

1 **Absence of c-Maf and IL-10 enables Type I IFN enhancement of innate responses to low-
2 dose LPS in alveolar macrophages**

3

4 **Authors:** Pamelia N. Lim^{1,2}, Maritza M. Cervantes¹, Linh K. Pham^{1,3}, Sydney Doherty¹, Ankita
5 Tufts¹, Divya Dubey^{1,2}, Dat Mai⁴, Alan Aderem⁴, Alan H. Diercks⁴, and Alissa C. Rothchild^{1,*}

6

7 **Affiliations:**

8 ¹Department of Veterinary and Animal Sciences, University of Massachusetts Amherst,
9 Amherst, MA 01003.

10 ²Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst,
11 Amherst, MA 01003.

12 ³Graduate Program in Animal Biotechnology & Biomedical Sciences, University of
13 Massachusetts Amherst, Amherst, MA 01003.

14 ⁴Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle,
15 WA 98019

16 *Corresponding author: Alissa Rothchild, PhD, arothchild@umass.edu

17 **SUMMARY**

18 Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the
19 first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen
20 Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-
21 dose LPS compared to other macrophages, as measured by TNF, IL-6, *Ifnb*, and *Ifit3*. We find
22 the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface
23 expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not
24 produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-
25 Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory
26 responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened
27 responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions
28 where AMs may have reduced or enhanced sentinel responses to bacterial infections.

29

30 **KEYWORDS**

31 Alveolar macrophage; lipopolysaccharide; IL-10; c-Maf; Type I IFN; myeloid cells; innate
32 response; CD14; TLR4

33

34 **HIGHLIGHTS**

35 - Alveolar macrophages (AMs) do not produce TNF or IL-6 in response to low-dose LPS
36 due to minimal surface expression of TLR4 and CD14
37 - Lack of AM IL-10 production is dependent on low c-Maf expression
38 - Exogenous c-Maf expression increases AM IL-10 production
39 - IFN β enhances AM TNF and IL-6 responses to low-dose LPS and this is dependent on a
40 lack of IL-10

41 INTRODUCTION

42 Alveolar macrophages (AMs) are located within lung alveoli and serve as sentinels for
43 inhaled pathogens and airborne environmental particles. AM's constant exposure to foreign
44 material and concurrent role in pulmonary homeostasis creates a unique profile that shapes
45 their innate response. AMs must mount responses to pathogens they encounter as well as
46 maintain airway clearance through the removal of surfactant and debris. In a healthy lung, AMs
47 are the most abundant myeloid cell^{1,2} and are present in only 1 out of every 3 alveoli^{3,4}, so their
48 initial responses to pathogens must be generated in an isolated manner.

49 AMs participate in innate responses to a variety of inhaled pathogens, including viral
50 infections such as SARS-CoV-2^{5,6}, respiratory syncytial virus (RSV)⁷, influenza⁸⁻¹¹, and
51 Newcastle disease virus (NDV)¹², where they contribute to inflammatory responses and disease
52 pathogenesis. In contrast, AM responses to bacterial infections are more varied. AMs infected
53 *ex vivo* with *Pseudomonas aeruginosa* produce TNF and IL-6¹³, as well as IL-1 β following
54 inflammasome activation¹⁴. Additionally, depletion of AMs *in vivo* prior to *P. aeruginosa* infection
55 reduces neutrophil recruitment¹⁵. In contrast, AMs infected *in vivo* with *Legionella pneumophila*
56 do not produce TNF¹⁶. AMs are the first cells infected in the lung during *Mycobacterium*
57 *tuberculosis* (Mtb) infection^{17,18}. Mtb-infected AMs mount a cell-protective, NRF2-dependent
58 response with minimal expression of pro-inflammatory genes¹⁸. We sought to address the
59 discrepancy in AM inflammatory responses by directly examining AM cell-intrinsic innate
60 sensing pathways and how they might be influenced by exogenous signals, such as Type I IFN,
61 which are present in the lung milieu during viral infection.

62 Innate recognition of lipopolysaccharide (LPS), a critical component of the outer
63 membrane of gram-negative bacteria, is one of the most well-studied sensing pathways. LPS is
64 sensed on the cell surface by TLR4 and CD14, leading to MyD88 and TIRAP signaling,
65 activation of NF- κ B, and production of pro-inflammatory cytokines¹⁹⁻²¹. In addition, CD14

66 binding to TLR4 can result in TLR4 endocytosis, endosomal signaling through TRIF and TRAM
67 adaptors, activation of IRF3, and production of Type I IFN^{19,22}. These major pathways have
68 been primarily identified through studies in bone marrow-derived macrophages (BMDMs). An
69 additional study showed the requirement of CD14 for TNF production in response to low-dose
70 LPS in mouse peritoneal macrophages²³ and peripheral blood mononuclear cells²⁴. Yet, it is
71 unknown whether AMs similarly mount a robust response to LPS and other PAMPs under
72 isolated conditions. A better understanding of AM direct innate sensing capacity is critical for
73 studying the role of AMs as airway sentinels during pulmonary infections.

74 To examine direct, individual AM innate responses to LPS, we delivered LPS linked to
75 microspheres, which could be tracked by fluorescence either *in vivo* by aerosol or *ex vivo* to
76 cultured AMs, using *in vitro* BMDMs as a positive control. We observed that both *in vivo* and *ex*
77 *vivo* AMs have a significantly reduced inflammatory response to LPS-coated beads compared to
78 BMDMs. Similarly, AMs produce significantly less TNF and IL-6 in response to low-dose soluble
79 LPS, compared to that of BMDMs. This response is PAMP-specific, as AMs mount robust pro-
80 inflammatory and Type I IFN responses to other PAMPs, including Pam3Cys, R848, and 2'3'-
81 cGAMP. We find that while AMs express *Tlr4* mRNA, AMs have minimal surface expression of
82 TLR4 and this is associated with low levels of expression of co-receptor CD14. Interestingly,
83 AMs do not produce IL-10 in response to any PAMPs tested. We show that the lack of AM IL-10
84 production is dependent on the absence of the transcription factor c-Maf. AM IL-10 production
85 can be rescued by exogenous expression of c-Maf. Lastly, we demonstrate that addition of
86 recombinant IFN β enhances AM production of TNF and IL-6 in response to LPS, and this is
87 again dependent on the absence of IL-10 production. Overall, our results demonstrate that AMs
88 have PAMP-specific, cell-intrinsic deficiencies in innate sensing, which make them uniquely
89 tolerant to LPS and sensitive to Type I IFN.

91 **RESULTS**

92 **Alveolar macrophages do not mount a pro-inflammatory response to LPS-conjugated
93 beads *in vivo* and *ex vivo*.**

94 To characterize AM responses to LPS and to distinguish direct PAMP sensing from
95 paracrine signaling effects *in vivo*, we coated 1.0 μ m polystyrene beads with LPS and delivered
96 them to mice via aerosol. The same preparation of LPS-conjugated beads were delivered in
97 parallel to BMDMs *in vitro* (Fig. 1A). This approach was optimized so that 10% or fewer
98 macrophages received LPS-coated beads under each condition, minimizing indirect bystander
99 effects. Both Bead+ (LPS_{bead}) and Bead- (bystander) macrophages were sorted from each
100 population (Fig. S1A, B) and gene expression was profiled by RNA-sequencing. In agreement
101 with published studies, Gene Set Enrichment Analysis demonstrated that LPS_{bead} BMDMs were
102 significantly enriched for the HALLMARK pathways “Inflammatory response”, “TNFA signaling”,
103 and “IL6 Jak Stat3 signaling” (Fig. 1B). Both bystander BMDMs and vehicle control Bead+
104 BMDMs (PBS_{bead}), showed minimal enrichment for these pathways, confirming the specificity of
105 the approach. In contrast, gene expression profiles for LPS_{bead} AMs were not enriched for these
106 pro-inflammatory pathways. Additionally, analysis of Differentially Expressed Genes (DEGs)
107 between LPS_{bead} AM and LPS_{bead} BMDMs demonstrated that only LPS_{bead} BMDMs up-regulated
108 key pro-inflammatory response genes *Tnf* and *Il1b*, and interferon-stimulated genes *Irg1* and
109 *Ch25h* (Fig. 1C).

110 To determine whether this hypo-response was due to the influence of the lung
111 environment or due to cell-intrinsic regulation, we repeated this experiment with AMs isolated
112 from the lung via bronchoalveolar lavage (BAL) and cultured *ex vivo* for <24 hours. Following 20
113 hours of exposure to LPS- or PBS-coated beads, TNF and IL-6 production was measured by
114 intracellular cytokine staining (ICS) in the presence of Brefeldin A (Fig. 1D, Fig. S1C, D). Across
115 three independent experiments, $10 \pm 3.7\%$ of BMDMs and $6.2 \pm 2.1\%$ of AMs (mean \pm SEM)
116 were Bead+ (Fig. S1E). Again, we observed that AM pro-inflammatory responses were

117 significantly diminished compared to BMDMs. $12.9 \pm 5.1\%$ of LPS_{bead} AMs were TNF+
118 compared to $71.4 \pm 2.1\%$ of BMDMs. $2.6 \pm 2.3\%$ of LPS_{bead} AMs were IL-6+ compared to $13.5 \pm 7.7\%$ of BMDMs (**Fig. 1E, F**). Parallel experiments using peritoneal macrophages (PMs) led to
119 similar cytokine production as observed for BMDMs (**Fig. S1F**), suggesting that the lack of
120 response in AMs is not a general feature of all tissue-resident macrophages. Overall, these data
121 demonstrate that in a scenario where cells directly sense LPS and there is an absence of
122 paracrine signaling, AMs are unable to mount a pro-inflammatory response either *in vivo* or *ex*
123 *vivo*. These data also show that removal from the lung environment does not enhance AM
124 sensing of low-dose LPS and suggest that the factors that regulate AM sensing of LPS are cell-
125 intrinsic.
126

127

128 **Alveolar macrophages have a high LPS-specific activation threshold.**

129 We next sought to evaluate the AM response to soluble LPS which, unlike the bead-
130 conjugated approach, would allow for paracrine signaling and cross-talk between neighboring
131 cells. For monocyte-derived macrophages, paracrine signaling has been shown to be important
132 for the production of significant amounts of IL-6, TNF, and IL-10 in response to LPS
133 stimulation²⁵. We measured TNF and IL-6 protein secretion by AMs and BMDMs following
134 stimulation with 0.1, 1, and 10 ng/ml LPS. There was significantly less production of both TNF
135 and IL-6 in AMs compared to BMDMs after stimulation with 1 ng/mL of LPS, but AMs produced
136 more TNF and comparable IL-6 to BMDMs at 10 ng/mL (**Fig. 2A**). To investigate if decreased
137 TNF and IL-6 production was specific to LPS or shared across other ligands, we stimulated AMs
138 and BMDMs with two other PAMPs, Pam3Cys (TLR1:2 agonist) or R848 (TLR7/8 agonist),
139 across 100-fold dose curves. In contrast to our results with LPS, AMs made significantly more
140 TNF and IL-6 than BMDMs for both Pam3Cys (**Fig. S2A**) and R848 (**Fig. S2B**) for most doses
141 tested. Additionally, to determine if AM's diminished response was shared across other tissue-

142 resident macrophage populations, we repeated the experiments in **Fig. 2A** with peritoneal
143 macrophages (PMs). In contrast to AMs, PMs produced significant levels of TNF and IL-6
144 starting at 1 ng/mL of LPS (**Fig. S2C**). Additionally, PMs stimulated with Pam3Cys had similar
145 TNF expression to BMDMs and higher IL-6 expression compared to BMDMs and AMs (**Fig.**
146 **S2D**).

147 TLR4 engagement leads to the production of both pro-inflammatory cytokines via
148 MYD88/TIRAP signaling on the cell surface and Type I IFN via TRIF/TRAM signaling within
149 endosomes²⁰. To test if LPS signaling through the TRIF/TRAM pathway was also deficient in
150 AMs, we quantified *Ifnb* and *Ifit3* expression by RT-qPCR across the 100-fold dose curve of
151 LPS. We saw significantly less *Ifnb* expression in AMs after stimulation with 1 ng/mL and 10
152 ng/mL LPS compared to BMDMs and significantly decreased expression of *Ifit3*, an Interferon
153 Stimulated Gene (ISG), in AMs stimulated with 10 ng/mL LPS (**Fig. 2B**). IFN β is sensed by the
154 Interferon- α/β receptor (IFNAR) which leads to the activation of STAT1. Measuring
155 phosphorylation of STAT1 by flow cytometry following 1 ng/mL LPS stimulation, we observed
156 that BMDMs had a significant increase in pSTAT1, while AMs showed no increase in pSTAT1
157 levels over untreated controls (**Fig. 2C**).

158 To test if decreased AM expression of *Ifnb* and *Ifit3* was also PAMP-specific, AMs and
159 BMDMs were stimulated with 2'3'-cGAMP, a ligand for STING. Overall, both AMs and BMDMs
160 robustly increased *Ifnb* and *Ifit3* gene expression in response to 2'3'-cGAMP. AMs and BMDMs
161 had similar expression levels of *Ifnb* after stimulation with 0.1 and 1 μ M, while BMDMs
162 expressed significantly higher *Ifnb* at the 10 μ M dose (**Fig. S2E**). AMs expressed significantly
163 less *Ifit3* after stimulation with 0.1 μ M 2'3'-cGAMP compared to BMDMs, but had similar
164 expression levels at higher doses (**Fig. S2E**). These data demonstrate that AMs have a higher
165 LPS-specific activation threshold for TNF, IL-6 and Type I IFN signaling than BMDMs or
166 peritoneal macrophages.

167

168 **Low alveolar macrophage TLR4 surface expression is associated with low expression of**
169 **co-receptor CD14**

170 One potential reason for AM's higher activation threshold to LPS is reduced expression
171 of either the receptor or signaling adaptors for LPS sensing. We examined AM and BMDM gene
172 expression for TLR4 and associated adaptor proteins. We found increased expression of *Tlr4*
173 and associated adaptors *Myd88*, *Tirap*, and *Ticam2* (Tram) in AMs compared to BMDMs, but
174 significantly lower expression of *Cd14* in AMs compared to BMDMs (**Fig. 3A**). To determine if
175 differences in gene expression were reflected in protein expression, we quantified TLR4 and
176 CD14 surface expression by flow cytometry before and after stimulation with 1 ng/mL LPS.
177 Surprisingly, AMs had significantly lower expression of surface TLR4 at all timepoints, with
178 minimal changes following LPS stimulation (**Fig. 3B**). BMDMs also had a significant decrease in
179 TLR4 surface expression at 4 hours, which aligns with what has been previously reported about
180 the mechanism and timing of TLR4 endosomal recycling¹⁹. AMs also had significantly lower
181 surface expression of CD14, although both AMs and BMDMs showed increases in surface
182 CD14 at 4 hours post-LPS stimulation (**Fig. 3C**). We also examined TLR4 and CD14 cell
183 surface levels in PMs. PMs showed a similar pattern to BMDMs, with high TLR4 and CD14
184 expression and a decrease in surface TLR4 expression after LPS stimulation (**Fig. S3C, D**). We
185 additionally measured TLR2 levels under basal conditions and saw similar levels in AMs
186 compared to BMDMs (**Fig. S3E**).

187 To distinguish between differences in total TLR4 protein expression versus localization,
188 we performed intracellular staining for TLR4 in untreated and LPS stimulated conditions.
189 Despite minimal surface expression, AMs expressed relatively high levels of internal TLR4
190 protein (**Fig 3D-E**). However, internal TLR4 protein levels were still significantly lower in AMs
191 than BMDMs (**Fig. 3E**). A higher percentage of AMs than BMDMs expressed internal, but not

192 surface TLR4, yet at 4 hours post-LPS stimulation BMDMs had an increase in the percentage of
193 cells expressing only internal TLR4 over untreated (**Fig. 3F**), correlating to the internalization
194 seen in **Fig. 3B**. We also measured CD14 surface and internal expression in AMs and BMDMs.
195 Overall, AMs expressed lower levels of internal CD14 than BMDMs (**Fig 3G-H**). Similar to the
196 trends observed for TLR4 expression, a higher percentage of AMs, compared to BMDMs,
197 expressed internal but not surface CD14 (**Fig. 3I**). Overall, AMs have significantly lower surface
198 expression of TLR4 and CD14 than BMDMs, yet do express some TLR4 and CD14 protein in
199 intracellular stores. This difference in receptor/co-receptor expression and localization likely
200 affects the ability of AMs to sense and respond to low-dose LPS. Our data suggest that even
201 though there is an increase in CD14 surface expression after 4 hours of LPS stimulation in AM
202 (**Fig 3C**), this change is not enough to facilitate LPS sensing at low doses.

203

204 **Alveolar macrophages do not produce IL-10 due to low expression of c-Maf.**

205 When evaluating AM responses to LPS stimulation, we initially hypothesized that
206 excessive IL-10 production could be an explanation for the AM hyporesponsive state. IL-10 is
207 an immunosuppressive cytokine induced downstream of both TLR and Type I IFN signaling^{26,27}.
208 In BMDMs, LPS-induced IL-10 production is partially dependent on the activation of both the
209 TRIF and MYD88 pathways²⁸, triggered by endosomal and surface-located TLR4 respectively.
210 IL-10 is also induced through autocrine signaling of Type I IFNs²⁹. When we tested AM IL-10
211 production, we instead observed that AMs produced no detectable IL-10 across all LPS doses
212 tested (0.1 - 10 ng/mL) (**Fig. 4A**). Additionally, we detected little to no IL-10 produced by AMs in
213 response to Pam3Cys, R848, and CpG, PAMPs for which AMs mount robust TNF and IL-6
214 responses (**Fig. S4A, B, C**). In contrast, BMDMs produced IL-10 in response to LPS, Pam3Cys,
215 R848, and CpG, as expected (**Fig. 4A, S4A, B**).

216 Because no IL-10 was detected for by multiple PAMPs, including ones that induced
217 robust TNF and IL-6 responses in AMs (**Fig. S2A,B**), we reasoned that the mechanism must be
218 separate from TLR signaling and proximal to IL-10 expression itself. We examined AM gene
219 expression of transcription factors known to be associated with the IL-10 promoter: *Maf*, *Atf1*,
220 *Nfkb1*, *Nfkb2*, *Creb1*, *Cebpb*, *Sp1*, and *Sp3*²⁷. Out of all of the transcription factors, only *Maf*
221 expression, the gene encoding for c-Maf protein, was significantly lower in expression in AMs
222 compared to BMDMs (adj p-value < 0.0001, One-way ANOVA) (**Fig 4B**). Measuring c-Maf
223 protein by flow cytometry, we found that AMs have significantly lower expression of c-Maf
224 compared to BMDMs (**Fig 4C**). This suggested that a lack of c-Maf expression could be
225 preventing AMs from making IL-10.

226 To test if c-Maf was sufficient to induce IL-10 expression in AMs, we aimed to express c-
227 Maf in AMs exogenously. Manipulation of genes in primary murine AMs is difficult due to their
228 limited growth and lifespan in culture and the initial low yield per animal that limits further
229 alterations. To address the issues of limited lifespan and low yield, we expanded primary AMs
230 isolated from WT mice by culturing them in media containing GM-CSF, TGF-β and PPAR-
231 agonist Rosiglitazone, following a published protocol³⁰. Murine *ex vivo* AMs, termed “mexAMs”,
232 were shown by Gorki et al. to maintain classic AM surface marker expression through multiple
233 passages³⁰. Other studies have shown that primary cultured AMs can maintain AM
234 transcriptional and epigenetic identity when reintroduced to the lung *in vivo*³¹. We first verified
235 that mexAMs do not make c-Maf or IL-10 in response to LPS (**Fig. S4 D,E**). We transduced
236 mexAMs with lentivirus containing either a plasmid with a Maf gene cassette (Maf-LV) or a
237 control plasmid with an empty gene cassette (Empty-LV). After puromycin selection, we
238 detected a significant increase in *Maf* expression in Maf-LV-transduced mexAMs compared to
239 Empty-LV-transduced cells, mexAMs treated with polybrene alone, or untreated mexAMs (**Fig.**
240 **4D**). Additionally, baseline *IL10* expression was higher after Maf-LV transduction compared to all

241 other conditions (**Fig. 4E**). After stimulation with LPS and IFN β , there was a trend towards an
242 increase in *Il10* expression and detection of IL-10 protein in the Maf-LV compared to Empty-LV
243 condition. (**Fig. 4F, G**).

244 To confirm if *Il10* and *Maf* were also differentially expressed in human AMs, we
245 interrogated single-cell RNA data from the Integrated Cell Atlas of the Lung through the Census
246 database of CZ CELLxGENE Discover³², filtering to include AMs, classical monocytes, and lung
247 macrophages within healthy lung tissue. While both classical monocytes and lung macrophages
248 had high expression of *CD14*, human AMs had very low expression (**Fig. S4F**). Similarly,
249 human lung macrophages showed high expression of *MAF*, while both AMs and monocytes had
250 overall low expression (**Fig. S4F**). None of the cell types from the healthy lung showed high
251 expression for *IL10*. *MARCO*, a gene known to have high expression in AM populations, was
252 used as a control. These data suggest that the that AM gene expression levels we have
253 observed in mice for *Il10*, *Maf*, and *Cd14* are reflective of gene expression of AM from healthy
254 human lungs.

255

256 **IFN β enhances alveolar macrophage TNF and IL-6 response to low-dose LPS in the
257 absence of IL-10.**

258 One implication for an absence of IL-10 production by AMs is that conditions that would
259 normally stimulate robust IL-10 production might have alternative impacts. We hypothesized
260 that one of those conditions could be Type I IFN, which has been shown to induce IL-10 in
261 myeloid cells²⁷. To test a role for Type I IFN, we stimulated AMs and BMDMs *in vitro* with low-
262 dose LPS (1 ng/mL) and IFN β (1-100 ng/mL) for 20 hours. BMDMs produced a dose-dependent
263 increase in IL-10 and a significant decrease in TNF and IL-6 with increasing amounts of rIFN β
264 (**Fig. 5A**). This response recapitulated previously described effects of Type I IFN and IL-10 in
265 macrophages²⁹. In contrast, we observed an increase in AM TNF production, peaking at 10

266 ng/ml IFN β , and as well as a trending increase in IL-6, with no production of IL-10 (**Fig. 5B**). We
267 also tested AM and BMDM responses to IFN γ and LPS, as IFN γ has been shown to enhance
268 macrophage responses under some conditions^{33–35}. In contrast to IFN β , IFN γ led to an increase
269 in both TNF and IL-6 for both BMDMs and AMs and a significant decrease in IL-10 for BMDMs
270 (**Fig. S5A,B**). To test whether IFN β altered surface expression of TLR4, we measured TLR4 by
271 flow cytometry after stimulation with rIFN β and LPS in AM and BMDM. We observed no
272 difference in TLR4 surface in AMs after LPS and IFN β co-stimulation (**Fig. S5C**). There was
273 also no change in AM c-Maf expression in AMs after 20 hours of incubation with either rIFN β
274 alone or rIFN β with LPS (**Fig. S5D**).

275 Next, we aimed to determine the role for IL-10 in the distinct responses to IFN β between
276 AMs and BMDMs. First, we blocked IL-10 signaling in BMDMs using an anti-IL-10R antibody 24
277 hours prior to LPS and IFN β co-stimulation. We observed complete rescue of TNF and partial
278 rescue of IL-6 production in the presence of anti-IL-10R blocking antibody (**Fig. 5C**). Second,
279 we added rIL-10 to AMs stimulated with LPS and IFN β and found that exogenous IL-10
280 significantly decreases AM responses (**Fig. 5D**). Overall, these results indicate that an absence
281 of IL-10 production by AMs results in their unique sensitivity to IFN β and that the enhancement
282 of AM TNF and IL-6 innate responses to LPS by IFN β is independent of changes in TLR4
283 surface expression.

284

285 **DISCUSSION**

286 AMs serve a critical role as airway sentinels, yet our understanding of AM innate sensing
287 is relatively limited compared to other macrophage subsets, especially in evaluation of direct
288 sensing. In the context of acute lung injury models^{35–38}, murine and human AMs produce pro-
289 inflammatory cytokine and chemokines *in vivo* in response to LPS. However, those studies do
290 not assess direct AM cell-intrinsic sensing, as LPS is delivered via the intranasal route to

291 multiple cell types in the airway all at once. This leads to a synchronized innate response across
292 many responding cell types that affect the AM response and is likely very different from the early
293 stages of respiratory infections where there are limited numbers of bacteria. This is the case for
294 an infection such as Mtb. At the early stages of Mtb infection, AMs are the first cells in the lung
295 to become infected, respond in an isolated manner, and fail to generate an inflammatory
296 response within the first days of infection^{17,18}. For any lower-respiratory tract infection with a
297 limited initial dose, we predict that AM sensing would have an outsized role on the earliest
298 innate response.

299 Here, we evaluate AM LPS-specific innate sensing both *in vivo* and *ex vivo* using bead-
300 conjugated and low-dose approaches that enable interrogation of AM direct sensing. We show
301 that AMs produce similar amounts of TNF and IL-6 as BMDMs in response to high
302 concentrations of soluble LPS. However, at lower LPS concentrations or when delivered on
303 coated beads, AMs generate significantly less TNF, IL-6, and Type I IFN signaling than BMDMs.
304 AMs express low levels of TLR4 on the surface yet contain substantial internal pools of TLR4.
305 Low surface TLR4 in AMs is associated with very low CD14 expression, a co-receptor known to
306 be required for efficient TLR4 trafficking¹⁹. Based on known roles of CD14 in other sensing
307 pathways, we predict that low CD14 expression may also impact AM's ability to sense other
308 PAMPs. For example, CD14 has been shown to be required for sensing of Mtb component
309 trehalose 6,6'-dimycolate (TDM) along with TLR2 and MARCO⁴⁰, and other TLR2 associated
310 mycobacterial lipoproteins⁴¹. CD14 is also known to contribute to the recognition of necrotic
311 cells⁴², several different types of LPS from gram-negative bacteria⁴³, flagellin⁴⁴, and *Legionella*
312 *pneumophila*⁴⁵. Further investigation into how CD14 expression levels impact AM-specific
313 pathogen sensing will shed light on whether CD14 expression is significantly impacting the early
314 pulmonary response to other respiratory pathogens.

315 In addition to a role for CD14, it is possible there are other mechanisms that also limit
316 TLR4 trafficking in AMs. One possibility is that AMs have a cell-intrinsic deficiency in one or
317 several components required for endosomal trafficking of TLR4; there are several potential
318 candidates based on previous literature. The GTPase Rab11a is required for recycling of TLR4;
319 minimal Rab11a expression leads to diminished surface expression of TLR4^{46,47}. GTPase Arf6
320 is also required for LPS internalization and trafficking of the adaptor TRAM to the endosome⁴⁸.
321 Additionally, TLR4 internalization requires dynamin⁴⁹. To determine the potential role for these
322 different proteins in regulating TLR4 surface expression, a more extensive screening of
323 GTPases and trafficking regulators is needed for AMs.

324 While interrogating AM responses to PAMPs, we observed that AMs do not produce IL-
325 10 in response to any of the stimuli tested. Our findings are supported by a previous study
326 which found that AMs did not produce IL-10 following LPS stimulation and it was independent of
327 calcium entry or intracellular cAMP levels⁵⁰. Additionally, another study found AMs produced no
328 IL-10 *in vivo* after i.p. LPS administration, and have minimal Maf expression by RNA-seq under
329 basal conditions³⁶. Here, we show that the absence of IL-10 production in AMs is due to
330 reduced expression of the transcription factor c-Maf. We demonstrate that exogenous
331 expression of c-Maf through lentiviral transduction leads to an increase in IL-10 production by
332 AMs. Interestingly, low expression of Maf-B and c-Maf are associated with self-renewal of
333 macrophages^{51,52}, and so we hypothesize that the lack of c-Maf expression we observe in AMs
334 likely enables enhanced proliferative capacity and renewal *in vivo*. A prior study found that Maf
335 expression is increased in AMs during aging and this correlates with a decrease in cell cycling
336 or proliferation⁵³. We predict that an increase in Maf expression might also explain why AMs
337 appear to acquire the ability to produce IL-10 during aging⁵⁴. In this way, c-Maf mediates a
338 trade-off in AMs between proliferative capacity and production of IL-10. While production of IL-
339 10 early during an infection response might be detrimental to mounting effective host immune

340 responses^{55,56}, IL-10 is critical during chronic disease and inflammation to prevent
341 immunopathology, including under conditions such as Acute Lung Injury (ALI)⁵⁷. Further
342 investigation is needed into the potential *in vivo* and context-dependent impacts of AM IL-10
343 production.

344 We demonstrate that one corollary of the absence of IL-10 production by AMs is their
345 unique response to Type I IFNs. Type I IFNs are critical for anti-viral immunity, but can be
346 detrimental for control of bacterial infections, including enhancing cell death and driving
347 immunopathology⁵⁸. We found that exogenous IFN β enhanced AM production of TNF and IL-6
348 in response to low-dose LPS. This is supported by a recent study demonstrating that
349 adenoviral-induced IFN β enhances AM and AM-like responses to LPS⁵⁹. IFN β did not appear to
350 directly enhance PRR or adaptor expression and it is still unknown what mediates this
351 enhanced response. It is also unknown how long this IFN-mediated “boost” lasts in AMs and
352 whether IFN β may generate long-term transcriptional and/or epigenetic remodeling in AMs.

353 We found that IFN γ also enhances AM IL-6 and TNF responses to LPS in both AMs and
354 BMDMs. IFN γ is commonly used to polarize macrophages to an “M1” inflammatory phenotype⁶⁰
355 and is associated with host control in both bacterial and viral lung infections. Recent studies
356 have shown that T cell-derived IFN γ is important for induction of MHC II expression in AMs,
357 remodeling of AM responses after viral infection^{61,62} and for enhancing myeloid progenitors from
358 the bone marrow after BCG vaccination⁶³. Our data shows that IFN γ enhances an inflammatory
359 response in AMs when coupled with LPS stimulation, but further investigation is warranted to
360 assess the mechanism and the durability of its effects. Future studies to examine the direct
361 effects of Type I and Type II IFNs in AMs are ongoing. Taken together, our results show that
362 AMs have a reduced cell-intrinsic sensing capacity for LPS but are highly sensitive to external
363 IFN signals that allow AMs to mount a more pro-inflammatory response.

364

365 **Limitations of the study**

366 By evaluating direct innate sensing, our study uncovers unique cellular mechanisms of
367 AMs that make their innate responses distinct from that of other macrophages. Differences in
368 CD14 expression, TLR4 trafficking, IL-10 production, and sensitivity to Type I IFNs have
369 implications for direct LPS sensing by AMs as well as other innate pathways. However, there
370 are a few limitations of this work that require further investigation. First, we chose to focus on
371 responses to a small selection of PAMPs and on TNF, IL-6, and Type I IFN read-outs of innate
372 signaling, because they represent downstream events for some of the most dominant
373 intracellular pathways. There are many other disease-relevant PAMPs and PRR pathways
374 worth investigating. Second, due to the difficulty in measuring IFN β protein levels, we were only
375 able to assess differences in AM versus BMDM gene expression for *Ifnb1* and *Ifit3* (IFN β protein
376 detection using anti-IFN- β ELISA reagents and a reporter cell line were unsuccessful). Third,
377 due to our desire to examine direct sensing by AMs and cell-intrinsic regulation of these
378 pathways, we opted to perform the majority of our studies *in vitro*, rather than *in vivo*,
379 acknowledging the known changes that occur in macrophages following their removal from their
380 microenvironment^{31,64–66}. However, we are confident in our *in vitro* approaches to interrogate
381 these pathways, given that the AM responses to LPS sensing, c-Maf expression, and IL-10
382 production were detected both *in vivo* and *in vitro*. In the future, we plan to follow up on many of
383 these pathways including CD14 expression, TLR4 trafficking, and IL-10 production to assess
384 their *in vivo* relevance during disease. Fourth, as mentioned above, we predict that both Type I
385 and Type II IFN exposures regulate macrophage responses beyond simply IL-10 production and
386 enhancement of IL-6 and TNF production. There are many additional mechanistic studies to
387 perform to fully understand their effects during health and disease.

388

389 **STAR METHODS**

390 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

391 **Mice**

392 C57BL/6J mice (000664) were purchased from the Jackson Laboratory (Bar Harbor, ME) and
393 bred and maintained in specific pathogen-free conditions under a controlled day-night cycle and
394 given food and water *ad libitum*. 6- to 12-week old male and female mice were used for all
395 experiments except for RNA-Seq which used only female mice. Animal studies for
396 transcriptional analysis of AM and BMDM responses to LPS-coated bead were performed at
397 Seattle Children's Research Institute in compliance with and approval by the Seattle Children's
398 Research Institute's Institutional Animal Care and Use Committee. All other animal studies were
399 performed at University of Massachusetts Amherst in compliance with and approval by the
400 University of Massachusetts Amherst's Institutional Animal Care and Use Committee.

401

402 **Primary cells**

403 For mouse alveolar macrophage (AM) preparation, bronchoalveolar lavage was performed by
404 first exposing and puncturing the trachea of euthanized mice with Vannas Micro Scissors (VWR,
405 76457-352). 1 mL of cold PBS (gibco, 10010-049) was injected into the lungs with a 20-gauge
406 IV catheter (Braun, 4252543-02) with a 1 mL syringe (McKesson, 16-PS1C) and the lungs were
407 flushed a total of 4 times. For each wash, the PBS was collected into a conical tube over ice,
408 filtered (70 μ m, Falcon, 352350) then spun down and counted. Cells were plated at a density of
409 0.5 – 1 * 10⁵ cells per well in a 96-well plate, in RPMI (Millipore Sigma, 11875-119) with 10%
410 FBS (Biowest, S1620) with 1% L-glutamine (2 μ M, gibco, 25030-081) and 1% penicillin-
411 streptomycin (100 U/mL, gibco, 15140-122). AMs adhered overnight at 37°C with 5% CO₂
412 before experiments were conducted. Each experiment replicate included BAL pooled from 5-10
413 mice (~1.5 mice per well).

414 For bone-marrow derived macrophages (BMDM), bone marrow was isolated from murine
415 femurs by flushing the bone with RPMI. Cells were filtered, spun down, and plated on 15 cm
416 non-TC treated plates (VWR, 25384-326) and cultured for 6 days in RPMI with 10% FBS, 1% L-
417 glutamine, 1% penicillin-streptomycin, and 0.01% recombinant human M-CSF (0.05 µg/mL,
418 Peprotech, 300-25). For experiments using ELISA and RT-qPCR, cells were replated at the
419 same confluence as collected AMs in a 96-well plate. For other experiments including flow
420 cytometry or ELISA independent of AMs, cells were plated at 0.25 – 1 * 10⁶ cells per well in a
421 24-well or 12-well plate. After replating, BMDMs adhered overnight at 37°C, 5% CO₂ before
422 stimulating conditions were added.

423

424 **Cell culture**

425 293T cells (ATCC, CRL-3216) were maintained in Dulbecco modified essential medium
426 (DMEM) (gibco, 11965-092) containing 10% FBS, 1% penicillin/streptomycin, 1% L-glutamine,
427 1% HEPES (gibco, 15630-080), 1% sodium pyruvate (gibco, 11360-070), and 1% MEM amino
428 acid solution (gibco, 11130-051) at 37°C, 5% CO₂ in a humidified incubator.

429

430 **METHOD DETAILS**

431 **Generation of LPS Beads**

432 For RNA-sequencing experiments, Polysciences Fluoresbrite Carboxylate Microspheres 1.00
433 µm (YG) were incubated overnight with 100 µg/mL LPS (R595 S. Minnesota) in PBS or PBS
434 alone at 4 degrees. The next day, the beads were washed 10X in PBS. Each wash was
435 followed by centrifugation at 10,000 x g for 5 minutes. Beads were then resuspended in PBS.
436 For flow cytometry experiments, stock solution of Streptavidin Fluoresbrite® YG Microspheres
437 (1.0 µm, yellow-green fluorescent, Polysciences, 24161-1) were vortexed and 3 µL were mixed

438 with 1.5 µg of LPS-EB Biotin (InvivoGen, tlrl-lpsbiot) and incubated overnight at 4°C, covered.
439 The next day, 100 µL of sterile 1% BSA in PBS was added to the bead mixture, mixed, then
440 centrifuged at 10,000 x g for 5 min. The BSA PBS was carefully aspirated with a pipette and the
441 wash was repeated a total of three times. After the final wash, the beads were resuspended in 1
442 mL of 1% BSA in PBS.

443

444 **Bead aerosolization**

445 Beads generated were aerosolized using a LC Sprint® Reusable Nebulizer (PARI, 023F35)
446 attached to a mouse cage with a vacuum pump and air flow regulator. Beads were resuspended
447 in 4 mL of ddH₂O and delivered at 3 liters/minute for 20 minutes. Treated mice were rested for 4
448 hours (for RNA-sequencing) or 30 minutes (for 20 hour Brefeldin A incubation and flow
449 cytometry) prior to euthanasia.

450

451 **RNA-Seq and Analysis**

452 RNA isolation was performed using TRIzol (Invitrogen, 15596018), two sequential chloroform
453 extractions, Glycoblue carrier (Invitrogen, AM9515), isopropanol precipitation, and washes with
454 75% ethanol. RNA was quantified with the Bioanalyzer RNA 6000 Pico Kit (Agilent, 5067-1513).
455 cDNA libraries were constructed using the SMART-Seq v4 Ultra Low Input RNA Kit (TaKaRa,
456 634889) following the manufacturer's instructions. Libraries were amplified and then sequenced
457 on an Illumina NovaSeq 6000 (150bp paired-end). The read pairs were aligned to the mouse
458 genome (mm10) using the gsnap aligner⁶⁷. Concordantly mapping read pairs (~20 million /
459 sample) that aligned uniquely were assigned to exons using the 25iocond program and gene
460 definitions from Ensembl Mus_Musculus GRCm38.78 coding and non-coding genes. Genes
461 with low expression were filtered using the "filterByExpr" function in the edgeR package⁶⁸.

462 Differential expression was calculated using the “edgeR” package. Heat map visualizations
463 were generated in R using the ‘heatmap.2’ library.

464

465 **Gene Set Enrichment Analysis (GSEA)**

466 Input data for GSEA consisted of lists, ranked by -log(p-value), comparing RNAseq expression
467 measures of target samples and controls including directionality of fold-change. Mouse
468 orthologs of human Hallmark genes were defined using a list provided by Molecular Signatures
469 Database (MsigDB)⁶⁹. GSEA software was used to calculate enrichment of ranked lists in each
470 of the respective hallmark gene lists, as described previously⁷⁰. A nominal p-value for each ES
471 is calculated based on the null distribution of 1,000 random permutations. To correct for multiple
472 hypothesis testing, a normalized enrichment score (NES) is calculated that corrects the ES
473 based on the null distribution. A false-discovery rate (FDR) is calculated for each NES.

474

475 **Ex vivo bead addition with Brefeldin A**

476 After cells were isolated and let adhere overnight, beads were added at an optimized
477 concentration where 5-10% of cells were “Bead+” as identified by flow cytometry. For LPS
478 Beads, 2.5 μ L of bead suspension was resuspended in 1 mL of appropriate cell culture media,
479 and 100 μ L was deposited onto plated cells in a 96-well plate. Cells were concurrently given
480 100 μ L of Brefeldin A (1000X solution diluted to 2X, BioLegend, 420601) to arrest protein
481 secretion to measure cytokines via intracellular staining. Cells were stimulated with beads in the
482 presence of Brefeldin A for 20 hours prior to analysis.

483

484 **Quantitative reverse transcription PCR (RT-qPCR)**

485 Cells were plated at a density of 0.5 – 1 * 10⁵ cells per well in a 96-well plate, followed by
486 stimulation. RNA isolation was performed using TRIzol (Invitrogen, 15596018), two sequential

487 chloroform extractions, Glycoblue carrier (Invitrogen, AM9515), isopropanol precipitation, and
488 washes with 75% ethanol. RNA was quantified with the Biodrop Duo (Biochrom). Equivalent
489 amounts of RNA (1 μ g per sample) were converted to complementary DNA (cDNA) and
490 amplified using RNA to cDNA EcoDry Premix (TaKaRa, 639543) per the manufacturer's
491 instructions. RT-qPCR was performed using TaqMan primer probes (IDT) with TaqMan Fast
492 Universal PCR Master Mix (Applied Biosystems, 4352046) using a BioRad CFX Opus 96 RT-
493 qPCR detection system. Data was normalized to relative *Gapdh* expression in individual
494 samples.

495 **Enzyme-linked immunosorbent assay (ELISA)**

496 Cells were plated either at a density of 0.5 – 1 * 10⁵ cells per well in a 96-well plate for
497 experiments involving both AMs and BMDMs, or 0.25 – 1 * 10⁶ cells per well in a 24-well or 12-
498 well plate for experiments with BMDMs alone. After 20 hours of stimulation, supernatant was
499 removed from individual wells and stored at -20°C overnight. Murine IL-6 (DY406), TNF
500 (DY410), and IL-10 (DY417) DuoSet enzyme-linked immunosorbent assays (ELISAs) were
501 performed per manufacturer's instructions (R&D Systems).

502

503 **Flow cytometry intracellular staining**

504 Cells were collected into sterile tubes and subsequently stained with Fc block (Biolegend,
505 101320), Live/Dead stain (Zombie Violet Fixable Viability Kit, Biolegend) and characteristic cell
506 surface markers (AMs, Siglec-F (anti-mouse CD170, clone S17007L, Biolegend), CD11c (clone
507 N148, Biolegend); BMDMs F4/80 (clone BM8, Biolegend)). Cells were resuspended in 200 μ L of
508 Cyto-Fast™ Fix/Perm Buffer (Biolegend, 426803) and incubated for 20 minutes at room
509 temperature and washed with Cyto-Fast™ Perm Wash (Biolegend, 426803). TNF and IL-6
510 antibodies were diluted 1:100 in Cyto-Fast™ Perm Wash and added to the cells for 20 minutes.
511 Cells were then washed and fixed with 2% PFA (Electron Microscopy Sciences, 15713-S) prior

512 to acquisition. For phospho-STAT1 staining (clone A15158B, Biolegend), cells were fixed in 4%
513 PFA for 15 minutes, washed with FACS buffer (PBS, 1% BSA, 0.01% NaN_3), then resuspended
514 in 200 μL of True-Phos™ Perm Buffer (Biolegend, 425401). Cells were incubated for 1 hour at -
515 20°C. Cells were then washed with FACS buffer and stained with phospho-STAT1 antibody for
516 30 minutes at room temperature. Cells were washed once more and resuspended in 200 μL of
517 FACS buffer prior to acquisition. For c-Maf staining, cells were surface stained and
518 resuspended in Foxp3 Fixation/Permeabilization solution (Invitrogen, 00-5523-00) and
519 incubated at 4°C for 30 minutes. Cells were washed twice in Permeabilization Buffer (Invitrogen,
520 00-5523-00) by centrifuging samples at 400 $\times g$ for 5 minutes at room temperature. Cells were
521 resuspended in 100 μL of Permeabilization Buffer and 0.5 μg of c-Maf antibody (clone sym0F1,
522 Invitrogen) was added. After 30 minutes, cells were washed twice and resuspended in FACS
523 buffer for acquisition.

524

525 **Maf Lentivirus Generation**

526 Maf (pLenti-GIII-CMV) and Empty (pLenti-III-Blank) lentiviral vectors (ABM) were transformed
527 into ProClone Competent DH5 α cells (ABM, E003) by heat-shock. Cells were recovered for 1
528 hour in 150 μL of sterile LB broth in an incubated shaker set at 37°C, 240 rpm before spreading
529 the entire volume on LB agar plates containing kanamycin (Sigma-Aldrich, L0543). Single
530 colonies were inoculated in 4 mL of LB broth (Fisher, 244620) + kanamycin (Sigma Aldrich,
531 K0254) and incubated for 16 hours. 1 mL of the resulting culture was then added to 99 mL of LB
532 broth + kanamycin and incubated overnight. The overnight bacterial culture was harvested and
533 DNA was eluted via MAXI-prep (QIAGEN, 12162). 293T cells were plated the day before
534 lentivirus packaging on plates coated with poly-L-lysine (Sigma-Aldrich, A-005-C) with 10 million
535 cells per 15 cm TC-treated plate. Lentivirus was packaged using CMV-VSV-G envelope plasmid
536 (Addgene, 8454) and psPax2 packaging plasmid (Addgene, 12260) alongside either Maf or

537 Empty cassettes with polyethylenimine (Polysciences, 24765-100). Transfected cells were
538 incubated overnight and washed the next day. Two days after the wash, lentivirus was isolated
539 and purified by ultracentrifugation and resuspended in PBS and frozen at -80°C prior to use.

540

541 **Human Lung Data Acquisition and Analysis from CZ CELLxGENE: Discover**

542 Publicly-available single cell RNA data from CZ CELLxGENE Discover was accessed via
543 Python (v3.11.7) using the cellxgene_census module. Census data was filtered to include cell
544 types “alveolar macrophage”, “classical monocyte”, and “lung macrophage” with a disease state
545 of “normal” in lung tissue in *Homo sapiens*, and the genes *Cd14* (ENSG00000170458), *Il10*
546 (ENSG00000136634), *Maf* (ENSG00000178573), and *Marco* (ENSG00000019169) as a
547 positive control for AMs. The data slice was stored as an AnnData object⁷¹ and saved as an
548 H5AD file. The data slice included 248,180 AMs, 99,390 classical monocytes, and 1,864 lung
549 macrophages from the Census version 2023-12-15. A stacked violin plot was generated to
550 visualize gene expression across selected cell types. The analysis involved normalization to
551 counts per million (CPM) and log transformation of the data, the violin plot was created using
552 SCANPY stacked_violin function⁷².

553

554 **Statistical analyses**

555 Data were analyzed for comparison of multiple comparisons between BMDMs and AMs by two-
556 way analysis of variance (ANOVA) (95% confidence interval) with Sidak’s multiple comparisons
557 test. For comparisons within one cell type, data were analyzed by one-way analysis of variance
558 (ANOVA) (95% confidence interval) with Sidak’s or Tukey’s multiple comparisons test, as
559 reported. Significance is denoted as: * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.
560 Statistical analysis and graphical representation of data were performed using either GraphPad
561 Prism v10.0 software or R.

562

563 **Acknowledgments:**

564 We thank the Animal Care Staff at University of Massachusetts Amherst and Seattle Children's
565 Research Institute. We thank Amy Burnside and the Flow Cytometry Core at the University of
566 Massachusetts Amherst. We thank members of the Rothchild and Pobezinsky labs for helpful
567 discussions.

568

569 **Funding:**

570 This work was supported by National Institute of Allergy and Infectious Disease of the National
571 Institute of Health under Award R21AI163809 (A.C.R.), U19AI135976 (A.A.), and
572 75N93019C00070 (A.C.R., A.A.). P.L. was supported by National Research Service Award T32
573 GM135096 from the National Institutes of Health. The funders had no role in study design, data
574 collection and analysis, decision to publish, or preparation of the manuscript.

575

576 **Author contributions:**

577 Conceptualization: PNL, ACR

578 Methodology: PNL, ACR, LKP, MMC, SD, DM, AD

579 Investigation: PNL, ACR, LKP, MMC, AT, DD, DM

580 Visualization: PNL, ACR

581 Data curation: PNL, ACR, AD

582 Formal analysis: PNL, ACR

583 Project administration: ACR

584 Funding acquisition: ACR, AA, AD

585 Supervision: ACR

586 Writing – original draft: PNL

587 Writing – review & editing: ACR, MMC, LKP, AD

588

589 **Competing interests:** Authors declare that they have no competing interests.

590

591 **Data and materials availability:** Raw and processed RNA-sequencing data can be accessed
592 from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
593 (GEO) database under accession number GSExxx (*Submission currently private*).

594

595 **MAIN FIGURE LEGENDS**

596 **Figure 1: Alveolar macrophages do not mount a pro-inflammatory response to LPS-
597 conjugated beads *in vivo* or *ex vivo*.** (A) Schematic representation of LPS-coated beads
598 delivered to mice by nebulization or to BMDMs. Uncoated beads resuspended in PBS (PBS
599 bead) delivered to controls. Cells were isolated and sorted into Bead+ or Bystander groups. (B)
600 Gene Set Enrichment Analysis of the top ten differentially expressed pathways between LPS_{Bead}
601 BMDMs and LPS_{Bead} AMs. (C) Scatter plot of log₂ fold change values for AM LPS_{Bead} and
602 BMDM LPS_{Bead} populations. Labeled genes are significantly up-regulated (FDR < 0.05, FC > 2)
603 in only the BMDM LPS_{Bead} population. (D) Schematic representation of AMs or BMDMs
604 stimulated with LPS-coated beads *ex vivo* and subsequently analyzed by flow cytometry for
605 intracellular TNF and IL-6. (E) Representative dot plots of the conditions for BMDMs and AMs.
606 (F) Intracellular Cytokine Staining of TNF and IL-6 for LPS_{bead}, PBS_{bead}, or untreated BMDMs
607 and AMs. Data are representative of 3 independent experiments (E) or compiled from 2
608 independent experiments (B, C) or 3 independent experiments (F). Technical replicates within
609 each experiment represented by unique shapes. ****P < 0.0001, ns not significant by two-way
610 ANOVA with Sidak's multiple comparison test.

611

612 **Figure 2: Alveolar macrophages have a high LPS-specific activation threshold.** (A) TNF
613 (*left*) and IL-6 (*right*) for AMs (pink, technical duplicate) and BMDMs (black, technical triplicate)
614 either untreated or stimulated with 0.1, 1, or 10 ng/mL of LPS for 20 hours (B) *Ifnb* and *Ifit3* gene
615 expression for 0 – 10 ng/mL LPS for BMDMs (black) and AMs (pink) after 4 hours. (C) phospho-
616 STAT1 intracellular staining MFI of BMDMs (black, technical triplicate) or AMs (pink, technical
617 duplicate) after 20 hours of LPS (1 ng/mL) or fresh media (untreated). Data are representative
618 of 3 independent experiments (A, C) or compiled from 3 independent experiments (B).
619 Technical replicates within each experiment represented by unique shapes. (A-C) *P<0.05,
620 ***P<0.001, ****P<0.0001, ns is not significant, Two-way ANOVA with Sidak's multiple
621 comparison test.

622

623 **Figure 3: Alveolar macrophages have low surface expression of TLR4 and CD14**
624 **compared to other cell types.** (A) Gene expression (\log_2 CPM) of AMs (pink) and BMDMs
625 (black) collected in Fig. 1A. (B) TLR4 MFI of AMs (pink, graphed independently to the right) and
626 BMDMs (black) after 0, 1, and 4 hours of LPS (1 ng/mL) stimulation *ex vivo*. (C) CD14 MFI
627 under the same conditions as (B). (D) Surface and internal TLR4 expression of BMDMs and
628 AMs after no treatment (blue), 1 hour (red) or 4 hours (orange) post-LPS stimulation (1 ng/mL).
629 Gates set based on cell-specific FMOs. (E) Internal TLR4 MFI for both BMDMs (black) and AMs
630 (pink). (F) Frequency of Q3⁺ (internal TLR4⁺) BMDMs and AMs. (G) Surface and internal CD14
631 expression of AMs and BMDMs before and after stimulation with 4 hr. LPS (1 ng/mL). Gates set
632 based on cell-specific FMOs. (H) Internal CD14 MFI for both BMDMs (black) and AMs (pink). (I)
633 Frequency of Q3⁺ (internal CD14⁺) BMDMs and AMs. Data representative of 3 independent
634 experiments (D, G) or compiled from 3 independent experiments (B, C, E, F, H, I). (A - I)
635 *P<0.05, ****P < 0.001, ns, not significant. Two-way ANOVA with Sidak's multiple comparison
636 test.

637

638 **Figure 4: Alveolar macrophages do not produce IL-10 in response to multiple stimuli due**
639 **to low c-Maf expression.** (A) IL-10 for AMs (pink) and BMDMs (black) untreated or stimulated
640 with 0.1, 1, or 10 ng/mL of LPS for 20 hours. (B) Expression of IL-10 promoter-associated genes
641 (\log_2 CPM) from bulk RNA-sequencing of untreated AMs (left) and BMDMs (right) after 4 hours
642 using data from Fig. 1A. *adj p-value < 0.01. (C) c-Maf MFI for BMDMs (black) or AMs (pink)
643 after LPS (10 ng/mL) stimulation or untreated. (D) *Maf* gene expression relative to *Gapdh* for
644 mexAMs treated with media (no polybrene (PB) no virus), PB only, Empty-lentivirus (LV), or
645 Maf-LV. (E) *Il10* gene expression relative to *Gapdh* for mexAMs under the same conditions for
646 (D). (F) *Il10* gene expression relative to *Gapdh* for mexAMs transduced with Empty or Maf LV
647 then stimulated with LPS (10 ng/mL) and rIFN β (100 ng/mL) for 4 hours. (G) IL-10 for mexAMs
648 transduced with Empty or Maf-LV then stimulated with LPS (10 ng/mL) and IFN β (100 ng/mL)
649 for 24 hours. Data compiled from 3 independent experiments (A, C-E) or 2 independent
650 experiments (F) or representative of 2 independent experiments (G). (A, C, I) *P<0.05,
651 **P<0.01, ****P<0.0001 by two-way ANOVA with Sidak's multiple comparison test. (F, G)
652 *P<0.05 by one-way ANOVA with Tukey's multiple comparisons test. (H) P-value reported by
653 Mann-Whitney test.

654

655 **Figure 5: IFN β enhances alveolar macrophage TNF and IL-6 response to low-dose LPS in**
656 **the absence of IL-10.** (A) TNF, IL-6, and IL-10 for BMDMs stimulated with LPS (1 ng/mL) with
657 0.01 – 100 ng/mL of rIFN β . Data shown are mean with SD. with values (B) TNF, IL-6, and IL-10
658 for AMs stimulated with LPS (1 ng/mL) with 1 - 100 ng/mL of rIFN β . (C) BMDMs stimulated with
659 LPS (1 ng/mL), rIFN β (10 ng/mL), anti-IL-10R (10 mg/mL), and/or isotype control (Rat IgG1k, 10
660 μ g/mL). (D) AMs stimulated with LPS (1 ng/mL), rIFN β (10 ng/mL), and/or rIL-10 (50 mg/mL) for
661 20 hours followed by ELISA for IL-6 (left) and TNF (right). Data are representative of 3

662 independent experiments (A-D). **P<0.01, ***P<0.001, ****P<0.0001, n.d. no data, ns not
663 significant. (A, B) One-way ANOVA with Sidak's multiple comparison test, compared to LPS
664 only condition. (C, D) One-way ANOVA with Tukey's multiple comparison test.

665

666 **SUPPLEMENTARY FIGURE LEGENDS**

667 **Figure S1: Gating strategy for ex vivo bead-treated cells and peritoneal macrophage bead**
668 **response.** A-B) Gating strategy for AMs (A) and BMDMs (B) for cell sorting and collection for
669 RNA-sequencing. C-D) Gating scheme for BMDMs (C) and AMs (D) treated ex vivo with LPS-
670 coated beads. E) Percent of Bead+ cells for AMs and BMDMs, including both PBS and LPS
671 Bead conditions. F) TNF and IL-6 ICS of peritoneal macrophages treated ex vivo with LPS
672 beads for 20 hours. Data is compiled from 3 independent experiments (E) or two independent
673 experiments (F). Technical replicates within each experiment represented by unique shapes.
674 **P < 0.01, ****P < 0.0001. One-way ANOVA with Tukey's multiple comparisons test.

675

676 **Figure S2: Alveolar macrophage pro-inflammatory response is PAMP and cell-specific.**
677 (A) TNF (left) and IL-6 (right) of BMDMs and AMs stimulated with Pam3Cys (0 - 1000 ng/mL) for
678 20 hours. (B) TNF (left) and IL-6 (right) of BMDMs and AMs stimulated with R848 (0 - 100
679 mg/mL) for 20 hours. (C) TNF (left) and IL-6 (right) of PMs stimulated with LPS (0 - 10 ng/mL)
680 for 20 hours. (D) TNF (left) and IL-6 (right) of PMs stimulated with Pam3Cys (0 - 1000 ng/mL)
681 for 20 hours. (E) RT-qPCR of *Ifnb* (left) and *Ifit3* (right) expression relative to Gapdh for 2'3'-
682 cGAMP (0-10 mg/mL) after 4 hours. AMs (pink), technical duplicate; BMDMs (black)/PMs
683 (purple), technical triplicate. Data representative of three independent experiments (A) or two
684 independent experiments (B-D). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Two-way
685 ANOVA with Sidak's multiple comparison test.

686

687 **Figure S3: Peritoneal macrophage expression of TLR4/CD14 and alveolar macrophage**
688 **and bone marrow derived macrophage expression of TLR2.** A) FMO staining controls for
689 TLR4 internal and surface and B) CD14 internal and surface staining of BMDMs (top) and AMs
690 (bottom) C) Surface TLR4 expression in PMs after 0, 1, or 4 hours of stimulation with LPS (1
691 ng/mL). D) CD14 MFI of PMs after 0, 1, or 4 hours of stimulation with LPS (1 ng/mL). E) TLR2
692 MFI of AMs and BMDMs. Data representative of 2 independent experiments (C-E). **P < 0.01,
693 ***P < 0.001. (C, D) One-way ANOVA with Tukey's multiple comparisons test, compared to
694 untreated. (E) One-way ANOVA with Tukey's multiple comparisons test.

695

696 **Figure S4: Macrophage IL-10 production and gene expression.** (A) IL-10 for AMs and
697 BMDMs after 20 hours of Pam3Cys (0 - 1000 ng/mL). (B) IL-10 for AMs and BMDMs after 20
698 hours of R848 (0 - 100 mg/mL). (C) IL-10 for AMs and BMDMs after 20 hours of CpG (0 - 10
699 mM). (D) c-Maf MFI in untreated mexAMs or after 1 ng/mL of LPS for 20 hours. (E) IL-10
700 measured by ELISA of mexAMs simulated with 0 - 10 ng/mL LPS for 20 hours. (F) Data
701 acquired from CZ CELLxGENE Discover from healthy human lung tissue. Data shown are raw
702 counts normalized to counts per million and log-transformed. (A-C, E) Data is representative of
703 two independent experiments. **P < 0.01, ***P < 0.001, ****P < 0.0001, Two-way ANOVA with
704 Sidak's multiple comparison test.

705

706 **Figure S5: Macrophage response to LPS and IFN γ stimulation, and TLR4 and c-Maf MFI**
707 **after LPS and IFN β stimulation.** (A) TNF, IL-6, and IL-10 for AMs stimulated with LPS (1
708 ng/mL) and/or rIFN γ (2 - 200 ng/mL) for 20 hours. (B) BMDMs under the same conditions and
709 readout as (A). (C) TLR4 MFI of AMs (pink, left) and BMDMs (black, right) untreated or

710 stimulated with LPS (1 ng/mL) and/or rIFN β (10 ng/mL) for 20 hours. (D) c-Maf MFI of AMs
711 (pink, left) and BMDMs (black, right) untreated or stimulated with LPS (1 ng/mL) and/or rIFN β
712 (10 ng/mL) for 20 hours. Data representative of two independent experiments *P<0.05, ***P <
713 0.001, ****P<0.0001, One-way ANOVA with Sidak's multiple comparison test.

714

715

716 **REFERENCES**

- 717 1. Yu, Y.-R.A., Hotten, D.F., Malakhau, Y., Volker, E., Ghio, A.J., Noble, P.W., Kraft, M.,
718 Hollingsworth, J.W., Gunn, M.D., and Tighe, R.M. (2016). Flow Cytometric Analysis of
719 Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. *Am. J. Respir.*
720 *Cell Mol. Biol.* 54, 13–24. <https://doi.org/10.1165/rcmb.2015-0146OC>.
- 721 2. Silver, R.F., Myers, A.J., Jarvela, J., Flynn, J., Rutledge, T., Bonfield, T., and Lin, P.L. (2016).
722 Diversity of Human and Macaque Airway Immune Cells at Baseline and during Tuberculosis
723 Infection. *Am. J. Respir. Cell Mol. Biol.* 55, 899–908. <https://doi.org/10.1165/rcmb.2016-0122OC>.
- 725 3. Westphalen, K., Gusarova, G.A., Islam, M.N., Subramanian, M., Cohen, T.S., Prince, A.S.,
726 and Bhattacharya, J. (2014). Sessile alveolar macrophages communicate with alveolar
727 epithelium to modulate immunity. *Nature* 506, 503–506. <https://doi.org/10.1038/nature12902>.
- 728 4. Neupane, A.S., Willson, M., Chojnacki, A.K., Vargas E Silva Castanheira, F., Morehouse, C.,
729 Carestia, A., Keller, A.E., Peiseler, M., DiGiandomenico, A., Kelly, M.M., et al. (2020).
730 Patrolling Alveolar Macrophages Conceal Bacteria from the Immune System to Maintain
731 Homeostasis. *Cell* 183, 110–125.e11. <https://doi.org/10.1016/j.cell.2020.08.020>.
- 732 5. Grant, R.A., Morales-Nebreda, L., Markov, N.S., Swaminathan, S., Querrey, M., Guzman,
733 E.R., Abbott, D.A., Donnelly, H.K., Donayre, A., Goldberg, I.A., et al. (2021). Circuits between
734 infected macrophages and T cells in SARS-CoV-2 pneumonia. *Nature* 590, 635–641.
735 <https://doi.org/10.1038/s41586-020-03148-w>.
- 736 6. Sefik, E., Qu, R., Junqueira, C., Kaffe, E., Mirza, H., Zhao, J., Brewer, J.R., Han, A., Steach,
737 H.R., Israelow, B., et al. (2022). Inflammasome activation in infected macrophages drives
738 COVID-19 pathology. *Nature* 606, 585–593. <https://doi.org/10.1038/s41586-022-04802-1>.
- 739 7. Goritzka, M., Makris, S., Kausar, F., Durant, L.R., Pereira, C., Kumagai, Y., Culley, F.J.,
740 Mack, M., Akira, S., and Johansson, C. (2015). Alveolar macrophage-derived type I
741 interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. *J.*
742 *Exp. Med.* 212, 699–714. <https://doi.org/10.1084/jem.20140825>.
- 743 8. Palani, S., Bansal, S., Verma, A.K., Bauer, C., Shao, S., Uddin, B., and Sun, K. (2022). Type
744 I IFN Signaling is Essential for Preventing IFN- γ Hyperproduction and Subsequent
745 Deterioration of Antibacterial Immunity during Post-Influenza Pneumococcal Infection. *J.*
746 *Immunol. Baltim. Md* 1950 209, 128–135. <https://doi.org/10.4049/jimmunol.2101135>.
- 747 9. Bansal, S., Yajjala, V.K., Bauer, C., and Sun, K. (2018). IL-1 Signaling Prevents Alveolar
748 Macrophage Depletion during Influenza and *Streptococcus pneumoniae* Coinfection. *J.*
749 *Immunol.* 200, 1425–1433. <https://doi.org/10.4049/jimmunol.1700210>.
- 750 10. Wang, J., Nikrad, M.P., Travanty, E.A., Zhou, B., Phang, T., Gao, B., Alford, T., Ito, Y.,
751 Nahreini, P., Hartshorn, K., et al. (2012). Innate Immune Response of Human Alveolar
752 Macrophages during Influenza A Infection. *PLOS ONE* 7, e29879.
753 <https://doi.org/10.1371/journal.pone.0029879>.
- 754 11. Peiró, T., Patel, D.F., Akthar, S., Gregory, L.G., Pyle, C.J., Harker, J.A., Birrell, M.A.,
755 Lloyd, C.M., and Snelgrove, R.J. (2018). Neutrophils drive alveolar macrophage IL-1 β

756 release during respiratory viral infection. *Thorax* 73, 546–556.
757 <https://doi.org/10.1136/thoraxjnl-2017-210010>.

758 12. Kumagai, Y., Takeuchi, O., Kato, H., Kumar, H., Matsui, K., Morii, E., Aozasa, K., Kawai,
759 T., and Akira, S. (2007). Alveolar Macrophages Are the Primary Interferon- α Producer in
760 Pulmonary Infection with RNA Viruses. *Immunity* 27, 240–252.
761 <https://doi.org/10.1016/j.immuni.2007.07.013>.

762 13. Raoust, E., Balloy, V., Garcia-Verdugo, I., Touqui, L., Ramphal, R., and Chignard, M.
763 (2009). *Pseudomonas aeruginosa* LPS or flagellin are sufficient to activate TLR-dependent
764 signaling in murine alveolar macrophages and airway epithelial cells. *PloS One* 4, e7259.
765 <https://doi.org/10.1371/journal.pone.0007259>.

766 14. Franchi, L., Stoolman, J., Kanneganti, T.-D., Verma, A., Ramphal, R., and Núñez, G.
767 (2007). Critical role for Ipaf in *Pseudomonas aeruginosa*-induced caspase-1 activation. *Eur.*
768 *J. Immunol.* 37, 3030–3039. <https://doi.org/10.1002/eji.200737532>.

769 15. Kooguchi, K., Hashimoto, S., Kobayashi, A., Kitamura, Y., Kudoh, I., Wiener-Kronish, J.,
770 and Sawa, T. (1998). Role of Alveolar Macrophages in Initiation and Regulation of
771 Inflammation in *Pseudomonas aeruginosa* Pneumonia. *Infect. Immun.* 66, 3164–3169.

772 16. Copenhaver, A.M., Casson, C.N., Nguyen, H.T., Duda, M.M., and Shin, S. (2015). IL-1R
773 signaling enables bystander cells to overcome bacterial blockade of host protein synthesis.
774 *Proc. Natl. Acad. Sci.* 112, 7557–7562. <https://doi.org/10.1073/pnas.1501289112>.

775 17. Cohen, S.B., Gern, B.H., Delahaye, J.L., Adams, K.N., Plumlee, C.R., Winkler, J.K.,
776 Sherman, D.R., Gerner, M.Y., and Urdahl, K.B. (2018). Alveolar Macrophages Provide an
777 Early *Mycobacterium tuberculosis* Niche and Initiate Dissemination. *Cell Host Microbe* 24,
778 439–446.e4. <https://doi.org/10.1016/j.chom.2018.08.001>.

779 18. Rothchild, A.C., Olson, G.S., Nemeth, J., Amon, L.M., Mai, D., Gold, E.S., Diercks, A.H.,
780 and Aderem, A. (2019). Alveolar macrophages generate a noncanonical NRF2-driven
781 transcriptional response to *Mycobacterium tuberculosis* in vivo. *Sci. Immunol.* 4, eaaw6693.
782 <https://doi.org/10.1126/sciimmunol.aaw6693>.

783 19. Zanoni, I., Ostuni, R., Marek, L.R., Barresi, S., Barbalat, R., Barton, G.M., Granucci, F.,
784 and Kagan, J.C. (2011). CD14 controls the LPS-induced endocytosis of Toll-like receptor 4.
785 *Cell* 147, 868–880. <https://doi.org/10.1016/j.cell.2011.09.051>.

786 20. Kagan, J.C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. (2008). TRAM
787 couples endocytosis of Toll-like receptor 4 to the induction of interferon- β . *Nat. Immunol.* 9,
788 361–368. <https://doi.org/10.1038/ni1569>.

789 21. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O.,
790 Sugiyama, M., Okabe, M., Takeda, K., et al. (2003). Role of adaptor TRIF in the MyD88-
791 independent toll-like receptor signaling pathway. *Science* 301, 640–643.
792 <https://doi.org/10.1126/science.1087262>.

793 22. Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M., Kalis, C.,
794 Keck, S., Galanos, C., et al. (2005). CD14 is required for MyD88-independent LPS signaling.
795 *Nat. Immunol.* 6, 565–570. <https://doi.org/10.1038/ni1207>.

796 23. Gangloff, S.C., Hijiya, N., Haziot, A., and Goyert, S.M. (1999). Lipopolysaccharide
797 structure influences the macrophage response via CD14-independent and CD14-dependent
798 pathways. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 28, 491–496.
799 <https://doi.org/10.1086/515176>.

800 24. Haziot, A., Ferrero, E., Köntgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C.L.,
801 and Goyert, S.M. (1996). Resistance to Endotoxin Shock and Reduced Dissemination of
802 Gram-Negative Bacteria in CD14-Deficient Mice. *Immunity* 4, 407–414.
803 [https://doi.org/10.1016/S1074-7613\(00\)80254-X](https://doi.org/10.1016/S1074-7613(00)80254-X).

804 25. Xue, Q., Lu, Y., Eisele, M.R., Sulistijo, E.S., Khan, N., Fan, R., and Miller-Jensen, K.
805 (2015). Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in
806 coordinating macrophage responses to TLR4 stimulation. *Sci. Signal.* 8, ra59–ra59.
807 <https://doi.org/10.1126/scisignal.aaa2155>.

808 26. Alexander, A.F., Kelsey, I., Forbes, H., and Miller-Jensen, K. (2021). Single-cell
809 secretion analysis reveals a dual role for IL-10 in restraining and resolving the TLR4-induced
810 inflammatory response. *Cell Rep.* 36. <https://doi.org/10.1016/j.celrep.2021.109728>.

811 27. Saraiva, M., and O'Garra, A. (2010). The regulation of IL-10 production by immune cells.
812 *Nat. Rev. Immunol.* 10, 170–181. <https://doi.org/10.1038/nri2711>.

813 28. Boonstra, A., Rajsbaum, R., Holman, M., Marques, R., Asselin-Paturel, C., Pereira, J.P.,
814 Bates, E.E.M., Akira, S., Vieira, P., Liu, Y.-J., et al. (2006). Macrophages and Myeloid
815 Dendritic Cells, but Not Plasmacytoid Dendritic Cells, Produce IL-10 in Response to MyD88-
816 and TRIF-Dependent TLR Signals, and TLR-Independent Signals1. *J. Immunol.* 177, 7551–
817 7558. <https://doi.org/10.4049/jimmunol.177.11.7551>.

818 29. Chang, E.Y., Guo, B., Doyle, S.E., and Cheng, G. (2007). Cutting Edge: Involvement of
819 the Type I IFN Production and Signaling Pathway in Lipopolysaccharide-Induced IL-10
820 Production1. *J. Immunol.* 178, 6705–6709. <https://doi.org/10.4049/jimmunol.178.11.6705>.

821 30. Gorki, A.-D., Symmank, D., Zahalka, S., Lakovits, K., Hladik, A., Langer, B., Maurer, B.,
822 Sexl, V., Kain, R., and Knapp, S. (2022). Murine Ex Vivo Cultured Alveolar Macrophages
823 Provide a Novel Tool to Study Tissue-Resident Macrophage Behavior and Function. *Am. J.
824 Respir. Cell Mol. Biol.* 66, 64–75. <https://doi.org/10.1165/rcmb.2021-0190OC>.

825 31. Subramanian, S., Busch, C.J.-L., Molawi, K., Geirsdottir, L., Maurizio, J., Vargas Aguilar,
826 S., Belahbib, H., Gimenez, G., Yuda, R.A.A., Burkon, M., et al. (2022). Long-term culture-
827 expanded alveolar macrophages restore their full epigenetic identity after transfer *in vivo*.
828 *Nat. Immunol.* 23, 458–468. <https://doi.org/10.1038/s41590-022-01146-w>.

829 32. CZI Single-Cell Biology, Abdulla, S., Aevermann, B., Assis, P., Badajoz, S., Bell, S.M.,
830 Bezzi, E., Cakir, B., Chaffer, J., Chambers, S., et al. (2023). CZ CELLxGENE Discover: A
831 single-cell data platform for scalable exploration, analysis and modeling of aggregated data.
832 Preprint at bioRxiv, <https://doi.org/10.1101/2023.10.30.563174>
833 <https://doi.org/10.1101/2023.10.30.563174>.

834 33. Kang, K., Bachu, M., Park, S.H., Kang, K., Bae, S., Park-Min, K.-H., and Ivashkiv, L.B.
835 (2019). IFN- γ selectively suppresses a subset of TLR4-activated genes and enhancers to

836 potentiate macrophage activation. *Nat. Commun.* **10**, 3320. <https://doi.org/10.1038/s41467-019-11147-3>.

838 34. Held, T.K., Weihua, X., Yuan, L., Kalvakolanu, D.V., and Cross, A.S. (1999). Gamma
839 Interferon Augments Macrophage Activation by Lipopolysaccharide by Two Distinct
840 Mechanisms, at the Signal Transduction Level and via an Autocrine Mechanism Involving
841 Tumor Necrosis Factor Alpha and Interleukin-1. *Infect. Immun.* **67**, 206–212.

842 35. Bosisio, D., Polentarutti, N., Sironi, M., Bernasconi, S., Miyake, K., Webb, G.R., Martin,
843 M.U., Mantovani, A., and Muzio, M. (2002). Stimulation of toll-like receptor 4 expression in
844 human mononuclear phagocytes by interferon- γ : a molecular basis for priming and synergism
845 with bacterial lipopolysaccharide. *Blood* **99**, 3427–3431.
846 <https://doi.org/10.1182/blood.V99.9.3427>.

847 36. Sajti, E., Link, V.M., Ouyang, Z., Spann, N.J., Westin, E., Romanoski, C.E., Fonseca,
848 G.J., Prince, L.S., and Glass, C.K. (2020). Transcriptomic and epigenetic mechanisms
849 underlying myeloid diversity in the lung. *Nat. Immunol.* **21**, 221–231.
850 <https://doi.org/10.1038/s41590-019-0582-z>.

851 37. Pinilla-Vera, M., Xiong, Z., Zhao, Y., Zhao, J., Donahoe, M.P., Barge, S., Horne, W.T.,
852 Kolls, J.K., McVerry, B.J., Birukova, A., et al. (2016). Full Spectrum of LPS Activation in
853 Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. *PloS One*
854 **11**, e0159329. <https://doi.org/10.1371/journal.pone.0159329>.

855 38. Mishra, R.K., Potteti, H.R., Tamatam, C.R., Elangovan, I., and Reddy, S.P. (2016). c-Jun
856 Is Required for Nuclear Factor- κ B-Dependent, LPS-Stimulated Fos-Related Antigen-1
857 Transcription in Alveolar Macrophages. *Am. J. Respir. Cell Mol. Biol.* **55**, 667–674.
858 <https://doi.org/10.1165/rcmb.2016-0028OC>.

859 39. Reynier, F., de Vos, A.F., Hoogerwerf, J.J., Bresser, P., van der Zee, J.S., Payne, M.,
860 Pachot, A., Mougin, B., and van der Poll, T. (2012). Gene expression profiles in alveolar
861 macrophages induced by lipopolysaccharide in humans. *Mol. Med. Camb. Mass* **18**, 1303–
862 1311. <https://doi.org/10.2119/molmed.2012.00230>.

863 40. Bowdish, D.M.E., Sakamoto, K., Kim, M.-J., Kroos, M., Mukhopadhyay, S., Leifer, C.A.,
864 Tryggvason, K., Gordon, S., and Russell, D.G. (2009). MARCO, TLR2, and CD14 are
865 required for macrophage cytokine responses to mycobacterial trehalose dimycolate and
866 Mycobacterium tuberculosis. *PLoS Pathog.* **5**, e1000474.
867 <https://doi.org/10.1371/journal.ppat.1000474>.

868 41. Drage, M.G., Pecora, N.D., Hise, A.G., Febbraio, M., Silverstein, R.L., Golenbock, D.T.,
869 Boom, W.H., and Harding, C.V. (2009). TLR2 and its co-receptors determine responses of
870 macrophages and dendritic cells to lipoproteins of *Mycobacterium tuberculosis*. *Cell.*
871 *Immunol.* **258**, 29–37. <https://doi.org/10.1016/j.cellimm.2009.03.008>.

872 42. Chun, K.-H., and Seong, S.-Y. (2010). CD14 but not MD2 transmit signals from DAMP.
873 *Int. Immunopharmacol.* **10**, 98–106. <https://doi.org/10.1016/j.intimp.2009.10.002>.

874 43. Berenger, B.M., Hamill, J., Stack, D., Montgomery, E., Huston, S.M., Timm-McCann, M.,
875 Epelman, S., and Mody, C.H. (2011). Membrane CD14, but not soluble CD14, is used by

876 exoenzyme S from *P. aeruginosa* to signal proinflammatory cytokine production. *J. Leukoc. Biol.* 90, 189–198. <https://doi.org/10.1189/jlb.0510265>.

878 44. Elson, G., Dunn-Siegrist, I., Daubeuf, B., and Pugin, J. (2006). Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. *Blood* 109, 1574–1583. <https://doi.org/10.1182/blood-2006-06-032961>.

881 45. Grigoryeva, L.S., and Cianciotto, N.P. (2021). Human macrophages utilize a wide range of pathogen recognition receptors to recognize *Legionella pneumophila*, including Toll-Like Receptor 4 engaging *Legionella* lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. *PLOS Pathog.* 17, e1009781. <https://doi.org/10.1371/journal.ppat.1009781>.

885 46. Husebye, H., Aune, M.H., Stenvik, J., Samstad, E., Skjeldal, F., Halaas, Ø., Nilsen, N.J., Stenmark, H., Latz, E., Lien, E., et al. (2010). The Rab11a GTPase Controls Toll-like Receptor 4-Induced Activation of Interferon Regulatory Factor-3 on Phagosomes. *Immunity* 33, 583–596. <https://doi.org/10.1016/j.immuni.2010.09.010>.

889 47. Kagan, J.C. (2010). Recycling Endosomes and TLR Signaling— The Rab11 GTPase Leads the Way. *Immunity* 33, 578–580. <https://doi.org/10.1016/j.immuni.2010.10.003>.

891 48. Van Acker, T., Eyckerman, S., Vande Walle, L., Gerlo, S., Goethals, M., Lamkanfi, M., Bovijn, C., Tavernier, J., and Peelman, F. (2014). The small GTPase Arf6 is essential for the Tram/Trif pathway in TLR4 signaling. *J. Biol. Chem.* 289, 1364–1376. <https://doi.org/10.1074/jbc.m113.499194>.

895 49. Wang, Y., Yang, Y., Liu, X., Wang, N., Cao, H., Lu, Y., Zhou, H., and Zheng, J. (2012). Inhibition of clathrin/dynamin-dependent internalization interferes with LPS-mediated TRAM–TRIF-dependent signaling pathway. *Cell. Immunol.* 274, 121–129. <https://doi.org/10.1016/j.cellimm.2011.12.007>.

899 50. Salez, L., Singer, M., Balloy, V., Crémillon, C., and Chignard, M. (2000). Lack of IL-10 synthesis by murine alveolar macrophages upon lipopolysaccharide exposure. Comparison with peritoneal macrophages. *J. Leukoc. Biol.* 67, 545–552. <https://doi.org/10.1002/jlb.67.4.545>.

903 51. Soucie, E.L., Weng, Z., Geirsdóttir, L., Molawi, K., Maurizio, J., Fenouil, R., Mossadegh-Keller, N., Gimenez, G., VanHille, L., Beniazzza, M., et al. (2016). Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. *Science* 351, aad5510. <https://doi.org/10.1126/science.aad5510>.

907 52. Aziz, A., Soucie, E., Sarrazin, S., and Sieweke, M.H. (2009). MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. *Science* 326, 867–871. <https://doi.org/10.1126/science.1176056>.

910 53. Wong, C.K., Smith, C.A., Sakamoto, K., Kaminski, N., Koff, J.L., and Goldstein, D.R. (2017). Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice. *J. Immunol.* 199, 1060–1068. <https://doi.org/10.4049/jimmunol.1700397>.

913 54. Lafuse, W.P., Rajaram, M.V.S., Wu, Q., Moliva, J.I., Torrelles, J.B., Turner, J., and Schlesinger, L.S. (2019). Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to

916 Mycobacterium tuberculosis Infection. *J. Immunol.* 203, 2252–2264.
917 <https://doi.org/10.4049/jimmunol.1900495>.

918 55. Wong, E.A., Evans, S., Kraus, C.R., Engelman, K.D., Maiello, P., Flores, W.J., Cadena,
919 A.M., Klein, E., Thomas, K., White, A.G., et al. (2020). IL-10 Impairs Local Immune Response
920 in Lung Granulomas and Lymph Nodes during Early Mycobacterium tuberculosis Infection. *J. Immunol.* 204, 644–659. <https://doi.org/10.4049/jimmunol.1901211>.

922 56. Ferreira, C.M., Barbosa, A.M., Barreira-Silva, P., Silvestre, R., Cunha, C., Carvalho, A.,
923 Rodrigues, F., Correia-Neves, M., Castro, A.G., and Torrado, E. (2021). Early IL-10 promotes
924 vasculature-associated CD4⁺ T cells unable to control *Mycobacterium tuberculosis* infection.
925 *JCI Insight* 6. <https://doi.org/10.1172/jci.insight.150060>.

926 57. Roy, R.M., Allawzi, A., Burns, N., Sul, C., Rubio, V., Graham, J., Stenmark, K., Nozik,
927 E.S., Tuder, R.M., and Vohwinkel, C.U. (2023). Lactate produced by alveolar type II cells
928 suppresses inflammatory alveolar macrophages in acute lung injury. *FASEB J.* 37, e23316.
929 <https://doi.org/10.1096/fj.202301722R>.

930 58. Zhang, L., Jiang, X., Pfau, D., Ling, Y., and Nathan, C.F. (2020). Type I interferon
931 signaling mediates *Mycobacterium tuberculosis*–induced macrophage death. *J. Exp. Med.*
932 218, e20200887. <https://doi.org/10.1084/jem.20200887>.

933 59. Maler, M.D., Zwick, S., Kallfass, C., Engelhard, P., Shi, H., Hellig, L., Zhengyang, P.,
934 Hardt, A., Zissel, G., Ruzsics, Z., et al. (2024). Type I Interferon, Induced by Adenovirus or
935 Adenoviral Vector Infection, Regulates the Cytokine Response to Lipopolysaccharide in a
936 Macrophage Type-Specific Manner. *J. Innate Immun.* 16, 226–247.
937 <https://doi.org/10.1159/000538282>.

938 60. Huang, X., Li, Y., Fu, M., and Xin, H.-B. (2018). Polarizing Macrophages In Vitro. In
939 Macrophages: Methods and Protocols Methods in Molecular Biology., G. Rousselet, ed.
940 (Springer), pp. 119–126. https://doi.org/10.1007/978-1-4939-7837-3_12.

941 61. Tran, K.A., Pernet, E., Sadeghi, M., Downey, J., Chronopoulos, J., Lapshina, E., Tsai,
942 O., Kaufmann, E., Ding, J., and Divangahi, M. (2024). BCG immunization induces CX3CR1hi
943 effector memory T cells to provide cross-protection via IFN- γ -mediated trained immunity. *Nat. Immunol.*, 1–14. <https://doi.org/10.1038/s41590-023-01739-z>.

945 62. Yao, Y., Jeyanathan, M., Haddadi, S., Barra, N.G., Vaseghi-Shanjani, M., Damjanovic,
946 D., Lai, R., Afkhami, S., Chen, Y., Dvorkin-Gheva, A., et al. (2018). Induction of Autonomous
947 Memory Alveolar Macrophages Requires T Cell Help and Is Critical to Trained Immunity. *Cell*
948 175, 1634–1650.e17. <https://doi.org/10.1016/j.cell.2018.09.042>.

949 63. Kaufmann, E., Sanz, J., Dunn, J.L., Khan, N., Mendonça, L.E., Pacis, A., Tzelepis, F.,
950 Pernet, E., Dumaine, A., Grenier, J.-C., et al. (2018). BCG Educates Hematopoietic Stem
951 Cells to Generate Protective Innate Immunity against Tuberculosis. *Cell* 172, 176–190.e19.
952 <https://doi.org/10.1016/j.cell.2017.12.031>.

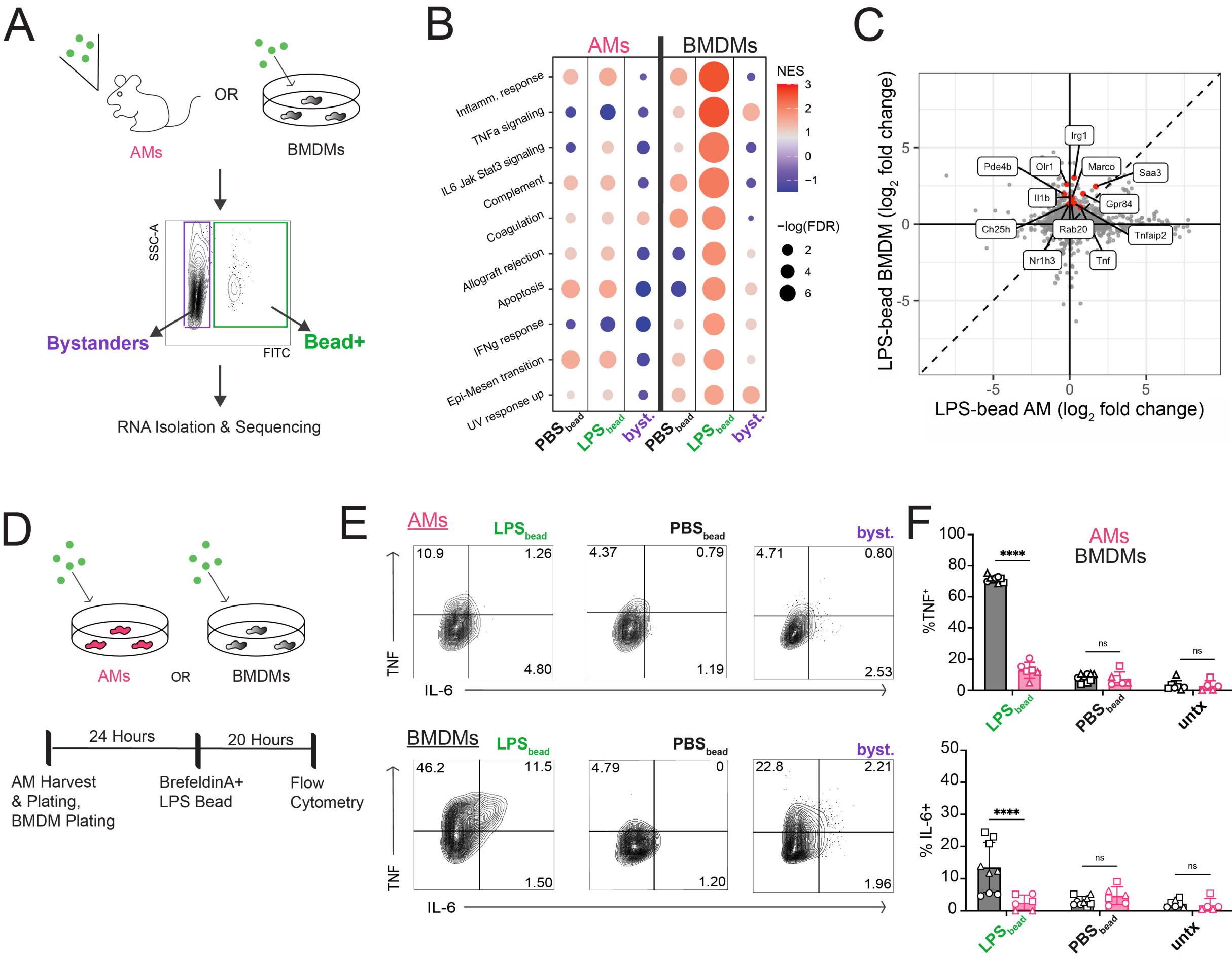
953 64. Gosselin, D., Link, V.M., Romanoski, C.E., Fonseca, G.J., Eichenfield, D.Z., Spann, N.J.,
954 Stender, J.D., Chun, H.B., Garner, H., Geissmann, F., et al. (2014). Environment drives
955 selection and function of enhancers controlling tissue-specific macrophage identities. *Cell*
956 159, 1327–1340. <https://doi.org/10.1016/j.cell.2014.11.023>.

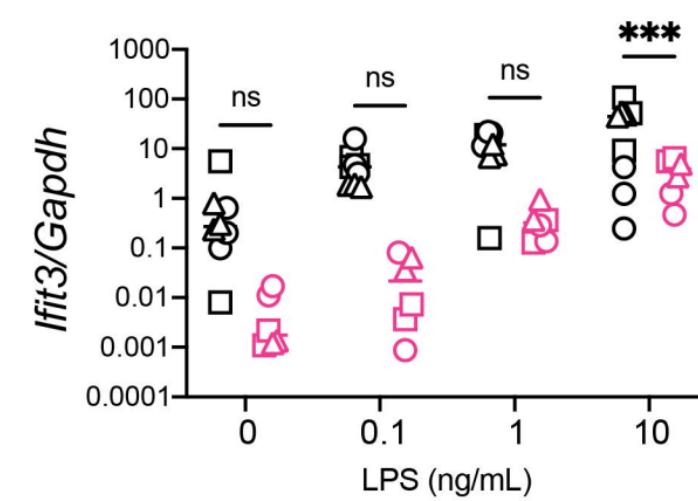
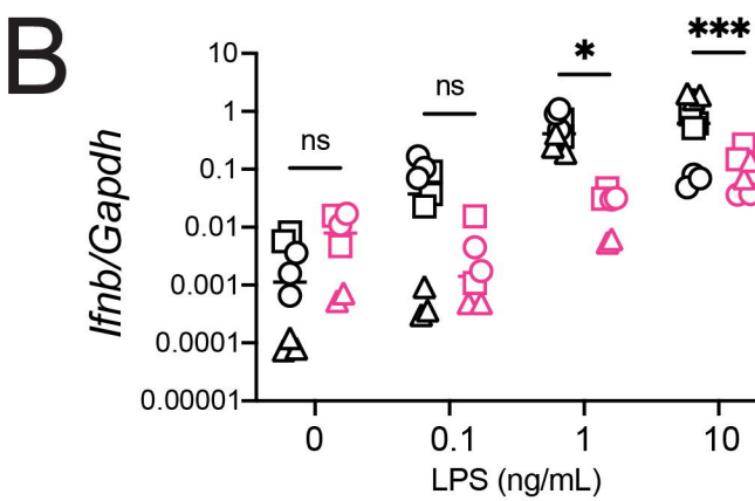
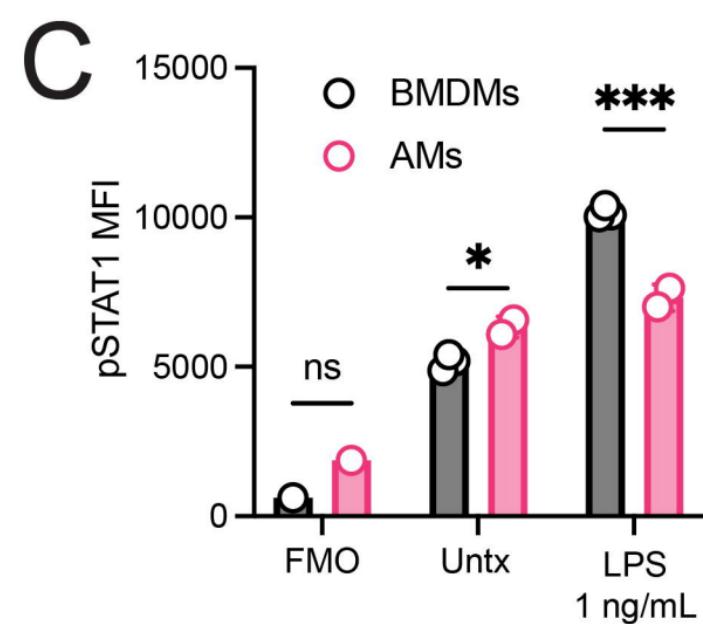
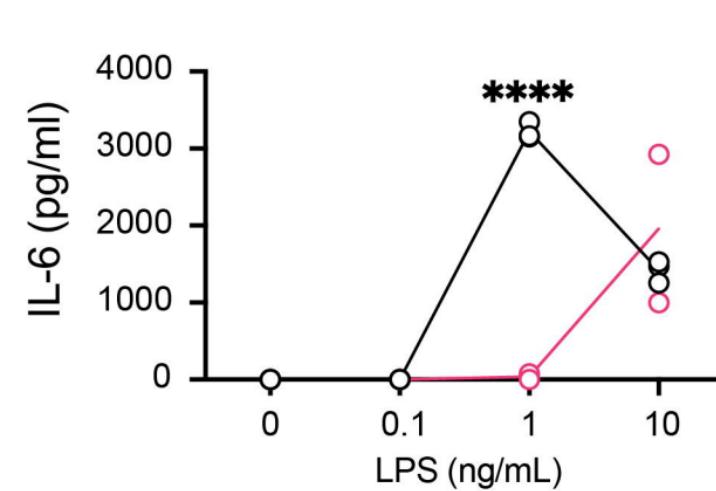
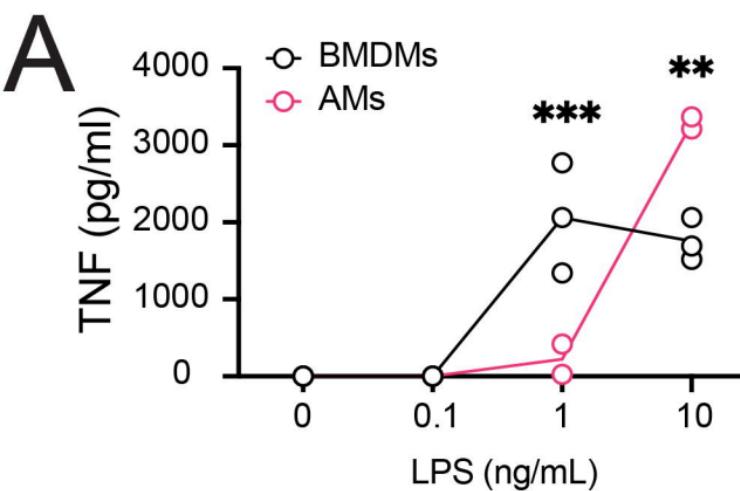
957 65. Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., Jung,
958 S., and Amit, I. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the
959 local microenvironment. *Cell* 159, 1312–1326. <https://doi.org/10.1016/j.cell.2014.11.018>.

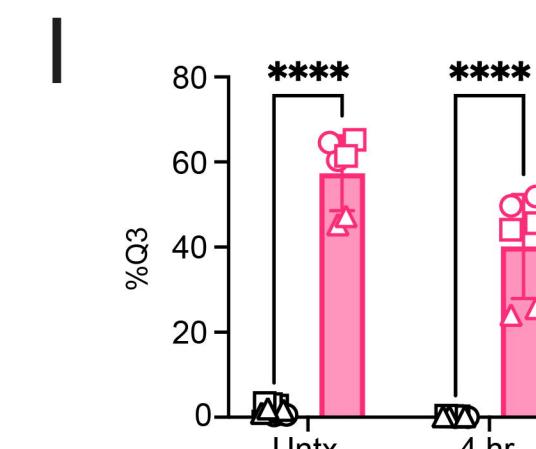
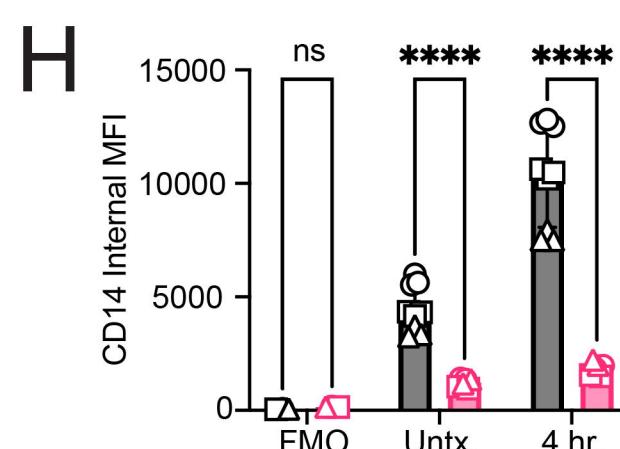
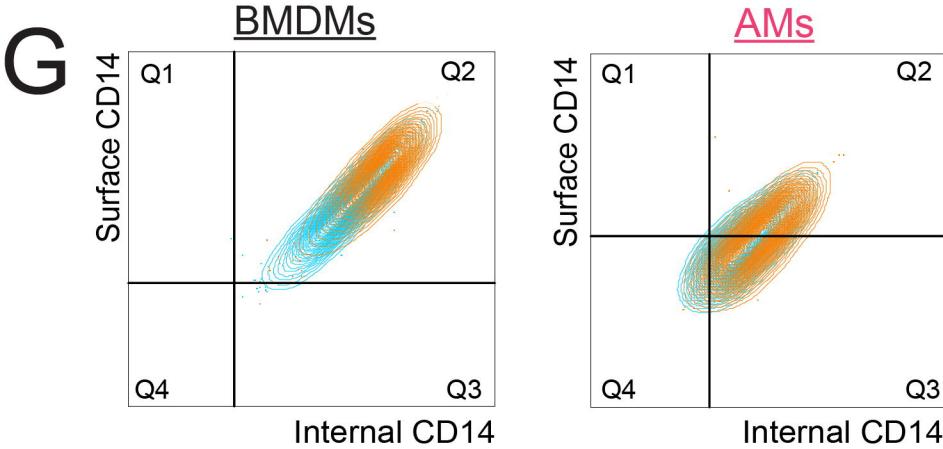
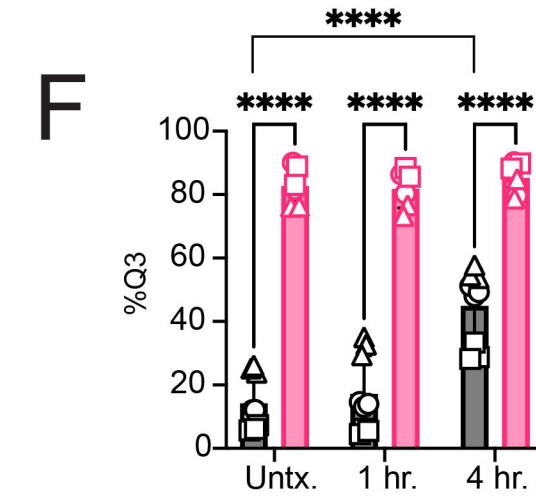
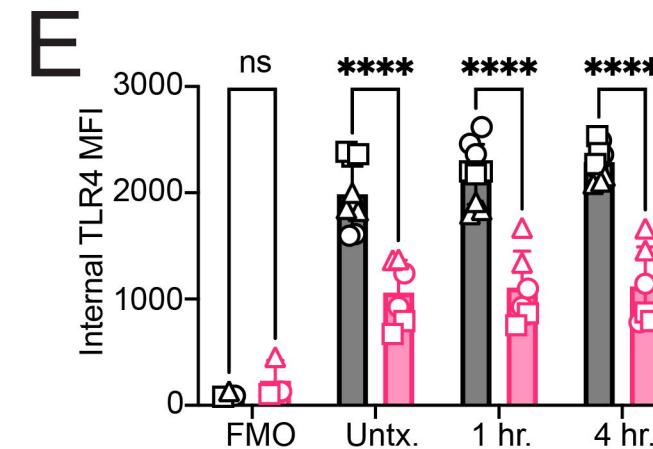
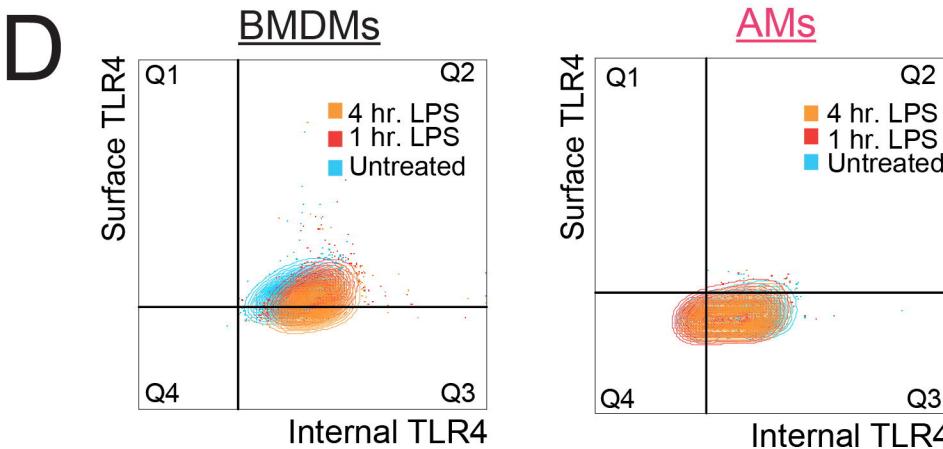
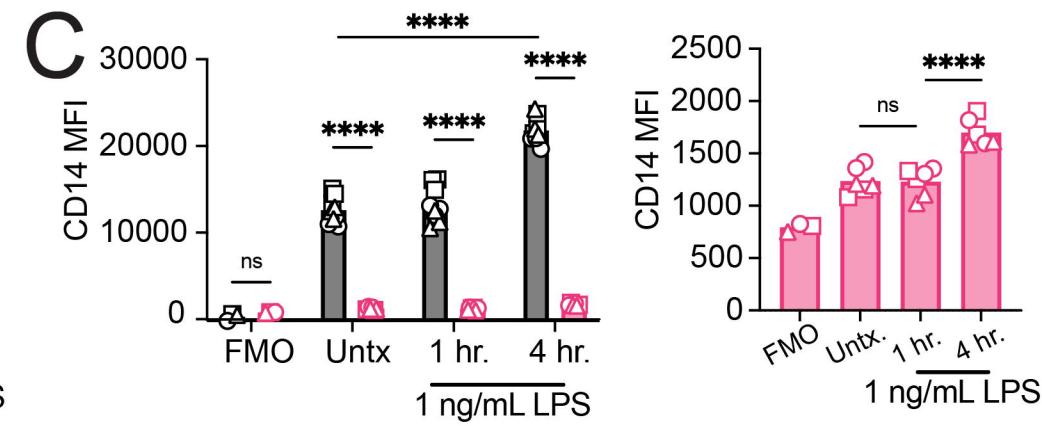
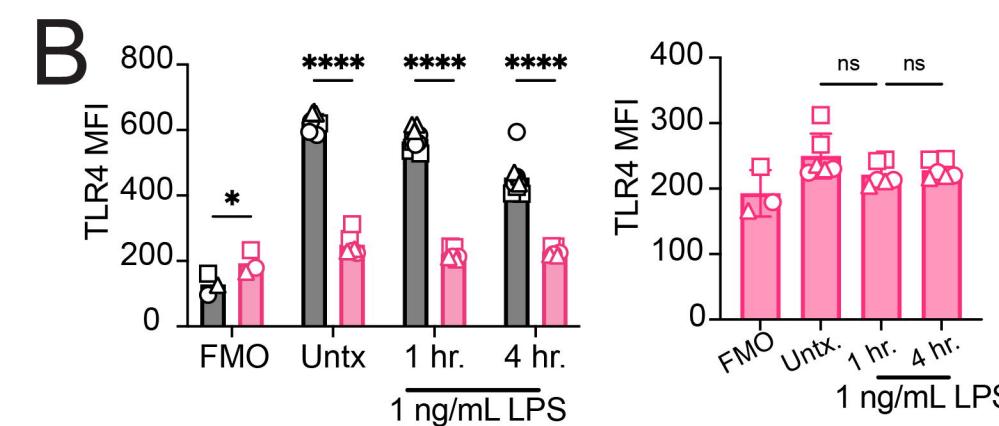
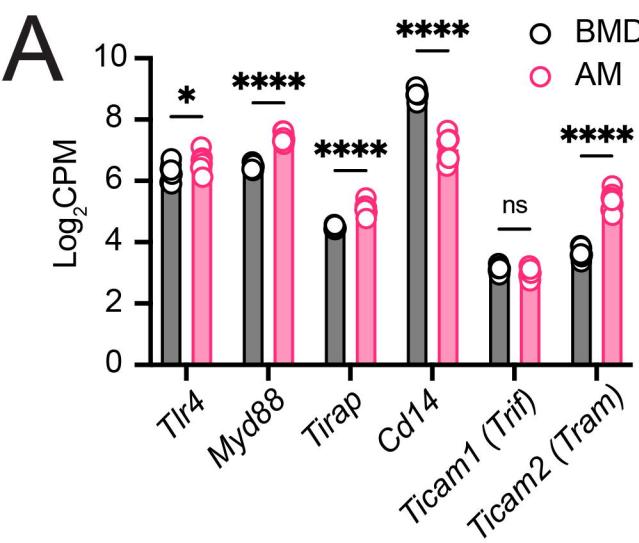
960 66. Svedberg, F.R., Brown, S.L., Krauss, M.Z., Campbell, L., Sharpe, C., Clausen, M.,
961 Howell, G.J., Clark, H., Madsen, J., Evans, C.M., et al. (2019). The lung environment controls
962 alveolar macrophage metabolism and responsiveness in type 2 inflammation. *Nat. Immunol.*
963 20, 571–580. <https://doi.org/10.1038/s41590-019-0352-y>.

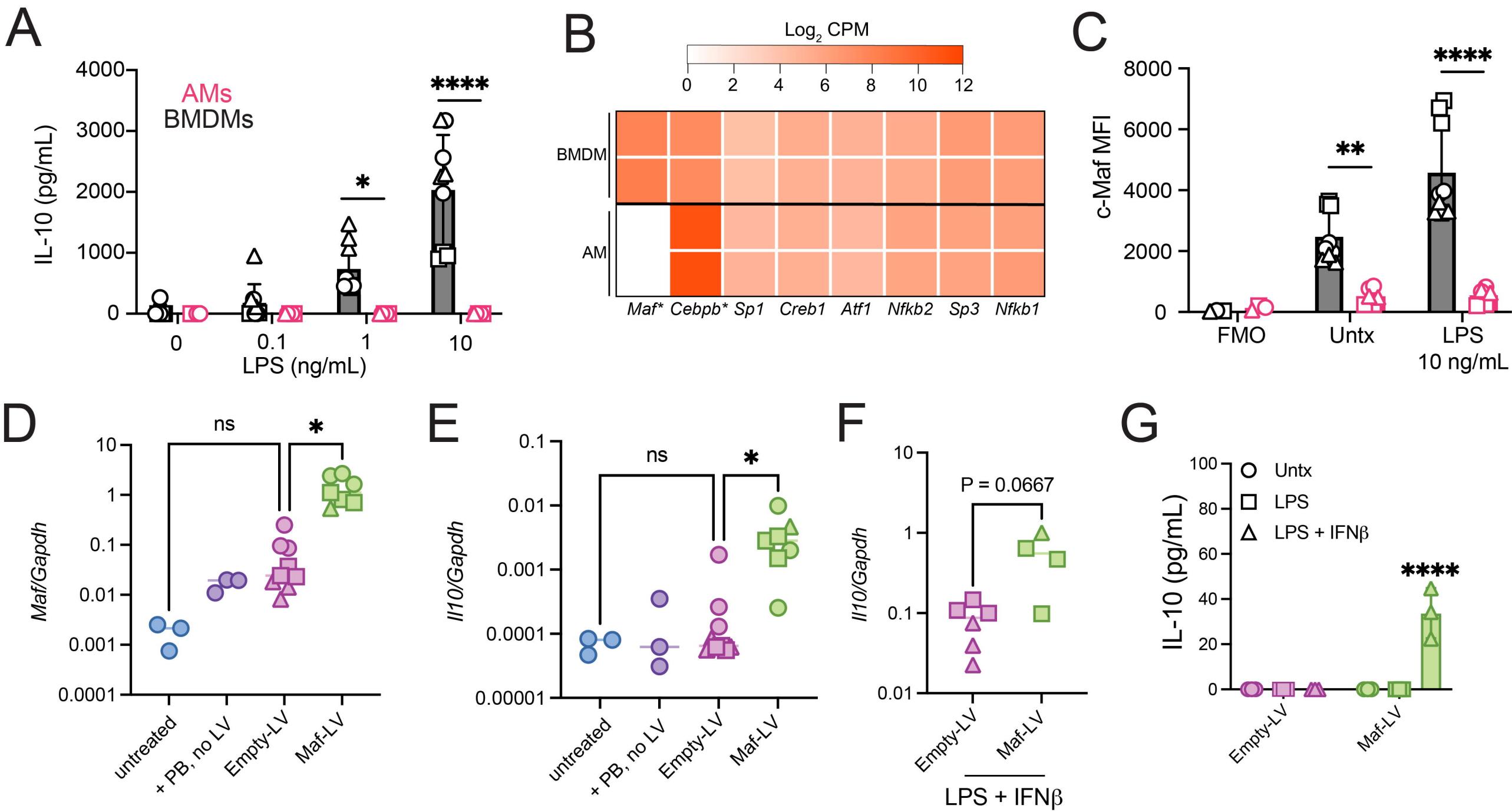
964 67. Wu, T.D., and Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and
965 splicing in short reads. *Bioinformatics* 26, 873–881.
966 <https://doi.org/10.1093/bioinformatics/btq057>.

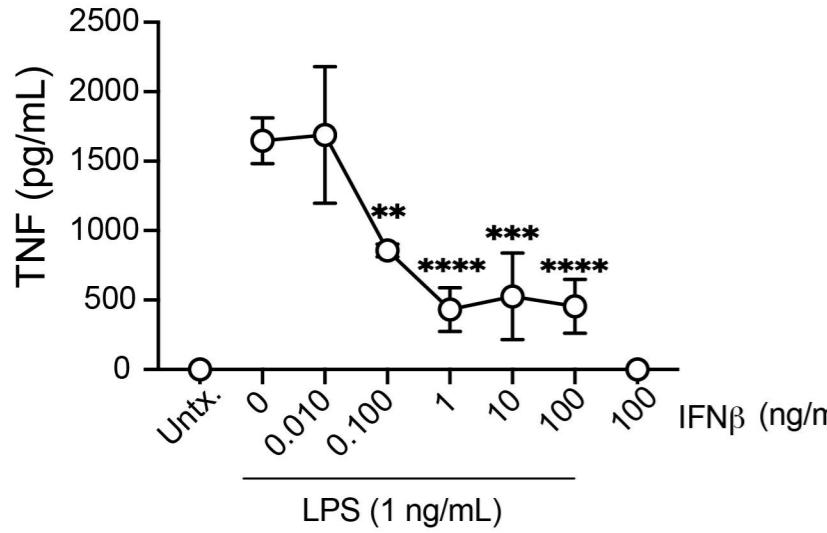
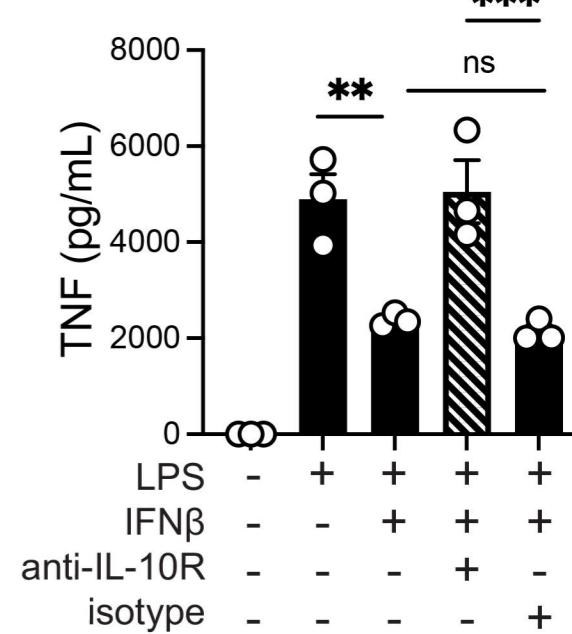
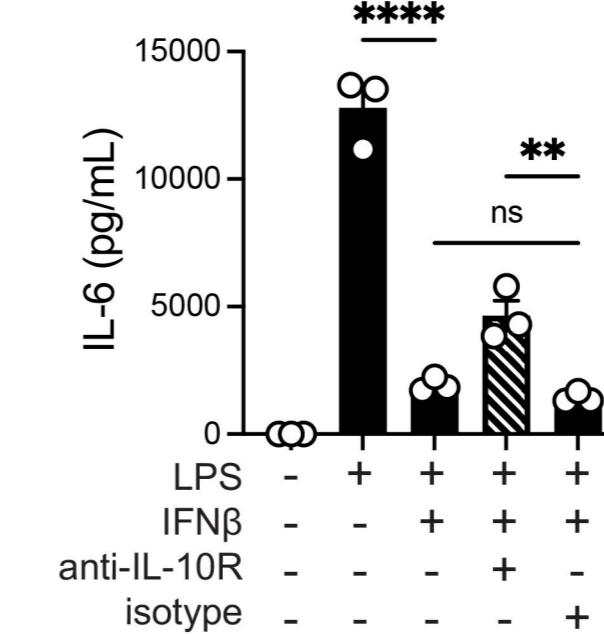
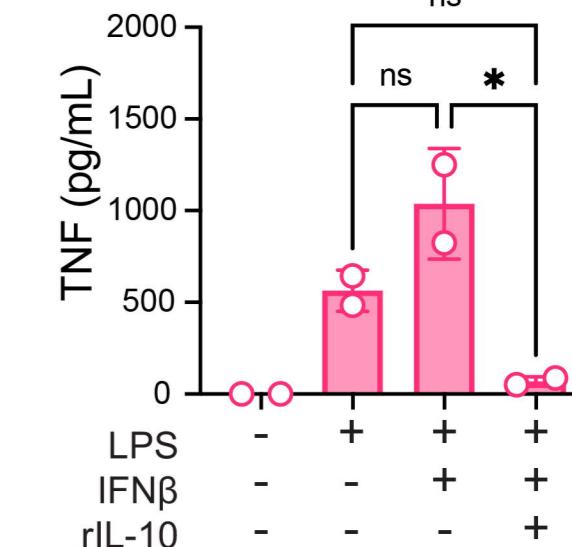
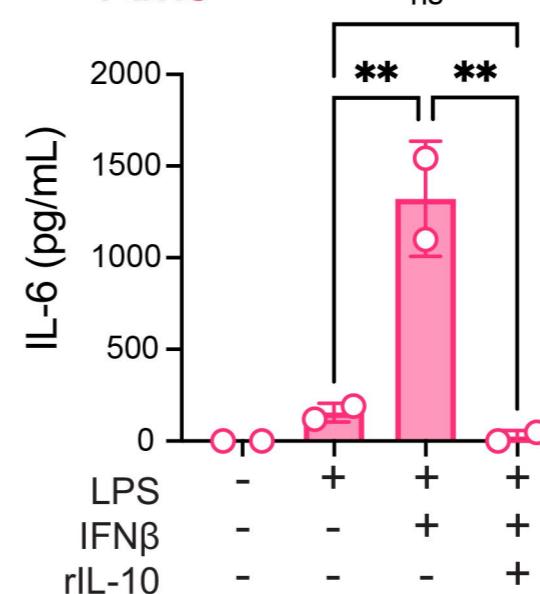
967 68. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor
968 package for differential expression analysis of digital gene expression data. *Bioinforma. Oxf. Engl.* 26, 139–140. <https://doi.org/10.1093/bioinformatics/btp616>.


970 69. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P.
971 (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst.* 1, 417–425. <https://doi.org/10.1016/j.cels.2015.12.004>.






973 70. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
974 Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment
975 analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
976 *Proc. Natl. Acad. Sci.* 102, 15545–15550. <https://doi.org/10.1073/pnas.0506580102>.










977 71. Virshup, I., Rybakov, S., Theis, F.J., Angerer, P., and Wolf, F.A. (2021). anndata:
978 Annotated data. Preprint at bioRxiv, <https://doi.org/10.1101/2021.12.16.473007>
979 <https://doi.org/10.1101/2021.12.16.473007>.


980 72. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene
981 expression data analysis. *Genome Biol.* 19, 15. <https://doi.org/10.1186/s13059-017-1382-0>.






982

A**BMDMs****B****AMs****C****BMDMs****D****AMs**