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Abstract

Veterinary oncology has a critical need for an accurate, specific, and sensitive non-
invasive (blood) biomarker assay to assess multiple canine oncological indications
early to better inform therapeutic interventions. Extended from clinical applications in
human oncology, here we report on a novel 3D genomics approach to identify systemic
blood biomarkers for canine diffuse large B-cell lymphoma (DLBCL), T-zone
lymphoma (TZL), hemangiosarcoma (HSA), histiocytic sarcoma, osteosarcoma, and
canine malignant melanoma, in a single assay format that encompasses multiple classes
and phenotypes of cancer. In the validation of the independent test cohort the 3D whole-
genome profiling in peripheral blood demonstrated high sensitivity and specificity for
lymphomas and sarcomas as a class, with accuracy >80%; and high sensitivity and
specificity for individual indications, with accuracy >89%. This study demonstrates a
3D genomic approach can be used to develop a non-invasive, blood-based test for
multiple choice diagnosis of canine oncological indications. The modular EpiSwitch®
Specific Canine Blood (EpiSwitch SCB) test promises to help veterinary specialists to
diagnose the disease, make more informed treatment decisions, better utilize alternative
effective treatments, minimize or avoid unnecessarily toxicity, and efficiently manage

costs and resources.
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Everything I know I learned from dogs.

-Nora Roberts, “The Search”

“Dogs’ lives are too short. Their only fault, really.”

-Agnes Sligh Turnbull, “The Wedding Bargain”

Background

Cancer is the predominant cause of death in adult dogs. Similarly to Charles
Darwin’s remarks on aspects of our own species’ evolution, this significant disease
burden in dogs betrays ‘the indelible stamp of [their] origin’ wherein heavy selection
pressures for certain desirable behavioural or phenotypic traits, combined with our
success increasing their life expectancy beyond the evolutionarily selected lifespan',
unwittingly had as an unintended consequence, an excess of multiple types of cancer
observed in this species. In the United States alone, it is estimated that 4.2 to 6 million
new cases of cancer are diagnosed each year?>®. The lifetime risk of cancer and
associated mortality rates in dogs have been estimated to be approximately 30% and
have been noted to vary by breed*, although recent data suggest that size and biological
aging account for most of the observed variation in cancer susceptibility>. For greater
context, non-neoplastic conditions, including those arising from traumatic, infectious,
metabolic, inflammatory, degenerative, toxic, congenital, and vascular processes,
individually account for <10% of adult dog deaths’. When accounting for age, sex, and
weight, the lifetime incidence of cancer in purebred and mixed-breed dogs is reported

to be comparable®?.
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Malignant lymphomas are one of the most common cancers in dogs, with an
estimated incidence of 25 per 100,000'°. While they may occur at any age, they are
predominately diagnosed in older dogs'!!2. Of these, the most frequently encountered
subtype is diffuse large B-cell lymphoma (DLBCL), accounting for 40% of all canine
lymphomas and approximately 70% of canine B-cell lymphomas'?

Marginal zone lymphoma (MZL) is less common but the expansion of
immunophenotyping and molecular clonality assessments available to veterinary
pathologists are making greater scrutiny possible!*. Indolent lymphomas make up
approximately 29% of all canine lymphomas'>:!®, T-zone lymphoma (TZL) is the most
frequently diagnosed indolent lymphoma in dogs'>!6. Estimations speaking to TZL
incidence specifically vary widely, with two publications’ estimations ranging from
15.5 and 62%'7-'® Histopathology and immunohistochemistry (IHC) remain the clinical
gold standard for diagnosing and classifying lymphomas'®!°

It has been reported that approximately 7% of all malignant tumours in dogs are
melanocytic tumours 2°. Oral melanocytic tumours make up 30-40% of all canine oral
neoplasms?'. Regardless of their location, malignant melanocytic neoplasms are
diagnosed via cytology and/or histopathology ?2. The sensitivity and specificity of this
diagnostic method are excellent for pigmented melanocytic neoplasms but can drop
significantly with diagnostic attempts of amelanotic melanocytic neoplasms 2323, If the
diagnosis of amelanotic melanocytic neoplasms remains evasive with microscopic
evaluation, THC for melanocyte-specific markers is required for definitive
confirmation?6-3°,

Sarcomas comprise approximately 10-15% of malignant tumours in dogs. Of

these, bone is the primary anatomic location of origin in 20% of cases, while the
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remaining 80% are found in soft tissue *!. Hemangiosarcoma (HSA) is among the more
commonly occurring soft tissue sarcomas with an incidence of 2.8-5.0% of all
diagnosed cancers, with primary sites of occurrence in the spleen, heart, liver, and
skin®'. Diagnosis of cutaneous HSA is performed via analysis of histopathology from
incisional or excisional biopsies and may require IHC for definitive diagnosis owing to

its heterogeneous makeup’>=>*

. Splenic and liver HSA typically requires abdominal
ultrasonography and three-view chest radiography. Definitive diagnosis requires
histopathological examination and differential IHC is recommended?®?. Cardiac HSA
diagnosis is made by fluid cytology but may not always be achieved due to the intrinsic
challenges associated with sample acquisition, low cellular exfoliation and elevated
haemodilution3233-37,

Histiocytic sarcoma represents approximately 4% of all canine cancers,
originating from antigen-presenting cells with primary sites in the lymph nodes,
kidneys, liver, and central nervous system *'. Cutaneous histiocytic sarcoma can be
diagnosed with relative ease by cytopathologic examination but as with all subtypes of
histiocytic sarcoma, IHC staining is required to provide a definitive diagnosis®®.

Within non-soft tissue sarcomas, osteosarcoma is the most common bone cancer
in dogs, occurring in the appendicular (~85%) and axial skeleton3!**4°, Definitive
diagnosis of osteosarcoma requires histological observation of osteoid production by
malignant osteoblast cells®'.

Securing a definitive diagnosis and classification of cancer in dogs falls on a
spectrum of varying degrees of difficulty as location, subtypes, complicating local
conditions, and specific biopsy requirements are factored in. Given the invasive nature

of tissue biopsies requiring sedation or anaesthesia, the economic costs associated with
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the process, and the specialized technical training required to achieve an accurate and
definitive classification, several alternative diagnostic methods are gradually gaining
favour!. For example, fine needle aspiration alone or in conjunction with
immunocytochemistry, flow cytometry, and/or polymerase chain reaction (PCR) for
antigen receptor rearrangement (PARR) are among the most widely employed
contemporary alternatives used to diagnose canine lymphomas*?. Several liquid biopsy
tools have been reported to aid in the diagnosis and subtyping of canine lymphoma, in
addition to facilitating early disease detection, minimal residual disease monitoring,
and the capacity to guide therapy*.

Unfortunately, many dogs with a presumptive diagnosis of malignancy are
euthanized without a definitive diagnosis, underscoring the need for reliable and
affordable tests that can better inform treatment options and prognosis for dogs with
cancer. Emerging liquid biopsy and molecular testing platforms are addressing this
unmet need*’. Here, we report on the first evidence of a novel liquid biopsy biomarker
modality focused on the changes in 3-dimensional genomic architecture (3D genomics)
in peripheral blood cells — already utilized in DLBCL and other oncological

applications in humans!%43-5!

— to establish the presence of the canine cancers described
above, as well as to report on cancer indications in training. Exploration of higher-order
genomic architecture has revealed that the 3D configuration of chromatin plays a
critical role as an epigenetic regulator of gene expression in pathological and non-
pathological phenotypes®>>3.

Of central importance are 3D chromosomal conformations signatures (CCSs)

derived from combinations of long-range DNA contacts that establish a regulatory

fragmentation of the active genome, linking together genetic risks and epigenetic
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oversight of genome regulation®*. By determining long-range chromosome
interactions, i.e., chromatin loops, at particular loci via chromosome conformation
capture (3C) technologies, one can derive a biomarker that provides an instructive view
of the regulatory architecture possessed by the 3D genome®>. The novel biomarker
EpiSwitch® platform is grounded on 3C and has reduced to practice and meets the
regulatory requirements of a clinical biomarker assay. The heart of the platform is the
unification of high-throughput, high-resolution screening with the EpiSwitch Explorer
microarray platform, machine learning algorithms, testing on independent validation
cohorts, and a PCR-based format for stratifying biomarker signature!®4%-31-5-8  This
well-established phenomenon of CCSs being the multi-omics integrator and regulatory
interface of the cell has been validated in the EpiSwitch platform in an extensive range
of indications including detection of disease (pre-symptomatic and symptomatic),
prognosis, and predictive response to treatment!*#-31.5639-65 Two of the EpiSwitch
blood-based biomarker applications are practiced today in US and UK as reimbursable
clinical tests: a Checkpoint Inhibitor Response Test (CiRT) for prediction of treatment
response in immuno-oncology*® , and a prostate cancer screening test (PSE)™.

A salient and increasingly appreciated aspect of the regulatory architecture
inherent in the 3D genome is that the heritable information in DNA far exceeds the
linear genetic and epigenetic histone modifications that academic literature has
classically explored. These traditional linear genetic formats and epigenetic histone
modifications are in fact “encoded” in 3D genomic folding and architecture,
constituting part of the epigenetic memory, reproducing itself with high fidelity through

innumerable cell divisions, and are intimately related to cell metabolic and epigenetic
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states of the cell. More simply, the 3D genome is the storage media of the heritable
footprint - genetic, epigenetic, and metabolic - of the cellular network regulation.

Visualizing how a whole blood biopsy could, by utilizing the EpiSwitch
microarray platform and machine learning, provide diagnostic and prognostic insights
into such extensive pathologies and processes, it is crucial to understand the extent to
which individual chromosome conformations could be synchronized in the context of
the multicellular organism and all the cross talk between the cells. Exosome traffic
fosters the active exchange of epigenetic factors between the cells. These extracellular
vesicles, with their cargoes of metabolites, nucleic acids, non-coding RNA, lipids, and
peptides transfer horizontally from cells of origin to recipient cells and result in the
modulation of immune cells (representing systemic changes), as well as modulation of
secondary sites. Together this generates systemic epigenetic synchronization and
changes in 3D genomic profiles, detectable by the EpiSwitch microarray platform%6-6°,

Here we have deployed the stratifying capabilities of the whole genome
EpiSwitch 3D genomic array profiling based on peripheral blood biopsy to several
prevalent canine cancers: lymphomas — DLBCL and TZL; HSA, histiocytic sarcoma,
osteosarcoma; and canine malignant melanoma.

Given the challenge of a multi-choice outcome, we have developed an approach
based exclusively on array readouts. The two-step classifier identifies first the strong
systemic network signatures for lymphomas, sarcomas, and melanomas, shared by each
class, and then identifies individual indication within the class. With batch alignment
and internal controls, the performance of the array-based stratifications was then
evaluated in validation cohorts for accuracy and specificity against other cancer

indications.
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Material and Methods

Samples

Canine whole blood samples, 150 in total, were imported under licenses
ITIMP19.0336 and ITIMP22.0063 (Animal & Plant Health Agency) from the Animal
Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA.
Samples represented healthy controls and cases of DLBCL, TZL, HSA, histiocytic
sarcoma, osteosarcoma, and canine malignant melanoma (Supplemental Table 1).
When available, the annotations also include the age and breed of the individual dogs.

All samples were profiled on EpiSwitch Canine Whole-genome 3D Explorer
Array. Samples were either used in EpiSwitch screening and discovery stage, or in
validation evaluation. Those samples were not used in any stages of the classifier model

development.

Preparation of 3D genomic templates

EpiSwitch 3D libraries, chromosome conformation analytes converted to
sequence-based tags, were prepared from frozen whole blood samples. Using
EpiSwitch protocols following the manufacturer's instructions for EpiSwitch Explorer
Array kits (Oxford BioDynamics Plc), samples were processed on the Freedom EVO
200 robotic platform (Tecan Group Ltd). Briefly, aliquots of 50 pul of whole blood were
diluted and fixed with an EpiSwitch buffer containing formaldehyde. Density cushion
centrifugation was used to purify intact, fixed nuclei. Following a short detergent-based

step to permeabilise the nuclei, restriction enzyme digestion and proximity ligation
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were used to generate the 3D libraries. Samples were centrifuged to pellet the intact
nuclei before purification with an adapted protocol from the QIAmp DNA FFPE Tissue
kit (Qiagen) Eluting in 1x TE buffer pH7.5. 3D libraries were quantified using the
Quanti-T™ Picogreen dsDNA Assay kit (Invitrogen) and normalised to 5 ng/ml prior

to interrogation by PCR.

Array design

Custom microarrays were designed using the EpiSwitch pattern recognition
algorithm, which operates on Bayesian-modelling and provides a probabilistic score
that a region is involved in long-range chromatin interactions. The algorithm was used
to annotate the CanFam 3.1 canine genome assembly across ~1.1 million sites with the

potential to form long-range chromosome conformations*:62

. The most probable
interactions were identified and filtered on probabilistic score and proximity to protein,
long non-coding RNA, or microRNA coding sequences. Predicted interactions were
limited to EpiSwitch sites greater than 10 kb and less than 300 kb apart. Repeat masking
and sequence analysis was used to ensure unique marker sequences for each interaction.
The EpiSwitch Explorer array (Agilent Technologies, Product Code 087165),
containing 60-mer oligonucleotide probes was designed to interrogate potential 3D
genomic interactions. In total, 964,631 experimental probes and 2,500 control probes
were added to a 1 x 1 M CGH microarray slide design. The experimental probes were
placed on the design in singlicate with the controls in groups of 250. The control probes
consisted of six different EpiSwitch interactions that are generated during the extraction

processes and used for monitoring library quality. A further four external inline control

probe designs were added to detect non-human (Arabidopsis thaliana) spike in DNA
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added during the sample labelling protocol to provide a standard curve and control for
labelling. The external spike DNA consists of 400 bp ssDNA fragments from genomic
regions of A. thaliana. Array-based comparisons were performed described previously,
with the modification of only one sample being hybridised to each array slide in the

Cy3 channel®.

Statistical analysis

The cohorts of analysed samples were normalised by background correction and
quantile normalisation, using the EpiSwitch R analytic package, which is built on the
Limma Rank Product, tidyverse libraries. The datasets were combined into sample sets
by processing batch. Data were corrected for batch effects using ComBat R script.
Parametric (Limma R library, Linear Regression) and non-parametric (EpiSwitch
RankProd R library) statistical methods were performed to identify 3D genomic
changes that demonstrated a difference in abundance between classes.

The resulting data from both procedures were further filtered based on p-value
and abundance scores (AS). Only 3D genomic markers with p-value <=0.01 and AS (-
1.2<;>1.2) were selected. Both filtered lists from Limma and RankProd analysis were

compared and the intersection of the two lists was selected for further processing.

Machine learning and modelling

All analysis for this study was performed using libraries which are developed
for the R Statistical Language (R version 4.2.0). Feature engineering of the EpiSwitch
Markers was performed using Recursive Feature Elimination (RFE) utilising Xgbtree,

The XGBoost algorithm model” was used for final test optimisation. The grid search
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algorithm was used to optimize the hyper-parameters and learning rate in each iteration.
For drawing inferences, we used SHapley Additive exPlanations (SHAP) values that
are computed by a game theoretical approach which quantifies the contribution of each
feature within a model to the final prediction of an observation. SHAP values were used

to reduce the feature space for the cancer specific models”'.

Genomic mapping

The 3D genomic markers from the statistically filtered list with the greatest and
lowest abundance scores were selected for genome mapping. Mapping was carried out
using Bedtools closest function for the 3 closest protein coding loci — upstream,
downstream and within the long-range chromosome interaction (Gencode v33). All

markers were visualized using the EpiSwitch Analytical Portal.

Mapping to STRING database

The closest protein coding loci for the chromosome interactions found in this
study, where inputted to the STRING DB’ utilizing the default settings in order to
search STRING. The resultant protein-protein interaction data was exported and then

imported and visualised in Cytoscape (v3.10.0).
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Results

Identification of the top predictive 3D genomic markers common for lymphomas
as a class

Following the established methodology for EpiSwitch array marker analysis, we
evaluated systemic marker leads shared by two types of lymphomas — DLBCL and
TZL. From nearly 40 million data points across the canine genome, screening of 20
healthy controls vs 20 lymphomas, represented by DBCL and TZL, identified 37 strong
systemic EpiSwitch biomarkers. Those biomarkers were then used in array-based
stratification on a validation cohort of 35 dogs, representing healthy controls and both
lymphomas. Stratification calls were made for presence of lymphomas vs healthy

controls as a class (Figure 1 and Supplemental Table 2).

Testing of the predictive 3D genomic biomarker panel for lymphomas as a class
on the independent sample cohort

To access the predictive power of the classifier model, the 37-marker 3D array
classifier was validated on an independent test cohort. No samples from that cohort
were used in marker selection and building of the model. The EpiSwitch platform
readouts for the classifier model were uploaded to the EpiSwitch Analytical Portal for
analysis. Veterinary diagnostic assessment for the test cohort included 18 healthy
control samples and a mixture of lymphomas, including 10 DLBCL and 7 (TZL).
EpiSwitch classifier model calls based on 37-marker model demonstrated high
performance of 83% balanced accuracy and 87% positive predictive value in

identifying dogs with lymphomas as a class against healthy controls (Table 1).
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Figure 1
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Figure 1. Workflow for development and testing of the 3D genomic classifier model
for presence of lymphomas in canine blood. From EpiSwitch array screening profiles
accounting for over 40 million data points, 37 top array markers were selected based
on p value <=0.01 and fold change (FC) less than -1.2 or more than 1.2. 37 markers
qualified through selection were used in array-based stratification for lymphoma on an

independent cohort of 35 dogs.
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Identification of the top predictive 3D genomic markers common for sarcomas as
a class

Following the established methodology for EpiSwitch array marker analysis' we
also evaluated systemic marker leads shared by three types of sarcomas — HSA,
histiocytic sarcoma, osteosarcoma. From nearly 50 million data points across the canine
genome after screening of 20 healthy controls vs 30 sarcomas, represented by all three
types, we identified 100 strong systemic EpiSwitch biomarkers. Those biomarkers were
used in array-based stratification on a validation cohort of 40 dogs, representing healthy
controls and all three sarcomas. Stratification calls were made for presence of sarcomas

as a class vs healthy control (Figure 2 and Supplemental Table 2).

Testing of the predictive 3D genomic biomarker panel for sarcomas as a class on
the independent sample cohort

To access the predictive power of the classifier model, the 100-marker 3D array
classifier was validated on an independent test cohort. No samples from that cohort
were used in marker selection and building of the model. The EpiSwitch platform
readouts for the classifier model were uploaded to the EpiSwitch Analytical Portal for
analysis. Veterinary diagnostic assessment for the test cohort included 18 healthy
control samples and a mixture of HSA, histiocytic sarcoma, osteosarcoma. EpiSwitch
classifier model calls based on 8-marker model demonstrated high performance of 83%
balanced accuracy and 83% positive predictive value in identifying dogs with sarcomas

(Table 2).
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Table 1

Lymphomas as a Class

Test Yes n No n Total
Yes True Positive 13 False Positive 2 15
No False Negative 4 True Negative 16 20
Total 17 18

Results Statistics Value 95%CI
Sensitivity 76.47% 50.10% to 93.19%
Specificity 88.89% 65.29% to 98.62%
Positive Likelihood Ratio 6.88 1.81t0 26.10
Negative Likelihood Ratio 0.26 0.11to 0.63
Disease prevalence 48.57% 31.38% to 66.01%
Positive Predictive Value 86.67% 63.15% to 96.10%
Negative Predictive Value 80.00% 62.57% to 90.54%
Accuracy 82.68% 66.35% to 93.44%

Table 1. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of lymphoma as a class, based on common systemic markers shared by
DLBCL and TZL across 1 million data point profiles of the 3D genomic architecture.
Confusion matrix and test performance statistics for the 37-marker classifier on the 35

dogs in the test cohort.
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Figure 2. Workflow for development and testing of the 3D genomic classifier model
for presence of sarcomas in canine blood. From EpiSwitch array screening profiles
accounting for over 50 million data points, 100 top array markers were selected based
on p value <=0.01 and fold change (FC) less than -1.2 or more than 1.2, and GLMNET.
100 markers qualified through selection were used in array-based stratification for

lymphoma on independent cohort of 40 dogs.
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Table 2

Sarcomas as a Class

Test Yes n No n Total
Yes True Positive 19 False Positive 4 23
No False Negative 3 True Negative 14 17
Total 22 18

Results Statistics Value 95%CI
Sensitivity 86.36% 65.09% to 97.09%
Specificity 77.78% 52.36% to 93.59%
Positive Likelihood Ratio 3.89 1.61t0 9.37
Negative Likelihood Ratio 0.18 0.06to 0.52
Disease prevalence 55.00% 38.49% to 70.74%
Positive Predictive Value 82.61% 66.33%to 91.97%
Negative Predictive Value 82.35% 61.31% to 93.22%
Accuracy 82.50% 67.22% to 92.66%

Table 2. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of sarcomas as a class, based on common systemic markers shared by all
three sarcomas across 1 million data point profiles of the 3D genomic architecture.
Confusion matrix and test performance statistics for the 100-marker classifier on the

40 dogs in the test cohort.

Training and Testing Individual Multi-Choice Classifiers
Having observed strong systemic signatures shared by the indications

representing lymphomas and sarcomas as distinct classes according to systemic
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EpiSwitch profiling, we proceeded with two-step classifier models pursuing individual
indications within each of the groups.

For that purpose, our approach was to use once again the development cohort
of samples for all indications (Figure 3). We have systematically identified top 100
markers from the comparison of each indication to healthy control samples, based on p
value and FC, as described earlier. From the total pool we followed only the markers
unique for each indication. This has been considered an important filtering step to
ensure the high specificity of the multi-choice stratification of individual cancer types.
Having ranked the markers, we then pursued only the disease positive markers, i.e.,
chromosome conformations present for detection in the given indication. Such positive
detection markers are associated with negative FC in our data analysis. As the final
step, we have conducted further feature reduction of the markers, based on the SHAP
plots that identified markers with highest impact. In this analysis we also have
processed samples representing melanoma, as a separate indication and a separate class.

We then tested a validation cohort of 56 samples, including 18 healthy controls,
with the two-step classification, based first on a class call and then, using indication
unique markers, with the individual indication calls (Figure 3).
By using validation cohort of 56 mixed indications and healthy controls, the multi-
choice calls for DLBCL demonstrated high positive predictive value of 87.5%, with
accuracy against healthy controls at 85.7% and accuracy against all the indications
included in the validation cohort at 92.8% (Table 3). Top markers used in the DLBCL

individual classifier are listed in the Supplemental Table 2.
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Figure 3. Development of the EpiSwitch array-based biomarker classifier for
individual indications. Markers from over 80 million data point were selected with
unique profiles for each of the indications within the class and evaluated in multi-

choice stratification against healthy controls and other cancer indications.
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Table 3
DLBCL vs Healthy Controls DLBCL vsAll

Test Yes n No n Total Test Yes n No n Total
Yes True Positive 7 False Positive 1 8 Yes True Positive 7 False Positive 1 8
No False Negative 3 True Negative 17 20 No False Negative 3 True Negative 45 48
Total 10 18 Total 10 46

Results Statistics Value 95%ClI isti Value 95%ClI
Sensitivity 70.00% 34.75% t0 93.33% Sensitivity 70.00% 34.75% t0 93.33%
Specificity 94.44% 72.71% 10 99.86% Specificity 97.83% 88.47% 10 99.94%
Positive Likelihood Ratio 12,6 1.80to 88.34 Positive Likelihood Ratio 32.2 4.4410 233.35
Negative Likelihood Ratio 0.32 0.12to 0.82 Negative Likelihood Ratio 0.31 0.12t0 0.79
Disease prevalence 35.71% 18.64% to 55.93% Disease prevalence 17.86% 8.91% to 30.40%
Positive Predictive Value 87.50% 49.96% to 98.00% Positive Predictive Value 87.50% 49.13% to 98.07%
Negative Predictive Value 85.00% 68.59% to 93.63% Negative Predictive Value 93.75% 85.32% to 97.48%
Accuracy 85.71% 67.33% to 95.97% Accuracy 92.86% 82.71% to 98.02%

Table 3. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of DLBCL in the validation cohort. Confusion matrix and test performance
statistics for the multi-choice classifier against healthy controls (A) and the full
validation cohort of 56 samples, including 2 lymphomas, three sarcomas and

melanoma.

The multi-choice calls for TZL demonstrated positive predictive value of
71.43%, with accuracy against healthy controls at 84% and accuracy against all the
indications included in the validation cohort at 92.8% (Table 4). Top markers used in
the TZL individual classifier are listed in Supplemental Table 2. Given the nature of
TZL, we are currently investigating if among the false positives among the healthy
control, depending on the breed and age, there might have been pre-symptomatic,

undiagnosed true positives.
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Table 4
TZ vs Healthy Controls TZ vs All

Test Yes n No n Total Test Yes n No n Total
Yes True Positive 5 False Positive 2 7 Yes True Positive 5 False Positive 2 7
No False Negative 2 True Negative 16 18 No False Negative 2 True Negative 47 49
Total 7 18 Total 7 49

Results Statistics Value 95%ClI Resul isti Value 95%ClI
Sensitivity 71.43% 29.04% to 96.33% Sensitivity 71.43% 29.04% to 96.33%
Specificity 88.89% 65.29% t0 98.62% Specificity 95.92% 86.02% t0 99.50%
Positive Likelihood Ratio 6.43 1.60to0 25.76 Positive Likelihood Ratio 17.5 4.16to0 73.56
Negative Likelihood Ratio 0.32 0.10to 1.05 Negative Likelihood Ratio 0.30 0.09to 0.96
Disease prevalence 28.00% 12.07% to 49.39% Disease prevalence 12.50% 5.18% to 24.07%
Positive Predictive Value 71.43% 38.42%to 90.92% Positive Predictive Value 71.43% 37.29%to0 91.31%
Negative Predictive Value 88.89% 71.03% to 96.31% Negative Predictive Value 95.92% 87.91%to 98.70%
Accuracy 84.00% 63.92% to 95.46% Accuracy 92.86% 82.71% to 98.02%

Table 4. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of TZL in the validation cohort. Confusion matrix and test performance
statistics for the multi-choice classifier against healthy controls (A) and the full
validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and

melanoma.

The multi-choice calls for HSA demonstrated high positive predictive with no
false positives within the validation cohort of 56 samples, with accuracy against healthy
controls at 85.7% and accuracy against all the indications included in the validation
cohort at 92.8% (Table 5). Top markers used in the HSA individual classifier are listed

in Supplemental Table 2.
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Table 5
Hemangiosarcoma vs Healthy Controls Hemangiosarcoma vs All

Test Yes n No n Total Test Yes n No n Total
Yes True Positive 6 False Positive 0 6 Yes True Positive 6 False Positive 0 6
No False Negative 4 True Negative 18 22 No False Negative 4 True Negative 46 50
Total 10 18 Total 10 46

Results Statistics Value 95%ClI Resul isti Value 95%ClI
Sensitivity 60.00% 34.75% t0 93.33% Sensitivity 60.00% 34.75% t0 93.33%
Specificity 100.00% 72.71% t0 99.86% Specificity 100.00% 88.47% 10 99.94%
Positive Likelihood Ratio Positive Likelihood Ratio

Negative Likelihood Ratio 0.40 0.19to 0.85 Negative Likelihood Ratio 0.40 0.19t0 0.85
Disease prevalence 35.71% 18.64% to 55.93% Disease prevalence 17.86% 8.91% to 30.40%
Positive Predictive Value 100.00% 54.07% to 100.00% Positive Predictive Value 100.00% 54.07%to 100.00%
Negative Predictive Value 81.82% 67.81% to 90.58% Negative Predictive Value 92.00% 84.33% to 96.09%
Accuracy 85.71% 67.33%to 95.97% Accuracy 92.86% 82.71% to 98.02%

Table 5. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of HSA in the validation cohort. Confusion matrix and test performance
statistics for the multi-choice classifier against healthy controls (A) and the full
validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and

melanoma.

The multi-choice calls for histiocytic sarcoma was underrepresented in the
validation cohort, with only 2 histiocytic sarcoma independent samples available within
56 sample validation cohort (Table 6). Interesting to note, that the classifier has
demonstrated high specificity, with no false positive calls. Also, the one false negative
call on a histiocytic sarcoma sample by the individual classifier still was flagged as a
sarcoma class sample at the first stage classification. Top markers used in the histiocytic

sarcoma individual classifier are listed in Supplemental Table 2.
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Table 6
Histiocytic Sarcoma vs Healthy Controls Histiocytic Sarcoma vs All

Test Yes n No n Total Test Yes n No n Total
Yes True Positive 1 False Positive 0 1 Yes True Positive 1 False Positive 0 (|
No False Negative 1 True Negative 18 19 No False Negative 1 True Negative 54 55
Total 2 18 Total 2 54

Results Statistics Value 95%CI Results Statisti Value 95%ClI
Sensitivity 50.00% 34.75% to 93.33% Sensitivity 50.00% 1.26% to 98.74%
Specificity 100.00% 72.71% t0 99.86% Specificity 100.00% 93.40% to 100.00%
Positive Likelihood Ratio Positive Likelihood Ratio

Negative Likelihood Ratio 0.50 0.13to 2.00 Negative Likelihood Ratio 0.50 0.13to0 2.00
Disease prevalence 10.00% 1.23% to 31.70% Disease prevalence 3.57% 0.44%to 12.31%
Positive Predictive Value 100.00% 2.50% to 100.00% Positive Predictive Value 100.00% 2.50%to 100.00%
Negative Predictive Value 94.74% 81.82% to 98.63% Negative Predictive Value 98.18% 93.11% to 99.54%
Accuracy 95.00% 75.13% to 99.87% Accuracy 98.21% 90.45% to 99.95%

Table 6. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of histiocytic sarcoma in the validation cohort. Confusion matrix and test
performance statistics for the multi-choice classifier against healthy controls (4) and
the full validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and

melanoma.

The multi-choice calls for osteosarcoma demonstrated high specificity of 80%,
positive predictive value of 66.7%, negative predictive value of 66.67%, with accuracy
against healthy controls at 78.57% and accuracy against all the indications included in
the validation cohort at 89.29% (Table 7). Top markers used in the osteosarcoma
individual classifier are listed in Supplemental Table 2. Given the nature of
osteosarcoma, we are also currently investigating if among the false positives among
the healthy controls, depending on the breed and age, there might have been pre-

symptomatic, undiagnosed true positives.
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Table 7
Osteosarcoma vs Healthy Controls Osteosarcoma vs All

Test Yes n No n Total Test Yes n No n Total
Yes True Positive 8 False Positive 4 12 Yes True Positive 8 False Positive 4 12
No False Negative 2 True Negative 14 16 No False Negative 2 True Negative 42 44
Total 10 18 Total 10 46

Value 95%ClI R Value 95%ClI
Sensitivity 80.00% 34.75% t0 93.33% Sensitivity 80.00% 44.39% to 97.48%
Specificity 77.78% 72.71% 10 99.86% Specificity 91.30% 79.21% t0 97.58%
Positive Likelihood Ratio 3.60 1.44t0 9.02 Positive Likelihood Ratio 9.2 3.4310 24.67
Negative Likelihood Ratio 0.26 0.07to 0.91 Negative Likelihood Ratio 022 0.06to 0.76
Disease prevalence 35.71% 18.64% to 55.93% Disease prevalence 17.86% 8.91% to 30.40%
Positive Predictive Value 66.67% 44.40% to 83.36% Positive Predictive Value 66.67% 42.72% to 84.28%
Negative Predictive Value 87.50% 66.42% to 96.12% Negative Predictive Value 95.45% 85.84% to 98.64%
Accuracy 78.57% 59.05% to 91.70% Accuracy 89.29% 78.12%to 95.97%

Table 7. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of osteosarcoma in the validation cohort. Confusion matrix and test
performance statistics for the multi-choice classifier against healthy controls (4) and

the full validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and

melanoma.

The multi-choice calls for canine malignant melanoma demonstrated high sensitivity
of 77.78%, with no false positive calls and accuracy against healthy controls at 92.6%
and accuracy against all the indications included in the validation cohort at 96.4%
(Table 8). Top markers used in the canine malignant melanoma individual classifier are

listed in the Supplemental Table 2.
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Table 8
Melanoma vs Healthy Controls Melanoma vs All

Test Yes n No n Total Test Yes n No n Total
Yes True Positive 7 False Positive 0 7 Yes True Positive 7 False Positive 0 7
No False Negative 2 True Negative 18 20 No False Negative 2 True Negative 47 49
Total 9 18 Total 9 47

Results Statistics Value 95%ClI Results Statistics Value 95%ClI
Sensitivity 77.78% 34.75% t0 93.33% Sensitivity 77.78% 39.99% t0 97.19%
Specificity 100.00% 72.71%1099.86%  Specificity 100.00%  92.45% to 100.00%
Positive Likelihood Ratio Positive Likelihood Ratio

Negative Likelihood Ratio 0.22 0.07to 0.75 Negative Likelihood Ratio 0.22 0.07to 0.75
Disease prevalence 33.33% 16.52% to 53.96% Disease prevalence 16.07% 7.62% to 28.33%
Positive Predictive Value 100.00% 59.04% to 100.00% Positive Predictive Value 100.00% 59.04% to 100.00%
Negative Predictive Value 90.00% 72.61% to 96.83% Negative Predictive Value 95.92% 87.38% to 98.76%
Accuracy 92.59% 75.71%to 99.09% Accuracy 96.43% 87.69% to 99.56%

Table 8. Performance of the EpiSwitch array-based biomarker classifier for calling
presence of canine malignant melanoma in the validation cohort. Confusion matrix
and test performance statistics for the multi-choice classifier against just healthy
controls (A) and the full cohort of 56 samples, including 2 lymphomas, threes sarcomas

and melanoma.

Case Study

One of the first case studies for the developed multi-step classifier concerned a
Golden Retriever SCB140842.

In February 2020, at the age of 4 years and 3 months SCB140842 was diagnosed
with intranasal, poorly differentiated malignant neoplasm with vascular invasion. The
nasal biopsy results indicated a very aggressive tumor as noted by the poor level of

differentiation, moderate to high cancer cell activity (mitotic index), and cancer cell


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

invasion into the blood vessels. A first blood sample CANIS080 was collected and
processed on EpiSwitch array platform at this point.

As a treatment SCB140842 underwent Stereotactic radiation therapy (SRT) +
chemotherapy (Doxorubicin), with reported 1- 1.5 years of survival on average, with a
moderate risk of intermittent to chronic rhinitis.

SCB140842 has developed rhinitis linked to the inflammation and remodeling
that has occurring at the site of radiation. He was given Prednisone and Clindamycin
for the side effects. Following the full cycle of treatment, a second blood sample
CANIS193 was collected and processed on EpiSwitch array platform at that point.

In October 2023, with no symptoms of any complications, SCB140842 has
undergone a recheck CT scan which confirmed no evidence of regrowth of his right
sided nasal mass, and no evidence of spread to his lungs.

At the same time CT scan revealed a caudodorsal mediastinal mass, and a
retroperitoneal mass. The mass within his chest was displacing the aorta and
compressing the azygous vein. The mass within his abdomen was surrounding the
cranial mesenteric artery. Both masses were located close to blood vessels, so
performing a fine needle aspirate with cytology would have been too risky and
dangerous. A third blood sample CANISOJB was collected and processed at this point.

Applying the multi-choice EpiSwitch classifier test, described earlier, to the
longitudinal set of three samples, the results were the following:

1. First sample collection. A strong call for cancer, but only by the lymphoma
general classifier for the first sample CANIS080 collected after the initial
diagnosis: Lymphoma as a class - 0.72103471; Control - 0.27896529, Cut-off

>=().6. None of the two individual lymphomas showed a strong match.
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Independent clinical diagnosis: poorly differentiated malignant tumour.

2. Second sample collection. Improved call for healthy state by both lymphoma
and sarcoma general classifiers for the second sample CANIS193, collected
after the completion of the initial treatment.

Independent clinical diagnosis: no evidence of regrowth of nasal mass.

3. Third sample collection. A strong call for cancer by the sarcoma general
classifier for the third sample CANISOIJB, collected after the second diagnosis
in October 2023: sarcoma as a class - 0.72687131, Control - 0.27312869, Cut-
off >=0.6;

Following up with the individual indication classifiers for CANISOJB,
produced a strongest call for HSA across all indications - 0.83977288.
Independent clinical diagnosis: Newly identified caudodorsal mediastinal mass
in conjunction with a retroperitoneal mass outlining the cranial
mesenteric/celiac arteries. performing a fine needle aspirate with cytology was
too risky and dangerous. Findings may represent atypical metastatic disease

from the historical nasal anaplastic sarcoma.

Network regulation analysis
The EpiSwitch profiling, apart from delivering robust biomarker modality, also
provides invaluable insight into high level integrated network regulation, as reflected

in systemic readouts*%2

. Similarly, to the analysis of the previous applications in
human biology, identified network of 3D genomic canine biomarkers is directly linked

to the genomic loci they modulate, providing insights into affected genes and pathways.
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For example, pathway enrichment for the closest coding regions for the top
EpiSwitch sarcoma markers, common across HSA, histiocytic sarcoma, and

osteosarcoma, identified a number of affected Super Pathways, as listed in Fig. 4.

Figure 4

Genes inthe Genes with 3D Genomic
Pathway name

Pathways Markers for Sarcomas

SuperPath: FTO Obesity Variant Mechanism 8 4
SuperPath: Metabolism of Proteins 1970 Y
SuperPath: Development EPO-induced Jak-STAT Pathway 75 6
SuperPath: Infectious Disease 1747 36
SuperPath: NCAM Signaling For Neurite Out-growth 63 5
SuperPath: Amplification and Expansion of Oncogenic Pathways As Metastatic Traits 16 3
SuperPath: Wnt / Hedgehog/ Notch 182 8
SuperPath: Bladder Cancer 40 4
SuperPath: 15q13.3 Copy Number Variation Syndrome 18 3
SuperPath: Syndecan-3-mediated Signaling Events 20 3
SuperPath: Signaling By Receptor Tyrosine Kinases 524 14
SuperPath: Ciliary Landscape 212 8

8.31 SuperPath: Signal Transduction 2590 Y ”

8.07 SuperPath: Role of ABLin ROBO-SLIT Signaling 8 2

8.05 SuperPath: ERK Signaling 1185 24

7.74 SuperPath: Phospholipase-C Pathway 503 13

7.73 SuperPath: Thromboxane Signalling Through TP Receptor 96 5

7.57 SuperPath: D-myo-inositol (1,4,5)-trisphosphate Metabolism 31 3

7.57 SuperPath: lon Channel Transport 186 7

7.45 SuperPath: Arf6 Signaling Events 32 3

Figure 4. Mapping of the top 100 systemic 3D genomic common sarcoma markers to
biological pathways. Analysis of the top 3D genomic markers common between HSA,

histiocytic sarcoma, and osteosarcoma.

Among those, the Super Pathway for ERK Signalling, reveals 24 genes
modulated by common EpiSwitch 3D genomic architecture. This Super Pathway also
includes the pathway for Molecular Mechanisms of Cancer, with 19 genes modulated
by the EpiSwitch 3D sarcoma markers. Those include ARGEF7, CD4, GAB1, CCN2,

HAPLNI, GNBIL, NRG3, COL19A1, COL4A1, COL4A2, WNTS5A, BMP1, SRC,
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CXCR2, CXCR4, VEGFC, VHL, VCAN, FLT3. Interestingly, the role of SRC in solid
tumours and the importance of Src signalling in sarcomas are well documented, as well

as recent insights into the WNT role in soft tissue sarcomas’~7>,

Furthermore, we have also analysed the footprints of 3D genomic networks for
each of the canine cancer indications. With such data over-imposed against the gene
map, we have followed it up to a by building STRING protein interaction networks’?
showing interactions at the protein that are deduced through 3D genomic architecture,
all captured at the systemic level.

The STRING protein network for canine DLBCL, for example, shows a key
group of affected proteins, such as MYC, BDNF, LRRK2, NRXN1, HDAC2. (Figure
5), all consistent with the human DLBCL cases’®7%,

The protein network for canine TZL, for example, shows a key group of
modulated proteins, such as ESRI, GATA4, CD44, CRBP1, ACTAI (Figure 6), all
consistent with the human T-cell NHL cases” 3!,

The protein network for canine HSA, for example, shows a key group of
modulated proteins, such as MYC, EGFR, POLR2B, PTPRD, NTRK2, RUNX?2
(Figure 7), all consistent with the human angiosarcoma cases®* 84,

The protein network for canine histiocytic sarcoma, for example, shows a key
group of modulated proteins, such as EZH2, EPRS, HISTIH4F, CDC6, TOP2A,

CULI, PABPCI1, CDH2, NTRK2. (Figure 8), all consistent with the human histiocytic

sarcoma cases®:8¢,
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Figure 5. String network of DLBCL systemic profile, captured through the top 200
EpiSwitch markers. String network for DLBCL shows >550 affected gene products,
with the nodes shown for over 10 connections. The density of colour corresponds to the

number of connections, leading with MYC, BDNF, LRRK2, NRXN1, HDAC?.
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Figure 6. String network of TZL systemic profile, captured through the top 200
EpiSwitch markers. String network for TZL shows affected gene products, with the
nodes shown for over 10 connections. The density of colour corresponds to the number

of connections, leading with BMP2, ISL1, APC, HSPA4, FYN, BPTF.
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Figure 7. String network of HSA systemic profile, captured through the top 200
EpiSwitch markers. String network for HSA shows affected gene products, with the
nodes shown for over 10 connections. The density of colour corresponds to the number

of connections, leading with MYC, EGFR, POLR2B, PTPRD, NTRK2, RUNX2.
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Figure 8. String network of histiocytic sarcoma systemic profile, captured through

the top 200 EpiSwitch markers. String network for histiocytic sarcoma shows affected

gene products, with the nodes shown for over 10 connections. The density of colour

corresponds to the number of connections, leading with EZH2, EPRS, HISTIH4F,

CDC6, TOP24, CULI, PABPCI, CDH2, NTRK?2.
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Figure 9. String network of osteosarcoma systemic profile, captured through the top
200 EpiSwitch markers. String network for osteosarcoma shows affected gene
products, with the nodes shown for over 10 connections. The density of colour
corresponds to the number of connections, leading with EGFR, IL174, CA10, WASL,

SH3GL2, POLR2B.
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Figure 10. String network of canine malignant melanoma systemic profile, captured
through the top 200 EpiSwitch markers. String network for canine malignant
melanoma shows >550 affected gene products, with the nodes shown for over 10
connections. The density of colour corresponds to the number of connections, leading

with ESRI, GATA4, CD44, CTBP1, ACTAL.
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The protein network for canine osteosarcoma, for example, shows a key group
of modulated proteins, such as EGFR, IL17A, CA10, WASL, SH3GL2, POLR2B
(Figure 9), all consistent with the human osteosarcoma cases®’ .

The protein network for canine malignant melanoma, for example, shows a key
group of modulated proteins, such as ESR1, GATA4, CD44, CTBP1, ACTA1 (Figure

10) all consistent with the human and canine malignant melanoma cases”®2.

It is important to emphasize, that any observed redundancy at the level of
protein network interaction is a reductional representation of distinct and unique
conditional chromosome conformations within the complex 3D architectural landscape
across the same protein encoding gene locus. This reflect different contribution for 3D
genomic modulation into the same gene loci regulation when different oncological

indications are compared.

Discussion

Here we describe first canine liquid biopsy application with the approach that
has demonstrated earlier the strong advantages of systemic 3D genomic profiling using
whole-genome EpiSwitch arrays in human oncological applications for diagnosis,
prognosis, and prediction of response to treatment**-3165, With the challenging task for
a multi-choice stratification, we have built an array-based two step classifier. Extensive
analysis of the systemic signatures in canine cancers revealed strong signatures by
class, with markers shared by all tested lymphomas for one class and distinct strong
markers shared by all tested sarcomas for another class. In light of this, we are of

opinion, that at the level of 3D genomics the systemic signatures, with all its integration
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of genetic and epigenetic inputs>?, systemic profiling of cancers does not reveal itself
as a universal pan-cancer signature, but as a distinct family of signatures by class,
reflecting their distinct mechanisms, shared, in our example, by sarcomas.

Thus, firstly, in the context of the multi-choice classifier, the profile of an
individual sample undergoes class stratifications against heathy controls. The second
stage of classification benefits from the individual stratification models, based on
unique selected markers for each individual indication.

Today, this approach has been tested on 56 independent samples, representing
a mixture of healthy controls, two subtypes of lymphoma, three different types of
sarcoma and canine malignant melanoma. The results of the first validation demonstrate
high efficacy of stratification. Importantly, they also demonstrate high specificity
against all other cancer indications. This is an important advantage against genetic
mutation approaches in free cancer circulating DNA, which shares similar mutational
profile between many cancers. For example, PetDx OncoK9 multi-cancer early
detection test for detection of cancer associated genomic alterations in DNA isolated
from canine blood using next generation sequencing is able to detect genetic alterations
common for 30 cancers with high accuracy of sequencing readout, but according to the
ONCOKD Test Interpretation Guide the report outcome is specified in three types: 1)
cancer signal detected, cancer signal not detected, and not reportable — sample failed *3.
Example of the SCB140842 case study has demonstrated highly informative
longitudinal changes in specificity captured by the EpiSwitch profiling after the
radiotherapy and chemotherapy treatments, as well as after the second diagnosis with

unavailable pathology results.
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Current results constitute the first systemic oncological classifications as an
EpiSwitch specific canine blood-based (EpiSwitch SCB) test. We anticipate to
significantly expand the list of the individual indications covered by the test and to
extend the validation exercise to all underrepresented cases. Using the modular
structure for the test, we aim to add individual classifiers to the existing profiles, at the
level of data analysis, without any changes to the whole-genome EpiSwitch canine
array design. Given the feedback form the veterinary practices, we strongly believe that
the developed EpiSwitch SCB™ test approach will be of interest for veterinary
specialist as an additional tool contributing to the informed decisions on diagnosis,

treatment, and best standards of care for our canine companions.

Conclusions

Clearly, there is a pressing need to develop better non-invasive (blood)
biomarker assays to assess early canine oncological indications in advance of
therapeutic intervention. Here we report on a novel 3D genomics approach to identify
systemic blood-based markers for canine DLBCL, TZL, HSA, histiocytic sarcoma,
osteosarcoma, and canine malignant melanoma in an assay format that encompasses
multiple classes and phenotypes of cancer. The approach described here is based on
earlier applications in human oncology. As a non-invasive, blood-based test, EpiSwitch
SCB, promises to assist veterinary specialists in diagnosis of disease and associated
treatment decisions, to better utilize alternative effective treatments, minimize or avoid

unnecessarily toxicity, and efficiently manage costs and resources.


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Authors contributions

EH, AA conceived the study, MS assisted with study design and clinical
samples collection. AD, MS, EH assisted with EpiSwitch array design. MS and RP
assisted with design of experiments. JG and AA planned and reviewed experiments.
TN, DV, KS, EH analysed the data. AD, MI, CW, AH, AG performed experiments. SF
helped with interpretation of the data and writing of the manuscript. JFM obtained the

samples. AA, EH, AB, TG and JFM wrote and reviewed the manuscript.

Acknowledgements

The authors would like to thank past and present members of OBD for their
operational support, Mitzi Lewellen in managing samples transfers, all inventory
activities, and metadata collection for the dogs in the study, Olly Hunter for his
assistance in data analysis. In addition, we acknowledge Agilent Technologies, Inc. for
supply of EpiSwitch designed CGH microarray slides.
The authors want to express their gratitude to the SCB140842 family for their

permission to share the case study details.

Conflicts of interest
EH, MS, RP, AD, TN, DV, KS, MI, CW, AH, AG, JG, TG and AA are full-
time employees at Oxford BioDynamics plc. AA is a company director. The remaining

authors have no conflict of interest.


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

References

1. Sarver, A. L., Makielski, K. M., DePauw, T. A., Schulte, A. J. & Modiano, J. F.
Increased risk of cancer in dogs and humans: A consequence of recent extension of

lifespan beyond evolutionarily determined limitations? Aging Cancer 3, 3—19 (2022).

2. Schiffman, J. D. & Breen, M. Comparative oncology: what dogs and other species
can teach us about humans with cancer. Philos. Trans. R. Soc. B: Biol. Sci. 370,

20140231 (2015).

3. COP - Pet Owners - What is Comparative Oncology.

4. Dobson, J. M. Breed-Predispositions to Cancer in Pedigree Dogs. ISRN Vet. Sci.

2013, 941275 (2013).

5. Nam, Y. et al. Dog size and patterns of disease history across the canine age

spectrum: Results from the Dog Aging Project. PLOS ONE 19, €0295840 (2024).

6. Nunney, L. The effect of body size and inbreeding on cancer mortality in breeds of
the domestic dog: a test of the multi-stage model of carcinogenesis. R. Soc. Open Sci.

11, 231356 (2024).

7. Fleming, J. M., Creevy, K. E. & Promislow, D. E. L. Mortality in North American
Dogs from 1984 to 2004: An Investigation into Age-, Size-, and Breed-Related Causes

of Death. J. Vet. Intern. Med. 25, 187-198 (2011).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

8. Bellumori, T. P., Famula, T. R., Bannasch, D. L., Belanger, J. M. & Oberbauer, A.
M. Prevalence of inherited disorders among mixed-breed and purebred dogs: 27,254

cases (1995-2010). J. Am. Vet. Med. Assoc. 242, 15491555 (2013).

9. Rafalko, J. M. et al. Age at cancer diagnosis by breed, weight, sex, and cancer type
in a cohort of more than 3,000 dogs: Determining the optimal age to initiate cancer

screening in canine patients. PLOS ONE 18, 0280795 (2023).

10. Atherton, M. J., Morris, J. S., McDermott, M. R. & Lichty, B. D. Cancer
immunology and canine malignant melanoma: A comparative review. Vet. Immunol.

Immunopathol. 169, 15-26 (2016).

11. Edwards, D. S., Henley, W. E., Harding, E. F., Dobson, J. M. & Wood, J. L. N.
Breed incidence of lymphoma in a UK population of insured dogs. Vet. Comp. Oncol.

1, 200-206 (2003).

12. Zandvliet, M. & Teske, E. Mechanisms of Drug Resistance in Veterinary
Oncology—A Review with an Emphasis on Canine Lymphoma. Vet. Sci. 2, 150184

(2015).

13. Ito, D., Frantz, A. M. & Modiano, J. F. Canine lymphoma as a comparative model
for human non-Hodgkin lymphoma: recent progress and applications. Vet. Immunol.

Immunopathol. 159, 192-201 (2014).

14. O’Brien, D. et al. Clinical Characteristics and Outcome in Dogs with Splenic

Marginal Zone Lymphoma. J. Vet. Intern. Med. 27, 949-954 (2013).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

15. Valli, V. E., Vernau, W., Lorimier, L.-P. de, Graham, P. S. & Moore, P. F. Canine

Indolent Nodular Lymphoma. Vet. Pathol. 43, 241-256 (2006).

16. Flood-Knapik, K. E. et al. Clinical, histopathological and immunohistochemical

characterization of canine indolent lymphoma. Vet. Comp. Oncol. 11, 272-286 (2013).

17. Valli, V. E. et al. Classification of Canine Malignant Lymphomas According to the

World Health Organization Criteria. Vet. Pathol. 48, 198-211 (2011).

18. Valli, V. E., Kass, P. H., Myint, M. S. & Scott, F. Canine Lymphomas. Vet. Pathol.

50, 738-748 (2013).

19. Hunter, E. ef al. Comparative molecular cell-of-origin classification of diffuse large
B-cell lymphoma based on liquid and tissue biopsies. Trans! Medicine Commun 5, 5

(2020).

20. Fonseca-Alves, C. E. ef al. Current Status of Canine Melanoma Diagnosis and
Therapy: Report From a Colloquium on Canine Melanoma Organized by ABROVET

(Brazilian Association of Veterinary Oncology). Front. Vet. Sci. 8, 707025 (2021).

21. Dobson, J. M., Samuel, S., Milstein, H., Rogers, K. & Wood, J. L. N. Canine
neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J.

Small Anim. Pr. 43, 240-246 (2002).

22. Smedley, R. C., Sebastian, K. & Kiupel, M. Diagnosis and Prognosis of Canine

Melanocytic Neoplasms. Vet. Sci. 9, 175 (2022).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

23. Ghisleni, G. et al. Correlation between fine-needle aspiration cytology and
histopathology in the evaluation of cutaneous and subcutaneous masses from dogs and

cats. Vet. Clin. Pathol. 35, 24-30 (2006).

24. Griftiths, G. L., Lumsden, J. H. & Valli, V. E. O. Fine Needle Aspiration Cytology

and Histologic Correlation in Canine Tumors. Vet. Clin. Pathol. 13, 13—17 (1984).

25. Przezdziecki, R., Czopowicz, M. & Sapierzynski, R. Accuracy of routine cytology
and immunocytochemistry in preoperative diagnosis of oral amelanotic melanomas in

dogs. Vet. Clin. Pathol. 44, 597-604 (2015).

26. Smedley, R. C., Lamoureux, J., Sledge, D. G. & Kiupel, M. Immunohistochemical
Diagnosis of Canine Oral Amelanotic Melanocytic Neoplasms. Vet. Pathol. 48, 32—40

(2011).

27. Ramos-Vara, J. A. et al. Retrospective Study of 338 Canine Oral Melanomas with
Clinical, Histologic, and Immunohistochemical Review of 129 Cases. Vet. Pathol. 37,

597-608 (2000).

28. Giudice, C., Ceciliani, F., Rondena, M., Stefanello, D. & Grieco, V.
Immunohistochemical Investigation of PNL2 Reactivity of Canine Melanocytic

Neoplasms and Comparison with Melan A. J. Vet. Diagn. Investig. 22,389-394 (2010).

29. Choi, C. & Kusewitt, D. F. Comparison of tyrosinase-related protein-2, S-100, and
Melan A immunoreactivity in canine amelanotic melanomas. Vet. Pathol. 40, 7138

(2003).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

30. Tsoi, M. F., Thaiwong, T., Smedley, R. C., Noland, E. & Kiupel, M. Quantitative
Expression of TYR, CD34, and CALDI1 Discriminates Between Canine Oral Malignant

Melanomas and Soft Tissue Sarcomas. Front. Vet. Sci. 8, 701457 (2021).

31. Gustafson, D. L., Duval, D. L., Regan, D. P. & Thamm, D. H. Canine sarcomas as

a surrogate for the human disease. Pharmacol. Ther. 188, 80-96 (2018).

32. Nardi, A. B. D. et al Diagnosis, Prognosis, and Treatment of Canine
Hemangiosarcoma: A Review Based on a Consensus Organized by the Brazilian

Association of Veterinary Oncology, ABROVET. Cancers 15, 2025 (2023).

33. Bertazzolo, W. et al. Canine angiosarcoma: cytologic, histologic, and

immunohistochemical correlations. Vet. Clin. Pathol. 34, 28-34 (2005).

34, Sabattini, S. & Bettini, G. An Immunohistochemical Analysis of Canine

Haemangioma and Haemangiosarcoma. J. Comp. Pathol. 140, 158—168 (2009).

35. Griffin, M. A., Culp, W. T. N. & Rebhun, R. B. Canine and feline

haemangiosarcoma. Vet. Rec. 189, €585 (2020).

36. Treggiari, E., Pedro, B., Dukes-McEwan, J., Gelzer, A. R. & Blackwood, L. A
descriptive review of cardiac tumours in dogs and cats. Vet. Comp. Oncol. 15, 273-288

(2017).

37. Pedro, B. et al. Cytological diagnosis of cardiac masses with ultrasound guided fine

needle aspirates. J. Vet. Cardiol. 18, 47-56 (2016).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

38. Fulmer, A. K. & Mauldin, G. E. Canine histiocytic neoplasia: an overview. Can.

Vet. J. Rev. veterinaire Can. 48, 1041-3, 104650 (2007).

39. HEYMAN, S. J., DIEFENDERFER, D. L., GOLDSCHMIDT, M. H. & NEWTON,
C. D. Canine Axial Skeletal Osteosarcoma A Retrospective Study of 116 Cases (1986

to 1989). Vet. Surg. 21, 304-310 (1992).

40. Makielski, K. M. et al. Risk Factors for Development of Canine and Human

Osteosarcoma: A Comparative Review. Vet. Sci. 6, 48 (2019).

41. Seelig, D. M. et al. Canine T-Zone Lymphoma: Unique Immunophenotypic
Features, Outcome, and Population Characteristics. J. Vet. Intern. Med. 28, 878886

(2014).

42. Wolf-Ringwall, A. et al. Prospective evaluation of flow cytometric characteristics,
histopathologic diagnosis and clinical outcome in dogs with naive B-cell lymphoma

treated with a 19-week CHOP protocol. Vet. Comp. Oncol. 18, 342-352 (2020).

43. Aresu, L. et al. Minimal residual disease detection by flow cytometry and PARR in
lymph node, peripheral blood and bone marrow, following treatment of dogs with

diffuse large B-cell lymphoma. Vetr. J. 200, 318-324 (2014).

44. Garnica, T. K. et al. Liquid biopsy based on small extracellular vesicles predicts

chemotherapy response of canine multicentric lymphomas. Sci. Rep. 10, 20371 (2020).

45. Johnston, S. A., Thamm, D. H. & Legutki, J. B. The immunosignature of canine

lymphoma: characterization and diagnostic application. BMC Cancer 14, 657 (2014).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

46. Wilson-Robles, H. et al. Evaluation of nucleosome concentrations in healthy dogs

and dogs with cancer. PLoS ONE 15, €0236228 (2020).

47. Flory, A. et al. Clinical validation of a next-generation sequencing-based multi-
cancer early detection “liquid biopsy” blood test in over 1,000 dogs using an
independent testing set: The CANcer Detection in Dogs (CANDiD) study. PLoS ONE

17, 0266623 (2022).

48. Hunter, E. et al. Development and Validation of Blood-Based Predictive
Biomarkers for Response to PD-1/PD-L1 Checkpoint Inhibitors: Evidence of a
Universal Systemic Core of 3D Immunogenetic Profiling across Multiple Oncological

Indications. Cancers 15, 2696 (2023).

49. Yan, H. et al. Epigenetic chromatin conformation changes in peripheral blood can

detect thyroid cancer. Surgery 165, 44—49 (2019).

50. Pchejetski, D. et al. Circulating Chromosome Conformation Signatures
Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for

Prostate Cancer Detection. Cancers 15, 821 (2023).

51. Alshaker, H. et al. Chromatin conformation changes in peripheral blood can detect

prostate cancer and stratify disease risk groups. J Transl Med 19, 46 (2021).

52. Tordini, F., Aldinucci, M., Milanesi, L., Lio, P. & Merelli, I. The Genome
Conformation As an Integrator of Multi-Omic Data: The Example of Damage

Spreading in Cancer. Frontiers Genetics 7, 194 (2016).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

53. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat Rev

Genet 17, 661-678 (2016).

54. Crutchley, J. L., Wang, X. Q. D., Ferraiuolo, M. A. & Dostie, J. Chromatin
conformation signatures: ideal human disease biomarkers? Biomark Med 4, 611-629

(2010).

55. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing Chromosome

Conformation. Science 295, 1306-1311 (2002).

56. Jakub, J. W. et al. A pilot study of chromosomal aberrations and epigenetic changes
in peripheral blood samples to identify patients with melanoma. Melanoma Res 285,

406-11 (2015).

57. Berry, J. et al. Radicava/Edaravone Findings in Biomarkers From Amyotrophic

Lateral Sclerosis (REFINE-ALS). Neurol.: Clin. Pr. 11, e472—e479 (2021).

58. Mills, L. J. et al. Abstract A42: Development and validation of diagnostic
biomarkers for B-cell lymphoma using EpiSwitchTM profiling of whole blood: From

humans to canines. Clin. Cancer Res. 26, A42—A42 (2020).

59. Salter, M. et al. Initial Identification of a Blood-Based Chromosome Conformation
Signature for Aiding in the Diagnosis of Amyotrophic Lateral Sclerosis. Ebiomedicine

33, 169-184 (2018).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

60. Carini, C. et al. Chromosome conformation signatures define predictive markers of
inadequate response to methotrexate in early rheumatoid arthritis. J Transl Med 16, 18

(2018).

61. Bastonini, E. et al. Chromatin barcodes as biomarkers for melanoma. Pigm Cell

Melanoma R 27, 788-800 (2014).

62. Hunter, E. et al. 3D genomic capture of regulatory immuno-genetic profiles in
COVID-19 patients for prognosis of severe COVID disease outcome. Biorxiv

2021.03.14.435295 (2021) doi:10.1101/2021.03.14.435295.

63. Hunter, E. ef al. Development and Validation of baseline predictive biomarkers for
response to avelumab in second-line (2L) non-small cell lung cancer (NSCLC) using

EpiSwitch epigenetic profiling. J Immunotherapy Cancer (2019).

64. Hunter, E. ef al. Development and validation of blood-based prognostic biomarkers
for severity of COVID disease outcome using EpiSwitch 3D genomic regulatory
immuno-genetic profiling. Medrxiv 2021.06.21.21259145 (2021)

doi:10.1101/2021.06.21.21259145.

65. Powles, T. B. ef al. LBA74 Genomic biomarkers in peripheral blood (PB) from
patients (pts) enrolled in the JAVELIN Bladder 100 trial of avelumab first-line (1L)

maintenance in advanced urothelial carcinoma (aUC). Ann Oncol 33, S1442 (2022).

66. Kosaka, N. & Ochiya, T. Unraveling the Mystery of Cancer by Secretory
microRNA: Horizontal microRNA Transfer between Living Cells. Frontiers Genetics

2,97 (2012).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

67. Alshaker, H. et al. Monocytes acquire prostate cancer specific chromatin
conformations upon indirect co-culture with prostate cancer cells. Frontiers Oncol 12,

990842 (2022).

68. Melo, S. A. et al. Cancer Exosomes Perform Cell-Independent MicroRNA

Biogenesis and Promote Tumorigenesis. Cancer Cell 26, 707-721 (2014).

69. Santosa, E. K., Lau, C. M., Sahin, M., Leslie, C. S. & Sun, J. C. 3D Chromatin
Dynamics during Innate and Adaptive Immune Memory Acquisition. bioRxiv

2023.01.16.524322 (2023) doi:10.1101/2023.01.16.524322.

70. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv (2016)

doi:10.48550/arxiv.1603.02754.

71. Biecek, P. & Burzykowski, T. Explanatory Model Analysis, Explore, Explain and

Examine Predictive Models. 95-106 (2021) doi:10.1201/9780429027192-10.

72. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein—
protein association networks, made broadly accessible. Nucleic Acids Res 45, D362—

D368 (2017).

73. Wheeler, D. L., Ilida, M. & Dunn, E. F. The Role of Src in Solid Tumors. Oncol.

14, 667-678 (2009).

74. CHEN, Q. et al. The importance of Src signaling in sarcoma. Oncol. Lett. 10, 17—

22 (2015).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

75. Martinez-Font, E. et al. WNT/B-Catenin Pathway in Soft Tissue Sarcomas: New

Therapeutic Opportunities? Cancers 13, 5521 (2021).

76. Cai, Q., Medeiros, L. J., Xu, X. & Young, K. H. MYC-driven aggressive B-cell
lymphomas: biology, entity, differential diagnosis and clinical management.

Oncotarget 6,38591-38616 (2015).

77. Azoulay, D. & Horowitz, N. A. Brain-derived neurotrophic factor in hematological
malignancies: From detrimental to potentially beneficial. Blood Rev. 51, 100871

(2022).

78. Wu, C., Song, Q., Gao, S. & Wu, S. Targeting HDACs for diffuse large B-cell

lymphoma therapy. Sci. Rep. 14, 289 (2024).

79. Junior, G. B. C., Savino, W. & Pombo-de-Oliveira, M. S. CD44 expression in T-
cell lymphoblastic leukemia. Braz. J. Méd. Biol. Res. Rev. Bras. Pesqui. Med. e Biol.

27, 2259-66 (1994).

80. Celant, E. et al. Clinical and Clinical Pathological Presentation of 310 Dogs
Affected by Lymphoma with Aberrant Antigen Expression Identified via Flow

Cytometry. Vet. Sci. 9, 184 (2022).

81. Patel, R. S. et al. A GATA4-regulated secretory program suppresses tumors through

recruitment of cytotoxic CD8 T cells. Nat. Commun. 13, 256 (2022).

82. Udager, A. M., Ishikawa, M. K., Lucas, D. R., McHugh, J. B. & Patel, R. M. MYC

immunohistochemistry in angiosarcoma and atypical vascular lesions: practical


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

considerations based on a single institutional experience. Pathology 48, 697-704

(2016).

83. Yang, J.-L., Hannan, M. T., Russell, P. J. & Crowe, P. J. Expression of HER1/EGFR

protein in human soft tissue sarcomas. Eur. J. Surg. Oncol. (EJSO) 32, 466—468 (2006).

84. Zhao, W., Yang, H., Chai, J. & Xing, L. RUNX2 as a promising therapeutic target

for malignant tumors. Cancer Manag. Res. 13, 2539-2548 (2021).

85. Wang, X., Brea, L. T. & Yu, J. Immune modulatory functions of EZH2 in the tumor
microenvironment: implications in cancer immunotherapy. Am. J. Clin. Exp. Urol. 7,

85-91 (2019).

86. A., O. E. Both Ends of the Leash — The Human Links to Good Dogs with Bad

Genes. N. Engl. J. Med. 367, 636646 (2012).

87. Wang, S. et al. Epidermal growth factor receptor promotes tumor progression and
contributes to gemcitabine resistance in osteosarcoma. Acta Biochim. Biophys. Sin. 53,

317-324 (2021).

88. Wang, M., Wang, L., Ren, T., Xu, L. & Wen, Z. IL-17A/IL-17RA interaction

promoted metastasis of osteosarcoma cells. Cancer Biol. Ther. 14, 155-163 (2013).

89. Sadurni, M. M. & Saponaro, M. Deregulations of RNA Pol II Subunits in Cancer.

Appl. Biosci. 2, 459-476 (2023).


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595358; this version posted May 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

90. Glatthaar, H., Katto, J., Vogt, T. & Mahlknecht, U. Estrogen Receptor Alpha
(ESR1) Single-Nucleotide Polymorphisms (SNPs) Affect Malignant Melanoma

Susceptibility and Disease Course. Genet. Epigenetics 8, 1-6 (2016).

91. HARWOOD, C. A., GREEN, M. A. & COOK, M. G. CD44 expression in
melanocytic lesions: a marker of malignant progression? Br. J. Dermatol. 135, 876—

882 (1996).

92. Deng, H. et al. CtBP1 is expressed in melanoma and represses the transcription of

pl6INK4a and Breal. J. Investig. Dermatol. 133, 1294—1301 (2013).

93. OncoK9® Test Limitations and Risks | PetDx®. https://petdx.com/oncok9-test-

limitations-and-

risks/#:~:text=Results%200f%20this%20test%20should,Not%20Detected%20(negati

ve)%20result.


https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/

