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Abstract 
 

Veterinary oncology has a critical need for an accurate, specific, and sensitive non-

invasive (blood) biomarker assay to assess multiple canine oncological indications 

early to better inform therapeutic interventions. Extended from clinical applications in 

human oncology, here we report on a novel 3D genomics approach to identify systemic 

blood biomarkers for canine diffuse large B-cell lymphoma (DLBCL), T-zone 

lymphoma (TZL), hemangiosarcoma (HSA), histiocytic sarcoma, osteosarcoma, and 

canine malignant melanoma, in a single assay format that encompasses multiple classes 

and phenotypes of cancer. In the validation of the independent test cohort the 3D whole-

genome profiling in peripheral blood demonstrated high sensitivity and specificity for 

lymphomas and sarcomas as a class, with accuracy >80%; and high sensitivity and 

specificity for individual indications, with accuracy >89%. This study demonstrates a 

3D genomic approach can be used to develop a non-invasive, blood-based test for 

multiple choice diagnosis of canine oncological indications. The modular EpiSwitch® 

Specific Canine Blood (EpiSwitch SCB) test promises to help veterinary specialists to 

diagnose the disease, make more informed treatment decisions, better utilize alternative 

effective treatments, minimize or avoid unnecessarily toxicity, and efficiently manage 

costs and resources. 
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Everything I know I learned from dogs.  

-Nora Roberts, “The Search” 

 

“Dogs’ lives are too short. Their only fault, really.”  

-Agnes Sligh Turnbull, “The Wedding Bargain” 

 

Background 

 Cancer is the predominant cause of death in adult dogs. Similarly to Charles 

Darwin’s remarks on aspects of our own species’ evolution, this significant disease 

burden in dogs betrays ‘the indelible stamp of [their] origin’ wherein heavy selection 

pressures for certain desirable behavioural or phenotypic traits, combined with our 

success increasing their life expectancy beyond the evolutionarily selected lifespan1, 

unwittingly had as an unintended consequence, an excess of multiple types of cancer 

observed in this species. In the United States alone, it is estimated that 4.2 to 6 million 

new cases of cancer are diagnosed each year2,3. The lifetime risk of cancer and 

associated mortality rates in dogs have been estimated to be approximately 30% and 

have been noted to vary by breed4, although recent data suggest that size and biological 

aging account for most of the observed variation in cancer susceptibility5,6.  For greater 

context, non-neoplastic conditions, including those arising from traumatic, infectious, 

metabolic, inflammatory, degenerative, toxic, congenital, and vascular processes, 

individually account for £10% of adult dog deaths7. When accounting for age, sex, and 

weight, the lifetime incidence of cancer in purebred and mixed-breed dogs is reported 

to be comparable8,9.  
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 Malignant lymphomas are one of the most common cancers in dogs, with an 

estimated incidence of 25 per 100,00010. While they may occur at any age, they are 

predominately diagnosed in older dogs11,12. Of these, the most frequently encountered 

subtype is diffuse large B-cell lymphoma (DLBCL), accounting for 40% of all canine 

lymphomas and approximately 70% of canine B-cell lymphomas13 

 Marginal zone lymphoma (MZL) is less common but the expansion of 

immunophenotyping and molecular clonality assessments available to veterinary 

pathologists are making greater scrutiny possible14. Indolent lymphomas make up 

approximately 29% of all canine lymphomas15,16. T-zone lymphoma (TZL) is the most 

frequently diagnosed indolent lymphoma in dogs15,16. Estimations speaking to TZL 

incidence specifically vary widely, with two publications’ estimations ranging from 

15.5 and 62%17,18. Histopathology and immunohistochemistry (IHC) remain the clinical 

gold standard for diagnosing and classifying lymphomas18,19  

 It has been reported that approximately 7% of all malignant tumours in dogs are 

melanocytic tumours 20. Oral melanocytic tumours make up 30-40% of all canine oral 

neoplasms21. Regardless of their location, malignant melanocytic neoplasms are 

diagnosed via cytology and/or histopathology 22. The sensitivity and specificity of this 

diagnostic method are excellent for pigmented melanocytic neoplasms but can drop 

significantly with diagnostic attempts of amelanotic melanocytic neoplasms 23–25. If the 

diagnosis of amelanotic melanocytic neoplasms remains evasive with microscopic 

evaluation, IHC for melanocyte-specific markers is required for definitive 

confirmation26–30.  

 Sarcomas comprise approximately 10-15% of malignant tumours in dogs. Of 

these, bone is the primary anatomic location of origin in 20% of cases, while the 
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remaining 80% are found in soft tissue 31. Hemangiosarcoma (HSA) is among the more 

commonly occurring soft tissue sarcomas with an incidence of 2.8-5.0% of all 

diagnosed cancers, with primary sites of occurrence in the spleen, heart, liver, and 

skin31. Diagnosis of cutaneous HSA is performed via analysis of histopathology from 

incisional or excisional biopsies and may require IHC for definitive diagnosis owing to 

its heterogeneous makeup32–34. Splenic and liver HSA typically requires abdominal 

ultrasonography and three-view chest radiography. Definitive diagnosis requires 

histopathological examination and differential IHC is recommended32.  Cardiac HSA 

diagnosis is made by fluid cytology but may not always be achieved due to the intrinsic 

challenges associated with sample acquisition, low cellular exfoliation and elevated 

haemodilution32,35–37.    

 Histiocytic sarcoma represents approximately 4% of all canine cancers, 

originating from antigen-presenting cells with primary sites in the lymph nodes, 

kidneys, liver, and central nervous system 31. Cutaneous histiocytic sarcoma can be 

diagnosed with relative ease by cytopathologic examination but as with all subtypes of 

histiocytic sarcoma, IHC staining is required to provide a definitive diagnosis38.  

 Within non-soft tissue sarcomas, osteosarcoma is the most common bone cancer 

in dogs, occurring in the appendicular (~85%) and axial skeleton31,39,40. Definitive 

diagnosis of osteosarcoma requires histological observation of osteoid production by 

malignant osteoblast cells31. 

 Securing a definitive diagnosis and classification of cancer in dogs falls on a 

spectrum of varying degrees of difficulty as location, subtypes, complicating local 

conditions, and specific biopsy requirements are factored in. Given the invasive nature 

of tissue biopsies requiring sedation or anaesthesia, the economic costs associated with 
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the process, and the specialized technical training required to achieve an accurate and 

definitive classification, several alternative diagnostic methods are gradually gaining 

favour41. For example, fine needle aspiration alone or in conjunction with 

immunocytochemistry, flow cytometry, and/or polymerase chain reaction (PCR) for 

antigen receptor rearrangement (PARR) are among the most widely employed 

contemporary alternatives used to diagnose canine lymphomas42. Several liquid biopsy 

tools have been reported to aid in the diagnosis and subtyping of canine lymphoma, in 

addition to facilitating early disease detection, minimal residual disease monitoring, 

and the capacity to guide therapy43–46.  

 Unfortunately, many dogs with a presumptive diagnosis of malignancy are 

euthanized without a definitive diagnosis, underscoring the need for reliable and 

affordable tests that can better inform treatment options and prognosis for dogs with 

cancer. Emerging liquid biopsy and molecular testing platforms are addressing this 

unmet need47. Here, we report on the first evidence of a novel liquid biopsy biomarker 

modality focused on the changes in 3-dimensional genomic architecture (3D genomics) 

in peripheral blood cells – already utilized in DLBCL and other oncological 

applications in humans19,48–51 – to establish the presence of the canine cancers described 

above, as well as to report on cancer indications in training. Exploration of higher-order 

genomic architecture has revealed that the 3D configuration of chromatin plays a 

critical role as an epigenetic regulator of gene expression in pathological and non-

pathological phenotypes52,53.  

 Of central importance are 3D chromosomal conformations signatures (CCSs) 

derived from combinations of long-range DNA contacts that establish a regulatory 

fragmentation of the active genome, linking together genetic risks and epigenetic 
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oversight of genome regulation54. By determining long-range chromosome 

interactions, i.e., chromatin loops, at particular loci via chromosome conformation 

capture (3C) technologies, one can derive a biomarker that provides an instructive view 

of the regulatory architecture possessed by the 3D genome55. The novel biomarker 

EpiSwitch® platform is grounded on 3C and has reduced to practice and meets the 

regulatory requirements of a clinical biomarker assay. The heart of the platform is the 

unification of high-throughput, high-resolution screening with the EpiSwitch Explorer 

microarray platform, machine learning algorithms, testing on independent validation 

cohorts, and a PCR-based format for stratifying biomarker signature19,49,51,56–58. This 

well-established phenomenon of CCSs being the multi-omics integrator and regulatory 

interface of the cell has been validated in the EpiSwitch platform in an extensive range 

of indications including detection of disease (pre-symptomatic and symptomatic), 

prognosis, and predictive response to treatment19,48–51,56,59–65. Two of the EpiSwitch 

blood-based biomarker applications are practiced today in US and UK as reimbursable 

clinical tests: a Checkpoint Inhibitor Response Test (CiRT) for prediction of treatment 

response in immuno-oncology48 , and a prostate cancer screening test (PSE)50.  

 A salient and increasingly appreciated aspect of the regulatory architecture 

inherent in the 3D genome is that the heritable information in DNA far exceeds the 

linear genetic and epigenetic histone modifications that academic literature has 

classically explored. These traditional linear genetic formats and epigenetic histone 

modifications are in fact “encoded” in 3D genomic folding and architecture, 

constituting part of the epigenetic memory, reproducing itself with high fidelity through 

innumerable cell divisions, and are intimately related to cell metabolic and epigenetic 
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states of the cell. More simply, the 3D genome is the storage media of the heritable 

footprint - genetic, epigenetic, and metabolic - of the cellular network regulation.  

 Visualizing how a whole blood biopsy could, by utilizing the EpiSwitch 

microarray platform and machine learning, provide diagnostic and prognostic insights 

into such extensive pathologies and processes, it is crucial to understand the extent to 

which individual chromosome conformations could be synchronized in the context of 

the multicellular organism and all the cross talk between the cells. Exosome traffic 

fosters the active exchange of epigenetic factors between the cells. These extracellular 

vesicles, with their cargoes of metabolites, nucleic acids, non-coding RNA, lipids, and 

peptides transfer horizontally from cells of origin to recipient cells and result in the 

modulation of immune cells (representing systemic changes), as well as modulation of 

secondary sites. Together this generates systemic epigenetic synchronization and 

changes in 3D genomic profiles, detectable by the EpiSwitch microarray platform66–69. 

 Here we have deployed the stratifying capabilities of the whole genome 

EpiSwitch 3D genomic array profiling based on peripheral blood biopsy to several 

prevalent canine cancers: lymphomas – DLBCL and TZL; HSA, histiocytic sarcoma, 

osteosarcoma; and canine malignant melanoma.  

 Given the challenge of a multi-choice outcome, we have developed an approach 

based exclusively on array readouts. The two-step classifier identifies first the strong 

systemic network signatures for lymphomas, sarcomas, and melanomas, shared by each 

class, and then identifies individual indication within the class. With batch alignment 

and internal controls, the performance of the array-based stratifications was then 

evaluated in validation cohorts for accuracy and specificity against other cancer 

indications.  
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Material and Methods  

 

Samples  

 Canine whole blood samples, 150 in total, were imported under licenses 

ITIMP19.0336 and ITIMP22.0063 (Animal & Plant Health Agency) from the Animal 

Cancer Care and Research Program, University of Minnesota, St. Paul, MN, USA. 

Samples represented healthy controls and cases of DLBCL, TZL, HSA, histiocytic 

sarcoma, osteosarcoma, and canine malignant melanoma (Supplemental Table 1). 

When available, the annotations also include the age and breed of the individual dogs. 

 All samples were profiled on EpiSwitch Canine Whole-genome 3D Explorer 

Array. Samples were either used in EpiSwitch screening and discovery stage, or in 

validation evaluation. Those samples were not used in any stages of the classifier model 

development.  

 

Preparation of 3D genomic templates 

 EpiSwitch 3D libraries, chromosome conformation analytes converted to 

sequence-based tags, were prepared from frozen whole blood samples. Using 

EpiSwitch protocols following the manufacturer's instructions for EpiSwitch Explorer 

Array kits (Oxford BioDynamics Plc), samples were processed on the Freedom EVO 

200 robotic platform (Tecan Group Ltd). Briefly, aliquots of 50 µl of whole blood were 

diluted and fixed with an EpiSwitch buffer containing formaldehyde. Density cushion 

centrifugation was used to purify intact, fixed nuclei. Following a short detergent-based 

step to permeabilise the nuclei, restriction enzyme digestion and proximity ligation 
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were used to generate the 3D libraries. Samples were centrifuged to pellet the intact 

nuclei before purification with an adapted protocol from the QIAmp DNA FFPE Tissue 

kit (Qiagen) Eluting in 1x TE buffer pH7.5. 3D libraries were quantified using the 

Quanti-T™ Picogreen dsDNA Assay kit (Invitrogen) and normalised to 5 ng/ml prior 

to interrogation by PCR. 

 

Array design 

Custom microarrays were designed using the EpiSwitch pattern recognition 

algorithm, which operates on Bayesian-modelling and provides a probabilistic score 

that a region is involved in long-range chromatin interactions. The algorithm was used 

to annotate the CanFam 3.1 canine genome assembly across ~1.1 million sites with the 

potential to form long-range chromosome conformations48,62. The most probable 

interactions were identified and filtered on probabilistic score and proximity to protein, 

long non-coding RNA, or microRNA coding sequences. Predicted interactions were 

limited to EpiSwitch sites greater than 10 kb and less than 300 kb apart. Repeat masking 

and sequence analysis was used to ensure unique marker sequences for each interaction. 

The EpiSwitch Explorer array (Agilent Technologies, Product Code 087165), 

containing 60-mer oligonucleotide probes was designed to interrogate potential 3D 

genomic interactions. In total, 964,631 experimental probes and 2,500 control probes 

were added to a 1 x 1 M CGH microarray slide design. The experimental probes were 

placed on the design in singlicate with the controls in groups of 250. The control probes 

consisted of six different EpiSwitch interactions that are generated during the extraction 

processes and used for monitoring library quality. A further four external inline control 

probe designs were added to detect non-human (Arabidopsis thaliana) spike in DNA 
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added during the sample labelling protocol to provide a standard curve and control for 

labelling. The external spike DNA consists of 400 bp ssDNA fragments from genomic 

regions of A. thaliana. Array-based comparisons were performed described previously, 

with the modification of only one sample being hybridised to each array slide in the 

Cy3 channel62. 

 

Statistical analysis 

 The cohorts of analysed samples were normalised by background correction and 

quantile normalisation, using the EpiSwitch R analytic package, which is built on the 

Limma Rank Product, tidyverse libraries. The datasets were combined into sample sets 

by processing batch. Data were corrected for batch effects using ComBat R script. 

Parametric (Limma R library, Linear Regression) and non-parametric (EpiSwitch 

RankProd R library) statistical methods were performed to identify 3D genomic 

changes that demonstrated a difference in abundance between classes.  

 The resulting data from both procedures were further filtered based on p-value 

and abundance scores (AS). Only 3D genomic markers with p-value <=0.01 and AS (-

1.2< ; >1.2) were selected. Both filtered lists from Limma and RankProd analysis were 

compared and the intersection of the two lists was selected for further processing. 

 

Machine learning and modelling 

 All analysis for this study was performed using libraries which are developed 

for the R Statistical Language (R version 4.2.0). Feature engineering of the EpiSwitch 

Markers was performed using Recursive Feature Elimination (RFE) utilising Xgbtree, 

The XGBoost algorithm model70 was used for final test optimisation. The grid search 
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algorithm was used to optimize the hyper-parameters and learning rate in each iteration. 

For drawing inferences, we used SHapley Additive exPlanations (SHAP) values that 

are computed by a game theoretical approach which quantifies the contribution of each 

feature within a model to the final prediction of an observation. SHAP values were used 

to reduce the feature space for the cancer specific models71. 

 

Genomic mapping 

 The 3D genomic markers from the statistically filtered list with the greatest and 

lowest abundance scores were selected for genome mapping. Mapping was carried out 

using Bedtools closest function for the 3 closest protein coding loci – upstream, 

downstream and within the long-range chromosome interaction (Gencode v33). All 

markers were visualized using the EpiSwitch Analytical Portal.   

 

Mapping to STRING database 

 The closest protein coding loci for the chromosome interactions found in this 

study, where inputted to the STRING DB72, utilizing the default settings in order to 

search STRING. The resultant protein-protein interaction data was exported and then 

imported and visualised in Cytoscape (v3.10.0).  
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Results 

 

Identification of the top predictive 3D genomic markers common for lymphomas 

as a class 

 Following the established methodology for EpiSwitch array marker analysis, we 

evaluated systemic marker leads shared by two types of lymphomas – DLBCL and 

TZL. From nearly 40 million data points across the canine genome, screening of 20 

healthy controls vs 20 lymphomas, represented by DBCL and TZL, identified 37 strong 

systemic EpiSwitch biomarkers. Those biomarkers were then used in array-based 

stratification on a validation cohort of 35 dogs, representing healthy controls and both 

lymphomas. Stratification calls were made for presence of lymphomas vs healthy 

controls as a class (Figure 1 and Supplemental Table 2).  

 

Testing of the predictive 3D genomic biomarker panel for lymphomas as a class 

on the independent sample cohort 

 To access the predictive power of the classifier model, the 37-marker 3D array 

classifier was validated on an independent test cohort.  No samples from that cohort 

were used in marker selection and building of the model. The EpiSwitch platform 

readouts for the classifier model were uploaded to the EpiSwitch Analytical Portal for 

analysis. Veterinary diagnostic assessment for the test cohort included 18 healthy 

control samples and a mixture of lymphomas, including 10 DLBCL and 7 (TZL).  

EpiSwitch classifier model calls based on 37-marker model demonstrated high 

performance of 83% balanced accuracy and 87% positive predictive value in 

identifying dogs with lymphomas as a class against healthy controls (Table 1).  
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Figure 1 

 

 

 

Figure 1. Workflow for development and testing of the 3D genomic classifier model 

for presence of lymphomas in canine blood. From EpiSwitch array screening profiles 

accounting for over 40 million data points, 37 top array markers were selected based 

on p value <=0.01 and fold change (FC) less than -1.2 or more than 1.2. 37 markers 

qualified through selection were used in array-based stratification for lymphoma on an 

independent cohort of 35 dogs.  
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Identification of the top predictive 3D genomic markers common for sarcomas as 

a class 

 Following the established methodology for EpiSwitch array marker analysis, we 

also evaluated systemic marker leads shared by three types of sarcomas – HSA, 

histiocytic sarcoma, osteosarcoma. From nearly 50 million data points across the canine 

genome after screening of 20 healthy controls vs 30 sarcomas, represented by all three 

types, we identified 100 strong systemic EpiSwitch biomarkers. Those biomarkers were 

used in array-based stratification on a validation cohort of 40 dogs, representing healthy 

controls and all three sarcomas. Stratification calls were made for presence of sarcomas 

as a class vs healthy control (Figure 2 and Supplemental Table 2).  

 

Testing of the predictive 3D genomic biomarker panel for sarcomas as a class on 

the independent sample cohort 

 To access the predictive power of the classifier model, the 100-marker 3D array 

classifier was validated on an independent test cohort. No samples from that cohort 

were used in marker selection and building of the model. The EpiSwitch platform 

readouts for the classifier model were uploaded to the EpiSwitch Analytical Portal for 

analysis. Veterinary diagnostic assessment for the test cohort included 18 healthy 

control samples and a mixture of HSA, histiocytic sarcoma, osteosarcoma.  EpiSwitch 

classifier model calls based on 8-marker model demonstrated high performance of 83% 

balanced accuracy and 83% positive predictive value in identifying dogs with sarcomas 

(Table 2).  
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Table 1 

 

 

Table 1. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of lymphoma as a class, based on common systemic markers shared by 

DLBCL and TZL across 1 million data point profiles of the 3D genomic architecture. 

Confusion matrix and test performance statistics for the 37-marker classifier on the 35 

dogs in the test cohort.   
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Figure 2 

 

 

 

 

 

Figure 2. Workflow for development and testing of the 3D genomic classifier model 

for presence of sarcomas in canine blood. From EpiSwitch array screening profiles 

accounting for over 50 million data points, 100 top array markers were selected based 

on p value <=0.01 and fold change (FC) less than -1.2 or more than 1.2, and GLMNET. 

100 markers qualified through selection were used in array-based stratification for 

lymphoma on independent cohort of 40 dogs. 
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Table 2 

 

Table 2. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of sarcomas as a class, based on common systemic markers shared by all 

three sarcomas across 1 million data point profiles of the 3D genomic architecture. 

Confusion matrix and test performance statistics for the 100-marker classifier on the 

40 dogs in the test cohort.  

 

 

Training and Testing Individual Multi-Choice Classifiers 

 Having observed strong systemic signatures shared by the indications 

representing lymphomas and sarcomas as distinct classes according to systemic 
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EpiSwitch profiling, we proceeded with two-step classifier models pursuing individual 

indications within each of the groups.  

 For that purpose, our approach was to use once again the development cohort 

of samples for all indications (Figure 3). We have systematically identified top 100 

markers from the comparison of each indication to healthy control samples, based on p 

value and FC, as described earlier. From the total pool we followed only the markers 

unique for each indication. This has been considered an important filtering step to 

ensure the high specificity of the multi-choice stratification of individual cancer types. 

Having ranked the markers, we then pursued only the disease positive markers, i.e., 

chromosome conformations present for detection in the given indication. Such positive 

detection markers are associated with negative FC in our data analysis. As the final 

step, we have conducted further feature reduction of the markers, based on the SHAP 

plots that identified markers with highest impact. In this analysis we also have 

processed samples representing melanoma, as a separate indication and a separate class.  

 We then tested a validation cohort of 56 samples, including 18 healthy controls, 

with the two-step classification, based first on a class call and then, using indication 

unique markers, with the individual indication calls (Figure 3).  

By using validation cohort of 56 mixed indications and healthy controls, the multi-

choice calls for DLBCL demonstrated high positive predictive value of 87.5%, with 

accuracy against healthy controls at 85.7% and accuracy against all the indications 

included in the validation cohort at 92.8% (Table 3). Top markers used in the DLBCL 

individual classifier are listed in the Supplemental Table 2. 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.22.595358doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.22.595358
http://creativecommons.org/licenses/by/4.0/


	 	 	

	

	 	 	

	

 

Figure 3  

 

 

 

Figure 3. Development of the EpiSwitch array-based biomarker classifier for 

individual indications. Markers from over 80 million data point were selected with 

unique profiles for each of the indications within the class and evaluated in multi-

choice stratification against healthy controls and other cancer indications.  
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Table 3 

 

 

 

Table 3. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of DLBCL in the validation cohort.  Confusion matrix and test performance 

statistics for the multi-choice classifier against healthy controls (A) and the full 

validation cohort of 56 samples, including 2 lymphomas, three sarcomas and 

melanoma.  

 

 The multi-choice calls for TZL demonstrated positive predictive value of 

71.43%, with accuracy against healthy controls at 84% and accuracy against all the 

indications included in the validation cohort at 92.8% (Table 4). Top markers used in 

the TZL individual classifier are listed in Supplemental Table 2. Given the nature of 

TZL, we are currently investigating if among the false positives among the healthy 

control, depending on the breed and age, there might have been pre-symptomatic, 

undiagnosed true positives.  
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Table 4 

 

 

 

Table 4. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of TZL in the validation cohort.  Confusion matrix and test performance 

statistics for the multi-choice classifier against healthy controls (A) and the full 

validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and 

melanoma.  

 

 The multi-choice calls for HSA demonstrated high positive predictive with no 

false positives within the validation cohort of 56 samples, with accuracy against healthy 

controls at 85.7% and accuracy against all the indications included in the validation 

cohort at 92.8% (Table 5). Top markers used in the HSA individual classifier are listed 

in Supplemental Table 2. 
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Table 5 

 

 

 

Table 5. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of HSA in the validation cohort.  Confusion matrix and test performance 

statistics for the multi-choice classifier against healthy controls (A) and the full 

validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and 

melanoma.  

 

 

 The multi-choice calls for histiocytic sarcoma was underrepresented in the 

validation cohort, with only 2 histiocytic sarcoma independent samples available within 

56 sample validation cohort (Table 6).  Interesting to note, that the classifier has 

demonstrated high specificity, with no false positive calls. Also, the one false negative 

call on a histiocytic sarcoma sample by the individual classifier still was flagged as a 

sarcoma class sample at the first stage classification. Top markers used in the histiocytic 

sarcoma individual classifier are listed in Supplemental Table 2. 
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Table 6 

 

 

 

Table 6. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of histiocytic sarcoma in the validation cohort.  Confusion matrix and test 

performance statistics for the multi-choice classifier against healthy controls (A) and 

the full validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and 

melanoma.  

 

 The multi-choice calls for osteosarcoma demonstrated high specificity of 80%, 

positive predictive value of 66.7%, negative predictive value of 66.67%, with accuracy 

against healthy controls at 78.57% and accuracy against all the indications included in 

the validation cohort at 89.29% (Table 7). Top markers used in the osteosarcoma 

individual classifier are listed in Supplemental Table 2. Given the nature of 

osteosarcoma, we are also currently investigating if among the false positives among 

the healthy controls, depending on the breed and age, there might have been pre-

symptomatic, undiagnosed true positives.  
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Table 7 

 

 

 

Table 7. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of osteosarcoma in the validation cohort.  Confusion matrix and test 

performance statistics for the multi-choice classifier against healthy controls (A) and 

the full validation cohort of 56 samples, including 2 lymphomas, threes sarcomas and 

melanoma.  

 

The multi-choice calls for canine malignant melanoma demonstrated high sensitivity 

of 77.78%, with no false positive calls and accuracy against healthy controls at 92.6% 

and accuracy against all the indications included in the validation cohort at 96.4% 

(Table 8). Top markers used in the canine malignant melanoma individual classifier are 

listed in the Supplemental Table 2. 
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Table 8 

 

 

 

Table 8. Performance of the EpiSwitch array-based biomarker classifier for calling 

presence of canine malignant melanoma in the validation cohort.  Confusion matrix 

and test performance statistics for the multi-choice classifier against just healthy 

controls (A) and the full cohort of 56 samples, including 2 lymphomas, threes sarcomas 

and melanoma.  

 

Case Study 

 One of the first case studies for the developed multi-step classifier concerned a 

Golden Retriever SCB140842.  

 In February 2020, at the age of 4 years and 3 months SCB140842 was diagnosed 

with intranasal, poorly differentiated malignant neoplasm with vascular invasion. The 

nasal biopsy results indicated a very aggressive tumor as noted by the poor level of 

differentiation, moderate to high cancer cell activity (mitotic index), and cancer cell 
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invasion into the blood vessels. A first blood sample CANIS080 was collected and 

processed on EpiSwitch array platform at this point. 

 As a treatment SCB140842 underwent Stereotactic radiation therapy (SRT) + 

chemotherapy (Doxorubicin), with reported 1- 1.5 years of survival on average, with a 

moderate risk of intermittent to chronic rhinitis.  

 SCB140842 has developed rhinitis linked to the inflammation and remodeling 

that has occurring at the site of radiation. He was given Prednisone and Clindamycin 

for the side effects. Following the full cycle of treatment, a second blood sample 

CANIS193 was collected and processed on EpiSwitch array platform at that point.  

 In October 2023, with no symptoms of any complications, SCB140842 has 

undergone a recheck CT scan which confirmed no evidence of regrowth of his right 

sided nasal mass, and no evidence of spread to his lungs. 

 At the same time CT scan revealed a caudodorsal mediastinal mass, and a 

retroperitoneal mass. The mass within his chest was displacing the aorta and 

compressing the azygous vein. The mass within his abdomen was surrounding the 

cranial mesenteric artery. Both masses were located close to blood vessels, so 

performing a fine needle aspirate with cytology would have been too risky and 

dangerous. A third blood sample CANISOJB was collected and processed at this point.  

 Applying the multi-choice EpiSwitch classifier test, described earlier, to the 

longitudinal set of three samples, the results were the following: 

1. First sample collection. A strong call for cancer, but only by the lymphoma 

general classifier for the first sample CANIS080 collected after the initial 

diagnosis: Lymphoma as a class - 0.72103471; Control - 0.27896529, Cut-off 

>=0.6. None of the two individual lymphomas showed a strong match. 
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Independent clinical diagnosis: poorly differentiated malignant tumour. 

2. Second sample collection. Improved call for healthy state by both lymphoma 

and sarcoma general classifiers for the second sample CANIS193, collected 

after the completion of the initial treatment. 

Independent clinical diagnosis: no evidence of regrowth of nasal mass. 

3. Third sample collection. A strong call for cancer by the sarcoma general 

classifier for the third sample CANISOJB, collected after the second diagnosis 

in October 2023: sarcoma as a class - 0.72687131, Control - 0.27312869, Cut-

off >=0.6; 

Following up with the individual indication classifiers for CANISOJB, 

produced a strongest call for HSA across all indications - 0.83977288. 

Independent clinical diagnosis: Newly identified caudodorsal mediastinal mass 

in conjunction with a retroperitoneal mass outlining the cranial 

mesenteric/celiac arteries. performing a fine needle aspirate with cytology was 

too risky and dangerous. Findings may represent atypical metastatic disease 

from the historical nasal anaplastic sarcoma. 

 

Network regulation analysis 

 The EpiSwitch profiling, apart from delivering robust biomarker modality, also 

provides invaluable insight into high level integrated network regulation, as reflected 

in systemic readouts48,62. Similarly, to the analysis of the previous applications in 

human biology, identified network of 3D genomic canine biomarkers is directly linked 

to the genomic loci they modulate, providing insights into affected genes and pathways.  
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 For example, pathway enrichment for the closest coding regions for the top 

EpiSwitch sarcoma markers, common across HSA, histiocytic sarcoma, and 

osteosarcoma, identified a number of affected Super Pathways, as listed in Fig. 4. 

 

Figure 4 

 

 

 

Figure 4. Mapping of the top 100 systemic 3D genomic common sarcoma markers to 

biological pathways. Analysis of the top 3D genomic markers common between HSA, 

histiocytic sarcoma, and osteosarcoma. 

 

 Among those, the Super Pathway for ERK Signalling, reveals 24 genes 

modulated by common EpiSwitch 3D genomic architecture. This Super Pathway also 

includes the pathway for Molecular Mechanisms of Cancer, with 19 genes modulated 

by the EpiSwitch 3D sarcoma markers. Those include ARGEF7, CD4, GAB1, CCN2, 

HAPLN1, GNB1L, NRG3, COL19A1, COL4A1, COL4A2, WNT5A, BMP1, SRC, 
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CXCR2, CXCR4, VEGFC, VHL, VCAN, FLT3. Interestingly, the role of SRC in solid 

tumours and the importance of Src signalling in sarcomas are well documented, as well 

as recent insights into the WNT role in soft tissue sarcomas73–75. 

 

 Furthermore, we have also analysed the footprints of 3D genomic networks for 

each of the canine cancer indications. With such data over-imposed against the gene 

map, we have followed it up to a by building STRING protein interaction networks72 

showing interactions at the protein that are deduced through 3D genomic architecture, 

all captured at the systemic level. 

 The STRING protein network for canine DLBCL, for example, shows a key 

group of affected proteins, such as MYC, BDNF, LRRK2, NRXN1, HDAC2. (Figure 

5), all consistent with the human DLBCL cases76–78. 

 The protein network for canine TZL, for example, shows a key group of 

modulated proteins, such as ESR1, GATA4, CD44, CRBP1, ACTA1 (Figure 6), all 

consistent with the human T-cell NHL cases79–81. 

 The protein network for canine HSA, for example, shows a key group of 

modulated proteins, such as MYC, EGFR, POLR2B, PTPRD, NTRK2, RUNX2 

(Figure 7), all consistent with the human angiosarcoma cases82–84. 

 The protein network for canine histiocytic sarcoma, for example, shows a key 

group of modulated proteins, such as EZH2, EPRS, HIST1H4F, CDC6, TOP2A, 

CUL1, PABPC1, CDH2, NTRK2. (Figure 8), all consistent with the human histiocytic 

sarcoma cases85,86. 
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Figure 5 

 

 

 

Figure 5. String network of DLBCL systemic profile, captured through the top 200 

EpiSwitch markers. String network for DLBCL shows >550 affected gene products, 

with the nodes shown for over 10 connections. The density of colour corresponds to the 

number of connections, leading with MYC, BDNF, LRRK2, NRXN1, HDAC2.  
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Figure 6 

 

 

 

Figure 6. String network of TZL systemic profile, captured through the top 200 

EpiSwitch markers. String network for TZL shows affected gene products, with the 

nodes shown for over 10 connections. The density of colour corresponds to the number 

of connections, leading with BMP2, ISL1, APC, HSPA4, FYN, BPTF.  
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Figure 7 

 

 

 

Figure 7. String network of HSA systemic profile, captured through the top 200 

EpiSwitch markers. String network for HSA shows affected gene products, with the 

nodes shown for over 10 connections. The density of colour corresponds to the number 

of connections, leading with MYC, EGFR, POLR2B, PTPRD, NTRK2, RUNX2.  
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Figure 8 

 

 

 

 

Figure 8. String network of histiocytic sarcoma systemic profile, captured through 

the top 200 EpiSwitch markers. String network for histiocytic sarcoma shows affected 

gene products, with the nodes shown for over 10 connections. The density of colour 

corresponds to the number of connections, leading with EZH2, EPRS, HIST1H4F, 

CDC6, TOP2A, CUL1, PABPC1, CDH2, NTRK2.  
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Figure 9 

 

 

 

Figure 9. String network of osteosarcoma systemic profile, captured through the top 

200 EpiSwitch markers. String network for osteosarcoma shows affected gene 

products, with the nodes shown for over 10 connections. The density of colour 

corresponds to the number of connections, leading with EGFR, IL17A, CA10, WASL, 

SH3GL2, POLR2B.  
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Figure 10 

 

 

 

 

Figure 10. String network of canine malignant melanoma systemic profile, captured 

through the top 200 EpiSwitch markers. String network for canine malignant 

melanoma shows >550 affected gene products, with the nodes shown for over 10 

connections. The density of colour corresponds to the number of connections, leading 

with ESR1, GATA4, CD44, CTBP1, ACTA1.  
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 The protein network for canine osteosarcoma, for example, shows a key group 

of modulated proteins, such as EGFR, IL17A, CA10, WASL, SH3GL2, POLR2B 

(Figure 9), all consistent with the human osteosarcoma cases87–89. 

 The protein network for canine malignant melanoma, for example, shows a key 

group of modulated proteins, such as ESR1, GATA4, CD44, CTBP1, ACTA1 (Figure 

10) all consistent with the human and canine malignant melanoma cases90–92. 

 

 It is important to emphasize, that any observed redundancy at the level of 

protein network interaction is a reductional representation of distinct and unique 

conditional chromosome conformations within the complex 3D architectural landscape 

across the same protein encoding gene locus. This reflect different contribution for 3D 

genomic modulation into the same gene loci regulation when different oncological 

indications are compared.  

 

Discussion  

 Here we describe first canine liquid biopsy application with the approach that 

has demonstrated earlier the strong advantages of systemic 3D genomic profiling using 

whole-genome EpiSwitch arrays in human oncological applications for diagnosis, 

prognosis, and prediction of response to treatment48–51,65. With the challenging task for 

a multi-choice stratification, we have built an array-based two step classifier. Extensive 

analysis of the systemic signatures in canine cancers revealed strong signatures by 

class, with markers shared by all tested lymphomas for one class and distinct strong 

markers shared by all tested sarcomas for another class. In light of this, we are of 

opinion, that at the level of 3D genomics the systemic signatures, with all its integration 
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of genetic and epigenetic inputs52, systemic profiling of cancers does not reveal itself 

as a universal pan-cancer signature, but as a distinct family of signatures by class, 

reflecting their distinct mechanisms, shared, in our example, by sarcomas.  

 Thus, firstly, in the context of the multi-choice classifier, the profile of an 

individual sample undergoes class stratifications against heathy controls. The second 

stage of classification benefits from the individual stratification models, based on 

unique selected markers for each individual indication. 

 Today, this approach has been tested on 56 independent samples, representing 

a mixture of healthy controls, two subtypes of lymphoma, three different types of 

sarcoma and canine malignant melanoma. The results of the first validation demonstrate 

high efficacy of stratification. Importantly, they also demonstrate high specificity 

against all other cancer indications. This is an important advantage against genetic 

mutation approaches in free cancer circulating DNA, which shares similar mutational 

profile between many cancers. For example, PetDx OncoK9 multi-cancer early 

detection test for detection of cancer associated genomic alterations in DNA isolated 

from canine blood using next generation sequencing is able to detect genetic alterations 

common for 30 cancers with high accuracy of sequencing readout, but according to the 

ONCOK9 Test Interpretation Guide the report outcome is specified in three types: 1) 

cancer signal detected, cancer signal not detected, and not reportable – sample failed 93. 

Example of the SCB140842 case study has demonstrated highly informative 

longitudinal changes in specificity captured by the EpiSwitch profiling after the 

radiotherapy and chemotherapy treatments, as well as after the second diagnosis with 

unavailable pathology results. 
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 Current results constitute the first systemic oncological classifications as an 

EpiSwitch specific canine blood-based (EpiSwitch SCB) test. We anticipate to 

significantly expand the list of the individual indications covered by the test and to 

extend the validation exercise to all underrepresented cases. Using the modular 

structure for the test, we aim to add individual classifiers to the existing profiles, at the 

level of data analysis, without any changes to the whole-genome EpiSwitch canine 

array design. Given the feedback form the veterinary practices, we strongly believe that 

the developed EpiSwitch SCB™ test approach will be of interest for veterinary 

specialist as an additional tool contributing to the informed decisions on diagnosis, 

treatment, and best standards of care for our canine companions. 

 

Conclusions 

 Clearly, there is a pressing need to develop better non-invasive (blood) 

biomarker assays to assess early canine oncological indications in advance of 

therapeutic intervention. Here we report on a novel 3D genomics approach to identify 

systemic blood-based markers for canine DLBCL, TZL, HSA, histiocytic sarcoma, 

osteosarcoma, and canine malignant melanoma in an assay format that encompasses 

multiple classes and phenotypes of cancer.  The approach described here is based on 

earlier applications in human oncology. As a non-invasive, blood-based test, EpiSwitch 

SCB, promises to assist veterinary specialists in diagnosis of disease and associated 

treatment decisions, to better utilize alternative effective treatments, minimize or avoid 

unnecessarily toxicity, and efficiently manage costs and resources. 
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