

1 **Paenilamicins from the honey bee pathogen *Paenibacillus larvae* are**
2 **context-specific translocation inhibitors of protein synthesis**

3
4 Timm O. Koller^{1, #}, Max J. Berger^{1, #}, Martino Morici¹, Helge Paternoga¹, Timur Bulatov²,
5 Adriana Di Stasi³, Tam Dang², Andi Mainz², Karoline Raulf¹, Caillan Crowe-McAuliffe¹,
6 Marco Scocchi³, Mario Mardirossian³, Bertrand Beckert⁴, Nora Vázquez-Laslop⁵, Alexander
7 Mankin⁵, Roderich D. Süssmuth², Daniel N. Wilson^{1,*}

8 ¹ Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-
9 King-Platz 6, 20146 Hamburg, Germany.

10 ² Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany.

11 ³ Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.

12 ⁴ Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland.

13 ⁵ Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607.

14

15 [#] These authors contributed equally.

16

17 *Correspondence to:

18 Daniel Wilson (Daniel.Wilson@chemie.uni-hamburg.de)

19

20 **Abstract**

21 The paenilamicins are a group of hybrid non-ribosomal peptide-polyketide compounds
22 produced by the honey bee pathogen *Paenibacillus larvae* that display activity against
23 Gram-positive pathogens, such as *Staphylococcus aureus*. While paenilamicins have been
24 shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here,
25 we have determined structures of the paenilamicin PamB2 stalled ribosomes, revealing a
26 unique binding site on the small 30S subunit located between the A- and P-site tRNAs. In
27 addition to providing a precise description of interactions of PamB2 with the ribosome, the
28 structures also rationalize the resistance mechanisms utilized by *P. larvae*. We could further
29 demonstrate that PamB2 interferes with the translocation of mRNA and tRNAs through the
30 ribosome during translation elongation, and that this inhibitory activity is influenced by the
31 presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines
32 the paenilamicins as a new class of context-specific translocation inhibitors.

33

34 **Introduction**

35 The increase in multi-drug resistance is making our current arsenal of clinically-relevant
36 antibiotics obsolete¹, with a significant contribution coming from so-called *ESKAPE*
37 pathogens². This problem is compounded by the rapid decline in the approval of new
38 antibiotics, particularly those with novel scaffolds¹, highlighting the need for the discovery
39 and development of further antimicrobials. One potential class are the paenilamicins, a
40 group of hybrid non-ribosomal peptide-polyketide compounds that display activity against
41 Gram-positive bacteria, such as *Bacillus subtilis* and *Staphylococcus aureus*^{3,4}.
42 Paenilamicins were shown to be 4-fold more active against methicillin-resistant *S. aureus*
43 than the gold-standard ciprofloxacin⁴, and also display antifungal activity against the
44 opportunistic fungal pathogens *Sporobolomyces salmonicolor* and *Aspergillus fumigatus*⁴.
45 Paenilamicins are produced by the bacterium *Paenibacillus larvae*, which is the causative
46 agent of American Foulbrood – the most destructive bacterial brood disease affecting honey
47 bees world-wide⁵. Infection assays using bee larvae and the insect pathogen *Bacillus*
48 *thuringiensis* demonstrated that paenilamicin production by *P. larvae* is used for suppression
49 of bacterial competitors during host infection⁴.

50 To date, four distinct paenilamicins have been structurally elucidated, PamA1,
51 PamA2, PamB1 and PamB2, which comprise a common core built from 2,3,5-trihydroxy
52 pentanoic acid (Hpa), D-alanine (D-Ala), *N*-methyl-diaminopropionic acid (mDap), galantinic
53 acid (Gla), glycine (Gly) and 4,3-spermidine (Spd) (**Fig. 1a** and **Extended Data Fig. 1a**)^{3,4}.
54 In addition, PamB2 contains an N-terminal D-agmatine (D-Agm) and a central D-ornithine
55 (D-Orn) (**Fig. 1a**), whereas the D-Orn is replaced with a D-lysine (D-Lys) in
56 PamB1(**Extended Data Fig. 1a**)³. The D-Agm of PamB1 and PamB2 is substituted with
57 cadaverine in PamA1 and PamA2, respectively³ (**Extended Data Fig. 1a**). The structure of
58 the paenilamicins is closely related to that of galantin I (**Extended Data Fig. 1b**), a
59 compound originally isolated from a soil sample from New Guinea in the 1970's⁶. A recent
60 structural revision of PamB2 revealed that the (6*R*)-configuration of the terminal amino group
61 in Agm is important for maximal activity and plays a role in self-resistance, being required
62 for acetylation, and thereby inactivation, by the self-resistance factor PamZ^{4,7}. The
63 protection of the N-terminus during biosynthesis by attachment of an Acyl-D-Asn moiety is
64 also a prominent prodrug resistance mechanism⁸.

65 The accordance of structural features of paenilamicins with the translation inhibitor
66 edeine (**Extended Data Fig. 1c**) led to the hypothesis that paenilamicins may also exert

67 their antimicrobial activity by binding to the ribosome and inhibiting protein synthesis⁴. In this
68 regard, PamB2 was shown to be a potent inhibitor of *E. coli* *in vitro* translation systems, with
69 a half-inhibitory concentration (IC₅₀) of 0.4 μ M⁴ – lower than reported for the well-known
70 translation inhibitors erythromycin, chloramphenicol and tetracycline that display IC₅₀ values
71 of 0.75, 1.0, or 10 μ M, respectively⁹⁻¹¹. Although PamB2_2, which contains the non-native
72 (6S)-configuration, retained inhibitory activity in the *E. coli* *in vitro* translation systems, a 7-
73 10-fold reduction in efficiency (IC₅₀ of 2.9 μ M) was observed⁴. More dramatic was the effect
74 of the PamZ-mediated acetylation of the 6-amino group of PamB2, which increased the IC₅₀
75 by almost 80-fold to 31.9 μ M⁴. This suggests that the acetylation of PamB2 may interfere
76 with the binding of the compound to the ribosome. However, the binding site for PamB2 and
77 the mechanism by which PamB2 inhibits protein synthesis remain to be elucidated.

78 Here, we have employed single particle cryo-EM to determine structures of
79 ribosomes stalled during translation by the presence of PamB2 at 2.2-2.4 \AA resolution. The
80 structures reveal that PamB2 binds stably to elongation complexes that containing A- and
81 P-site tRNAs, but not to initiating ribosomes bearing only a P-site tRNA, indicating that the
82 presence of A-site tRNA is critical for the binding of PamB2 to the ribosome. This binding
83 site of PamB2 is distinct from any other antibiotic binding site on the 30S subunit being
84 located between the A- and P-site tRNAs. The structures also rationalize the increased
85 activity of the native (6R)-configuration as well as the mechanism of self-resistance used by
86 the producer. Together with complementary biochemical data, we demonstrate that PamB2
87 inhibits the EF-G catalyzed translocation step of protein synthesis in a highly context-specific
88 manner that is dependent on the type of modifications that are present at position 37 of the
89 A-site tRNA. To our knowledge, the paenilamicins represent the first class of context-specific
90 translocation inhibitors that are influenced by the modification state of the tRNA.

91

92 **Results**

93 **Cryo-EM structures of paenilamicin B2 on the ribosome**

94 To investigate how paenilamicins inhibit translation, we generated PamB2-ribosome
95 complexes for single particle cryo-EM analysis. Rather than forming complexes on vacant
96 ribosomes, or with pre-defined functional states, we instead aimed to utilize more
97 physiological complexes where translating ribosomes become stalled by the presence of
98 PamB2. To achieve this, we performed *in vitro* translation reactions on *E. coli* ribosomes
99 using the Met-Leu-Ile-Phe-stop-mRNA (MLIFstop-mRNA), a model template that we had
100 previously used to successfully determine structures of drosocin-stalled ribosomal
101 complexes¹². Toeprinting was used to monitor the position of ribosomes on the MLIFstop-
102 mRNA in the presence of increasing concentrations of synthetic PamB2 (**Extended Data**
103 **Fig. 2**). As a positive control, we used thiostrepton that traps ribosomes on the AUG initiation
104 codon¹³⁻¹⁵, and as a negative control, we included the inactive *N*-acetylated form of PamB2
105 (*N*-Ac-PamB2)⁴ (**Extended Data Fig. 2**). In the absence of drug, bands are evident for
106 ribosomes on the AUG start codon, and the adjacent UUG (Leu) codon, suggesting that
107 initiation and the first elongation step are slow on this mRNA or that the mRNA contains
108 secondary structure in this region. In the presence of thiostrepton, a single strong band is
109 observed that corresponds to ribosomes trapped on the AUG start codon (**Extended Data**
110 **Fig. 2**), as expected¹³⁻¹⁵. By contrast, increasing concentrations of PamB2 led to a gradual
111 loss of ribosomes at the AUG codon and an increase in ribosomes stalled one codon further
112 with the UUG (Leu) codon in the P-site. This shift in ribosome positioning was not observed
113 for the *N*-Ac-PamB2, where the pattern looks similar to the no-drug control, consistent with
114 the inactivity of this compound⁴ (**Extended Data Fig. 2**). We also tested PamB2_2 with the
115 non-native (6S)-configuration, which like *N*-Ac-PamB2, appeared to have little inhibitory
116 activity in this assay (**Extended Data Fig. 2**).

117 Since there was little difference in the toeprinting at 25-100 μ M PamB2, we formed
118 PamB2-stalled ribosomal complexes (PamB2-SRCs) using a concentration of 50 μ M for the
119 inhibitor. After incubation, the reactions were centrifuged through sucrose cushions and the
120 pelleted ribosomal complexes were subjected to single particle cryo-EM analysis. *In silico*
121 sorting of the cryo-EM data revealed three main populations of ribosomal states, namely,
122 non-rotated 70S ribosomes with P-site tRNA only (15 %), or with A- and P-site tRNAs
123 (31 %), as well as a population containing rotated 70S ribosomes with A/P- and P/E-hybrid
124 site tRNAs (17 %) (**Supplementary Fig. 1**), which after refinement yielded final
125 reconstructions with average resolutions of 2.4 \AA , 2.2 \AA and 2.3 \AA , respectively (**Fig. 1b-e**,

126 **Extended Data Fig. 3a-l and Supplementary Table 1**). In both reconstructions containing
127 two tRNAs, we observed additional density located between the A- and P-site tRNAs that
128 could be unambiguously assigned to PamB2 (**Fig. 1f-i**). The density of PamB2 was well-
129 resolved, enabling the orientation of the inhibitor to be determined, and the N-terminal Agm
130 and Hpa as well as central D-Ala, D-Orn, mDap1 and mDap2 and Gla moieties to be
131 modelled (**Fig. 1h-i** and **Supplementary Fig. 2**). The exception was the C-terminal Spd
132 moiety that was poorly ordered in both maps, with density observed only at low thresholds
133 (**Extended Data Fig. 3j-m**). No density for PamB2 was evident in the cryo-EM
134 reconstruction where only one tRNA (the initiator tRNA in the P-site) was present,
135 suggesting that PamB2 may require an A-site tRNA to bind stably to the ribosome.

136
137 **Interaction of PamB2 with the ribosomal P-site**
138 The PamB2 binding site is located predominantly on the 30S subunit of the 70S ribosome,
139 where it inserts into the cleft between the A- and P-site tRNAs (**Fig. 2a** and **Supplementary**
140 **Fig. 2**). Although we describe the interactions of PamB2 for the non-rotated A- and P-site
141 tRNA state, we note that within the limits of the resolution of the reconstructions, the binding
142 mode of PamB2 is similar, if not identical, for the rotated A/P- and P/E-hybrid state (**Fig. 2b**).
143 In both states, PamB2 is oriented with the Agm sidechain extending towards h24, while the
144 central region of PamB2 runs parallel to the mRNA as well as one strand of nucleotides in
145 h44 (**Fig. 2a**). The central mDap1 region of PamB2 interacts with H69 of the 23S rRNA, and
146 then kinks such that the C-terminal (Gla-mDap2-Gly-Spd) region passes between the A-
147 and P-site tRNAs, with the Spd moiety extending towards h31 (**Fig. 2a**). The kinked
148 conformation of PamB2 is likely to be stabilized by three intramolecular hydrogen bonds
149 (**Fig. 2c**), as well as two water-mediated interactions (**Fig. 2d**). The structural similarity with
150 PamB2 (**Extended Data Fig. 1d-i**) suggests other paenilamicins (PamB1, PamA1 and
151 PamA2) and also galantin I are likely to interact with the ribosome in the same manner.

152 In the P-site, the majority of the interactions of PamB2 are with 16S rRNA nucleotides
153 (G1494-m³U1498) in h44, on one side, and with the P-site codon of the mRNA, on the other
154 (**Fig. 2c,d**). Together with U1495, C1496 and G1497, the N-terminal amino group of Agm
155 coordinates an ion, which we assign to a K⁺ ion based on the coordination distances and
156 the presence of a K⁺ ion in a similar position of a previous *E. coli* 70S-hygromycin B
157 structure¹⁶. We note that acetylation of the N-terminal amino group of Agm by the N-
158 acetyltransferase PamZ^{4,7}, or modification with acyl-D-Asn⁸, inactivates PamB2. Modelling
159 these modified forms of PamB2 into the binding site indicates that they would clash with the

160 surrounding 16S rRNA (**Extended Data Fig. 4a-d**), suggesting that these modifications
161 would prevent PamB2 from binding to the ribosome. The binding mode of PamB2 also
162 explains the reduction in activity of PamB2_2 since the (6S)-configuration of the N-terminal
163 amino group of Agm would lead to loss of direct contact with the N7 of G1497, as well as
164 the K⁺ ion-mediated interaction with 16S rRNA nucleotides in h44 (**Extended Data Fig. 4e-f**).
165

166 With regard to the P-site codon of the mRNA, there are two main points of contact,
167 namely, from the O2 of U1 (first position of the P-site codon) with the η 2- and ε -nitrogens of
168 Agm (**Fig. 2c**), and secondly, involving G3, located in the third position of the codon, where
169 the ribose O2' and N2 can form hydrogen bonds with γ -nitrogen and carbonyl-oxygen of
170 mDap2 of PamB2 (**Fig. 2c**). In addition, water molecules (W₂ and W₈) mediate interactions
171 between the backbone of U2 and Hpa of PamB2, as well as the O4' (ribose) of G3 with the
172 carbonyl-oxygen of Gla of PamB2 (**Fig. 2d**). Although PamB2 approaches the P-site tRNA,
173 there is relatively little direct interaction, with the closest point of contact being 3.6 Å between
174 the η 2-nitrogen of Agm and the ribose 2'O of A37 of the P-site tRNA. However, we do
175 observe a water-mediated (W₉) interaction between the carbonyl-oxygen of Gla of PamB2
176 and the O2' and N3 of A35 of the P-site tRNA (**Fig. 2d**).
177

178 **Interaction of PamB2 with the ribosomal A-site**

179 In the A-site, PamB2 contacts not only with 16S rRNA nucleotides in h44, but also A1913
180 from H69 of the 23S rRNA, and, in contrast to the P-site, PamB2 makes extensive
181 interactions with the A-site tRNA, albeit less with the mRNA codon (**Fig. 2c-f**). Interactions
182 of PamB2 with the A-site tRNA revolve around nucleotides ct⁶A37 and A38, which are
183 located in the anticodon-stem loop, directly adjacent to the anticodon (3₄CAU₃₆) (**Fig. 2e,f**).
184 Specifically, three direct hydrogen bonds are possible with A38 (**Fig. 2e**). Interactions with
185 ct⁶A37 are indirect, being mediated by water W₆, which is coordinated by the carbonyl-
186 oxygen of D-Orn as well as the O2' and N3 of ct⁶A37 (**Fig. 2f**). Interaction of PamB2 with
187 the A-site codon of the mRNA is restricted to a direct interaction of backbone amide of Gly
188 and a backbone oxygen of A4, which is located in the first position of the A-site codon, and
189 a water-mediated interaction from the backbone amide of mDap2 via water W₁₀ with N7
190 (3.4 Å) of A4 (**Fig. 2f**). The interactions between PamB2 and the A-site tRNA are likely to be
191 critical for binding of PamB2 to the ribosome, since we observe no density for PamB2 in the
192 P-tRNA-only state. We note that in structures of 70S ribosomes lacking A-tRNA¹⁷, the
193 conformation of A1913 in H69 differs from that when the A-site tRNA is present, such that it

194 would be incompatible with the interactions observed for PamB2 on the elongating ribosome
195 (**Extended Data Fig. 4g-j**). The A1913 conformational shift induced by A-tRNA binding may
196 therefore contribute to preventing stable binding of PamB2. Although a shift in the position
197 of A1913 occurs during decoding when the A-site tRNA is still bound to EF-Tu, the A-tRNA
198 itself is still sub-optimally placed to interact with PamB2 in such a state¹⁸ (**Extended Data**
199 **Fig. 4k-l**), suggesting that full accommodation of A-tRNA is required for stable interaction of
200 PamB2 with the ribosome.

201

202 **PamB2 inhibits tRNA₂-mRNA translocation**

203 Careful examination of the tRNAs in the PamB2-bound elongation complexes revealed the
204 presence of additional density attached to the CCA-end of the A-site tRNA in the non-rotated
205 elongation state and to the A/P-tRNA in the rotated hybrid state, indicating that peptide bond
206 formation has already occurred in these complexes (**Supplementary Fig. 3a,b**). This
207 suggests that PamB2 does not interfere with the decoding and accommodation by the A-
208 tRNA, nor peptide bond formation, and also allows the ribosome to oscillate between the
209 canonical and hybrid pre-translocational states (**Fig. 3a**). During normal translation, these
210 pre-translocational states would be subject to the action of elongation factor EF-G, which
211 binds and translocates the tRNA₂-mRNA complex into the P- and E-sites, forming a post-
212 translocational state¹⁹⁻²¹. The accumulation of pre-translocational states in the presence of
213 PamB2, as well as the absence of post-translocation states (**Fig. 1b-e** and **Extended Data**
214 **Fig. 5a-c**), suggests that PamB2 is likely to interfere with the process of translocation. To
215 directly assess this, we analyzed the effect of PamB2 on EF-G-dependent translocation
216 using the toeprinting assay. Ribosome complexes were formed with tRNA^{fMet} in the P-site
217 and N-AcPhe-tRNA^{Phe} in the A-site, with toeprinting revealing a band corresponding to the
218 expected pre-translocation state (**Fig. 3b**). In the absence of PamB2, but presence of EF-
219 G, the toeprinting band shifted by three nucleotides, indicating that the A- and P-site tRNAs
220 were translocated to the P- and E-sites (**Fig. 3b**). Little to no shift in the toeprint band was
221 observed when the same reactions were performed in the presence of the control antibiotic
222 negamycin, as reported previously²². Similarly, no shift in the toeprint was observed in the
223 presence of PamB2, suggesting that PamB2 also interferes with the process of translocation
224 (**Fig. 3b**). Comparison with recent structures of EF-G-bound translocation intermediates
225 provides a structural rationale for the PamB2-mediated translocation inhibition¹⁹⁻²¹. While
226 the initial binding of EF-G to the ribosome may be possible in the presence of PamB2
227 (**Extended Data Fig. 5d-f**)^{20,21}, the subsequent steps where EF-G accommodates and

228 promotes a shift in the anticodon stem of the A/P-site tRNA would lead to clashes with
229 PamB2 (**Fig. 3c-e** and **Extended Data Fig. 5g-i**)¹⁹⁻²¹. Moreover, in the early translocation
230 intermediate with EF-G, A1913 rotates away from its position in the hybrid states¹⁹⁻²¹, which
231 would require disruption of interactions between A1913 and PamB2 (**Extended Data Fig.**
232 **5j-l**). Collectively, this leads us to suggest that the interactions of PamB2 with the anticodon-
233 stem loop of the A-site tRNA, as well as with the extended conformation of A1913, would
234 prevent stable binding of EF-G to the pre-translational states, and thereby inhibit protein
235 synthesis.

236

237 **Influence of A-site mRNA context on PamB2 inhibition**

238 While the translocation assay (**Fig. 3b**) and structures of PamB2 bound to pre-translocation
239 complexes (**Fig. 1b-e**) support the conclusion that PamB2 interferes with the EF-G mediated
240 translocation process, our initial toeprinting assay indicated that it was not the first
241 translocation step that was inhibited, but rather the second (**Extended Data Fig. 2**). If the
242 first translocation reaction was inhibited, then ribosomes would be trapped with the AUG
243 start codon in the P-site being decoded by the initiator tRNA^{fMet} and with a UUG codon in
244 the A-site. While the density indicates that the initiator tRNA^{fMet} is present in the P-site of the
245 P-tRNA-only volume (**Supplementary Fig. 4a**), the density for the mRNA codons and
246 tRNAs in the A- and P-sites in structures of the PamB2-bound pre-translocation states
247 indicated that one round of translocation had occurred before stalling of the complex
248 (**Supplementary Fig. 4b-e**) i.e. UUG and AUA codons are in the P- and A-sites being
249 decoded by tRNA^{Leu} (anticodon 5'-₃₅CAA₃₇-3') and tRNA^{Ile} (anticodon 5'-₃₅CAU₃₇-3'),
250 respectively (**Supplementary Fig. 4d-e**). Moreover, we observe extra density for the 2-
251 methylthio-N6-isopentenyladenine (ms²I⁶A) at position 37 of the P-site tRNA^{Leu} as well as
252 the cyclic N6-threonylcarbamoyladenine (ct⁶A) at position 37 of the A-site tRNA^{Ile}
253 (**Supplementary Fig. 4f-i**). Collectively, these findings suggest that PamB2 allowed the first
254 translocation on the MLIFstop-mRNA, but prevented the second translocation reaction from
255 taking place.

256 To investigate whether it is the initiation context that interferes with the action of
257 PamB2, we generated a series of ErmBL mRNA templates containing 1-5 repeats of the
258 UUG codon directly following the AUG start codon. In the absence of antibiotic, ribosomes
259 initiate on the AUG start codon of the wildtype ErmBL mRNA (with one UUG repeat), and
260 translate uninterrupted to the 12th codon (AUC encoding Ile), where they become trapped
261 due to the presence of the Ile-tRNA synthetase inhibitor mupirocin that was added to all

262 reactions (**Fig. 4a**). As positive controls, we performed the assay with the wildtype ErmBL
263 mRNA in the presence of the pleuromutilin retapamulin, which traps ribosomes on the AUG
264 start codon²³, as well as the macrolide erythromycin, which leads to the accumulation of
265 ribosomes stalled with the 10th CAU codon (encoding Asp) in the P-site (**Fig. 4a**), as we
266 observed previously on the ErmBL mRNA^{24,25}. Unlike retapamulin, the presence of PamB2
267 did not lead to a strong accumulation of ribosomes on the AUG start codon of the ErmBL
268 mRNA, but rather ribosomes became stalled with the UUG codon in the P-site (**Fig. 4a**), as
269 we observed for the MLIFstop-mRNA (**Extended Data Fig. 2**). While the insertion of UUG
270 repeats into the ErmBL mRNA shifted the band for initiating ribosomes upwards in the gel
271 as expected, the stalling bands remained constant (**Fig. 4a**), indicating that in the presence
272 of PamB2, ribosomes can translate through stretches of up to five UUG codons unhindered.
273 We conclude therefore that the lack of effect of PamB2 on the first translocation event in the
274 wildtype ErmBL mRNA is not related to the initiation context, but apparently related to the
275 presence of the UUG codon in the A-site. We also note that unlike for the short MLIFstop-
276 mRNA, additional bands were observed on the longer ErmBL mRNA indicating that a subset
277 of ribosomes also become stalled at subsequent sites in the mRNA, for example, with the
278 4th UUC (encoding Phe) in the P-site, but not the 3rd GUA codon in the P-site (**Fig. 4a**).

279 An initial examination of the non-stalling contexts revealed that there are distinct sets
280 of mRNA codons being recognized by distinct sets of tRNAs, namely, fMet-tRNA and Leu-
281 tRNA decoding the AUG and UUG codons, respectively, in the first pre-translocational state,
282 and Val-tRNA and Phe-tRNA decoding GUA and UUC codons, respectively, in the third pre-
283 translocational state (**Fig. 4a**). Nevertheless, we noticed that in both contexts, the first
284 position of the A-site codon was a uridine, whereas in the stalling contexts (UUG-GUA and
285 UUC-CCA) using the ErmBL mRNA, the first position was either guanine or cytosine (**Fig.**
286 **4a**). In the PamB2-SRC that was generated on the MLIFstop-mRNA, the stalling context
287 (UUG-AUA) had an adenine in the first position of the A-site codon (**Extended Data Fig. 1**
288 and **Supplementary Fig. 4d-e**). Therefore, to test whether the nature of the A-site codon
289 can influence the efficiency of PamB2-mediated translocation inhibition, we mutated the U
290 in the first position of the A-site of the ErmBL mRNA to A, C and G (**Fig. 4b**). In contrast to
291 U in the first position where little to no inhibition of the first translocation event was observed
292 (**Fig. 4b**), clear toeprint bands were observed with each of the other nucleotides, indicating
293 that ribosomes accumulate with the AUG start codon in the P-site when the A-site codon
294 was changed from UUG to AUG, CUG or GUG (**Fig. 4b**). Although the inhibition by PamB2
295 with C in the first position appeared to be stronger than U, it was reproducibly weaker than

296 with A and G (**Fig. 4b**). In fact, the inhibition with G in the first position of the A-site codon
297 appeared to be almost complete, since no further stalling was observed at any of the
298 downstream contexts (**Fig. 4b**). Although PamB2 does not directly interact with the first
299 position of the A-site codon, we note that a water-mediated interaction is observed between
300 the backbone amide of mDap2 via water W₁₀ with the N7 of A in the first position of the A-
301 site codon (**Fig. 4c**). Moreover, this interaction would be maintained with a G in the first
302 position (**Fig. 4d**), where we observe strong inhibition (**Fig. 4b**), and would not be possible
303 with U or C (**Fig. 4e-f**) where inhibition was weaker (**Fig. 4b**).
304

305 **Influence of A37 modification of A-tRNA on PamB2 inhibition**

306 While the water-mediated interaction between PamB2 and the first position of the A-site
307 codon may contribute to the specificity of stalling of PamB2, we note that it does not
308 rationalize the difference in efficiency of inhibition of PamB2 that we observed between U
309 and C in the first position (**Fig. 4b**). Therefore, we considered whether the nature of the
310 tRNA in the A-site may also contribute, especially given that we observe interaction between
311 PamB2 and nucleotides A37 and A38 of the A-site tRNA (**Fig. 2e, f**). Since we observe no
312 inhibition by PamB2 when Phe-tRNA decodes UUC, we superimposed a ribosome structure
313 with Phe-tRNA in the A-site²⁶ and immediately noticed that tRNA^{Phe} bears a 2-methylthio-
314 N6-isopentenyladenine (ms²i⁶A) at position 37, with the 2-methylthio moiety encroaching on
315 the PamB2 binding site (**Fig. 5a-b**). In fact, with one exception (see later), all tRNAs that
316 decode mRNA codons beginning with U have ms²i⁶A37, which is proposed to help stabilize
317 the weaker U-C codon-anticodon interaction between the mRNA and the tRNA²⁷.
318 Consistently, we observe that tRNA^{Leu} that decodes UUG is also not inhibited by PamB2
319 (**Fig. 4a**) and would predict that similar results would be obtained for tRNA^{Ser} decoding
320 UCU/UCA/UCG, tRNA^{Tyr} decoding UAU/UAC, tRNA^{Cys} decoding UGU/UGC and tRNA^{Trp}
321 decoding UGG. The one exception is tRNA^{Ser} that decodes UCU and UCC where A37 is
322 unmodified²⁷. To directly test this, we generated a series of mRNA templates based on the
323 ErmBL-(UUG)₄ mRNA where we changed the 7th GUA (Val) codon to each of the four serine
324 codons UCC, UCU, UCA and UCG and performed the toeprinting assay in the presence of
325 PamB2 (**Fig. 5c**). As hypothesized, strong stalling was observed at the UCC and UCU
326 codons, which are decoded by the tRNA^{Ser} isoacceptor lacking any modification at position
327 A37, whereas only weak stalling was observed at the UCA and UCG codons, which are
328 decoded by the tRNA^{Ser} isoacceptor bearing ms²i⁶A37 (**Fig. 5c**). Thus, we conclude that

329 PamB2 is a poor inhibitor of translocation when the A-site tRNA contains ms²i⁶A37 as a
330 competitor.

331 Although PamB2 was observed to inhibit translation when tRNA^{Leu} decoded CUG in
332 the A-site, the extent of inhibition was relatively weak (**Fig. 4a**). Therefore, we superimposed
333 a ribosome structure with tRNA^{Leu} in the A-site¹⁷ and recognized that tRNA^{Leu} contains a
334 m¹G at position 37 instead of an A, causing a steric clash between the N2 group of m¹G37
335 of the A-tRNA and the D-Orn of PamB2 (**Fig. 5d**). In fact, most tRNAs decoding CNN
336 codons, including CUN by tRNA^{Leu}, CCN by tRNA^{Pro} as well as CGG by tRNA^{Arg} contain
337 m¹G37 (**Supplementary Fig. 5**)²⁷. The exceptions are tRNA^{His} and tRNA^{Gln} that decode
338 CAU/C and CAA/G, as well as tRNA^{Arg} that decodes CGU/C/A, however, all of these tRNAs
339 have m²A37²⁷ (**Supplementary Fig. 5**) that would also be predicted to clash with the D-Orn
340 of PamB2, similar to m¹G37 (**Fig. 5d,e** and **Supplementary Fig. 5**). Collectively, we
341 conclude that the efficiency of translocation inhibition by PamB2 is directly influenced by the
342 nature of the A-site tRNA and in particular by modifications at position A37, such as m¹G37,
343 m²A37, but especially ms²i⁶A37 (**Supplementary Fig. 5**), where the steric overlap with the
344 drug is largest.

345
346 **Discussion**

347 Based on our results, we propose a model for the mechanism of action of how PamB2 binds
348 to the ribosome and inhibits protein synthesis (**Fig. 6a-e**). Our data suggest that PamB2
349 does not interfere with translation initiation (**Fig. 6a**), nor the initial EF-Tu-mediated decoding
350 steps during translation elongation (**Fig. 6a,b**), but rather binds stably to the ribosome once
351 the A-site tRNA becomes accommodated on the large 50S subunit (**Fig. 6c**). Our structural
352 data indicate that PamB2 does not prevent peptide bond formation (**Fig. 6c**), nor the
353 ribosome from adopting the rotated conformation with hybrid state A/P- and P/E-site tRNAs
354 (**Fig. 6d**). Instead, we demonstrate that PamB2 interferes with the subsequent translocation
355 step, where the tRNA₂-mRNA complex is moved through the ribosome to occupy the P- and
356 E-sites (**Fig. 6e**). We suggest that translocation is inhibited because PamB2 traps a pre-
357 translocational state that is incompatible with stable binding of elongation factor EF-G (**Fig.**
358 **6d,e** and **Fig. 3c-e**). Based on the high similarity in chemical structures (**Extended Data**
359 **Fig. 1**), we propose that the mechanism of action described here for PamB2 will be similar,
360 if not identical, for other paenilamicin congeners (PamB1, PamA1 and PamA2)³ as well as
361 the related compound galantin I⁶. Notably, modifications at the N-terminal amine of Agm/Cad
362 in each of these congeners with either an acyl-D-Asn⁸ or an acetyl moiety⁷ will interfere with

363 ribosome binding (**Extended Data Fig. 4a-d**), which thus rationalizes the self-resistance
364 strategies of *P. larvae*.

365 One of the most unexpected findings of our study was that some pre-translocational
366 states were refractory to the action of PamB2. Thus, PamB2 does not inhibit each and every
367 round of translation elongation indiscriminately, but rather can be considered as a context-
368 specific translocation inhibitor. The best understood context-specific translation inhibitors
369 are those that target the large subunit, where their inhibitory action is influenced by the
370 sequence of the nascent polypeptide chain being synthesized²⁸, for example, macrolides
371 and ketolides²⁹⁻³¹, oxazolidinones and phenicols³²⁻³⁴ and more recently orthosomycins and
372 tetracenomycins³⁵⁻³⁷. However, there are other examples of context-specific antibiotics that
373 target the small subunit where their inhibitory activity appears to also be influenced by the
374 nature of the mRNA and/or tRNA, such as pactamycin³⁸, negamycin²² and kasugamycin³⁹,
375 yet, a structural basis for their specificity has so far been lacking. By contrast, we provide a
376 structural basis for the context-specificity of PamB2, demonstrating that translation is less
377 affected by the action of PamB2 when the A-site is occupied by tRNAs bearing modifications
378 at the C2 position of nucleotide A37. This is exemplified by the majority of tRNAs decoding
379 UNN codons that bear a ms²i⁶A37 modification, such that the 2-methylthio moiety would be
380 predicted to sterically clash with the binding position of PamB2 on the ribosome (**Fig. 5a,b**).
381 A weaker refractory action was also observed by tRNAs that decode CNN codons due to
382 the presence of either m¹G37 or m²A37, which would also lead to clashes with PamB2 (**Fig.**
383 **5d,e**). In *E. coli*, no other tRNAs have modifications at the A37 position that would be
384 predicted to interfere with PamB2 activity²⁷, however, we cannot exclude that it is different
385 in other bacteria. Despite this context-specific action, PamB2 is a potent inhibitor of protein
386 synthesis, with an IC₅₀ of 0.4 μ M, which is similar to, or better than, that reported for other
387 well-known translation inhibitors, including erythromycin, chloramphenicol and tetracycline⁴.
388 This is most likely because the translation of most, if not all, mRNAs involves translation of
389 many codons that are read by tRNAs lacking modifications on the C2 position of A37 and
390 are therefore susceptible to the action of PamB2.

391 Despite the suggested similarity to edeine⁴, we show here that the PamB2 binding
392 site is completely unrelated to that reported for edeine (**Fig. 6f,g**). In fact, the binding site of
393 PamB2 identified here is distinct from that reported for any other class of translation inhibitor
394 (**Fig. 6f,g**). The only antibiotic with a binding site that slightly overlaps with PamB2 is the
395 aminoglycoside hygromycin B (**Fig. 6f,g**), which binds within helix 44 and interacts with a
396 putative K⁺ ion¹⁶. While this putative K⁺ ion is also coordinated by PamB2 (**Fig. 2d**), the

397 majority of interactions with PamB2 are distinct from hygromycin B. The unique binding site
398 and interactions of PamB2 with the ribosome compared to other clinically-used compounds,
399 suggest that there is little chance for cross-resistance with PamB2. Together, with the good
400 activity against methicillin-resistant *S. aureus*⁴, this makes paenilamicins an attractive class
401 of compounds for the future development of novel antimicrobial agents to combat drug-
402 resistant pathogenic bacteria.

403

404 **Acknowledgments**

405 We thank A. Myasnikov, S. Nazarov and E. Ushikawa from the Dubochet Center for Imaging
406 (an EPFL, UNIGE, UNIL initiative in Lausanne, Switzerland) for help with cryo-EM data
407 collection and Dorota Klepacki for help with some of the toeprinting. This work was
408 supported by the Deutsche Forschungsgemeinschaft (DFG) (grant WI3285/12-1 to D.N.W.,
409 grants SU239/21-1 and RTG 2473 “Bioactive Peptides” to R.D.S.) and the National Institute
410 of Health (R35GM127134 to A.Man.). Part of this work was performed at the Multi-User
411 CryoEM Facility at the Centre for Structural Systems Biology, Hamburg, supported by the
412 Universität Hamburg and DFG grant numbers (INST152/772-1|152/774-1|152/775-
413 1|152/776-1|152/777-1 FUGG).

414 **Author contributions**

415 T.B., A.Mai. and R.S. synthesized PamB2 and T.D., A.Mai. and R.S. prepared the *N*-
416 acetylated form of PamB2. M.J.B. prepared cryo-EM sample and performed toeprinting
417 analysis. M.Mo., A.S., M.S., M.Ma, C.C-M. and K.R. performed activity studies. H.P.
418 prepared cryo-EM grids and B.B. collected the cryo-EM data. T.O.K. processed the
419 microscopy data, generated and refined the molecular models. T.O.K and M.J.B. prepared
420 the figures. D.N.W. wrote the manuscript with input from all authors. D.N.W. and R.S.
421 conceived and D.N.W., A.Man. and R.S. supervised the project.

422 **Competing interests**

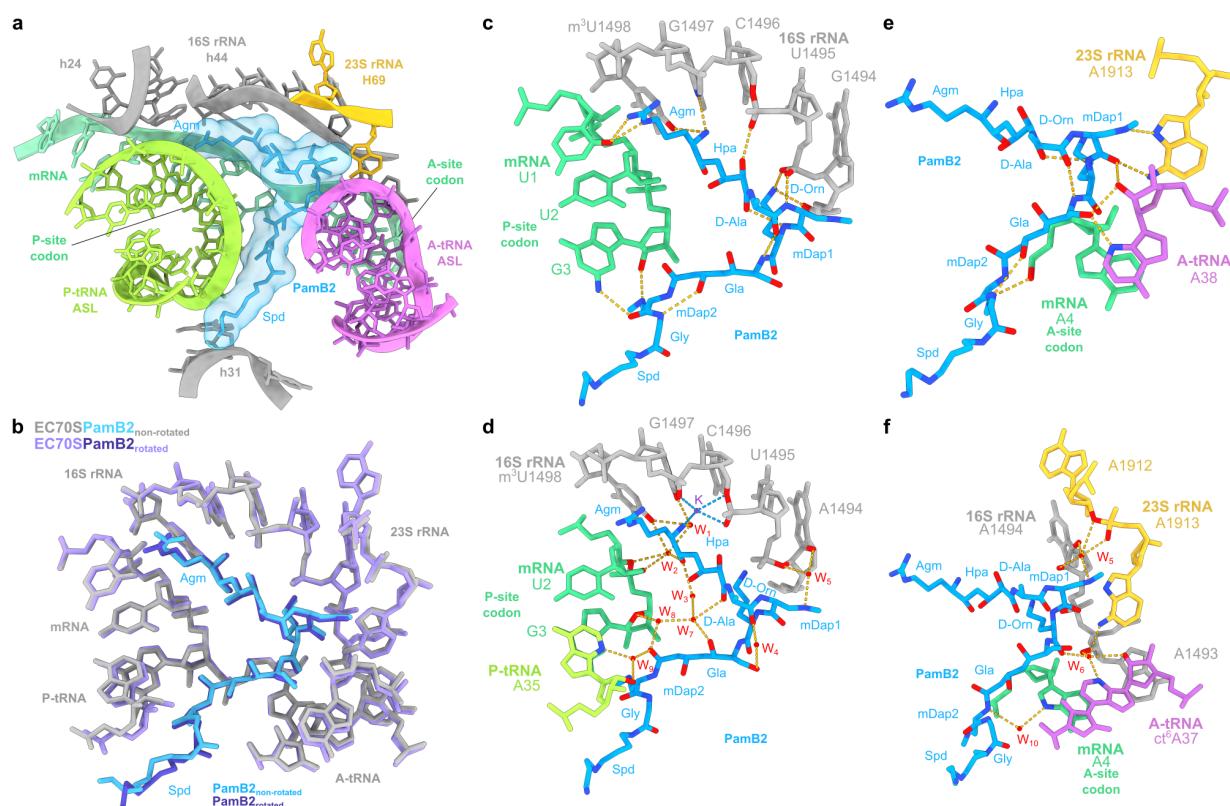
423 The authors declare no competing interests.

424 **Additional information**

425 **Supplementary information** The online version contains supplementary material available
426 at <https://...>

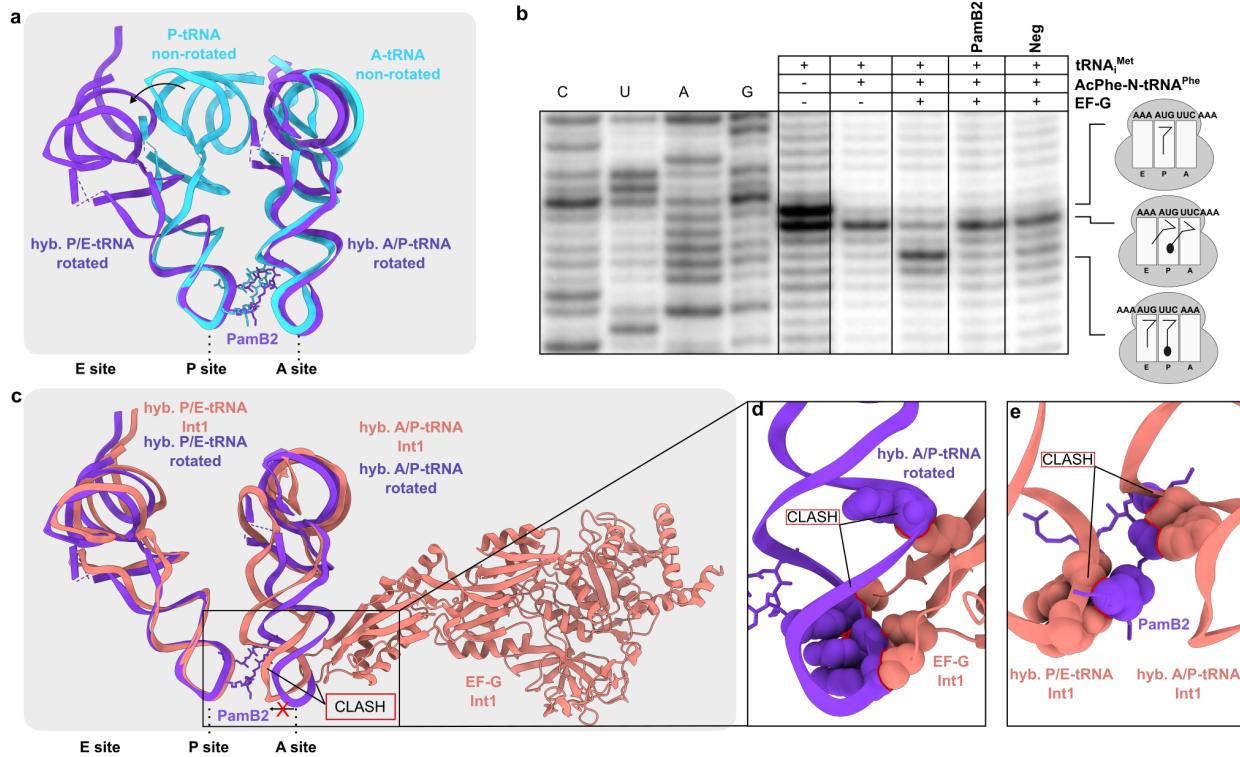
427 **Correspondence** and requests for materials should be addressed to D.N.W.

428

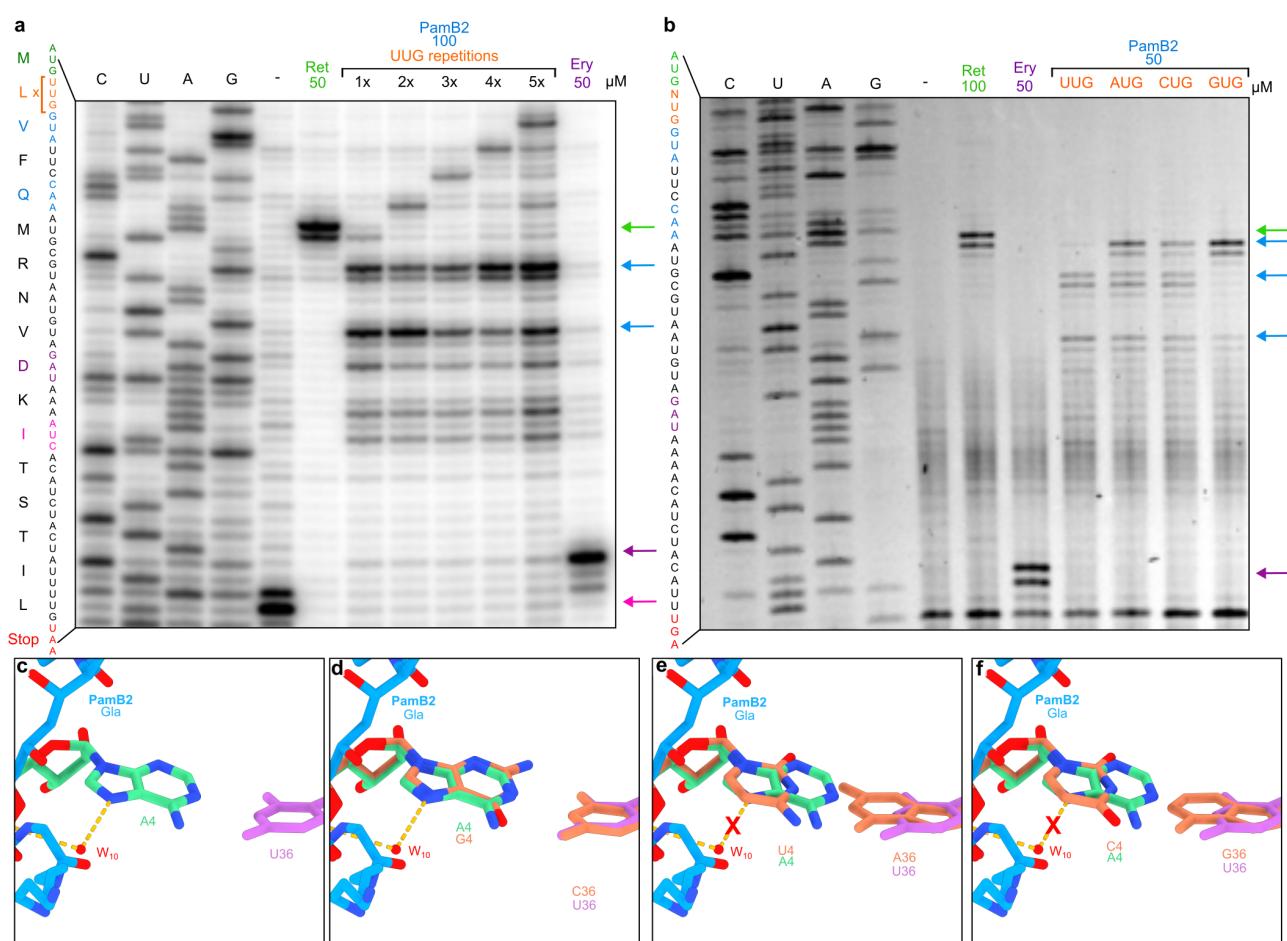

429 **Main Figures**

430

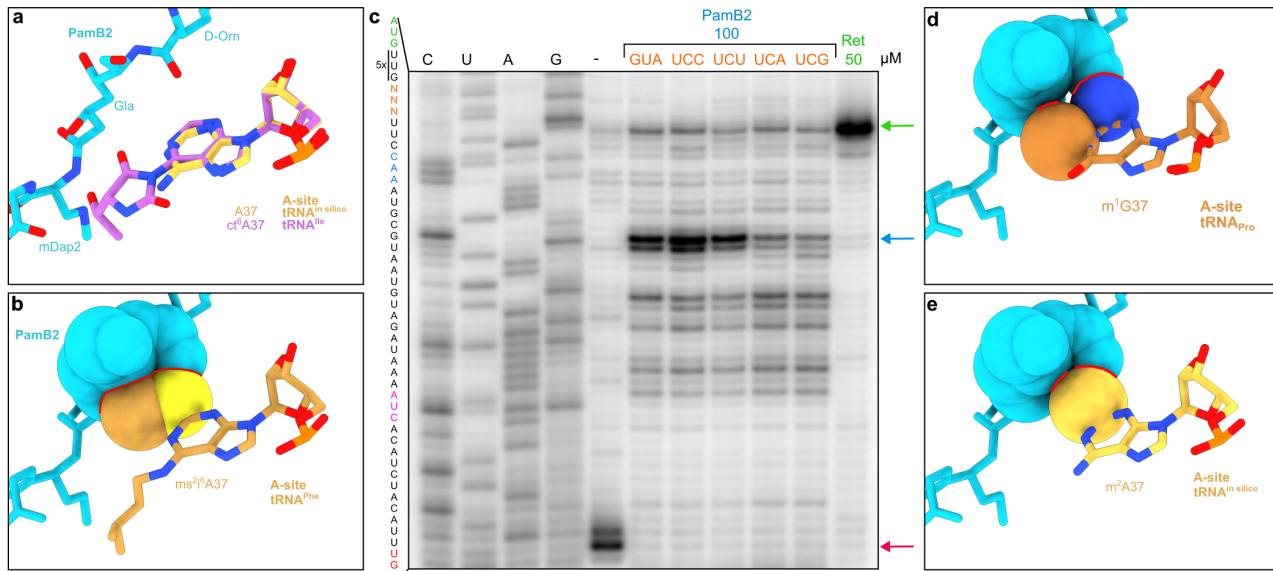
431 **Fig. 1: Cryo-EM structures of Paenilamicin B2 on the ribosome. a**, Chemical structure
432 of paenilamicin B2^{3,4}. **b-d**, Transverse section of the cryo-EM map of the PamB2-stalled
433 ribosome in non-rotated (**b,d**) and rotated (**c,e**) elongation state. **f-g**, Extracted cryo-EM
434 density assigned to PamB2 from the non-rotated (**f**, light blue) and rotated (**g**, dark purple)
435 with surrounding A-tRNA (purple), P-tRNA (light green) from the non-rotated (**f**) and hybrid
436 A/P (purple) - and P/E (light green) (**g**) and mRNA (cyan) in extracted density shown
437 as mesh. **h-i**, Molecular model of PamB2 in extracted density of the non-rotated (**h**, light
438 blue) and rotated (**i**, dark purple) states, shown as mesh.


439

440

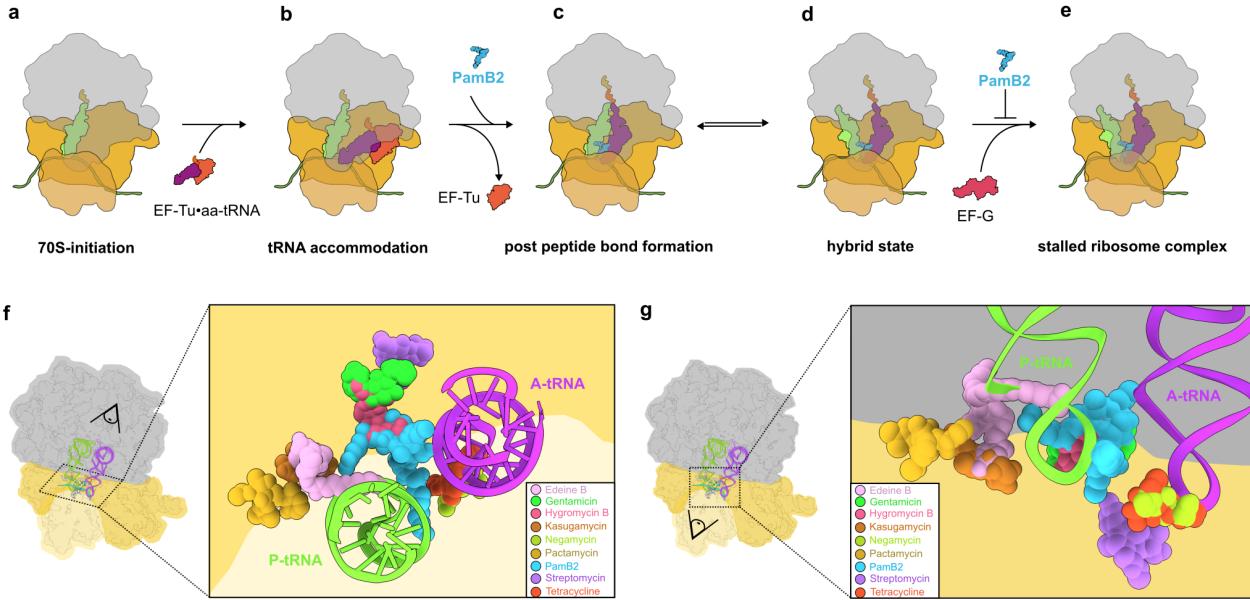

441 **Fig. 2: Interaction of PamB2 with the ribosomal P- and A-site. a**, PamB2 (light blue)
442 binding pocket located on the 30S subunit of the non-rotated PamB2-70S complex, with A-
443 site tRNA (purple), P-site tRNA (light green), 16S rRNA (grey), 23S rRNA (yellow) and
444 mRNA (cyan). **b**, Superimposition of the PamB2 binding pocket of the non-rotated (grey,
445 with PamB2 in light blue) and rotated (light purple with PamB2 in purple) PamB2-70S
446 complexes. **c-f**, Direct and water-mediated interactions (dashed yellow lines) between
447 PamB2 and the ribosome, colored as in (a). **c**, Direct and intramolecular interactions of
448 PamB2 with 16S rRNA of h44 and mRNA of the P-site codon. **d**, Water-mediated
449 interactions of PamB2 with 16S rRNA of h44, mRNA of the P-site codon and P-site tRNA.
450 **e**, Direct and intramolecular interactions of PamB2 with 23S rRNA of H69, mRNA of the A-
451 site codon and A-site tRNA. **f**, Water-mediated interactions of PamB2 with 16S rRNA of h44,
452 23S rRNA of H69, mRNA of the A-site codon and A-site tRNA.

453



455 **Fig. 3: PamB2 inhibits tRNA₂-mRNA translocation.** **a**, Superimposition of PamB2 and
456 tRNAs of the non-rotated (light blue) and rotated (purple) PamB2-70S complexes. **b**,
457 Toeprinting assay monitoring the effect of PamB2 on EF-G dependent translocation, with
458 initiator tRNA^{fMet} and N-AcPhe-tRNA^{Phe} in the absence of drugs and in the presence of the
459 translocation inhibitor negamycin²². Toeprinting assays were performed in duplicate, with
460 the duplicate gel present in the Source Data. **c**, Superimposition of PamB2 and hybrid tRNAs
461 of the rotated (purple) PamB2-70S complex with hybrid tRNAs and EF-G bound to the *E. coli*
462 70S ribosome in the Int1 state (salmon, PDB ID 7N2V)¹⁹. **d,e**, Sphere representation of the
463 (d) hybrid A/P-tRNA anticodon stem loop of the rotated PamB2 complex sterically clashing
464 with EF-G (salmon, PDB ID 7N2V)¹⁹, and of the (e) hybrid A/P- and P/E-tRNAs of the Int1
465 state (PDB ID 7N2V)¹⁹ clashing with PamB2 (purple). Steric clashes are highlighted with red
466 lines.

467



468
469 **Fig. 4: Influence of A-site mRNA context on PamB2 inhibition.** **a-b**, Toeprinting assays
470 monitoring the position of ribosomes on the wildtype ErmBL mRNA in the presence of water,
471 50 μ M or 100 μ M Retapamulin (Ret), 50 μ M Erythromycin (Ery) and **(a)** an ErmBL mRNA
472 with increasing number of UUG repetitions in the presence of 100 μ M PamB2, and **(b)** with
473 an ErmBL mRNA with the second codon mutated to UUG, AUG, CUG, GUG (orange) in the
474 presence of 50 μ M PamB2. Arrows indicate the stalling sites on the isoleucine catch codon
475 in the presence of mupirocin (pink), at initiation (green), on the erythromycin-ErmBL stalling
476 site (purple) and stalling induced by PamB2 (blue). The toeprinting assays were performed
477 in duplicate. Toeprinting assays were performed in duplicate, with the duplicate gel present
478 in the Source Data. **c-f**, Water (red) mediated interaction (dashed line) of PamB2 (blue) and
479 the first nucleotide of the mRNA of the A-site codon (cyan), and superimposed with *in silico*
480 mutated first position of the A-site codon (orange) to **(d)** guanosine, **(e)** uridine, or **(f)** cytidine.
481 The loss of the water mediated interaction is indicated by a red cross.
482

483
484 **Fig. 5: Influence of A37 modification of A-tRNA on PamB2 inhibition.** **a**, PamB2 (light
485 blue) and the modified A-site tRNA residue cyclic N6-threonylcarbamoyladenine (ct6) in
486 position 37 (purple) from the non-rotated PamB2 complex superimposed with an *in silico*
487 model of an unmodified A37. **b**, Superimposition of PamB2 from **(a)** with the 2-methylhio-
488 N6-isopentenyladenine (ms²i⁶, light orange) at position 37 of the A-site tRNA^{Phe} from the
489 *T. thermophilus* 70S ribosome pre-attack state (PDB ID 1VY5)²⁶ shown as sphere
490 representation with clashes indicated by red lines. **c**, Toeprinting assay monitoring the
491 position of ribosomes on the (UUG)₅-ErmBL mRNA in the presence of water, 50 μM
492 retapamulin (Ret, green) and 100 μM PamB2 (light blue). The seventh codon was modified
493 to different serine codons (orange). Arrows indicate stalling for the isoleucine catch codon
494 in the presence of mupirocin (pink), the initiation (green) and PamB2-induced stalling (light
495 blue). Toeprinting assays were performed in duplicate, with the duplicate gel present in the
496 Source Data. **d-e**, Superimposition of PamB2 from **(a)** with **(d)** 1-methyl-guanine (m¹G, dark
497 orange) at position 37 of the A-site tRNA^{Pro} on the *T. thermophilus* 70S ribosome (PDB ID
498 6NUO)⁴⁰ and **(e)** an *in silico* modified 2-methyl-adenine (m²A, yellow) shown as sphere
499 representation with steric clashes indicated by red lines.

500

501
502 **Fig. 6: Mechanism of action of PamB2 and relative binding site of PamB2 compared**
503 **to other antibiotics. a-e**, Model for the mechanism of action of PamB2 during translation.
504 **a-b**, PamB2 does not bind stably to **(a)** the initiation state with P-site tRNA only, nor **(b)**
505 during delivery and decoding of the aminoacyl-tRNA to the A-site by EF-Tu. **c-d**, PamB2
506 binds stably to pre-translocation states with **(c)** A- and P-site tRNAs in non-rotated state and
507 does not prevent peptide bond formation, as well as **(d)** rotated hybrid state with A/P- and
508 P/E-tRNAs. **e**, Stable binding of EF-G is prevented by PamB2 thereby preventing
509 translocation and trapping the ribosome in the pre-translocational states. **f-g**, Two views of
510 PamB2 (light blue) superimposed with edeine B (pink, PDB ID 1I95)⁴¹, gentamicin (neon
511 green, PDB ID 8CGU)¹⁶, hygromycin B (hot pink, PDB ID 8CAI)¹⁶, kasugamycin (dark
512 orange, PDB ID 8CEP)¹⁶, negamycin (light green, PDB ID 4W2I)²², pactamycin (yellow, PDB
513 ID 4W2H)⁴², streptomycin (pink, PDB ID 8CAI)¹⁶, and tetracycline (pink, PDB ID 8CF1)¹⁶,
514 shown in sphere representation on the 30S subunit (head, light yellow; body, yellow), the
515 50S subunit (grey) and P- (green) and A-tRNA (purple).
516

517 **References**

518 1 Fischbach, M. A. & Walsh, C. T. Antibiotics for emerging pathogens. *Science* **325**,
519 1089-1093 (2009).

520 2 Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in
521 2019: a systematic analysis. *Lancet* **399**, 629-655 (2022).

522 3 Muller, S. *et al.* Paenilamicin: structure and biosynthesis of a hybrid nonribosomal
523 peptide/polyketide antibiotic from the bee pathogen *Paenibacillus larvae*. *Angew Chem
524 Int Ed Engl* **53**, 10821-10825 (2014).

525 4 Bulatov, T. *et al.* Total Synthesis and Biological Evaluation of Paenilamicins from the
526 Honey Bee Pathogen *Paenibacillus larvae*. *J Am Chem Soc* **144**, 288-296 (2022).

527 5 Genersch, E. American Foulbrood in honeybees and its causative agent, *Paenibacillus*
528 larvae. *J Invertebr Pathol* **103 Suppl 1**, S10-19 (2010).

529 6 Shoji, J. *et al.* Isolation of galantins I and II, water-soluble basic peptides. Studies on
530 antibiotics from the genus *Bacillus*. III. *J Antibiot (Tokyo)* **28**, 122-125 (1975).

531 7 Dang, T. *et al.* Molecular basis of antibiotic self-resistance in a bee larvae pathogen.
532 *Nat Commun* **13**, 2349 (2022).

533 8 Reimer, D., Pos, K. M., Thines, M., Grun, P. & Bode, H. B. A natural prodrug activation
534 mechanism in nonribosomal peptide synthesis. *Nat Chem Biol* **7**, 888-890 (2011).

535 9 Prokhorova, I. *et al.* Aminoglycoside interactions and impacts on the eukaryotic
536 ribosome. *Proc Natl Acad Sci U S A* **114**, E10899-E10908 (2017).

537 10 Grossman, T. H. *et al.* Target- and resistance-based mechanistic studies with TP-434,
538 a novel fluorocycline antibiotic. *Antimicrob Agents Chemother* **56**, 2559-2564 (2012).

539 11 Starosta, A. *et al.* Interplay between the ribosomal tunnel, nascent chain, and
540 macrolides influences drug inhibition. *Chem. Biol.* **17**, 1-10 (2010).

541 12 Koller, T. O. *et al.* Structural basis for translation inhibition by the glycosylated drosocin
542 peptide. *Nat Chem Biol* **19**, 1072-1081 (2023).

543 13 Limbrick, E. M. *et al.* Bifunctional Nitrone-Conjugated Secondary Metabolite Targeting
544 the Ribosome. *J Am Chem Soc* **142**, 18369-18377 (2020).

545 14 Seefeldt, A. C. *et al.* The proline-rich antimicrobial peptide Onc112 inhibits translation
546 by blocking and destabilizing the initiation complex. *Nat Struct Mol Biol* **22**, 470-475
547 (2015).

548 15 Polikanov, Y. S. *et al.* Distinct tRNA Accommodation Intermediates Observed on the
549 Ribosome with the Antibiotics Hygromycin A and A201A. *Mol Cell* **58**, 832-844 (2015).

550 16 Paternoga, H. *et al.* Structural conservation of antibiotic interaction with ribosomes. *Nat Struct Mol Biol* **30**, 1380-1392 (2023).

551 17 Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. *Nature* **484**, 256-259 (2012).

552 18 Loveland, A. B., Demo, G. & Korostelev, A. A. Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading. *Nature* **584**, 640-645 (2020).

553 19 Rundlet, E. J. *et al.* Structural basis of early translocation events on the ribosome. *Nature* **595**, 741-745 (2021).

554 20 Carbone, C. E. *et al.* Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP. *Nat Commun* **12**, 7236 (2021).

555 21 Petrychenko, V. *et al.* Structural mechanism of GTPase-powered ribosome-tRNA movement. *Nat Commun* **12**, 5933 (2021).

556 22 Polikanov, Y. S. *et al.* Negamycin Interferes with Decoding and Translocation by Simultaneous Interaction with rRNA and tRNA. *Mol Cell* (2014).

557 23 Meydan, S. *et al.* Retapamulin-Assisted Ribosome Profiling Reveals the Alternative Bacterial Proteome. *Mol Cell* **74**, 481-493 e486 (2019).

558 24 Arenz, S. *et al.* Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. *Nat Commun* **5**, 3501 (2014).

559 25 Arenz, S. *et al.* Drug Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation. *Mol Cell* **56**, 446-452 (2014).

560 26 Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. *Nat Struct Mol Biol* **21**, 787-793 (2014).

561 27 Bjork, G. R. & Hagervall, T. G. Transfer RNA Modification: Presence, Synthesis, and Function. *EcoSal Plus* **6** (2014).

562 28 Vazquez-Laslop, N. & Mankin, A. S. Context-Specific Action of Ribosomal Antibiotics. *Annu Rev Microbiol* **72**, 185-207 (2018).

563 29 Beckert, B. *et al.* Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. *Nat Commun* **12**, 4466 (2021).

564 30 Kannan, K., Vazquez-Laslop, N. & Mankin, A. S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. *Cell* **151**, 508-520 (2012).

565 31 Kannan, K. *et al.* The general mode of translation inhibition by macrolide antibiotics. *Proc Natl Acad Sci U S A* **111**, 15958-15963 (2014).

583 32 Marks, J. *et al.* Context-specific inhibition of translation by ribosomal antibiotics
584 targeting the peptidyl transferase center. *Proc Natl Acad Sci U S A* **113**, 12150-12155
585 (2016).

586 33 Tsai, K. *et al.* Structural basis for context-specific inhibition of translation by
587 oxazolidinone antibiotics. *Nat Struct Mol Biol* **29**, 162-171 (2022).

588 34 Syroegin, E. A. *et al.* Structural basis for the context-specific action of the classic
589 peptidyl transferase inhibitor chloramphenicol. *Nat Struct Mol Biol* **29**, 152-161 (2022).

590 35 Osterman, I. A. *et al.* Tetracenomycin X inhibits translation by binding within the
591 ribosomal exit tunnel. *Nat Chem Biol* **16**, 1071-1077 (2020).

592 36 Mangano, K. *et al.* Context-based sensing of orthosomycin antibiotics by the
593 translating ribosome. *Nat Chem Biol* **18**, 1277-1286 (2022).

594 37 Leroy, E. C., Perry, T. N., Renault, T. T. & Innis, C. A. Tetracenomycin X sequesters
595 peptidyl-tRNA during translation of QK motifs. *Nat Chem Biol* **19**, 1091-1096 (2023).

596 38 Dinos, G. *et al.* Dissecting the ribosomal inhibition mechanisms of edeine and
597 pactamycin: the universally conserved residues G693 and C795 regulate P-site tRNA
598 binding. *Mol Cell* **13**, 113-124 (2004).

599 39 Zhang, Y. *et al.* The context of the ribosome binding site in mRNAs defines specificity
600 of action of kasugamycin, an inhibitor of translation initiation. *Proc Natl Acad Sci U S*
601 **A** **119** (2022).

602 40 Hoffer, E. D. *et al.* Structural insights into mRNA reading frame regulation by tRNA
603 modification and slippery codon-anticodon pairing. *Elife* **9** (2020).

604 41 Pioletti, M. *et al.* Crystal structures of complexes of the small ribosomal subunit with
605 tetracycline, edeine and IF3. *EMBO J.* **20**, 1829-1839 (2001).

606 42 Polikanov, Y. S. *et al.* Amicoumacin A Inhibits Translation by Stabilizing mRNA
607 Interaction with the Ribosome. *Mol Cell* (2014).

608 43 Vazquez-Laslop, N., Thum, C. & Mankin, A. S. Molecular mechanism of drug-
609 dependent ribosome stalling. *Mol Cell* **30**, 190-202 (2008).

610 44 Choi, J. *et al.* Dynamics of the context-specific translation arrest by chloramphenicol
611 and linezolid. *Nat Chem Biol* **16**, 310-317 (2020).

612

613 **Methods**

614 *Synthesis of Paenilamicins*

615 Synthetic PamB and its *N*-acetylated form were produced as previously reported^{4,7}

616

617 *Toeprinting assays*

618 Toeprinting reactions for **Extended Data Fig. 2** and **Fig. 4b** were performed as described
619 previously¹⁴. Briefly, reactions were performed with 6 μ l of PURExpress *in vitro* protein
620 synthesis system (New England Biolabs). The reactions were carried out on different
621 templates (**Supplementary Table 2**). The reactions contained 340 ng of the respective
622 mRNA template and were supplemented with the different compounds as specified. The
623 translation reactions were incubated for 30 min at 37°C. The reverse transcription reaction
624 was carried out using AMV RT and primer NV*1-Alexa 647 (5'-
625 GGTTATAATGAATTTGCTTATTAAC-3'). The translation reactions were incubated with
626 the reverse transcriptase and the primer for 20 min at 37°C. mRNA degradation was carried
627 out by the addition of 1 μ l of 5 M NaOH. The reactions were neutralized with 0.7 μ l of 25%
628 HCl, and nucleotide removal was performed with the QIAquick Nucleotide Removal Kit
629 (Qiagen). The samples were dried under vacuum for 2 hours at 60°C for subsequent gel
630 electrophoresis. The 6% acrylamide gels were scanned on a Typhoon scanner (GE
631 Healthcare).

632 Toeprinting reactions for **Fig. 4a** and **Fig. 5c** were performed as described previously⁴³.
633 Briefly, reactions were performed with 5 μ l of PURExpress *in vitro* protein synthesis system.
634 The reactions contained 0.1 pmol of the respective DNA template (**Supplementary Table**
635 **2**) and were supplemented with retapamulin, erythromycin, mupirocin or PamB2 as
636 specified. The transcription-translation reactions were incubated 20 min at 37°C.
637 Subsequently, reverse transcription was performed for 10 min at 37°C using AMV RT and
638 the radiolabeled NV*1-primer. Reactions were stopped by the addition of 1 μ l of 10 M NaOH
639 and then neutralized with 0.8 μ l of concentrated HCl. Subsequently, 200 μ L of the stop buffer
640 (0.3 M sodium acetate [pH 5.5], 5 mM EDTA and 0.5% SDS) was added and phenol
641 extraction was performed. The obtained cDNA was precipitated in ethanol for subsequent
642 gel electrophoresis.

643

644 *Translocation assay*

645 Translocation assays were performed as previously described²² using the MFKAFK
646 template⁴⁴ (**Supplementary Table 2**). Reactions were prepared by incubating tight-coupled

647 ribosomes (0.7 μ M) with mRNA (0.5 μ M) and tRNA_i^{Met} (1 μ M) for 20 min at 37°C in the Pure
648 System Buffer (5 mM Potassium phosphate [pH 7.3], 9 mM Mg(OAc)₂, 95 mM potassium
649 glutamate, 5 mM NH₄Cl, 0.5 mM CaCl₂, 1 mM spermidine, 8 mM putrescine, and 1 mM
650 dithiothreitol) and for additional 10 min at 37°C with 2 μ M of N-acetyl-Phe-tRNA^{Phe}. At the
651 time of N-acetyl-Phe-tRNA^{Phe} addition, the reactions were supplemented with PamB2 or
652 negamycin as specified. The translocation reaction was initiated by addition of 1 μ L EF-
653 G/GTP mixture (1.2 μ M/3.2 mM). After 5 min of incubation at 30°C, 2 μ L reverse
654 transcriptase/dNTPs mixture was added. The reactions were stopped after another 5 min at
655 30°C by addition of 200 μ L of the stop buffer and subsequent phenol extraction. The
656 obtained cDNA was precipitated in ethanol for subsequent gel electrophoresis.

657

658 *Preparation of complexes for structural analysis*

659 PamB2-ribosome complexes were generated by *in vitro* transcription-translation reactions
660 in PURExpress *in vitro* protein synthesis system (New England Biolabs) with the same
661 reaction mix as described earlier in the *toeprinting* assays. Complex formation reactions
662 were carried out on MLIF-stop toeprint DNA template in a 48 μ L reaction in presence of
663 50 μ M PamB2. The reaction was incubated for 15 min at 37°C. The reaction volume was
664 then split: 42 μ L were used for complex generation and 6 μ L were used for toeprinting
665 analysis. Ribosome complexes were isolated by centrifugation in 900 μ L sucrose gradient
666 buffer (containing 40% sucrose, 50 mM HEPES-KOH, pH 7.4, 100 mM KOAc, 25 mM
667 Mg(OAc)₂ and 6 mM 2-mercaptoethanol) for 3 hours at 4°C with 80,000 x g in a Optima™
668 Max-XP Tabletop Ultracentrifuge with a TLA 120.2 rotor. The pelleted complex was
669 resuspended in Hico buffer (50 mM HEPES-KOH, pH 7.4, 100 mM KOAc, 25 mM Mg(OAc)₂)
670 supplemented with PamB2 at the same concentrations used in the *in vitro* translation
671 reaction), then incubated for 15 min at 37°C.

672

673 *Preparation of cryo-EM grids and data collection*

674 Sample volumes of 3.5 μ l (8 OD₂₆₀ per ml) were applied to grids (Quantifoil, Cu, 300 mesh,
675 R3/3 with 3 nm carbon) which had been freshly glow-discharged using a GloQube (Quorum
676 Technologies) in negative charge mode at 25 mA for 90 sec. Sample vitrification was
677 performed using an ethane-propane mixture (37:63) in a Vitrobot Mark IV (Thermo Fisher
678 Scientific), the chamber was set to 4°C and 100% relative humidity and blotting was done
679 for 3 sec with no drain or wait time. Frozen cryo-EM grids were imaged on a TFS 300kV
680 Titan Krios at the Dubochet Center for Imaging EPFL (Lausanne, Switzerland). Images were

681 collected on Falcon IV direct detection camera in counting mode using the EPU and AFIS
682 data collection scheme with a magnification of 96,000 x and a total dose of 60 electrons per
683 square angstrom ($e^-/\text{\AA}^2$) for each exposure, and defocus ranging from -0.4 to -0.9 microns.
684 In total, 7,638 movies were produced in EER format at a pixel size of 0.8 $\text{\AA}/\text{pixel}$.

685

686 *Single-particle reconstruction of PamB2-stalled ribosome complexes*
687 RELION v4.0.1⁴⁵ was used for processing, unless otherwise specified. For motion
688 correction, RELION's implementation of MotionCor2 with 4x4 patches and for initial CTF
689 estimation CTFFIND v4.1.14⁴⁶ was employed. From 7,638 micrographs, 611,189 particles
690 were picked using crYOLO v1.8.04b47 with a general model⁴⁷. 562,816 ribosome-like
691 particles were selected after 2D classification and extracted at 3x decimated pixel size
692 (2.4 $\text{\AA}/\text{pixel}$) (**Supplementary Fig. 1b,c**). An initial 3D refinement was done using a *E. coli*
693 70S reference map (EMD-12573)²⁹. Particles were 3D classified for 100 iterations and
694 resulted in four classes of which a non-rotated 70S class with A-, P- and E-site tRNAs
695 (65.0%, 365,773 particles) and a rotated 70S with hybrid A/P- and P/E-tRNA (22.4%,
696 126,259 particles) (**Supplementary Fig. 1d**) were further sub-sorted. Sub-sorting was done
697 for 100 iterations for both classes individually (**Supplementary Fig. 1e,g**), yielding two
698 classes of non-rotated 70S with A-, P- and sub-stoichiometric E-site tRNA (52.5%, 295,568
699 particles) and rotated 70S class with hybrid A/P- and P/E-tRNA (16.7%, 93,773 particles),
700 respectively. Focus-sorting was performed with partial particle subtraction using a mask
701 surrounding the tRNAs for the particles containing non-rotated 70S with A-, P- and sub-
702 stoichiometric E-site tRNA and 3D classified for 100 iterations yielding six classes. Classes
703 containing A-, P- and E-site tRNA (31.4%, 176,827 particles), as well as classes containing
704 just P-site tRNA (15.1%, 84,771 particles) were combined and further processed
705 (**Supplementary Fig. 1f**). All resulting classes were 3D refined (with a solvent mask), CTF
706 refined (4th order aberration, anisotropic magnification and per-particle defocus value
707 estimation), Bayesian polished, again CTF refined and after a final 3D refinement yielded a
708 final average resolution of 2.2 \AA (at $FSC_{0.143}$) for the post-processed masked reconstruction
709 of the non-rotated 70S complex containing A-, P- and sub. E-site tRNA (**Supplementary**
710 **Fig. 1h**), a final average resolution of 2.4 \AA (at $FSC_{0.143}$) for the post-processed masked
711 reconstruction of the 70S complex containing P-tRNA (**Supplementary Fig. 1i**) and a final
712 average resolution of 2.3 \AA (at $FSC_{0.143}$) for the post-processed masked reconstruction of
713 the rotated 70S complex containing hybrid A/P-, and P/E-tRNAs (**Supplementary Fig. 1f**).
714 To estimate local resolution values Bsoft⁴⁸ was used on the half-maps of the final

715 reconstructions (blocres -sampling 0.8 -maxres -boc 20 -cutoff 0.143 -verbose 1 -origin 0,0,0
716 -Mask half_map1 half_map 2) (**Extended Data Fig. 3d-m**).

717
718 *Molecular modelling of the PamB2-ribosome complexes*
719 The molecular models of the 30S and 50S ribosomal subunits were based on the *E. coli* 70S
720 ribosome (PDB ID 7K00)⁴⁹. PamB2 and *in silico* modified versions of paenilamicins were
721 generated and restraints created using aceDRG⁵⁰ and modelled *de novo*. The non-rotated
722 and rotated 70S complexes were assembled with tRNA^{Leu} and tRNA^{Ile} used from the
723 drosocin-stalled 70S complexes (PDB ID 8AM9)¹². The initiation complex was assembled
724 with an initiator fMet-tRNA (PDB ID 1VY4)²⁶ in the P-site. Modifications of rRNA nucleotides
725 and tRNA^{Leu} and tRNA^{Ile} were generated using aceDRG⁵⁰. Starting models were rigid body
726 fitted using ChimeraX 1.6.1⁵¹ and modelled using Coot 0.9.8.92⁵² from the CCP4 software
727 suite v8.0.017⁵³. The sequence for the tRNAs were adjusted based the appropriate
728 anticodons corresponding to the mRNA. Final refinements were done in REFMAC 5⁵⁴ using
729 Servalcat v0.4.28⁵⁵. The molecular models were validated using Phenix comprehensive
730 Cryo-EM validation in Phenix 1.20.1-4487⁵⁶.

731
732 *Figures*
733 UCSF ChimeraX 1.6.1⁵¹ was used to isolate density, align molecular models and visualize
734 density images and structural superpositions. Figures were assembled with Inkscape (latest
735 development release, regularly updated).

736 **Data availability**
737 Micrographs have been deposited as uncorrected frames in the Electron Microscopy Public
738 Image Archive (EMPIAR) with the accession codes EMPIAR-12080
739 [<https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/12080>]. Cryo-EM maps have been
740 deposited in the Electron Microscopy Data Bank (EMDB) with accession codes EMD-18950
741 [<https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-18950>] (Non-rotated 70S PamB2 complex),
742 EMD-19004 [<https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-19004>] (Rotated 70S PamB2
743 complex), and EMD-50296 [<https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-50296>] (Initiation
744 70S complex). Molecular models have been deposited in the Protein Data Bank with
745 accession codes 8R6C [<https://doi.org/10.2210/pdb8R6C/pdb>] (Non-rotated 70S PamB2
746 complex), 8R8M [<https://doi.org/10.2210/pdb8R8M/pdb>] (Rotated 70S PamB2 complex),
747 9FBV [<https://doi.org/10.2210/pdb9FBV/pdb>] (Initiation 70S complex). Structures from prior
748 studies were used in this work for comparison, alignments and for modelling and are

749 available in the Protein Data Bank, with PDB ID 7K00, 8AM9, 1VY4, 1VY5, 6NUO, 7N2V,
750 7N2U, 7N1P, 1I95, 8CGU, 8CAI, 8CEP, 4W2I, 4W2H, 8CF1, 6WD2, 6WD8, 6WD0, 7SSL,
751 7SSD, 7PJY, 7PJW, 7PJV, 4V6Z, 4V8D. Source data are provided with this paper.
752

753 **Methods-only references**

754 45 Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for
755 automated cryo-EM single-particle analysis in RELION-4.0. *Biochem J* **478**, 4169-4185
756 (2021).

757 46 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for
758 improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).

759 47 Wagner, T. *et al.* SPHIRE-crYOLO is a fast and accurate fully automated particle picker
760 for cryo-EM. *Commun Biol* **2**, 218 (2019).

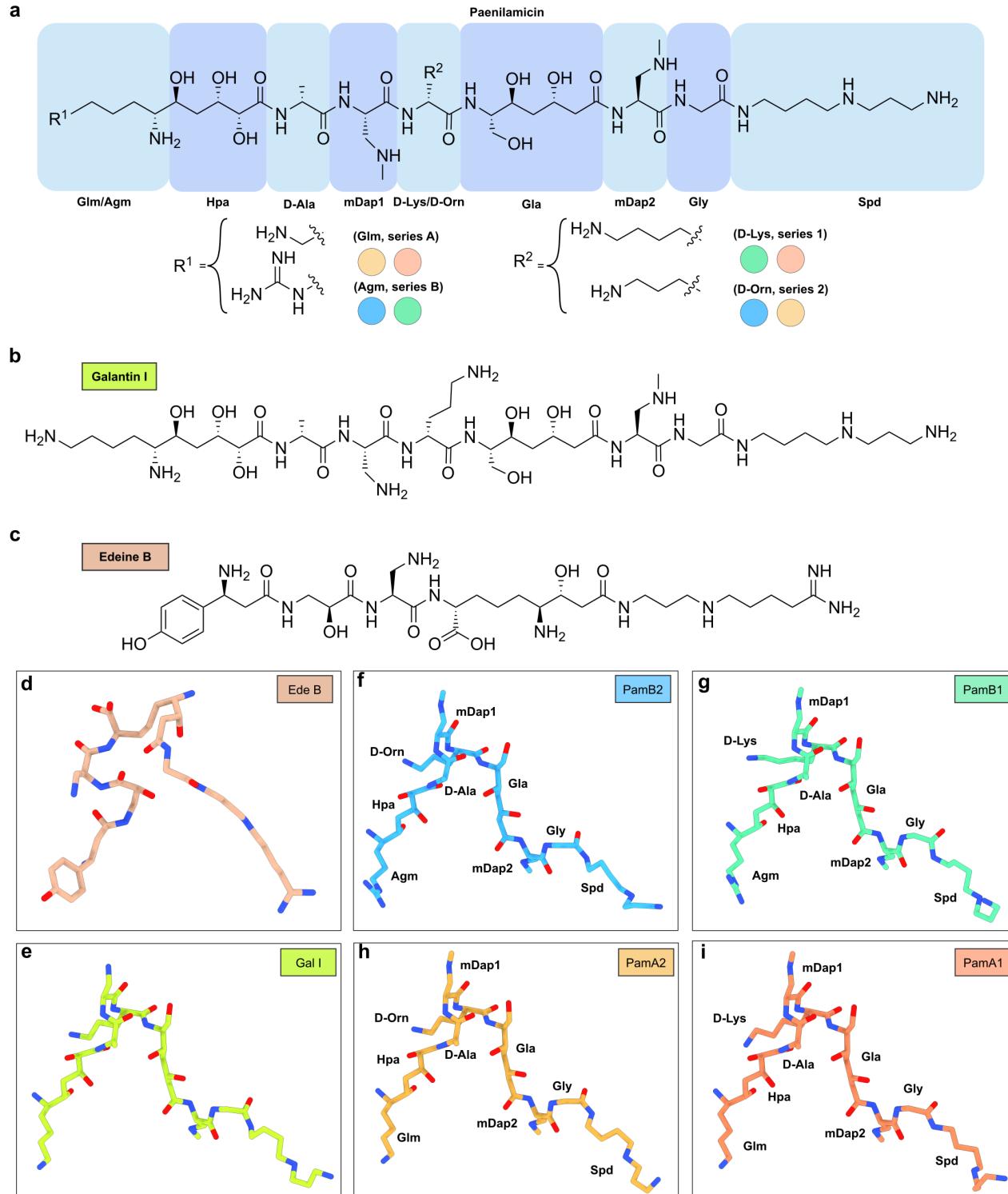
761 48 Heymann, J. B. Guidelines for using Bsoft for high resolution reconstruction and
762 validation of biomolecular structures from electron micrographs. *Protein Sci* **27**, 159-
763 171 (2018).

764 49 Watson, Z. L. *et al.* Structure of the bacterial ribosome at 2 Å resolution. *Elife* **9** (2020).

765 50 Long, F. *et al.* AceDRG: a stereochemical description generator for ligands. *Acta
766 Crystallogr D Struct Biol* **73**, 112-122 (2017).

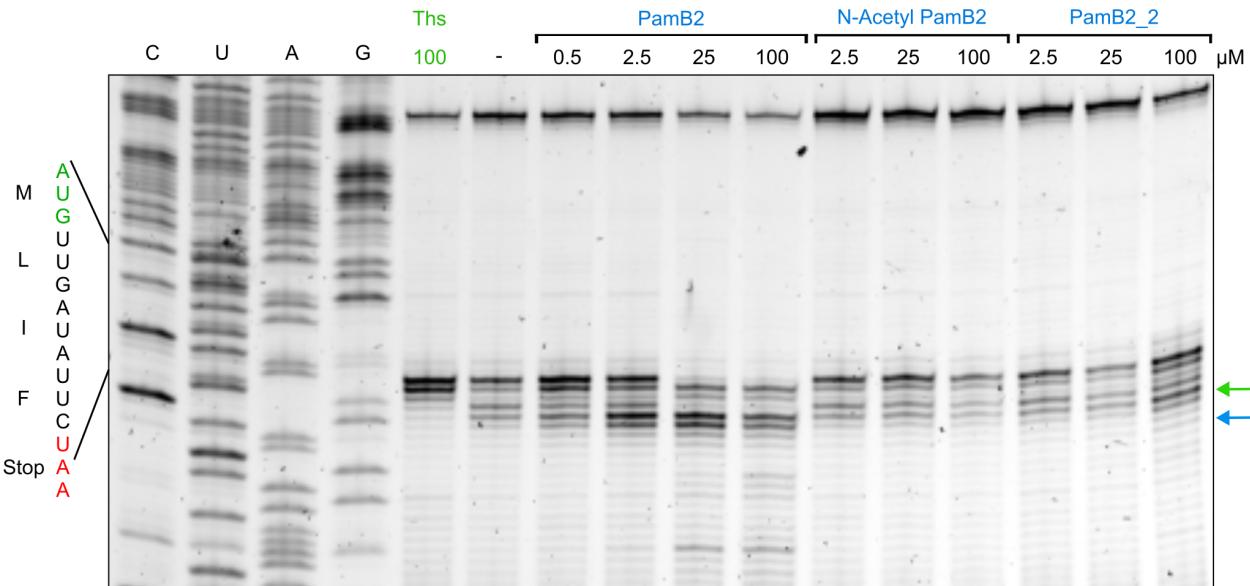
767 51 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers,
768 educators, and developers. *Protein Sci* **30**, 70-82 (2021).

769 52 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of
770 Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

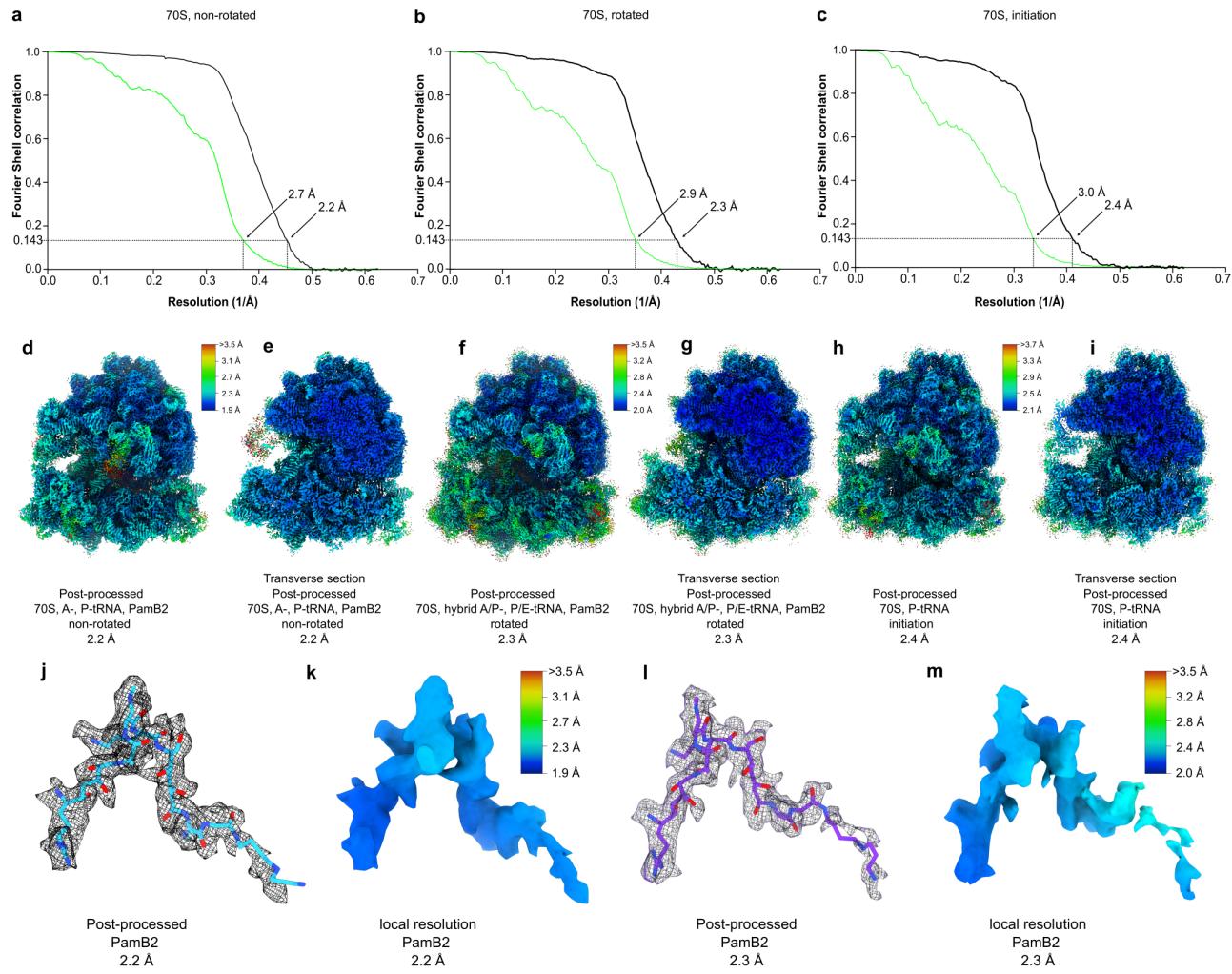

771 53 Winn, M. D. *et al.* Overview of the CCP4 suite and current developments. *Acta
772 Crystallogr D Biol Crystallogr* **67**, 235-242 (2011).

773 54 Vagin, A. A. *et al.* REFMAC5 dictionary: organization of prior chemical knowledge and
774 guidelines for its use. *Acta Crystallogr D Biol Crystallogr* **60**, 2184-2195 (2004).

775 55 Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle
776 structure refinement and map calculation using Servalcat. *Acta Crystallogr D Struct
777 Biol* **77**, 1282-1291 (2021).

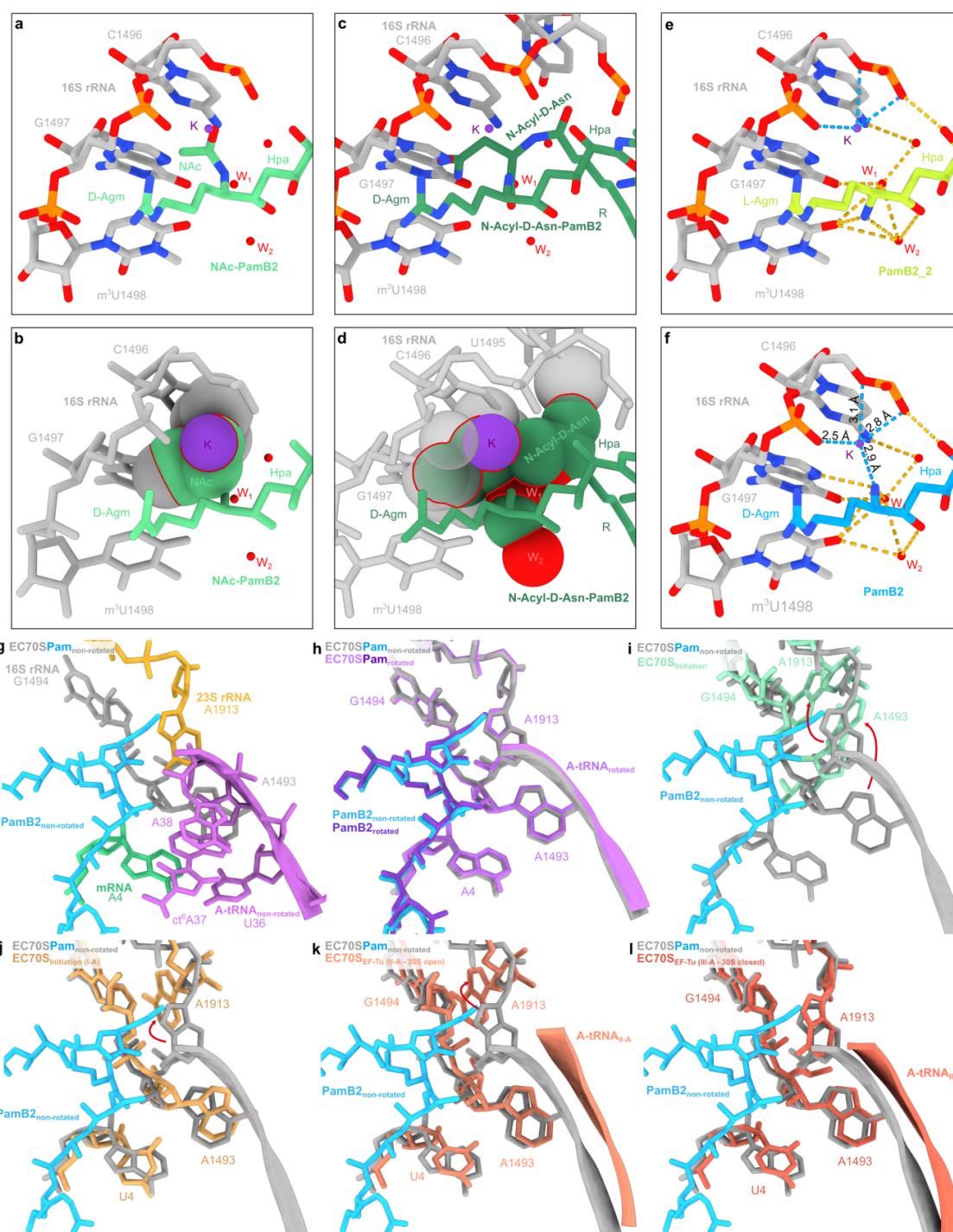

778 56 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons
779 and electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-
780 877 (2019).

781

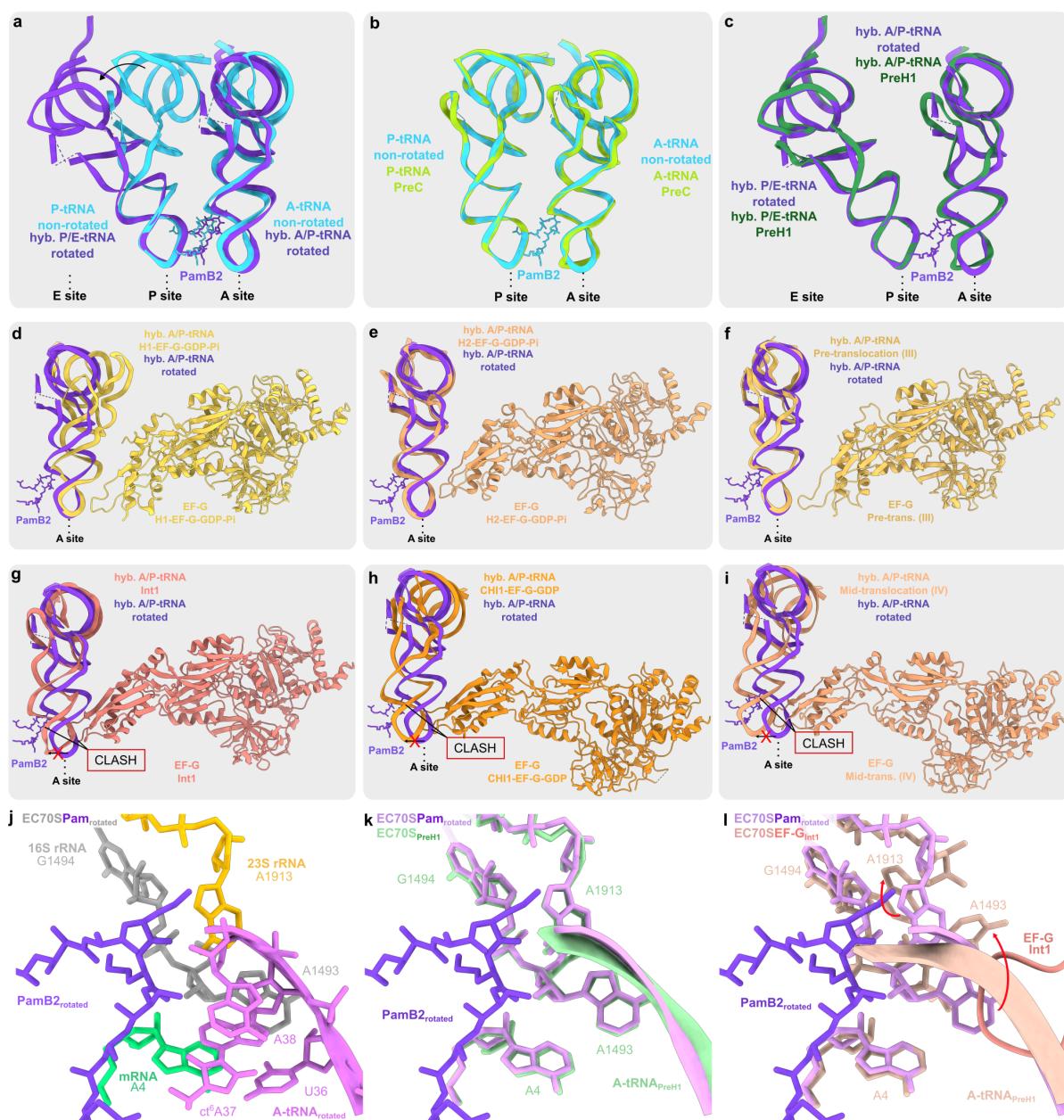


782
783 **Extended Data Fig. 1: Chemical structures and models of paenilamicin, galantin I and**
784 **edeine. a-c, Chemical structures of (a) paenilamicin, (b) galantin I and (c) edeine B. d,**
785 **Molecular model of edeine B on the *T. thermophilus* 30S subunit (beige, Ede B, PDB ID**
786 **1I95)¹. e, *In silico* molecular model of galantin I (Gal I, light green). f-i, Molecular model of**
787 **PamB2 of the non-rotated PamB2 complex and *in silico* modelled PamB1 (green), PamA2**
788 **(light orange), PamA1 (orange).**

789



790
791 **Extended Data Fig. 2: Toeprinting assay on the MLIFstop-mRNA. a,** Toeprinting assay
792 monitoring the position of ribosomes on a MLIFstop-mRNA in the presence of 100 μM
793 thiostrepton, water and increasing concentrations of PamB2, N-Acetyl-PamB2 and
794 PamB2_2 (0.5-100 μM). Arrows indicate the stalling at the initiation (green), and PamB2
795 induced stalling (blue). Toeprinting assays were performed in duplicate, with the duplicate
796 gel present in the Source Data.
797
798



799
800
801 **Extended Data Fig. 3: Fourier shell correlation and local resolution for the PamB2**
802 **complexes. a-c**, Fourier shell correlation (FSC) curve of the **(a)** non-rotated, **(b)** rotated and
803 **(c)** initiation complexes, with unmasked (green) and masked (black) FSC curves plotted
804 against the resolution (1/Å). **d-i**, Cryo-EM density colored according to local resolution and
805 transverse section for the **(d-e)** non-rotated, **(f-g)** rotated and **(h-i)** initiation complexes. **j-m**,
806 Molecular model of PamB2 (light blue and purple) and corresponding cryo-EM density
807 colored according to local resolution for the **(j-k)** non-rotated, and **(l-m)** rotated complex.

808
809

810
811
812
813
814
815
816
817
818
819
820
821
822

823

824 **Extended Data Fig. 5: PamB2 inhibits tRNA₂-mRNA translocation.** **a**, Superimposition
 825 of the P- and A-site tRNA of the non-rotated PamB2 complex (light blue) and the hybrid A/P-
 826 and P/E-tRNA of the rotated PamB2 complex (dark purple). **b**, Superimposition of the P-
 827 and A-tRNA of the non-rotated PamB2-complex (light blue) and the P- and A-tRNA of the
 828 PreC state (light green, PDB ID 7N1P)¹⁹. **c**, Superimposition of the hybrid A/P- and P/E-site
 829 tRNA of the rotated PamB2-complex (dark purple) and the hybrid A/P- and P/E-site tRNA of
 830 the PreH1 state (dark green, PDB ID 7N2U)¹⁹. **d-i**, Superimposition of the hybrid A/P-site
 831 tRNA of the rotated PamB2-complex (dark purple) and the hybrid A/P-site tRNA and EF-G
 832 of the (d) H1-EF-G-GDP-Pi state (light yellow, PDB ID 7PJY)²¹, (e) H2-EF-G-GDP-Pi state
 833 (light orange, PDB ID 7PJW)²¹ and (f) pre-translocation (III) state (yellow, PDB ID 7SSL)²⁰,
 834 (g) Int1 state (salmon, PDB ID 7N2V)¹⁹, (h) CHI1-EF-G-GDP state (orange, PDB ID 7PJY)²¹,
 835 (i) mid-translocation (IV) state (light orange, PDB ID 7SSD)²⁰. **j-l**, PamB2 of the rotated
 836 complex (j) with surrounding hybrid A/P-tRNA (purple), 16S rRNA nucleotides (grey), 23S
 837 rRNA nucleotides (yellow) and the A-site codon of the mRNA (cyan) superimposed with (k)
 838 with the 70S *E. coli* ribosome in the PreH1 state (light green, PDB ID 7N2U)¹⁹ and (l) with
 839 the 70S *E. coli* ribosome and EF-G of the Int1 state shown as ribbon (salmon, PDB ID
 840 7N2V)¹⁹.