

1 **Title**

2 Realisation of a key step in the evolution of C₄ photosynthesis in rice by genome editing.

3 **Authors**

4 Jay Jethva^{1*}, Florian Hahn^{1*}, Rita Giuliani², Niels Peeters¹, Asaph Cousins² and Steven Kelly¹

5 **Affiliations**

6 ¹ Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United
7 Kingdom

8 ² School of Biological Sciences, Washington State University, Pullman, WA 99164, USA

9 *These authors contributed equally to this work. There is no significance to the order.

10 **Corresponding Author**

11 Name: Steven Kelly

12 Email: steven.kelly@biology.ox.ac.uk

13 Address: Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK

14 **ORCID IDs**

15 SK: 0000-0001-8583-5362

16 JJ: 0000-0002-3223-3488

17 FH: 0000-0002-0215-3209

18 NP: 0009-0006-9145-2548

19 AC: 0000-0003-2424-714X

20 **Preprint servers**

21 This article is available as a preprint on bioRxiv.

22 **Classifications**

23 Biological Sciences; Plant Biology

24 **Keywords**

25 C₄ Photosynthesis; Carbonic Anhydrase; Evolution; CO₂ assimilation; Photosystem

26 **Abstract**

27 C₄ photosynthesis is a repeatedly evolved adaptation to photosynthesis that functions to reduce
28 energy loss from photorespiration. The recurrent evolution of this adaptation is achieved through

29 changes in the expression and localisation of several enzymes and transporters that are
30 conventionally used in non-photosynthetic metabolism. These alterations result in the
31 establishment of a biochemical CO₂ pump that increases the concentration of CO₂ around rubisco
32 in a cellular environment where rubisco is protected from oxygen thus preventing the occurrence of
33 photorespiration. A key step in the evolution of C₄ photosynthesis is the change in subcellular
34 localisation of carbonic anhydrase (CA) activity from the mesophyll cell chloroplast to the cytosol,
35 where it catalyzes the first biochemical step of the C₄ pathway. Here, we achieve this key step in
36 C₄ evolution in the C₃ plant *Oryza sativa* (rice) using genome editing. We show that editing the
37 chloroplast transit peptide of the primary CA isoform in the leaf results in relocalisation of leaf CA
38 activity from the chloroplast to the cytosol. Through analysis of fluorescence induction kinetics in
39 these CA relocalisation lines we uncover a role a new role for chloroplast CA in photosynthetic
40 induction. We also reveal that relocalisation of CA activity to the cytosol causes no detectable
41 perturbation to plant growth or leaf-level CO₂ assimilation. Collectively, this work uncovers a novel
42 role for chloroplast CA in C₃ plants, and demonstrates that it is possible to achieve a key step in
43 the evolution of C₄ photosynthesis by genome editing.

44 **Significance statement**

45 C₄ photosynthesis is a highly efficient adaptation to photosynthesis that fuels the world's most
46 productive crop plants. It evolved from conventional C₃ photosynthesis through a series of changes
47 in leaf biochemistry and anatomy. Here we achieve a key evolutionary step on the path to C₄
48 photosynthesis in rice using genome editing. Specifically, we alter the primary location of carbonic
49 anhydrase activity in the rice leaf from the chloroplast to the cytosol. In doing so, we uncover a
50 novel role for carbonic anhydrase in facilitating the rapid induction kinetics of photosystem II, and
51 initiate a new era of C₄ engineering using precision breeding techniques.

52 **Introduction**

53 Photosynthesis is the process by which almost all carbon enters the biosphere. Most terrestrial
54 plants carry out C₃ photosynthesis, in which CO₂ is directly fixed into 3-phosphoglycerate (3-PGA)
55 by ribulose-1,5-bis-phosphate carboxylase/oxygenase (rubisco). However, the efficiency of
56 photosynthesis is decreased by the ability of rubisco to catalyse a competing reaction with O₂. The
57 2-phosphoglycolate that is produced by this reaction inhibits primary metabolism and must be

58 recycled by photorespiration. The combined opportunity costs and recycling costs attributed to
59 photorespiration result in losses of up to ~50% of leaf energy under current atmospheric conditions
60 (Walker et al., 2016). Thus, substantial energetic incentives exist for terrestrial plants to evolve
61 adaptations that minimise the occurrence of photorespiration.

62 To date, over 120 different land plant lineages have evolved biochemical and anatomical
63 adaptations that increase the concentration of CO₂ compared to O₂ around rubisco and thus
64 reduce the occurrence of photorespiration (Gilman et al., 2023; Sage, 2016). These evolutionarily
65 distinct solutions to the photorespiration problem can be categorised into two different
66 photosynthetic types: Crassulacean Acid Metabolism (CAM) and C₄ photosynthesis. In both altered
67 versions of photosynthesis, plants do not directly fix CO₂ into 3-PGA, instead they utilise carbonic
68 anhydrase (CA) to produce bicarbonate from CO₂ and then use a series of biochemical reactions
69 and transmembrane transport steps to deliver and concentrate this CO₂ in a cellular environment
70 where rubisco is compartmentalized. This concentrated CO₂ is then fixed into 3-PGA by rubisco
71 with limited reactions with oxygen causing a substantial decrease in production of 2-
72 phosphoglycolate. Consequently, plants that operate biochemical CO₂ concentrating mechanisms
73 have reduced photorespiratory energy loss, and corresponding increases in radiation, nitrogen and
74 water use efficiencies (Brown, 1978; Way et al., 2014; Zhu et al., 2008)

75 The advantages of operating a CO₂ concentrating mechanism, coupled with the apparent
76 reproducibility with which nature has implemented these mechanisms in disparate plant lineages,
77 has motivated international efforts to engineer CO₂ concentrating mechanisms into C₃ plants
78 (Hibberd et al., 2008; von Caemmerer et al., 2012). Although there are differences in the
79 implementation of CO₂ concentrating mechanisms between species, they all share one common
80 evolutionary innovation - the relocalisation of CA activity from the chloroplast in C₃ plants (Badger
81 & Price, 1994) to the cytosol in both CAM and C₄ plants (Badger, 2003; Hatch & Burnell, 1990). To
82 date, the evolutionary mechanisms through which this relocalisation occurs has only been
83 investigated in two C₄ species, *Flaveria bidentis* (Tanz et al., 2009) and *Neurachne munroi*
84 (Clayton et al., 2017). In both cases, the relocalisation of CA activity from the chloroplast to the
85 cytosol occurred through mutation in the chloroplast transit peptide of the isoform of CA that is

86 highly expressed in the chloroplast, rather than by upregulation of a CA isoform that is localised to
87 the cytosol. Thus, while other ways to achieve a shift in location in CA activity may exist, there is
88 precedent from two independent origins of C₄ photosynthesis in both eudicots and monocots that
89 relocalisation of CA activity to the cytosol is achieved through alteration of organellar targeting of
90 the already highly expressed chloroplast localised isoform of CA.

91 In C₃ plants, CA exists in three subtypes (α -CA, β -CA, γ -CA) with the chloroplast localised β -CA
92 being the most abundant in leaves (Ludwig, 2016; Okabe et al., 1984; Poincelot, 1972; Tsuzuki et
93 al., 1985). Although a diverse set of functions have been proposed for different CA's in C₃
94 photosynthesis, it is generally thought that the primary role is to help maintain CO₂ levels for
95 rubisco carboxylation (Badger & Price, 1994). However, several studies have revealed limited
96 impact on photosynthesis when CA activity is reduced (Ferreira et al., 2008; Majeau et al., 1994;
97 Price et al., 1994), perhaps because of its high turnover rate of $k_{catCO_2} \approx 10^6 \text{ s}^{-1}$ (Lindskog &
98 Coleman, 1973). CA may also influence the redox state of photosystem II through the provision of
99 bicarbonate in the chloroplast, as studies suggest bicarbonate binding to PSII's non-heme iron
100 affects electron transport (Brinkert et al., 2016; Cox et al., 2009). Given that the relocalisation of CA
101 activity from the chloroplast to the cytosol is a recurrent feature of both C₄ and CAM
102 photosynthesis, the question arises as to what are the consequences of this relocalisation on
103 function of photosystem II, and on CO₂ assimilation and plant growth during C₄ evolution.

104 Here we followed precedent from evolution to achieve the relocalisation of CA activity from the
105 chloroplast to the cytosol in the C₃ plant *Oryza sativa* (rice) using genome editing. Specifically, we
106 targeted the chloroplast transit peptide of chloroplast localised CA to create both deletion and
107 frame shift mutations to relocalise CA activity from the chloroplast to the cytosol. We demonstrate
108 that genome-edited lines with relocalised CA activity exhibit no deleterious effects on leaf-level CO₂
109 assimilation or growth and uncover a novel role for CA in the function in maintaining high rates of
110 electron transfer in photosystem II. Collectively, these results provide new insight in the function
111 chloroplast CA in C₃ plants, and shown that it is possible to recreate a key step in the evolution
112 angiosperm carbon concentrating mechanisms using genome editing.

113 **Results**

114 **Generation of genome edited rice lines with altered chloroplast transit peptides for**
115 **the primary carbonic anhydrase.**

116 To determine the relative abundance of each carbonic anhydrase (CA) isoform in mature rice
117 leaves, and to confirm the gene model of the chloroplast localised isoform for genome editing, a
118 dataset of mature leaf RNA-Seq (Ermakova et al., 2021) was evaluated in the context of the
119 experimentally defined transcription start sites (Murray et al., 2022). Evaluation of these data
120 identified the gene OsKitaake01g256600 as the most abundant expressed CA in the leaf,
121 accounting for more than 98% of all transcripts encoding CA enzymes (Supplemental File 1, Figure
122 S1). Manual evaluation and revision of the genome annotation for this gene in the context of the
123 RNA-Seq data identified 3 distinct transcripts produced from two discrete transcription start sites in
124 mature rice leaves (Figure 1A). The most abundant transcript from this gene contained a
125 chloroplast transit peptide, while the other two transcripts from the locus lacked targeting
126 sequences and were predicted to encode CA proteins that are localised to the cytosol (Figure 1B,
127 Supplemental File 1 Figure S2 and Figure S3)).

128 To attempt to mimic evolution and relocate CA activity from the chloroplast to the cytosol, a set of
129 guide RNAs were designed to target the chloroplast transit peptide encoded in exon 1
130 (Supplemental File 1, Figure S2). Guides were designed at the start and the end of coding
131 sequence for the transit peptide to attempt generate a series of mutants with altered transit peptide
132 sequences. Several rounds of transformation and screening by sequencing resulted in the
133 identification of eight independent genome edited lines that were predicted to lack chloroplast
134 localised CA activity (Figure 1C). Four of these lines had mutations that caused the introduction of
135 premature termination codons before the CA domain in transcript 1, but did not affect the
136 sequences of transcript 2 or 3. These lines are collectively referred to as the “chloroplast transit
137 peptide knock out” (cTP-KO) lines (Supplemental File S2, Figure 1C) as carbonic anhydrase
138 activity should be lost from the chloroplast but retained in the cytosol. In addition, four lines were
139 generated in which the chloroplast transit peptide was knocked out of frame but the entire CA
140 domain remained in frame and unaffected. This was achieved by the insertion or deletion of one or
141 more bases at the start of the chloroplast transit peptide, followed by a restoration of the reading
142 frame at the end of the chloroplast transit peptide by a complimentary mutation (Supplemental File

143 S2, Figure 1C). These lines are collectively referred to as the “chloroplast transit peptide frame
144 shift” (cTP-FS) lines.

145 ***CA isoforms with frame-shifted transit peptides localise to the cytosol in rice***
146 ***mesophyll protoplasts.***

147 To determine whether the novel cTP-FS coding sequences created by editing the chloroplast
148 transit peptide resulted in a change in subcellular localisation of the encoded protein, the edited
149 sequences were subject to computational subcellular localisation prediction. While the proteins
150 encoded by both the cTP-FS2 and cTP-FS3 alleles were predicted to encode cytosolic enzymes
151 (Supplemental File 1, Figure S2), the proteins encoded by cTP-FS1 and cTP-FS4 were predicted
152 to have weak targeting to the chloroplast (Supplemental File 1, Figure S3). Thus, to confirm or
153 refute these computational predictions the coding sequences of all cTP-FS alleles were fused to
154 mTurquoise2 and transiently expressed in rice mesophyll protoplasts (Figure 2A). Analysis of the
155 localisation of the fusion proteins revealed, that in contrast to the computational prediction, each
156 cTP-FS allele localised the cytosol with no detectable localisation to the chloroplast (Figure 2B).
157 Each fusion protein produced the same localisation pattern as free monomeric mTurquoise2
158 (Figure 2B) and cytosolic CA (with no transit peptide) fused to mTurquoise2 (Figure 2B). The
159 coding sequence contained in transcript variant 1, that contains the non-edited wild-type transit
160 peptide sequence, was also evaluated to confirm the chloroplast localisation of the primary
161 transcript variant (Figure 2B). Thus, despite weak computational predicted chloroplast targeting for
162 cTP-FS1 and cTP-FS4, all four cTP-FS alleles localise to the cytosol in rice mesophyll cells.
163 Accordingly, CA activity arising from all four cTP-FS edited alleles should now be localised in the
164 cytosol. As all cTP-FS lines and all cTP-KO lines appeared equivalent, two independent lines of
165 each type (cTP-FS1, cTP-FS4, cTP-KO1 and cTP-KO4) were taken forward for subsequent
166 analyses.

167 ***Genome edited lines have no detectable CA activity in the chloroplast with all***
168 ***remaining CA activity localised in the cytosol.***

169 Given that the cTP-KO alleles no longer encoded a chloroplast localised CA, and that all of the
170 cTP-FS alleles had relocalised the chloroplast CA to the cytosol, it was next investigated whether
171 these sequence changes resulted in a change in the localisation of CA activity within the cell. To
172 evaluate this, the genome edited lines were first subject to transcriptome sequencing to understand

173 how the introduced edits altered the mRNA abundance for the three transcripts originating from the
174 two distinct promoters in the locus. While the mRNA abundance of transcript 2 and transcript 3
175 (both encoding cytosolic isoforms of CA) were unaffected by the genome edits (Figure 3A,
176 Supplemental File 3), transcript abundance from transcript 1 (encoding the chloroplast targeted
177 isoform of the gene) were significantly downregulated compared to wild-type levels (Figure 3A, $p <$
178 10^{-10} DESeq2, Supplemental File 3). This reduction was more pronounced in the cTP-KO (92%
179 reduction in mRNA abundance) than in the cTP-FS lines (77% reduction in mRNA abundance),
180 presumably due to the premature termination codon in the first exon of the transcript leading to
181 nonsense mediated decay of the transcript (Figure 3A, $p < 10^{-10}$ DESeq2, Supplemental File 3).
182 Importantly, there was also no effect on the mRNA abundance of any other gene encoding a CA
183 (Supplemental File 4). Thus, introduction of small nucleotide changes by genome editing,
184 irrespective of whether they introduced a mis-sense or non-sense mutation, resulted in dramatic
185 reduction in the abundance of transcript 1 with no effect on the abundance of transcript 2 or 3.
186 The transcriptome data above indicate that CA activity should now be absent from the chloroplast
187 and exclusively localised in the cytosol. To estimate the relative level of CA activity that is present
188 in the cytosol of the genome edited lines, the abundance of transcripts encoding cytosolic CA
189 isoforms was summed and compared to the total transcript abundance for CA normally present in
190 wild-type rice leaves. This revealed that transcripts encoding cytosolic CA accumulated to an
191 equivalent of 15-37% of total wild-type CA transcript abundance in the genome edited lines (Figure
192 3B). Equivalent to or larger than the proportion of transcripts in wild-type plants that encode
193 cytosolic CA (17%, Figure 3B). Thus, while transcripts encoding chloroplast localised CA are
194 absent, transcripts encoding cytosolic CA accumulate to substantial levels in the genome edited
195 lines.
196 To demonstrate that the patterns of transcript accumulation observed in the genome edited plants
197 resulted in a corresponding change in localisation of enzyme activity, the genome edited plants
198 were subject to CA enzyme activity assays. In wild-type plants 17% of CA activity is present in the
199 cytosol while 83% is found in the chloroplast (Figure 3C). However, when chloroplasts were
200 isolated from leaves of the cTP-FS or cTP-KO lines there was no detectable CA activity in the

201 chloroplasts (Figure 3D). However, consistent with the transcriptome the genome edited lines
202 exhibited 17-30% of wild-type CA activity (Figure 3E). Given that all expressed CA isoforms are
203 predicted to encode cytosol localised CA, that there was no upregulation of any other CA enzyme,
204 and that there was no detectable activity in the chloroplast, the genome editing had successfully
205 removed CA activity from the chloroplast and all CA activity now resides in the cytosol. Henceforth,
206 the genome edited lines are collectively referred to as the CA relocalisation lines.

207 ***Relocalisation of CA activity form the chloroplast to the cytosol does not result in
208 differential expression of C₄ cycle genes or substantial changes to the
209 transcriptome***

210 Given that we had mimicked a key step in the evolution of C₄ photosynthesis, we sought to
211 investigate whether this change resulted in alteration in expression of any other C₄ cycle genes.
212 Analysis of the transcriptome data revealed that none of the genes encoding enzymes (Furbank,
213 2016) or transporters (Mattinson & Kelly, 2024) thought to function in the C₄ cycle of CAM
214 photosynthesis were differentially expressed as a result of relocalisation of CA activity to the
215 cytosol (Figure 4). Furthermore, transcriptome-wide differential expression analysis identified just
216 23 genes that were downregulated and 50 genes that were upregulated in the CA relocalisation
217 lines when compared to wild-type plants (Supplemental File 3). There were no significantly
218 overrepresented GO terms in either gene set and manual inspection of the gene list did not identify
219 any differentially expressed genes that function in CO₂ assimilation or related pathways. Thus, the
220 relocalisation of CA activity from the chloroplast to the cytosol did not induce gene expression
221 changes associated with C₄ evolution, and resulted in minimal perturbation to the whole leaf
222 transcriptome.

223 ***Growth and CO₂ assimilation are unaffected in the CA relocalisation lines***

224 Given that we had mimicked a key step in the evolution of C₄ photosynthesis, we sought to
225 determine whether this change resulted in a deleterious effect on growth or CO₂ assimilation.
226 Comparison of the CA relocalisation lines and wild-type plants revealed no difference in
227 morphology (Figure 5A), no difference in growth rate (Figure 5B), no difference in final plant height
228 (Figure 5C), and no difference in 100 seed weight (Figure 5D). Consistent with lack of growth
229 defect, there was also no difference in photosynthetic rate (Figure 5E), stomatal conductance to
230 CO₂ diffusion (Figure 5F) or substomatal CO₂ concentration (Figure 5G) at either ambient or low O₂

231 concentration between the CA relocalisation lines and wild-type plants. Together, these results
232 indicate that under these conditions CO₂ supply to rubisco has been unaltered. Thus, change in
233 location of CA activity from the chloroplast to the cytosol in rice does not affect plant growth or CO₂
234 assimilation.

235 Although there was no perturbation to growth or CO₂ assimilation, we hypothesised that a lack of
236 CA activity, and by consequence a reduced concentration of bicarbonate in the chloroplast, could
237 influence the function of photosystem II. The rationale for this hypothesis is that bicarbonate plays
238 a role in electron transfer within photosystem II by binding to the non-heme iron positioned at Q_A. In
239 the presence of bicarbonate the midpoint potential of Q_A/Q_A⁻ is -145 mV, while in the absence of
240 bicarbonate it is -70 mV (Brinkert et al., 2016). We posited, that if the CA relocalisation lines had a
241 reduced abundance of bicarbonate in the chloroplast, then this would cause a change in the
242 midpoint potential of Q_A/Q_A⁻, resulting in a slower rate of electron transfer between Q_A and Q_B. A
243 reduction in electron transfer, would in turn result in a delay in photosystem II fluorescence
244 induction as it would take longer to reduce the plastoquinone pool and reach maximal
245 fluorescence. To test this hypothesis, we compared the fluorescence induction kinetics of the CA
246 relocalisation lines and wild-type plants. This revealed that there was a 28% increase in the
247 amount of time taken to reach 90% maximal fluorescence in the CA relocalisation lines (Figure
248 5H). Thus, although change in location of CA activity from the chloroplast to the cytosol did not
249 affect CO₂ supply to rubisco, the reduction in bicarbonate concentration in the chloroplast impaired
250 the function of photosystem II.

251 **Discussion**

252 The evolution of carbon concentrating mechanisms in angiosperms, with over 100 independent
253 origins (Gilman et al., 2023; Sage, 2016), is one of the most remarkable examples of convergent
254 evolution in eukaryotic biology. While there is a great diversity in the biochemical and anatomical
255 adaptations that enable these carbon concentrating mechanisms, there are a small number of
256 common features that unify them all. One feature shared by all independent origins of carbon
257 concentrating mechanisms in land plants is the relocalisation of carbonic anhydrase activity from
258 the chloroplast to the cytosol (Ludwig, 2012). Here, we used genome editing to recreate this key
259 evolutionary step in the C₃ crop rice. We demonstrate that by editing the chloroplast targeting

260 sequence of the primary CA isoform in the leaf that it is possible to change the location of the CA
261 activity from the chloroplast to the cytosol. We show that this change in location of CA activity has
262 no effect on growth or leaf-level CO₂ assimilation, and uncover a key function for CA in the rapid
263 response of photosystem II to light. Thus, we have revealed a novel role for chloroplast CA in C₃
264 plants, and shown that it is possible to recreate a key step in the evolution angiosperm carbon
265 concentrating mechanisms using genome editing.

266 Several studies have previously investigated the impact of deletion of carbonic anhydrase in C₃
267 plants (Hines et al., 2021; Price et al., 1994). A unifying theme of these studies is that removal of
268 CA activity has limited impact on CO₂ assimilation even when CA is largely reduced or absent
269 (Ferreira et al., 2008; Majeau et al., 1994; Price et al., 1994). The results presented here are
270 consistent with these previous studies, and reveal that the change in location of CA activity from
271 the chloroplast to the cytosol had no effect on leaf level CO₂ assimilation or growth. However, the
272 discovery that the removal of carbonic anhydrase activity from the chloroplast results in a delay to
273 fluorescence induction provides new insight into the function of chloroplast CA activity in C₃ plants.
274 It indicates that CA activity is important for facilitating rapid fluorescence induction in the dark to
275 light transition. It does this through maintenance of bicarbonate levels at neutral pH in the dark in
276 the chloroplast to supply bicarbonate to bind to Q_A.

277 In this work we have shown that it is possible to achieve a key step in the evolution of C₄
278 photosynthesis by genome editing. Previous attempts to recapitulate aspects of C₄ metabolism or
279 anatomy have all relied on genetic modification (Ermakova et al., 2021; Wang et al., 2017). Given
280 the rapidly changing global regulatory landscape, and the difference in public perception of genetic
281 modification and genome editing (Sprink et al., 2022), it is important to find ways to deliver novel
282 potential yield enhancing technologies through genome editing approaches. While the challenge of
283 delivering a fully operational carbon concentrating mechanism by genome editing is daunting, it
284 may be possible to implement many of the required evolutionary changes by these approaches.
285 For example, many of the key amino acid changes that are required to alter the kinetics of
286 enzymes that function in C₄ cycle (Niklaus & Kelly, 2019) have the potential to be delivered by
287 genome editing as they require only single nucleotide changes. Moreover, there are now several

288 examples of successful altering of gene expression levels through targeted editing of cis-regulatory
289 sequences (Tang & Zhang, 2023), and thus there is also potential to achieve the upregulation of
290 expression of key enzymes and transporters that are required for engineering of a productive C₄
291 cycle. Thus, although the challenge may be daunting, the rapid advances in genome editing
292 technology, coupled with relative ease with which nature has repeatedly evolved the same solution,
293 may mean that it is feasible to use genome editing to engineer all or most of a C₄ cycle in C₃ plants.
294 In this work we have taken the first step towards engineering a C₄ cycle in rice by genome editing.
295 Accordingly, this work represents an important first step on the pathway to a genome edited C₄ rice
296 plant.

297 **Materials and Methods**

298 **Plant material and growth conditions**

299 All CA-relocalisation lines and wild-type rice (*Oryza sativa*, ssp. japonica, cv. Kitaake) were grown
300 at the University of Oxford in a controlled environment growth chamber. All plants grew under a
301 photoperiod of 14-16 h (8:00 to 22:00 h standard time) with air temperature (*t*_{air}) of 26-28 °C, while
302 *t*_{air} in the dark period was of 22 °C. A maximum Photosynthetically active Photon Flux Density
303 (PPFD) was about ~800-1000 μmol photons m⁻² s⁻¹ for plants grown at Washington State University
304 and ~300 μmol photons m⁻² s⁻¹ for plants grown in Oxford. Plants were grown in pots in a clay
305 (Oxford) or soil blended with calcined clay in a 4:1 volume ratio (Washington State University).

306 **Generation of CRISPR constructs**

307 CRISPR constructs were created using MoClo Golden Gate cut-ligations-reactions according to
308 (Hahn et al., 2020) Briefly, 20 bp sgRNA target sites were cut-ligated into level 0 tRNA-sgRNA
309 subcloning vectors via Bpil® (Thermo Fisher) using annealed primer pairs (FHOx6/FHOx7 into
310 pFH51; FHOx8/FHOx9 into pFH51; FHOx10/FHOx11 into pAK002). The generated level 0 tRNA-
311 sgRNA modules were then combined via another cut-ligation reaction using Bsal-HF®v2 (New
312 England Biolabs) into two L1 transcription units (C441001 and C441002) using the rice OsU3
313 promoter (pFH38), the endlinker pAK-EL-02, the level 1 backbone pICH47751,
314 pAK002+FHOx10/11 and pFH51+FHOx6/FHOx7 or pFH51+FHOx8/FHOx9 respectively. The final
315 vectors C442001 and C442002 were then assembled in a final cut-ligation reaction via Bpil using
316 the respective generated L1 sgRNA transcription units (C441001 or C441002) plus pICSL4723 (L2

317 backbone), pL1M-R1-pOsAct1-HYG-tNOS-17100 (reversed), pFH66 (ZmUBIp::CAS9:NOS) and
318 pICH41766 (Endlinker). The vectors pFH38 (Addgene ID #126012), pFH51 (Addgene ID
319 #128213), pAK002 (Addgene ID #128215), pAK-EL-02 (Addgene ID #125761) and pFH66
320 (Addgene ID #131765) were kindly provided by Vladimir Nekrasov (Rothamsted Research,
321 Harpenden, United Kingdom), pICSL4723 was provided by Mark Youles (Sainsbury Laboratory,
322 Norwich, United Kingdom). pICH47742 (Addgene ID #48001), pICH47751 (Addgene ID #48002)
323 and pICH41766 (Addgene ID #48018) were provided by Sylvestre Marillonnet (Leibniz Institute of
324 Plant Biochemistry, Halle, Germany). pICH41421 (Addgene ID #50339) was provided by Sylvestre
325 Marillonnet and Nicola Patron (Earlham Institute, United Kingdom). All vector maps and sequences
326 generated in this manuscript, as well as all primer sequences, are provided in Supplemental File
327 S5.

328 ***Transformation and recovery of mutant alleles***

329 Rice (cv. Kitaake) calli were transformed using Agrobacterium strain EHA105 with the vectors
330 C442001 or C442002 according to Toki et al., 2006. DNA was isolated from regenerated T₀ plants
331 (Weigel & Glazebrook, 2009). Presence of the T-DNA was verified by PCR amplification of the
332 CAS9 gene using DreamTaq®-DNA Polymerase (ThermoFisher Scientific). CRISPR induced
333 mutation were detected by amplification of the CA1 gene and direct sequencing of the PCR
334 product (Source Biosciences). In some cases, CA1 PCR products were also subcloned (Zero
335 Blunt™ TOPO™ PCR Cloning Kit, Thermo Fisher) and single clones were sequenced.

336 Several lines were brought forward into the next generations to segregate out the T-DNA and to
337 recover homozygous *ca1* knockout and frameshift alleles. Absence of T-DNA was verified by
338 DreamTaq® PCR amplification of the CAS9 gene and the *HPTII* gene as described above and
339 homozygous CRISPR induced *ca1* mutations were verified again by direct sequencing of *ca1* PCR
340 product. Transgene-free, homozygous *ca1* plants were recovered amongst T1 and T2 generation
341 plants, and were used to generate seed stocks for all alleles used in this study.

342 ***Protein localization experiments***

343 Monocot codon optimized coding sequences of the CA1 WT protein, a *ca1* protein without target
344 peptide, and the *ca1*-FS1/2/3/4 protein variants were synthesized as L0 CDS1ns modules
345 according to the MoClo Golden Gate system by Weber et al., 2011 and (Engler et al., 2014)

346 (module names C440011, C440017, C440016, C440013, C440014, C440018, respectively; Gene
347 Universal, United States). Additionally, a C-terminal mTURQUOISE2 L0 CT module was
348 synthesised (C440010). These modules were combined into L1 expression cassettes in a cut-
349 ligation reaction via Bsal-HF®v2 (New England Biolabs) as following: pICH47742, pL0M-PU-
350 pZmUbi-intron1-15455, C440010 and pICH41421 were combined with module C440011 resulting
351 in the L1 vector C441062; or combined with module C440017 resulting in the L1 vector C441068;
352 or with module C440016 resulting in the L1 vector C440067; or with module C440013 resulting in
353 the L1 vector C441064; or with module C440014 resulting in the L1 vector C441065; or with
354 module C440018 resulting in the L1 vector C441069. To create a mTurquoise2 only control, we
355 amplified the mTURQUOISE2 gene from vector C440010 using primers FHOx90/FHOx91 and Q5
356 DNA Polymerase (New England Biolabs) and combined the PCR product with modules
357 pICH47742, pL0M-PU-pZmUbi-intron1-15455 and pICH41421, resulting in the L1 vector C441070.
358 All L1 and L2 vector maps and sequences as well as all primer sequences are provided in
359 Supplemental File S5.

360 Protoplasts were extracted from 7 day old rice cv. Kitaake plants following the procedure from
361 (Shan et al., 2014) with the following adaptions: Modifications to the digestion solutions (0.65 M
362 Mannitol, 20 mM MES-KOH, pH 5.7, 10 mM KCl, 5 mM beta-Mercaptoethanol, 1 mM CaCl₂, 1
363 mg/mL BSA, 1.5 % (w/v) Cellulase R-10, 1.5 % (w/v) Cellulase Onozuka RS, 1 % (w/v)
364 Macerozyme R-10, 1 % (w/v) Driselase) allowed us to skip the vacuum infiltration step and
365 proceed directly to a 2h digestion step at 29 °C/70 rpm. After protoplast collection, we added an
366 additional washing step with W5 solution to remove residual enzyme solution. 50,000 protoplasts
367 were transformed with 20 µg of vector DNA (or water control) and fluorescent protein expression
368 was monitored after 2 days of incubation at room temperature using a Zeiss LSM 880 Airy Scan
369 microscope.

370 **Carbonic Anhydrase activity assay**

371 The assay was performed according to (Hines et al., 2021). Briefly, samples of leaf tissue (250 mg
372 fresh weight) were taken from the longest leaf of 8-week-old rice plants and crushed in liquid
373 nitrogen using a precooled mortar and pestle. A 3:1 (v/w) protein extraction (200mM Tris-HCL, pH
374 8.3, 1mM EDTA, 20 mM MgCl₂, 50mM NaCl, 100 mM Na₂SO₄) buffer was added to the crushed

375 material to form a homogenate. The homogenate was centrifuged at 4°C for 15 min, and the
376 resulting supernatant was used for the assay. A 200 µL of bromothymol blue solution, comprising
377 20 mM Tris-HCl, pH 8.3, and 0.2% bromothymol blue, was submitted to a pH-colorimetric reaction
378 by addition of 700 µL of cold, carbonated ddH₂O (SodaStream). The time for color-pH change from
379 blue-pH 8.3 to yellow-pH 6.25 was recorded for the uncatalyzed reaction (ts, s), and for the
380 catalyzed reaction (tb, s) in presence of 100 µL of supernatant. The units of CA activity were
381 computed according as (tb-ts)/ts. (Wilbur & Anderson, 1948).

382 ***Chloroplast isolation and CA activity measurement***

383 Chloroplast isolation from rice leaves were performed according to the method described in Flores-
384 Pérez & Jarvis, 2017 with slight modifications. Briefly, rice leaves (10-20g) were washed in 100 mL
385 of cold CIB (0.6 M sorbitol, 10 mM magnesium chloride (MgCl₂), 10 mM Ethylene Glycol
386 Tetraacetic Acid (EGTA), 10 mM ethylenediaminetetraacetic acid (EDTA), 20 mM sodium
387 bicarbonate (NaHCO₃), 40 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES);
388 adjust to pH 8.0 with KOH) on ice and then immediately transferred to 50 ml of cold CIB. The
389 leaves were ground using a blender with short pulses. The homogenate was filtered through a
390 double layer of Miracloth into a 250 mL glass beaker, and the Miracloth was gently squeezed. The
391 extracted chloroplasts were divided into two 50 ml centrifuge tubes and centrifuged at 1000 × g for
392 5 min at 4 °C. After pouring off the supernatant, the chloroplast pellet was gently resuspended in
393 the remaining supernatant (~500 µL) by rotating the tube on ice, with additional ice-cold CIB added
394 if necessary. To rinse the chloroplasts, approximately 20–25 mL of HMS buffer (50 mM HEPES, 3
395 mM magnesium sulfate (MgSO₄), 0.3 M sorbitol; adjust to pH 8.0 with sodium hydroxide (NaOH))
396 was added to the tube and inverted carefully. After centrifugation at 1000 × g for 5 min with the
397 brake on, the supernatant was discarded, and the chloroplast pellet was gently resuspended in the
398 remaining HMS buffer, with additional buffer added if required. The chloroplasts were filtered
399 through two layers of Miracloth to remove impurities and then normalized for volume. 100-500 µL
400 of isolated chloroplast was taken in a separate Eppendorf tube and stored in the dark for
401 chlorophyll measurement. 20-500 µL of chloroplast was taken into a separate Eppendorf tube, 1:2
402 protein extraction buffer was added, vortex vigorously, and centrifuged at 4 °C for 5 min. The
403 supernatant was used to determine CA activity as described previously.

404 ***Chlorophyll fluorescence induction curve measurements***

405 The analysis were done on a LI-6800 portable photosynthetic equipment (LI-COR Biosciences, NE,
406 USA) equipped with a multiphase flash fluorometer (L_{ch} ; 6800-01A). The measurements were
407 conducted on the detached leaves of 8-weeks old rice plants following a completely randomized
408 design. Leaf temperature (t_{leaf}) was set at 15 °C, pCO_2 supplied to the leaf chamber (C_a) was 410
409 $\mu\text{mol CO}_2 \text{ mol}^{-1}$ air. Leaf-air VPD (VPD_L) was in the range of 1.0-1.2 kPa, and air flow through the
410 L_{ch} was 500 $\mu\text{mol air s}^{-1}$. The detached leaves of each plant were allowed to acclimatize in Li-6800
411 chamber for 20 min in dark to above mentioned conditions followed by 1 s of dark and 8 s of 37
412 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ red light exposure to find out time for maximum fluorescence. The time taken
413 to reach 90% of F_{max} were calculated from the recorded data.

414 ***Leaf-atmosphere gas exchange: equipment, measurement protocol and functional
415 variables determined***

416 A LI-6800 portable photosynthetic equipment (LI-COR Biosciences, NE, USA) operating as an
417 open system was used, which was equipped with a clear-top chamber (L_{ch} ; 6800-12A) assembled
418 with a Head Light (LED source: 90% Red; 10 Blue; LI-COR Biosciences, NE, USA). Two O_2 partial
419 pressures (pO_2 , Pa) in the air flow feeding the system were generated by blending different
420 volumetric (~ molar) fractions of N_2 and O_2 through two mass flow controllers (Aalborg,
421 Orangeburg, NY, USA).

422 The measurements were conducted on the rice cTP-FS and WT plants ($n= 4-8$) following a
423 completely randomized design. Specifically, for each plant, the mid to distal portions of three fully
424 developed leaves were used to entirely cover a 9 cm^2 L_{ch} section surface area. t_{leaf} was set at 30
425 °C, pCO_2 supplied to the C_a was 46.0 Pa (500 $\mu\text{mol CO}_2 \text{ mol}^{-1}$ air). VPD_L was in the range of 1.0-
426 1.2 kPa, and air flow through the L_{ch} was 350 $\mu\text{mol air s}^{-1}$ (570 mL air min^{-1}). In sequence, the
427 measurements were performed at pO_2 of 19.3 kPa (current ambient pO_2 ; 21% O_2), then at pO_2 of
428 1.84 kPa (2% O_2); PPF was 1,500 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$. The H_2O molar fraction (mmol H_2O
429 mol^{-1} air) in the air flow entering the leaf chamber was set and kept constant at each experimental
430 pO_2 . Leaf lamina portions were acclimated in the L_{ch} at each pO_2 for circa 30 min; the data were
431 then recorded for 30-40 min. The net CO_2 assimilation rates per unit (one side) leaf surface area

432 (A, $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$), stomatal conductance to CO_2 diffusion ($g_{\text{CO}_2\text{s}}$, $\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$) and
433 $p\text{CO}_2$ in the intercellular air space (C_i , Pa) were calculated by LI-6800 software.

434 ***RNA isolation and sequencing***

435 The mid portion of the longest leaf of 8-week-old rice plants was collected and rapidly frozen in
436 liquid nitrogen. Subsequently, the frozen tissue was pulverized into a fine powder using a tissue
437 lyser to facilitate cellular disruption. For each sample, leaf sections from 5 individual plants were
438 combined. Total RNA was extracted using the QIAGEN RNeasy plant mini kit following the
439 manufacturer's protocol. The concentration and purity of RNA were assessed by measuring
440 absorbance at 260/280 nm and 260/230 nm using a NanodropTM spectrophotometer. Three
441 separate sets of RNA from each line were prepared and sent for RNA sequencing (RNA-Seq).
442 Library preparation and RNA sequencing was performed by Novogene. Raw RNA-Seq reads have
443 been deposited to EBI Array express and are available under the accession number E-MTAB-
444 14111. Raw RNA-seq reads were trimmed with fastp (Chen et al., 2018). The *Oryza sativa*, ssp.
445 japonica, cv. Kitaake rice reference transcriptome was downloaded from Phytozome (Goodstein et
446 al., 2011). The gene models for the OsKitaake01g256600 gene in the reference transcriptome and
447 a specific reference transcriptome was also generated for each CA relocalisation line
448 (Supplemental File 2) so that transcript abundance estimates could be accurately computed.
449 Trimmed RNA-seq reads were quantified using the reference transcriptome using Salmon v1.10
450 (Patro et al., 2017) and differential expression analysis was performed using DESeq 2 (Love et al.,
451 2014). All transcript abundance estimates and difference expression analysis results are provided
452 in Supplemental File 3.

453 ***Acknowledgements***

454 The authors want to thank Chiara Perico for support with microscopy imaging, Julia Lambret Frotte
455 and Daniela Vlad for help with rice transformation, Georgia Smith for help with protoplast isolation
456 protocol set up, Julie Bull, Lizzie Jamison, and Nina Johnson for technical support, and John Baker
457 for photography support. This research was funded by the Bill and Melinda Gates Foundation
458 C₄ Rice grant awarded to the University of Oxford (2015-2019 (OPP1129902) and 2019-2024 (INV-
459 002970) and the European Union's Horizon 2020 research and innovation program under grant

460 agreement number 637765. SK was supported by a Royal Society University Research
461 Fellowship.

462 **Author contributions**

463 SK conceived the project. FH designed all CRIPSR constructs, generated all transgenic plants and
464 conducted the protoplast localisation experiment. JJ performed the growth assay, the carbonic
465 anhydrase assays, the fluorescence induction experiment, and all transcriptomics. NP assisted
466 with the growth and maintenance of plants and in performing CA assays. RG performed leaf gas
467 exchange measurements and photosynthesis analyses. AC contributed to the experimental design
468 and interpretation of the results. SK, FH, and JJ wrote the manuscript. All authors contributed to
469 the editing and revision of the manuscript.

470 **Data availability**

471 All data is provided in the supplementary information. Raw RNA-Seq reads have been deposited to
472 EBI Array express and are available under the accession number E-MTAB-14111.

473 **References**

474 Badger, M. (2003). The roles of carbonic anhydrases in photosynthetic CO₂ concentrating
475 mechanisms. *Photosynthesis Research*, 77(2), 83–94.
476 <https://doi.org/10.1023/A:1025821717773>

477 Badger, M., & Price, G. (1994). The role of carbonic anhydrase in photosynthesis. *Annual Review*
478 of *Plant Biology*, 45, 369–392. <https://doi.org/10.1146/annurev.pp.45.060194.002101>

479 Brinkert, K., De Causmaecker, S., Krieger-Liszka, A., Fantuzzi, A., & Rutherford, A. W. (2016).
480 Bicarbonate-induced redox tuning in Photosystem II for regulation and protection.
481 *Proceedings of the National Academy of Sciences*, 113(43), 12144–12149.
482 <https://doi.org/10.1073/pnas.1608862113>

483 Brown, R. H. (1978). A difference in N use efficiency in C₃ and C₄ plants and its implications in
484 adaptation and evolution. *Crop Science*, 18(1), 93–98.

485 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor.
486 *Bioinformatics*, 34(17), 884–890. <https://doi.org/10.1093/bioinformatics/bty560>

487 Clayton, H., Saladié, M., Rolland, V., Sharwood, R., Macfarlane, T., & Ludwig, M. (2017). Loss of
488 the chloroplast transit peptide from an ancestral C₃ carbonic anhydrase is associated with C₄
489 evolution in the grass genus *Neurachne*. *Plant Physiology*, 173(3), 1648–1658.
490 <https://doi.org/10.1104/pp.16.01893>

491 Cox, N., Jin, L., Jaszewski, A., Smith, P. J., Krausz, E., Rutherford, A. W., & Pace, R. (2009). The
492 semiquinone-iron complex of photosystem II: structural insights from ESR and theoretical
493 simulation; evidence that the native ligand to the non-heme iron is carbonate. *Biophysical
494 Journal*, 97(7), 2024–2033. <https://doi.org/https://doi.org/10.1016/j.bpj.2009.06.033>

495 Engler, C., Youles, M., Gruetzner, R., Ehnert, T.-M., Werner, S., Jones, J. D. G., Patron, N. J., &
496 Marillonnet, S. (2014). A golden gate modular cloning toolbox for plants. *ACS Synthetic
497 Biology*, 3(11), 839–843. <https://doi.org/10.1021/sb4001504>

498 Ermakova, M., Arrivault, S., Giuliani, R., Danila, F., Alonso-Cantabrana, H., Vlad, D., Ishihara, H.,
499 Feil, R., Guenther, M., Borghi, G. L., Covshoff, S., Ludwig, M., Cousins, A. B., Langdale, J. A.,
500 Kelly, S., Lunn, J. E., Stitt, M., von Caemmerer, S., & Furbank, R. T. (2021). Installation of C₄
501 photosynthetic pathway enzymes in rice using a single construct. *Plant Biotechnol. J.*, 19(3),
502 575–588. <https://doi.org/10.1111/pbi.13487>

503 Ferreira, F. J., Guo, C., & Coleman, J. R. (2008). Reduction of plastid-localized carbonic anhydrase
504 activity results in reduced *Arabidopsis* seedling survivorship. *Plant Physiology*, 147(2), 585–
505 594. <https://doi.org/10.1104/pp.108.118661>

506 Flores-Pérez, Ú., & Jarvis, P. (2017). Isolation and suborganellar fractionation of *Arabidopsis*
507 chloroplasts. *Methods Mol Biol*, 1511, 45–60. https://doi.org/10.1007/978-1-4939-6533-5_4

508 Furbank, R. T. (2016). Walking the C₄ pathway: past, present, and future. *Journal of Experimental
509 Botany*, 67(14), 4057–4066. <https://doi.org/10.1093/jxb/erw161>

510 Gilman, I. S., Smith, J. A. C., Holtum, J. A. M., Sage, R. F., Silvera, K., Winter, K., & Edwards, E. J.
511 (2023). The CAM lineages of planet Earth. *Annals of Botany*, 132(4), 627–654.
512 <https://doi.org/10.1093/aob/mcad135>

513 Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W.,
514 Hellsten, U., Putnam, N., & Rokhsar, D. S. (2011). Phytozome: a comparative platform for
515 green plant genomics. *Nucleic Acids Res*, 40(Database issue), D1178-86.
516 <https://doi.org/10.1093/nar/gkr944>

517 Hahn, F., Korolev, A., Sanjurjo Loures, L., & Nekrasov, V. (2020). A modular cloning toolkit for
518 genome editing in plants. *BMC Plant Biology*, 20(1), 179. <https://doi.org/10.1186/s12870-020-02388-2>

520 Hatch, M. D., & Burnell, J. N. (1990). Carbonic anhydrase activity in leaves and its role in the first
521 step of C₄ photosynthesis. *Plant Physiol*, 93(2), 825–828. <https://doi.org/10.1104/pp.93.2.825>

522 Hibberd, J. M., Sheehy, J. E., & Langdale, J. A. (2008). Using C₄ photosynthesis to increase the
523 yield of rice-rationale and feasibility. *Curr Opin Plant Biol*, 11(2), 228–231.
524 <https://doi.org/10.1016/j.pbi.2007.11.002>

525 Hines, K. M., Chaudhari, V., Edgeworth, K. N., Owens, T. G., & Hanson, M. R. (2021). Absence of
526 carbonic anhydrase in chloroplasts affects C₃ plant development but not photosynthesis.
527 *Proceedings of the National Academy of Sciences*, 118(33), e2107425118.
528 <https://doi.org/10.1073/pnas.2107425118>

529 Lindskog, S., & Coleman, J. E. (1973). The catalytic mechanism of carbonic anhydrase.
530 *Proceedings of the National Academy of Sciences*, 70(9), 2505–2508.
531 <https://doi.org/10.1073/pnas.70.9.2505>

532 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion
533 for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 550.
534 <https://doi.org/10.1186/s13059-014-0550-8>

535 Ludwig, M. (2012). Carbonic anhydrase and the molecular evolution of C₄ photosynthesis. *Plant,*
536 *Cell & Environment*, 35(1), 22–37. <https://doi.org/https://doi.org/10.1111/j.1365-3040.2011.02364.x>

538 Ludwig, M. (2016). Evolution of carbonic anhydrase in C₄ plants. *Current Opinion in Plant Biology*,
539 31, 16–22. <https://doi.org/https://doi.org/10.1016/j.pbi.2016.03.003>

540 Majeau, N., Arnoldo, M. A., & Coleman, J. R. (1994). Modification of carbonic anhydrase activity by
541 antisense and over-expression constructs in transgenic tobacco. *Plant Mol Biol*, 25(3), 377–
542 385. <https://doi.org/10.1007/BF00043867>

543 Mattinson, O., & Kelly, S. (2024). The metabolite transporters of C₄ photosynthesis.
544 <https://doi.org/10.32942/x2f89t>

545 Murray, A., Mendieta, J. P., Vollmers, C., & Schmitz, R. J. (2022). Simple and accurate
546 transcriptional start site identification using Smar2C2 and examination of conserved promoter
547 features. *The Plant Journal*, 112(2), 583–596. <https://doi.org/https://doi.org/10.1111/tpj.15957>

548 Niklaus, M., & Kelly, S. (2019). The molecular evolution of C₄ photosynthesis: opportunities for
549 understanding and improving the world's most productive plants. *Journal of Experimental
550 Botany*, 70(3), 795–804. <https://doi.org/10.1093/jxb/ery416>

551 Okabe, K., Yang, S.-Y., Tsuzuki, M., & Miyachi, S. (1984). Carbonic anhydrase: Its content in
552 spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase
553 antibody. *Plant Science Letters*, 33(2), 145–153. [https://doi.org/https://doi.org/10.1016/0304-4211\(84\)90004-X](https://doi.org/https://doi.org/10.1016/0304-
554 4211(84)90004-X)

555 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and
556 bias-aware quantification of transcript expression. *Nat Methods*, 14(4), 417–419.
557 <https://doi.org/10.1038/nmeth.4197>

558 Poincelot, R. P. (1972). The distribution of carbonic anhydrase and ribulose diphosphate
559 carboxylase in maize leaves. *Plant Physiol*, 50(3), 336–340.
560 <https://doi.org/10.1104/pp.50.3.336>

561 Price, G. D., von Caemmerer, S., Evans, J. R., Yu, J.-W., Lloyd, J., Oja, V., Kell, P., Harrison, K.,
562 Gallagher, A., & Badger, M. R. (1994). Specific reduction of chloroplast carbonic anhydrase
563 activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic
564 CO₂ assimilation. *Planta*, 193(3), 331–340. <https://doi.org/10.1007/BF00201810>

565 Sage, R. F. (2016). A portrait of the C₄ photosynthetic family on the 50th anniversary of its
566 discovery: species number, evolutionary lineages, and Hall of Fame. *Journal of Experimental*
567 *Botany*, 67(14), 4039–4056. <https://doi.org/10.1093/jxb/erw156>

568 Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the
569 CRISPR/Cas system. *Nature Protocols*, 9(10), 2395–2410.
570 <https://doi.org/10.1038/nprot.2014.157>

571 Sprink, T., Wilhelm, R., & Hartung, F. (2022). Genome editing around the globe: An update on
572 policies and perceptions. *Plant Physiol*, 190(3), 1579–1587.
573 <https://doi.org/10.1093/plphys/kiac359>

574 Tang, X., & Zhang, Y. (2023). Beyond knockouts: fine-tuning regulation of gene expression in
575 plants with CRISPR-Cas-based promoter editing. *New Phytologist*, 239(3), 868–874.
576 <https://doi.org/https://doi.org/10.1111/nph.19020>

577 Tanz, S. K., Tetu, S. G., Vella, N. G. F., & Ludwig, M. (2009). Loss of the transit peptide and an
578 increase in gene expression of an ancestral chloroplastic carbonic anhydrase were
579 instrumental in the evolution of the cytosolic C₄ carbonic anhydrase in Flaveria. *Plant*
580 *Physiology*, 150(3), 1515–1529. <https://doi.org/10.1104/pp.109.137513>

581 Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S., & Tanaka, H. (2006). Early infection of
582 scutellum tissue with Agrobacterium allows high-speed transformation of rice. *Plant J*, 47(6),
583 969–976. <https://doi.org/10.1111/j.1365-313X.2006.02836.x>

584 Tsuzuki, M., Miyachi, S., & Edwards, G. E. (1985). Localization of carbonic anhydrase in mesophyll
585 cells of terrestrial C₃ plants in relation to CO₂ assimilation. *Plant and Cell Physiology*, 26(5),
586 881–891. <https://doi.org/10.1093/oxfordjournals.pcp.a076983>

587 von Caemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C₄ rice: current
588 progress and future challenges. *Science*, 336(6089), 1671–1672.
589 <https://doi.org/10.1126/science.1220177>

590 Walker, B., VanLoocke, A., Bernacchi, C., & Ort, D. (2016). The Costs of Photorespiration to Food
591 Production Now and in the Future. *Annual Review of Plant Biology*, 67.
592 <https://doi.org/10.1146/annurev-arplant-043015-111709>

593 Wang, P., Khoshravesh, R., Karki, S., Tapia, R., Balahadia, C. P., Bandyopadhyay, A., Quick, W. P.,
594 Furbank, R., Sage, T. L., & Langdale, J. A. (2017). Re-creation of a Key Step in the
595 Evolutionary Switch from C₃ to C₄ Leaf Anatomy. *Curr Biol*, 27(21), 3278-3287.e6.
596 <https://doi.org/10.1016/j.cub.2017.09.040>

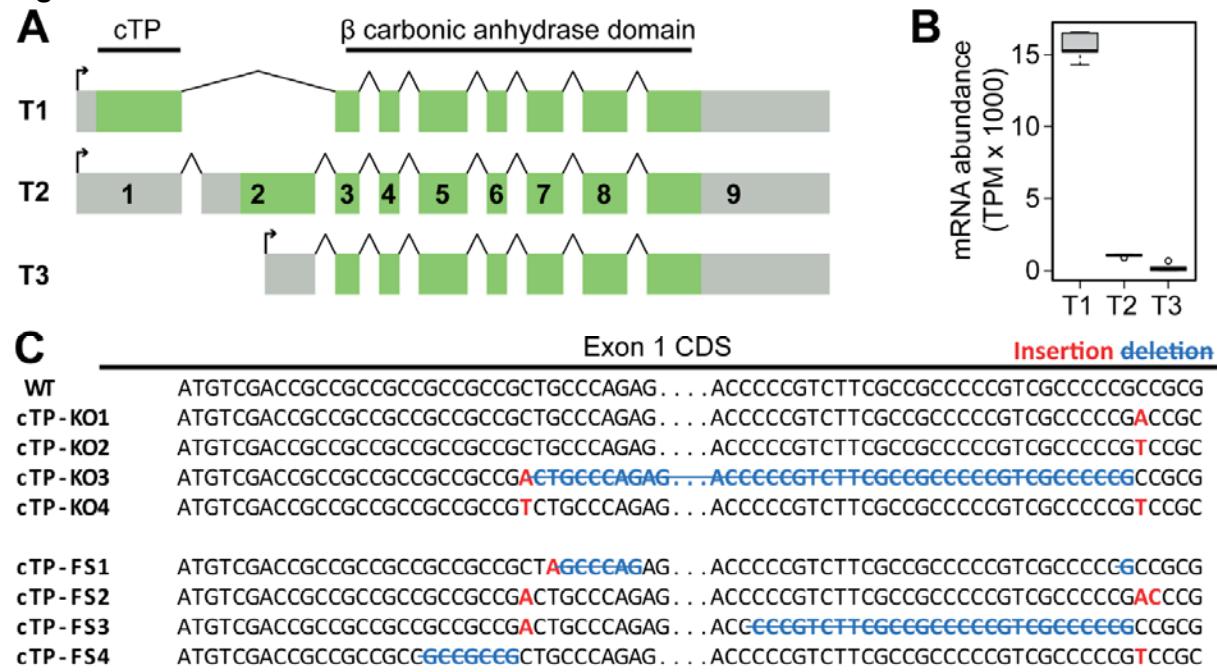
597 Way, D. A., Katul, G. G., Manzoni, S., & Vico, G. (2014). Increasing water use efficiency along the
598 C₃ to C₄ evolutionary pathway: a stomatal optimization perspective. *Journal of Experimental
599 Botany*, 65(13), 3683–3693. <https://doi.org/10.1093/jxb/eru205>

600 Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular cloning
601 system for standardized assembly of multigene constructs. *PLOS ONE*, 6(2), e16765-.
602 <https://doi.org/10.1371/journal.pone.0016765>

603 Weigel, D., & Glazebrook, J. (2009). Quick miniprep for plant DNA isolation. *Cold Spring Harb
604 Protoc*, 2009(3), db.prot5179. <https://doi.org/10.1101/pdb.prot5179>

605 Wilbur, K. M., & Anderson, N. G. (1948). Electrometric and colorimetric determination of carbonic
606 anhydrase. *J Biol Chem*, 176(1), 147–154. <https://www.ncbi.nlm.nih.gov/pubmed/18886152>

607 Zhu, X.-G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which
608 photosynthesis can convert solar energy into biomass? *Current Opinion in Biotechnology*,
609 19(2), 153–159. <https://doi.org/https://doi.org/10.1016/j.copbio.2008.02.004>

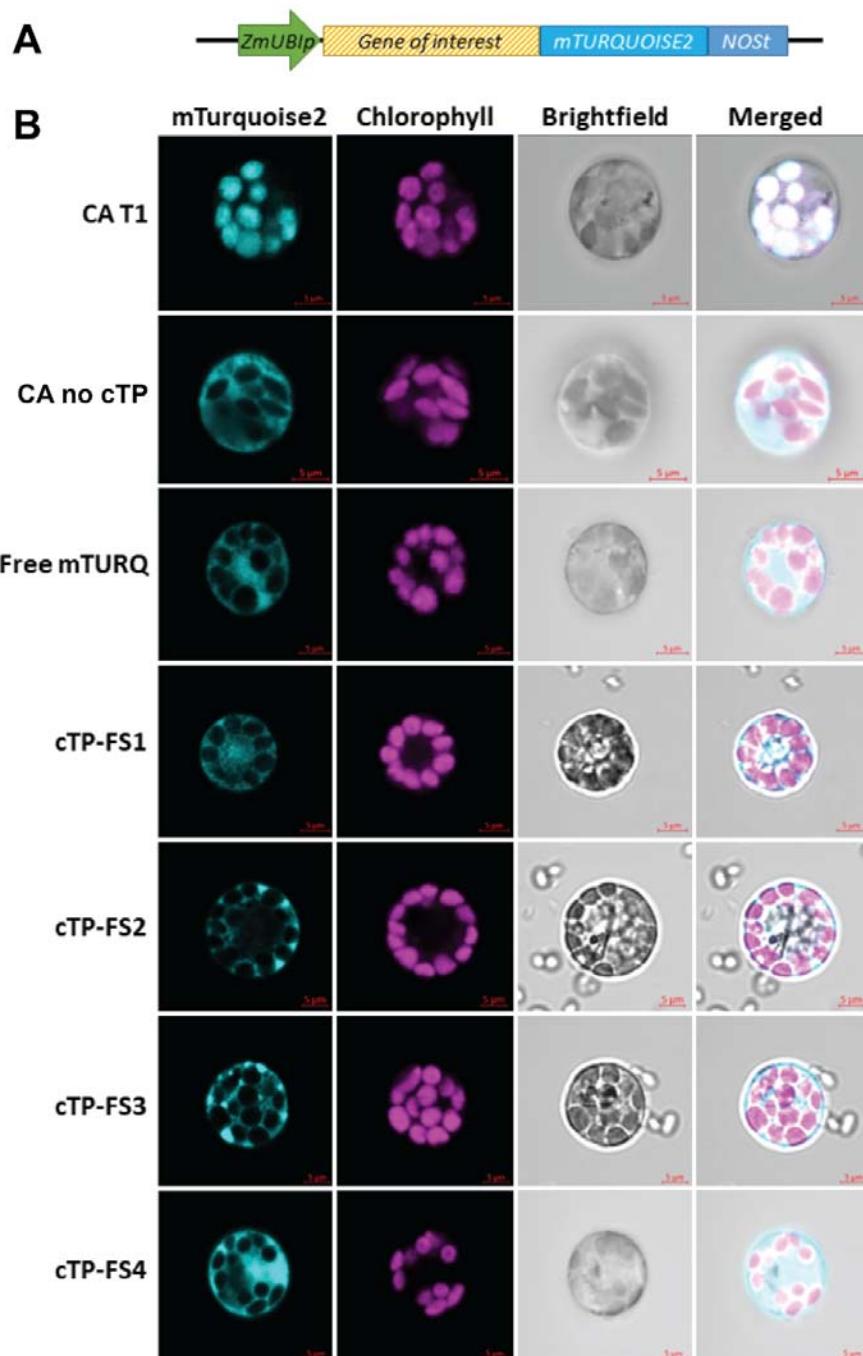

610
611
612
613

614

615

Figures

Figure 1

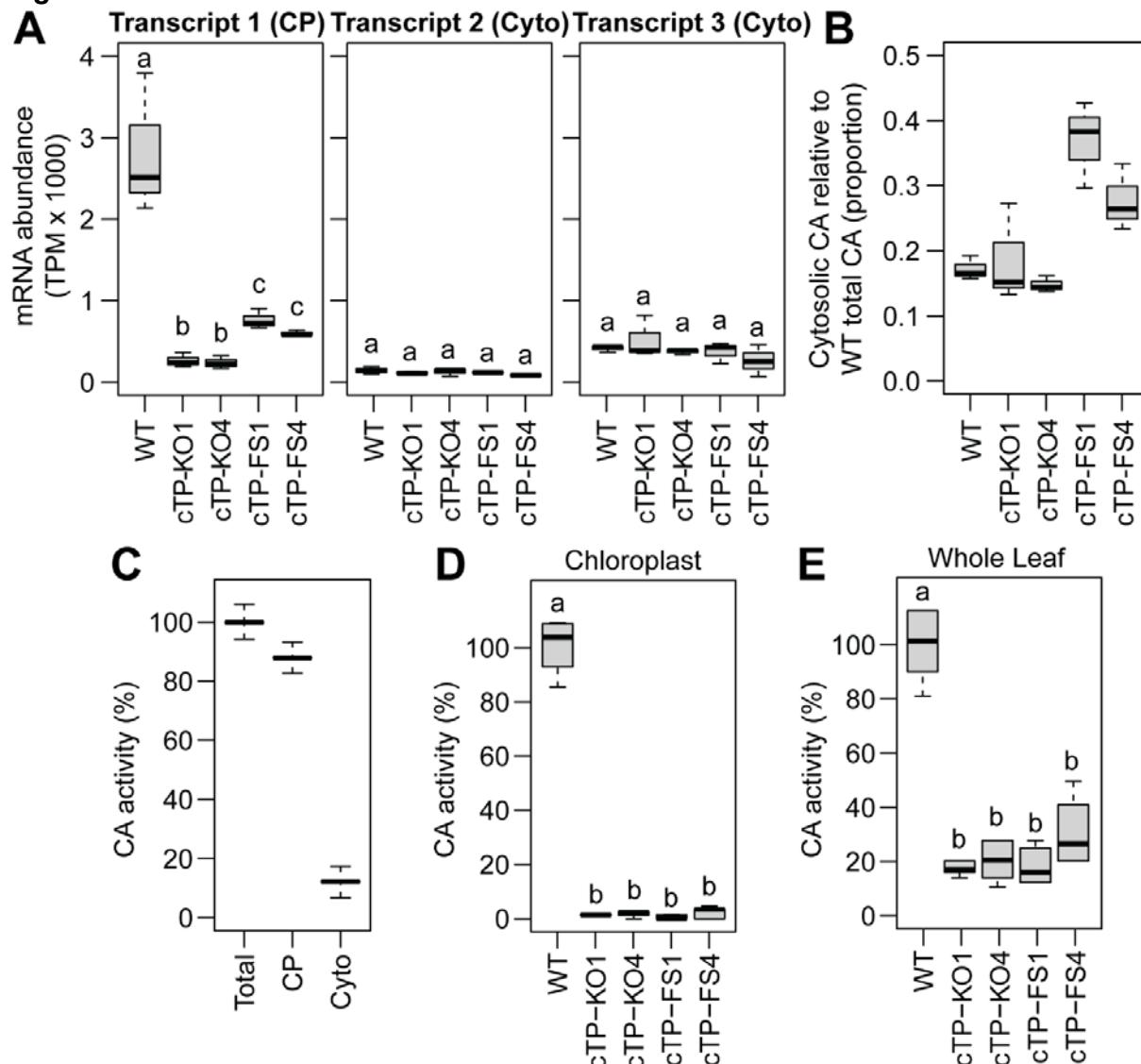

616

617 **Figure 1.** Gene models, mRNA abundance, and genome edited alleles for the primary leaf
618 carbonic anhydrase OsKitaake01g256600. A) Gene model diagram depicting the three transcript
619 variants produced from the OsKitaake01g256600 locus through a combination of alternative
620 splicing and alternative transcription start site use. Transcription start sites depicted by an arrow.
621 Exons (green boxes) and UTRs (grey boxes) are to scale, introns (connecting lines) are not to
622 scale. Exon numbers indicated on transcript 2. B) mRNA abundance of the three transcript variants
623 in mature rice leaves. C) The 8 different CRISPR alleles generated and evaluated in this study.

624

625

626 **Figure 2**

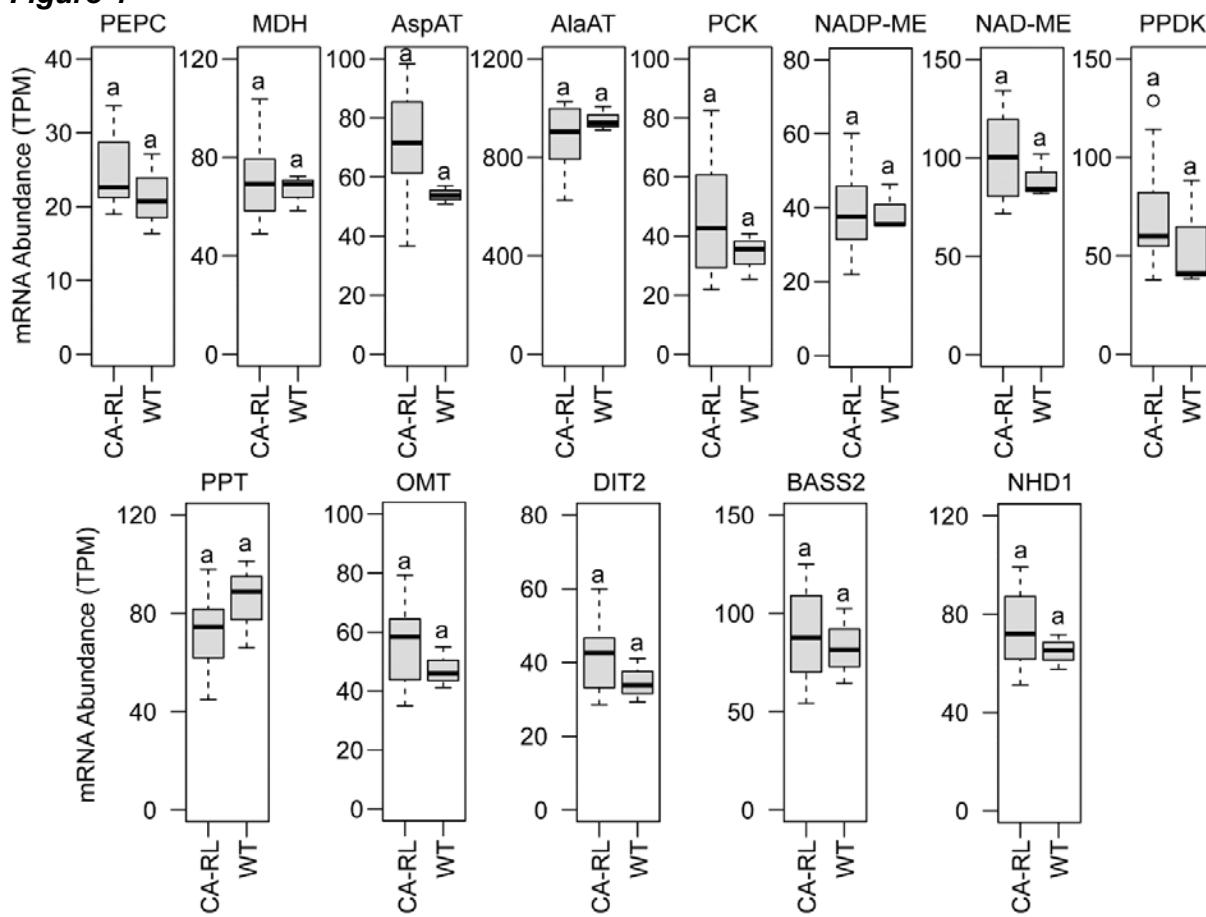

627

628 **Figure 2.** Subcellular localisation of cTP-FS carbonic anhydrase alleles fused to mTurquoise2 in
629 rice protoplasts. A) Schematic representation of expression construct. ZmUBIp is the *Zea mays*
630 ubiquitin promoter. NOST is the nopaline synthase terminator. B) Confocal microscope images of
631 mTurquoise2 fusion protein fluorescence. The four cTP-FS alleles are shown alongside the wild-
632 type transcript 1 (CA T1), wild-type transcript 2 (CA T3) and mTurquoise2 not fused to any coding

633 sequence (Free mTURQ). Chlorophyll autofluorescence is shown to indicate the location of the
634 chloroplasts.

635

Figure 3

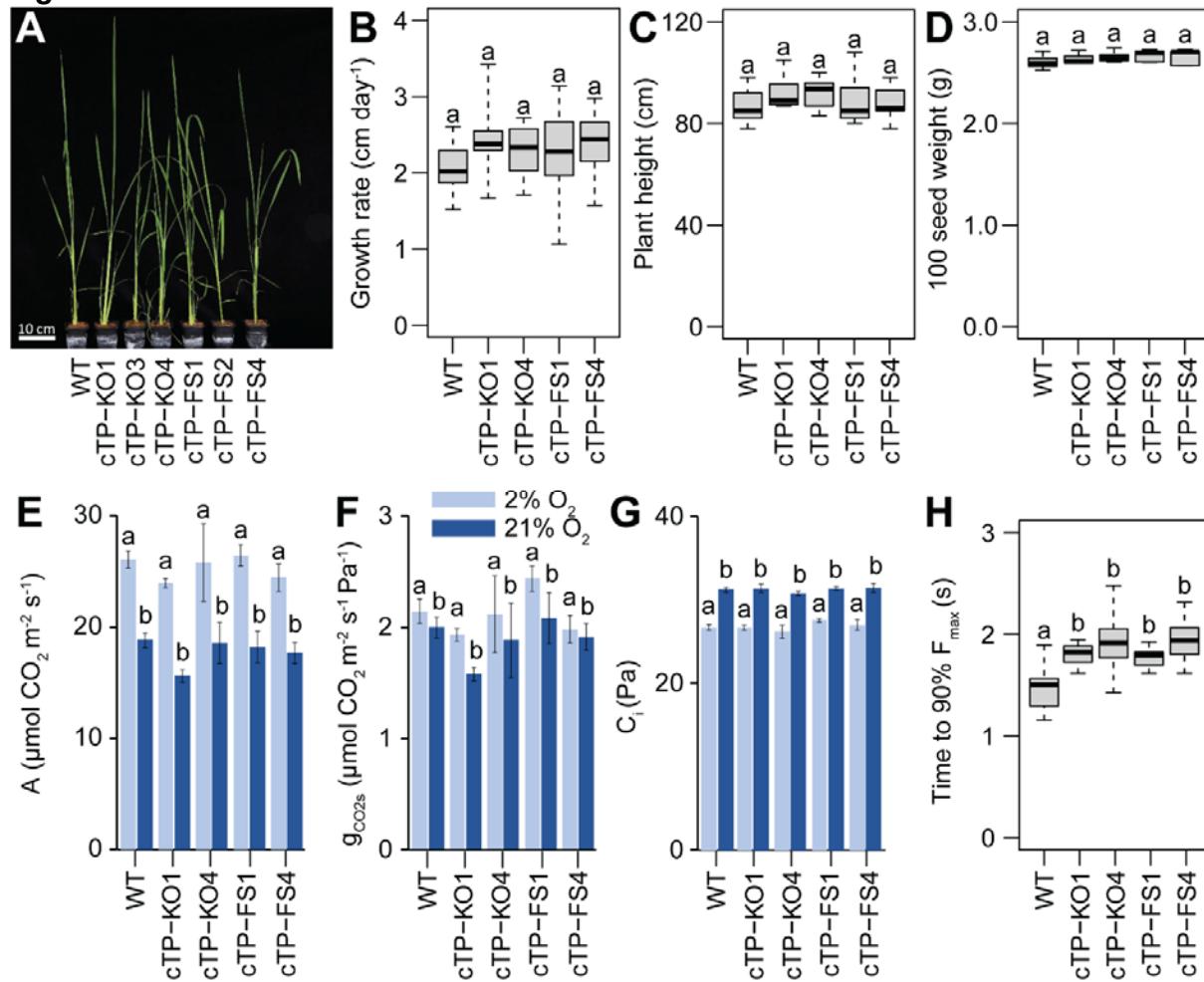


636

637 **Figure 3.** CA transcript abundance and CA activity of WT and genome edited lines. A) The mRNA
638 abundance of the three transcript variants in each of the genome edited and wild-type lines. CP:
639 chloroplast targeted. Cyto: Cytosol targeted. B) The abundance of cytosolic encoded transcripts
640 compared to WT total CA transcript abundance. C) The CA activity contained within the whole leaf
641 and chloroplast fraction of wild-type plants. D) The CA activity contained with the chloroplast of
642 wild-type and genome edited plants, normalised to chloroplast activity. E) The CA activity contained
643 within the whole leaf of wild-type and genome edited plants, normalised to wild-type whole leaf
644 activity. Letters above boxplots represent statistically significant differences ($p \leq 0.01$) in mean
645 values as determined by Fisher LSD post-hoc analysis following a one-way ANOVA.

646

Figure 4


647

648 **Figure 4.** Changes in mRNA abundance of genes encoding enzymes and transporters of the C₄
649 cycle. The cTP-FS and cTP-KO lines are collectively shown as CA-RL (CA relocalisation). The
650 name of the enzyme or transporter under consideration is shown above each boxplot. PEPC:
651 Phosphoenolpyruvate carboxylase. MDH: Malate dehydrogenase. AspAt: Aspartate amino
652 transferase. AlaAT: Alanine amino transferase. PCK: Phosphoenolpyruvate carboxy kinase. NADP:
653 NADP-malic enzyme. NAD-ME: NAD-malic enzyme. PPDK: Pyruvate, phosphate dikinase. PPT:
654 Phosphoenolpyruvate/phosphate translocator. OMT: Oxaloacetate/malate transporter. DIT2:
655 Dicarboxylate transporter. BASS2: Bile acid sodium symporter. NHD1: Sodium:hydrogen
656 antiporter 1. Letters above boxplots represent statistically significant differences ($p \leq 0.01$) in mean
657 values as determined by DESeq 2.

658

659

Figure 5

660

661 **Figure 5.** Phenotypic analysis of the CA relocalisation lines. A) Photograph of representative plants
662 at day 25 post transplanting to soil. B) Growth rate calculated from 17-day period from day 8 to day
663 25 post transplanting to soil. C) Final plant height measurements taken on day 58 after transplanting
664 to soil. D) 100 seed weight. E) Leaf net photosynthetic rate at 2% and 21% oxygen. F) Stomatal
665 conductance to CO₂ diffusion at 2% and 21% oxygen. G) CO₂ partial pressure in the intercellular
666 air space at 2% and 21% oxygen. H) Time to 90% maximal fluorescence. For panels E, F and G
667 Letters above bar plots represent statistically significant differences in mean values as determined
668 by Fisher LSD post-hoc analysis following a two-way ANOVA (factorial design with five plant types
669 and two O₂ levels; p< 0.05)). For all other plots, letters above boxplots represent statistically
670 significant differences (p ≤ 0.01) in mean values as determined by Fisher LSD post-hoc analysis
671 following a one-way ANOVA.