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Abstract

Neoantigen immunogenicity prediction is a highly challenging problem in the
development of personalised medicines. Low reactivity rates in called neoantigens
result in a difficult prediction scenario with limited training datasets. Here we
describe Genesis, a modular protein language modelling approach to immuno-
genicity prediction for CD8+ reactive epitopes. Genesis comprises of a pMHC
encoding module trained on three pMHC prediction tasks, an optional TCR
encoding module and a set of context specific immunogenicity prediction head
modules. Compared with state-of-the-art models for each task, Genesis’ encoding
module performs comparably or better on pMHC binding affinity, eluted lig-
and prediction and stability tasks. Genesis outperforms all compared models on
pMHC immunogenicity prediction (Area under the receiver operating characteris-
tic curve=0.619, average precision: 0.514), with a 7% increase in average precision
compared to the next best model. Genesis shows further improved performance
on immunogenicity prediction with the integration of TCR context information.
Genesis performance is further analysed for interpretability, which locates areas
of weakness found across existing immunogenicity models and highlight possible
biases in public datasets.


https://doi.org/10.1101/2024.05.22.595296
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.22.595296; this version posted May 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

1 Introduction

High-quality in silico prediction of antigen immunogenicity could be a key factor in the
development of effective personalised therapies for cancer. Therapies based on tumour-
derived neoantigens, often specific to that patient, have gained traction in recent years.
Correctly selecting target antigens is a critical step in treatment development, since
the mutations in a patient’s tumour can greatly exceed treatment payloads. Rates of
reactivity in peptides can be as low as 2-6% of called mutations [1, 2] for a given
patient’s tumour when tested. In high mutation settings, this makes the ranking of
candidate mutations key to designing an effective therapy. Genesis and the models
benchmarked in this work focus on HLA class I presented epitopes, recognised by
CD8+ T-cells, as the definition of immunogenicity; however, a similar architecture
and training approach could in future be applied to class II and CD4+ reactivities.

There are many models focused on predicting prerequisite steps to T-cell recog-
nition. Binding affinity (BA) models such as netMHCpan (3.0 and earlier) [3] and
MHCFlurry [4] are trained on quantitative affinity measurements of peptide-MHC
(pMHC) complexes. Newer versions of netMHCpan[5], MHCFlurry[6] and comparable
models such as MixMHCpred [7] are trained to predict whether peptides are naturally
eluted ligands (EL) as measured by mass spectrometry. Several more recent methods
have been developed using more complex neural network architectures such as RNNs
[8] and transformers [9] to solve these tasks. Efforts have also been made to automat-
ically benchmark existing models as new data becomes available [10], with current
findings showing strong agreement between several models with overall high perfor-
mance. A smaller number of models have been reported that predict other pMHC
formation-related metrics such as pMHC stability [11], as measured by dissociation
assays, and TAP transport efficiency [12]. Predictions based on these pMHC tasks are
all known to correlate with T-cell immunogenicity.

Direct predictors of immunogenicity have also been developed, with many using
the above pMHC models as a basis. PRIME uses the MixMHCpred affinity rank, along
with likely TCR interacting amino acids from the epitope as input to a neural network
[7]. Gartner et al. [13] and Miiller et al [14] built machine learning models taking
existing pMHC models and engineered features as inputs, including some patient-
specific antigenicity features such as expression. Integrated deep learning approaches
have also been developed, such as BigMHC, which transfer-learns immunogenicity
from its previously trained RNN-based EL model [8]. Due to low volumes of training
data and small independent test datasets, these models have generally shown improved
performance at the time of publication but some reduced performance on new data
as it becomes available. This indicates current models do not yet represent highly
generalisable underlying features of immunogenic neoantigens.

TCR specificity is also a relevant task to immunogenicity prediction, especially
when considering the application of personalised therapy design. The likelihood of
immunogenicity in the context of a patient’s TCR repertoire would be a desirable
metric for ranking candidate mutations. TCR specificity models can perform poorly
on entirely unseen epitopes after accounting for biases in test dataset composition
[15, 16, 17, 18]. Poor generalisation is likely due to a shortage of diverse datasets since
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the current repositories of paired pMHC-TCR triplets are heavily biased to HLA-
A02:01 and a few viral epitopes [19]. While these datasets are currently limited in
scope, next-generation screening methods may greatly increase volumes of paired data
in the coming years [20], meaning an increase in TCR data from which to retrain
existing models. Integrating TCR prediction into an immunogenicity model would
allow it to take full advantage of these new datasets.

Here we present Genesis a modular immunogenicity prediction protein language
model based on the transformer architecture. Genesis comprises a pMHC sub-module,
trained sequentially on multiple pMHC prediction tasks. In the first instance, this
provides the input embeddings for an immunogenicity prediction head model to per-
form pMHC-only immunogenicity prediction. Genesis is also extendable to additional
patient-specific inputs, by appending embeddings from purpose-trained encoding net-
works, demonstrated here with TCR sequences. We show that Genesis achieves a
state-of-the-art level of performance at pMHC immunogenicity on an independent
cancer-specific holdout and is extendable to include additional features when they are
available.

2 Results

2.1 Genesis is built on a high performance, multi-task
Peptide-MHC encoding module

A sub-module of Genesis was trained to encode peptide-MHC input pairs for down-
stream immunogenicity prediction by training iteratively on related pMHC prediction
tasks. This allows us to use all available data on immunogenicity related pMHC pre-
diction tasks in the training of Genesis. Performance on these sub-tasks was assessed
by comparison to state-of-the-art models at each stage. First, the BA task was assessed
against MHCFlurry 2.0 [6] on an IEDB [21] search for BA data deposited after 2021,
filtered for 8mer similarity to the training set, ensuring a clean test set for both
models. Second, using the NetMHCpan 4.1 single-allelic eluted ligand (EL) dataset,
we compared to BigMHC-EL and NetMHCpan 4.1. Finally, during stability training,
similarity to the NetMHCstabpan [11] results was assessed using cross-validation.

The BA task results can be seen in Figure 1B showing comparable performance
to MHCFlurry, a well validated model for BA prediction. This demonstrates the first
stage of training for the Genesis pMHC module accurately represents the binding
affinity of unseen pMHC complexes. This severs as a basis for transfer learning to
additional tasks in the next training steps.

The EL task performance similarly showed comparable performance between the
tested models and Genesis. MHCFlurry was not assessed on this test dataset due to
some overlap between their EL training set and this test set, which was also noted by
the BigMHC authors. Overall performance and a breakdown of performance by HLA
allele are shown in Figure 1C.

Figure 1D shows a comparison of the performance of Genesis on the stability task,
both training from scratch and with the EL-trained model as the starting model. Due
to the shortage of stability data available, a holdout test set was not practical for
this task. Similarly, a direct comparison with the NetMHCstabpan model was not
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possible since both their model and Genesis use all of the available data in training
and netMHCstabpan is not currently available in a re-trainable format. We see a
similarly high Pearson’s correlation coefficient to the netMHCstabpan paper, with a
best PCC of 0.88 across all available alleles. The model performed best when pretrained
with the BA and EL tasks compared to being trained only on the stability data.
An improvement in runtime is achieved in Genesis compared to NetMHCstabpan.
Benchmark pools of 50,000 pMHC pairs run through Genesis’s stability module in a
uniform 52s on a laptop with an M1 chip and 16GB of RAM, whereas the same pools
took between 2-20 minutes with NetMHCstabpan depending on peptide length and
HLA diversity.

This iterative training method produced a high performance pMHC module for
use in downstream immunogenicity task training.

2.2 Genesis performs pMHC immunogenicity prediction at
state-of-the-art levels on cancer holdout data

The full Genesis model for pMHC prediction, shown in figure 2A, was further trained
on CD8+ assay data to predict immunogenicity of a given pMHC pair. Figure 2B
and C show the receiver-operator characteristic (ROC) and precision-recall curves for
Genesis compared to its sub-module iterations and other published prediction models
on a holdout cancer pMHC immunogenicity dataset. The unseen test dataset compo-
sition is shown in 2D. Two versions of Genesis were compared, with versions of the
pMHC sub-module trained up until the EL task and the full model also trained with
stability data. The inclusion of stability pre-training in the pMHC module resulted
in the best overall performance (ROC AUC=0.619, AP=0.514). Both of the under-
lying pMHC sub-modules were also tested alone. The EL pMHC sub-module alone
performed worst of all of our models, with performance similar to MHCFlurry, indi-
cating peptide elution likelihood was not a highly predictive feature on this dataset
alone. NetMHCpan-el is commonly used as a tool for selecting which epitopes to test in
immunogenicity assays, leading to a high rate of non-immunogenic but high EL-rank
epitopes in the dataset. In the CEDAR portion of the dataset, the mean netMHCpan-
el rank was 2.02. 2 has been used in other studies as a cutoff for epitopes to test
in immunogenicity assays [22] and is recommended as the cutoff for weak binders by
the authors [5]. This may be a factor in its near chance performance on this dataset.
Stability was an overall better individual feature, with both our stability model and
netMHCstabpan [11] outperforming all the BA/EL models. BigMHC [8] performed
the best of the non-Genesis models run on this dataset. Immunogenicity-specific train-
ing was found to be important in discriminating immunogenic from non-immunogenic
pMHC pairs in this dataset.

2.3 TCR sequence inputs can be integrated into Genesis and
used to perform TCR specificity prediction

Prediction of TCR. specificity from triplets with unseen epitopes has been shown to be
limited in recent studies and reviews [18, 23, 19], with results showing above chance
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performance can be explainable by data leakage from training sets or underlying fre-
quency shifts between data sources [15, 16]. TCR information may still be useful in
immunogenicity prediction. To demonstrate the utility of Genesis as an architecture
for immunogenicity prediction utilising the full peptide-MHC-TCR triplet input, we
initially compare it to two recent TCR specificity models using data splits provided
by the authors to provide a fair comparison. These experiments have the goal of
demonstrating Genesis as a model design is capable of using TCR information in its
predictions. TCR information is integrated into the model by adding TCR sequence
data, as encoded by TCR chain-specific encoders trained in a self-supervised man-
ner. Figure 3A and B show the Genesis configuration for full-length paired alpha-beta
TCR used in these experiments.

Initially, Genesis was compared to NetTCR 2.1 [17], a 1D convolutional neural
network-based approach to TCR specificity. Figure 3 C and D show the performance
compared to Genesis when trained on the same datasets on the holdout 6th fold as
described in the paper. NetTCR was retrained using the codebase provided by the
authors. Two Versions of Genesis were compared, both with frozen encoder weights and
with fine-tuning allowed on the whole model. Both versions of Genesis demonstrated
good performance at this TCR specificity task, with some performance improvement
over NetTCR 2.1. The fine-tuned version of the model performed best, indicating
increased fine-tuning of the encoder sections is required for TCR specificity tasks.

Figure 3 E-G shows the performance compared to the STAPLER [16] model using
their train-test split. Their "VDJdb+ with external negatives” was used as the test
set. Genesis performed better at the cross-validation task with an improved average
precision but had reduced performance on the test set compared to STAPLER. The
main difference between these two models is the inclusion of HLA inputs in Gen-
esis, since STAPLER is based on the BERT [24] design which is overall similar to
Genesis. A masking experiment was conducted, removing the HLA inputs of Genesis
and retraining it to identify the influence of this difference on performance. This pro-
duced a reduced cross-validation average precision of 0.46, very similar to the result in
the STAPLER paper of 0.47. On the test set Genesis had a lower performance com-
pared to STAPLER showing a reduced overall average precision. Again, there was an
improvement in performance with fine-tuning allowed across the network. Here the
HLA masking experiment showed the difference in performance was greatly reduced
by removing the HLA element of Genesis and retraining. HLA bias is a known issue in
TCR specificity datasets [19], with 98% of the STAPLER test set being composed of
three HLA alleles and 63% A02:01. This means the HLA residues, which the Genesis
design is designed to use, explain little variance in this dataset. While the training set
is similarly biased (59% A02:01) there is an improvement in cross-validation precision
when the HLA pseudosequence residues are available to the model.

These experiments demonstrate Genesis is able to use TCR information to perform
prediction tasks at a comparable level to alternative designs seen in state-of-the-art
models.
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2.4 TCR inputs can improve the performance of Genesis’
immunogenicity prediction

The previous experiments demonstrated Genesis as an architecture for TCR specificity
tasks, showing its ability to use information from TCR-based inputs. An additional
experiment was conducted to investigate whether having patient TCR information
would assist in predicting the immunogenicity of a pMHC complex. A reduced holdout
test set from CEDAR was used to test the model where paired CDR3-beta chain infor-
mation was available as input for Genesis. Negatives were constructed using pMHCs
marked as negative on TCR assays in CEDAR paired with TCRs from the positive
set (Figure 4 A-D). Figure 4E and F show an improved performance was achieved
by including the TCR information in the model input compared to the pMHC-only
model.

While there is limited data available in the test set, these results indicate that
improved neoantigen ranking could be achieved when a TCR context is available as
model input.

2.5 Genesis model performance is informed by underlying
learned features and position-aware residue importance

pMHC encoding features were analysed for their relation to underlying physiochem-
ical features, such as those that could be used in an immunogenicity model with
engineered features. Figure 5 shows a T-distributed stochastic neighbour embedding
(t-SNE) of the encoded output of the CLS token and across the peptide tokens as
output by the pMHC encoding module of Genesis. These are shown both for distribu-
tions of physicochemical properties of the peptide and input HLA alleles. The pMHC
immunogenicity test set was used for this analysis. A support vector regression was
performed on this dataset to demonstrate the extent to which these features could be
recovered from the encoding at this stage of the network. The GRAVY index score,
a measure of the overall hydrophobicity, for the input peptide is well represented in
both the CLS token and peptide embedding. The instability index [25] a more com-
plex calculated metric of the peptide was not well represented in the embedding. The
secondary structure fractions of helix, turn and sheet were all represented well in the
protein encoding seen by the immunogenicity prediction heads. The input HLA allele
is visually identifiable in the t-SNE plots for both the CLS token and peptide tokens,
indicating there is a good integration of the HLA into the classification input as well
as via cross-attention applied to the peptide encodings.

Importance analysis was performed using the SHAP python package [26] with the
results shown in Figure 6. The stability-trained pMHC module showed high SHAP val-
ues in both the common anchor residue locations and a C-terminal usage separated per
n-mer length. In Figure 6H the HLA-A*02:01 9mer samples showed clear impacts from
changes to the anchor positions for that allele at positions 2 and 9. This pattern was
replicated in the full Genesis immunogenicity model but with lower differential SHAP
values between residues, indicating a greater relative usage of non-anchor location
residues for determining immunogenicity. The Genesis-TCR model was also analysed
to determine which aspects of the TCR input were used and how much it factored into
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predictions. Figure 6 shows a similar distribution of residue usage to those previously
reported by Dens et al. for the CDR3-8 [27], with a core region from residue 4-15
accounting for most of the residue importance in our analysis. We found that while
the TCR currently does impact the immunogenicity prediction, it is the least used of
the three input sequences when performing the pMHC-TCR immunogenicity task.

2.6 Variances in performance between models shows the
characteristics of difficult to predict peptides

Additional analyses were performed to assess sources of difference between Genesis
and other models on the pMHC immunogenicity task, shown in Figure 7. The Genesis
stability pMHC module produces scores which are highly correlated with netMHC-
stabpan [11] (Pearson’s R=0.806), a widely used pMHC stability prediction tool.
This is expected as they share a training dataset but differ on pre-training steps and
architecture. Figure 7A shows a large population of positive pMHC complexes from
immunogenicity assays with low predicted stability. The full Genesis model trained
at the immunogenicity task shows a shift in scores compared to the stability pMHC
module, rescuing some lower predicted stability data points (Figure 2)). Genesis and
BigMHC immunogenicity scores were analysed to investigate data points on which the
models disagreed, as well as the characteristics of false positives and negatives. Scores
from our stability and EL-trained pMHC modules, along with MHCFlurry presen-
tation probability were calculated. Distance from the respective model training sets
was measured by calculating the minimum Levenshtein distance to any epitope in the
training data. The GRAVY score of the peptides was also calculated to determine the
mean hydrophobicity of the populations. The dataset was split into quadrants based
on the two models’ mean scores across the whole dataset. Positive data points with
high Genesis but below the mean BigMHC scores had a higher than average stability
score but lower than average MHCFlurry scores. This indicates some false negatives
for a model like BigMHC could be rescued by the inclusion of stability training. There
was a reverse of this in the quadrant of higher BigMHC and low Genesis positives
where lower stability and high MHCFlurry were found. Both models performed poorly
on positive data points with low scores from our stability and EL pMHC modules,
along with low MHCFlurry predictions, low GRAVY and a high distance to training
sets. True positives found by both models had higher than average scores on all the
metrics.

Both BigMHC and Genesis use immunogenicity-related pMHC tasks in their train-
ing. While both models are able to improve on predictions of EL and stability alone,
neither model generalises well to the populations of positive immunogenic pMHCs
which have relatively low scores across EL and stability.

3 Discussion

CD8+ neoepitope prediction plays an important role in the development of person-
alised cancer therapeutics, potentially allowing for highly targeted and more effective
treatments. In this work, we’ve described Genesis, a modular language model which
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achieves state-of-the-art performance on pMHC immunogenicity prediction and can
integrate new inputs such as TCRs when available.

The phased pre-training approach detailed here allows for the integration of multi-
ple pMHC complex-specific tasks in the model weights, providing a useful embedding
for downstream pMHC immunogenicity modelling at state-of-the-art performance lev-
els. This was shown with a strict separation of datasets, ensuring all test peptides were
unseen by the model in any previous task at every point of training. pMHC complex
stability in particular was found to be an important additional embedded feature for
improved performance on the test set in this work. This aligns with previous work
showing pMHC stability’s relationship to CD8+ reactivity prediction [11, 13]. Previ-
ous models showed that fine-tuning from an EL model [8] provides a strong basis for
the more specific task of immunogenicity prediction. Similarly, the output from an EL
and stability models have been used as separate inputs to machine learning methods
[13, 14] and neural networks [7] previously. Our protein language modelling approach
has the advantage of not just integrating other model outputs, but additional features
which are observable in the underlying embeddings before the immunogenicity model
head.

The Genesis architecture has the advantage of being extendable, both to additional
pre-training-based embeddings through new pMHC tasks and to additional feature
inputs such as TCR sequences. Paired pMHC-TCR triplet data is currently severely
limited, especially when it comes to epitope and HLA diversity [19]. Due to the limited
datasets available, TCR specificity prediction in entirely novel epitopes has not been
shown once dataset biases have been sufficiently accounted for [16, 15, 28, 18]. Genesis
as an architecture demonstrated strong performance at two TCR specificity tasks from
previous publications [17, 16] indicating that it is highly capable of integrating TCR
inputs, including up to full chain alpha and beta chains, into predictions. We show
that integrating CDR3/ chains into an immunogenicity prediction task can provide an
improvement in performance in the limited set of test neoantigens currently available.
We found our setup of different pretraining steps and diverse negative data generation
was important in achieving this increase. TCR input was found to have the least impact
on the overall prediction score; however, the shift in performance seen here indicates
the patient TCR repertoire could be an important input in improving neoepitope
ranking. While these results are limited by available data, this work demonstrates the
potential gains from integrating TCR information into immunogenicity prediction.

The extendable design of Genesis allows for additional features to be integrated
by adding to the feature sentence structure as shown with TCRs. Features which
have been established to impact immunogenicity, such as expression levels [13] and
antigen clonality [29] could similarly be appended to the Genesis inputs. Currently, the
limiting factor is data availability to support fitting and testing of the model in these
alternative configurations. Public datasets rarely include these patient-level features.
As more data becomes available, additional features can be similarly added to Genesis.

The SHAP analysis of Genesis showed a more balanced use of residues in the
immunogenicity-trained full model compared to the underlying pMHC sub-module
trained on the BA, EL and stability tasks which was highly impacted by the associated
HLA binding motifs. This is the expected behaviour as the residues other than the
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anchor locations are involved in TCR binding. This result indicates Genesis is learning
positional importance which has been found to be beneficial when explicitly encoded
in models like PRIME [7].

Much like the models directly compared here and other published models, this
study is limited by the availability and composition of immunogenicity data. The
proportion of explained variance derivable from either engineered features or learned
features from existing training data provides limited overall performance. In particular,
there is a disconnect between BA or EL predictions and CD8+ reactivity based on
data deposited in public databases such as CEDAR. There exists a potential bias in
reactivity datasets due to the use of BA/EL models to determine test candidates from
called mutations [13, 14, 22|, since these tools have biases associated with their training
data acquisition methods [30, 31]. There is also a significant issue in the field with
possible false negatives in datasets, with highly differential reactivity between patients
[32]. We found the recall of immunogenic epitopes with low average scores on associated
features such as EL rank and stability was poor in both Genesis and BigMHC, the
next best model tested. For this population of antigens, performance is unlikely to
be greatly improved by better-engineered models alone. Larger improvements require
much more reactivity data, reduced bias in selecting what is tested and additional
features beyond the pMHC sequences. Our work indicates paired TCR datasets in
particular would be highly valuable for both improving epitope level immunogenicity
prediction and providing a patient-specific context to the model.

In our tests EL models perform very poorly on immunogenicity prediction due
to the bias in which epitopes are tested being skewed to highly ranked epitopes;
however, these tools are still likely useful for minimal epitope selection compared to
randomly selected epitopes from a given mutation. Additional datasets to understand
the population of low EL rank but positive reactivity epitopes in the datasets would
be highly valuable.

Genesis provides a strong framework for immunogenicity prediction using a mod-
ular protein language model which achieves state-of-the-art level performance at
predicting immunogenicity on publicly available CD8+ reactivity data.

4 Methods

Genesis is designed as a modular protein language model, trained in an iterative
manner using different transfer learning tasks. The model is broken up into different
reusable modules depending on the end prediction goal and the available inputs. All
models were developed in Python 3.8.11 using PyTorch 1.12 [33]. Training was per-
formed on NVIDIA Tesla T4 GPUs with 16GB of VRAM. All models were trained with
the Adamax optimiser to minimise binary cross-entropy loss across all classification
and regression tasks.

4.1 Data-leakage Control

Genesis is trained in an iterative manner and uses cross-validation in some optimisation
and benchmarking experiments at different stages. To ensure a clean data split and
no information leakage occurred between tasks, a filtering strategy was applied to
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all datasets iteratively to remove any data previously seen by the model. Taking the
pMHC immunogenicity dataset and working backwards through training steps, data
points were removed if there was an 8mer level match with any peptide used in a
downstream task. This ensured all test sets were completely unseen by the model at
any previous training step, resulting in a small reduction in the training sets for some
tasks while preserving the size of the limited test sets of unseen data. For all 5-fold
cross validation experiments peptides were assigned to the same folds as any 8mer
matched peptides to ensure highly similar peptides were never used in both a training
and testing set. Figure S1 provides a diagram of the strategies used here.

4.2 Peptide MHC Encoding Module

The initial pMHC module is trained to perform a binding affinity task, followed by
an eluted ligand prediction task and finally fine-tuned on a pMHC stability task.
The model architecture and training parameters were selected based on 5-fold cross-
validation performance on the EL task. The design presented here is an encoder-only
protein language model with separate transformer [34] branches for both the epitope
and HLA pseudosequences, which are then concatenated along with a classification
token before another layer of transformer encoders. Each transformer block is made
up of 4 encoder layers. For pMHC training tasks the classification token is fed into a
fully connected network for final classification. MHC pseudosequences are based on the
MHCFlurry 2.0 alignment provided with their publication [6]. Amino acid sequences
are encoded by branch-independent embedding layers with an embedding depth of 72.

For the binding affinity training step of the pMHC module, the binding affin-
ity portion of the MHCFlurry 2.0 training set was used [6]. This initially comprised
219,596 affinity measurements, filtered for only human quantitative measurement data,
resulting in a dataset of 99,245 measurements. Binding affinity measurements, in IC50
values, were scaled to between 1-0 using the formula z = 1—log(af f)/log(50,000) [35].
Initial hyperparameter tuning was performed with 5-fold cross-validation. Test perfor-
mance, to ensure the model performed well for unseen binding affinity prediction, was
assessed using an IEDB [21] search for binding affinity data with IC50 quantitative
values deposited after January 2021. This ensured a direct comparison to MHCFlurry
was possible as this data had no overlap with their training set. This search yielded
427 pMHC complexes, with 105 entries having a binding affinity under 500nM. Perfor-
mance was compared as both Pearson’s correlation coefficient to the measured binding
affinity value and performance at classifying presented values, using 500nM as the
positive cutoff point.

The EL task was trained using the BigMHC-EL training dataset which was a com-
bination of the MHCFlurry 2.0 [6] and NetMHCpan 4.1 [5] single allelic EL datasets.
Model layer depth, batch size and learning rate were optimised using 5-fold cross-
validation on the 16,992,037 (240,565 positive) pMHCs. The BigMHC-EL (8] test set
was used for performance evaluation at the EL task covering 900,592 negative and
45,400 positives, also taken from NetMHCpan 4.1 but with duplicates removed and
filtered by our filtering strategy (Figure S1). All this data was originally acquired
through immunopeptidomics studies with binary labels for whether a given pMHC
was eluted.
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The BA-EL pMHC model was then trained further to perform a pMHC com-
plex stability task. 28,088 half-life measurements were provided by the authors of
the NetMHCstabpan paper [11] and one additional study of yellow fever vaccine
epitopes [36]. The raw data is scaled in the same manner as demonstrated in the
NetMHCstabpan paper, S = 27/ where S is the converted value and ty is the
conversion constant. The constant was set to 1, which was determined to be a rea-
sonable pan-allotype value in the original paper and which was confirmed in our
early developmental experiments. Negative entries were added from the MHCFlurry
2.0 dataset [6] where the measurement value was over 20,000nM. 1000 negative sam-
ples per MHC allele represented in the positive set were sampled. Performance was
assessed by Pearson’s correlation coefficient to the actual half-life values after 5-fold
cross-validation.

4.3 Peptide MHC Immunogenicity Prediction

For pMHC immunogenicity prediction the final transformer block outputs from the
pMHC module are provided as the input. The weights of the pMHC module are frozen
during training of the immunogenicity head layers. An additional transformer and
classification head are trained on immunogenicity-specific data. Training data was
compiled from publicly available data sources including both positive and negative
epitopes: IEDB [21], VDJdb [37], TESLA [2], McPAS-TCR [38] and the PRIME model
training sets [7]. Additional negatives were sampled from the human proteome using
the consensus coding sequence project (CCDS) [39].

For benchmarking Genesis for pMHC immunogenicity prediction two variants were
compared. One with the pMHC module trained up until the EL task and another
with the full training including the stability prediction task to assess the utility of this
additional training task to immunogenicity. Genesis was compared to pMHC bind-
ing/elution models netMHCpan 4.1 [5] and MHCFlurry 2.0 [6], the pMHC stability
model netMHCstabpan [11], along with the pMHC immunogenicity models PRIME
2.0 [7] and BigMHC [8]. The EL and EL-Stability pMHC sub-modules of Genesis were
also compared.

The holdout test set was compiled by combining the cancer-specific dataset
CEDAR [40], unseen cancer-specific pMHCs from ITEDB and McPAS-TCR, and the
holdout MANAFEST assay dataset of 16 cancer patients from BigMHC [8]. CEDAR
was searched for t-cell assays in humans only. The full set was filtered to remove pep-
tides contained in the training set for the immunogenicity comparison models BigMHC
and PRIME.

This resulted in a Genesis training set of 9044 pMHCs (2588 positives) and a test
set of 2600 pMHCs (950 positives). This set was the start point for our data filtering
policy for all datasets, shown in figure S1.

4.4 TCR Specificity Prediction

Genesis is designed as a modular language modelling approach for immunogenicity
prediction, with the ability to add additional features to the input of the classification
head. TCR specificity as a task is performed using peptide:HLA:TCR triplets as input.
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The pMHC encoding module is unchanged to process the peptide:HLA paired input,
with the immunogenicity classification head fine-tuned with the addition of TCR-
based inputs. For these benchmarking experiments full-length TCRs with both alpha
and beta chains were used to compare to existing state-of-the-art models; however,
other configurations such as CDR3-beta only input are also possible with Genesis.

A set of TCR encoding modules consisting of a 2-layer transformer encoders were
pre-trained in a self-supervised manner using a random masking approach. TCR-
beta chains were generated from datasets available from a sequencing dataset of
666 patients available from Adaptive Biotechnologies [41]. Full-length amino acid
sequences were reconstructed using the V and J allele annotations, with sequences
defined in IMGT/GENE-DB [42]. Entries containing ambiguous residues or non-
standard amino acids were removed. 15,363,111 unique TCR-beta sequences were used
to train the base model, with 5% randomly selected to use as a validation set for
hyperparameter optimisation. For alpha chain inputs a specific encoder was trained
by fine-tuning the beta chain encoder with the alpha chain pre-training set from the
STAPLER model [16], resulting in 46,207 unique alpha chains after processing. Both
models were trained using negative log-likelihood loss of reconstructing the original
sequence from the masked input using a projection back to amino acid space using a
fully connected layer, as shown in Figure 3A.

The final combined model is constructed by combining the outputs of the pMHC
and TCR modules, separated by special separation tokens. As with the pMHC
immunogenicity model, a classification head is provided with the combined outputs
of the preceding encoders. Figure 3B shows this configuration of Genesis. This is fine-
tuned using the pMHC immunogenicity prediction head. For the TCR specificity task,
versions of Genesis were trained with either encoder weights frozen as with the pMHC
immunogenicity task, or the entire model was fine-tuned including the encoders.

NetTCR 2.1 [17] is a 1D CNN-based model which processes the TCR and pep-
tide separately before concatenating the outputs for input to a set of fully connected
layers. To include measured negatives in the datasets rather than only using mixed
negatives, they focused on 6 peptides for which there were negative TCRs in the 10x
Genomics Single Cell Immune Profiling study. Additionally, they limited the search
to only samples where all CDR regions were available for both alpha and beta chains,
which has been found previously to improve TCR specificity prediction. This produced
a dataset of 2,541 positives along with 12,848 true negatives from 10x and 12,705 ran-
domly swapped negatives. The cross-validation and test splits were used as provided
by the authors. For Genesis input, the HLAs were acquired from the original data
sources. These were randomly sampled from negative samples, meaning epitopes were
always presented with a known positive HLA.

STAPLER [16] is a transformer-based model based on the BERT [24] architecture,
reading full-length TCR alpha and beta chains along with the epitope of interest
as a sequence of tokens. Their model is trained with a mixture of masked language
modelling and fine-tuning tasks for epitope-TCR pairs. The comparison task with
Genesis is performed using the data provided from their GitHub repository consisting
of a fine-tuning training set and a holdout test set consisting of positive triplets from
VDJdb [37], along with a subset from their other sources and externally sampled
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negative TCRs. Positives were a mixture of seen and unseen epitopes. They identified
internal shuffling of the VDJdb TCRs to be a source of data-leakage, advising the use
of the external TCRs. This provided a fine-tuning training set of 23,410 triplets and
a test set of 3,372 triplets (562 positive).

4.5 TCR Assisted Immunogenicity Prediction

While TCR specificity on unseen episodes is currently not possible with existing
datasets and architectures, TCR data when available could be used in ranking pMHC
complexes for immunogenicity using a compatible framework. The TCR version of
Genesis was compared to the pMHC-only version to assess if TCR data could be use-
ful in improving immunogenicity prediction when available. For this experiment, only
the CDR3-beta chains were used due shortage of datasets with full paired chain infor-
mation, particularly for holdout pMHCs unseen by other models. This configuration
of Genesis is shown in Figure 4A.

Training data was composed of positive triplets from the same sources as the
pMHC-only experiments, filtered for datasets where there are known reactive CDR3-
beta sequences. This resulted in a training set of 37,970 positive triplets covering
1,253 unique epitopes. 3 distinct types of negative data were generated as shown
in Figure 4C. First, negative wild-type peptides were sampled from the CCDS [39]
and paired with TCRs taken from the positive set. Second, positive pMHCs were
paired with negative TCRs from the background distribution used in the TCR encoder
pre-training. Finally, negative immunogenic pMHCs from the PRIME and TESLA
datasets were paired with TCRs from the positive fraction to create likely presented
pMHCs but non-immunogenic triplets. These negative types were produced at equal
proportions, with a total negative to positive ratio of 100:1. 5-fold cross-validation
was used to fit training parameters batch size and learning rate using a grid search
approach.

The holdout test set was comprised of positives taken from CEDAR [40], filtered for
t-cell assays of neoepitopes in humans and with beta chain CDR3 sequences available
and negatives from the same search without the CDR3 requirement. This was a subset
of our pMHC immunogenicity test set. Negative samples were paired with the positive
TCR set to ensure differences between the positive and negative datasets could not be
detected by a distribution shift in the TCR repertoire alone. Any epitopes present in
both the training and test sets were removed from the training set for either Genesis
or the comparison models. To maximise the possible test data, only BigMHC was
compared as the best-performing other model from the pMHC-only immunogenicity
prediction. NetMHCpan-el was also included to compare against a presentation-only
model. This produced a reduced test set of 115 positive pMHCs with at least one known
reactive TCR and 1957 negative pMHCs paired with the positive fraction’s TCRs.
Genesis-TCR scores were aggregated per pMHC by taking the maximum predicted
score.
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4.6 Interpretability

Analysis representation of physiochemical property representation in the model
embeddings was performed by visualisation using T-distributed stochastic neighbour
embeddings (t-SNE) and training an estimator model to recover these properties from
the embeddings. The immunogenicity test set was used for this analysis by passing
each data point through the pMHC module and analysing the output of the embed-
ding by the model for use by the immunogenicity head models. 2D t-SNE embeddings
were generated using the scikit-learn python package (version 1.0.2) [43]. Physiochem-
ical properties tested were the GRAVY score, instability index [25], molecular weight
and secondary structure fractions. These were all computed using BioPython (version
1.78) on each input peptide. Support vector regression models were trained to pre-
dict the actual values using the embeddings as inputs to determine if these features
were represented by the model for immunogenicity prediction input. SVR models were
trained using scikit-learn.

Input importance analysis was performed using the SHAP python package version
0.40.0 [26]. Here the training immunogenicity dataset was used as the background dis-
tribution for masking. SHAP estimates importance values by computing the change in
model output when input values are replaced by baseline values. The immunogenicity
dataset was again used as the dataset for this analysis. Values were calculated for the
stability pMHC module, Genesis and Genesis-TCR models. The stability and Gene-
sis models were investigated for their usage of peptide residues. The TCR-inclusive
model was analysed similarly, but also for CDR3-3 residue usage. Total mean usage
across peptide, HLA and TCR inputs was also calculated.
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Fig. 1 Genesis pMHC pre-trained tasks module. A: The model architecture of the pMHC module of
Genesis, trained to perform 3 tasks in series. Weights of the transformer blocks are saved for use in all
downstream models for immunogenicity and TCR specificity. B: Performance of pMHC module on the
binding affinity task predicting unseen pMHC affinities against MHCFlurry 2.0. Left: ROC curve for
predicting strong affinities (< 500nM), Right: Pearson’s correlation coefficient between predictions
and measured binding affinities. C: Performance on the eluted ligand holdout set compared against
BigMHC and netMHCpan 4.1. Left: ROC curve, Right: Scatter plots for Genesis against BigMHC-
EL and netMHCpan 4.1 per HLA in the test set. D: Pearson’s correlation coefficient for HLAs in the
stability dataset during cross-validation, comparing both the Genesis pMHC module trained from
scratch and fine-tuned on the BA-EL tasks.
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data points in other public data sources and test sets from compared models’ publications not already
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into Genesis predictions by concatenating module outputs into a single sentence to be processed by
the prediction head. C and D: Performance of Genesis on the NetTCR 2.1 dataset task. Both models
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HLA inputs is shown to demonstrate the negative impact of HLA inputs in this data split.
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Fig. 4 pMHC immunogenicity prediction with additional TCR information. Genesis makes pMHC
immunogenicity predictions in a given TCR context. A: Architecture for integrating CDR3 sequences
into Genesis predictions, utilising a pretrained self-supervised CDR3 encoder. B: Training dataset
sources for fine-tuning the immunogenicity prediction head of Genesis. C: Composition of the fine-
tuning dataset, utilising 3 types of negative data: positive pMHCs paired with negative background
TCRs; Correctly matched MHC-TCR pairs with negative background wild-type peptides from the
human proteome; Non-immunogenic pMHCs from TCR assays paired with TCRs from the positive
training set. D: Composition of the neoantigen holdout test set from CEDAR, restricted to positives
with known TCR triplets. Negative data points were created using negative pMHCs paired with
TCRs from the positive set. E and F: Performance curves for Genesis with and without the TCR
information input, along with netMHCpan 4.1 and BigMHC.
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Fig. 5 pMHC encoding representations of physiochemical properties. t-SNE visualisations of both
the CLS token and all peptide tokens coloured for the physiochemical properties of the input peptide.
R? values are shown for predicting the true value of each metric with a support vector machine model
using the encodings as feature inputs. The bottom plots show the respective t-SNE plots coloured for
the 8 most frequent HLA alleles, demonstrating separation between encodings for some HLAs both
in the CLS token and peptide token encodings.
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Fig. 6 Input residue usage by Genesis from estimated SHAP values. A: SHAP values by masking
the test inputs based on the background distribution of inputs calculated by the training set.
Over permutations of masking input values the importance of each input residue to Genesis can
be estimated. B: Peptide residue importance for the pMHC immunogenicity model across the
immunogenicity test set. C: Peptide residue split by peptide length for the 4 most prevalent lengths.
D/E: Peptide residue importance for the stability pMHC base module across all data and the most
common peptide lengths. F: CDR3 residue usage for the TCR-Immunogenicity prediction model.
G: Relative mean importance for all residues in the TCR-Immunogenicity model across peptide,
HLA and TCR fractions. H: SHAP values for HLA-A*02:01 9mers for the stability pMHC module,
demonstrating specific importance applied to the established anchor residues at positions 2 and 9.
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Fig. 7 Model Performance Analysis on pMHC Test Set. A: Scatter plot of the Genesis stability
pMHC sub-module and NetMHCstabpan demonstrating high agreement on the test set along with a
large population of positive data points with low predicted stability by both models. B: Genesis scores
plotted against its stability-trained pMHC sub-module. The improved performance was achieved
by the rescue of low-stability pMHCs after training on the immunogenicity task. C: Genesis and
BigMHC scores scatter plot. The Red dashed line shows the mean scores for both models on the
whole dataset. Break out tables showing metrics for positive and negative samples separately in each
quadrant indicating shifts in mean values for correctly and incorrectly predicted pMHCs, along with
differences between the models.
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Fig. S1 Filtering strategies for ensuring no data leakage between training steps, including for the
sub-module tasks (A) and the cross validation strategy ensuring all epitopes with matching 8mer
substrings appear in the same fold. All data is filtered based on matches of 8 consecutive amino acids
in the peptide.
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