at approximately 1 second 

before physical turns, followed by head rotation, eye saccades, speed reductions and hip rotation. The 

positive lagged correlation between theta and movement speed can be attributed to the speed decrease 

before turns, followed by a reduction in theta activity. (B), Regression coefficients of ongoing (single trial) 

theta dynamics during real-world navigation with labeled behavioral variables. (C) Cross-correlation of 

theta dynamics and behavioral variables during imagined navigation analogous to (A). Theta dynamics are 

compared to behavioral variables after alignment to enable comparisons to position within the maze 

segments. (D), Regression coefficients of ongoing (single trial) theta dynamics during imagined navigation 

as in (B). 
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Participant   1 2 3 4 5 

Age [years]   36 45 24 39 30 

Gender   male male female male female 

Theta range [Hz]  4.28 - 11.31 3.03 - 9.84 5.65 – 11.31 4.92 – 11.31 3.03 - 9.84 

Lead 1 Hemisphere left left left left left 

  # MTL chan 2 2 1 2 2 

  chan 1 HP/HP HP/PRC HP/PRC Amy/HP HP/HP 

  chan 2 HP/Sub PRC/PHC   HP/HP HP/HP 

Lead 2 Hemisphere right right right right right 

  # MTL chan 2 1 2 2 2 

  chan 3 HP/HP PHC/Fs HP/PRC Tp/PRC HP/HP 

  chan 4 HP/Sub   PRC/PHC PRC/HP HP/PHC 

Real-world left  36 35 40 34 36 

Real-world right  35 34 31 35 35 

Imagined left  23 25 24 25 24 

Imagined right  20 24 22 24 24 

Control  25 24 24 23 24 

Table S1. | Participants and experimental information. Participants demographics, theta frequency 

ranges, electrode implantation sites, number of trials completed for real-world left and right walks, 

imagined left and right walks, and treadmill control walks. Theta range was determined by spectral peaks 

in the 3-12 Hz range and neighboring lower and higher spectral minima. Localization of each of the two 

contacts that form a bipolar channel (chan 1 and 2) in various medial temporal lobe (MTL) regions, 

including the hippocampus (HP), perirhinal cortex (PRC), parahippocampal cortex (PHC), subiculum 

(Sub), Fusiform gyrus (Fs), temporal pole (Tp), and amygdala (Amy). 
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  pos head rot hip rot eye_v speed 

Lag 0.0001 0.0001 0.0001 0.0021 0.0001 

Walks 0.0001 0.0123 0.0174 0.0001 0.1503 

Trdm 0.0063 0.0508 0.9816 0.5676 0.9194 

Table S2. | Statistics of theta dynamics and behavioral relations. Statistics (p-values) testing whether 

theta dynamics precede behavioral variables (Lag) during real-world navigation are listed in the top row. 

Relations between theta dynamics and behavioral variables were assessed on a single-trial level and tested 

for differences from zero on a group level. The results of these tests (p-values) are listed for real-world 

(middle row, corresponding to Fig. S9B) and imagined navigation (bottom row, corresponding to Fig. S9D). 

Multi-level block permutation tests considered data grouping and corrected for multiple comparisons. 
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