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Abstract 
The motor learning theory anticipates that cerebro-cerebellar loops perform sensorimotor prediction thereby 
regulating motor control. This operation has been identified during action execution (AE) and observation (AO) but 
the causal interaction between the cerebellum and cerebral cortex remained unclear. Here we used Dynamic Causal 
Modelling (DCM) to study functional MRI (fMRI) data obtained during a squeeze ball task in either the AE or AO 
conditions. In both cases, active regions included bilateral primary visual cortex (V1), left primary motor cortex (M1), 
left supplementary motor and premotor cortex (SMAPMC), left cingulate cortex (CC), left superior parietal lobule (SPL), 
and right cerebellum (CRBL).  AE and AO networks showed the same fixed effective connectivity, with pathways 
between V1, CRBL, SMAPMC and CC wired in a closed loop. However, the cerebellar communication towards the 
cerebral cortex switched from excitatory in AE to inhibitory in AO. Moreover, in AE only, signal modulation was non-
linear from SMAPMC to CRBL and within the CRBL self-connection, supporting the role of the CRBL in elaborating 
motor plans received from SMAPMC. Thus, the need for motor planning and the presence of a sensorimotor feedback 
in AE discriminate the modality of forward control operated by the CRBL on SMAPMC. While the underlying circuit 
mechanisms remain to be determined, these results reveal that the CRBL differentially controls the 
excitatory/inhibitory dynamics of inter-regional effective connectivity depending on its functional engagement, 
opening new prospective for the design of artificial sensorimotor controllers and for the investigation of neurological 
diseases. 
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1 Introduction  
Motor tasks trigger an intense neuronal activity between brain areas engaging multiple cortico-cerebellar 

loops. Theory anticipates that  the cerebellum (CRBL) plays a key role in motor control and planning as well as in 
cognitive processing, whereby it performs error detection and computes functional predictions1. To perform a task, 
the CRBL is thought to use cortical instructions for calculating the inverse model needed for the action, which is then 
transferred back to cortical regions for its execution. This sensorimotor control process operates in forward mode and 
makes the study of cerebro-cerebellar loops fundamental for understanding brain function and dynamics2,3. 

Functional magnetic resonance imaging (fMRI) protocols have recently been developed to investigate how 
motor tasks shape the recorded Blood Oxygen Level Dependent (BOLD) signal in different brain regions. The effect of 
grip force (GF) was studied in squeeze ball visuomotor tasks during action execution (AE) and action observation (AO, 
i.e., subjects observed a video of the same task rather than actually squeezing the ball)4,5. Results of task performance 
shed light on how sensorimotor processes are physiologically integrated and are affected by the presence of 
neurological diseases (for example, the same AE task showed an altered BOLD-GF relation in multiple sclerosis, MS)6. 
During AE and AO, cerebellar and cortical areas involved in motor planning, motor execution, visual processing, and 
associative functions, were activated with different modulations of the BOLD signal by the applied GF. Notably, the 
primary motor cortex showed a linear positive BOLD-GF relation, while cortical areas involved in motor planning and 
motor control showed both linear and non-linear BOLD-GF relations5. Despite these studies, what remains unknown 
is the causal influence between pairs of active regions, which is essential to understand network interactions in AE and 
AO and to gain insights on role that the CRBL plays in forward control loops. Moreover, the analysis of the shape of 
the BOLD-GF relation measured at the macroscale level must reflect microscale neuronal phenomena, so that non-
linearities in the system inform about the cellular mechanisms involved. Indeed, for example, single cell recordings 
demonstrated that capillary vasodilation in response to different frequencies of neuronal stimulation is non-linear in 
the cerebellar vermis and hemispheres7. Bridging the gap between macro and micro scale is therefore essential8. 

Recently, neuroinformatic frameworks have offered the opportunity to investigate brain dynamics on multiple 
scales by integrating computational models of neuronal activity with ensemble recordings of brain function (such as 
BOLD signals)8–10 In particular, modelling revealed that the cerebellum could control cortical dynamics and perform 
forward control operations2,3. In this context, Dynamic Causal Modelling (DCM) represents a convenient framework 
that allows us to link neuronal activity to the BOLD signal, estimating the causal influence between regions involved in 
tasks such as AE and AO11. DCM convolves a neural model with an haemodynamic response function to estimate the 
BOLD signal response generated by neuronal mechanisms; its mathematical framework relies on Bayesian inference12, 
which consists in updating parameter priors at the neuronal level, by iteratively comparing a simulated BOLD signal 
with the observed data11,13. The output, called effective connectivity, quantifies the effect of one brain region onto 
another for a given task. Effective connectivity is computed as the sum of a fixed effect (reporting whether two regions 
are causally connected or not) and a modulation term (reporting whether connectivity is modulated by the task and 
how). Moreover, DCM indicates the connection directionality and measures its excitatory/inhibitory nature and 
strength.  

In this study we have used DCM to investigate the causal interaction between regions involved in AE and AO 
during a visually guided squeeze ball task. We assessed effective connectivity between critical brain areas, including 
the bilateral primary visual cortex (V1), the left primary motor cortex (M1), the left supplementary motor and 
premotor cortex (SMAPMC), the left cingulate cortex (CC), the left superior parietal lobule (SPL), and the right 
cerebellum (CRBL). From this study the CRBL emerges as a key region that not only intervenes in the execution of a 
motor plan but that it is essential for predicting and updating the plan in forward mode. The CRBL excites SMAPMC 
through a non-linear modulation in AE but, strikingly, it inhibits SMAPMC through a linear modulation in AO, probably 
because the sensory feedback is not present and there is no need for an inverse model of the motor action. This study 
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supports the forward control theory of the CRBL implying different mechanisms depending on the task in which the 
cortico-cerebellar loops are engaged.  

2 Results  

The fMRI recordings of subjects engaged in AE and AO squeeze ball tasks were analysed using DCM to quantify the 
causal dependencies between nodes through the identification of BOLD modulation and directional differences. 
Multiple network models were hypothesised and then scored with Random Effect Analysis Bayesian Model Selection 
(RFX-BMS). We first considered network models with fixed effective connectivity (Step1) and then we introduced 
modulation on the fixed effective connectivity (Step2). (See Methods Figure 4 and 5 for details). 
 

2.1 Fixed Effective Connectivity (Step1) 

RFX-BMS identified a specific network model as the winning model with a probability > 90% of explaining the observed 
data better than other models for both AE and AO (Figure 1A.1, A.2). This model indicates that the driving region V1 
is connected to motor areas both for planning (CRBL and SMAPMC) and execution (M1). From the Step1 winning 
model, it emerged that there is a clear visuo-to-plan functional loop, including bidirectional connections between V1, 
CRBL, SMAPMC, and CC plus a cerebellar self-connection; M1 sits right in the middle of this visuo-to-plan loop, with 
bidirectional connections to all three regions (CRBL, SMAPMC and V1) plus bidirectional connections to SPL (Figure 
1A.3). 

The fixed effective connectivity strength (Hz) and its excitatory/inhibitory nature for each pair of regions are 
represented in Figure 1 B.1 and B.2 for AE and AO, resulting in non-symmetric connection matrices between cortical 
regions and the CRBL. Self-connectivity of all regions (reported on the diagonal) turned out to be inhibitory with a 
comparable strength for both AE and AO. Extrinsic (i.e., between-region) connectivity showed a predominance of 
excitation in both AE (73%) and AO (66 %) (Figure 1B.1, B.2). The strongest excitatory connections were from V1 to 
SMAPMC both in AE and AO, and from V1 to M1 in AE. A number of changes were observed between the excitatory 
and inhibitory nature of connections between some regions in AE or AO (highlighted with * in Figure 1.B): 1) SPL to 
M1 was inhibitory in AE and excitatory in AO; 2) SMAPMC inward and outward connections were different in AE 
compared to AO: the fixed effective connectivity from CC to SMAPMC was excitatory in AE but inhibitory in AO; 3) The 
most striking changes in the nature of the fixed effective connectivity involved the CRBL. Indeed, the closed loop 
between CRBL and SMAPMC was excitatory in AE and inhibitory in AO. Moreover, the extrinsic connectivity from the 
CRBL to the driving region V1 was inhibitory in AE and excitatory in AO. 

2.2 Modulation of fixed effective connectivity (Step2) 

Different modulations on the fixed effective connectivity between regions of the visuo-to-plan loop were 
demonstrated in AE and AO. The CRBL-SMAPMC loop was central in influencing motor planning with non-linear effects 
in AE but not in AO (Figure 2). For the analysis, this loop was split into two components: a forward pathway from V1 
to CC and a backward pathway from CC to V1 (Figure 2). 

 Action Execution  

RFX-BMS selected the winning model of each family with a probability higher than 70%, with an overall winning model 
identified with a probability of >90% (Figure 2A). 

The winning model provided the best explanation of how BOLD-GF relations were modulated from one region to 
another in the visuo-to-plan loop (Figure 2A.1). The Step2 winning model showed an inhibitory linear modulation in 
the forward pathway from V1 to CRBL (Figure 2A.2), from V1 to SMAPMC as well as from CRBL to SMAPMC.  

SMAPMC instead had a linear excitatory effect on the fixed effective connectivity strength between CC and SMAPMC, 
bidirectionally.  
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Non-linear modulatory effects were detected along the backward pathway, including the following connections: from 
SMAPMC to CRBL as well as within the CRBL self-connection (Figure 2A.3). 

Action Observation 

RFX-BMS selected the winning model of each family with a probability higher than 60%, with an overall winning model 
identified with a probability of >90% for the forward and 60% for the backward pathway (Figure 2B). 

The winning model showed that the BOLD-GF relation was modulated linearly from one region to another (Figure 
2B.1). In the visuo-to-plan forward pathway, CRBL turned excitation coming from V1 into inhibition towards SMAPMC 
and CC (Figure 2B.2). The backward pathway resulted in a fully excitatory modulation from one region to another with 
the only exception in the CRBL self-connectivity (Figure 2B.3). 

Details of each family of models included in these analysis as well as results of RFX-BMS are reported in the 
supplementary material (Figures Sup.1-Sup.4). 

3 Discussion 

This work demonstrates the causal interaction between the CRBL and the cerebral cortex in two different 
functional conditions entailing the execution or observation of an action (AE or AO). The CRBL turns out to play a key 
role in shaping the effective connectivity of the loop 12 and to control it differentially depending on whether functional 
activation happens because of executing or observing a task. 

Previous work looked at regional responses to task performance  determining functional connectivity without 
questioning causality5,14. It is well known that effective connectivity, as quantified by DCM, yields asymmetric 
connections that allows to explore not only the strength of the effective connectivity but also its inhibitory and 
excitatory nature. Indeed, the effective connectivity of the motor network unveiled patterns characterized by an 
excitatory response in AE and an inhibitory response in AO. Moreover, modulations demonstrated a linear 
transformation of the BOLD-GF relation across the visuo-to-plan forward pathways, and non-linear transformations in 
the backward pathway between SMAPMC and the CRBL and within the CRBL self-connectivity only in AE. The 
interaction between these regions showed that there is a further elaboration of the BOLD-GF response, which changes 
the complexity of the polynomial signal function (e.g., from 1st order to 2nd order polynomial).  

Investigating linearities and non-linearities is particularly interesting, since it can disentangle the role of each 
region activated during a task. We can interpret this as the CRBL working in predictive mode in AE, where the forward 
connection between the CRBL and SMAPMC remains linear to transfer an updated motor plan to cortical regions. This 
is different in AO, where the CRBL self-excitation or self-inhibition are reversed and all modulations are linear, possibly 
because of a lack of sensory feedback, as discussed in detail below. Overall, the emerging role of the CRBL is consistent 
with the theory that the CRBL uses internal models to adapt both motor actions and mental activities according to the 
context, operating as a forward controller that executes basic computational functions, namely timing, prediction, and 
sequence learning1,15,16. 
 

3.1 Fixed Effective Connectivity (Step1) 

Distinct regulatory mechanisms governing communication flow during AE and AO were revealed through the 
identification of contrasting excitatory and inhibitory connectivity patterns. Specifically, the cerebro-cerebellar motor 
planning circuit, encompassing the CRBL, SMAPMC, and the CC, showed increased activity in AE and a decreased 
activity in AO. This dichotomy occurs despite the loop being functionally engaged in both scenarios, highlighting the 
unique neuronal processes underlying each function. For instance, the cerebro-cerebellar motor planning loop (i.e., 
CRBL - SMAPMC - CC) exhibited excitation in AE but inhibition in AO; this is in line with the concept that the motor 
plan needed to perform an action is facilitated by the CRBL excitation of SMAPMC1,17.On the other hand, during 
observation there is no need for a motor plan, hence the CRBL inhibits SMAPMC. From a microscale perspective, this 
indicates that there is a different recruitment of neuronal populations depending on executing or only observing an 
action. While this information is available through DCM analysis, microscale heterogeneity linking functional activity 
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to excitatory or inhibitory neurons may not be taken into consideration in macroscale connectivity studies; our results, 
indeed, supports the need for multi-scale approaches in line with previous literature8,18,19. 

3.2 Modulation on Fixed Effective Connectivity (Step2) 

The communication flow was extensively investigated to understand how the BOLD-GF modulation 
propagated between regions. Our key result is that non-linear modulations on the fixed effective connectivity were 
detected only in AE. This suggests that in the AE forward pathway, SMAPMC receives signals linearly from V1 and the 
motor plan is therefore initiated; SMAPMC then sends back signals non-linearly to the CRBL that also receives signals 
from V1, linearly. The emergent finding of a cerebellar non-linear self-connectivity may reflect the role of the CRBL as 
a forward controller in AE. Indeed, as summarized in figure 2A.1, a plausible scenario is that the CRBL is activated by 
contextual information coming from the visual system that provides feedback about AE; it activates internal inverse 
models that are compared to the motor plan received from SMAPMC; it then corrects the plan and feeds it back to 
SMAPMC for a continuous update of the motor plan 8. In other words, the CRBL receives a continuous input from V1 
about the AE feedback. V1 also sends signals to SMAPMC that makes the best guess about the motor plan and sends 
it to the CRBL, non-linearly. The CRBL compares the two, performs error detection and internally updates the plan 
with motor prediction. It then sends the updated plan to SMAPMC, linearly. 

 
At the microscale level, these non-linear modulations on the fixed effective connectivity are probably originating from 
the neuronal activity of SMAPMC, with bursting for motor control and/or adaptation for motor learning. Moreover, 
the non-linear modulation on CRBL self-connectivity could be the result of a continuous update of the motor plan by 
the CRBL itself. This interpretation comes from computational models of the CRBL where it has been shown that, e.g., 
the burst and pause patterns of Purkinje Cells are non-linear with respect to their input and are essential for learning 
and for error processing 20,21. From experimental models, we also know that there are non-linear relations between 
the frequency of excitation of cerebellar mossy fibers and the vasodilation that is at the basis of local neurovascular 
coupling 7 
 
During AO, instead, modulation of fixed effective connectivity between or within regions was always linear, reflecting 
that predictive/control functions are less required1,20 . As motor planning and action execution are not needed in AO, 
it can be suggested that the SMAPMC and the CRBL, are not engaged in sensorimotor transformations and linearly 
transfer signals coming from V1 throughout the network. This difference in how the CRBL modulates fixed effective 
connectivity between AE and AO is consistent with Schmahmann et al.22, who suggested that the general role of the 
cerebellum is to modulate behaviours around a homeostatic baseline to make them accurate and context-appropriate. 
 
3.3 Future perspectives 

Understanding the non-linear dynamics of the neuronal activity in SMAPMC and the CRBL is crucial for gaining insights 
into the CRBL as a forward controller in large-scale networks, driving motor planning and adaptation23,24. Our work 
points out the need to always include cerebellar nodes when studying AE and AO tasks, to avoid the risk of missing 
details that are critical to understand brain dynamics. This is particularly relevant in studies of neurological conditions 
characterized by motor impairment, from cerebellar ataxia to neurodegenerative or neuroinflammatory diseases. As 
an example, it has been shown that alterations in synaptic connectivity and neural adaptation could contribute to 
differences in the functional response to gripping tasks performed by MS patients in comparison to healthy controls25–

27. Moreover, it was shown that the BOLD-GF relation, using the same AE visuomotor task of this study, was altered in 
the posterior Brodmann area 4 of MS patients compared to healthy controls6. Given that MS patients fail in 
sensorimotor integration due to demyelination and neurodegenerative processes, linear and non-linear modulations 
on fixed effective connectivity recorded during AE may be affected. An interesting hypothesis could be to study the 
cerebellar non-linearities in MS as the CRBL may fail to function in predictive and execution modes. Understanding the 
linear/non-linear modulations of BOLD signals in health and disease could be pivotal for efficient design of forward 
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controllers that may be used for rehabilitation strategies designed to enhance neural adaptation and improve motor 
function 28,29.  

3.4 Study Considerations  

DCM has been valuable for advancing the understanding of the causality at the origin of brain interactions30–32. 
Nevertheless, DCM is a data-driven formalism as its Bayesian model inversion depends upon the data at hand33. In the 
AO paradigm, a smaller cohort was included (see Methods section), which resulted in a discrepancy in sample size 
compared to the AE paradigm. To address any potential bias arising from this difference in cohort sizes, Bayesian 
model selection was performed using random-effects analysis13. Furthermore, models tested required a compromise 
between the number of regions and connections included and the computational resources. Multiple model 
configurations focusing on pathways (i.e., forward and backward pathways from V1) were tested to efficiently 
estimate microcircuitry parameters and to prevent model overfitting and computational demands. 

DCM uses a Taylor approximation to neuronal dynamics as a generative model, which is based on theoretical 
assumptions rather than biological evidence such as the structural and functional differences of cortical and subcortical 
regions11. First attempts to introduce region specific models have been implemented with promising results for the 
cortex, such as the model of the canonical microcircuit, as well as for subcortical regions21,36,37. Amongst these, a 
recently developed cerebellar mean field model could be used within the DCM framework for extracting more 
physiologically grounded estimations of the neural basis of the BOLD non-linearity propagations 21.  

A further consideration must concern the fact that the CRBL works as a forward controller not only in motor function 
but also in cognition. The task used for this study of causality between regions involves the motor network, but also a 
broader range of associative regions 5,14, not included in this DCM analysis for the reasons described above. It is 
possible to hypothesise that, given the modular cerebellar microstructure, the CRBL exerts a similar role in modulating 
fixed effective connectivity in networks supporting cognitive tasks, and that it is implicated in defining the nature and 
modulation of the fixed effective connectivity between regions, affecting a broader spectrum of functions. 

3.5 Conclusions 

DCM analysis demonstrates that executing and observing an action is supported by the same cerebro-
cerebellar network, whose modulation discriminates AE from AO.  The difference between these tasks is that the first 
engages sensorimotor interactions, while the second involves an internal simulation process. While the CRBL is well 
positioned in both cases to operate as the generalized forward controller as predicted by theory2,3, an important 
addition of this work is that the CRBL can dynamically change its functional mode depending on the task. The 
underlying circuit mechanisms remain to be determined, though. Physiologically, the excitatory/inhibitory switch from 
AE to AO could reflect a different balance between excitation and inhibition in the deep cerebellar nuclei (DCN), that 
are modulated by excitatory mossy fibre collaterals and inhibitory Purkinje cell axons38.The DCN then project to 
thalamic nuclei, which in turn project to the cerebral cortex39. Then, the cerebellar regulation of SMAPMC could reflect 
changes in gamma-band coherence between cortical areas, as recently revealed in mice40. Finally, signals conveyed to 
the CRBL through sensory pathways during AE may set up non-linear dynamics in the cerebellar internal microcircuit9,41 
as well as in other parts of the extended visuomotor network. Future work is warranted to further understand the 
neural underpinning of the present observations, and to extend the present results in the context of neurological 
diseases and sensorimotor/cognitive robotic controllers.  
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Figures 

 

Figure 1| Fixed Effective Connectivity of the visuomotor network. A) Bayesian Model Selection with random effects (RFX-BMS) 
identifies Model S1.4 (Panel A.1) as the “winning model” with posterior probability > 90% both in action execution (AE in panel 
A.2) and action observation (AO in panel A3). B) Effective connectivity strength in Hz (see eq. 1 - Methods) with positive (red) 
values for excitatory connections and negative (blue) values for inhibitory connections. White values correspond to extrinsic 
connections not included in the model. Self-connectivity (diagonal) cannot be null by definition (see Methods) and it shows a 
remarkable intrinsic activity of all the regions involved in both AE and AO (AE in panel B1, AO in panel B2). The strongest excitatory 
connections are from V1 to SMAPMC, both in AE and AO, and from V1 to M1 only in AE. Connections that present a different 
excitatory/inhibitory nature in AE and AO are highlighted with a *; note that the crossed connections CRBL-RàSMAPMC-L and 
SMAPMC-LàCRBL-R are excitatory in AE and inhibitory in AO. V1 = bilateral primary visual cortex, M1 = left primary motor 
cortex, SMAPMC = left supplementary motor and premotor cortex, CC = left cingulate cortex, SPL = left superior 
parietal lobule, CRBL = right cerebellum. 
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Figure 2 | Modulation of the fixed effective connectivity. Forward and backward winning models are shown both for the Action 
Execution (AE) and the Action Observation (AO) conditions (Panel A and B, respectively). Each frame shows the posterior probability 
resulting from Random Effects Bayesian Model selection (RFX-BMS) (histogram) and a schematic representation of the S2-winning 
model. A1) AE S2-winning model showing the modulations on visuo-to-plan loop. A2) Forward Loop: RFX-BMS identifies the S2-
forward winning model with a probability >90%. The signal linearly propagates from V1 to CC via SMAPMC, with an increased V1 
self-connection and linear modulation of the SMAPMC-CC connection. Modulations on V1-CRBL, V1-SPMAPMC, CRBL-SPMAPMC 
and CRBL self-connectivity decrease the effective connectivity strength (blue cross-head arrow = inhibitory linear modulation). A3) 
Backward Loop: RFX-BMS identifies the S2-backward winning model with a probability >90%. Modulations are excitatory, increasing 
the strength of the effective connectivity. Modulations on SMAPMC-CRBL and CRBL self-connection resulted non-linear (green round-
head arrow = excitatory non-linear modulation). B1) AO S2-winning model showing the modulations on visuo-to-plan loop. B2) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.21.595114doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.21.595114
http://creativecommons.org/licenses/by-nc-nd/4.0/


Forward Loop: RFX-BMS identifies the S2-forward winning model with a probability >90%. Linear excitatory modulations characterise 
V1-CRBL and V1-SMAPMC connections (blue round-head arrow = excitatory linear modulation). Self-connections (V1 and CRBL) are 
increased by linear modulation. Inhibitory effects characterise the connections CRBL-SMAPMC and SMAPMC-CC. B3) Backward Loop: 
RFX-BMS identifies the S2-backward winning model with a probability of almost 60%. From CC to V1 the modulation is positive and 
linear. CRBL self-connection is linear and inhibited. V1 = bilateral primary visual cortex, M1 = left primary motor cortex, SMAPMC = 
left supplementary motor and premotor cortex, CC = left cingulate cortex, SPL = left superior parietal lobule, CRBL = right cerebellum. 

 

Methods  
Subjects 

This analysis was performed on subjects already included in previous investigations5,14. Twenty-one healthy volunteers 
(aged 22 ± 4 years, 9 males) were enrolled for the action execution (AE) paradigm, while nine healthy volunteers (aged 
26 ± 8 years, 3 males) were included in the action observation (AO) one. The participants did not have any history of 
neurological or psychiatric diseases. All the participants received a detailed explanation of the experimental 
procedures before participating in the experiment. The study was approved by ethics committee and all participants 
gave their written informed consent5,14. 

MRI acquisitions 

A 3D-T1 weighted (3DT1) MPRAGE volume (TR/TE/TI = 6.9/3.1/824 ms, flip angle = 8°, voxel size = 1x1x1 mm) and 
three T2*-weighted GE-EPI fMRI series (TR/TE = 2500/35 ms, flip angle = 90°, voxel size = 3x3x3 mm, 200 volumes) 
were acquired on a 3T Philips Achieva scanner (Philips Healthcare, Best, The Netherlands) with a 32-channel head coil 

Experimental Design 

The paradigm involved an event-related power grip task using an fMRI-compatible squeeze ball, as previously 
described in Alahmadi et al., 2016. Participants engaged in a visuomotor execution task (i.e., an AE task) and an 
observation task (i.e., an AO task). The AE task consisted of a total of 75 active trials, evenly distributed across 5 
different Grip Forces (20%, 30%, 40%, 50%, 60% of each subject's maximum voluntary contraction), performed by each 
participant. The AO task involved watching a video that displayed the right hand of an actor performing the squeeze 
ball task, without any indication of the applied force. 

 

fMRI preprocessing 

fMRI images were pre-processed with a customized MATLAB v2019b script combining commands of different tools, 
namely SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and MRtrix3 
(https://www.mrtrix.org/). The steps of the preprocessing included the intensity correction, the Marchenko-Pastur 
principal component analysis (MP - PCA) denoising42, slice timing correction, realignment to the mean functional 
volume; 3DT1 images were normalized to the standard Montreal Neurological Institute (MNI) space and affine 
registration of fMRI images were carried out. Then, polynomial detrending of the signal was applied to remove 
cerebro-spinal fluid(CSF) contributions as identified by a CSF region of interest placed in the ventricles and to correct 
for motion using 24 motion regressors obtained from the registration43.   

Time-series extraction 

The pipeline used to extract time-series in specific volume of interest (VOIs) included in the motor network is shown 
in Figure 3 and the technical specifications are reported in Table 1 for AE and Table 2 for AO. For the sake of clarity, in 
figures we report the acronym of each region also indicating the laterality (Left (L), Right (R) and Bilateral (BIL); e.g. 
Right CRBL is reported as CRBL R). For each subject, a mask was defined for each of the brain regions embedded in the 
network by implementing a conjunction analysis with anatomical and functional constraints. The anatomical 
constraints were defined by an anatomical parcellation computed by merging a cerebral and a cerebellar atlases, 
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respectively the Brodmann44 and a spatially unbiased atlas template of the cerebellum and brain stem (SUIT) 45 atlases 
(Figure 3A). The functional constraints, instead, were defined with a second-level analysis, which computed the group 
activation peak (GAP) in each activated region (Figure 3B). Then, a geometrical mask centred on subject-specific 
activation peaks and including only the activated voxels was restricted to the anatomical and functional constraints 
(Figure 3C). The dimension of the geometrical mask is defined accounting for the anatomical dimension of each VOI. 
The same procedure was used to extract each region. Significance thresholds were defined according to the region 
and the nature of task (AE in Table 1 and AO in Table 2). A time-series was finally extracted for each VOI as the average 
of the functional signals of the voxels belonging to the geometrical mask. 

Dynamic causal modelling 

DCM analysis using DCM version 12.5 implemented in SPM12 was performed to infer the effective connectivity of the 
motor network both in AE and AO conditions.  

Effective connectivity was computed accordingly to46: 

 

𝐽	 = 	−0.5 × 	𝑒𝑥𝑝(𝐴!) 	× 	𝑒𝑥𝑝/0𝐵!
(#)𝑢#(𝑡)

#

4 +	/𝐴% +0𝐵%
(#)𝑢#(𝑡)

#

4 

(1) 

Where J is the estimated effective connectivity, AI is the self-connectivity (i.e., regions intrinsic connectivity) which is 
unitless representing a logarithmic scaling parameter and multiplied by the default value of -0.5 Hz, AE is the extrinsic 
effective connectivity (Hz), BI and BE are, respectively, the modulations on the intrinsic and extrinsic effective 
connectivity of the kth region, which are driven by the external input u(t). 

Specifically, DCM analysis was implemented to provide firstly, the fixed effective connectivity of the motor network, 
quantified by estimating the AI and AE matrices (S1, Figure 4). Then, after the best model for effective connectivity was 
identified, GF modulatory effects in the forward and backward visuo-to-plan pathways was assessed (S2, Figure3) by 
estimating the values of B (i.e., BI and BEI) matrices.  

Model constructions 

We conducted the analysis in two levels: 

- Step 1 (S1): to estimate the strength of the connections between the regions of the motor network, namely 
matrix A defined as fixed effective connectivity (Figure 4); 

- Step 2 (S2): to quantify the strength of the task-dependent coupling between regions namely matrix B 
modelling the modulation on the fixed effective connectivity (Figure 5). 

S1) Fixed effective connectivity 

By the nature of the task, V1 was defined as the driving region (u(t)) triggering the activity of the network in all the 
hypotheses. Based on prior knowledge, a set of five models with different configurations of inward and outward 
connections were defined to quantify the effective connectivity of the AE and AO conditions (Figure 4)47–49. 

Self-connections were explicitly included for the driving region V1 in all S1 models, and for CRBL for S1 models that 
investigate the changes in cerebellar neuronal activity triggered by the forward and backward loop with M1 and 
SMAPMC (Figure 4 – models S1.2 to S1.5). Focusing on the visuo-to-plan pathway, bidirectional connections between 
SMAPMC and CRBL were included to all S1 models. 

In practice, model construction was defined following the standard procedure described by Zeidmann et al., 201946: 
AE(k) and AI(k) were set to 1 Hz and 1, respectively, when the connection with a kth region was included into the model, 
otherwise AE(k) was set to 0 Hz when the specific connection was of no interest, thus preventing that the model 
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inversion updated it. The same strategy was applied to AI(k), resulting in a prior value of –0.5 Hz (equation 1) meaning 
that it was updated by model inversion even if not explicitly included into the model. The difference between prior 
values of extrinsic and self-connections is due to the nature of what they model: indeed, extrinsic-connections model 
the inter-regions causal influence, while self-connections model the intra-region neuronal activity, which is always 
influenced by the network dynamics.  

Specifically, different fixed effective connectivity models (S1.1 – S1.5) are based on literature review of structural 
connectivity and functional activation for similar tasks (Figure 4).  

S2) Modulations on the effective connectivity 

The effect of task-driven modulations of region-specific BOLD signals were tested starting from the effective 
connectivity model architecture, resulting from S1 (Figure 5). This analysis was focused on visuo-to-plan functional 
pathway embedding the loop between the visual input, cortical motor planning areas and the CRBL, considering single 
or bi-directional connections between pairs of regions, depending on the fixed effective connectivity resulting from 
S1-winning model. In details, first and second order polynomial expansions of the BOLD-GF relation as described in 
Alahmadi et al., 2016, were tested as modulatory effects on the visuo-to-plan functional loop including V1 - CRBL - 
SMAPMC – CC regions5. As effective connectivity is directional, it was possible to define forward and backward 
pathways, from V1 towards motor planning areas and from motor planning areas to V1 respectively. Self-connectivity 
is considered both in forward and backward pathways as inward connections (e.g., Figure 5A.1 in Model S2.FW.1.1 the 
forward pathway is defined from V1 to CRBL including the CRBL self-connection) 

Various configurations are defined depending on the complexity of the regions included (see supplementary material 
for the RFX-BMS details). In Figure 5, forward and backward pathways are shown for three families of possible network 
configurations each, with increasing complexity from family 1 to family 3 (i.e. FW.1, FW.2, FW.3 and BW.1, BW.2, 
BW.3). For example, the simplest forward pathway starts from V1 and includes connections to CRBL and SMAPMC 
(Figure 5A1, Model S2.FW.1.1); the most complex forward loop starts from V1 and ends in CC, passing through CRBL 
and SMAPMC (Figure 5A1, Model S2.FW.3.2). The same rationale was used to define backward pathways (Figure 5B). 

Following the same strategy as for the fixed effective connectivity model selection (S1), values in the B matrix were 
set to 1 Hz when the modulations were included in the model and to 0 Hz otherwise. A stack procedure of model 
evaluation was applied for both forward and backward pathways to AE and AO separately (Figure 5A and 5B 
respectively), increasing the complexity of the architecture, i.e., the number of modulations included, at each step The 
backward path was analysed following the same rationale. 

Model evaluation and statistics 

Bayesian model inversion was implemented on AE and AO data to estimate the best models to explain BOLD signal 
responses from regions of the motor network, based on their fixed effective connectivity, namely matrix A, at a subject 
level50. Bayesian model selection (BMS) was used to select the best model for a different set of hypotheses at a group 
level13. For each model configuration, model inversion estimated the posterior probability of each connection (S1) and 
each modulation (S2) defined in the model construction, quantifying the model likelihood (i.e., model evidence) with 
the experimental data (i.e., fMRI time-series). Random Effects-BMS (RFX-BMS) was used to assess whether the best 
model (winning model) differed between subjects13. Bayesian Model Averaging (BMA) was used to provide coherent 
accounting of statistical structure by including weighted average of each connectivity strength  over model space50. 
The S1-winning model was used as fixed architecture to set different configurations of the modulations (2.6.1 Model 
construction). RFX-BMS was applied at each step of the forward/backward path to find the S2-winnig model to define 
the propagation of the BOLD-GF modulations. 

Reproducibility of the framework 

All the procedures for fMRI preprocessing, regions of interest selection and DCM analysis were run on a Desktop PC 
provided with AMD Ryzen 7 2700X CPU @ 2.16GHz with 32 GB RAM in Ubuntu 16.04.7 LTS (OS). The functions packages 
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implemented to perform the selection of regions of interest and DCM analysis are available on 
https://github.com/RobertaMLo/CRBL_DCM. 
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Methods figures 

 

Figure 3 | Pipeline to extract fMRI time-series. For each region of the motor network, the anatomical mask is extracted from an 
ad-hoc atlas combining the Brodmann and the spatially unbiased atlas template of the cerebellum and brainstem (SUIT) 
atlases (1) and the group activation peak is computed (2). Subject-specific time-series were extracted in a VOI obtained restricting 
a geometrical mask to the anatomical and functional constraints (3). 

Table 1) Details for Volume of Interest in the Action Execution task 

GAP coordinate indicates the spatial coordinates of Group Activation Peak (GAP). Geometry defines both the shape (sphere or 
box) and the dimension (radius or side length, respectively) of the geometrical mask within each brain region. Threshold indicates 
the significance level for including voxels into the VOI. 

Table 2) Details for Volume of Interest in the Action Observation task 

  
GAP coordinate indicates the spatial coordinates of Group Activation Peak (GAP). Geometry defines both the shape (sphere or 
box) and the dimension (radius or side length, respectively) of the geometrical mask within each brain region. Threshold indicates 

Region Acronym 
GAP coordinate 
[x;y;z] 

Geometry Dimension Threshold 

Cingulate Cortex  
(Left) 

CC L 
[-4; -1; 43] 

Sphere Radius=10 mm 0.01   Uncorrected 

Primary Motor Cortex (Left) M1 L [-40; -16; 58] Sphere Radius=15 mm 0.001 Uncorrected 
Superior Parietal Lobule (Left) SPL L [-32; -40; 52] Sphere Radius=10 mm 0.001 Uncorrected 

Supplementary Motor Area & 
Premotor cortex (Left) 

SMA-PMC 
L 

[-5; -4; 50] 
Sphere Radius=10 mm 0.001 Uncorrected 

Primary Visual Cortex (Bilateral) V1 BIL [0; 0; 0] Box 90x90x90 mm3 0.01 Uncorrected 

Cerebellum  
(Right) 

CRBL R 
[23; -55; 22] 

Sphere Radius=15 mm 0.001 Uncorrected 

 

Region Acronym 
GAP coordinate 
[x;y;z] 

Geometry Dimension Threshold 

Cingulate Cortex  
(Left) 

CC L 
[-3; -2; 43] 

Sphere Radius=10 mm 0.05   Uncorrected 

Primary Motor Cortex (Left) M1 L [-40; -14; 56] Sphere Radius=15 mm 0.05   Uncorrected 
Superior Parietal Lobule (Left) SPL L [-34; -45; 52] Sphere Radius=10 mm 0.001 Uncorrected 

Supplementary Motor Area & 
Premotor cortex (Left) 

SMA-PMC 
L 

[-6; -9; 55] 
Sphere Radius=10 mm 0.05   Uncorrected 

Primary Visual Cortex (Bilateral) V1 BIL [0; 0; 0] Box 90x90x90 mm3 0.05   Uncorrected 

Cerebellum  
(Right) 

CRBL R 
[25; -51; -22] 

Sphere Radius=15 mm 0.001 Uncorrected 
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the significance level for including voxels into the VOI. Thresholds for Action Observation were set higher than the thresholds for 
Action Execution. 

 

 

Figure 4 | Models to assess the fixed effective connectivity. Schematic illustration of the fixed effective connectivity models (S1.1 
– S1.5) of cortico-cerebellar loops (step 1). The same configurations were tested for Action Execution (AE) and Action Observation 
(AO) separately. All models are driven by V1 given the visuomotor nature of the task (purple arrow). The directionality of between-
region connections directionality was modelled to explore different configurations of the network causal relations. Self-
connections, instead, allow us to investigate the sensitivity of a region to the network input. The strength of each effective 
connection is quantified in Hz by the Bayesian model inversion. V1 = bilateral primary visual cortex, M1 = left primary motor 
cortex, SMAPMC = left supplementary motor and premotor cortex, CC = left cingulate cortex, SPL = left superior 
parietal lobule, CRBL = right cerebellum. 
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Figure 5 | Models to assess possible modulations on the effective connectivity. Schematic illustration of modulation testing on 
Action Execution (AE – Panel A1, A2) and Action observation (AO – Panel B1, B2) effective connectivity models of cortico-cerebellar 
loops (Step 2). As effective connectivity is directional, it was possible to define forward and backward pathways. Forward pathways 
(FW) were defined from V1 to CRBL, SMAPMC, and CC (Panel A1 and B1). Backward pathways (BW) were defined from CRBL, 
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SMAPMC and CC to V1 (Panel A2 and B2). For each effective directional connection between pairs of regions, we defined possible 
modulatory effects of the BOLD signal from the starting region to the target region. Different combinations of linear/non-linear 
modulations were tested. Random Effects Bayesian Model selection (RFX-BMS) was performed to identify the winning model at 
each stage of the stack procedure. A stack procedure grouping different modulations of the same connection was applied: the 
output of the simpler configuration (Family i) become the input for the more complex configurations (Family i+1), with i= index of 
Family. For both backward and forward pathways, the winning model of the most complex was the overall winning model (i.e., 
Family FW.3 and BW.3 for forward and backward pathway respectively). V1 = bilateral primary visual cortex, M1 = left primary 
motor cortex, SMAPMC = left supplementary motor and premotor cortex, CC = left cingulate cortex, SPL = left superior 
parietal lobule, CRBL = right cerebellum. 
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