

1 **Large scale loss-of-function mutations during chicken evolution and domestication**

2

3 Siwen Wu^{1*}, Kun Wang^{2*}, Xuehai Ge^{2*}, Tengfei Dou^{2*}, Sisi Yuan¹, Shixiong Yan², Zhiqiang Xu²,

4 Yong Liu², Zonghui Jian², Jingying Zhao², Rouhan Zhao², Xiannian Zi², Dahai Gu², Lixian Liu²,

5 Qihua Li², Dong-Dong Wu^{3,4}, Junjing Jia^{2#}, Changrong Ge^{2#}, Zhengchang Su^{1#}

6

7 ¹Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte,

8 Charlotte, NC 28078, USA

9 ²Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan,

10 China

11 ³State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,

12 Chinese Academy of Sciences, Kunming, China

13 ⁴Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,

14 Kunming, China

15

16 *These authors contributed equally.

17 #These authors jointly supervised this work and should be addressed to

18 junjingli2009@hotmail.com (JJ), gcrzal@126.com (CG) and zcsu@uncc.edu (ZS).

19 **Abstract**

20 Despite recent progresses, the driving force of evolution and domestication of chickens remains
21 poorly understood. To fill this gap, we recently sequenced and assembled genomes of four
22 distinct indigenous chickens from Yunnan, China. Unexpectedly, we found large numbers of
23 pseudogenes which have lost their functions and are fixed in their corresponding populations,
24 and we also found highly variable proteomes in the genomes of the four indigenous chickens as
25 well as the sequenced wild red jungle fowl (RJF) (GRCg6a). Although the four indigenous
26 chicken breeds are closely related to the *G. g. spadiceous* subspecies, for the first time, we
27 found that the RJF (GRCg6a) is of the *G. g. bankiva* origin. Thus, the five chicken share the most
28 recent common ancestor (MRCA) before subspeciation. Our results support a scenario that the
29 MRCA of the four indigenous chickens and the RJF possessed at least 21,972 genes, of which
30 7,993 are dispensable. Each chicken has lost functions of thousands of the dispensable genes
31 during their evolution and domestication via complete gene loss and pseudogenization. The
32 occurring patterns of completely lost genes and pseudogenes segregate the chickens as their
33 phylogenetic tree does. Therefore, loss-of-function mutations might play important roles in
34 chicken evolution and domestication.

35 **Keywords**

36 Chicken; pseudogenization; loss-of-function; domestication; evolution.

37 **Introduction**

38 As the first non-mammalian vertebrate sequenced [1], chicken (*Gallus gallus*) provides us with
39 most protein sources in our daily life and also is an important model organism to study
40 development and immunity of vertebrates [2]. Since the first release of the draft genome of a
41 red jungle fowl (RJF) [1], its assembly quality has been greatly improved (galgal5 and GRCg6a) [3,
42 4]. More recently, the Vertebrate Genomes Project (VGP) assembled pseudo-haplotype
43 genomes (GRCg7b and GRCg7w) of a hybrid individual from a broiler mother and a layer father
44 using long sequencing reads and multiple scaffolding data [5, 6]. Studies based on these
45 assemblies have provided insightful understandings of not only the domestication and
46 evolution processes, but also the genetic basis of selected traits of domesticated chickens.
47 However, earlier studies were limited in revealing driving forces of chicken domestication and
48 evolution due to low-quality genome assemblies and insufficient gene annotations.
49 Consequently, contradictory conclusions have been drawn. For example, on the one hand, it
50 was reported that the chicken genome has undergone a large number of segmental deletions
51 [1], resulting in a substantial reduction of genome sizes and a large number of concomitant
52 gene loss; and therefore, chicken might have fewer genes than other tetrapods [7]. On the
53 other hand, it was concluded that selection for loss-of-function mutations had no prominent
54 role in chicken domestication [8, 9]. However, accumulating genomic evidence supports loss-of-
55 function mutations as a major driving force for the evolution (for a review, see [10-12]) of
56 animals [13-17] and plants [18] as well as for the domestication (for a review, see [19, 20]) of
57 many farm animals [21] and crops [22, 23].

58 It has been shown that RJF subspecies *G. g. Spadiceus* is the primary ancestor of
59 domestic chickens (*Gallus gallus domesticus*) all over the world [24]. *G. g. Spadiceus* diverged
60 from other RJF subspecies *G. g. murphy*, *G. g. jabouillei*, *G. g. gallus* and *G. g. bankiva* 50,000-
61 500,000 years ago [24], substantially earlier than the advent of chicken domestication [25].
62 Indigenous chickens in Yunnan, a southwestern province in China, are among the earliest
63 domesticated birds, and they are formed by less-intensive traditional family-based artificial
64 selection in villages in isolated mountainous areas since 2,000–6,000 BC [25]. It has been
65 estimated that indigenous chickens in Yunnan share the most recent common ancestor (MRCA)
66 with wild *G. g. Spadiceus* less than 8,000 years ago [24]. Although domestic indigenous chicken
67 such as those from southeast Asian and commercial chickens such as white leghorn may have
68 substantial introgression from other RJF subspecies, indigenous chickens in Yunnan have
69 minimal (~4%) introgression only from *G. g. jabouille* [24]. Thus, indigenous chickens in Yunnan
70 are good candidates to investigate the driving force of evolution and domestication of
71 indigenous chickens.

72 We therefore recently sequenced and assembled genomes at chromosome-level of four
73 indigenous chicken breeds in Yunnan [26]. These chicken breeds include Daweishan chicken
74 with a miniature body size, Hu chicken with a large body size and stout legs, Piao chicken with a
75 rumpless trait and Wuding chicken good at running. Using an annotation pipeline that
76 combines homology-based and RNA-seq-based methods, we found that the Daweishan, Hu,
77 Piao and Wuding chicken genomes encoded 17,718, 17,497, 17,711 and 17,646 protein-coding
78 genes, respectively [27]. Of these genes in the four genomes, a total of 1,420 are not seen in
79 the annotations of the RJF (GRCg6a), the broiler (GRCg7b) and the layer (GRCg7w) assemblies,

80 we thus refer them to as newly annotated genes (NAGs) [27]. Unexpectedly, we also identified
81 a large number of pseudogenes in the Daweishan (747), Hu (606), Piao (682) and Wuding (667)
82 chicken genomes [27]. Interestingly, most of the NAGs also are either encoded or become
83 pseudogenes in the GRCg6a, GRCg7b, and GRCga7w assemblies. We therefore increase the
84 numbers of both annotated genes and pseudogenes in GRCg6a (18,463 and 542), GRCg7b
85 (19,002 and 474) and GRCg7w (18,978 and 435) [27]. In addition to the varying numbers of
86 genes and pseudogenes, each pair of chicken genomes share 81%-92% of their genes, which
87 diverge only 7,000-500,000 years ago. This is in stark contrast to the observation that humans
88 and chimpanzees share 98% of their genes, which split at least 6-7 million years ago [28]. To
89 understand the underlying reasons for such high variation in gene and pseudogene
90 compositions in the chickens, we analyzed the occurring patterns and evolutionary behaviors of
91 the pseudogenes as well as presence and absence variation of genes in the four indigenous
92 chicken genomes and the RJF genome. We did not include the commercial chickens in this
93 analysis as they may possess mosaic genomes of different ancestries inherited from multiple
94 RJF subspecies [24, 29]. Our results suggest that loss-of-function mutations via
95 pseudogenization (contain a premature stop codon or an open-reading-frame (ORF) shift
96 mutation) and complete gene loss (losing all features of a gene beyond to be detected even as a
97 pseudogene) might play critical roles in chicken domestication and evolution.

98

99 **Results**

100 **Chicken genomes harbor highly varying sets of protein-coding genes and pseudogenes**

101 Although the Daweishan (17,718), Hu (17,497), Piao (17,711) and Wuding (17,646) chicken
102 genomes harbor quite similar numbers of protein-coding genes [27], they shared only 15,050
103 genes (Figure 1a), comprising only 84.9%-86.0% of their genes. Interestingly, the indigenous
104 chicken genomes encode 745-966 fewer genes than the RJF genome (GRCg6a) (18,463).
105 Consequently, the indigenous chicken genomes share only 13,979 genes with the RJF genome
106 (Figure 1b), comprising only 75.7%-79.9% of their genes. Moreover, each pair of these five
107 chicken genomes share only 84%-92% of their genes (Figure 1c), even though they only
108 diverged 7,000-500,000 years ago [25]. These results indicate that the indigenous chicken
109 breeds and RJF have undergone more dramatic changes in their gene compositions in the last
110 7,000-500,000 years than have humans and chimpanzees (share 98% of their genes) in the last
111 6-7 million years [28].

112 Moreover, we identified a larger number of pseudogenes in each of the four indigenous
113 chicken genomes (606-747) (Table 1) based on three sources [27]. Most (486-622 or 80.2%-
114 83.5%) of the pseudogenes in the indigenous chicken genomes were predicted based on
115 homology to annotated genes in GRCg6a (322-395), GRCg7b (313-385) and GRCg7w (311-398)
116 (Tables 1 and S1-S4). In other words, some functional genes in the reference genomes become
117 pseudogenes in an indigenous chicken genome due to at least a pseudogenization mutation
118 (premature nonsense mutation or open-reading frame (ORF) shift mutation). A small portion
119 (24-35 or 3.6%-5.8%) were predicted based on homology to the 1,420 NAGs, i.e., some
120 functional NAGs in indigenous genomes become pseudogenes in other indigenous genomes.
121 The remaining 83-94 (12.2%-14.0%) were predicted based on homology to previously
122 annotated pseudogenes in GRCg6a (49-57), GRCg7b (55-64) and GRCg7w (51-58). In other

123 words, some pseudogenes in reference genomes also are pseudogenes in indigenous chicken
124 genomes. Most pseudogenes (576-713, 94.9-96.0%) in each indigenous chicken genome are
125 transcribed in multiple tissues (Tables S5-S8), suggesting that their regulatory systems might be
126 still at least partially functional, and thus they might arise quite recently. Furthermore, based
127 on pseudogenization mutations of the 1,420 NAGs in the reference genomes, we increased the
128 numbers of annotated pseudogenes in GRCg6a (from 262 to 542) (Table 1). Notably, the
129 indigenous chicken genomes harbor 64-205 more pseudogenes than GRCg6a, which partially
130 explains why the former genomes harbor fewer genes than the latter genome (17,497-17,716
131 vs 18,463). The indigenous chickens share 142 pseudogenes (Figure 1d) among themselves, and
132 33 pseudogenes with the RJF (Figure 1e). Each pair of the chicken share 8%-48% of their
133 pseudogenes (Figure 1f). In total, we found 1,995 pseudogenes that appeared in at least one of
134 the five chicken genomes (Table S9). In summary, these results suggest a highly complex picture
135 of gene presence and absence as well as pseudogenization in various chicken breeds.

136 **Vast majority of pseudogenes are unprocessed and unitary**

137 Most (91.6%-92.8%, 556-684) of the pseudogenes in each indigenous chicken genome are
138 unprocessed (Table 1), i.e., they arose due to direct pseudogenization mutations, while the
139 remaining small portion (7.2-8.4%, 48-63) are processed, i.e., they arose due to
140 retrotransposition followed by pseudogenization mutations [30]. Unprocessed
141 pseudogenization mutations could occur after a duplication event to eliminate a redundant
142 copy [30]. However, we failed to find an intact paralog for most (88.2%-90.3%) of the
143 unprocessed pseudogenes in the same genomes (Tables S1-S4), suggesting that most of the
144 unprocessed pseudogenes are not related to gene duplications, and thus are unitary

145 pseudogenes [31]. There are a total of 1,814 unprocessed pseudogenes in the five chicken
146 genomes (Table S10). The indigenous chickens share 129 unprocessed pseudogenes among
147 themselves (Figure S1a), and 22 with the RJF (Figure S1b). Interestingly, compared to the cases
148 in indigenous chickens, a smaller proportion of the pseudogenes in RJF (85.2%, 462) are
149 unprocessed. However, the number (80) of processed pseudogenes in RJF is similar to those (63,
150 50, 55 and 48) in the indigenous chickens (Table 1). In the following analyses, we will focus on
151 the unprocessed pseudogenes.

152 **Pseudogenization mutations are biased to the two ends of parental genes**

153 To see whether the arise of the unprocessed pseudogenes in the indigenous chickens is under
154 natural/artificial selection, selectively neutral or a result of random genetic drift, we compared
155 the distribution of their first pseudogenization mutation sites along the CDSs of their parental
156 genes in relevant genome(s) with the distribution of the synonymous mutation sites along the
157 CDSs of true genes. As shown in Figure 2a, synonymous mutations in true genes are largely
158 uniformly distributed along the CDSs as expected for neutral mutations, except at the two ends,
159 where the density decreases, consistent with an earlier report in chickens [32]. The reduced
160 synonymous mutation rates at the two ends suggests that the two ends of CDSs are generally
161 under purifying selection, suggesting that the two ends might harbor functional elements not
162 related to their amino acid coding functions, such as transcriptional and post-transcriptional
163 regulatory elements [33]. Interestingly, the synonymous mutations in the pseudogenes are also
164 largely uniformly distributed along the CDSs including the two ends (Figure 2a), indicating that
165 purifying selection on the two ends of pseudogenes is relaxed. Thus, transcriptional and post-

166 transcriptional regulatory elements at the two ends of pseudogenes might have been
167 deteriorated since their pseudogenization.

168 By stark contrast, the first pseudogenization mutations in the four indigenous chickens
169 are strongly biased to the two ends of parental CDSs (Figure 2a), consistent with earlier reports
170 in chickens [32] and humans [34]. Specifically, 22.2%, 64.2% and 13.6% of first loss-of-function
171 mutations occur at the first 10%, the middle 80% and the last 10% lengths of the CDSs. Almost
172 all the pseudogenes have their first (Figure 2b) and last (Figure 2c) coding nucleotides aligned
173 with those of parental CDSs, indicating that the biased pseudogenization mutations to the 5'-
174 and 3'-ends are not due to incorrect predictions of the two ends of the pseudogenes. These
175 results strongly suggest that the biased first pseudogenization mutations towards the two ends
176 of pseudogenes are under positive selection.

177 **Biased pseudogenization mutations to the two ends of parental CDSs might facilitate loss of
178 functions of genes**

179 To see whether the first pseudogenization mutation along the parental CDSs result in loss of
180 function of the genes, we compared the evolutionary pressures on true genes with that on
181 pseudogenes in the four indigenous chickens using their ratio of the number of nonsynonymous
182 mutations over the number of synonymous mutations (dN/dS). As shown in Figure 2d, the
183 pseudogenes have significantly higher dN/dS values than the true genes ($p < 6.13e-295$). This is
184 also true when the pseudogenes with the first pseudogenization mutation occurring in the first
185 10% ($p < 7.87e-46$), the middle 80% ($p < 1.23e-230$) or the last 10% ($p < 1.93e-30$) of CDSs are
186 compared with the true genes (Wilcoxon rank-sum test). These results suggest that at least
187 most pseudogenes are no longer under purifying selection, and thus might lose gene functions.

188 Moreover, the pseudogenes with the first pseudogenization mutation occurring in the first 10%
189 of CDSs and occurring in the last 10% of CDSs have similar dN/dS values ($p=0.46$), and both have
190 significantly lower dN/dS values than the pseudogenes with the first pseudogenization
191 mutation occurring in the middle 80% of CDSs (Figure 2d, $p<9.24e-6$ and $p<7.75e-5$, respectively,
192 Wilcoxon rank-sum test). The underlying cause is not clear to us but might be due to our finding
193 that the two ends of CDSs were under purifying selection before pseudogenization events
194 occurred (Figure 2a).

195 Clearly, the closer a pseudogenization mutation to the 5'-end of a CDS, the larger
196 portion of the peptide chain is affected and the more likely a pseudogenization mutation occurs.
197 Loss of function of a gene could also occur when critical amino acids at the N-terminus of the
198 protein or regulatory DNA elements at the 3'-end of the CDS are disrupted by a
199 pseudogenization mutation. For the former possibility, we noted that the identity of amino
200 acids at the C-terminus of proteins are elevated (Figure 2a), indicating that the C-terminus may
201 harbor critical amino acids. For the later possibility, as the 3'-UTRs of genes often harbor miRNA
202 binding sites for post-transcriptional regulation [35], we hypothesize that 3'-ends of CDSs may
203 also contain miRNA binding sites, and disruption of such sites in either 3'-ends of CDSs or 3'-
204 UTRs may have functional consequence. To test this, we scanned the pseudogenes' and
205 parental genes' CDSs in the four indigenous chickens and their 1,000 bp downstream sequences
206 as putative 3'-UTRs for potential miRNA binding sites. As shown in Figure 2e, putative 3'-UTRs
207 and 3'-ends of both parental genes and pseudogenes have higher density of putative miRNA
208 binding sites than their upstream coding regions, consistent with previously reports [35],
209 suggesting that putative 3'-UTRs and 3'-ends indeed tend to contain a miRNA binding sites.

210 Interestingly, pseudogenes have a fewer number of miRNA binding sites in their 3'-ends and 3'-
211 UTRs than do parental genes (Figure 2e), suggesting that pseudogenization mutations might
212 disrupt the miRNA binding sites in the 3'-end of CDSs.

213 **The functions of parental genes of most pseudogenes are lost in the indigenous chicken
214 genomes**

215 To see whether alternative isoforms of the pseudogenes in the four indigenous chickens could
216 skip the exons harboring the pseudogenization mutations, we assembled transcripts of all the
217 transcribed pseudogenes in each indigenous chicken genomes (Table 1). We found that most
218 transcribed pseudogenes had only one type of transcript containing the pseudogenization
219 mutations, while for those that had more than one isoform, very few of them had transcripts
220 that skipped the pseudogenization mutations (Tables S11-S14). For example, in Daweishan
221 chicken, only 139 (20.32%) of the 684 unprocessed pseudogenes (Table 1) have alternative
222 splicing transcripts, and only one of them has transcripts that skip the pseudogenization
223 mutation (Table S11). In Hu chicken, only 137 (24.64%) of the 556 unprocessed pseudogenes
224 (Table 1) have alternative splicing transcripts, and none of them has transcripts that skip the
225 pseudogenization mutations (Table S12). In Piao chicken, only 131 (20.89%) of the 556
226 unprocessed pseudogenes (Table 1) have alternative splicing transcripts, and only two of them
227 have transcripts that skip the pseudogenization mutations (Table S13). In Wuding chicken, only
228 139 (22.46%) of the 619 unprocessed pseudogenes (Table 1) have alternative splicing
229 transcripts, and none of them has transcripts that skip the pseudogenization mutations (Table
230 S14). These results suggest that almost all the pseudogenes in the four indigenous chickens did
231 not skip the exons harboring the pseudogenization mutations, and that the functions of

232 parental genes cannot be rescued by alternative isoforms of the pseudogenes. Moreover, as we
233 indicted earlier, most of the unprocessed pseudogenes do not have a functional copy in the
234 same genomes, thus, the functions of their parental genes might be lost in the indigenous
235 chickens.

236 **The GCRg6a assembly might be of an individual of *G. g. bankiva* origin**

237 Although the RJF *G. g. spadiceus* subspecies is believed to be the major ancestor of domestic
238 chickens all over the world [24], no high-quality genome of a *G. g. spadiceus* individual has yet
239 been available. Thus, we would compare the gene compositions in the four indigenous chicken
240 genomes with that of the RJF genome (GRCg6a). To infer the subspecies origin of the RJF
241 individual and the indigenous chickens belonging to, we performed a principal component
242 analysis (PCA) on the SNPs profiles of the RJF individual and populations of the five RJF
243 subspecies (*G. g. Spadiceus*, *G. g. murphy*, *G. g. jabouillei*, *G. g. gallus* and *G. g. bankiva*) as well
244 as of the four indigenous chickens (Methods and Materials). As expected, individuals of the four
245 indigenous chicken breeds form a compact cluster with those of the *G. g. spadiceus* subspecies
246 (Figure 3a), indicating that the four indigenous chicken breeds are indeed derived from *G. g.*
247 *spadiceus*. Constituent with a previous report [24], individuals of *G. g. murphy* form a widely
248 spread cluster that cannot be separated from the compact cluster formed by individuals of *G. g.*
249 *jabouillei* (Figure 3a), suggesting the diversity of the individuals of *G. g. murphy* and possible
250 admixture with *G. g. jabouillei*. Individuals of *G. g. gallus* form a cluster in between the one
251 formed by individuals of *G. g. jabouillei* and the one formed by individuals of *G. g. bankiva*.
252 Consistent with the previous report [24], individuals of *G. g. bankiva* form a cluster that is
253 farthest away from those formed by other subspecies and the indigenous chickens (Figure 3a),

254 indicating that *G. g. bankiva* diverged earliest from the other subspecies. Interestingly, the
255 sequenced RJF (GRCg6a) is separated far away from the cluster formed by the indigenous
256 chickens and *G. g. spadiceus* individuals, and is closest to the cluster formed by *G. g. bankiva*
257 individuals (Figure 3a), suggesting that it might be of *G. g. bankiva* origin. We also analyzed the
258 genetic structures of the chickens (Methods and Materials). In agreement with the PCA result,
259 GRCg6a has highly similar genetic structure to the individuals of *G. g. bankiva* (Figures 3b-3d).
260 Both *G. g. murphy* and *G. g. spadiceous* have diverse genetic structures (Figures 3b-3d) due to
261 their broader geographic origins as previously indicated [24]. Hu and Piao chickens have mosaic
262 genetic structures, while Daweishan and Wuding chickens have quite uniform genetic
263 structures (Figures 3b-3d). The four indigenous chicken breeds have large genetic admixture
264 from *G. g. spadiceous* but little from the other subspecies (Figures 3b-3d). These results further
265 strengthen our conclusion that the four indigenous chicken breeds might be mainly derived
266 from *G. g. spadiceous*, while the GRCg6a assembly belongs to an individual of the *G. g. bankiva*
267 origin. The latter conclusion might not be surprising given the fact that the sequenced RJF
268 individual was from of the UCD0001 line that was originated from a wild population from
269 Malaysia [1], where *G. g. bankiva* inhabits [24].

270 **Indigenous chickens and the RJF have lost thousands of genes since their divergence**
271 Based on our aforementioned results, it is reasonable to assume that the indigenous chickens
272 and the RJF share a MRCA A1 before subspeciation, and the indigenous chickens share a MRCA
273 A2 of *G. g. spadiceus* after subspeciation. There are two possible scenarios that the indigenous
274 chickens and the RJF could be derived from the two MRCA. In one scenario, a MRCA possessed
275 at least the union of genes in the derived chickens plus functional versions of the intersection of

276 unprocessed pseudogenes of all the derived chickens, and the derived chickens selectively lost
277 genes via two unnecessarily exclusive forms of loss-of-function mutations, i.e., complete gene
278 loss and pseudogenization, during the evolution and domestication processes. In the case of
279 the four indigenous chickens, as illustrated in Figure 4a, their MRCA A2 would possess 20,760
280 (20,631 genes (Figure 1a) + 129 unprocessed pseudogenes (Figure S1a)) genes, and Daweishan,
281 Hu, Piao and Wuding chickens would lose functions of 3,042, 3,263, 3,049 and 3,114 genes,
282 respectively, though pseudogenization (684, 556, 627 and 619) and complete gene loss (2,358,
283 2,707, 2,422 and 2,495) during their evolution and domestication processes. In the case of the
284 four indigenous chickens and the RJF, their MRCA A1 would possess 21,972 (21,947 genes
285 (Figure 1b) + 25 unprocessed pseudogenes (Figure S1b)) genes, and the RJF and MRCA A2
286 would lose functions of 3,509 and 1,212 genes, respectively, though pseudogenization (462 and
287 0) and complete gene loss (3,047 and 1,212) during the subspeciation and evolution processes
288 (Figure 4a). Moreover, from MRCA A1, Daweishan, Hu, Piao and Wuding chicken would lose
289 function of additional 1,212 genes (Figure 4a). This explanation is in agreement with the earlier
290 finding that chicken genome has undergone a large number of segmental deletions, resulting in
291 a substantial reduction of genome sizes and the number of genes [1]. In the other scenario, the
292 MRCA would possesses at most the intersection of genes in the derived chickens, and the
293 derived chickens selectively gain genes during the evolution and domestication processes. In
294 the case of the four indigenous chickens and the RJF, their MRCA A1 would possess at most
295 13,979 genes, and RJF, Daweishan, Hu, Piao and Wuding chickens would have gained 4,484,
296 3,739, 3,618, 3,732 and 3,667 genes, respectively, since their divergence (Figure 1b). However,

297 this scenario is unlikely since there is no evidence of a large-scale introgression in the RJF and
298 the indigenous chickens (Figure 1b).

299 Assuming MRCA A1 of the RJF and four indigenous chickens possessed 21,972 genes
300 (Figure 4a), then, as the five chickens share 13,979 core genes (Figure 1b), the remaining 7,993
301 would lose functions though complete gene loss or pseudogenization in at least one of the five
302 chickens. Specifically, of the 7,993 dispensable genes, 1,583 (19.8%) are pseudogenized in at
303 least one of the five chickens, while the remaining 6,410 (80.2%) are not pseudogenized in any
304 of the five chickens, but are completely lost in at least one of the five chickens, and we refer
305 them as missing genes for the convenience of discussion.

306 **Loss-of-function mutations affect an array of important biological pathways of chickens**
307 We analyzed the biological functions of the 7,993 dispensable genes in MRCA A1 that are either
308 completely lost (6,410) or pseudogenized (1,583) in at least one of the five indigenous chicken
309 genomes (Figure 4b). To this end, we performed a two-way hierarchical clustering on the 7,993
310 dispensable genes and the five chickens based on the occurring patterns of these dispensable
311 genes in the five chicken genomes based on Euclid distances using the UPGMA method. The
312 dispensable genes form distinct clusters along the clustering hierarchy (Figure 4b). Based on the
313 distinct features of clusters, we divided them into 31 exclusive clusters as described in Table
314 S15. Although only 1,567 (19.6%) of the dispensable genes have GO term assignments to their
315 functional parental genes in GRCg6a/GRCg7b/GRCg7w or humans, most clusters (27/31, 87.1%)
316 containing genes related to important biological pathways (Figure 4b, Table S15). For instance,
317 cluster 29 containing 241 genes that are completely lost or pseudogenized in Daweishan
318 chicken but functional in other four genomes are involved in 20 pathways for metabolism

319 (thiamin metabolism), signal transduction (PI3 kinase pathway, p53 pathway feedback loops 2,
320 etc.), cell growth (EGF receptor signaling pathway, VEGF signaling pathway, PDGF signaling
321 pathway, TGF-beta signaling pathway, FGF signaling pathway), neuronal function (nicotinic
322 acetylcholine receptor signaling pathway, metabotropic glutamate receptor group II pathway,
323 etc.), immunity (Inflammation mediated by chemokine and cytokine signaling pathway), and
324 cardiovascular function (blood coagulation, angiogenesis). Cluster 30 containing 1,071 genes
325 that are functional in all the four indigenous chicken genes but are completely lost or
326 pseudogenized in the RJF are involved in 27 pathways for metabolism (ATP synthesis, de novo
327 purine biosynthesis, glycolysis,), signal transduction (FAS signaling pathway, heterotrimeric G-
328 protein signaling pathway-Gi alpha, etc.), cardiovascular functions (hypoxia response via HIF
329 activation, angiogenesis), reproduction (gonadotropin-releasing hormone receptor pathway),
330 Immunity (T cell activation, interleukin signaling pathway, etc.), cell growth (TGF-beta signaling
331 pathway, EGF receptor signaling pathway, PDGF signaling pathway, etc.), neuronal functions
332 (nicotinic acetylcholine receptor signaling pathway). Cluster 26 containing 217 genes that are
333 completely lost or pseudogenized in Wuding chicken but are functional in other four chickens
334 are involved in 17 pathways for metabolism (glutamine glutamate conversion, mannose
335 metabolism, ATP synthesis), neuronal functions (GABA-B receptor II signaling), Immunity (toll
336 receptor signaling pathway), cell growth (EGF receptor signaling pathway, Endothelin signaling
337 pathway, FGF signaling pathway), reproduction (gonadotropin-releasing hormone receptor
338 pathway), immunity (inflammation mediated by chemokine and cytokine signaling pathway),
339 signal transduction (heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha
340 mediated pathway, etc.), and cardiovascular function (angiogenesis). Cluster 1 containing 1,316

341 genes that are functional in the RJF but completely lost or pseudogenized in all the four
342 indigenous chickens are involved in 26 pathways for Signal transduction (cadherin signaling
343 pathway, Wnt signaling pathway, etc.), neuronal function (alpha adrenergic receptor signaling
344 pathway), cardiovascular function (Hypoxia response via HIF activation), immunity (interferon-
345 gamma signaling pathway, B cell activation, etc.), metabolism (de novo purine biosynthesis,
346 oxidative stress response, etc.), cell growth (FGF signaling pathway, EGF receptor signaling
347 pathway, PDGF signaling pathway), and reproduction (gonadotropin-releasing hormone
348 receptor pathway). Cluster 27 containing 221 genes that are completely lost or pseudogenized
349 in Piao chicken but functional in other four chickens are involved in 17 pathways for
350 metabolism (glutamine glutamate conversion, mannose metabolism, ATP synthesis), neuronal
351 functions (GABA-B receptor II signaling), immunity (toll receptor signaling pathway,
352 inflammation mediated by chemokine and cytokine signaling pathway), signal transduction
353 (heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway), cell
354 growth (EGF receptor signaling pathway, FGF signaling pathway, etc.), reproduction
355 (gonadotropin-releasing hormone receptor pathway), and cardiovascular function
356 (angiogenesis, endothelin signaling pathway). Taken together, the importance of these affected
357 pathways suggests that loss-of-function mutations might have shaped the traits of the
358 indigenous chickens for them to adapt to domesticated conditions and for the RJF to adapt to
359 its unique ecological niche.
360 **Pseudogenes and functional versions of missing genes are preferentially located on micro-**
361 **chromosomes and have high G/C contents**

362 We analyzed the distributions of the 1,583 pseudogenes and the 6,410 missing genes in the
363 chromosomes in each indigenous chicken genome. For missing genes in a chicken genome, we
364 used its functional copy in another chicken for the analysis. Both the pseudogenes and
365 functional versions of the missing genes are located in almost all the chromosomes in each of
366 the four indigenous chickens (Figures 5a, 5b). However, the micro-chromosomes (chr14-chr39)
367 and unplaced contigs have higher densities of both the pseudogenes and functional versions of
368 the missing genes, harboring more than a third of the pseudogenes (39.4%-41.3%, Figure 5c)
369 and more than half of functional versions of the missing genes (51.5%-54.6%, Figure 5d) while
370 only comprising 13.5%-14.4% of the genomes. Likewise, both the ratio of the number of
371 pseudogenes/the number of genes (Figure 5e) and ratios of the number of functional versions
372 of missing genes/the number of genes (Figure 5f) tend to be higher on the micro-chromosomes
373 and unplaced contigs. Both the pseudogenes and functional versions of the missing genes (in
374 other chickens) have a significantly higher G/C contents than true genes for each of the four
375 indigenous chicken genomes (Figure 5g). Interestingly, the pseudogenes exhibit even
376 significantly higher G/C contents than functional versions of the missing genes for all the four
377 chicken genomes except for the Hu chicken genome. The same results were seen when the
378 analyses were done separately on macro-chromosomes (chr1-chr5 and chrZ) (Figure S2a),
379 middle-chromosomes (chr6-chr13 and chrW) (Figure S2b) and micro-chromosomes (chr14-
380 chr39) (Figure S2c) to account for their different G/C contents [26]. It is not clear to us why
381 functional copies of the missing genes have elevated G/C contents compared to true genes in
382 the chicken genome. However, the elevated G/C contents in the pseudogenes compared with
383 those in true genes and functional versions of the missing genes might be due to G/C-biased

384 gene conversion during meiotic recombination and DNA repairing [36] after purifying selection
385 on the pseudogenes were relaxed.

386 **Most pseudogenes arise recently and are fixed in respective populations**

387 The vast majority (93%-97%) of the pseudogenes in each of the four indigenous chicken
388 genomes share more than 95% of sequence identity with their parent genes (Figures 6a-6d),
389 indicating that they arose quite recently. Only a small portion (0%-1%) with less than 80% of
390 sequence identity with their functional parental genes arose a relatively long time ago. To see
391 whether the first pseudogenization mutation along a pseudogene in the four indigenous
392 chicken genomes are fixed or not in their respective populations, we computed the frequencies
393 of the mutated alleles in the populations of the four breeds based on DNA re-sequencing reads
394 (Materials and methods). As shown in Figures 6e-6h, most (~75%) of the mutations in the
395 pseudogenes in each chicken genome are fixed or nearly fixed (allele frequency > 80%) in their
396 respective populations. The high probability of fixation of the pseudogenes suggests that they
397 might be under positive selection. A few examples of fixed or nearly fixed unitary pseudogenes
398 in indigenous chicken populations are shown in Figure S3.

399 **Most missing genes have residual sequences in the indigenous chicken genomes but lose
400 gene features in respective populations**

401 To see whether the missing genes in the assembled genomes also are completely lost in their
402 respective populations, we mapped re-sequencing DNA short reads from the individual
403 chickens of a breed population to the functional versions of the missing genes in the
404 corresponding assembly (Materials and methods). As shown in Figures 6i-6l, in each of the four
405 indigenous chicken genomes, vast majority (99.9%) of the missing genes still have residual

406 sequences in the individual genomes, covering up to 90% of their functional versions, while only
407 few missing genes lack detectable residual sequences in the populations. These results strongly
408 suggest that most of the missing genes were once functional in the ancestors, but lost gene
409 features beyond recognitions recently. The missing genes might have lost function earlier than
410 the pseudogenes as the former have lost the features to be predicted as even pseudogenes.
411 Moreover, most (99%) of the missing genes in assembled indigenous chicken genome have a
412 missing frequency > 99% in their respective populations, and only few are detected in all the re-
413 sequenced individuals in respective populations (Figures 6m-6p). The high missing rate of the
414 missing genes in the relevant populations suggests that loss-of-function (null) mutations are
415 fixed in the populations, and thus might be under positive selection. Two examples of fixed
416 loss-of-function mutations of missing genes in indigenous chicken populations are shown in
417 Figures S4a and S4b. In both cases, the residual sequences cover different parts of the
418 functional versions of the missing genes in different breeds, with a missing match rate > 11%
419 and all containing gaps (Figure S4).

420 **Occurring patterns of loss-of-function mutations reflect evolutionary history of the chickens**
421 The patterns of loss-of-function mutations of genes in the chicken genomes might provide hints
422 to mutation orders during chicken evolution and domestication. Most pseudogenes in the
423 GRCg6a genome are completely lost in the four indigenous chicken genomes (Figure 4b),
424 suggesting that the indigenous chickens completely lost these genes after their divergence from
425 the MRCA A1, during their domestication process and/or subspeciation of *G.g. spadiceous*,
426 while GRCg6a is still in the process of completely losing these genes. In contrast, most
427 pseudogenes in the four indigenous chicken genomes have intact copies in GRCg6a (Figure 4b),

428 suggesting that these GRCg6a genes might lose their functions in the indigenous chickens after
429 their separation from MRCA A1, during the domestication process and/or subspeciation of *G.g.*
430 *spadiceous*, and might be in the process of being completely lost.

431 To see whether the occurring patterns of the complete gene loss and pseudogenization
432 in the five chicken genomes reflect their evolutionary relationships, we constructed a neighbor-
433 joining (NJ) phylogenetic tree using the occurring patterns in the five chicken genomes of the
434 7,993 MRCA A1 genes that are either completely lost or pseudogenized in at least one of the
435 five indigenous chicken genomes. As shown in Figure 7a, consistent with the UPGMA tree
436 rooted with the RJF (Figure 4b), Wuding and Piao chickens form a clade that is joined by
437 Daweishan chicken, and the resulting cluster is joined by Hu chicken. The tree is also consistent
438 with the NJ tree constructed using 6,744 essential protein-coding genes in the five chicken
439 genomes and quail (*Coturnix japonica*) with quail as the root (Figure 7b). Therefore, the
440 occurring patterns of complete gene loss and pseudogenization in the five chickens segregate
441 them in the way by their evolutionary relationships, and thus, reflect their evolutionary
442 relationships. This result is in contrast to the earlier reports that loss-of-function mutations
443 failed to segregate between wild and domestic chickens, and thus selection for loss-of-function
444 mutations had a little role in chicken domestication [8, 9].

445

446 **Discussion**

447 We find larger numbers of pseudogenes in the four indigenous chicken genomes as well as in
448 the RJF genome (GRCg6a). Most of the pseudogenes in each chicken genome are unprocessed
449 and unitary, while only a small number of them are processed. This finding is consistent with

450 the previous results [37, 38], presumably because the chicken's LINE1 like CR1 (L1) elements
451 lack retro transposase activity [37, 38]. However, the large number of unprocessed
452 pseudogenes that we found in each chicken genome is in stark contrast to the findings in
453 humans and mice. For example, a previous study found that only a few dozen unprocessed
454 pseudogenes were found in human population [39, 40], not to mentioning in a human
455 individual. In a more recent study [41], 165 and 303 unprocessed pseudogenes were found in
456 large mouse and human populations, respectively. However, these numbers are still much
457 smaller than those (1,995) that we found in only five chicken genomes. Thus, we observed a
458 larger scale of unprocessed pseudogenization in chickens than in mice and humans.

459 Our results strongly suggest that most of the pseudogenes lose their protein-coding
460 functions. First, the pseudogenes have elevated G/C contents and higher dN/dS ratios
461 compared with true genes, no matter where the first pseudogenizations occur along the CDSs
462 of their parental genes, indicating that they are no longer under purifying selection. Second, in
463 true genes, synonymous mutations are largely uniformly distributed along the CDSs, but
464 decrease at the two-ends of the CDSs, suggesting that both ends are under purifying selection.
465 However, such purifying selection is relaxed on the two ends of pseudogenes. Third, although
466 most pseudogenes have transcripts, very few have isoforms that skip the exon with the first
467 pseudogenization mutations. Finally, there are two scenarios for a pseudogene to arises: 1)
468 when the function of the gene is no longer needed; and 2) after a gene duplication event,
469 removal of a redundant copy is beneficial. We found that most of the pseudogenes in the
470 chickens are unitary, and thus, were not related to gene duplications. Therefore, functions of
471 most of parental genes are lost in the genomes that harbor the pseudogenes.

472 Moreover, we find that the compositions of protein-coding genes in the five chicken
473 genomes are highly variable even in the indigenous chicken genomes that harbor similar
474 number of genes. For example, even though the Daweishan and Piao chicken genomes encode
475 almost the same number of genes (17,718 vs 17,711), they share only 91% of their genes even
476 though they have diverged for only a few thousand years [24]. These results are in stark
477 contrast with the observation that humans and chimpanzees share almost the same sets (98%)
478 of genes although they split at least 6-7 million years ago [28]. Both the unexpectedly large
479 number of pseudogenes and the highly variable compositions of the proteomes in the five
480 chicken genomes strongly suggest that chickens have undergone dramatic changes in their
481 proteomes in the last 7,000-500,000 years of evolution and domestication.

482 We confirm that the four indigenous chickens from Yunnan province are mainly derived
483 from the *G. g. spadiceous* subspecies, and infer for the first time that the sequenced RJF
484 (GRCg6a) is of *G. g. bankiva* origin. Thus, the indigenous chickens and the RJF might share their
485 MRCA A1 ~500,000 years ago, before their subspeciation [24]. There are two possible scenarios
486 that the highly variable proteomes in the five chicken genomes could arise: 1) their MRCA A1
487 only possessed the intersection of their genes, and each derived chicken selectively gained
488 thousands of new genes; and 2) their MRCA A1 harbored the union of their genes plus
489 functional versions of the intersection of their unprocessed unitary pseudogenes genes, and
490 each derived chicken selectively lost thousands of genes. Our results are against scenario 1 but
491 favor scenario 2. First, the RJF and the four indigenous chicken have little gene introgression
492 from other RJF subspecies (Figures 3b-3d). Thus, it is unlikely that the five chickens have gain
493 large numbers of genes from other subspecies. Second, the hundreds of unprocessed unitary

494 pseudogenes in each chicken genome arose quite recently, and are still in the process of being
495 completely lost, and they might be once functional in recent ancestors. Third, although all the
496 missing genes in a genome have lost all gene features, most of them have residual sequences
497 left in the genomes, strongly suggesting that they were also once functional in recent ancestors.
498 The missing genes might have lost functions earlier than the pseudogenes, because the former
499 have lost the gene features, while the latter still possess few to be recognized as pseudogenes.
500 In addition, it has been shown that chicken genome has undergone a large-scale of segmental
501 deletions, resulting in a substantial reduction of the number of genes [1].

502 Although 7,993 of the 21,947 genes estimated in the MRCA A1 of the RJF and the four
503 indigenous chicken genomes are dispensable, many of them are involved in important
504 biological processes. Thus, their selective retainment or loss in a genome might be beneficial to
505 the chicken in its unique natural or domestic conditions. More specifically, although the
506 thousands of genes in the RJF genome that are either completely lost or pseudogenized in the
507 four indigenous chicken genomes might be essential for RJF to live in its unique ecological niche,
508 loss-of-function mutations of these genes in the indigenous chickens might be beneficial for
509 them to live in domestic conditions. Similarly, although the thousands of genes in the four
510 indigenous chicken genomes that are either completely lost or pseudogenized in the RJF
511 genome might be essential for the indigenous chickens to live in their domestic conditions, loss-
512 of-function mutations of these genes in the RJF might be beneficial for it to live in its unique
513 ecological niche.

514 Our results strongly suggest that loss-of-function mutations via complete gene loss and
515 pseudogenization are a result of natural/artificial selection. First, unlike synonymous mutations

516 along the true genes and pseudogenes, which are largely uniformly distributed along the CDSs
517 as expected for neutral mutations, the first pseudogenization mutations in pseudogenes are
518 strongly biased to the two ends of parental CDSs, particularly, the 5'-ends. Such biases would
519 facilitate eliminating the functions of parental genes. It is well-known that a promoter can
520 extend into the 5'-end of the CDS, thus mutations in the region may disrupt the promoter of the
521 gene [42]. Moreover, the closer a pseudogenization mutation is toward the 5'-end of the CDS,
522 the greater impact of the mutation could have on the gene function and the more likely the
523 gene would lose its function. Although pseudogenizations at the 3'-ends of CDSs can potentially
524 produce at least partially functional proteins, this is unlikely for at least most of the
525 pseudogenes that we found in the indigenous chicken genomes. This is because dN/dS ratios
526 for pseudogenes with the first pseudogenization sites occurring in the last 10% and in the first
527 10% of the CDSs are not significantly different, but both are significantly higher than those for
528 true genes. In other words, pseudogenizations in the 3'-ends of CDSs can be as effective as
529 pseudogenizations in the other parts of the CDSs to eliminate the functions of genes. We found
530 that 3'-ends of CDSs might harbor miRNA binding sites, and pseudogenization could disrupt
531 such binding sites, which might change post-transcriptional regulation, and thus, the functions
532 of genes.

533 Second, most pseudogenization mutations are fixed in the indigenous chicken
534 populations (Figures 6e~6h), and thus the mutations are likely under positive selection,
535 although the selection on the other parts of the pseudogenes is relaxed. This is possible since
536 most of the pseudogenes arose quite recently as indicated by their high sequence identity with
537 normal copies (Figures 6a~6d). Thus, unlike completely lost gene, pseudogenes have not had

538 enough time to be fully degraded after they are no longer under negative selection pressure. Of
539 course, with time the pseudogenes without any other functions will be eventually degraded
540 beyond recognition. Third, most of the missing genes in each assembled indigenous chicken
541 genomes also are missing in the corresponding population (Figures 6m~6p), i.e., the null alleles
542 are fixed, and thus are likely under positive selection. Finally, the occurring patterns of the
543 7,993 dispensable genes in the MRCA A1 segregate the four indigenous chickens and the RJF
544 (Figure 7a) in the exactly same way as the phylogenetic tree of the chickens constructed using
545 more than 6,000 essential avian protein-coding genes (Figure 7b). Taken together, these results
546 strongly suggests that loss-of-function mutations via pseudogenization and complete loss of
547 thousands of genes in RJF and the indigenous chickens since their divergence play critical roles
548 in chicken evolution and domestication. This conclusion is in contrast to an earlier report that
549 loss-of-function mutations play a little role in chicken domestication [8]. Complete gene loss
550 and pseudogenization are not unnecessarily exclusive forms of loss-of-function mutations. One
551 a gene is pseudogenized, it will be rapidly degraded as purifying selection on the pseudogene is
552 relaxed (Figure 2d).

553 It is worth pointing out that although it has been shown that deleterious mutations
554 might play roles in the domestication of plants [43, 44] and animals [45, 46], loss-of-function
555 mutations are not necessarily deleterious. In fact, it has been well documented that loss of
556 certain genes might be the results of adaptation of birds for flight [17, 47-49], of beef cattle for
557 meat production [21], and of humans for new abilities [39]. It has been proposed that loss-of-
558 function mutations may be important factors in rapid evolution as occurred during
559 domestication—the “less is more” hypothesis [20], which has since gained substantial evidence

560 supports [10, 11, 19, 50-57], including the data that we present in the current study. Thus, the
561 earlier conclusion that fixation of null alleles is not a common mechanism for phenotypic
562 evolution in chicken domestication [8, 9] might be incorrectly drawn because of the low quality
563 of earlier chicken genome assemblies, leading to the failure to detect inactivating mutations
564 such as large scale pseudogenizations and high variation of gene presence and absence [58].

565

566 **Materials and Methods**

567 **Chicken population:** The GRCg6a and quail (*coturnix japonica*) genomes and annotation files
568 were downloaded from the NCBI Genbank with accession numbers GCF_000002315.6 and
569 GCF_001577835.2, respectively. Our previously assembled four indigenous chicken genomes
570 were downloaded from the NCBI Genbank with the BioProject number PRJNA865263. All the
571 Illumina short DNA sequencing reads and RNA-seq reads of different tissues of the four
572 indigenous chickens were downloaded from the NCBI SRA database with accession number
573 PRJNA865247.

574 We downloaded the re-sequencing data of different RJF subspecies from the ChickenSD
575 database (<http://bigd.big.ac.cn/chickensd/>) with accession numbers listed in [24]. All the re-
576 sequencing data of the indigenous chickens were downloaded from the NCBI SRA database
577 with the accession number PRJNA893352. The sequences of 8,338 essential avian proteins were
578 obtained from the BUSCO aves_odb10 database [59].

579 **Protein-coding gene and pseudogene annotation:** We used a combination of homology-based
580 and RNA-seq-based method to annotate the protein coding genes and pseudogenes as
581 previously described [27].

582 **Single nucleotide variants calling:** We mapped short DNA reads from each individual chicken to
583 the GRCg7b reference genome using Bowtie (2.4.1), and called SNVs and small indels in each
584 individual chicken using GATK (4.1.6) [60].

585 **Calculation of alle frequencies of pseudogenes:** We computed allele frequencies of the first
586 pseudogenization mutation of each pseudogene in each chicken breeds using GATK (4.1.6) [60]
587 based on call SNVs and indels.

588 **Neighbor-joining tree construction:** We mapped the 8,338 essential avian proteins to each of
589 the five chicken's CDSs as well as the quail's CDSs using blastx (2.11.0) [61]. We selected the
590 6,744 genes with greater than 70% sequence identity with the essential avian proteins in each
591 of the six genomes to construct a neighbor-joining tree. Since it is hard to make multiple
592 alignments for very long sequences, we evenly divided the genes in each bird into 68 groups
593 (each contains about 100 genes). We then aligned sequences of the same group in the six birds
594 using Clustal Omega (1.2.4) [62]. We finally concatenated the 68 multiple alignments with a
595 fixed order and constructed a consensus neighbor-joining trees with 1,000 rounds of
596 bootstrapping using Phylip (3.697) [63]. The 6,744 essential avian genes that we used to
597 construct the tree is listed in Table S16.

598 **PCA and population structure analysis:** We used the SNPs called in each individual chicken of
599 each population to perform the PCA and population genetic structure analysis. PCA was
600 performed using PLINK (1.90) [64] with the default settings, and population genetic structure
601 analysis was inferred using ADMIXTURE (1.3.0) [65] with K=2, 3, ..., 15 using the default settings.

602 **Prediction of miRNA binding sites:** For each pair of pseudogene and its parental gene, we
603 scanned their CDSs and 1,000 bp downstream sequences as putative 3'-UTRs for miRNA binding

604 sites using RNAhybrid (2.1.2) [66]. The miRNAs predicted in the genome harboring the
605 pseudogene are used as the database for the scanning. We consider the putative binding sites
606 with a p-value<0.05.

607 **Calculation of gene body coverage ratio and missing rates of missing genes:** For each
608 assembled indigenous chicken breed genome, we collected functional version (reference genes)
609 of its missing genes from either the RJF genome (GRCg6a) or any of the other three indigenous
610 chicken genomes. We mapped the re-sequencing short reads of each individual chicken of each
611 breed (n= 25, 10, 23 and 23 for Daweishan, Hu, Piao and Wuding, respectively) to the reference
612 genes for the breed using Bowtie (2.4.1) [67] allowing no mismatch and gaps. For each missing
613 gene in the assembled genome of a breed, we computed the gene body coverage ratio as the
614 average length of the reference gene body covered by reads among all the individuals of the
615 breed over the length of the reference gene body. We also computed missing rate for each
616 missing gene in the assembled genome of a breed as the ratio of the number of individuals
617 whose re-sequencing reads cannot fully cover the reference gene body over the number of
618 total individuals of the breed.

619 **Acknowledgments**

620 This work was supported by the National Natural Science Foundation of China (U2002205 and
621 U1702232), Yunling Scholar Training Program of Yunnan Province (2014NO48), Yunling Industry
622 and Technology Leading Talent Training Program of Yunnan Province (YNWR-CYJS-2015-027),
623 Natural Science Foundation of Yunnan Province (2019IC008 and 2016ZA008), and Department
624 of Bioinformatics and Genomics of the University of North Carolina at Charlotte.

625

626 **Author contributions**

627 JJ, CG and ZS supervised and conceived the project; KW, XG, TD, SY², ZX, YL, ZJ, JZ, RZ, XZ, DG, LL,
628 QL and DW collected tissue samples and conducted molecular biology experiments; SW and SY¹
629 assembled and corrected the genomes; SW and ZS performed data analysis; and SW and ZS
630 wrote the manuscript.

631

632 **Data availability**

633 The annotation code and pipeline description are available at
634 <https://github.com/zhengchangslab/A-genome-assembly-and-annotation-pipeline>.

635
636 **Conflict of interest**

637 The authors declare that they have no conflict of interest.

638
639 **References**

640

- 641 1. *Sequence and comparative analysis of the chicken genome provide unique perspectives*
642 *on vertebrate evolution.* Nature, 2004. **432**(7018): p. 695-716.
- 643 2. Burt, D.W., *The chicken genome and the developmental biologist.* Mech Dev, 2004.
644 **121**(9): p. 1129-35.
- 645 3. Schmid, M., et al., *Third Report on Chicken Genes and Chromosomes 2015.* Cytogenet
646 Genome Res, 2015. **145**(2): p. 78-179.
- 647 4. Warren, W.C., et al., *A New Chicken Genome Assembly Provides Insight into Avian*
648 *Genome Structure.* G3 (Bethesda), 2017. **7**(1): p. 109-117.
- 649 5. Rhie, A., et al., *Towards complete and error-free genome assemblies of all vertebrate*
650 *species.* Nature, 2021. **592**(7856): p. 737-746.
- 651 6. Smith, J., et al., *Fourth Report on Chicken Genes and Chromosomes 2022.* Cytogenet
652 Genome Res, 2022. **162**(8-9): p. 405-528.
- 653 7. Lovell, P.V., et al., *Conserved synteny clusters of protein coding genes are missing in*
654 *birds.* Genome Biol, 2014. **15**(12): p. 565.
- 655 8. Rubin, C.J., et al., *Whole-genome resequencing reveals loci under selection during*
656 *chicken domestication.* Nature., 2010. **464**(7288): p. 587-91. doi: 10.1038/nature08832.
657 Epub 2010 Mar 10.
- 658 9. Wong, G.K., et al., *A genetic variation map for chicken with 2.8 million single-nucleotide*
659 *polymorphisms.* Nature., 2004. **432**(7018): p. 717-22.
- 660 10. Albalat, R. and C. Cañestro, *Evolution by gene loss.* Nat Rev Genet, 2016. **17**(7): p. 379-
661 91.
- 662 11. Murray, A.W., *Can gene-inactivating mutations lead to evolutionary novelty?* Curr Biol,
663 2020. **30**(10): p. R465-r471.
- 664 12. Monroe, J.G., et al., *The population genomics of adaptive loss of function.* Heredity
665 (Edinb), 2021. **126**(3): p. 383-395.
- 666 13. Steinworth, B.M., M.Q. Martindale, and J.F. Ryan, *Gene Loss may have Shaped the*
667 *Cnidarian and Bilaterian Hox and ParaHox Complement.* Genome Biol Evol, 2023.
668 **15**(1).
- 669 14. Zhao, X.W., et al., *Massive Loss of Transcription Factors Promotes the Initial*
670 *Diversification of Placental Mammals.* Int J Mol Sci, 2022. **23**(17).
- 671 15. Zheng, Z., et al., *Gene losses may contribute to subterranean adaptations in naked mole-*
672 *rat and blind mole-rat.* BMC Biol, 2022. **20**(1): p. 44.
- 673 16. Arunkumar, R., et al., *Natural selection has driven the recurrent loss of an immunity*
674 *gene that protects Drosophila against a major natural parasite.* Proc Natl Acad Sci U S
675 A, 2023. **120**(33): p. e2211019120.
- 676 17. Haimson, B., et al., *Natural loss of function of ephrin-B3 shapes spinal flight circuitry in*
677 *birds.* Sci Adv, 2021. **7**(24).

678 18. Caseys, C., *Loss of Function, a Strategy for Adaptation in Arabidopsis*. Plant Cell, 2019.
679 31(5): p. 935.

680 19. Xu, Y.C. and Y.L. Guo, *Less Is More, Natural Loss-of-Function Mutation Is a Strategy*
681 *for Adaptation*. Plant Commun, 2020. 1(6): p. 100103.

682 20. Olson, M.V., *When less is more: gene loss as an engine of evolutionary change*. Am J
683 Hum Genet, 1999. 64(1): p. 18-23.

684 21. Grobet, L., et al., *Molecular definition of an allelic series of mutations disrupting the*
685 *myostatin function and causing double-muscling in cattle*. Mamm Genome, 1998. 9(3): p.
686 210-3.

687 22. Wei, S., et al., *A loss-of-function mutant allele of a glycosyl hydrolase gene has been co-*
688 *opted for seed weight control during soybean domestication*. J Integr Plant Biol, 2023.
689 65(11): p. 2469-2489.

690 23. Torkamaneh, D., et al., *Identification of candidate domestication-related genes with a*
691 *systematic survey of loss-of-function mutations*. Plant J, 2018. 96(6): p. 1218-1227.

692 24. Wang, M.S., et al., *863 genomes reveal the origin and domestication of chicken*. Cell Res,
693 2020. 30(8): p. 693-701.

694 25. Miao, Y.W., et al., *Chicken domestication: an updated perspective based on*
695 *mitochondrial genomes*. Heredity (Edinb), 2013. 110(3): p. 277-82.

696 26. Wu, S., et al., *High quality assemblies of four indigenous chicken genomes and related*
697 *functional data resources*. Sci Data, 2024. 11(1): p. 300.

698 27. Siwen Wu, T.D., Sisi Yuan, Shixiong Yan, Zhiqiang Xu, Yong Liu, Zonghui Jian,
699 Jingying Zhao, Rouhan Zhao, Xiannian Zi, Dahai Gu, Lixian Liu, Qihua Li, Dong-Dong
700 Wu, Zhengchang Su, Junjing Jia, Changrong Ge, Kun Wang, *Annotations of four high-*
701 *quality indigenous chicken genomes identify more than one thousand missing genes in*
702 *sub-telomeric regions with high G/C contents*. BioRxiv, 2024.

703 28. Consortium, C.S.a.A., *Initial sequence of the chimpanzee genome and comparison with*
704 *the human genome*. Nature, 2005. 437(7055): p. 69-87.

705 29. Guo, Y., et al., *Researching on the fine structure and admixture of the worldwide chicken*
706 *population reveal connections between populations and important events in breeding*
707 *history*. Evol Appl, 2022. 15(4): p. 553-564.

708 30. Hurles, M., *Gene duplication: the genomic trade in spare parts*. PLoS Biol, 2004. 2(7): p.
709 E206.

710 31. Zhang, Z.D., et al., *Identification and analysis of unitary pseudogenes: historic and*
711 *contemporary gene losses in humans and other primates*. Genome Biol, 2010. 11(3): p.
712 R26.

713 32. Derkx, M.F.L., et al., *A survey of functional genomic variation in domesticated chickens*.
714 Genet Sel Evol, 2018. 50(1): p. 17.

715 33. Parmley, J.L. and L.D. Hurst, *How do synonymous mutations affect fitness?* Bioessays,
716 2007. 29(6): p. 515-9.

717 34. Ng, P.C., et al., *Genetic variation in an individual human exome*. PLoS Genet, 2008. 4(8):
718 p. e1000160.

719 35. Jonas, S. and E. Izaurrealde, *Towards a molecular understanding of microRNA-mediated*
720 *gene silencing*. Nat Rev Genet, 2015. 16(7): p. 421-33.

721 36. Duret, L. and N. Galtier, *Biased gene conversion and the evolution of mammalian*
722 *genomic landscapes*. Annu Rev Genomics Hum Genet, 2009. 10: p. 285-311.

723 37. *Sequence and comparative analysis of the chicken genome provide unique perspectives*
724 *on vertebrate evolution.* Nature., 2004. **432**(7018): p. 695-716.

725 38. Yu, Z., et al., *Analysis of the role of retrotransposition in gene evolution in vertebrates.*
726 BMC Bioinformatics, 2007. **8**: p. 308.

727 39. Wang, X., W.E. Grus, and J. Zhang, *Gene losses during human origins.* PLoS Biol, 2006.
728 **4**(3): p. e52.

729 40. MacArthur, D.G., et al., *A systematic survey of loss-of-function variants in human*
730 *protein-coding genes.* Science, 2012. **335**(6070): p. 823-8.

731 41. Sisu, C., et al., *Transcriptional activity and strain-specific history of mouse pseudogenes.*
732 Nat Commun, 2020. **11**(1): p. 3695.

733 42. Aguezzoul, M., A. Andrieux, and E. Denarier, *Overlap of promoter and coding*
734 *sequences in the mouse STOP gene (Mtap6).* Genomics, 2003. **81**(6): p. 623-7.

735 43. Renaut, S. and L.H. Rieseberg, *The Accumulation of Deleterious Mutations as a*
736 *Consequence of Domestication and Improvement in Sunflowers and Other Compositae*
737 *Crops.* Mol Biol Evol, 2015. **32**(9): p. 2273-83.

738 44. Lu, J., et al., *The accumulation of deleterious mutations in rice genomes: a hypothesis on*
739 *the cost of domestication.* Trends Genet, 2006. **22**(3): p. 126-31.

740 45. Cruz, F., C. Vilà, and M.T. Webster, *The legacy of domestication: accumulation of*
741 *deleterious mutations in the dog genome.* Mol Biol Evol, 2008. **25**(11): p. 2331-6.

742 46. Xie, X., et al., *Accumulation of deleterious mutations in the domestic yak genome.* Anim

743 Genet, 2018. **49**(5): p. 384-392.

744 47. Daković, N., et al., *The loss of adipokine genes in the chicken genome and implications*
745 *for insulin metabolism.* Mol Biol Evol, 2014. **31**(10): p. 2637-46.

746 48. Mello, C.V. and P.V. Lovell, *Avian genomics lends insights into endocrine function in*
747 *birds.* Gen Comp Endocrinol, 2018. **256**: p. 123-129.

748 49. Krchliková, V., et al., *Repeated MDA5 Gene Loss in Birds: An Evolutionary Perspective.*
749 Viruses, 2021. **13**(11).

750 50. Satoh, T., *Bird evolution by insulin resistance.* Trends Endocrinol Metab, 2021. **32**(10): p.
751 803-813.

752 51. Salve, B.G., A.M. Kurian, and N. Vijay, *Concurrent loss of ciliary genes WDR93 and*
753 *CFAP46 in phylogenetically distant birds.* R Soc Open Sci, 2023. **10**(8): p. 230801.

754 52. Hecker, N., V. Sharma, and M. Hiller, *Convergent gene losses illuminate metabolic and*
755 *physiological changes in herbivores and carnivores.* Proc Natl Acad Sci U S A, 2019.
756 **116**(8): p. 3036-3041.

757 53. Jongepier, E., et al., *Convergent Loss of Chemoreceptors across Independent Origins of*
758 *Slave-Making in Ants.* Mol Biol Evol, 2022. **39**(1).

759 54. Monroe, J.G., et al., *Drought adaptation in Arabidopsis thaliana by extensive genetic*
760 *loss-of-function.* Elife, 2018. **7**.

761 55. Behe, M.J., *Experimental evolution, loss-of-function mutations, and "the first rule of*
762 *adaptive evolution".* Q Rev Biol, 2010. **85**(4): p. 419-45.

763 56. Farkas, Z., et al., *Gene loss and compensatory evolution promotes the emergence of*
764 *morphological novelties in budding yeast.* Nat Ecol Evol, 2022. **6**(6): p. 763-773.

765 57. Oh, H.J., et al., *Loss of gene function and evolution of human phenotypes.* BMB Rep,
766 2015. **48**(7): p. 373-9.

767 58. Andersson, L., *Molecular consequences of animal breeding.* Curr Opin Genet Dev, 2013.
768 **23**(3): p. 295-301.

769 59. Simão, F.A., et al., *BUSCO: assessing genome assembly and annotation completeness*
770 *with single-copy orthologs*. Bioinformatics, 2015. **31**(19): p. 3210-2.

771 60. McKenna, A., et al., *The Genome Analysis Toolkit: a MapReduce framework for*
772 *analyzing next-generation DNA sequencing data*. Genome Res, 2010. **20**(9): p. 1297-303.

773 61. Altschul, S.F., et al., *Basic local alignment search tool*. J Mol Biol, 1990. **215**(3): p. 403-
774 10.

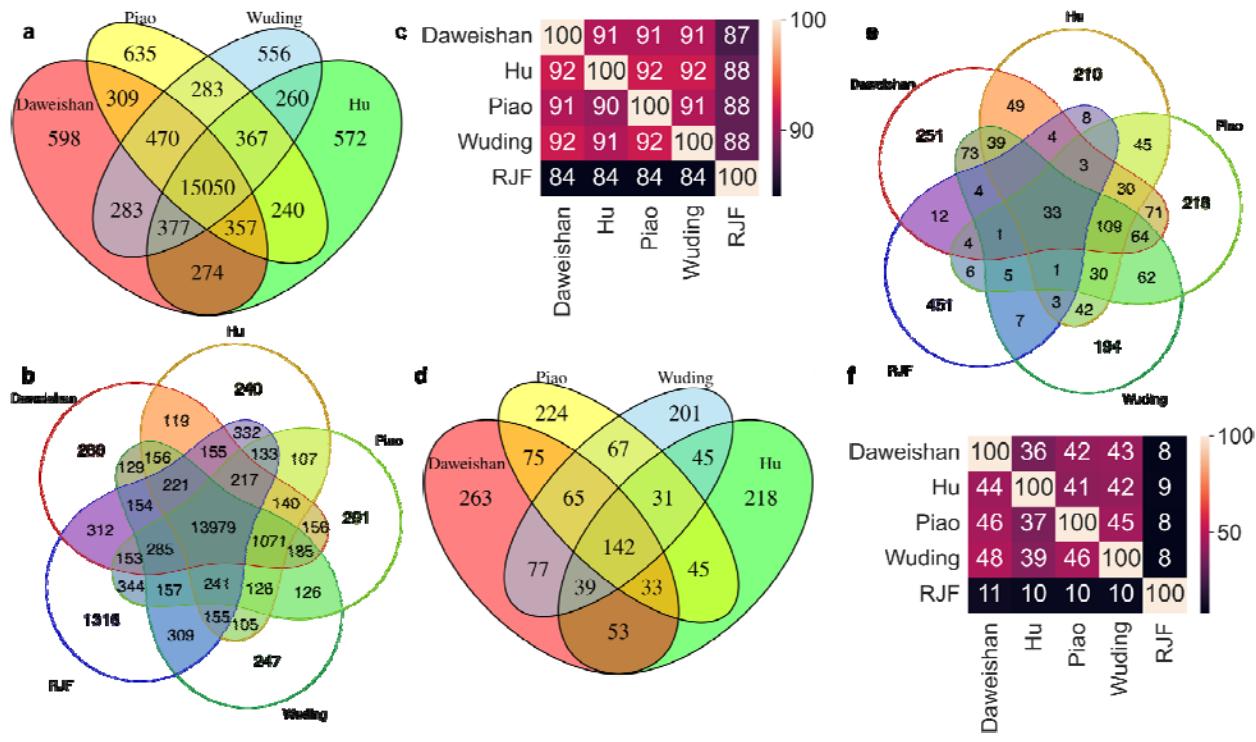
775 62. Sievers, F. and D.G. Higgins, *Clustal Omega for making accurate alignments of many*
776 *protein sequences*. Protein Sci, 2018. **27**(1): p. 135-145.

777 63. Felsenstein, J., *Comparative methods with sampling error and within-species variation:*
778 *contrasts revisited and revised*. Am Nat, 2008. **171**(6): p. 713-25.

779 64. Chen, Z.L., et al., *A high-speed search engine pLink 2 with systematic evaluation for*
780 *proteome-scale identification of cross-linked peptides*. Nat Commun, 2019. **10**(1): p.
781 3404.

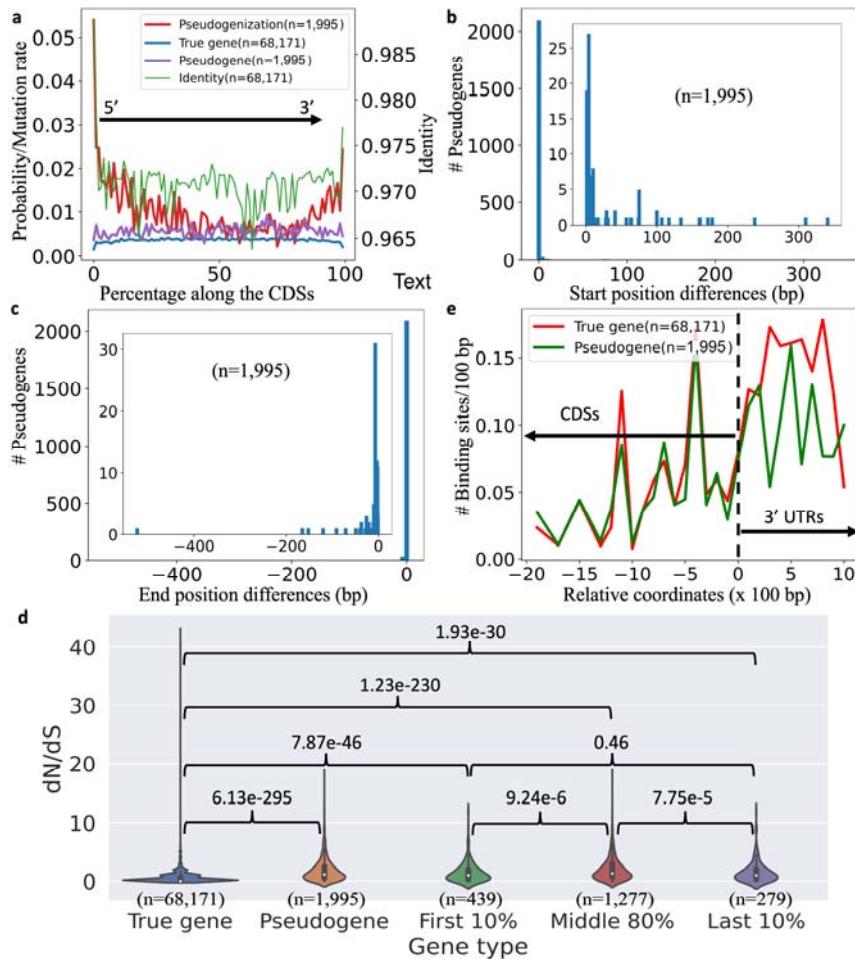
782 65. Alexander, D.H., J. Novembre, and K. Lange, *Fast model-based estimation of ancestry in*
783 *unrelated individuals*. Genome Res, 2009. **19**(9): p. 1655-64.

784 66. Krüger, J. and M. Rehmsmeier, *RNAhybrid: microRNA target prediction easy, fast and*
785 *flexible*. Nucleic Acids Res, 2006. **34**(Web Server issue): p. W451-4.


786 67. Langmead, B. and S.L. Salzberg, *Fast gapped-read alignment with Bowtie 2*. Nat
787 Methods, 2012. **9**(4): p. 357-9.

788

789 Table 1: Summary of annotated pseudogenes in the four indigenous chicken genomes in
790 comparison with those in GRCg6a


Chicken	Homology-based method		# NAG-supported pseudogenes	# Originally annotated pseudogenes	# Pseudogenes added	Final pseudogenes		# Transcribed pseudogenes
	Gene-supported	Pseudogene-supported				#	#	
	# Pseudogenes	Pseudogenes		Processed	Unprocessed			
Daweishan	622	94	31	-	-	63	684	713
Hu	486	85	35	-	-	50	556	576
Piao	564	83	35	-	-	55	627	655
Wuding	557	86	24	-	-	48	619	633
RJF(GRCg6a)	-	-	-	262	280	80	462	-

791

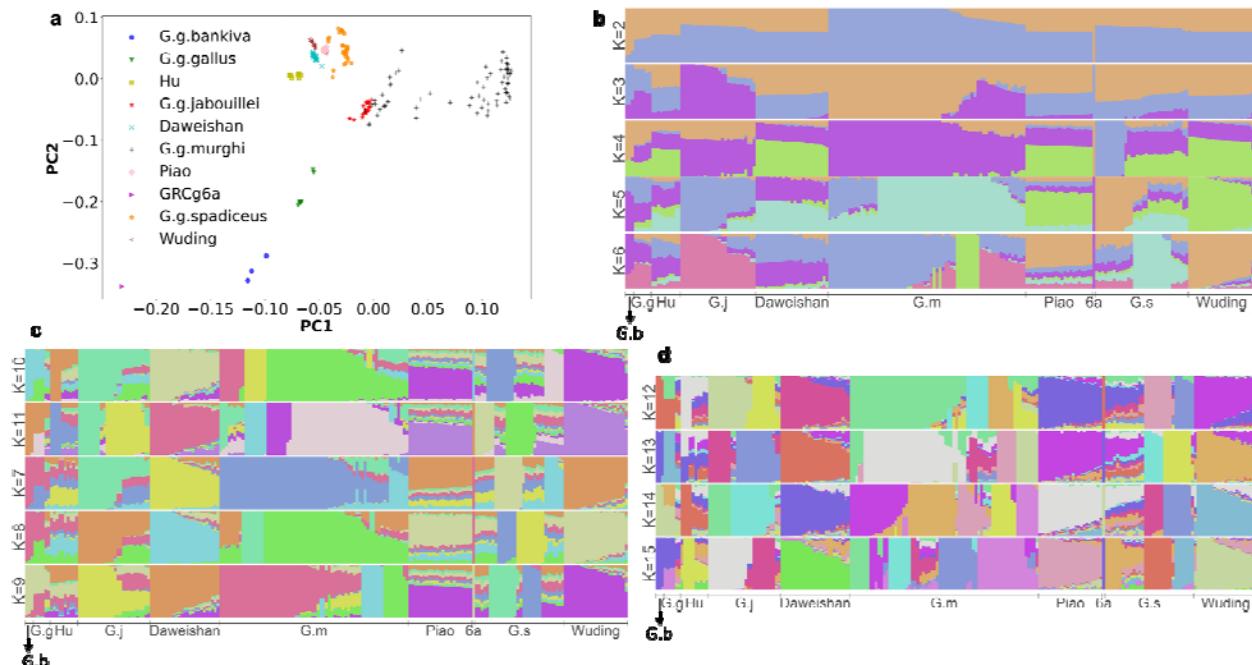
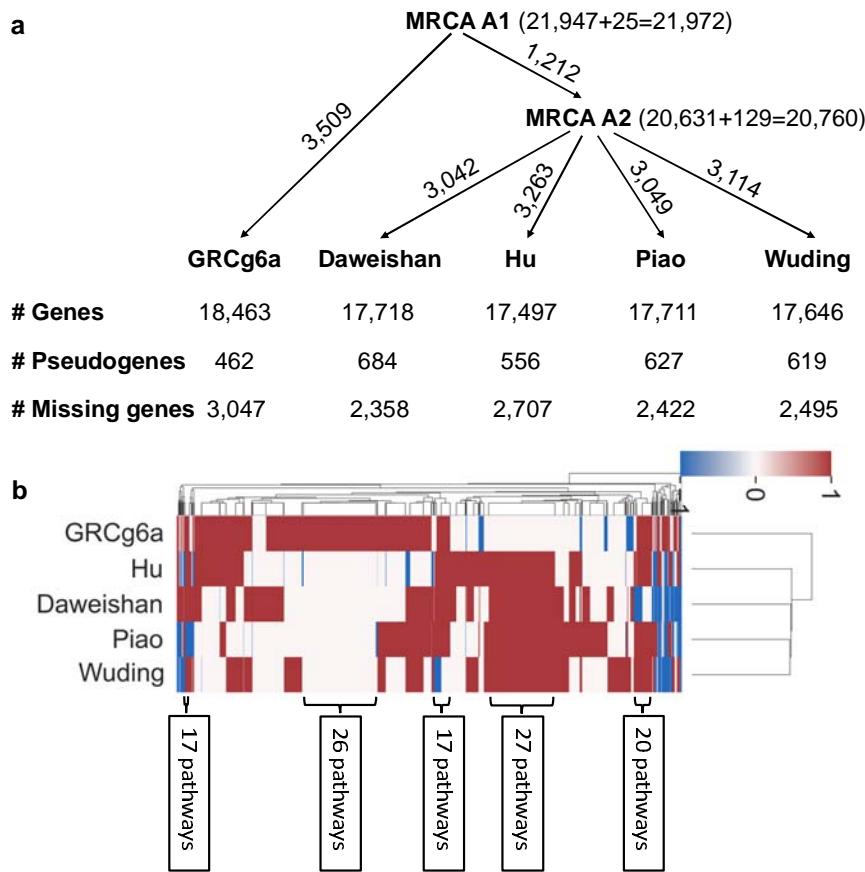

792
793
794
795
796
797
798

Figure 1. Comparison of protein-coding genes and pseudogenes among the five chicken breeds.
a. Venn diagram of the protein-coding genes of the four indigenous chickens. **b.** Venn diagram of the protein-coding genes of the five chickens. **c.** Comparison of the protein-coding genes among each pair of the five chickens. **d.** Venn diagram of the pseudogenes of the four indigenous chickens. **e.** Venn diagram of the pseudogenes of the five chickens. **f.** Comparison of the pseudogenes among each pair of the five chickens.


799

800 **Figure 2.** Pseudogenization mutations tend to occur at the two ends of CDSs. **a.** Probability of
 801 first pseudogenization mutations (red line) in 100 evenly divided CDS segments from the 5'-
 802 ends to the 3'-ends of the parental genes of the pseudogenes in the four chickens, mean rates
 803 of synonymous mutations in 100 evenly divided CDS segments from the 5'-ends to the 3'-ends
 804 of the true genes (blue line) and pseudogenes (purple) in the four chickens, and mean identity
 805 of the true genes in 100 evenly divided CDS segments from the 5'-ends to the 3'-ends of the
 806 genes (green line). **b.** Start position of the “CDS” of the pseudogenes in the four chickens with
 807 respect to the nucleotide positions of their parental genes starting with 0 with the downstream
 808 positions being positive integers. **c.** End positions of the “CDS” of the pseudogenes in the four
 809 chickens with respect to the nucleotide positions of their parental genes ending with 0 with the
 810 upstream positions being negative integers. **d.** Violin plots of the dN/dS values of all true genes,
 811 all pseudogenes, pseudogenes with the first pseudogenization occurring in the first 10%, the
 812 middle 80% and the last 10% of the CDSs in the four indigenous chickens. **e.** Number of
 813 predicted miRNA binding sites per 100pb along the CDSs and 3' UTRs of the true genes (red line)
 814 and pseudogenes (green line). In the figure, ‘0’ represents the end positions of the CDSs, the
 815 positive numbers represent the relative positions of 1,000 bp sequences downstream of the
 816 end of CDSs, and the negative numbers represent the relative positions of the CDSs with
 817 respect to the ends of CDSs.

818
819
820
821
822

Figure 3. Analysis of frequency spectrums of SNPs. a. Principal component analysis of the RJJF subspecies, indigenous chickens and the RJJF individual (GRCg6a) based on their SNP profiles. b-d. Genetic structures of the RJJF subspecies, indigenous chickens and the RJJF individual (GRCg6a) estimated using the ADMIXTURE program for $K=2, 3, \dots, 15$.

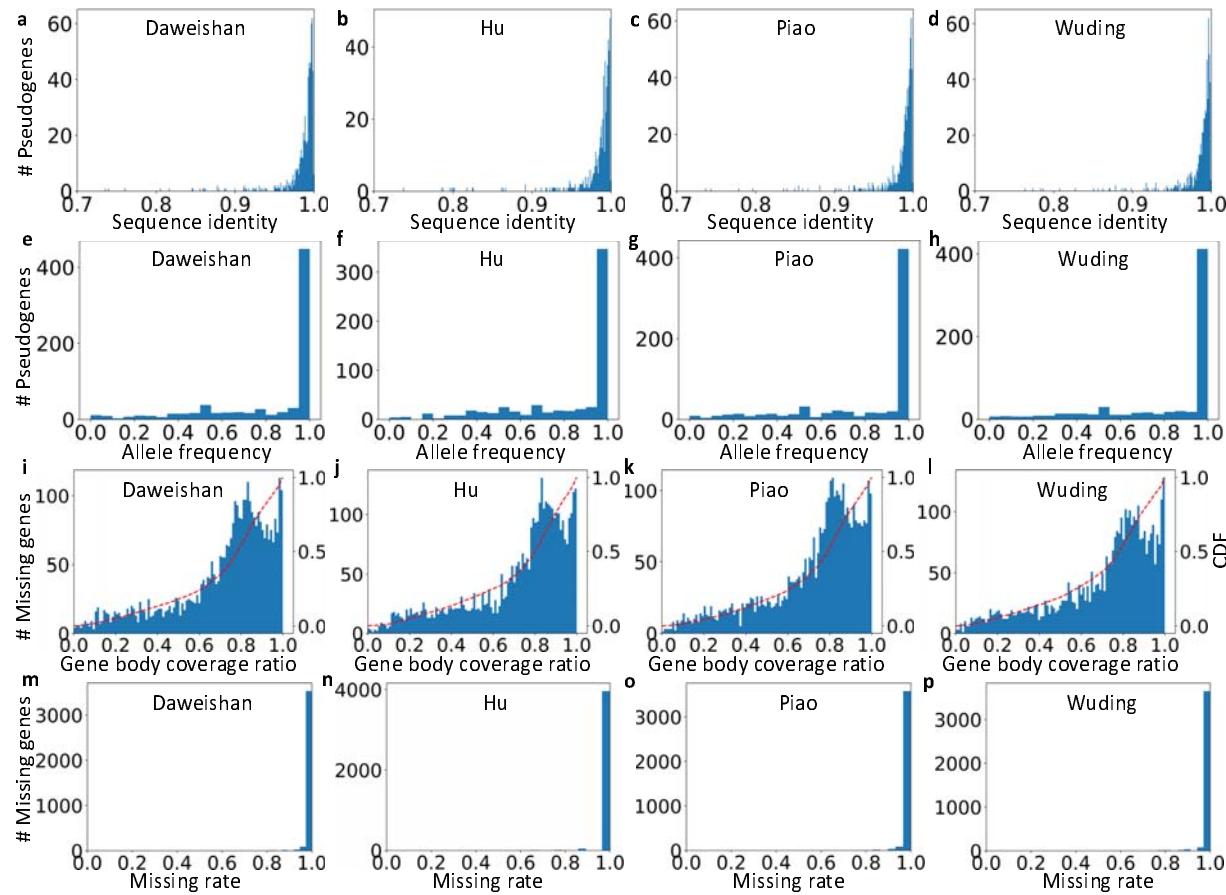

823
824
825
826
827
828
829

Figure 4. Evolutionary pattern of the five chickens. **a.** A hypothetical scenario for loss-of-functions of the five chickens since their divergence from MRCA A1 and A2. **b.** Heatmap of two-way hierarchical clustering of the 7,993 dispensable genes in MRCA A1 that are either completely lost or pseudogenized in at least one of the five indigenous chicken genomes based on their appearance as an intact form (1, brown), absence (0, white) and as a pseudogenized form (-1, blue) in the five chicken genomes.

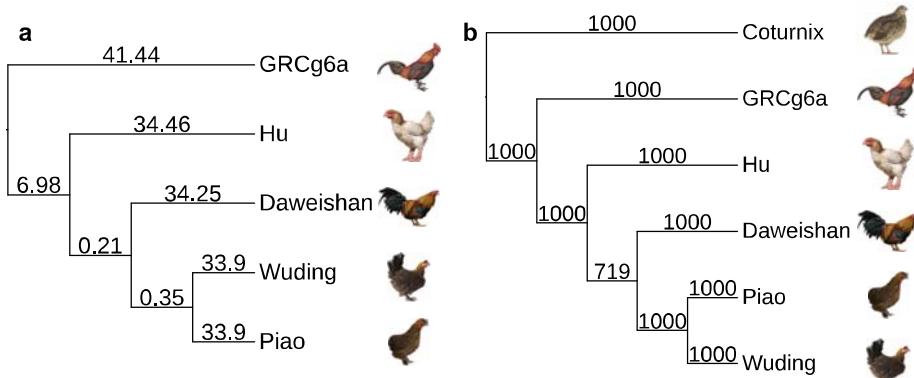

830
831
832
833
834
835
836
837

Figure 5. Distribution of pseudogenes and missing genes on each chromosome of the four indigenous chicken genomes. a, b. Number of pseudogenes (a) and missing genes (b) on each chromosome of the chicken genomes. **c, d.** Density of pseudogenes (c) and missing genes (d) on each chromosome of the chicken genomes. **e, f.** Ratio of number of pseudogenes/genes (e) and missing genes/genes (f) on each chromosome of the chicken genomes. **g.** Comparison of G/C contents of true genes, pseudogenes and missing genes in the chicken genomes. Statistical tests were done using one-tailed t-test.

838
839
840
841
842
843
844
845

Figure 6. Most loss-of-function mutations are fixed in the indigenous chicken populations. **a-d.** Number of pseudogenes in each of the indigenous chicken genomes with the indicated identity with their parental genes. **e-h.** Number of pseudogenes with the indicated pseudogenization rate in the chicken populations. **i-l.** Number of missing genes in each of the indigenous chicken genomes with the indicated reads coverage on their functional versions. The dashed red lines are the CDFs of coverage ratios. **m-p.** Number of missing genes with the indicated missing rate in the chicken populations.

846
847
848
849
850
851
852

Figure 7. Evolutionary relationships of the five chickens. **a.** Neighbor-joining phylogenetic tree of the five chickens, constructed using the occurring patterns of the 7,993 dispensable genes in their genomes. The numbers on the branches are Euclid distance between the pattern vectors. **b.** Neighbor-joining phylogenetic tree of the five chickens, constructed using the 6,744 essential protein-coding genes in their genomes and the quail genome. The numbers on the nodes are bootstrapping value for 1,000 repeats.