

1 **Running Title**

2 Stem Cell-Derived Cardiomyocyte and Nasal Epithelium Models to Validate Repurposed Drugs

3 Against SARS-CoV-2 Infection

4

5 **Use of Stem Cell-Derived Cardiomyocyte and Nasal Epithelium Models to Establish a Multi-**

6 **Tissue Model Platform to Validate Repurposed Drugs Against SARS-CoV-2 Infection**

7

8 **Authors**

9 Nathan J Götde ^{1,2}, Carmel M O'Brien ^{3,4}, Elizabeth Vincan ^{5,6,7}, Aditya Vashi ³, Stephanie Olliff ¹, Bang M
10 Tran ⁵, Shafagh A Waters ^{8,9,10}, Sarah Goldie ¹, Petrus Jansen van Vuren ¹, Shane Riddell ¹, Matthew P Bruce
11 ¹, Vinti Agarwal ¹¹, Eugene Athan ¹², Kim R Blasdell ¹, Simran Chahal ^{1,6}, Darren J Creek ¹³, Faheem ^{14,15},
12 Hardik A Jain ^{16,17}, Carl M Kirkpatrick ¹⁸, Anupama Kumar ¹⁹, Christopher A MacRaild ¹³, Mohammed
13 Muzaffar-Ur-Rehman ¹⁴, Murugesan Sankaranarayanan ¹⁴, Rohan M Shah ^{20,21}, Ian K Styles ¹³, Mary
14 Tachedjian ¹, Natalie L Trevaskis ¹³, Nagendrakumar B Singanallur ¹, Alexander J McAuley ^{1,*}, Seshadri S
15 Vasan ^{1,22,23,*}

16

17 **Affiliations**

18 ¹ Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research
19 Organisation (CSIRO), 5 Portarlington Road, East Geelong, VIC 3219, Australia;

20 ² The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland,
21 Brisbane, QLD 4072, Australia;

22 ³ Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton,
23 VIC 3168, Australia;

24 ⁴ Australian Regenerative Medicine Institute, Monash University, Clayton VIC 3168, Australia;

25 ⁵ Department of Infectious Diseases, The Peter Doherty Institute, University of Melbourne, Melbourne,
26 VIC 3000, Australia;

27 ⁶ Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne, VIC 3000, Australia;

28 ⁷ Curtin Medical School, Curtin University, Perth WA 6102, Australia;

29 ⁸ School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;

30 ⁹ Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales & Sydney

31 Children's Hospital, Sydney, NSW 2031, Australia;

32 ¹⁰ Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW 2031, Australia;

33 ¹¹ Department of Computer Science and Information Systems, Birla Institute of Technology and Science,

34 Pilani 333031, India;

35 ¹² School of Medicine, Deakin University, Piggons Road, Waurn Ponds, VIC 3216, Australia;

36 ¹³ Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash

37 University, Parkville, VIC 3052, Australia;

38 ¹⁴ Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India;

39 ¹⁵ Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA;

40 ¹⁶ Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani

41 333031, India;

42 ¹⁷ School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, WA

43 6102 Australia;

44 ¹⁸ Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University,

45 Parkville, VIC 3052, Australia;

46 ¹⁹ Environment, Commonwealth Scientific and Industrial Research Organisation, Waite Campus, Urrbrae,

47 SA 5064, Australia;

48 ²⁰ Department of Chemistry and Biochemistry, Swinburne University of Technology, Hawthorn, VIC 3122,

49 Australia;

50 ²¹ School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083,

51 Australia;

52 ²² School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;

53 ²³ Department of Health Sciences, University of York, York YO10 5DD, UK.

54

55 **Corresponding Authors and Email Addresses**

56 Alexander J McAuley (alex.mcauley@csiro.au); Seshadri S Vasan (prof.vasan@york.ac.uk)

57

58 **Abstract**

59 The novel coronavirus disease (COVID-19) and any future coronavirus outbreaks will require more
60 affordable, effective and safe treatment options to complement current ones such as *Paxlovid*. Drug
61 repurposing can be a promising approach if we are able to find a rapid, robust and reliable way to
62 down-select and screen candidates using *in silico* and *in vitro* approaches. With repurposed drugs, *ex*
63 *vivo* models could offer a rigorous route to human clinical trials with less time invested into
64 nonclinical animal (*in vivo*) studies. We have previously shown the value of commercially available *ex*
65 *vivo*/3D airway and alveolar tissue models, and this paper takes this further by developing and
66 validating human nasal epithelial model and embryonic stem cells derived cardiomyocyte model.
67 Five shortlisted candidates (fluvoxamine, everolimus, pyrimethamine, aprepitant and sirolimus) were
68 successfully compared with three control drugs (remdesivir, molnupiravir, nirmatrelvir) when tested
69 against key variants of the SARS-CoV-2 virus including Delta and Omicron, and we were able to
70 reconfirm our earlier finding that fluvoxamine can induce antiviral efficacy in combination with other
71 drugs. Scalability of this high-throughput screening approach has been demonstrated using a liquid
72 handling robotic platform for future 'Disease-X' outbreaks.

73

74 **Keywords**

75 COVID-19; Drug Repurposing; Cardiomyocytes; Delta; Fluvoxamine; Multi-Tissue Platform; Nasal
76 Epithelium; Omicron; Paxlovid; Stem Cell-Derived Tissue Models

77

78 **Introduction**

79 Almost five years after the start of the COVID-19 pandemic, there remain few effective antiviral drugs
80 for its treatment. Most drugs that are available (e.g. Paxlovid) are prohibitively expensive for low-
81 income countries, leaving them with no therapeutic interventions to treat patients. The repurposing
82 of existing drugs can be a useful approach for the identification of deployable therapies but, given
83 that there are several thousands of prescription drug products to choose from, selecting for antiviral
84 efficacy using an appropriate model(s) is challenging [1]. Such efforts are not only useful for the
85 treatment of COVID-19, but also prepare for future coronavirus outbreaks.

86

87 Early in the pandemic, high-throughput drug screening was performed using permissive cell lines,
88 such as Vero E6, which identified a number of drug candidates with possible antiviral efficacy against
89 SARS-CoV-2 infection (measured through the inhibition of observable cytopathic effect) [2-6].

90 However, many, if not most, of these drugs failed to show efficacy in more complex testing settings.
91 Immortalised, continuous cell lines are either intrinsically tumorigenic or have been engineered as
92 such, resulting in aberrant cellular process such as dysregulated proteosomes, impaired immune
93 responses, and a loss of cellular polarity [7, 8]. As such, these cells behave significantly differently to
94 those in host tissues, and frequently result in false positive or false negative results. Indeed, the lack
95 of clinical efficacy for both chloroquine/hydroxychloroquine and ivermectin, despite strong *in vitro*
96 evidence, serve as cautionary tales for the over-interpretation of antiviral efficacy based on tissue
97 culture studies [4, 5, 9, 10].

98

99 3D tissue models, whether air-liquid interface (ALI) cultures or organoids, constitute more advanced
100 *in vitro/ex vivo* systems for drug assessment as they overcome many of the aforementioned
101 limitations. 3D tissue models have the advantage that they are derived from non-immortalised cells
102 (human or animal) and are differentiated to generate cellular structures that better recapitulate
103 human and animal tissues than is possible with immortalised cells [7], however they still have some
104 limitations including the time and cost associated with differentiation, the need to source new seed

105 material, and significant batch-to-batch variation. Nevertheless, their response to infection and
106 treatment better reflects that seen in patients and, as such, may generate more reliable data for
107 known and emerging infectious diseases.

108

109 We have recently employed an *in silico* approach to down-select nine approved drugs (plus three
110 anti-SARS-CoV-2 control drugs) for assessment using a commercially-sourced ALI model of the
111 human airway epithelium [11-13]. Five drugs that showed promise were further evaluated against
112 both Delta and Omicron variants of concern (VOC), with fluvoxamine exhibiting anti-SARS-CoV-2
113 activity, albeit at concentrations higher than can be achieved in patients [13].

114

115 SARS-CoV-2 does not, however, only affect the airway. It can infect and damage cardiac tissues, cause
116 intestinal dysregulation, and affect cognitive functions [14-16]. Infection of nasal epithelial cells can
117 result in prolonged viral shedding, which likely contributes to human-to-human transmission [17,
118 18]. Accordingly, potential drugs should show efficacy in multiple relevant tissue models before
119 conclusions are drawn about whether to advance to *in vitro* or clinical studies. This means that a
120 panel of models should be established that appropriately reflect the clinical tropism of a given virus.

121

122 This study builds upon our previous human airway model-based assessment of approved drugs by
123 characterising SARS-CoV-2 infection in human nasal epithelial (HNE) and cardiomyocyte models, as
124 well as re-assessing the previously-characterised approved drugs against both Delta and Omicron
125 VOC in the cardiomyocytes. Furthermore, we demonstrate that the differentiated cardiomyocytes
126 can be processed using liquid handling robotic platforms to permit their usage for high-throughput
127 screening of antiviral compounds during outbreak conditions.

128

129 **Materials and Methods**

130 *Human Ethics Approvals*

131 For the generation of human nasal epithelial cells, study approval was received from the Sydney
132 Children's Hospital Network Ethics Review Board (HREC/16/SCHN/120) and the Medicine and
133 Dentistry Human Ethics Sub-Committee, University of Melbourne (HREC/2057111). Written consent
134 was obtained from all participants prior to collection of biospecimens.

135

136 Usage of human embryonic stem cells (for cardiomyocyte production), and infection of both sets of
137 tissue models was covered by approval from the CSIRO Health and Medical Human Research Ethics
138 Committee (2021_83_LR).

139

140 *Development of Human Nasal Epithelial Model (HNE)*

141 De-identified, cryopreserved human nasal epithelial cells were received from the Molecular and
142 Integrative Cystic Fibrosis Research Centre (University of New South Wales, Sydney, NSW, Australia),
143 where they were harvested from nasal turbinate brush samples followed by culture under
144 conditional reprogram conditions as previously described [19, 20].

145

146 Mucociliary differentiation at the air-liquid interface was performed as previously described [20].
147 Briefly, cryovials of cells were thawed and seeded onto 6.5mm transwell inserts (Corning,
148 Kennebunk, ME, USA) pre-coated with collagen Type I (PureCol-S; Advanced BioMatrix, San Diego,
149 CA, USA). Cells were incubated for 7 days submerged in PneumaCult-ExPlus (STEMCELL Technologies,
150 Vancouver, BC, Canada). After the 7-day culture, the PneumaCult-ExPlus media was substituted for
151 PneumaCult-ALI medium (STEMCELL Technologies), and ALI differentiation was initiated by exposing
152 the apical surface to air. Medium in the basal compartment was replaced three times per week for
153 four weeks until differentiation was complete.

154

155 *Development of Cardiomyocyte Model*

156 WA09 embryonic stem cells (WiCell, Madison, WI, USA) were expanded and maintained at 37°C/5%
157 CO₂ in mTeSR-E8 culture medium (STEMCELL Technologies) on Nunclon cultureware coated with
158 LDEV-free Geltrex (Thermo Fisher Scientific, Waltham, MA, USA). At approximately 80% confluence,
159 cells were harvested using ReLeSR dissociation reagent (STEMCELL Technologies) and passaged for a
160 minimum of three times before commencing differentiation into cardiomyocytes.

161

162 For generation of cardiomyocytes, dissociated WA09 cells were plated onto Matrigel-coated 75cm²
163 tissue culture flasks (Corning) in medium supplemented with 10 µM Rho kinase inhibitor (Y-27632;
164 STEMCELL Technologies) at 1.35x10⁶ cells/cm² to achieve 95% confluence after 48h culture
165 (Differentiation Day 0). The culture medium was replaced 24h post-seeding, and then sequentially
166 with STEMdiff Cardiomyocyte Differentiation kit components, per the manufacturer's protocol
167 (STEMCELL Technologies). Following 15 days of differentiation, approximately 90% of the cells were
168 observed to be rhythmically beating. The cultures were maintained in STEMdiff Cardiomyocyte
169 Maintenance Medium (STEMCELL Technologies) for a further 5-7 days. Prior to infection, the
170 cardiomyocyte cultures were dissociated using a cardiomyocyte dissociation kit (STEMCELL
171 Technologies) before being replated in matrigel-coated 12 well plates at a seeding density of 0.5x10⁶
172 cells/well, resulting in a consistent surface coverage of cardiomyocytes within and between wells.
173 Infections occurred between Day 20 and 25 of differentiation.

174

175 *Virus Stocks and Viral Titration*

176 Virus stocks used in our previous study, [13], were used again for this work. In brief, Delta (B.1.617.2;
177 hCoV-19/Australia/VIC18440/2021; EPI_ISL_1913206) and Omicron BA.1.1 (hCoV-
178 19/Australia/VIC28585/2021; EPI_ISL_7771171) SARS-CoV-2 VOC were kindly provided by Drs Caly
179 and Druce at the Victorian Infectious Diseases Reference Laboratory. Working stocks of each were
180 grown in Vero E6 cells (American Type Culture Collection, Manassas, VA, USA), with Dulbecco's
181 Minimum Essential Medium (DMEM) supplemented with 2% FBS, 2 mM GlutaMAX supplement, 100

182 U/mL penicillin, and 100 µg/mL streptomycin (all components from Thermo Fisher Scientific). Diluted
183 inoculum was used to inoculate Vero E6 cells for 1 h at 37 °C/5% CO₂ before additional media was
184 added to the flask. The flasks were incubated for 48 h before supernatant was centrifuged at
185 2000×*g* for 10 min to clarify, harvested and stored in 1 mL aliquots at -80 °C.

186

187 Identity of virus stocks was confirmed by next-generation sequencing using a MiniSeq platform
188 (Illumina, Inc.; San Diego, CA, USA). In brief, 100 µL cell culture supernatant from infected Vero E6
189 cells was combined with 300 µL TRIzol reagent (Thermo Fisher Scientific) and RNA was purified using
190 a Direct-zol RNA Miniprep kit (Zymo Research, Irvine, CA, USA). Purified RNA was further
191 concentrated using an RNA Clean-and-Concentrator kit (Zymo Research), followed by quantification
192 on a DeNovix DS-11 FX Fluorometer. RNA was converted to double-stranded cDNA, ligated then
193 isothermally amplified using a QIAseq FX single cell RNA library kit (Qiagen, Hilden, Germany).
194 Fragmentation and dual-index library preparation was conducted with an Illumina DNA Prep,
195 Tagmentation Library Preparation kit. Average library size was determined using a Bioanalyser
196 (Agilent Technologies, San Diego, CA, USA) and quantified with a Qubit 3.0 Fluorometer (Thermo
197 Fisher Scientific). Denatured libraries were sequenced on an Illumina MiniSeq using a 300-cycle Mid-
198 Output Reagent kit as per the manufacturer's protocol. Paired-end Fastq reads were trimmed for
199 quality and mapped to the published sequence for the SARS-CoV-2 reference isolate Wuhan-Hu-1
200 (RefSeq: NC_045512.2) using CLC Genomics Workbench version 21 from which consensus sequences
201 were generated. Stocks were confirmed to be free from contamination by adventitious agents by
202 analysis of reads that did not map to SARS-CoV-2 or cell-derived sequences.

203

204 Virus samples were titrated using a 50% Tissue Culture Infectious Dose (TCID₅₀) assay. In brief,
205 samples were serially 10-fold diluted in DMEM supplemented with 2% v/v FBS, 2 mM GlutaMAX
206 supplement, 100 U/mL penicillin, and 100 µg/mL streptomycin, starting at a 1:10 dilution. For each
207 dilution in the series, six replicate wells were prepared per sample in 96-well plates (50 µL per well)

208 into which 2×10^4 Vero E6 cells/well in 100 μL volume were added. Plates were incubated at 37
209 $^{\circ}\text{C}/5\% \text{CO}_2$ for four days before being assessed for the presence of cytopathic effect. TCID₅₀ titres
210 were calculated using the six replicates for each sample and the Spearman-Kärber method [21].

211

212 *Preliminary Infection Studies with Human Nasal Epithelial Cells*

213 Prior to infection of the HNE cells, the apical face of each transwell culture was washed twice with
214 300 μl Dulbecco's Phosphate Buffered Saline containing Calcium and Magnesium ions (DPBS+;
215 Thermo Fisher Scientific) to remove accumulated mucus. Basal media containing either a 1:1,000
216 dilution of remdesivir stock (5 mM final concentration) or the equivalent volume of DMSO vehicle
217 was prepared in PneumaCult-ALI medium (STEMCELL Technologies) and was used to replace media
218 in the appropriate wells of the 24-well plates containing the transwells. Mock and virus-only treated
219 cells received the media with DMSO, while the drug-only and virus+drug cells received the media
220 with 5 μM remdesivir. The transwells were incubated at room temperature for one hour before being
221 infected with an apical administration of 100 μl SARS-CoV-2 Delta VOC inoculum at an MOI of 0.01,
222 or 100 μl media without virus, for a further hour at 37 $^{\circ}\text{C}/5\% \text{CO}_2$. After the 1hr incubation, 200 μl
223 DPBS+ was added to the apical side of each well before being removed along with any inoculum. The
224 plates were returned to incubate at 37 $^{\circ}\text{C}/5\% \text{CO}_2$, and a back titration was performed to confirm the
225 inoculum titre.

226

227 Basal media and apical wash samples were harvested daily from quadruplicate wells on days 1-4
228 post-infection. 350 μl DPBS+ was added to the apical side of the appropriate wells, and the plates
229 were incubated at 37 $^{\circ}\text{C}/5\% \text{CO}_2$ for 30 min to allow for equilibration of the samples. After
230 incubation, the apical washes were removed and stored at -80 $^{\circ}\text{C}$ until titration by TCID₅₀ assay. 1 ml
231 samples of basal media were also removed from each well and stored at -80 $^{\circ}\text{C}$ until titration.

232

233 Wells for harvest on Day 3 and 4 post-infection received a media/treatment change on Day 2 post-
234 infection. DMSO- and remdesivir-containing media was prepared as described above and was used
235 to replace the media in the 24-well plates, as appropriate.

236

237 *Preliminary Infection Studies with Human Cardiomyocytes*

238 Previously seeded 12-well plates of attached, differentiated cardiomyocytes were treated with 1 ml
239 STEMdiff Cardiomyocyte Maintenance Medium (STEMCELL Technologies) containing 1:1,000 diluted
240 remdesivir (5 mM final concentration) or 1:1,000 dilution of DMSO vehicle. The plates were
241 incubated at room temperature for an hour before the media was removed and the cells were
242 treated with 200 μ l media containing the remdesivir or DMSO, along with SARS-CoV-2 Delta VOC
243 inoculum at an MOI of 0.01 for infected wells, for a further hour at 37°C/5% CO₂. After the 1h
244 infection, 400 μ l DPBS+ was added to each well before being removed along with any inoculum. 1ml
245 medium containing remdesivir or DMSO was added to each well as appropriate and plates were
246 returned to incubate at 37°C/5% CO₂. A back titration was performed to confirm the inoculum titre.

247

248 1ml aliquots of media harvested daily from quadruplicate wells on days 1-4 post-infection and stored
249 at -80°C until titration by TCID₅₀. Media in the Day 3 and 4 wells was replaced on Day 2 post-infection
250 with media containing the appropriate additive (remdesivir or DMSO).

251

252 *Drug Selection, Procurement, and Preparation*

253 Prospective drugs were down-selected from the Compounds Australia Open Drug collection using a
254 set of filters described previously [12]. Based on the results of our previous study using a human
255 airway tissue model, fluvoxamine, everolimus, pyrimethamine, aprepitant, and sirolimus were tested
256 alongside the control drugs remdesivir, molnupiravir, and nirmatrelvir (PF-07321332; the active
257 ingredient in Paxlovid) [13]. All of the drugs were obtained from Selleck Chemicals (Houston, TX,
258 USA) or Sigma Aldrich (St Louis, MO, USA). Where possible, drugs were obtained pre-dissolved as 10

259 mM stocks in DMSO. For drugs not available in this format, 10 mM DMSO stocks were prepared and
260 sterilised by filtration through a 0.22 µm syringe filter. As ondansetron was insoluble in DMSO, it was
261 dissolved in 10 mM HCl and then filter sterilised.

262

263 *Drug Antiviral Efficacy Testing with Human Cardiomyocytes*

264 Dilution ranges of the test and control drugs were prepared in deep well plates in STEMdiff
265 Cardiomyocyte Maintenance Medium (STEMCELL Technologies). Fluvoxamine, everolimus,
266 pyrimethamine, aprepitant, sirolimus, and the control drug molnupiravir were prepared to final
267 concentrations of 25, 10, 4, 1, and 0.4 µM, while the other two control drugs, remdesivir and
268 nirmatrelvir, were prepared to final concentrations of 10, 4, 1, 0.4, and 0.05 µM. These included 2x
269 concentration preparations for infection wells so that the correct final concentrations could be
270 obtained when combined 1:1 with prepared inoculum. Media for negative control and virus-only
271 wells contained the equivalent amount of DMSO as the 25 µM drug concentrations.

272

273 The media was removed from differentiated cardiomyocytes, previously seeded into 12-well plates,
274 and replaced with 0.5ml of the appropriate treatment medium. The plates were incubated at room
275 temperature for an hour before the media was removed and the cells were treated with 200 µl
276 media containing the appropriate treatment, along with SARS-CoV-2 Delta or Omicron VOC inoculum
277 at an MOI of 0.01 for infected wells, for a further hour at 37°C/5% CO₂. After the 1h infection, 400 µl
278 DPBS+ was added to each well before being removed along with any inoculum. 1ml medium
279 containing the appropriate treatment was added to each well and plates were returned to incubate
280 at 37°C/5% CO₂. A back titration was performed to confirm the inoculum titre. 1ml aliquots of media
281 were harvested on Day 2 post-infection and stored at -80°C until titration by TCID₅₀.

282

283 *Immunofluorescence and Confocal Microscopy*

284 For the preliminary infections, HNE cells in transwells and cardiomyocytes cultured on treated
285 coverslips representing each study condition were fixed and processed for immunofluorescence
286 confocal microscopy as previously described [22]. Briefly, cells were washed three times with DPBS+
287 at room temperature, and fixed with 4% w/v paraformaldehyde (Electron Microscopy Sciences,
288 Hatfield, PA, USA) for a minimum of 60min at room temperature. The fixative was aspirated and
289 neutralised with 100mM glycine in DPBS+ for 10min at room temperature. Cells were incubated with
290 permeabilisation buffer (PB; 0.5% v/v Triton-X100 in DPBS+) for 30min on ice. For HNE transwells, the
291 PB was washed off, and the filters were excised from the inserts using a sharp scalpel, cut in half (for
292 test and control primary antibodies), transferred to Eppendorf tubes, and incubated for 90min at 4°C
293 in immunofluorescence buffer (IB; DPBS+ containing 0.1% w/v bovine serum albumin, 0.2% v/v
294 Triton-X100, and 0.05% v/v Tween-20) containing 10% v/v normal goat serum (block buffer; BB). For
295 the cardiomyocytes, the coverslips were placed in fresh 24-well plate wells before having the PB
296 washed off, and BB added for 90min incubation at 4°C. For both cell types, at the end of the 90min
297 incubation, the BB was removed and replaced with primary antibody (antibody information can be
298 found in Table S1) diluted in BB before being returned to 4°C for 48h. Following the incubation, the
299 primary antibody was washed off three times with IF buffer, 5min per wash, at room temperature.
300 Fluorophore-conjugated secondary antibody and Hoechst stain, diluted in PB, was added to each
301 sample, and incubated for 3h at room temperature. Secondary antibody was washed off five times
302 with IF buffer, 5min per wash. Filters were transferred to slides, incubated at room temperature for
303 30min with DAPI, and washed once with PBS before being mounted in FluoroSave reagent (Merck
304 Millipore, Burlington, MA, USA). Coverslips were treated similarly before being sealed with nail
305 polish. Confocal microscopy imaging was acquired using a Zeiss LSM 780 system. The acquired Z-
306 sections were stacked and processed using ImageJ software (National Institutes of Health, Bethesda,
307 MA, USA). Orthogonal views were generated using ZEN 3.1 software from Zeiss Microscopy
308 (Oberkochen, Germany).

309

310 **Results**

311 *Preliminary Infections of Tissue Models*

312 To evaluate additional tissue models for their suitability for use in the testing of antiviral efficacy of
313 drugs against SARS-CoV-2 infection, we assessed an ALI HNE model and a stem cell-derived
314 cardiomyocyte model. Nasal inferior turbinate brushings were collected, conditionally
315 reprogrammed in cell expansion culture, and used to generate HNE cultures as previously described
316 [19]. The resulting transwell cultures consisted of a multi-layered pseudostratified columnar
317 epithelium with a uniform cobblestone morphology. Beating cilia were also observed, as is
318 characteristic of mucociliary differentiation (data not shown), and well-developed apical cilia were
319 detected by staining for acetylated α -tubulin (**Figure 1a**). In addition, differentiated cardiomyocytes
320 were generated from embryonic stem cells, which showed the characteristic collective beating
321 phenotype by Day 11 of differentiation (**Supplementary Video 1**). Cardiomyocyte differentiation was
322 further confirmed by immunostaining for sarcomeric α -actinin and cardiac troponin T in Day 20
323 cultures compared to undifferentiated stem cells, with most cells positive for both markers (**Figure**
324 **1b**).

325

326 In order to determine the suitability of the HNE and cardiomyocyte tissue models for use with SARS-
327 CoV-2, preliminary infection studies were performed to assess the growth of the SARS-CoV-2 Delta
328 VOC in the presence and absence of 5 μ M remdesivir. This concentration of remdesivir had been
329 previously selected for use in airway and alveolar tissue models based on a review of the literature
330 and was used in this study for consistency [13]. Sufficient HNE and cardiomyocyte culture wells were
331 prepared for four treatment conditions (mock, drug-only, virus-only, and virus+drug) to allow
332 quadruplicate sample sets to be harvested for each condition on Days 1-4 post-infection. Viral
333 infection was observed by fixed-cell immunofluorescence in HNE cultures (**Supplementary Figure 1**),
334 and by the generation of cytopathic effect in cardiomyocytes (infected cardiomyocytes detach from
335 treated glass coverslips).

336

337 Samples collected from the cardiomyocyte culture medium, and HNE basal media and apical washes
338 at each timepoint were titrated to determine the viral loads. For the cardiomyocytes, titres in the
339 virus-only wells increased rapidly, peaking on Day 2 with values between 10^5 and 10^6 TCID₅₀/ml and
340 slowly declining thereafter (**Figure 2a**). For the HNE cells, viral growth in the virus-only wells was also
341 rapid, reaching titres of 10^4 - 10^6 TCID₅₀/ml by Day 2 (albeit with substantially higher variation than
342 with the cardiomyocytes) and maintaining those titres on Days 3 and 4 (**Figure 2b**). Infectious virus
343 was only detected in apical wash samples, with all basal medium samples below the limit of
344 detection (10^2 TCID₅₀/ml).

345

346 The addition of 5 μ M remdesivir to the culture media prevented viral growth in cardiomyocytes
347 (**Figure 2c**), but appeared to only impede growth in HNE cultures. Indeed, by Day 4 post-infection, all
348 four HNE culture replicates had detectable virus (titres 10^2 - 10^4 TCID₅₀/ml) in apical wash samples in
349 the presence of 5 μ M remdesivir (**Figure 2d**). Next-generation sequencing of the Day 4 HNE samples
350 revealed that the populations of virus in these samples had no consensus-level mutations compared
351 to the input stock virus indicating that this was not an adaptation of the virus to the drug.

352

353 *Testing of Drug Anti-SARS-CoV-2 Efficacy in Human Cardiomyocyte Culture*

354 Given the significant variability in virus titres observed with the HNE cultures, the decision was made
355 to use the cardiomyocyte model for drug antiviral efficacy testing. Unfortunately, due to constraints
356 on the number of wells available and the complexities with handling cultures under BSL-4 conditions
357 (required at the time for work involving infectious SARS-CoV-2 at our facility), a trade-off had to be
358 made between having multiple concentrations of each drug and having replicate samples. A decision
359 was therefore made to focus on the range of concentrations in this screening assay to minimise the
360 risk of discounting potentially active compounds.

361

362 Five test drugs - fluvoxamine, everolimus, pyrimethamine, aprepitant and sirolimus - and three
363 control drugs - remdesivir, molnupiravir, and nirmatrelvir (PF-07321332) - were tested at five
364 concentrations (25, 10, 4, 1, 0.4 μ M for test drugs and molnupiravir; 10, 4, 1, 0.4, 0.08 μ M for
365 remdesivir and nirmatrelvir) against both Delta and Omicron VOC. Triplicate mock and virus-only
366 wells were also included as controls. Media samples were harvested 2 days post-infection
367 (corresponding with peak viral titre in the preliminary infection assay) and were titrated to
368 determine virus loads.

369

370 Both Delta and Omicron VOC grew well in the cardiomyocytes, with Delta titres around 10^4 TCID₅₀/ml
371 and Omicron titres around 10^5 TCID₅₀/ml in the virus-only wells. For both variants, all concentrations
372 of remdesivir tested completely inhibited viral growth (**Figure 3a**). Nirmatrelvir reduced viral titres
373 around 100-fold at 0.08 μ M and inhibited growth entirely at higher concentrations (**Figure 3b**).
374 Although having a similar mechanism of action to remdesivir, molnupiravir failed to inhibit both Delta
375 and Omicron growth at 0.4 and 1 μ M concentrations, however was effective at preventing Delta
376 growth at concentrations of 4 μ M and higher (**Figure 3c**). Interestingly, Omicron was able to grow in
377 the presence of 4 μ M monupiravir although to a titre 100-fold lower than the virus-only control
378 wells.

379

380 Against both Delta and Omicron VOC, fluvoxamine prevented virus growth at the highest
381 concentration (25 μ M), but not at 10 μ M or lower (**Figure 3d**). A similar complete inhibition was
382 observed for Delta with 25 μ M everolimus and sirolimus, but interestingly this inhibition did not
383 extend to Omicron (**Figure 3e & 3f**). Conversely, 25 μ M aprepitant completely inhibited Omicron
384 growth, while only reducing Delta titres <100-fold (**Figure 3g**). Pyrimethamine failed to reduce viral
385 titres of either variant at any concentration tested (**Figure 3h**).

386

387 **Discussion**

388 The ability to screen approved drugs for efficacy against off-target diseases is important in a fast-
389 paced pandemic situation, as it can potentially identify effective therapies that have already
390 undergone rigorous safety testing and get them to the clinic faster than novel treatments. However,
391 given the thousands of drugs that have been approved by regulatory bodies around the world,
392 screening for efficacy is difficult. Several studies have aimed to use high-throughput tissue culture-
393 based approaches for screening of approved drugs against SARS-CoV-2 infection (e.g. [2, 3, 6]),
394 however the behaviour of both the virus and drugs can differ significantly in tissue culture compared
395 to human tissues, raising the question of how helpful such screening studies are. Indeed, as seen
396 with chloroquine/hydroxychloroquine and ivermectin, the ability to prevent viral-induced cell death
397 in tissue culture does not mean that the drugs will be effective in treating the disease in patients [4,
398 5, 9, 10]. Moreover, the exploitation of such *in vitro* studies can result in the misuse of ineffective
399 drugs with potentially lethal results.

400
401 Although they have some drawbacks with regards to cost and ease of handling, 3D tissue culture
402 models represent a more suitable approach to drug repurposing studies, as they better recapitulate
403 the cell types and structures found within host tissues [23]. Furthermore, their suitability can be
404 further improved by selecting models that represent key tissues targeted by the virus. For viruses like
405 SARS-CoV-2, that appear to have a broad tissue tropism, the use of a panel of multiple tissue models
406 is important to ensure that any antiviral efficacy is broad and not limited to particular tissue types.

407
408 Cardiomyocytes and cells of the nasal epithelium have both been demonstrated to be important
409 sites of replication during COVID-19, contributing to virus transmission and virus-induced cardiac
410 disease [14, 18]. Accordingly, we selected these tissue models to increase the repertoire of possible
411 models for drug repurposing studies. As expected, both tissue models were permissive to SARS-CoV-
412 2 infection, with high viral titres attained by Day 2. Whereas viral titres in the cardiomyocytes started
413 to decrease on Days 3 and 4 post-infection, high titres persisted in the nasal epithelial models from

414 Day 2 to 4, results that are in agreement with previous studies that have shown nasal epithelial cells
415 to sustain persistent SARS-CoV-2 infection despite prolonged antiviral responses [17]. Furthermore,
416 while 5 μ M remdesivir was sufficient to prevent SARS-CoV-2 infection in cardiomyocytes (as well as
417 airway and alveolar tissue models, shown in our previous study [13]), the same antiviral treatment of
418 nasal epithelial cells failed to prevent SARS-CoV-2 infection, with all four replicate wells positive for
419 infectious virus by Day 4 post-infection. Given that sequencing of these drug-escape isolates revealed
420 no consensus-level sequence changes relative to the input virus stock, this appears to potentially be
421 a feature of the nasal epithelium being able to support viral replication in the presence of antiviral
422 factors. This is supported by other studies showing that nasal epithelial cells support persistent
423 infection in the presence of antiviral immune responses (human tissue model; [17]) and neutralising
424 antibodies (mouse vaccine challenge model; [18]).

425
426 In our previous study, we used a commercially available *ex vivo* human airway model to assess
427 approved drugs for anti-SARS-CoV-2 activity following an *in silico* down-selection process from an
428 original list of nearly 8,000 compounds [12, 13]. This study demonstrated that, against Omicron, the
429 selective serotonin reuptake inhibitor fluvoxamine demonstrated antiviral efficacy at 25 μ M, while
430 against Delta the results at 25 μ M varied between experiments. The other drugs tested (everolimus,
431 pyrimethamine, aprepitant, and sirolimus) showed minimal efficacy at the concentrations used
432 against both Delta and Omicron VOC. In this study, the same drugs were tested with the
433 cardiomyocyte tissue model with fluvoxamine preventing both Delta and Omicron growth at 25 μ M.
434 Unlike the airway cells, everolimus and aprepitant also fully inhibited Delta (but not Omicron) growth
435 at a 25 μ M concentration, while 25 μ M aprepitant prevented Omicron growth and reduced Delta
436 titres by <100-fold. Responses in both the airway and cardiomyocyte models against both Delta and
437 Omicron were very similar for nirmatrelvir (PF-07321332; the active ingredient in Paxlovid) and
438 molnupiravir. Interestingly, the growth of both variants appeared to be more affected by remdesivir
439 in the cardiomyocyte model than in the airway model with complete inhibition of viral growth with

440 0.08 μ M drug in cardiomyocytes compared to 4 μ M in the airway model – a 20-fold difference in
441 concentration.

442

443 Of the drugs tested, only fluvoxamine appeared to have antiviral efficacy against both the Delta and
444 Omicron variants, however such efficacy was only observed at 25 μ M. Such a high concentration is
445 not achievable in patients, where plasma concentrations are usually around 0.3 μ M during treatment
446 [24]. This may explain why, although apparently capable of inducing an antiviral effect, clinical trials
447 of fluvoxamine for the treatment of COVID-19 have failed to show clear antiviral efficacy [24-26].

448

449 Although this study did not identify an effective, repurposed drug for the treatment of COVID-19, it
450 demonstrates that (a) multiple tissue models can be successfully used for the assessment of
451 repurposed drugs against SARS-CoV-2 infection; and our methodology could be useful for (b) future
452 coronavirus outbreaks, as well as (c) screening compounds in libraries such as ChEMBL (for example
453 [27]). Comparison of remdesivir efficacy against SARS-CoV-2 infection in cardiomyocytes with efficacy
454 in the airway model used previously ([13]), clearly demonstrates that the effective concentrations of
455 drugs can differ significantly in different tissue types highlighting the need for panels of differing
456 tissue models to be used for thorough efficacy testing. Studies like ours help to advance the
457 implementation of the FDA Modernization Act which "authorizes the use of certain alternatives to
458 animal testing, including cell-based assays and computer models, to obtain an exemption from the
459 Food and Drug Administration to investigate the safety and effectiveness of a drug", and "removes a
460 requirement to use animal studies as part of the process to obtain a license for a biologic" [28].

461

462 **Figure Legends**

463 **Figure 1: Differentiation of Human Nasal Epithelium (HNE) and Cardiomyocyte Models.** A)
464 Immunofluorescent staining of acetylated tubulin (red) to detect apical cilia with DAPI (blue) staining
465 of cell nuclei. B) Immunofluorescent staining of undifferentiated WA09 embryonic stem cells or Day

466 20-differentiated cardiomyocytes stained for f-actin (phalloidin; red), DAPI (blue), and cardiomyocyte
467 markers sarcomeric α -actinin (green) and cardiac troponin T (purple). Scale bar represents 20 μ m.

468

469 **Figure 2: SARS-CoV-2 Infection and Response to 5 μ M Remdesivir in HNE and Cardiomyocyte**

470 **Models.** Viral titres of SARS-CoV-2 Delta variant in media and apical washes of (A) cardiomyocyte and
471 (B) HNE cultures, respectively, without drug treatment. 5 μ M remdesivir was effective at suppressing
472 detectable infection in (C) cardiomyocyte cultures, as well as retarding growth in (D) HNE cultures
473 until Day 3 post-infection. Infectious virus was not detected in basal media samples from HNE
474 culture. Dots represent virus titres from individual quadruplicate samples. Horizontal bold lines
475 represent the mean titre of replicates, while lighter coloured lines represent the standard error of
476 the mean (SEM).

477

478 **Figure 3: Antiviral Efficacy of Selected Drugs Against SARS-CoV-2 Delta and Omicron in the**
479 **Cardiomyocyte Model.** Differentiated cardiomyocytes were infected with a 0.2 MOI of Delta (red) or
480 Omicron (blue) SARS-CoV-2 variant in the presence of 0.08, 0.4, 1, 4, 10 μ M remdesivir (A) or
481 nirmatrelvir (B), or 0.4, 1, 4, 10, 25 μ M molnupiravir (C), fluvoxamine (D), everolimus (E), sirolimus
482 (F), aprepitant (G), or pyrimethamine (H) with media samples collected and titrated after 48h. The
483 red and blue dashed lines represent mean titre from three virus-only wells for Delta and Omicron,
484 respectively. Pale red and blue lines either side represent SEM for the virus-only titres.

485

486 **Funding**

487 This research was kindly funded (Principal Investigator: S.S.V.) by the Australian Department of
488 Health through its Medical Research Future Fund (Grant Number MRF2009092) and the United
489 States Food and Drug Administration (FDA) Medical Countermeasures Initiative (Contract Number
490 75F40121C00144). Establishment of the ALI-HNE was funded by philanthropic funding from the Kim
491 Wright Foundation awarded to E.V. The salaries for E.V. and B.M.T. was supported by an NHMRC Ideas

492 grant awarded to EV and BMT (APP1181580). The article reflects the views of the authors and does
493 not represent the views or policies of the funding agencies, including the FDA.

494

495 **Institutional Review Board Statement**

496 This study involved no human or animal subjects; however, per the regulations in Australia, the use
497 of human embryonic stem cells (for cardiomyocyte production) and the infection of both sets of
498 tissue models were reviewed and approved by the CSIRO Human Research Ethics Committee
499 (Approval Number: 2021_083_LR; Approval Date: 14 September 2021). This was in addition to study
500 approval for the generation of human nasal epithelial cells from the Sydney Children's Hospital
501 Network Ethics Review Board (HREC/16/SCHN/120) and the Medicine and Dentistry Human Ethics
502 Sub-Committee, University of Melbourne (HREC/2057111).

503

504 **Informed Consent Statement**

505 Written consent was obtained from all participants prior to collection of biospecimens from which
506 the de-identified, human nasal epithelial cells were derived. Informed consent is not applicable for
507 the WA09 embryonic stem cells which were obtained from WiCell, Madison, WI, USA.

508

509 **Data Availability Statement**

510 Any underlying data not presented can be provided by the corresponding authors upon reasonable
511 request.

512

513 **Acknowledgements**

514 The authors would like to acknowledge the contributions made by the broader 'sySTEMs initiative'
515 project members.

516

517 **Conflicts of Interest**

518 None declared.

519

520

521

522 **References**

- 523 1. FDA, *Regulated Products and Facilities*. 2018, US Food & Drug Administration: Silver Spring, MD.
- 524 2. Riva, L., et al., *Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing*. *Nature*, 2020. **586**(7827): p. 113-119.
- 525 3. Touret, F., et al., *In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication*. *Sci Rep*, 2020. **10**(1): p. 13093.
- 526 4. Wang, M., et al., *Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro*. *Cell Res*, 2020. **30**(3): p. 269-271.
- 527 5. Liu, J., et al., *Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro*. *Cell Discov*, 2020. **6**: p. 16.
- 528 6. Chen, C.Z., et al., *Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2*. *Front Pharmacol*, 2020. **11**: p. 592737.
- 529 7. Ramani, S., et al., *Human organoid cultures: transformative new tools for human virus studies*. *Curr Opin Virol*, 2018. **29**: p. 79-86.
- 530 8. Tran, B.M., et al., *Organoid Models of SARS-CoV-2 Infection: What Have We Learned about COVID-19? Organoids*, 2022. **1**(1): p. 2-27.
- 531 9. Sharun, K., et al., *Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19*. *Ann Clin Microbiol Antimicrob*, 2020. **19**(1): p. 23.
- 532 10. Caly, L., et al., *The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro*. *Antiviral Res*, 2020. **178**: p. 104787.
- 533 11. Jain, H.A., et al., *CoviRx: A User-Friendly Interface for Systematic Down-Selection of Repurposed Drug Candidates for COVID-19*. *Data*, 2022. **7**(11): p. 164.
- 534 12. MacRaild, C.A., et al., *Systematic Down-Selection of Repurposed Drug Candidates for COVID-19*. *Int J Mol Sci*, 2022. **23**(19): p. 11851.
- 535 13. McAuley, A.J., et al., *Use of Human Lung Tissue Models for Screening of Drugs against SARS-CoV-2 Infection*. *Viruses-Basel*, 2022. **14**(11): p. 2417.
- 536 14. Xie, Y., et al., *Long-term cardiovascular outcomes of COVID-19*. *Nature Medicine*, 2022. **28**(3): p. 583-590.
- 537 15. Groff, A., et al., *Gastrointestinal Manifestations of COVID-19: A Review of What We Know*. *Ochsner J*, 2021. **21**(2): p. 177-180.
- 538 16. Quan, M., et al., *Post-COVID cognitive dysfunction: current status and research recommendations for high risk population*. *The Lancet Regional Health – Western Pacific*, 2023. **38**: p. 100836.
- 539 17. Gamage, A.M., et al., *Human Nasal Epithelial Cells Sustain Persistent SARS-CoV-2 Infection In Vitro, despite Eliciting a Prolonged Antiviral Response*. *mBio*, 2022. **13**(1): p. e03436-21.
- 540 18. Ahn, J.H., et al., *Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19*. *J Clin Invest*, 2021. **131**(13): p. e148517.
- 541 19. Awatade, N.T., et al., *Significant functional differences in differentiated Conditionally Reprogrammed (CRC)- and Feeder-free Dual SMAD inhibited-expanded human nasal epithelial cells*. *J Cyst Fibros*, 2021. **20**(2): p. 364-371.

563 20. Tran, B.M., et al., *Air-Liquid-Interface Differentiated Human Nose Epithelium: A Robust*
564 *Primary Tissue Culture Model of SARS-CoV-2 Infection*. International Journal of Molecular
565 Sciences, 2022. **23**(2): p. 835.

566 21. Kärber, G., *Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche*. Naunyn-
567 Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1931. **162**(4): p.
568 480-483.

569 22. Luczo, J.M., et al., *SARS-CoV and SARS-CoV-2 display limited neuronal infection and lack the*
570 *ability to transmit within synaptically connected axons in stem cell-derived human neurons*. J
571 *Neurovirol*, 2024. **30**(1): p. 39-51.

572 23. Elliott, N.T. and F. Yuan, *A review of three-dimensional in vitro tissue models for drug*
573 *discovery and transport studies*. J Pharm Sci, 2011. **100**(1): p. 59-74.

574 24. Kasper, S., et al., *Plasma concentrations of fluvoxamine and maprotiline in major depression:*
575 *implications on therapeutic efficacy and side effects*. Eur Neuropsychopharmacol, 1993. **3**(1):
576 p. 13-21.

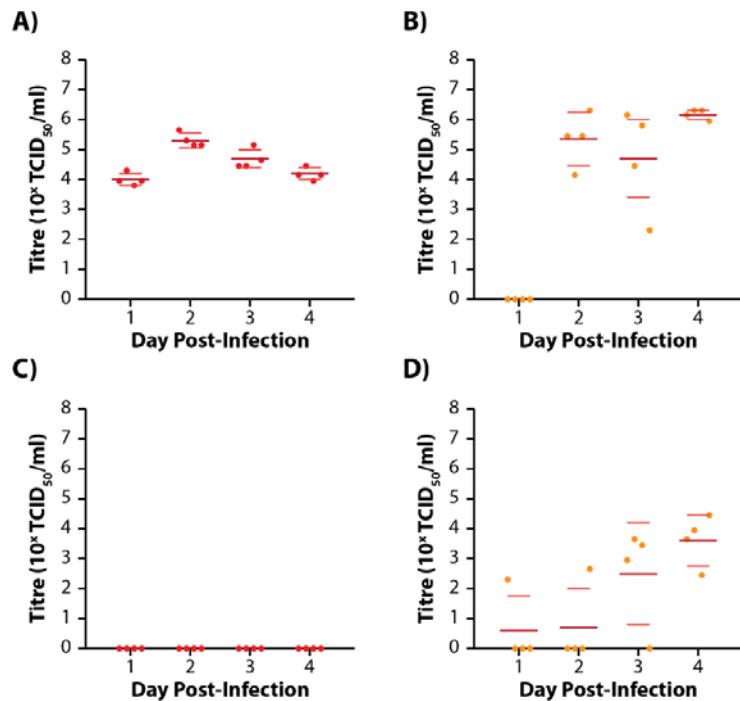
577 25. Bramante, C.T., et al., *Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for Covid-*
578 *19*. N Engl J Med, 2022. **387**(7): p. 599-610.

579 26. Reiersen, A.M., et al., *The STOP COVID 2 Study: Fluvoxamine vs Placebo for Outpatients With*
580 *Symptomatic COVID-19, a Fully Remote Randomized Controlled Trial*. Open Forum Infect Dis,
581 2023. **10**(8): p. ofad419.

582 27. Mohammed, M.U., et al., *On Bisphosphonates and COVID-19: In Silico Model Suggests*
583 *Inhibition of SARS-CoV-2 RdRp as Potenial Explanation*. Preprints, 2024. **2023111727**.

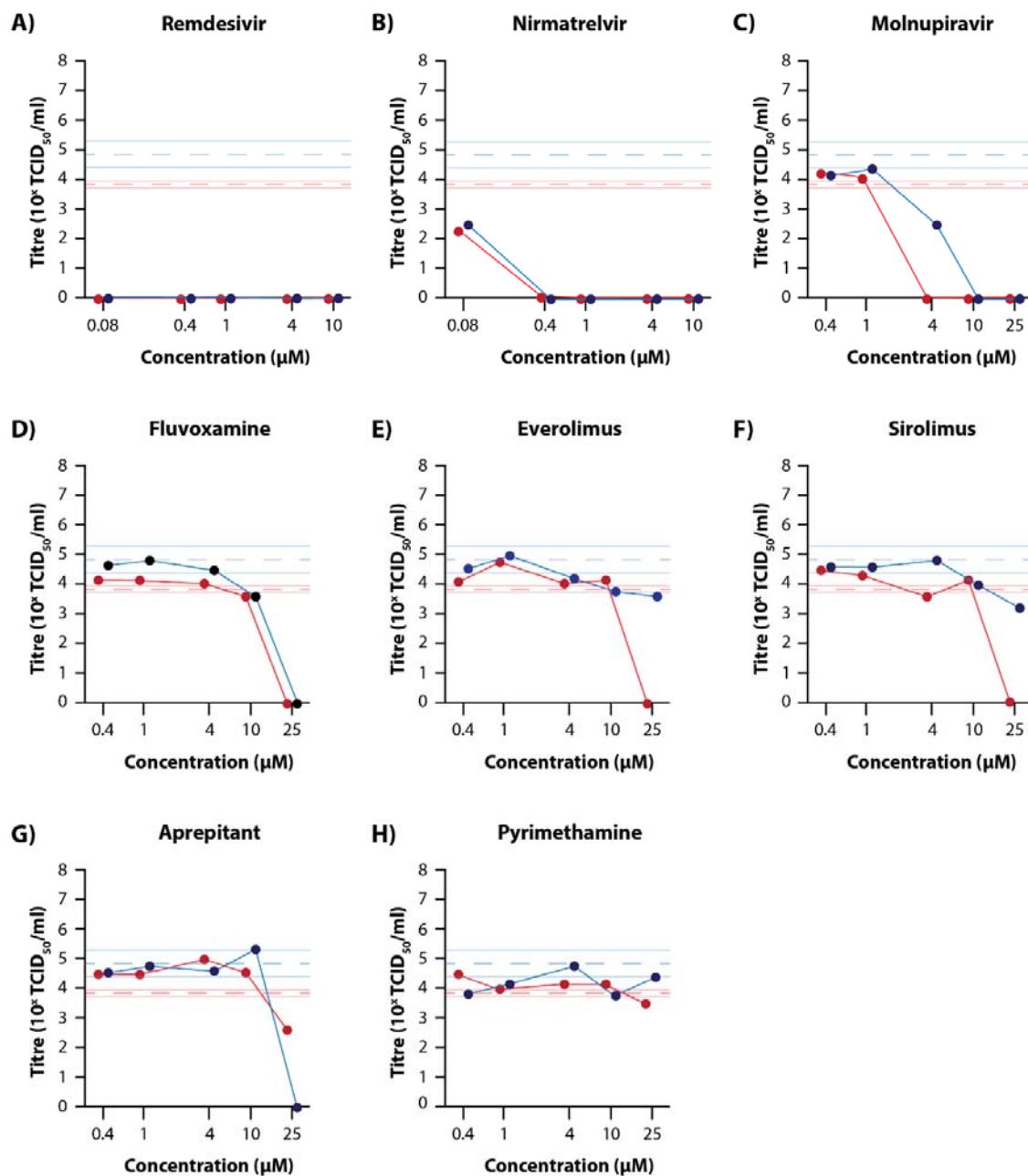
584 28. *FDA Modernisation Act 2.0*. 2022.

585


586

587

588 **Figure 1**


589

590

591 **Figure 2**

592

