

1 **From birds to mammals: spillover of highly pathogenic avian influenza H5N1 virus to dairy
2 cattle led to efficient intra- and interspecies transmission**

3

4 Leonardo C. Caserta^{1#}, Elisha A. Frye^{1#}, Salman L. Butt^{1#}, Melissa Laverack¹, Mohammed
5 Nooruzzaman¹, Lina M. Covaleda¹, Alexis C. Thompson², Melanie Prarat Koscielny⁴, Brittany
6 Cronk¹, Ashley Johnson⁴, Katie Kleinhenz², Erin E. Edwards³, Gabriel Gomez³, Gavin Hitchener¹,
7 Mathias Martins³, Darrell R. Kapczynski⁵, David L. Suarez⁵, Ellen Ruth Alexander Morris³, Terry
8 Hensley³, John S. Beeby¹, Manigandan Lejeune¹, Amy K. Swinford³, François Elvinger¹, Kiril M.
9 Dimitrov^{3*}, & Diego G. Diel^{1*}

10

11 ¹Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center,
12 College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

13 ²Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, USA.

14 ³Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA.

15 ⁴Ohio Animal Disease and Diagnostic Laboratory, Ohio Department of Agriculture,
16 Reynoldsburg, OH, USA.

17 ⁵Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural
18 Research Service, United States Department of Agriculture, Athens, GA, USA.

19

20

21 [#]These authors contributed equally to this work.

22 ^{*}Correspondence to: kiril.dimitrov@tvmdl.tamu.edu & dgdiel@cornell.edu.

23

24 **Summary**

25 Infections with the highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b virus
26 have resulted in the death of millions of domestic birds and thousands of wild birds in the
27 U.S. since January, 2022¹⁻⁴ Throughout this outbreak, spillovers of the virus to mammals
28 have been frequently documented⁵⁻¹². Here, we report the detection of HPAI H5N1 virus in
29 dairy cattle herds across several states in the U.S. The affected cows displayed clinical signs
30 encompassing decreased feed intake, altered fecal consistency, respiratory distress, and
31 decreased milk production with abnormal milk. Infectious virus and RNA were consistently
32 detected in milk collected from affected cows. Viral staining in tissues revealed a distinct
33 tropism of the virus for the epithelial cells lining the alveoli of the mammary gland in cows.
34 Analysis of whole genome sequences obtained from dairy cows, birds, domestic cats, and a
35 racoon from affected farms indicated multidirectional interspecies transmissions.
36 Epidemiologic and genomic data revealed efficient cow-to-cow transmission after healthy
37 cows from an affected farm were transported to a premise in a different state. These results
38 demonstrate the transmission of HPAI H5N1 clade 2.3.4.4b virus at a non-traditional
39 interface and to a new and highly relevant livestock species, underscoring the ability of the
40 virus to cross species barriers.

41

42

43

44

45

46 **Introduction:**

47 The highly pathogenic avian influenza H5Nx goose/Guangdong lineage, an influenza A
48 virus (IAV) from the family *Orthomyxoviridae*, emerged in China in 1996. The viral lineage
49 initially was detected only in poultry, but as early as 2002 there were detections in wild birds. The
50 virus has frequently reassorted with other wild bird and poultry influenza viruses, with the
51 hemagglutinin gene remaining as the only gene that defines this genetic lineage of viruses, and
52 ongoing antigenic changes have required a classification system with numerous clades and
53 subclades¹³. During the past decade, this HPAI H5 lineage of virus evolved into eight clades
54 (2.3.4.4a-2.3.4.4h) of three main neuraminidase subtypes, N1, N8 and N6. In the last three years,
55 the H5N1 clade 2.3.4.4b has been the predominant subtype causing disease outbreaks globally^{14,15}.
56 HPAI H5 viruses have infected multiple avian species and have shown a potential to infect humans
57 and other mammalian species⁵⁻⁸. The World Health Organization (WHO) has reported a total of
58 860 human infections with 454 fatal cases since 2003, but this represents a case fatality rate with
59 serologic evidence of more widespread infection with less severe clinical disease. The potential of
60 human-to-human transmission remains low because the virus currently does not transmit
61 efficiently human to human¹⁶. The viruses of the H5N1 clade 2.3.3.4b have been widely circulating
62 in migratory wild bird populations in Europe, Africa, and Asia since 2016. The first detection in
63 North America (Canada) dates back to December 2021, which represented the first transatlantic
64 spread of the virus¹⁷. In January 2022, H5N1 was detected in hunter harvested wild birds in North
65 and South Carolina in the U.S.¹⁸, and was later found in several wild avian species¹, followed by
66 a spillover into commercial poultry on February 8, 2022². Since 2022, H5N1 infections have
67 resulted in high morbidity and mortality in domestic poultry and the culling of over 90 million
68 birds in the U.S. alone¹⁶. The continuous and widespread circulation of this high-consequence

69 panzootic pathogen in the U.S. is of major concern and poses a significant threat to animal and
70 public health.

71 In addition to devastating consequences to domestic and wild avian species, H5N1 clade
72 2.3.4.4b spillovers have been detected in 30 mammalian species, including 21 wild mammalian
73 species^{9,10,19}. In 2022, in Asia, Europe, and U.S., carnivorous wild mammals (e.g. foxes⁶, bears¹¹,
74 cats²⁰, and harbor seals⁵) infected with H5N1 presented clinical disease with neurologic signs due
75 to underlying encephalitis. The virus has also reached beyond the North and South polar circles,
76 killing a polar bear in the Arctic and seals and gentoo penguins in Antarctica²¹. In 2022, a H5N1
77 human infection was reported in Colorado, U.S., causing mild clinical signs in a poultry farm
78 worker who recovered from the infection²². During 2023, two major outbreaks of H5N1 in harbor
79 seals resulted in high mortality in Maine and Washington. Two domestic indoor-outdoor cats were
80 acutely neurologic and died from HPAI-induced encephalitis in January 2023 in Nebraska¹². Acute
81 death of a skunk was reported in Washington in 2023²³ with several more reports in this species in
82 2023 and 2024²⁴. On March 20, 2024, the Minnesota board of animal health reported that a juvenile
83 goat tested positive for HPAI, representing the first report of HPAI H5N1 infection in a livestock
84 species; backyard poultry had previously tested positive on the same premises²⁵.

85 Here we report the spillover of HPAI H5N1 clade 2.3.4.4b virus into dairy cattle and
86 describe the findings of a clinical, pathological, and epidemiological investigation including
87 genomic characterization of the viruses obtained from infected dairy cattle, wild birds, and other
88 mammals from nine affected farms (Farms 1 to 9) across four states in the U.S.

89 **Results:**

90 **Clinical and epidemiological investigation.** In February-March 2024, a morbidity event of
91 unknown etiology affecting dairy cattle was reported in several farms in Texas (TX), New Mexico

92 (NM), and Kansas (KS), with subsequent spread to other states. We conducted a clinical and
93 epidemiological investigation in nine affected farms, 8 located in the southwestern U.S., including
94 in TX (Farms 1, 2, 5, 6, and 7), NM (Farms 4 and 8), and KS (Farm 9), and one farm in OH (Farm
95 3), which was affected after apparently healthy lactating cattle were moved from TX to this
96 location. Affected dairy cattle in these farms presented with decreased feed intake, decreased
97 rumination time, mild respiratory signs (clear nasal discharge, increased respiratory rate, and
98 labored breathing), lethargy, dehydration, dry/tacky feces or diarrhea, and milk with abnormal
99 yellowish colostrum-like color, thick and sometimes curdled consistency. Additionally, an abrupt
100 drop in milk production, with several affected animals presenting no milk secretion, was noted.
101 Upon clinical examination, mammary gland involution was observed in several of the affected
102 cows (**Extended Data Fig. 1**). The rate of clinically affected animals ranged between 3% and
103 20%. Notably, several of the affected farms reported simultaneous mortality events in wild birds
104 (great-tailed grackles), peridomestic birds (pigeons), and in outdoor domestic (cats) and wild
105 mammals (raccoons) (**Extended Data Table 1**). The clinical disease in dairy cattle lasted 5-14
106 days, with animals returning to pre-outbreak health status, rumination times, and feed intake, but
107 maintaining decreased milk production for at least four weeks.

108 **Detection of HPAI H5N1 in dairy cattle, birds, and other mammals.** A broad diagnostic
109 investigation was conducted in samples collected from Farms 1-9. Initially, nasal swabs, serum,
110 and blood buffy coats from 10 affected cows from Farm 1 were subjected to viral metagenomic
111 sequencing. Influenza A virus sequences were obtained from one nasal swab. Real-time reverse-
112 transcriptase PCR (rRT-PCR) targeting the IAV matrix (M) and hemagglutinin 5 (H5) genes
113 confirmed H5 IAV infection. Eight out of ten paired milk samples collected from the same cows
114 also tested positive for HPAI-H5N1 virus (**Supplementary Data Table 1**). Additionally,

115 oropharyngeal swabs from great-tailed grackles and pigeons, and lung and brain tissues from a cat
116 found dead on Farm 1 tested positive for HPAI-H5N1 clade 2.3.4.4b virus RNA by rRT-PCR
117 (**Supplementary Data Table 1**).

118 A similar epidemiological scenario involving mortality events in domestic and wild
119 mammals was observed in Farms 3, 4, 5, and 8. Six domestic cats died in Farm 3 after the disease
120 onset in dairy cows. Cats found dead on Farms 4 and 5 and cats and a raccoon found dead on Farm
121 8 tested positive for HPAI H5N1 via rRT-PCR. In all occurrences, these animals died after the
122 onset of the clinical outbreak in dairy cattle.

123 Testing of multiple sample types (n=331) collected from cattle from Farms 1-9 by rRT-
124 PCR showed viral RNA detection sporadically in nasal swabs (10/47), whole blood (3/25), and
125 serum (1/15), and most frequently in milk samples (129/192). The milk samples consistently had
126 the highest viral RNA loads by rRT-PCR of the samples tested. (**Fig. 1A; Supplementary Data**
127 **Table 1**). Results from rRT-PCR performed on tissues collected from three affected cows revealed
128 the presence of viral RNA in lymph nodes, lung, small intestine, and mammary gland. The highest
129 viral RNA loads were detected in the mammary gland (**Fig. 1B; Supplementary Data Table 1**),
130 supporting the results showing high viral load and shedding in milk. Additionally,
131 hemagglutination inhibition antibody testing in paired serum samples collected from animals
132 (n=20) in Farm 2 confirmed H5N1 infection in affected dairy cows (**Fig. 1C**).

133 **Infectious HPAI virus shedding in dairy cows.** Virus isolation and viral quantifications were
134 performed on milk samples from Farms 1, 2, and 3. Infectious HPAI H5N1 virus was isolated in
135 bovine uterine epithelial cells (Cal-1) from pooled milk pellet samples from 10 cows from Farms
136 1 and 2 (**Fig. 1D-E**). Notably, virus titers in milk from affected animals ranged from $10^{4.0}$ to $10^{8.8}$
137 50% tissue culture infectious dose (TCID₅₀) per ml (**Fig. 1F**), demonstrating efficient shedding

138 and high viral load in milk from infected animals. A high viral load ranging from $10^{7.3}$ to $10^{7.8}$
139 TCID₅₀.ml⁻¹ was also detected in mammary gland tissues (**Fig. 1G**).

140 **Shedding in clinical versus non-clinical cattle.** Virus shedding was investigated in samples
141 (milk, nasal swabs, urine, and feces) collected from clinical and non-clinical animals from Farm
142 3. Overall, virus shedding was detected more frequently in milk samples from clinical animals
143 (24/25) with higher RNA viral load compared to non-clinical animals (1/15) (**Fig. 2A, Extended**
144 **Data Table 2**). Clinical animals shed virus at a lower frequency in nasal swabs (6/25) and urine
145 (2/15), and no viral RNA was detected in feces. (**Fig. 2A, Extended Data Table 2**). In non-clinical
146 animals, viral RNA was detected in 6/19 nasal swabs and 4/8 urine samples (**Fig. 2A, Extended**
147 **Data Table 2**) indicating subclinical infection.

148 **Duration of HPAI virus shedding in affected dairy cattle.** Paired nasal swabs, whole blood,
149 serum, and milk samples were collected at ~3 (n=15), 16 (n=12), and 31 (n=12) days post-clinical
150 diagnosis pcd of HPAI to assess duration of virus shedding. On day 3 viral RNA was detected in
151 nasal swabs from 2/15 animals, in whole blood of 1/15 animals, in serum of 1/15 animals, and in
152 milk of 14/15 animals (**Fig. 2B, Supplementary Data Table 2**). Importantly, while no HPAI virus
153 RNA was detected in nasal swabs, whole blood, or serum samples collected on days 16 and 31
154 pcd, 10/12 animals tested on day 16 and 4/12 animals tested on day 31 pcd still had detectable
155 viral RNA in milk (**Fig. 2B, Supplementary Data Table 2**). High infectious viral loads were
156 detected in milk samples on day 3 pcd ($10^{4.05}$ to $10^{8.80}$ TCID₅₀/mL), while no infectious virus was
157 recovered from samples from day 16 and 31 pcd (**Fig. 2C**).

158 **HPAI virus presents preferential tropism to the mammary gland tissue of infected cows.**
159 Histological examination of tissues from affected dairy cows revealed marked changes consisting
160 of neutrophilic and lymphoplasmacytic mastitis with prominent effacement of tubuloacinar gland

161 architecture filled with neutrophils admixed with cellular debris in multiple lobules in the
162 mammary gland (**Fig. 3A**). The most pronounced histological changes in the cat tissues consisted
163 of mild to moderate multi-focal lymphohistiocytic meningoencephalitis with multifocal areas of
164 parenchymal and neuronal necrosis (**Fig. 3B**). A summary of the histologic features observed on
165 a full set of tissues is presented in **Extended Data Fig. 2**.

166 Using in situ hybridization (ISH) and immunohistochemistry (IHC), viral RNA and antigen
167 were detected in mammary gland, lymph node, trachea (negative with IHC), spleen, colon and
168 heart of affected cattle and in the brain (cerebrum, cerebellum, and brain stem), lung and liver of
169 the affected cat (**Extended Data Table 3, Extended Data Fig. 3**). Viral RNA and antigen were
170 detected in the nucleus and cytoplasm of alveolar epithelial cells in mammary gland and peripheral
171 areas of germinal centers of lymph nodes. In mammary glands, viral RNA and antigen was present
172 in the alveolar milk-secreting epithelial cells and inter acinar spaces. In the affected cat, viral RNA
173 and antigen were present in neuronal soma and glial cells in the brain and reticular epithelial cells
174 in the spleen. Viral RNA and protein staining were observed in cerebral neurons, glial cells,
175 endothelial cells lining the choroid plexus, and Purkinje cells in the molecular layer of cerebellum.
176 In lung, viral RNA labeling and immunoreactivity was observed in bronchiolar epithelial cells and
177 alveolar type II pneumocytes (**Extended Data Fig. 2A-2B, Extended Data Table 3**). These
178 results demonstrate a distinct tropism of HPAI H5N1 virus for the mammary tissue of cattle and
179 the central nervous system tissue of cats.

180 **Reassortment event preceded spillover of HPAI H5N1 virus into dairy cattle.** All sequences
181 obtained from the farms in our study (n=91) were classified within a newly emerging B3.13
182 genotype, which comprises PA, HA, NA and M gene segments of an Eurasian wild bird ancestry
183 (eal), while PB2, PB1, NP and NS gene segments originated from American bird lineages (am1.1,

184 am2.2, am4, and am8, respectively) (**Extended Data Table 4**). To identify parent genotypes and
185 to define the approximate timeline of the reassortment events that led to the emergence of genotype
186 B3.13, we analyzed the influenza sequence database focusing on sequences obtained during 2021-
187 2024. The flow of gene segments suggests that the B3.13 genotype is a reassortant virus that
188 acquired PB2 and NP gene fragments from low pathogenic avian influenza (LPAI) viruses of
189 subtypes H3 and H11 (**Extended Data Table 4**). The first genome segment derived from LPAI
190 American bird lineage to be incorporated in HPAI H5N1 clade 2.3.4.4b was the NS gene (am1.1);
191 the earliest evidence of its emergence derived from a reassortant virus classified as genotype B3.2
192 obtained from a skunk in Idaho in November of 2022 (A/skunk/Idaho/22-023547-001-
193 original/2022 (H5N1); **Extended Data Table 4**). Incorporation of the am4 PB1 gene segment into
194 HPAI H5N1 clade 2.3.4.4b was first detected in December 2023, in a sequence classified as
195 genotype Minor60 obtained from a Ross goose collected in Kansas (A/Ross's goose/Kansas/W23-
196 949A/2023 (H5N1). The HPAI H5N1 clade 2.3.4.4b reassortant genotype B3.13 virus, which
197 incorporated the am2.2 PB2 and am8 NP genome segments, was first detected on January 25, 2024
198 in a Canadian goose in Wyoming (A/Canada goose/Wyoming/24-003692-001-original/2024
199 (H5N1), followed by a detection in a peregrine falcon in California (A/peregrine
200 falcon/California/24-005915-001-original/2024 (H5N1)) on February 14, 2024, and shortly after
201 on February 23, 2024 in a skunk in New Mexico (A/skunk/New Mexico/24-006483-001-
202 original/2024 (H5N1)). Of note, New Mexico is one of the first states to report clinical outbreaks
203 compatible with HPAI H5N1 infection in cattle. The host species, in which the reassortment event
204 that culminated with the incorporation of the am8 NP segment and the emergence of HPAI H5N1
205 genotype B3.13 virus, remains unknown.

206 **Phylogenomic and evolutionary analyses of HPAI H5N1 B3.13 genotype.** Phylogenetic
207 analysis revealed that all sequences obtained and related to the dairy cattle outbreaks in Farms 1-
208 9, including sequences obtained from wild birds and mammals on the affected farms, formed a
209 large phylogenetic group (**Extended Data Fig. 2, Fig. 4A**), descending from the most recent
210 common ancestral sequence obtained from a skunk in NM on February 23, 2024 (A/skunk/New
211 Mexico/24-006483-001-original/2024). The PB2-based phylogeny revealed that all HPAI H5N1
212 sequences obtained from the affected dairy farms characterized in the present study formed nine
213 distinct phylogenetic branches. Notably, these phylogenetic groups of closely related sequences
214 were not always formed by sequences derived from the same farm (**Fig. 4B**). A phylogenetic
215 branch formed by sequences from a cat from Farm 5 and cattle sequences from Farms 7 (n=5) and
216 9 (n=3) suggested a direct epidemiological relationship between these farms (**Fig. 4B**). Similarly,
217 sequences obtained from cattle from Sites 1 and 2 of Farm 2 (a multi-site dairy operation), formed
218 a monophyletic cluster, indicating co-circulation of the virus in these two sites (**Fig. 4B**).

219 Next, the mutation profile of HPAI H5N1 clade 2.3.4.4b was investigated. Initially, we
220 evaluated the occurrence of mutations with known functional relevance to IAV (e.g. host
221 adaptation, virulence, host specificity shift, etc.) in comparison to the original H5N1
222 A/GsGd/1/1996 virus (**Supplementary Data Table 3**). Further we performed a detailed
223 comparative genome analysis and mutational profiling using sequences obtained in the U.S.
224 throughout the 2021-2024 outbreak (**Extended Data Table 5**). The sequence A/chicken/NL/FAV-
225 0033/2021 2.3.4.4b was used as a reference to identify mutations in different genome segments
226 across species affected by H5N1 clade 2.3.4.4b in the U.S. Representative sequences from multiple
227 genotypes (A1, A2, B1.3, B3.2, Minor01, B3.6, and B3.13) were selected, including sequences
228 from avian (chicken and great tailed grackle) and mammalian (skunk, red fox, harbor seals, human,

229 goat, cat, and cattle) hosts. A total of 132 amino acid substitutions were observed across the 8
230 genome segments of HPAI H5N1 2.3.4.4b genotype B3.13 (**Extended Data Table 5**). Most of
231 which are low frequency mutations observed in a small proportion of cattle derived viral
232 sequences. Fifteen mutations emerged in viruses circulating in late 2023 and were detected in
233 genotype B3.13 viruses in 2024 including in the PB2 (V109I, V139I, V495I, and V649I), PB1
234 (E75D, M171V, R430K, and A587P), PA (K113R), HA (T211I), NA (V67I, L269M, V321I, and
235 S339P), NP (S482N), and NS1 (C116S) genes. Seven additional mutations emerged in viruses of
236 genotype B3.13 including five substitutions in PB2 (T58A, E362G, D441N, M631L, and T676A)
237 one in PA (L219I) and one in NS1 (S7L). When compared to the first reported B3.13 sequences
238 (A/falcon/CA/2024(H5N1) and A/skunk/NM/2024(H5N1)), the cattle and domestic cat HPAI
239 H5N1 virus sequences associated with the outbreak in dairy cattle presented five amino acid
240 substitutions, including: three in PB2 (E362G, D441N and M631L), one in PA (L219I) and one in
241 NS (S7L), suggesting that these could have emerged following spillover in these species.

242 **Dispersal of HPAI H5N1 B3.13 virus between dairy farms.** The geographical dispersal
243 dynamics of HPAI H5N1 B3.13 virus between farms was investigated. The HPAI H5N1 genotype
244 B3.13 sequences obtained from farms presenting an epidemiological link (Farm 2: separate
245 production sites [site 1 and 2]; and Farms 1 and 3: animals were transported from Farm 1 to 3)
246 (**Extended Data Table 1**) or presenting closely related viral sequences (Farms 5, 7, and 9) (**Fig.**
247 **4B**) were included in our phylogeographic reconstructions (**Fig. 5A**). Haplotype network analysis
248 of the PB2 viral sequences provided support for focusing the dispersal and phylogeographical
249 inferences on Farms 1 and 3, Farm 2, and Farms 5, 7, and 9 (**Fig. 5B**). The phylogenetic
250 relationship and dispersal pathways were inferred based on PB2 gene sequences, the farm location
251 and date of sample collection to reconstruct the dispersal trajectory of the HPAI virus between the

252 farms. The viral sequences recovered from Farm 2, which were collected from two geographically
253 separated production sites (site 1 and 2, approximately 50 Km apart), fell into two phylogenetic
254 clusters, each comprising sequences from both sites, confirming the exchange of the same virus
255 between these premises (**Fig. 5C**). Phylogeographical dispersal analysis of the HPAI H5N1
256 sequences recovered from Farm 2, point to site 1 as the likely source of the virus, from which it
257 spread to site 2.

258 Viral sequences obtained from Farms 5, 7, and 9 (one sequence from cattle in Farm 5, six
259 sequences from Farm 7 and 4 sequences from Farm 9), which are geographically distant from each
260 other (Farm 5 to 7: 186.04 Km, Farm 7 to 9: 280.36 Km; and Farm 5 to 9: 431.01 Km), formed
261 distinct phylogenetic clusters (**Fig. 5D**). A larger cluster comprised one sequence from Farm 5,
262 five sequences from Farm 7, and three sequences from Farm 9, while a smaller and separate branch
263 in the tree was formed by one viral sequence from Farms 7 and eight sequences from Farm 9.
264 Analysis of the directionality of dispersion of HPAIV sequences between these three farms points
265 to Farm 5 as the potential initial source of the virus to Farm 7, from where the virus may have
266 further spread to Farm 9. Given the dispersion of the virus between these three farms, we conducted
267 a broader phylogenetic analysis including other HPAI H5N1 B3.13 sequences available in
268 GISIAD. This analysis revealed two additional H5N1 sequences recovered from blackbirds
269 clustering with Farm 5, 7 and 9 sequences (**Extended Data Fig. 5**). Worthy of note, the blackbirds
270 were collected between 8-12 Km away from Farm 7. Together these results suggest both long-
271 and close-range lateral spread and transmission of HPAIV between farms.

272 Sequences obtained from Farms 1 (TX) and 3 (OH) formed five phylogenetic clusters with
273 the largest cluster consisting of two sequences from Farm 1 and 17 sequences from Farm 3. One
274 viral sequence recovered from an animal from Farm 1 was ancestral to all 17 sequences from Farm

275 3. The second largest cluster was formed mostly by sequences from Farm 1 (n=15). A third smaller
276 cluster comprised five sequences from Farm 1, which were recovered from infected cows, a wild
277 bird, and a domestic cat. Dispersal analysis revealed that HPAIV most likely spread from Farm 1
278 (TX) to Farm 3 (OH) (**Fig. 4C**). This is consistent with the epidemiological information collected
279 from these farms, which revealed the transportation of 42 apparently healthy dairy cattle from
280 Farm 1 to Farm 3 on March 8, 2024, five days before the first clinical signs were observed in
281 animals in Farm 1 and 12 days before the first clinical animal was identified in Farm 3 (**Extended**
282 **Data Table 1**). These results indicate transmission of HPAI H5N1 between apparently healthy or
283 subclinically infected dairy cattle.

284 **Evidence for interspecies transmission of HPAI in affected dairy farms.** Given that five of the
285 nine farms included in our study (Farms 1, 3, 4, 5, and 8) reported mortality events in wild (great-
286 tailed grackles) and peri-domestic birds (pigeons), and in wild (raccoon) and domestic mammals
287 (cats), we investigated potential HPAI infection in these species. Whole genome sequencing of the
288 samples from the grackles and a cat from Farm 1 and a raccoon from Farm 8 confirmed infection
289 of these species with a HPAI H5N1 genotype B3.13 virus closely related to the viruses found in
290 dairy cattle in these farms (**Extended Data Fig. 4**). The most recent common ancestor for the cat
291 sequences detected in Farm 1 and the raccoon sequence detected in Farm 8 were obtained from
292 dairy cattle in these farms, indicating cattle-to-cat and cattle-to-raccoon transmission. This is
293 corroborated by epidemiological information revealing that feeding raw milk to farm cats was a
294 common practice in these farms.

295 **Discussion**

296 Here we describe the spillover of HPAI H5N1 clade 2.3.4.4b virus into dairy cattle and
297 provide evidence of efficient transmission among cattle and between cattle and other species,

298 highlighting the virus' ability to cross species barriers. This unprecedented spillover and
299 emergence of HPAI H5N1 virus in cattle was preceded by a reassortment event that originated the
300 new genotype (B3.13) comprising genome segments from the Eurasian (ea; PA, HA, NA and M)
301 and American (am; PB2, PB1, NP and NS) bird lineage viruses. The last two genes to be
302 incorporated in the B3.13 virus genome prior to its spillover to cattle were PB2 (am2.2) and NP
303 (am8), suggesting that incorporation of these genes could have resulted in a host range expansion
304 of HPAI H5N1 genotype B3.13. Previous reassortment studies with H5N1 revealed that exchange
305 of the NP gene alone resulted in improved virus replication, expanded tissue tropism, and increased
306 pathogenicity in chickens²⁶. In addition to the reassortment event, mutations that appeared
307 following spillover and initial replication of H5N1 genotype B3.13 virus in cattle – for example
308 the PB2 M631L substitution – may have also contributed to enhanced virus fitness in the new
309 cattle host²⁷. The PB2 M631L substitution was reported in one study to be critical for increased
310 polymerase activity related to increased severity of disease in mice. Notably, viral sequences
311 obtained from a confirmed human infection with HPAI H5N1 genotype B3.13 in a dairy farm
312 worker in Texas²⁸ revealed that the virus did not present the cattle-associated PB2 M631L
313 mutation, but had the well characterized PB2 E627K mutation, related to mammalian adaptation
314 (Ref). Future studies to investigate the function and contribution of the reassorted NP and PB2
315 genome segments as well as the PB2 M631L mutation on virus host range, tropism, and replication
316 are critical to understand the molecular mechanisms underlying HPAI H5N1 cross species
317 transmission to cattle.

318 The farms that first reported and confirmed HPAI H5N1 genotype B3.13 infection in cattle
319 in TX, NM, and KS are on the Central North American migratory bird flyway. Importantly, the
320 first reported genotype B3.13 virus genome sequence was obtained from a sample collected from

321 a Canadian goose in Wyoming (January 25, 2024), within the same flyway. This was followed by
322 a detection in a peregrine falcon in California (CA) (February 14, 2024) on the Pacific flyway,
323 with the next reported B3.13 sequence being from a skunk in NM (February 23, 2024), again on
324 the Central flyway. Our modeling using currently available genome sequences suggests dispersal
325 of the newly emerging B3.13 virus from the West (CA) to East (NM and TX), with the sequence
326 recovered from the skunk in NM (A/skunk/New_Mexico/24-006483-001-Original/2024) being the
327 most recent common ancestor to all available sequences from dairy cattle and associated affected
328 species since the onset of the outbreak. The lack of complete epidemiological information
329 regarding the H5N1 genotype B3.13 sequence collected from the skunk in NM precludes definitive
330 conclusions on the link of this animal with affected dairy cattle farms in the region. However, this
331 detection demonstrates the presence of the virus in wildlife in NM around the same time (February-
332 March) in which the first cases of sick cows presenting mild respiratory signs, drop in feed intake,
333 and milk production (which were later confirmed to be caused by HPAI H5N1 genotype B3.13)
334 were reported²⁹. Under sampling and limitations of current HPAI wildlife surveillance coupled
335 with lack of diagnostic testing from the initial clinical cases in dairy cattle (likely from early
336 February) complicate investigations on the origin of the outbreak and spillover event into cattle.
337 Obtaining additional historic and prospective sequence data may allow more detailed molecular
338 epidemiological inferences.

339 Highly pathogenic influenza H5N1 clade 2.3.4.4b infections in mammals have been
340 predominantly associated with neurological invasion and extensive virus replication in the brain¹⁹.
341 In contrast, the results obtained from our extensive molecular, virological and pathological
342 investigation revealed important and distinct aspects of HPAI H5N1 virus tropism, replication
343 sites, and shedding patterns in dairy cattle. Viral RNA was consistently detected in milk samples,

344 with sporadic detections in nasal swabs and blood (whole blood and serum). Testing of paired
345 nasal swabs, whole blood, serum, urine, and milk samples from affected cattle corroborated these
346 observations and demonstrated consistent virus shedding in milk with sporadic virus detection
347 early in infection (≤ 5 days pcd) in nasal swabs, whole blood, serum and urine. These results
348 suggested a high tropism of HPAI H5N1 for the mammary gland tissue resulting in a viral-induced
349 mastitis, which was confirmed by histological changes and direct viral staining as well as virus
350 quantification showing high viral loads and replication in the mammary gland. *In situ* hybridization
351 and IHC staining defined the virus tropism and replication to milk-secreting mammary epithelial
352 cells lining the alveoli in the mammary gland. The tropism of HPAI H5N1 for milk-secreting
353 epithelial cells is likely a result of the high expression of sialic acid receptors with an $\alpha 2,3$ (avian-
354 like receptor) and $\alpha 2,6$ (human-like receptor) galactose linkage in these cells³⁰. Although the tissue
355 sample size included in our study was small, isolation of the virus in lung and lymph nodes
356 suggests that other organs may also play a role in the virus infection dynamics and pathogenesis
357 in dairy cattle. The initial site of virus replication remains unknown; however, it is possible that
358 the virus can infect through respiratory and/or oral routes replicating at low levels in the upper
359 respiratory tract (e.g. nasal turbinate, trachea, and/or pharynx), from where it disseminates to other
360 organs via a short and low-level viremia. The collected evidence suggests that the mammary gland
361 is the main site of virus replication, resulting in substantial virus shedding in milk. Another
362 possible transmission route includes direct infection of the mammary gland through the teat orifice
363 and cisternae, which could occur mechanically via the milking equipment during milking. In the
364 1950's several studies showed that direct inoculation of virus into the udder of dairy cows and
365 goats with the human PR8 strain of type A influenza could result in infection and viral shed for at
366 least 10 days³¹⁻³⁵. This experimental data suggests, in light of the current outbreak, that mammary

367 epithelial cells, which express α 2,3 and α 2,6 sialic acid, may be generally susceptible to type A
368 influenza viruses. The uniqueness of this outbreak may be the virus' likely ability to replicate in
369 other tissues and transmit efficiently. There have been a few other studies that suggest an
370 association between type A influenza and clinical disease³⁶⁻⁴¹, but no evidence of sustained
371 transmission or the fulfillment of Koch's postulates to prove a role in pathogenesis is available.
372 The only published study of goose/Guangdong lineage virus being inoculated into calves show
373 limited viral replication with no clinical disease, but the study was not designed to evaluate
374 transmissibility⁴². Experimental infection studies with HPAI H5N1 genotype B3.13 virus in dairy
375 cattle with sequential and comprehensive sample collections are critical to answer these important
376 questions.

377 The ability of HPAI H5N1 clade 2.3.4.4b to cross species barriers has been evident and
378 spillover into mammalian species has been reported throughout the current global outbreak^{23,43}.
379 Prior to the detection in cattle, however, most mammalian species were considered dead-end hosts,
380 given that virus tropism for the central nervous system commonly resulted in fatal encephalitis^{44,45}.
381 Our epidemiological investigation combined with genome sequence- and geographical dispersal
382 analysis provides evidence of efficient intra- and inter-species transmission of HPAI H5N1
383 genotype B3.13. Soon after apparently healthy lactating cattle were moved from Farm 1 to Farm
384 3, resident animals in Farm 3 developed clinical signs compatible with HPAI H5N1 providing
385 evidence to suggest that non-clinical animals can spread the virus. Analysis of the genetic
386 relationship between the viruses detected in Farms 1 and 3, combined with phylogeographical
387 modeling indicate that the viruses infecting cattle in these farms are closely related, supporting the
388 direct epidemiological link and indicating long-range viral dispersal and efficient cattle-to-cattle
389 transmission. The results from the phylogenomic and phylogeographical analyses in both sites of

390 Farm 2 and on Farms 5, 6 and 7 also indicate regional long-range farm-to-farm spread of the virus.
391 In these cases, fomites such as shared farm equipment, vehicles, or personnel may have played a
392 role in virus spread. The dispersal of virus between Farms 5, 7 and 9 could have been vectored by
393 wild birds; as suggested by the fact that blackbirds found dead near Farm 7 were infected with a
394 virus closely related to the virus circulating in cattle in these farms. Alternatively, the birds at these
395 premises could have been infected with virus shed by cattle. Our phylogenomic analysis in affected
396 cats (Farms 1, 2, 4, and 5) and the raccoon (Farm 8) combined with epidemiological information
397 revealing the practice of feeding raw milk to cats in these farms indicate cattle-to-cat and cattle-
398 to-raccoon transmission. These observations indicate that complex pathways underlie the
399 introduction and spread of HPAI H5N1 in dairy farms (**Fig. 6**), highlighting the need for efficient
400 biosecurity practices and surveillance efforts in affected and non-affected farms.

401 The spillover of HPAI H5N1 into dairy cattle and evidence for efficient mammal-to-
402 mammal transmission are unprecedented. This newly acquired viral property is concerning as it
403 can lead to adaptation of the virus which may further enhance virus infectivity and transmissibility
404 in other species, including humans. Therefore, it is imperative that robust and continuous
405 surveillance and research efforts be established to monitor the circulation, spread, and adaptation
406 of the HPAI H5N1 virus in this new host species.

407

408 **Author contribution**

409 Conceptualization: DGD; Methodology: EF, SLB, ML, MN, LC, ACT, MPK, BC, AJ, KK, ED,
410 GG, GH, MM, ERA, TH; Software: LCC, BK; Validation: SLB, ML, MN, LC, MPK, BC, AJ;
411 Formal analysis: LCC, SLB, ML, BC, DGD; Investigation: LCC, EF, SLB, ML, LC, ACT, MPK,
412 BC, AJ, DRK, MM, ERA; Resources: EF, ACT, DLS, ML, AS, FE, KD, DGD; Data Curation:

413 LCC, EF, SLB, ML, KD, DGD; Writing - Original Draft: LCC, SLB, BK, DGD; Writing - Review
414 & Editing: LCC, EF, SLB, ML, MN, LC, ACT, MPK, BC, AJ, KK, ED, GG, GH, MM, DRK,
415 DLS, ERA, TH, MLV, AS, FE, KD, DGD; Visualization: LCC, SLB, BC, DGD; Supervision:
416 DGD; Project administration: MPK, KD, DGD, Funding acquisition: AS, FE, KD, DGD.

417 **Data availability**

418 All HPAI H5N1 virus sequences are deposited in GISAID (<https://www.gisaid.org/>; accession
419 numbers are available in Supplementary Data Table 5), and raw reads have been deposited in
420 NCBI's Short Read Archive (BioProject number PRJNA1114404). All additional influenza
421 sequences used in our analysis were obtained from GISAID (accession numbers available in
422 Supplementary Data Table 5).

423
424 **Acknowledgements**
425

426 The authors would like to thank the producers and veterinarians who submitted samples and
427 contributed for this investigation. The work was funded by the AHDC, OADDL and TVMDL.
428 This work was supported in part by USDA-NIFA grant no. 2021-68014-33635 (D.G.D, KD) and
429 APHIS NALHN Enhancement grant no. AP21VSD&B000C005 (K.D., D.G.D). We gratefully
430 acknowledge all data contributors, i.e., the Authors and their Originating laboratories responsible
431 for obtaining the specimens, and their Submitting laboratories for generating the genetic sequence
432 and metadata and sharing via the GISAID Initiative, on which this research is based.

433
434 **Methods**

435 **Sample collection**

436 Clinical samples used in the present study were collected by field veterinarians from nine clinically
437 affected farms in TX (Farm 1, 2, 4, 5, 6 and 7), NM (Farm 8), KS (Farm 9) or OH (Farm 3). A

438 total of 332 samples collected from dairy cattle (n=323), domestic cats (n=4), great-tailed grackles
439 (n=3), pigeon (n=1) and a racoon (n=1) in the affected farms. All samples including milk (n=211),
440 nasal swabs (n=46), whole blood (n=25), serum (n=15), feces (n=10), urine (n=4), and tissues
441 (mammary gland [n=4], lung [n=1], lymph nodes [n=3], small [n=3] and large intestine [n=1])
442 from dairy cattle were submitted to the Cornell Animal Health Diagnostic Center (AHDC), Texas
443 A&M Veterinary Medical Diagnostic Laboratory (TVMDL) or the Ohio Animal Disease
444 Diagnostic Laboratory (OADDL) for diagnostic investigations. One domestic cat, two grackles
445 and one pigeon (Farm 1) were submitted to the AHDC while three cats (Farms 4 and 8) and a
446 racoon (Farm 8) and four cows were submitted to TVMDL for necropsy and testing
447 (**Supplementary Data Table 1**).

448 Sequential samples (milk, nasal swabs and blood) collected from animals (n=15) from
449 Farm 3 were used to investigate duration of virus shedding (**Supplementary Data Table 2**).
450 Additionally, paired samples (milk, nasal sabs, urine and feces) collected from animals presenting
451 respiratory distress, drop in milk production and altered milk characteristics (clinical, n=25) and
452 from apparently healthy animals (non-clinical, n=20) from Farm 3 were used to compare virus
453 shedding by clinical and non-clinical animals (**Extended Data Table 2**).

454 **Clinical history and epidemiological information**

455 Clinical history from all nine farms were obtained from the sample submission forms sent with the
456 samples to the AHDC, TVMDL and OADDL. Additional relevant information from each farm
457 were obtained from attending veterinarians through investigations conducted by laboratory
458 diagnosticians.

459 **Real-time reverse transcriptase PCR (rRT-PCR)**

460 Viral nucleic acid was extracted from milk, nasal swabs, whole blood, serum, feces, urine and
461 tissue homogenates. Two hundred μ l of milk, nasal swabs, whole blood, serum, and urine were
462 used for extraction. Two hundred μ l of raw milk samples were used directly or diluted at the ratio
463 of 1 part of milk to 3 parts of phosphate-buffered saline (PBS) with 200 μ l of the dilution used for
464 nucleic acid extraction. Tissues and feces were homogenized in PBS-BSA (1%) (10% w/v),
465 cleared by centrifugation and 200 μ l of the supernatant were used for extraction. All RNA
466 extractions were performed using the MagMAX Pathogen RNA/DNA Kit (Thermo Fisher,
467 Waltham, MA, USA) and the automated King Fisher Flex nucleic acid extractor (Thermo Fisher,
468 Waltham, MA, USA) following the manufacturer's recommendations. The presence of IAV RNA
469 was assessed using the VetMax-Gold AIV Detection Kit (Thermo Fisher, Waltham, MA, USA)
470 and the National Animal Laboratory Network (NAHLN) primers and probe targeting the
471 conserved M gene or the H5 hemagglutinin gene⁴⁶. Amplification and detection were performed
472 using the Applied Biosystems 7500 Fast PCR Detection System (Thermo Fisher, Waltham, MA,
473 USA), under following conditions: 10 min at 45°C for reverse transcription, 10 min at 95 °C for
474 polymerase activation and 45 cycles of 15 s at 94 °C for denaturation and 30 s at 60 °C for
475 annealing and extension. Relative viral loads were calculated and are expressed as 45 rRT-PCR
476 cycles minus the actual CT value (45-Ct). Positive and negative amplification controls as well as
477 internal inhibition controls were run side by side with test samples. Part of samples was also tested
478 using 200 μ l of undiluted milk and serum, and 100 μ l of whole blood, targeting the M gene. These
479 samples were extracted using the IndiMag Pathogen kit (INDICAL Bioscience) on the KingFisher
480 Flex (Thermo Fisher, Waltham, MA, USA), and the rRT-PCR was performed using the Path-ID™
481 Multiplex One-Step RT-PCR Kit (Thermo Fisher, Waltham, MA, USA) under following

482 conditions: 10 min at 48°C, 10 min at 95 °C, 40 cycles of 15 s at 95 °C for denaturation and 60 s
483 at 60 °C.

484 **Hemagglutination inhibition (HI)**

485 Paired serum samples collected during acute and convalescent phase of infection from animals
486 (n=20) from Farm 2, were used to determine seroconversion to HPAI H5N1 virus using the HI
487 test. Serum HI activity was determined using BPL inactivated A/Tk/IN/3707/22 antigen (clade
488 2.3.4.4b), as described previously. HI titers are expressed as log2 values, with 1 log2 being the
489 minimum titer considered positive.

490 **Virus isolation**

491 Virus isolation was performed in pooled milk samples from Farms 1 and 2. Approximately 5 ml
492 of milk from individual animals were pooled and a total of 50 ml of pooled milk were centrifuged
493 at 1,700 x g for 10 min at 4°C. The supernatant was discarded, and the pellet was resuspended in
494 5 ml of sterile PBS-BSA (1%) followed by centrifugation at 1,700 x g for 10 min at 4°C. The wash
495 step was repeated one more time and the final pellet was resuspended in 1 ml PBS-BSA (1%).

496 Virus isolation was conducted in bovine uterine epithelial cells (CAL-1, developed in house at the
497 Virology Laboratory at AHDC) cultured in minimal essential medium (MEM, Corning Inc.,
498 Corning, NY) supplemented with 10% fetal bovine serum (FBS) and penicillin-streptomycin
499 (Thermo Fisher Scientific, Waltham, MA; 10 U.mL⁻¹ and 100 µg.mL⁻¹, respectively). Cells were
500 cultured in T25 flasks and inoculated with 1 mL of the milk pellet resuspension from infected cows
501 and incubated at 37 °C for 1 hour (adsorption). The inoculum was then removed, and cells were
502 washed once with phosphate buffered saline and replenished with 1 mL complete growth media
503 (MEM 10% FBS). Cells were monitored daily for the development of cytopathic effects (CPE)
504 including cell swelling, rounding and detachment. When the CPE reached 70-80%, infected cells

505 were harvested, and cell suspensions were collected after three freeze-thaw cycles. The identity of
506 the isolated virus was confirmed by rRT-PCR, an immunofluorescence assay (IFA) using anti-
507 nucleoprotein mouse monoclonal antibody (HB65, ATCC, H16-L10-4R5) and whole genome
508 sequencing. Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI) (ThermoFisher
509 Scientific, 62248).

510 **Virus titrations**

511 The infectious viral loads in milk and tissues of infected animals was quantified by viral titrations.
512 For this, serial 10-fold dilutions of rRT-PCR positive milk samples and tissue homogenates were
513 prepared in MEM and inoculated into CAL-1 cells in 96-well plates. Each dilution was inoculated
514 in quadruplicate wells. At 48h post-inoculation, culture supernatant was aspirated, and cells were
515 fixed with 3.7% formaldehyde solution for 30 min at RT and subjected to IFA using the anti-NP
516 (HB65) mouse monoclonal antibody. Virus titers were determined using end-point dilutions and
517 the Spearman and Karber's method and expressed as TCID₅₀.mL⁻¹.

518 **Microscopic changes, in situ hybridization (ISH) and immunohistochemistry (IHC)**

519 A total of 25 tissue samples from four dairy cattle and 12 tissues from one domestic cat were
520 collected and fixed in formalin. This formalin fixed paraffin embedded (FFPE) tissues were
521 sectioned at 3 μ m thickness, stained with hematoxylin and eosin (H&E), and examined for
522 histological changes. To determine the virus tropism and tissue distribution in dairy cattle and cat
523 affected with HPAI H5N1, we performed ISH and IHC on FFPE tissues as previously described⁶
524 . Briefly, tissue sections were deparaffinized with xylene, washed with absolute ethanol, blocked
525 with peroxidase followed by antigen retrieval for one hour. For the ISH the V-InfluenzaA-H5N8-
526 M2M1 probe (Advanced Cell Diagnostics, Inc., Newark, CA) which targets H5Nx clade 2.3.4.4b
527 viruses and the RNAScope HD 2.5 assay were used as per manufacturer's instructions. ISH signals

528 were amplified with multiple amplifiers conjugated with alkaline phosphatase enzymes and finally
529 incubated with red substrate at room temperature for 10 minutes and counterstained with
530 hematoxylin. Immunohistochemistry was performed at the University of Georgia Veterinary
531 Diagnostic laboratory and the USDA-ARS Southeast Poultry Research Laboratory following
532 standard diagnostic IHC procedure. Specifically, tissue sections were treated with Proteinase K for
533 5 min for antigen retrieval and monoclonal antibody (Meridian Bioscience, Catalog No.
534 C65331M) to Influenza A virus M-gene was used at 1:100 dilution for 1 hour. All the slides were
535 counterstained with hematoxylin, scanned at 40X resolution and the digital slides were examined
536 for virus tropism and tissue distribution.

537 **Viral metagenomic sequencing:**

538 **Sample Collection and Processing:** Whole blood nasal swab samples were obtained from 10
539 cows from Farm 1 in Texas. Samples were submitted to the AHDC at Cornell University, on March
540 16, 2024. Upon receipt, metagenomic sequencing using the sequence-independent, single-primer
541 amplification (SISPA) procedure, the Oxford Nanopore sequencing chemistry and GridION
542 sequencing platform were performed as described below.

543 **Nucleic Acid (NA) Extraction, Library Preparation and Sequencing:** Nucleic acid (NA)
544 extraction was performed in 190 μ l from each sample using the QIAamp MinElute Virus Spin Kit
545 (Qiagen). Prior to NA extraction samples were subjected to an enzymatic cocktail treatment
546 composed of 10X DNase 1 buffer, DNase 1, Turbo DNase, RNase Cocktail (ThermoFisher
547 Scientific), Baseline ZERO DNase (Lucigen), Benzonase (Sigma-aldrich) and RNase ONE
548 Ribonuclease (Promega) to deplete host and bacterial nucleic acid. Purified NA was subjected to
549 SISPA, modified from a previously reported protocol ⁴⁷ Briefly, 11 μ L of nucleic acid was used in
550 a reverse transcription reaction with 100 pmol of primer FR20RV-12N (5'-

551 GCCGGAGCTCTGCAGATATCNNNNNNNNNNNN-3') using SuperScript IV reverse
552 transcriptase (Thermo Fisher Scientific), followed by second-strand synthesis using the Klenow
553 Fragment of DNA polymerase (NEB) with primer FR20RV-12N at 10 pmol. After purification
554 using Agencourt AMPure XP beads (Beckman Coulter), SISPA PCR amplification was conducted
555 with TaKaRa Taq DNA Polymerase (Takara) using the primer FR20RV (5'-
556 GCCGGAGCTCTGCAGATATC-3') at 10 pmol. SISPA products were converted into sequencing
557 libraries using the ligation sequencing kit (SQK-LSK109) and Native Barcoding Kit 96 V1 for
558 multiplex sequencing. Sequencing was performed on the FLO- MIN106 MinION flow cell r9.4.1
559 using the GridION Sequencer (Oxford Nanopore Technologies). A 24-hour sequencing run was
560 conducted, with fastq generation performed by the GridION using high accuracy base calling.
561 Settings were adjusted to accommodate barcodes at both ends and filter mid-strand barcodes. Fastq
562 reads were then filtered by size and quality using Nanofilt⁴⁸ and classified using Kraken version
563 2.1.0⁴⁹ followed by Bracken⁵⁰.

564 **Targeted Influenza A Sequencing**

565 Samples that tested positive for HPAI H5N1 and had Ct values <30 were subjected to targeted
566 influenza A sequencing at the Animal Health Diagnostic Center at Cornell University (Cornell
567 AHDC) and the Ohio Animal Disease Diagnostic Laboratory (Ohio ADDL). The set of 107
568 samples included samples from Farm 1, n=19; Farm 2, n=33; Farm 3, n=54; and Farm 7, n=1. A
569 complete metadata table with details on this set of samples is provided in **Supplementary Data**
570 **Table 1**. Initial targeted sequencing attempts on milk samples at Cornell AHDC utilizing high-
571 throughput diagnostic extraction methods⁶, were unsuccessful in obtaining whole influenza A
572 genome sequences despite the utilization of samples with low cycle threshold (Ct) values. To
573 overcome this limitation up to 50 ml of each milk sample were pelleted at 1,770 x g for 15 min at

574 4°C. The pellets were washed two times in PBS as described above and resuspended in 1 ml of
575 PBS-BSA. The resuspended pellet was then diluted 1:5 or 1:10 in PBS and 200 µl of this dilution
576 were used for extraction with the Indical IndiMag Pathogen kit (INDICAL Bioscience) on the
577 KingFisher Flex extractor (Thermo Fisher, Waltham, MA, USA). Whole influenza A virus genome
578 sequences were generated using the MBTuni-12 and MBtuni-13 M-RT-PCR methods⁵¹.
579 Sequencing libraries were generated using the Native Barcoding Kit, EXP-NBD196, Ligation
580 Sequencing Kit, SQK-SQK109 (Oxford Nanopore Technologies [ONT]), and sequenced on a
581 FLO-MIN106 MinION flow cell r9.4.1 using the GriION platform.

582 Additionally, 31 samples from Farm 3 were subjected to target influenza A sequencing at
583 the OADDL using the Illumina DNA Prep Kit and the Nextera DNA CD Indexes. Paired-end
584 sequencing was performed on an Illumina MiSeq platform using the MiSeq Reagent Kit V3
585 (Illumina) with 2×250 base pair chemistry.

586 **Sequence analysis and mutational profiling**

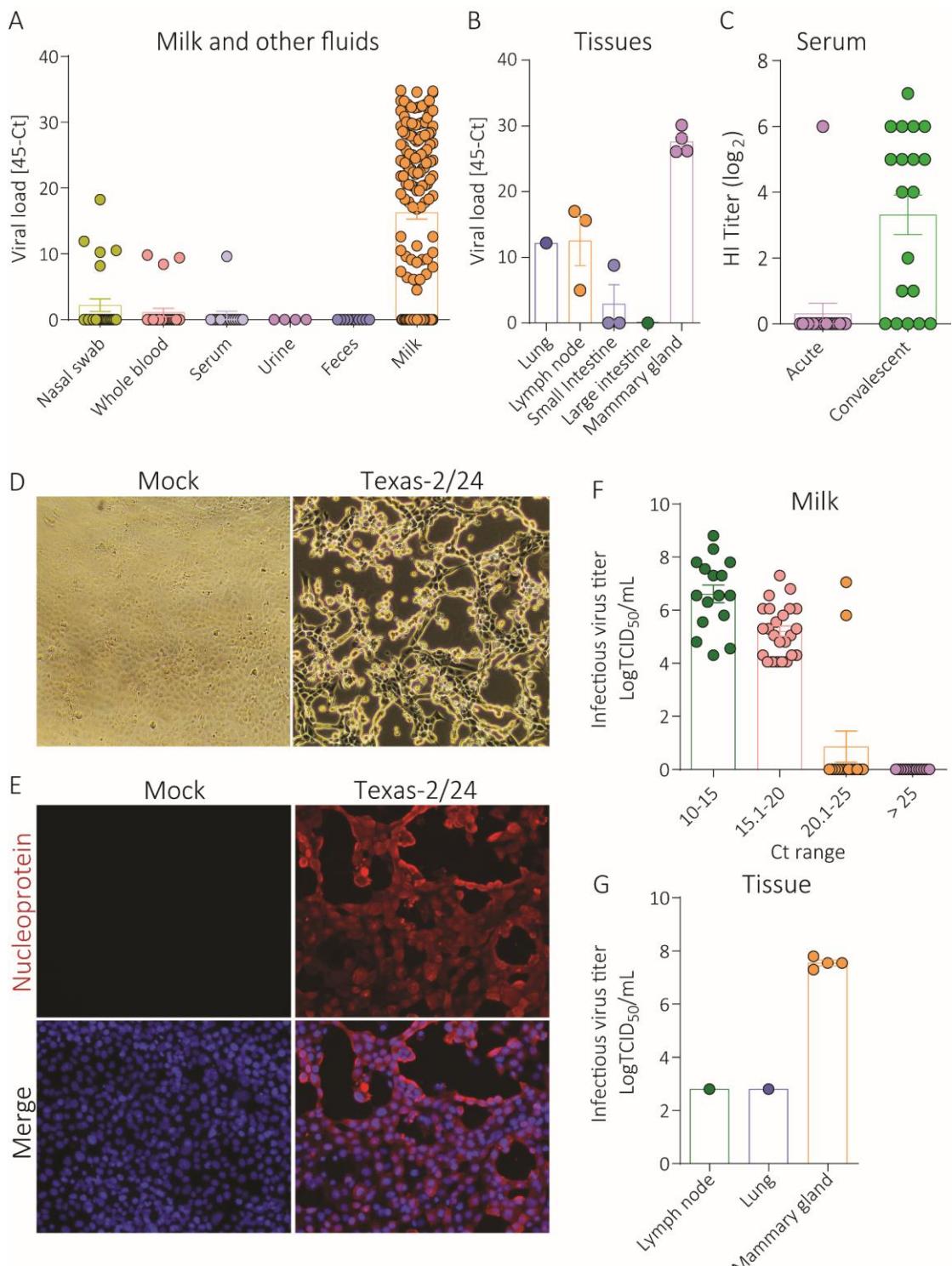
587 Sequencing data generated by the GridION platform underwent high-accuracy basecalling and
588 demultiplexing of barcodes. Settings were configured to require barcodes at both ends and to
589 exclude reads with mid-read barcodes. The Nanofilt software version 2.8.0⁴⁸ was employed to
590 filter sequences based on quality thresholds. Reads with a quality score below 12 and those shorter
591 than 600 base pairs were removed from further analysis. Filtered reads were aligned to a reference
592 genome download from GenBank (A/Gallus/gallus_domesticus/Sonora/CPA-18486-
593 23/2023/H5N1, NCBI accession numbers OR801090.1 through OR801097.1) using Minialign
594 software version 0.4.4 (<https://github.com/ocxtal/minialign>). Consensus sequences were generated
595 using Medaka software version 1.4.3 with medaka_haploid_variant and medaka_consensus
596 programs for polishing (<https://github.com/nanoporetech/medaka>). Sequences with a read depth

597 greater than 20 and a quality score exceeding 20 were retained. Analysis of Illumina MiSeq data
598 was performed by trimming the reads with Trimmomatic version 0.39⁵², and aligning, calling
599 variants and generating consensus sequences with Snippy version 4.6.0 ((br/>600 <https://github.com/tseemann/snippy>). Genome sequences were annotated using Prokka software
601 version 1.14.5 to identify genetic features and functional elements⁵³. The GenoFLU tool version
602 1.03 assessed potential reassortment events within the viral genome (<https://github.com/USDA->
603 VS/GenoFLU). Genome alignments, mutations, SNPs, and annotation data were visualized using
604 Geneious Prime software (version 1014.0.5). The FluServer tool, available through GISAID
605 EpiFlu, was utilized to interpret the effects of mutations identified in the sequences, leveraging
606 previously published data (<https://flusurver.bii.a-star.edu.sg/>). Other mutation data was visualized
607 using protein consensus alignments in Geneious Prime software.

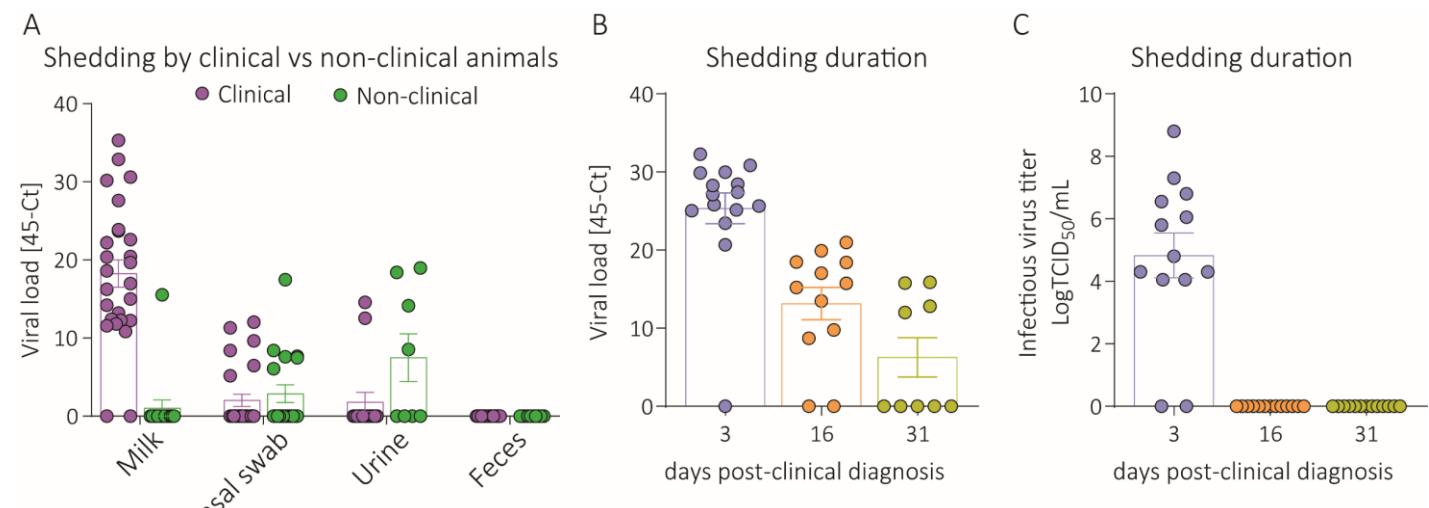
608 **Phylogenomic and Phylogeographic Analysis.**

609 The dataset consisted of HPAI H5N1 clade 2.3.4.4b genomes from samples collected between
610 January 2023 and March 2024 in the American continent, downloaded from GISAID EpiFlu
611 database²⁴, and 91 complete genomes from the present study, that includes 50 genomes obtained
612 from raw sequencing data, combined with another 41 complete genomes curated from the GISAID
613 database that were obtained from the farms in our study (Farm 1, n=11; Farm 4, n=3; Farm 5, n=1;
614 Farm 6, n=4, Farm 7, n=5; Farm 8, n=6, and Farm 9, n=11). The genomes generated in this study
615 are deposited in GISAID database (**Supplementary Data Table 5**), and raw reads are available in
616 the Sequence Read Archive (SRA) under BioProject accession number PRJNA1114404.
617 Phylogenetic analyses were performed by using procedures implemented in Nextstrain⁵⁴. Briefly,
618 multiple sequence alignment was performed using Nextalign; maximum likelihood tree was
619 inferred using IQ-TREE through Augur tool kit and data visualization through Auspice. The

620 potential transmission networks between farms were inferred using the PB2 gene sequences in
621 PopART package v1.7.2 using median joining tree method with an epsilon of zero⁵⁵.


622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

- 662 **References**
- 663 1. Kandeil, A. *et al.* Rapid evolution of A(H5N1) influenza viruses after intercontinental
664 spread to North America. *Nat. Commun.* **14**, 1–13 (2023).
- 665 2. Youk, S. *et al.* H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and
666 domestic birds: Introductions into the United States and reassortments, December
667 2021–April 2022. *Virology* **587**, 109860 (2023).
- 668 3. USDA-APHIS, in *Detections of Highly Pathogenic Avian Influenza in Wild Birds*.
669 (2024).
- 670 4. USDA-APHIS, in *Confirmations of Highly Pathogenic Avian Influenza in Commercial*
671 *and Backyard Flocks*. (2024).
- 672 5. Puryear, W. *et al.* Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New
673 England Seals, United States. *Emerg. Infect. Dis.* **29**, 786–791 (2023).
- 674 6. Cronk, B. D. *et al.* Infection and tissue distribution of highly pathogenic avian
675 influenza A type H5N1 (clade 2.3.4.4b) in red fox kits (*Vulpes vulpes*). *Emerg.*
676 *Microbes Infect.* **12**, (2023).
- 677 7. Rijks, J. M. *et al.* Highly Pathogenic Avian Influenza A(H5N1) Virus in Wild Red Foxes,
678 the Netherlands, 2021. *Emerg. Infect. Dis.* **27**, 2960–2962 (2021).
- 679 8. Bordes, L. *et al.* Highly Pathogenic Avian Influenza H5N1 Virus Infections in Wild Red
680 Foxes (*Vulpes vulpes*) Show Neurotropism and Adaptive Virus Mutations. *Microbiol.*
681 *Spectr.* **11**, e0286722 (2023).
- 682 9. Plaza, P. I., Gamarra-Toledo, V., Rodríguez Euguí, J., Rosciano, N. & Lambertucci, S.
683 A. Pacific and Atlantic sea lion mortality caused by highly pathogenic Avian Influenza
684 A(H5N1) in South America. *Travel Med. Infect. Dis.* **59**, 102712 (2024).
- 685 10. Alkie, T. N. *et al.* Characterization of neurotropic HPAI H5N1 viruses with novel
686 genome constellations and mammalian adaptive mutations in free-living
687 mesocarnivores in Canada. *Emerg. Microbes Infect.* **12**, 2186608 (2023).
- 688 11. Jakobek, B. T. *et al.* Influenza A(H5N1) Virus Infections in 2 Free-Ranging Black Bears
689 (*Ursus americanus*), Quebec, Canada. *Emerg. Infect. Dis.* **29**, 2145–2149 (2023).
- 690 12. Sillman, S. J., Drozd, M., Loy, D. & Harris, S. P. Naturally occurring highly pathogenic
691 avian influenza virus H5N1 clade 2.3.4.4b infection in three domestic cats in North
692 America during 2023. *J. Comp. Pathol.* **205**, 17–23 (2023).
- 693 13. Xu, X., Subbarao, Cox, N. J. & Guo, Y. Genetic characterization of the pathogenic
694 influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin
695 gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. *Virology* **261**,
696 15–19 (1999).
- 697 14. Ali, M. *et al.* Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N8)
698 Virus in Pakistani Live Bird Markets Reveals Rapid Diversification of Clade 2.3.4.4b
699 Viruses. *Viruses* **13**, (2021).
- 700 15. de Vries, E. *et al.* Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes
701 from a Subtype H5N1 Hemagglutinin Variant. *Emerg. Infect. Dis.* **21**, 842–846 (2015).
- 702 16. Sutton, T. C. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses.
703 *Viruses* **10**, (2018).
- 704 17. Caliendo, V. *et al.* Transatlantic spread of highly pathogenic avian influenza H5N1 by
705 wild birds from Europe to North America in 2021. *Sci. Rep.* **12**, 11729 (2022).


- 706 18. Bevins, S. *et al.* Intercontinental Movement of Highly Pathogenic Avian Influenza
707 A(H5N1) Clade 2.3.4.4 Virus to the United States, 2021. *Emerg. Infect. Dis.* **28**,
708 1006 (2022).
- 709 19. Plaza, P. I., Gamarra-Toledo, V., Euguí, J. R. & Lambertucci, S. A. Recent Changes in
710 Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus
711 Worldwide. *Emerg. Infect. Dis.* **30**, 444–452 (2024).
- 712 20. Lee, K. *et al.* Characterization of highly pathogenic avian influenza A (H5N1) viruses
713 isolated from cats in South Korea, 2023. *Emerg. Microbes Infect.* **13**, 1–4 (2024).
- 714 21. Lisa Schnirring. Avian flu detected again in Antarctic penguins. (2024).
- 715 22. U.S. Case of Human Avian Influenza A(H5) Virus Reported. (2022). Available at:
716 <https://www.cdc.gov/media/releases/2022/s0428-avian-flu.html>.
- 717 23. Elsmo, E. *et al.* Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b
718 Infections in Wild Terrestrial Mammals, United States, 2022. *Emerg. Infect. Dis.* **29**,
719 2451 (2023).
- 720 24. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from
721 vision to reality. *Euro surveillance : bulletin European sur les maladies
722 transmissibles = European communicable disease bulletin* **22**, (2017).
- 723 25. Lisa Schnirring. Avian flu detected for first time in US livestock.
- 724 26. Wasilenko, J. L. *et al.* NP, PB1, and PB2 viral genes contribute to altered replication
725 of H5N1 avian influenza viruses in chickens. *J. Virol.* **82**, 4544–4553 (2008).
- 726 27. Zhang, X. *et al.* Enhanced pathogenicity and neurotropism of mouse-adapted H10N7
727 influenza virus are mediated by novel PB2 and NA mutations. *J. Gen. Virol.* **98**, 1185–
728 1195 (2017).
- 729 28. Uyeki, T. M. *et al.* Highly Pathogenic Avian Influenza A(H5N1) Virus Infection in a
730 Dairy Farm Worker. *The New England journal of medicine* (2024).
731 doi:10.1056/NEJMc2405371
- 732 29. Federal and State Veterinary, Public Health Agencies Share Update on HPAI
733 Detection in Kansas, Texas Dairy Herds. (2024). Available at:
734 <https://www.aphis.usda.gov/news/agency-announcements/federal-state-veterinary-public-health-agencies-share-update-hpai>.
- 735 30. Kristensen, C., Larsen, L. E., Trebbien, R. & Jensen, H. E. The avian influenza A virus
736 receptor SA-α2,3-Gal is expressed in the porcine nasal mucosa sustaining the pig as
737 a mixing vessel for new influenza viruses. *Virus Res.* **340**, 199304 (2024).
- 738 31. Mitchell, C. A., Nordland, O. & Walker, R. V. L. Myxoviruses and Their Propagation in
739 the Mammary Gland of Ruminants. *Can. J. Comp. Med.* **XXII**, 154–156 (1958).
- 740 32. Mitchell, C. A., Walker, R. V. L. & Bannister, G. L. Further experiments relating to the
741 propagation of virus in the bovine mammary gland. *Can. J. Comp. Med.* **XVII**, 218–
742 222 (1953).
- 743 33. Mitchell, C. A., Walker, R. V. L. & Bannister, G. L. Persistence of neutralizing antibody
744 in milk and blood of cows and goats following the instillation of virus into the
745 mammary gland. *Can. J. Comp. Med.* **XVIII**, 426–430 (1954).
- 746 34. The, T. O., Virus, O. F., The, I. N. & Gland, B. M. PRELIMINARY EXPERIMENTS
747 RELATING TO THE PROPAGATION OF VIRUS IN THE.
- 748 35. STUDIES RELATING TO THE FORMATION OF NEUTRALIZING. (1955).

- 750 36. Sreenivasan, C. C., Thomas, M., Kaushik, R. S., Wang, D. & Li, F. Influenza A in
751 Bovine Species: A Narrative Literature Review. *Viruses* **11**, (2019).
- 752 37. Campbell, C. H., Easterday, B. C. & Webster, R. G. Strains of Hong Kong influenza
753 virus in calves. *J. Infect. Dis.* **135**, 678–680 (1977).
- 754 38. Hu, X. *et al.* Highly Pathogenic Avian Influenza A (H5N1) clade 2.3.4.4b Virus
755 detected in dairy cattle. *bioRxiv* (2024).
- 756 39. Gunning, R. F., Brown, I. H. & Crawshaw, T. R. Evidence of influenza a virus infection
757 in dairy cows with sporadic milk drop syndrome. *Vet. Rec.* **145**, (1999).
- 758 40. Brown, I. H., Crawshaw, T. R., Harris, P. A. & Alexander, D. J. Detection of antibodies
759 to influenza A virus in cattle in association with respiratory disease and reduced milk
760 yield. *Vet. Rec.* **143**, (1998).
- 761 41. Graham, D. A., Calvert, V. & McLaren, I. E. Retrospective analysis of serum and nasal
762 mucus from cattle in Northern Ireland for evidence of infection with influenza A
763 virus. *Vet. Rec.* **150**, (2002).
- 764 42. Kalthoff, D., Hoffmann, B., Harder, T., Durban, M. & Beer, M. Experimental infection
765 of cattle with highly pathogenic avian influenza virus (H5N1). *Emerg. Infect. Dis.* **14**,
766 (2008).
- 767 43. Arruda, B. *et al.* Divergent Pathogenesis and Transmission of Highly Pathogenic
768 Avian Influenza A(H5N1) in Swine. *Emerg. Infect. Dis.* **30**, (2024).
- 769 44. Gilbertson, B. & Subbarao, K. Mammalian infections with highly pathogenic avian
770 influenza viruses renew concerns of pandemic potential. *J. Exp. Med.* **220**,
771 e20230447 (2023).
- 772 45. Abdelwhab, E. M. & Mettenleiter, T. C. Zoonotic Animal Influenza Virus and Potential
773 Mixing Vessel Hosts. *Viruses* **15**, (2023).
- 774 46. The National Animal Health Laboratory Network. Standard operating procedure for
775 real-time RT-PCR detection of influenza A and avian paramyxovirus type-1 (NVSL-
776 SOP-0068). (2023). Available at:
777 <https://www.aphis.usda.gov/media/document/15399/file>.
- 778 47. Chrzastek, K. *et al.* Use of Sequence-Independent, Single-Primer-Amplification
779 (SISPA) for rapid detection, identification, and characterization of avian RNA viruses.
780 *Virology* **509**, 159–166 (2017).
- 781 48. De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack:
782 visualizing and processing long-read sequencing data. *Bioinformatics* **34**, 2666–2669
783 (2018).
- 784 49. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2.
785 *Genome Biol.* **20**, 257 (2019).
- 786 50. Lu, J. *et al.* Metagenome analysis using the Kraken software suite. *Nat. Protoc.* **17**,
787 2815–2839 (2022).
- 788 51. Mitchell, P. K. *et al.* Method comparison of targeted influenza A virus typing and
789 whole-genome sequencing from respiratory specimens of companion animals. *J.*
790 *Vet. Diagnostic Investig.* **33**, 191–201 (2021).
- 791 52. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
792 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).
- 793 53. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–

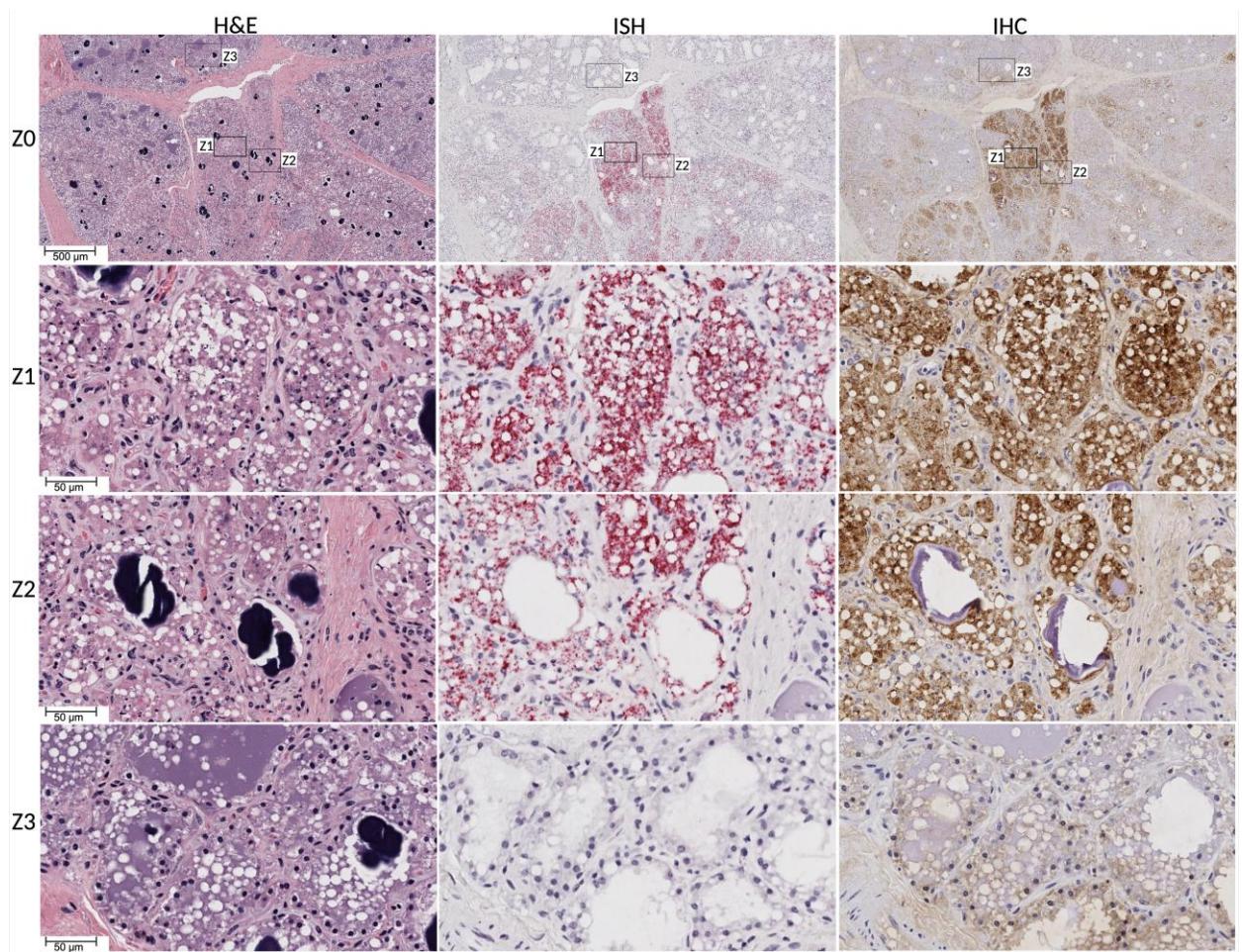
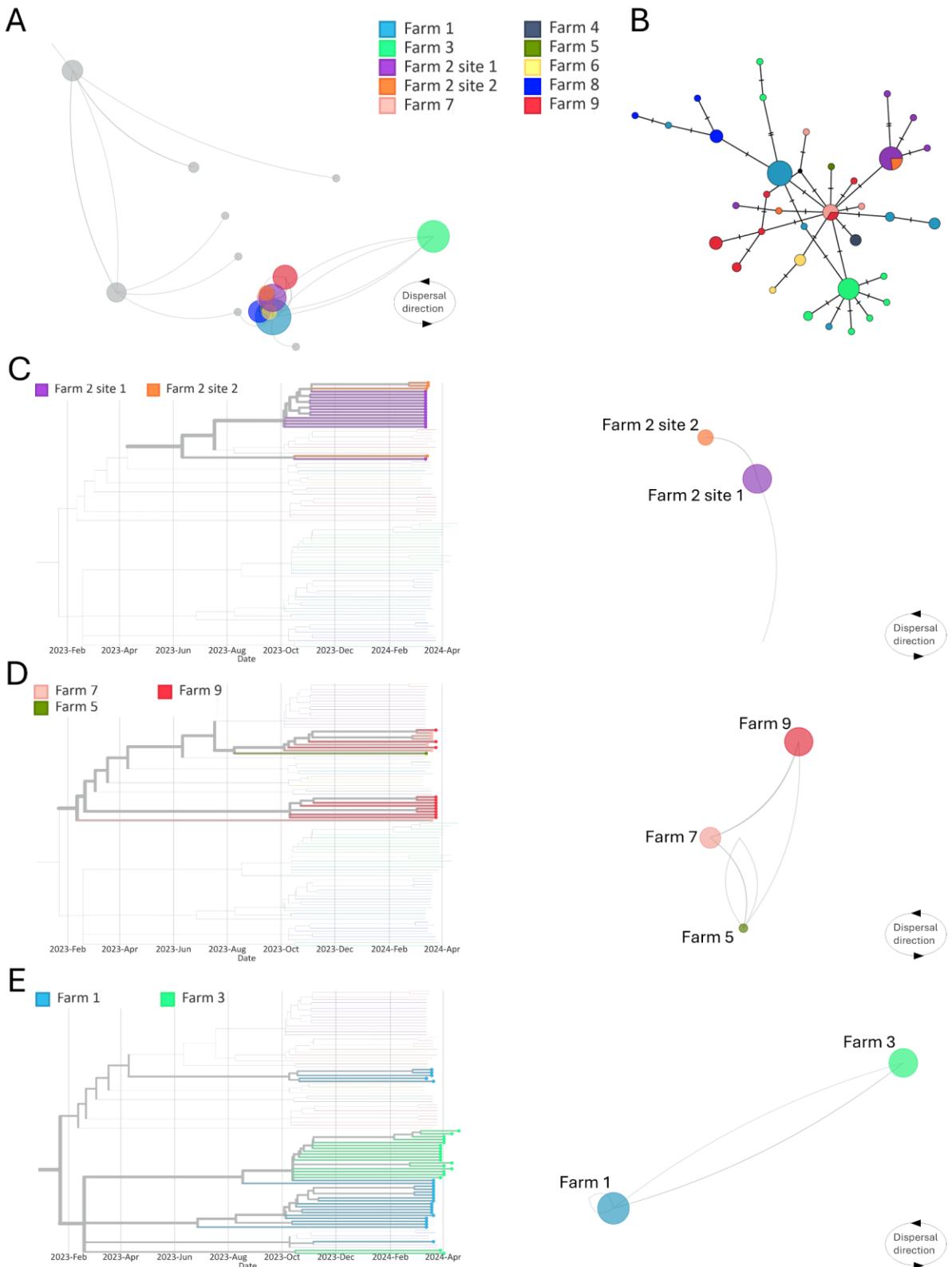

- 794 2069 (2014).
- 795 54. Hadfield, J. *et al.* NextStrain: Real-time tracking of pathogen evolution.
Bioinformatics **34**, 4121–4123 (2018).
- 796
- 797 55. Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network
798 construction. (2015). doi:10.1111/2041-210X.12410
- 799
- 800
- 801
- 802

Figure 1. Detection and isolation of HPAI H5N1 in dairy cattle. A) Viral RNA loads in nasal swab, whole blood, serum, urine, feces, and milk samples collected from cattle from Farms 1-9 quantified by rRT-PCR targeting the influenza A virus matrix gene. B) Viral RNA loads in tissues of dairy cattle quantified by rRT-PCR targeting the influenza A virus matrix gene. C) Serum antibody responses in affected cattle quantified by hemagglutination inhibition (HI) assay. (D) Cytopathic effect of HPAI H5N1 virus from milk in bovine uterine epithelial cells Cal-1. E) Detection of infectious HPAI virus in Cal-1 cells by immunofluorescence assay using a nucleoprotein specific monoclonal antibody (red) counterstained stained with 4',6-diamidino-2-phenylindole (Blue). Infectious HPAI virus in milk (F) and tissues (G) detected by virus titration. Virus titers were determined using endpoint dilutions and expressed as $\text{TCID}_{50} \cdot \text{mL}^{-1}$. The limit of detection (LOD) for infectious virus titration was $10^{1.05} \text{ TCID}_{50} \cdot \text{mL}^{-1}$.


Figure 2. Virus shedding patterns. A) Viral shedding and RNA load in milk, nasal swabs, urine and feces collected from clinical and non-clinical animals from an HPAI affected farm. B) Viral RNA loads in milk samples collected from cattle from Farm 3 on days 3, 16 and 31 post-clinical diagnosis quantified by rRT-PCR targeting the influenza A virus matrix gene. C) Infectious HPAI virus in milk detected by virus titration. Virus titers were determined using endpoint dilutions and expressed as TCID₅₀.mL⁻¹. The limit of detection (LOD) for infectious virus titration was 10^{1.05} TCID₅₀.mL⁻¹. The limit of detection (LOD) for infectious virus titration was 10^{1.05} TCID₅₀.mL⁻¹.

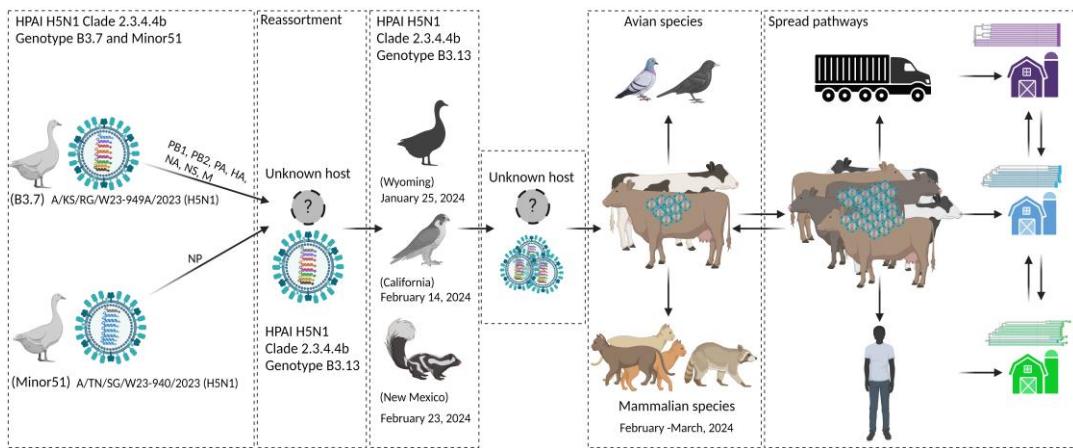
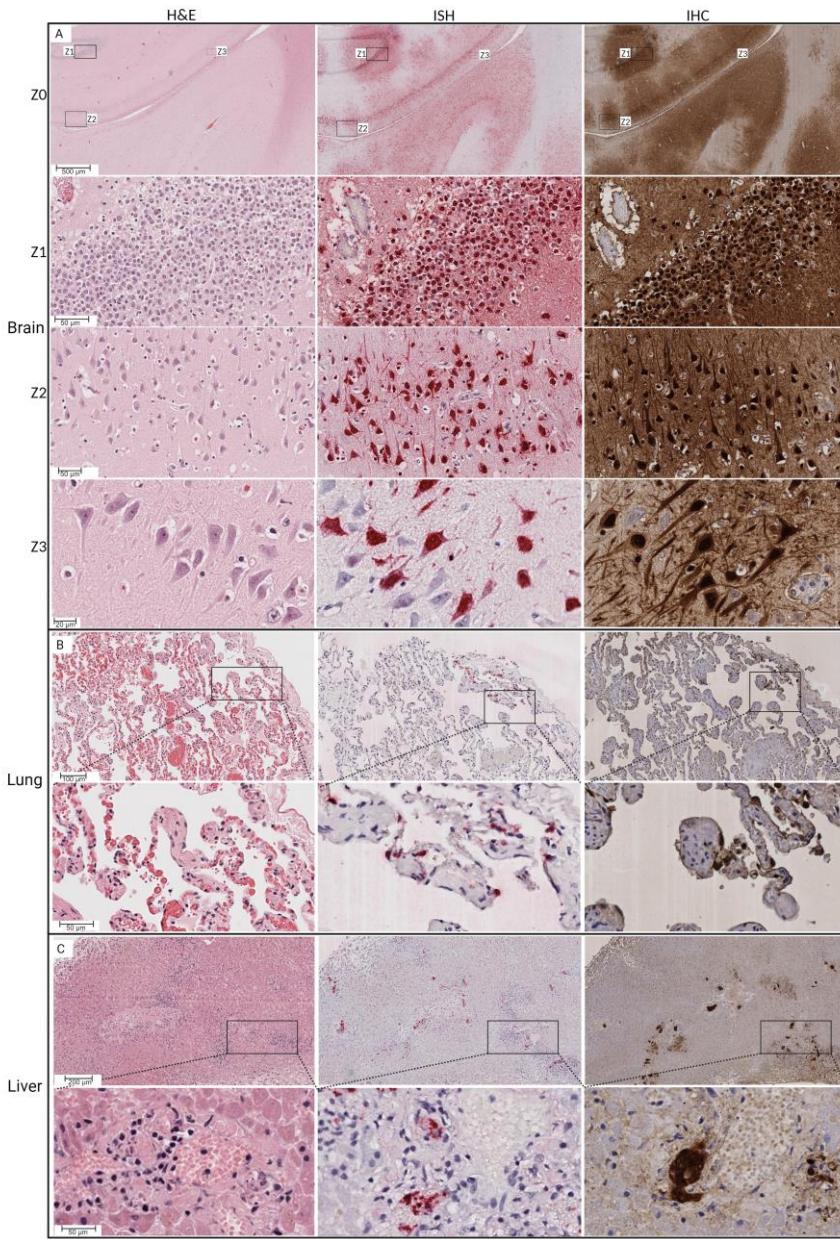
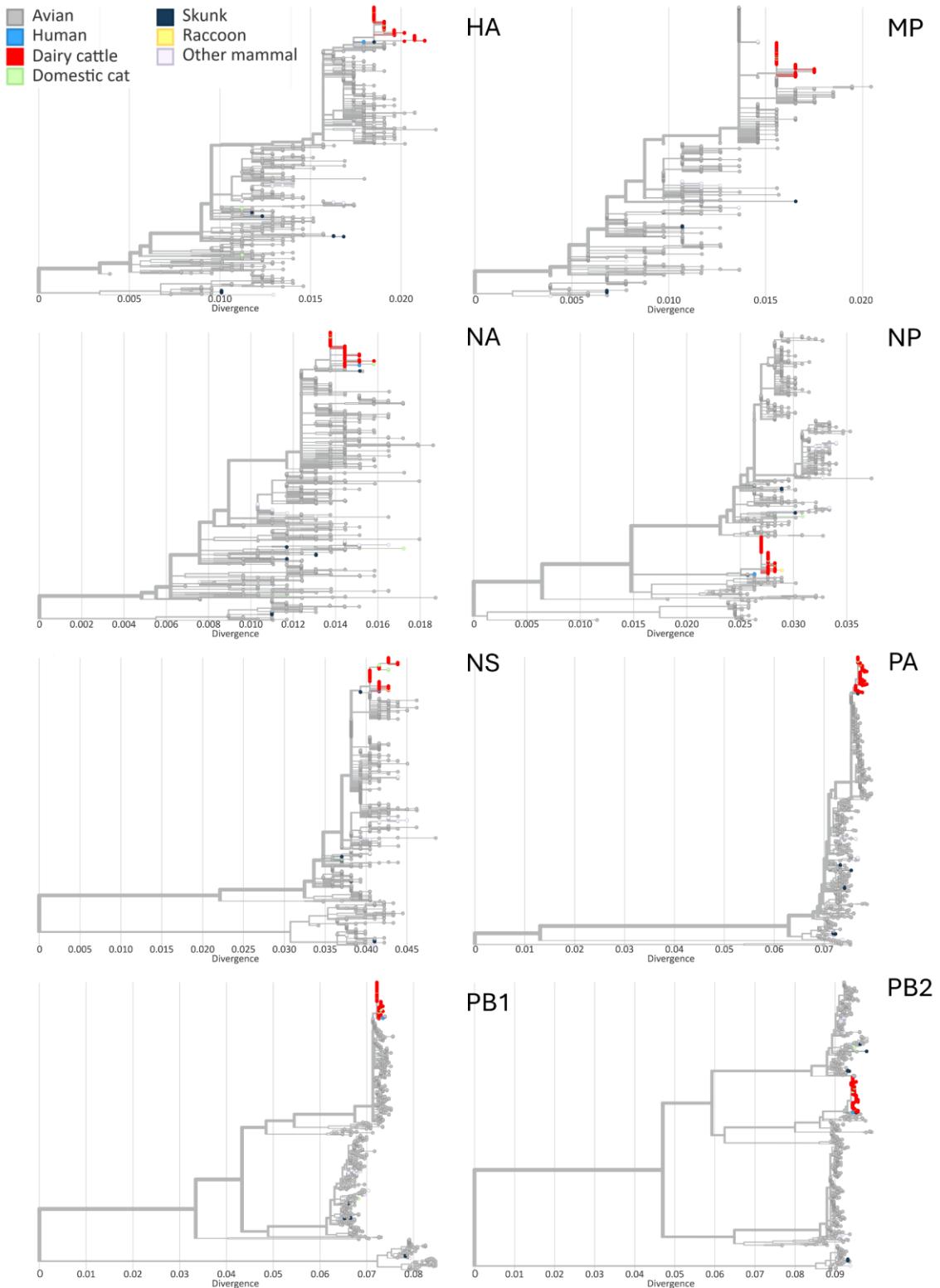
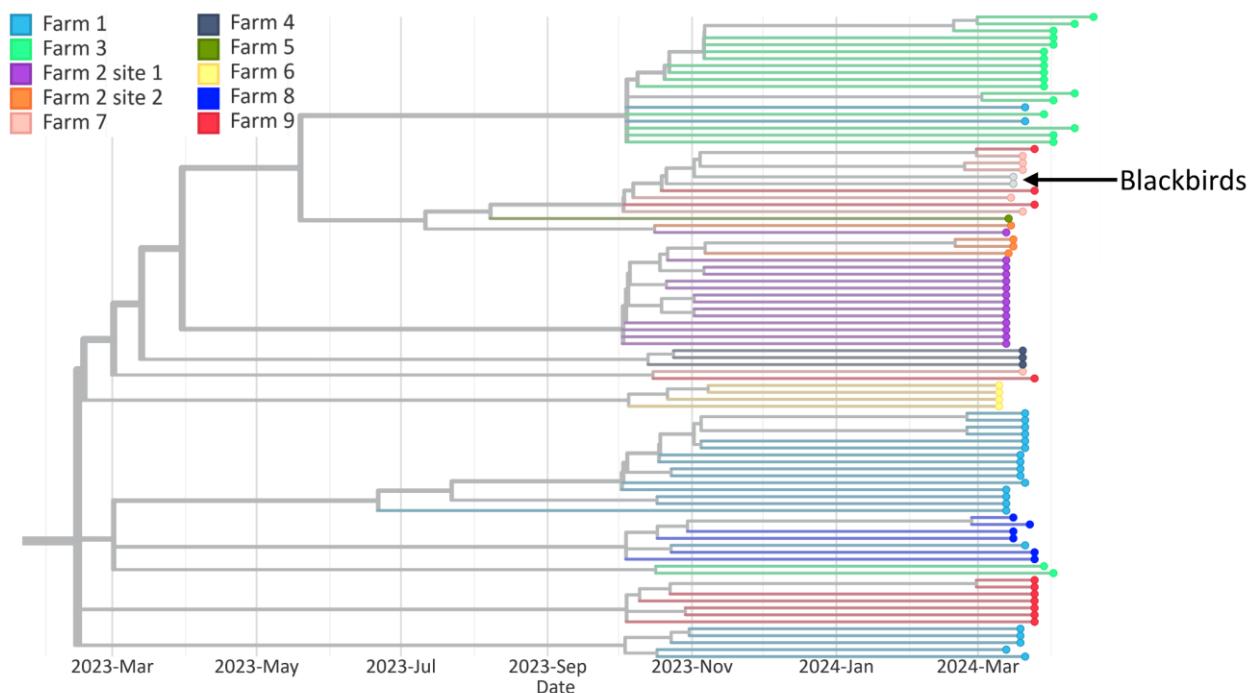

Figure 3. Highly pathogenic avian influenza virus H5N1 detection in dairy cattle mammary gland tissue. Hematoxylin and eosin (H&E) staining (left panels) showing intraluminal epithelial sloughing and cellular debris in mammary alveoli (Z1 and Z2). Normal mammary alveoli filled with milk and fat globules (Z3). In situ hybridization (ISH) (middle panels) targeting Influenza A virus (Matrix gene) showing extensive viral RNA in milk-secreting epithelial cells in the alveoli and in intraluminal cellular debris (Z1 and Z2). Normal mammary alveoli showing no viral staining (Z3). Immunohistochemistry (IHC) (right panels) targeting Influenza A virus M gene showing intracytoplasmic immunolabeling of viral antigen in milk secreting alveolar epithelial cells (Z1 and Z2). Normal mammary alveoli showing no viral staining (Z3)

Figure 4. Phylogenetic analysis of the PB2 genome segment. A) Phylogeny of sequences derived from cattle, cats, raccoon, and grackle sampled in the farms described in this study, and other sequences in closer ancestral branches, obtained from GISAID database. Nodes are colored by host species. (B) Detailed view of the clade containing 91 sequences derived from animals sampled in the farms described in this study. Nodes are colored by farm.

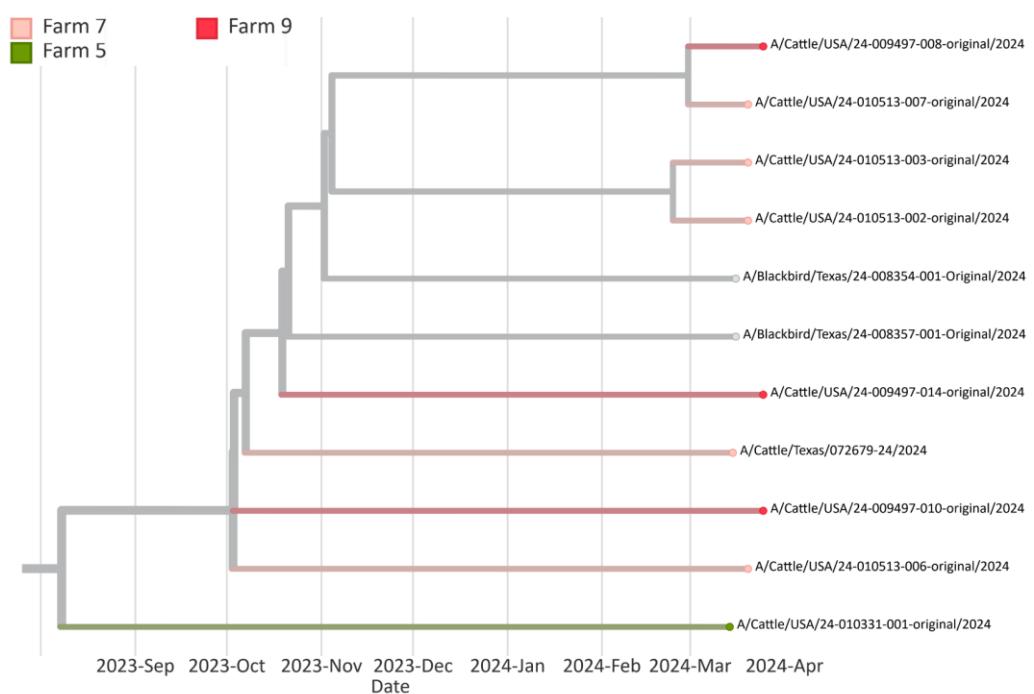

Figure 5. Interstate and local dispersal of HPAI H5N1 genotype B3.13 between farms, based on PB2 gene analysis. (A) Dispersal in North America. Samples described in this study are colored by farm, while locations in grey represent samples from closer ancestral branches obtained from GISAID database. (B) Haplotype network analysis constructed from PB2 segment alignment of HPAI H5N1 obtained from farms described in this study. Different colors indicate different farms. The size of each vertex is relative to the number of samples and the dashes on branches show the number of mutations between nodes. Phylogenetic reconstruction and analysis of dispersal between (C) Sites 1 and 2 of farm 2, (D) Farms 5, 7 and 9, and (E) Farms 1 and 3. Directions of dispersal lines are counterclockwise.


Figure 6. Model of spillover and spread of HPAI H5N1 genotype B3.13 into dairy cattle. A reassortment event in an unknown host species led to the emergence of H5N1 genotype B3.13 which circulated in wild birds and mammals before infecting dairy cattle. Following spillover of H5N1 into dairy cattle, the virus was able to establish infection and efficiently transmit from cow-to-cow (intraspecies transmission) and from cow to other species, including wild (great tailed grackles) and peridomestic birds (pigeons) and mammals (cats and raccoons) (interspecies transmission). Spread of the virus between farms occurred by the movement of cattle between farms, and likely by movement wild birds and fomites including personnel, shared farm equipment and trucks (feed, milk and/or animal trucks).

Extended Data Fig. 1. Clinical presentation of HPAI H5N1 infection in dairy cattle. (A) Infected animals presenting clear nasal discharge and involution of the mammary gland/udder (gold arrowheads, top images) and depression (bottom images). (B) Milk from HPAI H5N1 infected animals presenting yellowish colostrum-like color and appearance (top panels) or coloration varying from yellowish to pink/brown color. Curdling of milk visible in some samples.

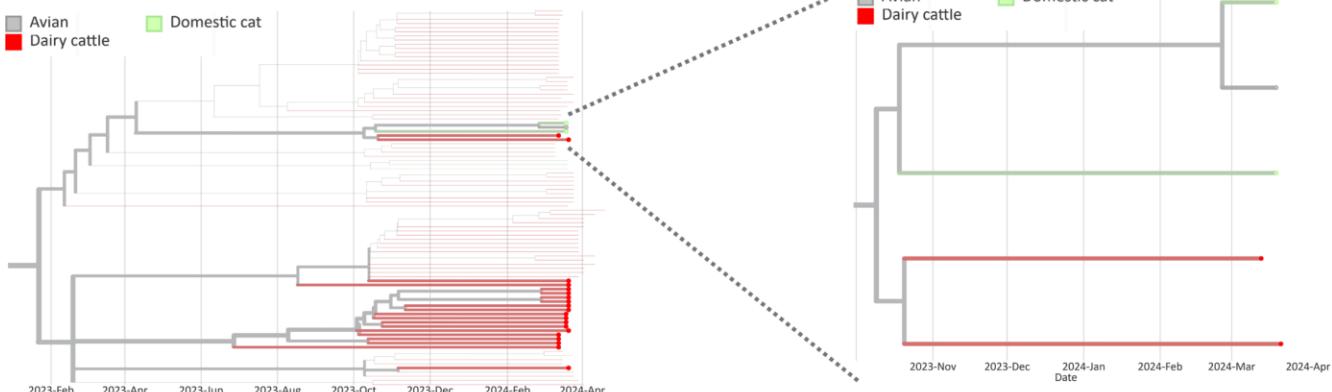


Extended Data Fig. 2. Highly pathogenic avian influenza virus H5N1 detection in cat tissue. Hematoxylin and eosin (H&E) staining (left panels) showing; A) multifocal area of perivascular cuffing, vascular congestion, and perivascular edema (Z0), neuronal swelling and neuronal necrosis and perivascular edema in brain (Z1, Z2 and Z3) B) pulmonary edema with strands of fibrin, thickened alveolar septa and intraepithelial lymphocytes, alveolar capillary congestion C) single cell necrosis and hemorrhage in liver. In situ hybridization (ISH) (middle panels) targeting Influenza A virus (Matrix gene) showing A) multifocal areas with extensive viral RNA (Z0), in neurons and glial cells within the granular layer and nuclear and intracytoplasmic viral RNA in neuronal soma, axon, and vascular endothelial cells in brain (Z1, Z2 and Z3), B) viral RNA in bronchiolar epithelial cells and type II pneumocytes, C) viral RNA in resident sinusoidal Kupffer cells and vascular endothelial cells. Immunohistochemistry (IHC) (right panels) targeting Influenza A virus M gene showing immunolabeling of A) multifocal areas of immunolabeling (Z0), intracytoplasmic immunolabeling of viral antigen in neuronal soma and axons within granular layer in brain (Z1, Z2 and Z3) B) bronchiolar epithelial cells and type II pneumocytes in lung, C) vascular endothelial cells and resident sinusoidal Kupffer cells.

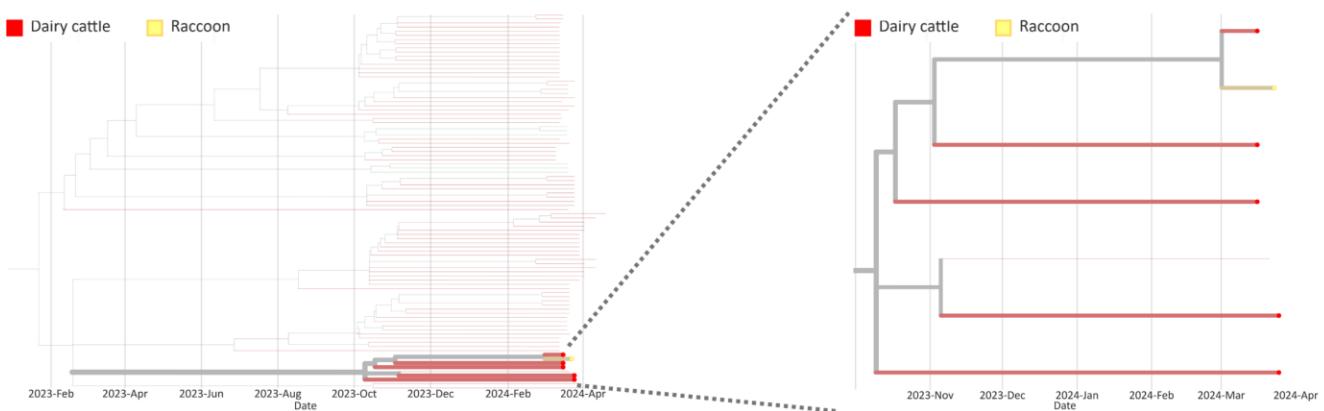


Extended Data Fig. 3. Phylogenetic trees of each genome segment, comprising sequences of 91 samples described in this study and sequences of 648 samples from the American continent, collected between January 2023 and March 2024, available in the GISAID EpiFlu database.

A


B

Extended data Fig. 4. Wild bird sequences are related to sequences from affected dairy farms. (A) Genetic relationship of HPAI H5N1 sequences recovered from blackbirds with sequences recovered from cattle in Farm 7 and 9. Nodes are colored by premise and all the samples collected in the referred farm are highlighted. (B) Detailed/zoom in view of the sequence clusters containing samples from Farm 7, Farm 9 and the blackbirds collected at 8-12 Km from Farm 7.


A

Farm 1

B

Farm 8

Extended data Fig. 5. Evidence of interspecies transmission of HPAI H5N1 in (A) Farm 1 and (B) Farm 9. Nodes are colored by host and all the samples collected in the referred farm are highlighted. Panels on the right are a detailed view of the clusters containing more than one host species.