

1 **Starve a cold or feed a fever?**

2 **Identifying cellular metabolic changes following infection and exposure to SARS-**
3 **CoV-2**

4

5 **Working title:**

6 **Metabolite profiling of SARS-CoV-2 infection**

7

8 Emma Kate Loveday^{a,c*}, Hope Welhaven^b, Ayten Ebru Erdogan^c, Kyle Hain^d, Connie B.
9 Chang^{a,c,e}, Ronald K. June^f, Matthew P. Taylor^{d*}

10

11 ^a Center for Biofilm Engineering, Montana State University, Bozeman MT 59717

12 ^b Chemistry and Biochemistry, Montana State University, Bozeman MT 59717

13 ^c Department of Chemical and Biological Engineering, Montana State University,
14 Bozeman MT 59717

15 ^d Microbiology and Cell Biology, Montana State University, Bozeman MT 59717

16 ^e Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
17 55905

18 ^f Department of Mechanical & Industrial Engineering, Montana State University, Bozeman
19 MT 59717

20

21 *Corresponding authors: mptaylor@montana.edu, emma.loveday@montana.edu

22

23

24

25 **Abstract**

26 Viral infections induce major shifts in cellular metabolism elicited by active viral
27 replication and antiviral responses. For the virus, harnessing cellular metabolism and
28 evading changes that limit replication are essential for productive viral replication. In
29 contrast, the cellular response to infection disrupts metabolic pathways to prevent viral
30 replication and promote an antiviral state in the host cell and neighboring bystander
31 cells. This competition between the virus and cell results in measurable shifts in cellular
32 metabolism that differ depending on the virus, cell type, and extracellular environment.
33 The resulting metabolic shifts can be observed and analyzed using global metabolic
34 profiling techniques to identify pathways that are critical for either viral replication or
35 cellular defense. SARS-CoV-2 is a respiratory virus that can exhibit broad tissue tropism
36 and diverse, yet inconsistent, symptomatology. While the factors that determine the
37 presentation and severity of SARS-CoV-2 infection remain unclear, metabolic
38 syndromes are associated with more severe manifestations of SARS-CoV-2 disease.
39 Despite these observations a critical knowledge gap remains between cellular metabolic
40 responses and SARS-CoV-2 infection. Using a well-established untargeted
41 metabolomics analysis workflow, we compared SARS-CoV-2 infection of human lung
42 carcinoma cells. We identified significant changes in metabolic pathways that correlate
43 with either productive or non-productive viral infection. This information is critical for
44 characterizing the factors that contribute to SARS-CoV-2 replication that could be
45 targeted for therapeutic interventions to limit viral disease.

46

47

48

49

50

51

52

53

54 **Introduction**

55 As obligate intracellular parasites, viruses co-opt host cellular materials,
56 machinery, and metabolism to facilitate viral replication (1,2). Metabolic changes in
57 response to virus infection result in extensive alterations to cellular physiology and often
58 mirror changes seen in cancer cells (2–7). Both RNA and DNA viruses reprogram
59 different aspects of host metabolism including increased glycolysis, elevated pentose
60 phosphate activity, amino acid generation and lipid synthesis (1). Viral hijacking of host
61 metabolism and subversion of metabolic defenses can lead to increased viral replication
62 and host damage, resulting in long-term health consequences, such as those seen in
63 severe cases of COVID-19, following infection with the novel coronavirus, SARS-CoV-2.
64 This is supported by analysis of SARS-CoV-2 positive patient serum that has shown
65 acute and long-term changes in metabolites and further metabolic disorder (8–12).

66 To better understand what metabolic changes occur during SARS-CoV-2
67 infection and how this may relate to severe disease outcomes, we implemented global
68 metabolomic profiling to analyze thousands of metabolites using LC-MS to detect
69 disease-associated changes to the cellular environment (13,14). Metabolites serve as
70 intermediates for cellular physiology and include hormones, oligonucleotides, peptides,
71 and other molecular products of cellular biochemical reactions that represent the current
72 physiological state of a cell (15). Global metabolomic profiling can therefore provide an
73 unbiased view of metabolic shifts induced during and in response to viral infection
74 (16,17).

75 To elucidate changes to cellular metabolism associated with SARS-CoV-2 viral
76 replication and those changes associated with virus exposure we infected and profiled
77 A549 cells, a human lung cell line. A549 cells are frequently used to evaluate viral
78 infection for many respiratory viruses but are not intrinsically susceptible to SARS-CoV-
79 2 infection, as they lack endogenous expression of the viral receptor, ACE2 (18–20).
80 However, expression of human ACE2 protein on A549 (ACE2-A549) cells renders them
81 fully susceptible to SARS-CoV-2 (21). By comparing A549 and ACE2-A549 cells
82 inoculated with SARS-CoV-2 at an MOI of 10, we can identify, and separate metabolic

83 shifts induced by active viral replication from those induced by the host cells response
84 to virus exposure.

85 Here, we describe distinct metabolic changes in to both ACE2-A549 and A549
86 cells triggered by SARS-CoV-2 exposure. Amino acid metabolism, glutathione, and urea
87 cycle metabolic pathways were significantly altered in cells that support productive
88 SARS-CoV-2 infection (ACE2-A549 cells). In contrast A549 cells that are not
89 susceptible to infection but were exposed to a high inoculating dose of SARS-CoV-2
90 had significant changes in fatty acid anabolic and catabolic pathways as well as
91 leukotriene metabolism. These results mirror the metabolic shifts found in serum from
92 patients suffering from severe COVID-19 (10,11,17,22–27). Thus, our findings point to
93 metabolite features associated with both active infection and exposure to virus.
94 Understanding how cellular metabolism is reprogrammed following SARS-CoV-2
95 infection will allow identification of factors responsible for severe disease and aid in the
96 development of antiviral therapies.

97

98 **Materials and Methods**

99 **Cells and Viruses**

100 E6-Vero, A549, ACE2-A549 cells. E6 Vero cells were obtained from ATCC (Manassas,
101 VA) and grown in DMEM supplemented with 10% FBS, 1% pen-strep. A549 cells were
102 the obtained from Chang Lab. ACE2-A549 cells were obtained from BEI Resources
103 (NR-53821). A549 cells were propagated in Hams F-12 (Corning) media supplemented
104 with 10% fetal bovine serum (HyClone) and 1X Penicillin/Streptomycin (Fisher
105 Scientific). ACE2-A549 cells were supplemented with 100ug/mL Blasticidin (Gibco).
106 SARS-CoV-2 strain WA01 was obtained from BEI Resources (NR-52281). Viral stocks
107 were propagated and titered on E6 Vero cells in DMEM supplemented with 2% FBS and
108 1% pen-strep. Viral stocks were made by collecting media from infected cell cultures
109 showing extensive cytopathic effect and centrifuged 1,000 RCF for 5 minutes to remove
110 cellular debris. The clarified viral supernatant was then used for all experimental
111 infection. For determination of viral infectivity by plaque assay, E6 Vero cells were
112 cultured then incubated with viral inoculum at limiting dilutions. Following inoculation,
113 cells were over-layered with 1% methylcellulose, DMEM supplemented with 2% FBS
114 and 1% pen-strep and incubated for 3-4 days (28,29). Cells were then fixed and
115 stained with 0.5% methylene blue/70% ethanol solution. Plaques were counted and the
116 overall titer was calculated.

117 **Immunofluorescence detection of infection**

118 Prior to infection, cells were seeded at 2×10^4 per well of an eight-chamber coverslip
119 (Labtek Cat. No. 155411, Nunc International, Rochester, NY). At indicated times post
120 infection, cells were then fixed with 4% paraformaldehyde in PBS for 30 minutes,
121 washed thoroughly with PBS, and blocked in 2% bovine serum albumin (BSA) prior to
122 antibody incubations. Primary and secondary antibodies were diluted in a PBS
123 supplemented with 0.5% saponin, 0.125% BSA as described (30), and incubated for
124 one hour at room temperature. Primary mouse anti-nucleocapsid (Thermofisher) was
125 diluted 1:500, followed by goat anti-mouse IgG labeled with Dylight 550 (Thermofisher)
126 at 1:500. DNA was counterstained with Hoescht 3342 at 1:5000 dilution. Actin filaments
127 stained with phalloidin-488 (Thermofisher) at 1:500. Stained cells were imaged on a

128 Nikon Ti-Eclipse inverted epifluorescent microscope (Nikon Instruments, Melville, NY)
129 equipped with an iXon 896 EM-CCD (Andor Technology Ltd., Belfast, Northern Ireland)
130 camera. Fluorescence detection used a SpectraX LED light engine (Lumencor,
131 Beaverton, OR) with paired excitation filters, dichroic mirrors, and emission filters (Prior
132 Scientific, Rockland, MA). Images were acquired with either Plan Fluor 20 phase
133 contrast (Ph) air objective or CFI Plan Apochromat Lambda 60x Oil immersion
134 objective. All imaging experiments were performed a minimum of two times.

135 **Metabolite Extractions**

136 After SARS-CoV-2 inoculation for one hour, cells were washed with PBS then fed with
137 fresh media. Cells were harvested at 0-, 6-, and 16-hours post-inoculum removal. At
138 each collection, cells were washed with PBS, suspended with trypsin-EDTA for 5
139 minutes, collected and centrifuged for 5 minutes. Trypsin-EDTA was removed, and cell
140 pellets were washed with an equi-volume of PBS before repeated centrifugation. PBS
141 was removed and cells were resuspended in 100% methanol. Samples were vortexed
142 in 10 x 1 sec bursts before being placed in -80°C freezer. Vortexing and freezing was
143 repeated 3 times to maximize macromolecule precipitation. Subsequently, methanol
144 extracts were subjected to centrifugation at 8,000 rcf for 10 minutes to pellet cell debris
145 and precipitate proteins. The supernatant containing the metabolites was transferred to
146 a separate tube and dried by vacuum concentration to remove solvents. Dried
147 metabolites were resuspended in 100 μ L mass spectrometry grade 50:50 (v/v) water:
148 acetonitrile solution immediately prior to high performance liquid chromatography-mass
149 spectrometry (HPLC-MS) analysis.

150 **Untargeted Metabolomic Analysis**

151 Extracted metabolites were analyzed using HPLC-MS (Agilent 6538 Q-TOF mass
152 spectrometer) in positive mode (resolution: ~20ppm, accuracy: ~5ppm, possible
153 ionization adducts: H^+ , Na^+) using a Cogent Diamond Hydride HILIC column (150 x 2.1
154 mm). LC-MS data, consisting of mass-to-charge (m/z) values and their peak intensities,
155 were processed and exported using MSConvert and XCMS (**Table S1**). All data was log
156 transformed and autoscaled prior to analysis using MetaboAnalyst (31–33). Statistical
157 analyses performed included hierarchical cluster analysis (HCA), principal component

158 analysis (PCA), partial least-squares discriminant analysis (PLS-DA), variable
159 importance in projection (VIP) scores, volcano plot, fold change, and heatmap analysis.
160 Pathway analysis was performed to map differentially expressed metabolite features to
161 biological pathways using the Functional Analysis function in MetaboAnalyst (pathway
162 library: KEGG, mass tolerance: 5 ppm, positive mode) (31,32). Pathway significance
163 was determined using FDR-corrected significance levels of 0.05.

164

165

166 **Results**

167 **Differing susceptibility and productivity of A549 cells lines for SARS-CoV-2**

168 To study metabolic shifts during SARS-CoV-2 infection, we analyzed A549 cells,
169 a human lung carcinoma cell line. A549 cells are not susceptible to SARS-CoV2
170 infection and must be modified to express human ACE2 to allow for entry and
171 replication (18–21). Therefore, we analyzed infection of A549 cells with (ACE2-A549)
172 and without (A549) human ACE2 expression at 0, 6 and 16 hours post infection (hpi) to
173 explore how differences in susceptibility and relative timing of viral replication impact
174 cellular metabolism. The differences in infection enabled us to explore metabolic
175 changes in cells that can support robust productive virus infection and in cells that do
176 not allow viral entry. Our analysis focuses on three critical timepoints: 0 hours post
177 infection (hpi), or immediately after inoculum removal, 6 hpi, a timepoint suggested to
178 be prior to the onset of progeny virus production, and 16 hpi, when productive viral
179 replication should be close to its peak (34).

180 The extent of viral infection and replication was analyzed using indirect
181 immunofluorescent detection of the SARS-CoV-2 nucleocapsid (N) protein (**Figure 1A**).
182 ACE2-A549 cells displayed extensive N protein expression at both 6 and 16 hpi. In
183 contrast, unmodified A549 cells displayed no N protein staining, indicating a complete
184 lack of infection and replication following SARS-CoV-2 inoculation. An important
185 element to analyzing metabolic profiles is the relative “health” of the cell, especially at
186 later time points in the viral lifecycle. To evaluate whether 16 hpi exhibits extensive cell
187 deterioration, we analyzed the distribution of actin filaments in infected cells. Cells were
188 counterstained with both SARS-CoV-2 nucleocapsid (N) protein and phalloidin to image
189 for the presence of actin filament assemblies during infection (**Figure 1B**). We observed
190 a distribution of cellular morphologies, but many cells retain actin filament assemblies
191 and adhesions to the cell surface similar to uninfected cells. The distribution of cellular
192 morphology and actin staining suggests that the cells are not undergoing extensive
193 cytopathic effect or cell death by 16 hpi.

194 To understand how the selected timepoints correlate with viral replication, we
195 analyzed viral titers from supernatant with (total) and without (extracellular) cellular

196 fractions, (**Figure 1C**). We compared the detection of plaque forming units (PFU) from
197 ACE2-A549 and A549 cells at all three timepoints. In the ACE2-A549 cells, viral titer
198 does not increase until 16 hours post inoculation in both the total and extracellular
199 samples. A decrease at 6 hpi in the extracellular samples reflects the uptake of viral
200 inoculum. The subsequent increase in titer at 16 hpi correlates with the release of virus.
201 For A549 cells there was no increase in viral titer in either the total or extracellular
202 samples beyond what is detected after inoculation of cells. These observations are
203 consistent with the reported lack of susceptibility and permissiveness of A549 cells to
204 SARS-CoV-2 (19,20).

205 **Experimental design to assess metabolic differences following SARS-CoV-2
206 infection**

207 Global metabolomic profiling was performed in cells infected with or exposed to
208 SARS-CoV-2. In our experimental approach, ACE2-A549 and A549 cells were
209 inoculated at an MOI of 10 with SARS-CoV-2 to ensure that every cell was sufficiently
210 exposed to infectious virions. The cells were collected and processed at 0, 6, and 16
211 hpi, to analyze temporal changes in the metabolic landscape over the course of the viral
212 lifecycle (**Figure 2A**). Metabolites were extracted and processed for LC-MS metabolite
213 detection (**Figure 2B**). Samples were analyzed via LC-MS to identify molecules smaller
214 than ~1000 Da, which can include hormones, oligonucleotides, peptides, and other
215 molecular products of cellular biochemical reactions (31,32). A total of 1085 metabolites
216 were detected across all samples and were included in all analyses. Data analyses
217 were performed using MetaboAnalyst allowing for quantification of untargeted
218 metabolites and identification of changes in the metabolomic phenotypes at each of the
219 different time points (**Figure 2C**) (31–33).

220 **Metabolic profiling of ACE2-A549 cells during SARS-CoV-2 infection**

221 We began by analyzing metabolic changes in ACE2-A549 cells that support
222 productive SARS-CoV-2 infection. Changes in the global metabolomic profiles of
223 infected ACE2-A549 cells were determined using unsupervised PCA and supervised
224 PLS-DA (**Figure 3A & B**). From these analyses, the variance between each time point
225 was greater than the variance between replicates within each group. We observed that

226 the first 2 PLS-DA components represented 42% of the overall variance, further
227 demonstrating that the three time points are distinct from each other. This is much
228 greater than the expected 0.03% variance that would be expected from a uniformly
229 random distribution of metabolites. Taken together, our data suggests that greater
230 metabolomic changes occur over time although some overlap between samples is
231 observed. Both analyses confirm that clear, non-random, differences exist between
232 productively infected ACE2-A549 cells harvested at different each time points.

233 To further examine metabolomic patterns that significantly change during SARS-
234 CoV-2 infection in ACE2-A549 cells, we performed ANOVA to assess changes in
235 metabolomic between cells harvested at 0, 6, and 16 hpi. From this analysis, 152
236 metabolite features with an FDR-corrected p-value < 0.05 were differentially regulated
237 between timepoint groups. Heatmap analysis of these ANOVA metabolite features
238 revealed temporal changes in metabolite phenotypes from 0 to 16 hpi (**Figure 3C**). The
239 variance between samples can also be observed when each metabolite feature is
240 plotted for the individual samples (**SI Figure 1**). Clustering analysis of similarly altered
241 metabolite feature produces 4 main classes: reduced at 16 hpi (class 1), increased at
242 16 hpi (class 2), reduced at 6 hpi (class 3), and increased at 6 hpi (class 4). The
243 majority of altered metabolite features, belonging to class 1, had the highest abundance
244 at 0 hpi and progressively decreased from 6 to 16 hpi, suggesting a trajectory of
245 depletion during the course of SARS-CoV-2 replication. In contrast, class 2 metabolite
246 features increased in abundance from 0 to 16 hpi. For classes 3 and 4, metabolite
247 features with detected changes at 6 hpi often returned to baseline abundance by 16 hpi.

248 To derive additional biological relevance, the 152 metabolite features
249 distinguished by ANOVA were then manually searched by m/z value in METLIN to
250 make putative metabolite identifications (35). Identified putative metabolites were found
251 in the four main classes (**Figure 3C**). Select metabolites are presented to highlight
252 some of the metabolic changes detected during infection (**Figure 4**). Each boxplot
253 depicts the normalized fold-change of the putative metabolite description for each class
254 with average values represented as yellow diamonds and individual replicates within
255 each time point represented as black spots. These metabolite features may be

256 associated with some flux or alteration in utilization of intermediates in metabolic
257 pathways.

258 **Distinct metabolic phenotypes of A549 cells during SARS-CoV-2 infection**

259 We next sought to separate metabolic changes identified during productive
260 infection from changes that may result from responses due to virus exposure. To
261 accomplish this, we analyzed A549 cells, which do not express ACE2 and are refractory
262 to infection at 0, 6 and 16 hpi after exposure to SARS-CoV-2 inoculum (19,20). As
263 before, we evaluated metabolomic phenotypes using PCA and PLS-DA and observed
264 larger ellipses that somewhat overlap. PLS-DA components 1 and 2 represented 43.2%
265 of the overall variance in the dataset. Similar to the ACE2-A549 cells, these findings
266 suggest that metabolomic differences between A549 cells harvested at different
267 timepoints exist, despite no detectable infection or viral replication. (**Figure 5A and B**).
268 From the inoculated A549 cells, we identified 377 metabolite features that had an
269 ANOVA FDR-corrected p-value < 0.05. To further visualize metabolic dysregulation
270 across 0, 6, and 16 hpi, heatmap analysis was performed (**Figure 5C**). The distribution
271 and consistency of detected metabolite features across the replicate samples can be
272 seen in the expanded heatmap (**SI figure 2**). Unlike with ACE2-A549 cells, the majority
273 of metabolic changes are increasing quantities of metabolite features that peak at 6 hpi
274 and remain elevated through 16 hpi (**Figure 5C**). The second prominent class of
275 metabolite features exhibits a transient increase in detection at 6 hpi, followed by
276 reduced detection at or near levels seen at 0 hpi. The remaining significantly changed
277 metabolite features vary with peak detection seen either at 0 or 16 hpi. Overall, the
278 majority of changes in these cells likely represent changes in response to the inoculum
279 that decrease by the later time points after inoculation.

280 **Comparison of metabolites between ACE2 and A549 cells.**

281 We sought to further understand the differing metabolic responses between A549
282 cells exposed to SARS-CoV-2 and ACE2-A549 cells infected with SARS-CoV-2.
283 Statistically significant features distinguished by ANOVA analyses for both comparisons
284 were investigated to identify metabolite features that were either shared or unique
285 between the two cell types. Of the 152 significant metabolite features from ACE2-A549

286 cells and 377 significant metabolite features from A549 cells, only 47 were significantly
287 changed following SARS-CoV-2 exposure in both cell types (**Figure 6A**). In addition,
288 pathway analysis of metabolite features that are dysregulated during SARS-CoV-2
289 replication was performed (**Figure 6B**).

290 In total, 13 metabolic pathways were altered in ACE2-A549 cells with productive
291 SARS-CoV-2 replication. A majority, 10 pathways, were involved in amino acid
292 metabolism including alanine, aspartate, cysteine, glutamate, glycine, histidine, lysine,
293 methionine, and threonine (**Table 1**). Additional metabolic pathways detected included
294 glycerophospholipid metabolism, C5-branched dibasic acid metabolism, and ascorbate
295 metabolism. Identifying if these altered pathways are caused by productive viral
296 replication cannot be assessed from this data alone. We compared pathway changes in
297 cells that cannot be productively infected by SARS-CoV-2. Performing pathway analysis
298 on the 377 metabolite features distinguished by ANOVA from the A549 cells inoculated
299 with SARS-CoV-2 identified 8 distinct pathways. Curiously, none of these pathways
300 overlap with those identified in from ACE2-A549 analysis (**Figure 6B**). The 8 pathways
301 unique to A549 cells mapped exclusively to lipid metabolism and included: fatty acid
302 oxidation, activation, and metabolism; di-unsaturated fatty acid beta-oxidation, de novo
303 fatty acid biosynthesis, omega-3 fatty acid metabolism, and carnitine shuttle (**Table 2**).
304 Interestingly, metabolite features associated with immunomodulatory leukotrienes were
305 also detected. Overall, these extensive changes to lipids, specifically fatty acids,
306 suggest a change not only towards an inflammatory state, but also a shift in energy
307 source by the cells following exposure to a non-productive infection.

308 Taken together, changes in metabolism between two cell lines over a 16-hour
309 period of exposure to SARS-CoV-2 demonstrate metabolomic differences in a range of
310 individual metabolites and pathways. Specifically, amino acid related-pathways were
311 dysregulated in ACE2-A540 while lipid-related pathways were dysregulated in A549
312 cells exposed to SARS-CoV2 (**Figure 6C**).

313

314 **Discussion**

315 In this study, we sought to understand the nature of cellular metabolic shifts in
316 response to SARS-CoV-2 infection. To distinguish changes associated with viral
317 replication from exposure to infectious virus, we compared ACE2-expressing A549 cells
318 that are susceptible and support productive viral replication with A549 cells that are not
319 susceptible to infection. We chose time points that represent early, intermediate, and
320 late stages of viral replication to evaluate the temporal changes in metabolites following
321 inoculation. Our metabolic pathway analysis found 152 and 377 significantly changed
322 metabolites in ACE2-A549 and A549 cells, respectively. Surprisingly, there was limited
323 overlap in altered metabolites or altered metabolic pathways between cells undergoing
324 productive infection and those exposed to infectious virus. Critically, we identified
325 alterations in pathways that are potentially involved in either productive viral infection or
326 in cellular anti-viral responses to SARS-CoV-2.

327 **Consequences of productive viral infection**

328 The initial focus of our analysis was the changes to cellular metabolism induced
329 by active viral replication. The ACE2-A549 cells are a widely used model that we
330 observed to be both susceptible to SARS-CoV-2 infection and permissive for productive
331 viral replication (34). We analyzed metabolic shifts immediately after virion entry (0 hpi),
332 a mid-point of viral replication prior to virion production (6 hpi), and a late timepoint
333 when new virions are being released from infected cells (16 hpi) (17). Overall, we
334 identified four different classes of metabolites based on the relative increase or
335 decrease in detection between each time point. We used these changes to identify
336 pathways that were altered by active SARS-CoV-2 replication. Most notably, we
337 observed that the majority of altered metabolic pathways were associated with amino
338 acid metabolism.

339 Within the identified pathways, we identified L-Glutamic Acid as a major putative
340 metabolite that was significantly reduced from 0 to 16 hpi. A previous study
341 demonstrated that SARS-CoV-2 infection rewires carbon entry into the TCA cycle (17).
342 Mullen et al. showed that oxidative metabolism of glutamine through the TCA cycle was
343 reduced during SARS-CoV-2 infection in favor of pyruvate utilization via pyruvate

344 carboxylase (35,36). This shift increased levels of oxaloacetate and also maintain
345 synthesis of aspartate, which is used to synthesize pyrimidine nucleotides (36,37).
346 Interestingly, both glutamate and aspartate metabolic pathways were considered
347 significant in our analysis of SARS-CoV-2 infected ACE2-A549 cells.

348 In addition to changes to L-glutamic acid and aspartate, the metabolic shifts
349 observed in SARS-CoV-2 infected ACE2-A549 cells reflect similar changes observed in
350 COVID-19 positive patient serum samples (10,23,27,38–43). It is notable that our cell
351 culture model identified similar metabolic pathways being disrupted during SARS-CoV-2
352 infection, even at 6 hpi. This indicates that metabolic screening of different laboratory-
353 based model systems may be able to accurately generate data on potential biomarkers
354 for SARS-CoV-2 and potentially other infectious diseases.

355 **Metabolites responding to viral inoculation**

356 While metabolic changes due to active viral replication are important, not all cells
357 within a tissue or organ system are equally susceptible to virus infection. Thus, we
358 hypothesized that uninfected cells that do not support SARS-CoV-2 infection can
359 respond to virus exposure with altered metabolism leading to further metabolic
360 dysfunction. To test this hypothesis, we analyzed the metabolic profile of A549 cells that
361 do not support viral entry following exposure to the same infectious virus inoculum as
362 the ACE2-A549 cells. Our data confirmed that lack of ACE2 expression in A549 cells
363 resulted in a complete lack of infection and replication following SARS-CoV-2
364 inoculation. While we have no evidence of viral replication in A549 cells, the resulting
365 changes in the metabolic profile of these cells indicates that they are responding to the
366 virus inoculum. Specifically, fatty acid catabolic (β -oxidation) and anabolic (de novo fatty
367 acid synthesis) pathways were significantly altered following A549 cell exposure to
368 infectious virus. Lipid dysregulation has been a hallmark of COVID-19 pathology in
369 patients and a hallmark of disease severity and progression (41,44,45). Both pathways
370 converge on acetyl-CoA, a critical molecule in the breakdown of fatty acids and the
371 synthesis of other lipid types, such as cholesterol, which can be transformed into other
372 steroids with pro and anti-inflammatory mechanisms (46,47). This is further supported
373 by the significant number of identified metabolites associated with leukotriene and

374 omega-3 fatty acid metabolism within the A549 cells. Increased leukotriene production
375 is connected to COVID-19 through transcriptional and metabolic studies from patient
376 serum and infected monocytes (48–50). Another significant metabolite in our profile of
377 the A549 cells was palmitoyl-CoA, a major component in the synthesis of ceramide and
378 sphingolipids (51). Previous studies of COVID-19 patient serum samples found distinct
379 increases in sphingosine and ceramides (52,53). These increases were distinct
380 between patients with mild disease and those in intensive care (53). The data suggests
381 that uninfected cells respond to SARS-CoV-2, altering metabolic profiles and possibly
382 increasing the production of pro- or anti-inflammatory biomolecules and enzyme
383 cofactors (3,4,54). Thus, even uninfected cells may be contributing to the overall
384 pathology observed in COVID-19 patients.

385 **Conclusion**

386 Cellular models for SARS-CoV-2 infection are incredibly important for the initial testing
387 of interventions that directly target viral replication. Through our metabolomic profiling,
388 we identified metabolites and metabolic profiles that are associated with both active viral
389 infection and exposure to infectious virus. Our analysis identified a range of metabolites
390 and metabolic pathways altered by productive viral replication, but understanding if
391 these metabolites are promoting viral replication will require further analysis. While
392 cellular metabolism is often thought to be manipulated by the virus for its own ends, it is
393 also connected to antiviral responses (1–3). Cells can produce antiviral metabolites or
394 inhibit metabolic pathways to hinder viral replication (3). As with productive replication,
395 further experiments that either promote shifts in leukotrienes or other inflammatory
396 molecules will need to be performed to characterize their effects on SARS-CoV-2
397 infection. It is also possible that the identified metabolite profiles can be developed as
398 biomarkers of infection that could be used for surveillance testing or as a predictive tool
399 for risk evaluation of severe disease. The similarities of our results to metabolic shifts
400 observed in patients suggest a potential platform for methodological development.
401 Discriminatory metabolites defining infection can be correlated to patient metabolic
402 profiles to facilitate our understanding of SARS-CoV-2 induced pathologies. Through
403 both the immediate findings and the development of more complex models, we hope to
404 increase our understanding of how SARS-CoV-2 replication and spread correlates to

405 disease. Through that understanding, we can then find better therapeutics to limit
406 morbidity and mortality from COVID-19.

407

408 **Acknowledgments**

409 The authors acknowledge funding from NSF (CMMI 1554708), NIH (NIAMS
410 R01AR073964 and R01AR081489 and NIAID 1R56AI156137-01), and a Montana State
411 University VPREDGE COVID Research Award. The following reagent was obtained
412 through BEI Resources, NIAID, NIH: Human Lung Carcinoma Cells (A549) Expressing
413 Human Angiotensin-Converting Enzyme 2, NR-53821. The following reagent was
414 deposited by the Centers for Disease Control and Prevention and obtained through BEI
415 Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate USA-WA1/2020, NR-
416 52281. Funding for the Montana State Mass Spectrometry Facility used in this
417 publication was made possible in part by the MJ Murdock Charitable Trust, the National
418 Institute of General Medical Sciences of the National Institutes of Health under Award
419 Numbers P20GM103474 and S10OD28650, and the MSU Office of Research and
420 Economic Development. The content is solely the responsibility of the authors and does
421 not necessarily represent the official views of the National Institutes of Health.

422

423 **References**

- 424 1. Thaker SK, Ch'ng J, Christofk HR. Viral hijacking of cellular metabolism. *BMC Biol.* 425 2019 Jul 18;17(1):59.
- 426 2. Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. *Virology.* 2015 427 May;479–480:609–18.
- 428 3. Palmer CS. Innate metabolic responses against viral infections. *Nat Metab.* 2022 429 Oct;4(10):1245–59.
- 430 4. Sánchez-García FJ, Pérez-Hernández CA, Rodríguez-Murillo M, Moreno- 431 Altamirano MMB. The Role of Tricarboxylic Acid Cycle Metabolites in Viral 432 Infections. *Front Cell Infect Microbiol.* 2021 Sep 14;11:725043.
- 433 5. Thai M, Thaker SK, Feng J, Du Y, Hu H, Ting Wu T, et al. MYC-induced 434 reprogramming of glutamine catabolism supports optimal virus replication. *Nat 435 Commun.* 2015 Nov 12;6:8873.

436 6. Brenner C. Viral infection as an NAD⁺ battlefield. *Nat Metab.* 2022 Jan;4(1):2–3.

437 7. Proal AD, VanElzakker MB. Pathogens Hijack Host Cell Metabolism: Intracellular
438 Infection as a Driver of the Warburg Effect in Cancer and Other Chronic
439 Inflammatory Conditions. *Immunometabolism.* 2021 Jan;3(1):e210003.

440 8. Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered Lipid Metabolism in
441 Recovered SARS Patients Twelve Years after Infection. *Sci Rep.* 2017 Aug
442 22;7(1):9110.

443 9. Lodge S, Nitschke P, Kimhofer T, Coudert JD, Begum S, Bong S-H, et al. NMR
444 Spectroscopic Windows on the Systemic Effects of SARS-CoV-2 Infection on
445 Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines. *J
446 Proteome Res.* 2021 Feb 5;20(2):1382–96.

447 10. Ansone L, Briviba M, Silamikelis I, Terentjeva A, Perkons I, Birzniece L, et al.
448 Amino Acid Metabolism is Significantly Altered at the Time of Admission in Hospital
449 for Severe COVID-19 Patients: Findings from Longitudinal Targeted Metabolomics
450 Analysis. *Microbiol Spectr.* 2021 Dec 22;9(3):e0033821.

451 11. Rees CA, Rostad CA, Mantus G, Anderson EJ, Chahroudi A, Jaggi P, et al. Altered
452 amino acid profile in patients with SARS-CoV-2 infection. *Proc Natl Acad Sci U S A
453 [Internet].* 2021 Jun 22;118(25). Available from:
454 <http://dx.doi.org/10.1073/pnas.2101708118>

455 12. Loo RL, Lodge S, Kimhofer T, Bong S-H, Begum S, Whiley L, et al. Quantitative in-
456 vitro diagnostic NMR spectroscopy for lipoprotein and metabolite measurements in
457 plasma and serum: Recommendations for analytical artifact minimization with
458 special reference to COVID-19/SARS-CoV-2 samples. *J Proteome Res.* 2020 Nov
459 6;19(11):4428–41.

460 13. Carlson AK, Rawle RA, Adams E, Greenwood MC, Bothner B, June RK.
461 Application of global metabolomic profiling of synovial fluid for osteoarthritis
462 biomarkers. *Biochem Biophys Res Commun.* 2018 May 5;499(2):182–8.

463 14. Carlson AK, Rawle RA, Wallace CW, Brooks EG, Adams E, Greenwood MC, et al.
464 Characterization of synovial fluid metabolomic phenotypes of cartilage
465 morphological changes associated with osteoarthritis. *Osteoarthritis Cartilage.* 2019
466 Aug;27(8):1174–84.

467 15. Giera M, Yanes O, Siuzdak G. Metabolite discovery: Biochemistry's scientific
468 driver. *Cell Metab.* 2022 Jan 4;34(1):21–34.

469 16. Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, et al. SARS-CoV-2 hijacks
470 folate and one-carbon metabolism for viral replication. *Nat Commun.* 2021 Mar
471 15;12(1):1676.

472 17. Mullen PJ, Garcia G Jr, Purkayastha A, Matulionis N, Schmid EW, Momcilovic M, et
473 al. SARS-CoV-2 infection rewires host cell metabolism and is potentially
474 susceptible to mTORC1 inhibition. *Nat Commun.* 2021 Mar 25;12(1):1876.

475 18. Tian X, Zhang K, Min J, Chen C, Cao Y, Ding C, et al. Metabolomic Analysis of
476 Influenza A Virus A/WSN/1933 (H1N1) Infected A549 Cells during First Cycle of
477 Viral Replication. *Viruses.* 2019 Oct 31;11(11):1007.

478 19. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al.
479 Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19.
480 *Cell.* 2020 May 13;181(5):1036-1045.e9.

481 20. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al.
482 SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a
483 Clinically Proven Protease Inhibitor. *Cell.* 2020 Apr 16;181(2):271-280.e8.

484 21. Mossel EC, Huang C, Narayanan K, Makino S, Tesh RB, Peters CJ. Exogenous
485 ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute
486 Respiratory Syndrome Coronavirus Replication. *J Virol.* 2005 Mar;79(6):3846–50.

487 22. Sohrabi Y, Reinecke H, Godfrey R. Altered Cholesterol and Lipid Synthesis
488 Mediates Hyperinflammation in COVID-19. *Trends Endocrinol Metab.* 2021
489 Mar;32(3):132–4.

490 23. Páez-Franco JC, Torres-Ruiz J, Sosa-Hernández VA, Cervantes-Díaz R, Romero-
491 Ramírez S, Pérez-Fragoso A, et al. Metabolomics analysis reveals a modified
492 amino acid metabolism that correlates with altered oxygen homeostasis in COVID-
493 19 patients. *Sci Rep.* 2021 Mar 18;11(1):6350.

494 24. Matsuyama T, Yoshinaga SK, Shibue K, Mak TW. Comorbidity-associated
495 glutamine deficiency is a predisposition to severe COVID-19. *Cell Death Differ.*
496 2021 Dec;28(12):3199–213.

497 25. Thomas T, Stefanoni D, Reisz JA, Nemkov T, Bertolone L, Francis RO, et al.
498 COVID-19 infection results in alterations of the kynurenine pathway and fatty acid
499 metabolism that correlate with IL-6 levels and renal status. *medRxiv* [Internet]. 2020
500 May 16; Available from: <http://dx.doi.org/10.1101/2020.05.14.20102491>

501 26. da Silva Fidalgo TK, Freitas-Fernandes LB, Marques BBF, de Araújo CS, da Silva
502 BJ, Guimarães TC, et al. Salivary Metabolomic Analysis Reveals Amino Acid
503 Metabolism Shift in SARS-CoV-2 Virus Activity and Post-Infection Condition.
504 *Metabolites* [Internet]. 2023 Feb 11;13(2). Available from:
505 <http://dx.doi.org/10.3390/metabo13020263>

506 27. Blasco H, Bessy C, Plantier L, Lefevre A, Piver E, Bernard L, et al. The specific
507 metabolome profiling of patients infected by SARS-CoV-2 supports the key role of
508 tryptophan-nicotinamide pathway and cytosine metabolism. *Sci Rep.* 2020 Oct
509 8;10(1):16824.

510 28. Jureka AS, Silvas JA, Basler CF. Propagation, Inactivation, and Safety Testing of
511 SARS-CoV-2. *Viruses* [Internet]. 2020 Jun 6;12(6). Available from:
512 <http://dx.doi.org/10.3390/v12060622>

513 29. Hotchin JE. Use of methyl cellulose gel as a substitute for agar in tissue-culture
514 overlays. *Nature*. 1955 Feb 19;175(4451):352.

515 30. Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR,
516 et al. Subversion of cellular autophagosomal machinery by RNA viruses. *PLoS Biol.*
517 2005 May;3(5):e156.

518 31. Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics
519 Data Analysis. *Curr Protoc Bioinformatics*. 2016 Sep 7;55:14.10.1-14.10.91.

520 32. Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, et al. Using MetaboAnalyst
521 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate
522 adjustment of global metabolomics data. *Nat Protoc*. 2022 Jun 17;17(8):1735–61.

523 33. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0:
524 towards more transparent and integrative metabolomics analysis. *Nucleic Acids
525 Res*. 2018 Jul 2;46(W1):W486–94.

526 34. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens RWAL, van der Meer
527 Y, Caly L, et al. SARS-coronavirus-2 replication in Vero E6 cells: replication
528 kinetics, rapid adaptation and cytopathology. *J Gen Virol*. 2020 Sep;101(9):925–40.

529 35. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B,
530 Hermann G, et al. METLIN: A technology platform for identifying knowns and
531 unknowns. *Anal Chem*. 2018 Mar 6;90(5):3156–64.

532 36. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An
533 Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is
534 to Enable Aspartate Synthesis. *Cell*. 2015 Jul 30;162(3):540–51.

535 37. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG.
536 Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in
537 Proliferating Cells. *Cell*. 2015 Jul 30;162(3):552–63.

538 38. Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, et al. Systemic
539 Perturbations in Amine and Kynurenone Metabolism Associated with Acute SARS-
540 CoV-2 Infection and Inflammatory Cytokine Responses. *J Proteome Res*. 2021
541 May 7;20(5):2796–811.

542 39. Caterino M, Costanzo M, Fedele R, Cevenini A, Gelzo M, Di Minno A, et al. The
543 Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible
544 Liver Alterations Involving Carbon and Nitrogen Metabolism. *Int J Mol Sci* [Internet].
545 2021 Sep 2;22(17). Available from: <http://dx.doi.org/10.3390/ijms22179548>

546 40. Ayres JS. A metabolic handbook for the COVID-19 pandemic. *Nat Metab.* 2020
547 Jul;2(7):572–85.

548 41. Wu D, Shu T, Yang X, Song J-X, Zhang M, Yao C, et al. Plasma metabolomic and
549 lipidomic alterations associated with COVID-19. *Natl Sci Rev.* 2020 Jul;7(7):1157–
550 68.

551 42. Shi D, Yan R, Lv L, Jiang H, Lu Y, Sheng J, et al. The serum metabolome of
552 COVID-19 patients is distinctive and predictive. *Metabolism.* 2021
553 May;118:154739.

554 43. Li X, Liu Y, Xu G, Xie Y, Wang X, Wu J, et al. Plasma metabolomic characterization
555 of SARS-CoV-2 Omicron infection. *Cell Death Dis.* 2023 Apr 19;14(4):276.

556 44. Bruzzone C, Bizkarguenaga M, Gil-Redondo R, Diercks T, Arana E, García de
557 Vicuña A, et al. SARS-CoV-2 Infection Dysregulates the Metabolomic and
558 Lipidomic Profiles of Serum. *iScience.* 2020 Oct 23;23(10):101645.

559 45. Gardinassi LG, Servian C do P, Lima G da S, Dos Anjos DCC, Gomes Junior AR,
560 Guilarde AO, et al. Integrated Metabolic and Inflammatory Signatures Associated
561 with Severity of, Fatality of, and Recovery from COVID-19. *Microbiol Spectr.* 2023
562 Feb 28;11(2):e0219422.

563 46. Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, et al. The multiple facets of
564 acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn
565 errors. *Mol Genet Metab.* 2023 Jan;138(1):106966.

566 47. Cerqueira NMFS, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy
567 HN, et al. Cholesterol Biosynthesis: A Mechanistic Overview. *Biochemistry.* 2016
568 Oct 4;55(39):5483–506.

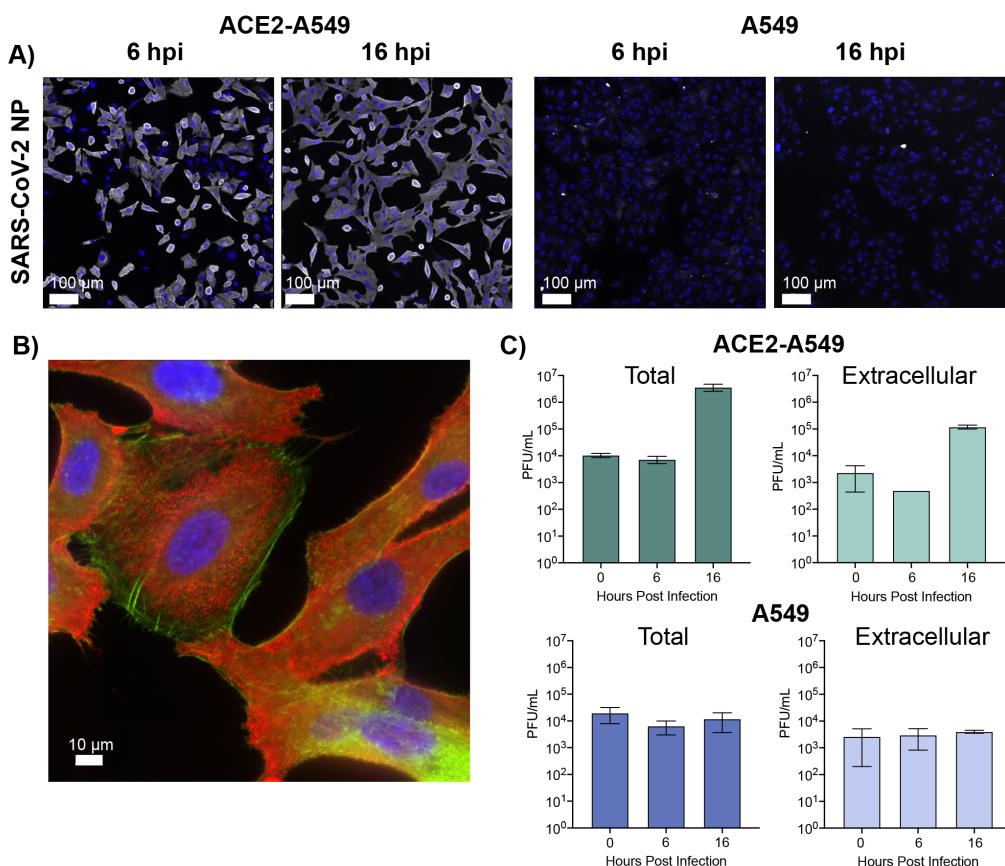
569 48. Citron F, Perelli L, Deem AK, Genovese G, Viale A. Leukotrienes, a potential target
570 for Covid-19. *Prostaglandins Leukot Essent Fatty Acids.* 2020 Oct;161:102174.

571 49. Archambault A-S, Zaid Y, Rakotoarivelo V, Turcotte C, Doré É, Dubuc I, et al. High
572 levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients.
573 *FASEB J.* 2021 Jun;35(6):e21666.

574 50. Pérez MM, Pimentel VE, Fuzo CA, da Silva-Neto PV, Toro DM, Fraga-Silva TFC, et
575 al. Acetylcholine, Fatty Acids, and Lipid Mediators Are Linked to COVID-19
576 Severity. *J Immunol.* 2022 Jul 15;209(2):250–61.

577 51. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and
578 disease. *Nat Rev Mol Cell Biol.* 2018 Mar;19(3):175–91.

579 52. Vitner EB, Avraham R, Politi B, Melamed S, Israely T. Elevation in sphingolipid
580 upon SARS-CoV-2 infection: possible implications for COVID-19 pathology. *Life Sci*

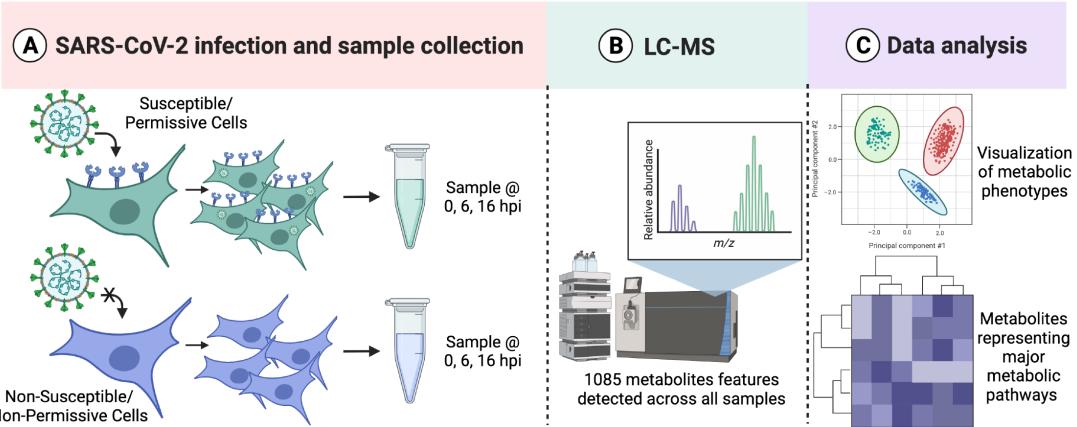

581 Alliance [Internet]. 2022 Jan;5(1). Available from:
582 <http://dx.doi.org/10.26508/lsa.202101168>

583 53. Torretta E, Garziano M, Poliseno M, Capitanio D, Biasin M, Santantonio TA, et al.
584 Severity of COVID-19 Patients Predicted by Serum Sphingolipids Signature. *Int J*
585 *Mol Sci* [Internet]. 2021 Sep 22;22(19). Available from:
586 <http://dx.doi.org/10.3390/ijms221910198>

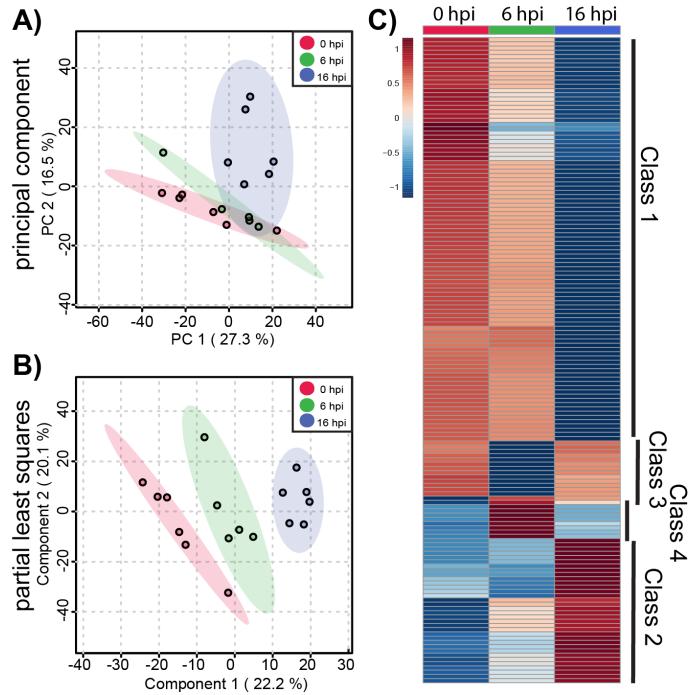
587 54. Fritsch SD, Weichhart T. Effects of Interferons and Viruses on Metabolism. *Front*
588 *Immunol*. 2016 Dec 21;7:630.

589

590 **Figures:**


591

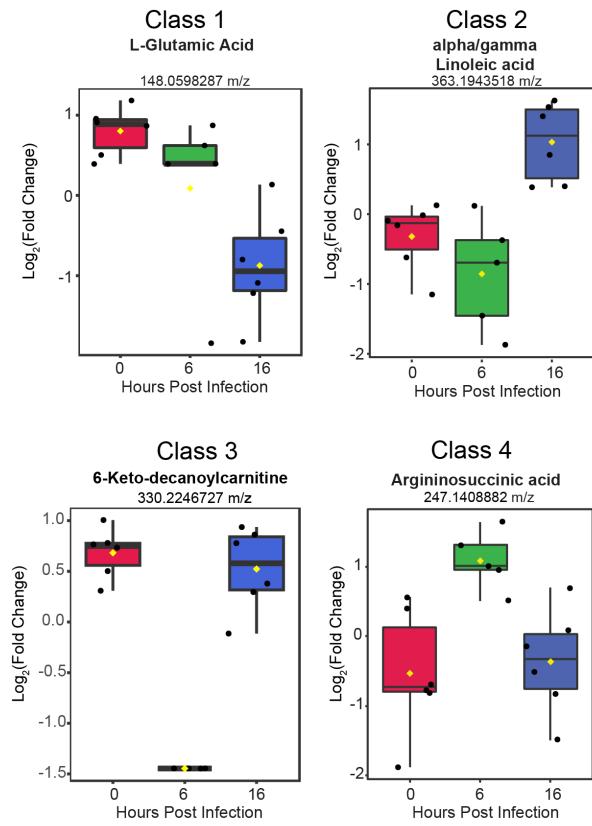
592 **Figure 1: Infection of different A549 cells with SARS-CoV-2. (A)** ACE-2 expressing
593 or parental A549 cells were infected at MOI 10 with SARS-CoV-2/WA01. Parallel
594 infections were fixed at 6 and 16 hpi and stained with SARS-CoV-2 anti-nucleocapsid
595 antibody (red) with Dapi (blue, nuclei). Scale bar is 100 μm. **(B)** Co-staining of the
596 SARS-CoV-2 anti nucleocapsid antibody (red) with phalloidin (green) with Dapi (blue,
597 nuclei) in Ace2-A549 cells at 16 hpi at MOI of 10. **(C)** Titers from Ace2-A549 and A549
598 cells infected with SARS-CoV-2 at an MOI 10. Both cell extracts (Total) and
599 supernatants (Extracellular) were collected and titrated at 0, 6, and 16 hpi. All data
600 represented as the mean ± SD of three independent measurements.


601

602

603

604 **Figure 2. Metabolic profiling analysis pipeline for infected cells. (A)** Ace2-A549 and
605 A549 cells were infected with SARS-CoV-2 Isolate USA-WA1/2020 at an MOI of 10.
606 Metabolites were extracted at multiple time points post infection.
607 **(B)** Metabolic profiles are generated following LC-MS detection in the Mass
608 Spectrometry Core Facility. **(C)** Data processing and analysis allows for both global
609 metabolite profiling and pathway enrichment analysis. Image generated with Biorender.
610
611

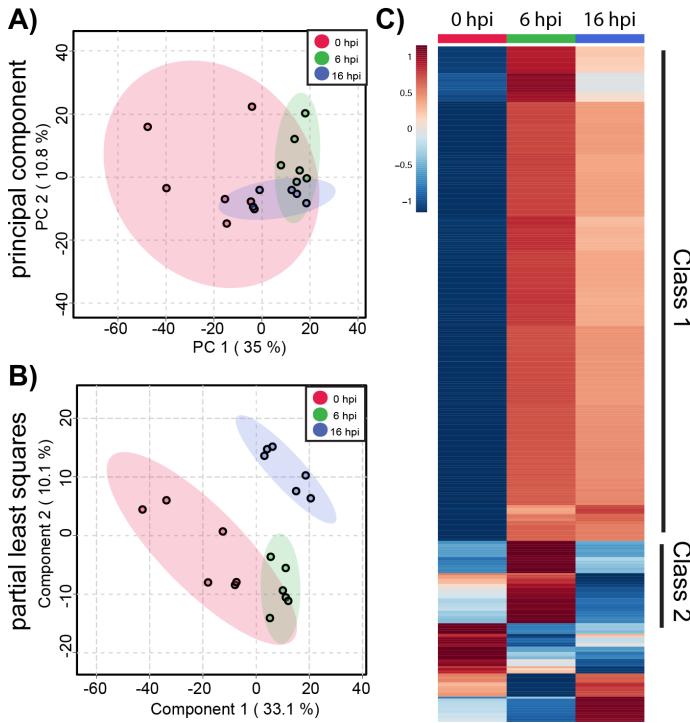


612

613 **Figure 3. Global metabolite profiling of SARS-CoV-2 infected ACE2-A549 cells.** A
614 total of 1085 metabolites were analyzed by **(A)** principal component analysis (PCA) and
615 **(B)** supervised partial least-squares discriminant analysis (PLSDA). **(C)** Heatmap
616 analysis of significant metabolites (n=152) reveals temporal changes in metabolite
617 phenotypes from 0 to 16 hpi. Mean intensities of each metabolite were clustered into 3
618 groups: 0 hpi (n=6), 6 hpi (n=5), and 16 hpi (n=6). Normalized fold change of specific
619 metabolites is relative to peak concentration across 0, 6, and 16 hpi.

620

621

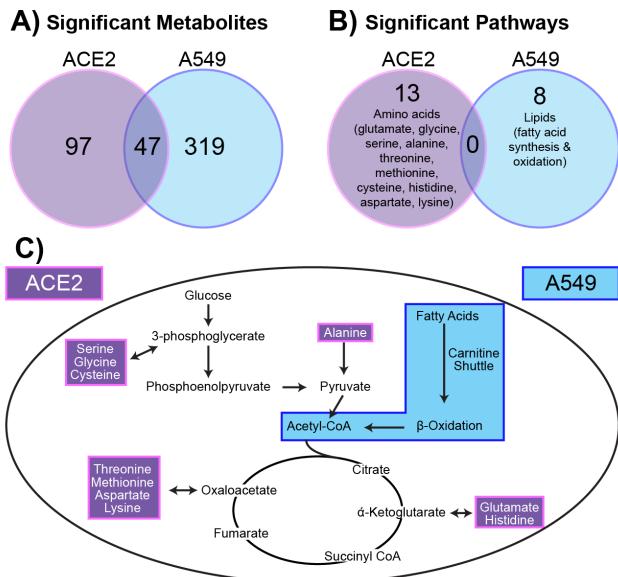


622

623 **Figure 4. Putative metabolites identified from each of the four classes.** The
624 normalized fold change value for 4 separate metabolites are presented within box plots.
625 Individual replicates within each time point are represented as black spots. Average
626 value is the yellow diamond. Each plot is labeled for the individual metabolite(s) based
627 on m/z value identification.

628

629



630

631 **Figure 5. Global metabolite profiling of SARS-CoV-2 inoculated A549 cells.** Similar
632 to Ace2-A549 cells, metabolite profiles from A549 cells were compared by **(A)** PCA and
633 **(B)** PLSDA. **(C)** Heatmap analysis of significant metabolites ($n=377$) reveals a different
634 temporal phenotype in cells that are exposed to SARS-CoV-2 but remain uninfected.
635 Mean intensities of each metabolite were clustered into 3 groups: 0 hpi ($n=6$), 6 hpi
636 ($n=6$), and 16 hpi ($n=6$). Normalized fold change of specific metabolites is relative to
637 peak concentration across 0, 6, and 16 hpi.

638

639

640

641 **Figure 6: A549 cells have quantifiably different metabolic responses to SARS-
642 CoV-2. (A) Significant metabolites (FC >1.5) from ACE2-A549 and A549 cells were
643 compared to identify similar and different metabolites that change in response to SARS-
644 CoV-2. (B) Pathway analysis on significant metabolites from ACE2-A549 and A549
645 cells. (C) Evaluating metabolic pathway changes relative to energy generation. Amino
646 acids that were downregulated in Ace2-A549 are shown within the pathway highlighted
647 in purple. Fatty acid metabolism was upregulated in A549 cells exposed to SARS-CoV-
648 2, highlighted separately in blue. Both pathways directly or indirectly connect with
649 components of the TCA cycle and glycolysis.**

650

651

652 **Table 1:**

ACE2-A549 Pathways	Pathway total	Hits Total	Hits Sig	Gamma Value	Cpd.Hits
Glutamate metabolism	15	5	5	0.00558	L-Glutamic acid Oxoglutaric acid Gamma-Aminobutyric acid Glutathione Succinic acid semialdehyde
Glutathione Metabolism	19	4	4	0.009278	Pyroglutamic acid L-Glutamic acid Glutathione L-Cysteine
Tryptophan metabolism	94	9	7	0.009861	L-Glutamic acid Oxoglutaric acid Formyl-5-hydroxykynurenamine 2-Aminobenzoic acid CE2095 L-Kynureanine Glutathione
Glycine, serine, alanine and threonine metabolism	88	8	6	0.015295	L-Glutamic acid Oxoglutaric acid Dimethylglycine Creatine 2-Ketobutyric acid L-Allothreonine L-Threonine Glutathione
Methionine and cysteine metabolism	94	8	6	0.015295	L-Glutamic acid Oxoglutaric acid 2-Ketobutyric acid DL-Glutamate L-Cysteine Allocystathionine L-Cystathionine Glutathione
Urea cycle/amino group metabolism	85	10	7	0.018261	L-Glutamic acid Creatinine Creatine Argininosuccinic acid Gamma-Aminobutyric acid Oxoglutaric acid Queuine N4-Acetylaminobutanal
Histidine metabolism	33	3	3	0.01834	L-Glutamic acid Oxoglutaric acid Glutathione
Beta-Alanine metabolism	20	3	3	0.01834	L-Glutamic acid Gamma-Aminobutyric acid Oxoglutaric acid
Alanine and Aspartate Metabolism	30	4	3	0.041655	L-Glutamic acid Oxoglutaric acid N-Acetyl-L-aspartic acid Argininosuccinic acid
Lysine metabolism	52	4	3	0.041655	L-Glutamic acid Oxoglutaric acid Pipecolic acid
Glycerophospholipid metabolism	156	6	4	0.042495	Alpha-Linolenic acid Glycerophosphocholine Phosphorylcholine Linoleic acid
C5-Branched dibasic acid metabolism	10	2	2	0.045209	Itaconic acid Mesaconic acid
Ascorbate (Vitamin C) and Aldarate Metabolism	29	2	2	0.045209	Glutathione L-Erythrulose

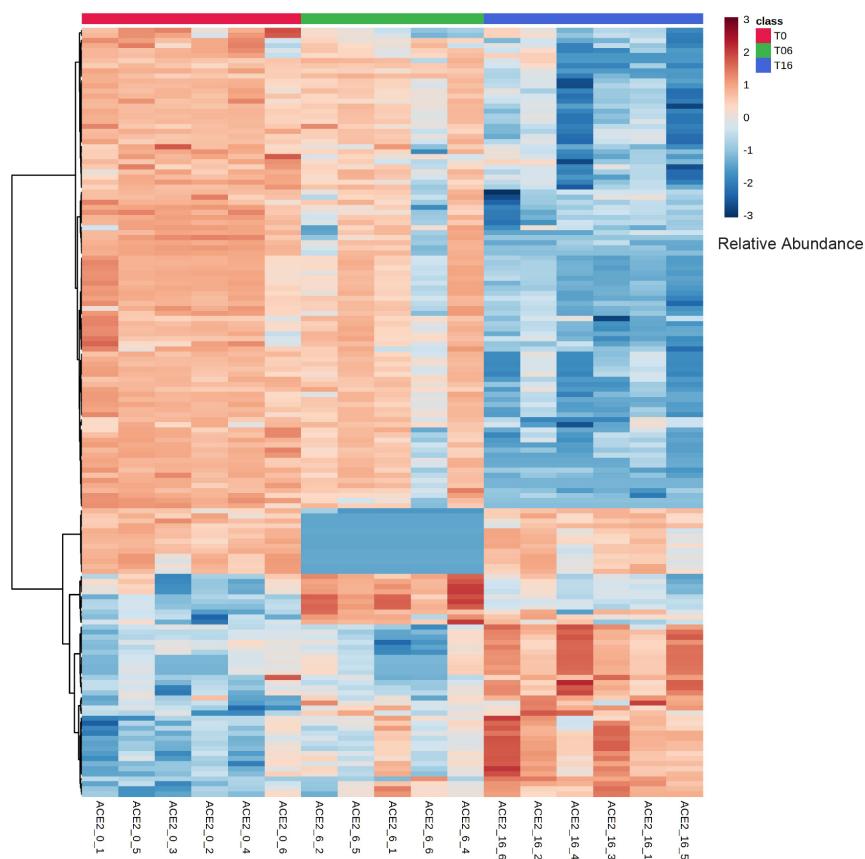
653

654

655

656 **Table 2.**

A549 Pathways	Pathway total	Hits Total	Hits Sig	Gamma Value	Cpd.Hits
Di-unsaturated fatty acid beta-oxidation	26	5	5	0.00594	CE2422 CE2421 CE2434 CE0849 Linoleic acid
Fatty acid activation	74	9	6	0.011166	Palmitoyl-CoA Alpha-Linolenoyl-CoA Alpha-Linolenic acid Gamma- Linolenic acid Linoleic acid Heptadecanoyl-CoA
Fatty Acid Metabolism	63	4	3	0.024423	3-Oxohexadecanoyl-CoA Palmitoyl- CoA Linoleic acid
Fatty acid oxidation	35	4	3	0.024423	Palmitoyl-CoA Alpha-Linolenoyl-CoA Heptadecanoyl-CoA
De novo fatty acid biosynthesis	106	7	4	0.031172	Palmitoyl-CoA Alpha-Linolenic acid Gamma-Linolenic acid Linoleic acid
Leukotriene metabolism	92	7	4	0.031172	20-Hydroxy-leukotriene B4 CE6473 CE6228 CE6182 CE6187
Omega-3 fatty acid metabolism	39	2	2	0.034719	trans-2-Enoyl-OPC8-CoA Alpha- Linolenic acid
Carnitine shuttle	72	5	3	0.040388	Alpha-Linolenoyl-CoA Palmitoyl-CoA Heptadecanoyl-CoA

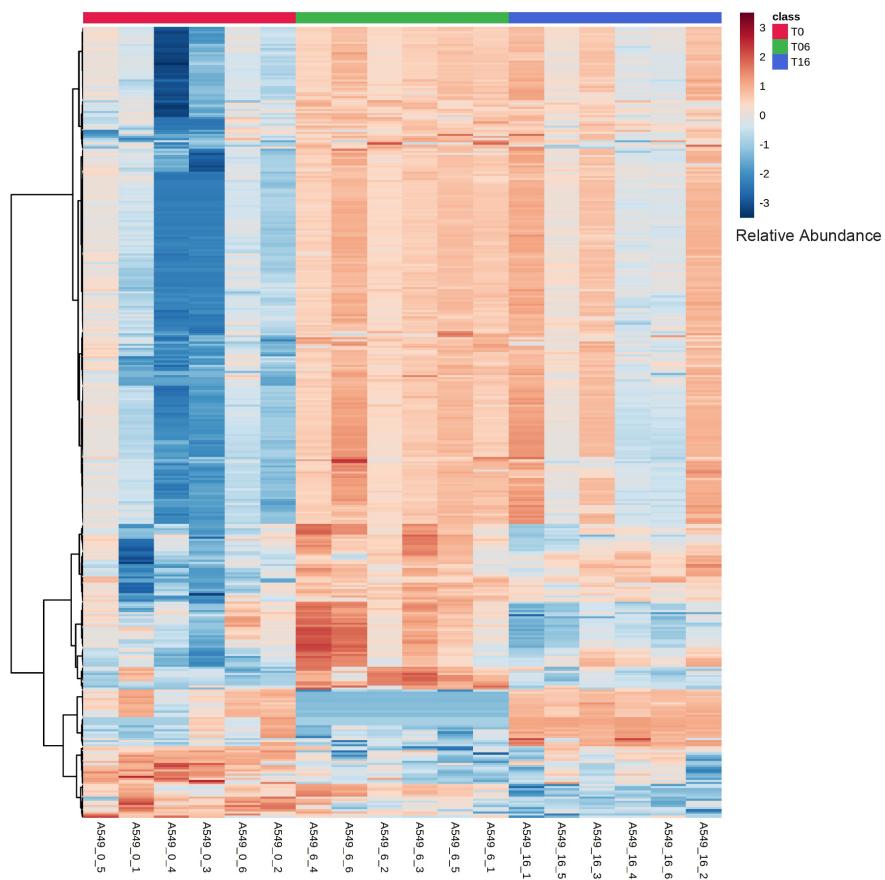

657

658

659

660

661 **Supplementary Figures**



662

663 **Figure S1:** Heatmap analysis of significant metabolites (n = 152) for all ACE2-A549
664 samples at each time point.

665

666

667

668 **Figure S2:** Heatmap analysis of significant metabolites (n = 377) for all A549 samples
669 at each time point.

670

671

672 **Table S1:** Raw mass spec values for all samples and timepoints.