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Abstract 

 

In developed countries, ~10% of individuals are exposed to systemic chemotherapy for cancer 

and other diseases. Many chemotherapeutic agents act by increasing DNA damage in cancer 

cells, triggering cell death. However, there is limited understanding of the extent and long-term 

consequences of collateral DNA damage to normal tissues. To investigate the impact of 

chemotherapy on mutation burdens and cell population structure of a normal tissue we 

sequenced blood cell genomes from 23 individuals, aged 3–80 years, treated with a range of 

chemotherapy regimens. Substantial additional mutation loads with characteristic mutational 

signatures were imposed by some chemotherapeutic agents, but there were differences in 

burden between different classes of agent, different agents of the same class and different blood 

cell types. Chemotherapy also induced premature changes in the cell population structure of 

normal blood, similar to those of normal ageing. The results constitute an initial survey of the 

long-term biological consequences of cytotoxic agents to which a substantial fraction of the 

population is exposed during the course of their disease management, raising mechanistic 

questions and highlighting opportunities for mitigation of adverse effects. 
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Introduction 

 
Over the course of a lifetime one in two people develop cancer. A longstanding approach to 

cancer treatment is systemic administration of a diverse group of cytotoxic chemicals, often 

collectively termed “chemotherapy”, which includes alkylating agents, platinum compounds, 

antimetabolites, topoisomerase inhibitors, vinca alkaloids and cytotoxic antibiotics1. Many are 

thought to exert their therapeutic effects by causing damage to DNA that, in turn, triggers death 

of malignant cells2. Approximately 30% of individuals with cancer, and thus approximately 

10% of the whole population in developed countries, are exposed to chemotherapy at some 

point in their lifetime (Cancer Research UK, https://www.cancerresearchuk.org/health-

professional/cancer-statistics-for-the-uk, accessed February 2024).  

 

Chemotherapy can have long-term side effects on normal tissues. It confers an increased risk 

of cancers of blood3–6, lung, bladder and colon7,8 and is sometimes toxic to the kidney, blood, 

heart, brain, gastrointestinal tract, peripheral nervous system and gonads, engendering long-

term deterioration in organ function9–14. There is limited understanding of the biological 

mechanisms underlying these sequelae of chemotherapy. However, it is plausible that some 

relate to consequences of DNA damage and thus could be elucidated through genome 

sequences of normal tissues, which may reveal changes in somatic mutation burdens or clonal 

composition, immediately or decades following chemotherapy. 

 

Sequencing of cancers recurrent, or arising, after chemotherapy treatment has revealed variably 

elevated somatic mutation loads, in some instances characterised by distinctive mutational 

signatures15–18. However, there is little direct information concerning the mutagenic effects of 

chemotherapy on normal tissues in vivo. Studies of a small number of individuals show that 

normal colorectal epithelium, blood and sperm can show additional somatic mutation burdens 

after chemotherapy19,20. Furthermore, chemotherapy can alter the clonal structure of normal 

cell populations. This is illustrated in blood, where treatment increases the overall incidence of 

clonal haematopoiesis, favouring clones with driver mutations in the DNA damage response 

genes PPM1D, TP53 and CHEK221–23. 

 

As part of a wider survey of the long-term impacts of chemotherapeutic agents on normal body 

tissues, here we investigate their effects on normal blood by whole genome sequencing of cells 

from chemotherapy-exposed individuals. Blood offers several desirable features in this regard, 
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including the relative ease of randomly sampling cells from the whole tissue, the highly 

predictable mutation accumulation seen in unexposed individuals24, the opportunities to 

interrogate different cell subtypes and maturation states, and the feasibility of surveying 

changes in cell population clonal structure.  

  

 

Whole genome sequencing of chemotherapy-exposed blood 

 
To conduct a primary survey of the landscape of chemotherapy effects on the genomes of 

normal blood cells we analysed 23 individuals who had collectively been exposed to multiple 

chemotherapy classes, multiple members of each class, at different ages and with variable time 

periods since exposure. These individuals, aged 3–80 years, had been treated with commonly 

used chemotherapy dosing regimens for haematological malignancies (Hodgkin lymphoma, 

n=2; follicular lymphoma, n=5; diffuse large B cell lymphoma, n=2; lymphoplasmacytic 

lymphoma, n=1; marginal zone lymphoma, n=1; multiple myeloma, n=1; acute myeloid 

leukaemia (AML), n=1) and solid cancers (colorectal carcinoma, n=9; neuroblastoma, n=1; 

lung cancer, n=1). One individual had been treated with chemotherapy for both multiple 

myeloma and colorectal carcinoma. The individual with AML had also been treated with 

chemotherapy for Behcet’s disease, a non-cancer condition (Fig. 1a; Table S1). Consistent 

with standard practice, most had received a combination of agents and, collectively, they had 

been exposed to 21 drugs from all of the main chemotherapy classes, including alkylating 

agents (cyclophosphamide, n=8; chlorambucil, n=2; bendamustine, n=5; procarbazine, n=2; 

melphalan, n=1), platinum agents (oxaliplatin, n=7; carboplatin, n=2; cisplatin, n=1), anti-

metabolites (capecitabine, n=7; 5-fluorouracil, n=6; gemcitabine, n=1; cytarabine, n=1), 

topoisomerase-I inhibitors (irinotecan, n=5), topoisomerase-II inhibitors (etoposide, n=4; 

doxorubicin, n= 4; daunorubicin, n=1; mitoxantrone, n=1), vinca alkaloids (vincristine, n=7; 

vinblastine, n=1; vinorelbine, n=1), and cytotoxic antibiotics (bleomycin, n=1).  Time periods 

from chemotherapy exposure to tissue sampling ranged from less than one month to six years 

for most cases. However, one individual sampled aged 48 years had been treated for Hodgkin 

lymphoma aged 10 and aged 47; and the individual sampled aged 43, post induction 

chemotherapy for AML, had also received long-term chlorambucil for Behcet’s disease 

diagnosed aged 13. In total 7 patients had received localised radiotherapy as part of their cancer 

therapy (Table S1). Results were compared with those from 9 healthy, chemotherapy non-

exposed individuals (Fig. 1a; Table S1). 
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Three experimental designs for detecting and analysing somatic mutations were used. 

First, 189 single cell-derived haematopoietic stem and progenitor cell (HSPC) colonies from 

the 23 chemotherapy-exposed individuals, and 90 from the nine controls, were expanded and 

individually whole genome sequenced at 23-fold average coverage to compare mutation 

burdens and mutational signatures. Second, from six individuals collectively exposed to a 

comprehensive range of the chemotherapeutic agents included in the study, a further 648 single 

cell colonies were whole genome sequenced (a total of 41–259 colonies each; mean sequencing 

depth 15-fold). These phylogenies were compared to similar sized phylogenies from five 

normal individuals across a similar age range (a total of 608 further colonies), to survey the 

effect of chemotherapy on the clonal structure of the HSPC population. Third, flow-sorted 

subpopulations of B cells, T memory cells, T naïve cells and monocytes from whole blood 

samples of 18 chemotherapy-exposed individuals and three unexposed normal individuals 

(Fig. 1b) were whole genome sequenced using duplex sequencing, which allows reliable 

identification of somatic mutations in polyclonal cell populations25. Somatic variant calling, 

mutational signature analysis and phylogenetic tree construction were performed as previously 

described (Supplementary Methods). 
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Fig. 1|Donor information and experimental approach. a, Donor demographic details, chemotherapy 

exposure and sample information. CC = colorectal carcinoma, LC = lung cancer, NB = neuroblastoma, FL = 

follicular lymphoma, DLBL = diffuse large B cell lymphoma, MZL = marginal zone lymphoma, LL = 

lymphoplasmacytic lymphoma, M = multiple myeloma, HL = Hodgkin lymphoma, AML = acute myeloid 

leukaemia. b, Experimental approach. 
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Chemotherapy can increase haematopoietic cell somatic mutation burdens 

 
Somatic single base substitution (SBS, also termed single nucleotide variant) mutations in 

HSPCs from normal adults accrue at a roughly constant rate of ~18 per year, leading to a burden 

of ~1500 SBSs in 80-year-old individuals24. HSPCs from 17/23 chemotherapy-exposed 

individuals showed elevated mutation burdens compared to those expected for their ages (Fig. 

2). Four showed large increases of >1000 SBSs (Fig. 2a), 13 more modest increases of 200–

600 SBSs (Fig. 2b) and six no increases. The burdens of small indels in HSPCs were also 

increased in the four individuals with the greatest elevations in SBS burdens (Extended Fig. 

2a,b). Increases in structural variant and copy number changes were not observed, including 

in those individuals exposed to topoisomerase II inhibitors, which have been implicated in the 

development of secondary malignancies driven by specific oncogenic rearrangements26. 

(Extended Fig. 2c,d).  

 

Nineteen of the 23 chemotherapy-treated individuals received multiple agents. Therefore, it 

was in many cases uncertain which agents were responsible for the elevated mutation loads. 

To address this, we extracted mutational signatures from the SBS and indel mutation catalogues 

of chemotherapy-exposed individuals and controls, and estimated the contribution of each 

signature to the somatic mutations in the blood cells of each individual (Fig. 2c; Extended 

Fig. 3). We then used prior knowledge of previously described mutational signatures attributed 

to normal endogenous mutational processes, and to some mutagenic exposures27, as well as the 

specific chemotherapy regimens received by each individual in this study, to associate each 

signature with its putative causative agent. 

 

Thirteen SBS mutational signatures were extracted. Five were similar to known signatures of 

normal HSPCs and mature lymphocytes: SBS1, characterised predominantly by C>T 

mutations at CG dinucleotides, and SBS5, which is relatively flat and featureless, are found in 

most normal cell types thus far studied; SBSBlood, a blood-specific signature predominant in 

HSPCs28,29; SBS7a, an ultraviolet light-caused signature found in memory T cells, which have 

presumably resided in skin during life30; and SBS9, a signature of somatic hypermutation found 

in B cells. Since two of the 13 signatures were predominantly composed of SBS1 and SBS5, 

these were combined for simplicity of depiction, generating a final total of 12 distinct 

signatures (Fig. 2c). Three indel mutational signatures were extracted. Two were similar to 

known indel signatures and present in both normal and chemotherapy-exposed individuals: the 
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first comprised ID1 (ID1) and the second was a composite of ID3, ID5 and ID9 (ID3/5/9; 

Extended Fig. 3). 

  

Seven SBS mutational signatures were interpreted as being found exclusively in 

chemotherapy-treated individuals (Fig. 2d), on the basis of accounting for <1% of mutations 

in HSPCs from adult controls (Extended Fig. 4). Four of these are novel, not represented in 

the COSMIC SBS mutational signature database. SBSA is likely due to the triazene alkylating 

agent procarbazine. There were three similar but distinct signatures relating predominantly to 

specific nitrogen mustard alkylating agents: SBSC to chlorambucil; SBSD to bendamustine; 

and SBSE to melphalan. SBSF is associated with the platinum agents cisplatin and carboplatin; 

and SBSG to the antimetabolite 5-fluorouracil or its prodrug capecitabine. The aetiologies of 

SBSB and SBSH are less clear cut and are discussed further below. Excess SBSs and specific 

SBS mutational signatures were not obviously associated with topoisomerase inhibitors (which 

cause DNA strand breaks), vinca-alkaloids (which inhibit microtubule formation during cell 

division) and the cytotoxic antibiotic bleomycin (which is thought to bind and cleave DNA). 

Only one high confidence indel mutational signature was found exclusively in chemotherapy-

treated individuals: IDA, associated with procarbazine exposure.  
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Fig. 2| Mutational burden and mutational signatures in normal and chemotherapy exposed blood cells. 

a, Barplot of single base substitution burden with age (years) across normal (blue) and the four chemotherapy 

exposed (red) individuals with the highest indel burdens. The boxes indicate the median and interquartile range, 

the whiskers denote the minimum and maximum, with points representing outlying values. The blue line 

represents a regression of age on mutation burden across the unexposed individuals, with 95% CI shaded.  b, 

Depiction of data as in a, but the y-axis is cut off at 2000 single base substitutions for better visualisation of 

the majority of the data. c, Mutational signatures extracted using HDP from the full dataset of normal and 

chemotherapy exposed HSPC colonies and duplex sequencing of bulk mature blood cell subsets. 
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SBSA contributed substantial additional mutation loads to blood cells from two individuals 

treated for Hodgkin lymphoma (PD50308 and PD44703) (Fig. 3). The only chemotherapy 

common to their treatment regimens was the alkylating agent procarbazine, no other 

individuals had been treated with procarbazine, and HSPC phylogenies indicated that SBSA 

mutations occurred early during PD44703’s life, consistent with procarbazine treatment aged 

10 (Extended Fig. 5a). SBSA is similar to COSMIC signature SBS25 (cosine similarity 0.82), 

which has previously been associated with procarbazine19,31. An indel signature (IDA) was also 

identified as being most likely attributable to procarbazine, being found only in the two 

individuals treated with procarbazine; Extended Fig. 3. Alkylating agents cause alkyl DNA 

adducts, resulting in base mispairing and DNA breaks. Procarbazine is a triazene/hydrazine, 

monofunctional, alkylating agent.  

 

SBSB is found predominantly in the individual exposed to chlorambucil, procarbazine and 

bendamustine (PD44703). Although SBSB, like SBSA (procarbazine), is predominantly 

composed of T>A substitutions, its cosine similarity to SBSA of 0.76 is not supportive of a 

strong similarity and the cosine similarities to SBSD (bendamustine; 0.68) and SBSC 

(chlorambucil; 0.62) indicate it is unlikely to be due to any of these in isolation. It is also present 

at low levels in the T memory cells of the other procarbazine exposed individual who was also 

exposed to cyclophosphamide (PD50308). Although its origin is unclear, it seems plausible 

that SBSB may result from an interaction between two classes of alkylating agent. 

 

Of the nitrogen mustard associated signatures: SBSC contributed all mutations to the individual 

who received chlorambucil from childhood (PD37580); SBSD contributed all excess mutations 

to one of the individuals exposed only to bendamustine (PD60010) and was also present at 

much lower burden in a subset of cyclophosphamide-exposed individuals; SBSE was found 

only in the single individual exposed to low-dose melphalan (PD47699). Nitrogen mustard 

alkylating agents have two reactive sites and are, in consequence, bifunctional, forming intra- 

and inter-strand DNA cross-links in addition to simple adducts. The SBSC and SBSD 

signatures identified here are similar to a recently published mutational signature found in the 

germlines of two individuals whose fathers had been treated with two different nitrogen 

mustard agents (chlorambucil and iphosphamide) 20,32. SBSE is also similar (cosine similarity 
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0.84) to the previously described signature in multiple myeloma genomes with previous 

melphalan exposure33–35.  

 

SBSF was found in individuals treated with carboplatin or cisplatin, and in a subset of 

oxaliplatin-treated individuals in whom it was present at much lower burdens. It is similar to 

COSMIC SBS31 (cosine similarity 0.96), which has previously been associated with prior 

platinum exposure in cancer genomes32,36 (Fig. 3). Platinum compounds act by binding DNA 

and forming intra- and inter-strand DNA crosslinks, in a similar manner to bifunctional 

alkylating agents. SBSF/SBS31 is, however, different from the bifunctional nitrogen mustard 

signatures, indicating that the patterns of DNA damage and/or DNA repair induced by platinum 

agents and nitrogen mustards differ. 

 

SBSG is similar to COSMIC SBS17 (cosine similarity 0.91) which has previously been found 

in the genomes of cancers exposed to 5-fluorouracil37 and in the normal intestine of one 5-

fluorouracil-exposed individual19. It was undetectable in HSPCs and found at highest burdens 

in lymphoid cells from individuals treated with 5-fluorouracil or its prodrug capecitabine (Fig. 

4). 5-fluorouracil is a pyrimidine analogue mis-incorporated into DNA in place of thymine, 

consistent with causing a mutational signature characterised predominantly by mutations of 

thymine.  

 

SBSH was detectable only in the T cells of a single individual who was also the only person to 

have received gemcitabine, a cytosine analogue. However, the origin of SBSH remains 

uncertain. 

 

The isolation of multiple HSPC colonies from each individual allowed assessment of variation 

in mutagenic exposures across each of their HSPC populations. Overall, it was noteworthy how 

consistent the mutation burdens attributable to all the platinum agents, procarbazine and the 

various nitrogen mustards were across all sampled HSPCs from each individual (Fig. 3). This 

result indicates that, over the periods of chemotherapy exposure, there were few HSPCs 

continuously in niches or cell states protecting them from DNA damage and its consequences. 

The multiple HSPCs from each individual also allowed formation of phylogenetic trees 

allowing timing of mutagenic impacts. The phylogenetic timings were in keeping with the 

known periods of exposure; PD44703 with both early-life exposure to procarbazine and 
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chlorambucil, and later-life exposure to bendamustine; PD37580 with both early and late life 

exposure to chlorambucil, and PD47699 with late-life exposure to melphalan (Fig. 3). 
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Figure 3| Phylogenetic trees and mutational signatures across a range of normal and chemotherapy 

exposed individuals. Phylogenies were constructed using shared mutation data and the algorithm MPBoot 

(Methods). Branch lengths correspond to SBS burdens. A stacked bar plot represents the signatures 

contributing to each branch with color code below the trees. SBSUnassigned indicates mutations that could 

not confidently be assigned to any reported signature. 
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Although limited numbers of individuals, different drug combinations and different dose 

regimens preclude definitive evaluation, inclusion of individuals treated with different 

members of the same class of chemotherapy enabled preliminary comparison of their effects. 

Among nitrogen mustard alkylating agents, chlorambucil, bendamustine and melphalan caused 

substantially greater alkylating agent associated mutation burdens in normal blood cells than 

cyclophosphamide, which engendered only minimal (<5% and hence not shown in the figures) 

increases in mutation load (Table S6,S7; Fig. 3; Extended Fig. 5b). Similarly, carboplatin and 

cisplatin caused much higher SBSF mutation burdens than oxaliplatin, which conferred SBSF 

mutation burdens of <5% in all cases, despite prolonged oxaliplatin treatment (up to 22 cycles) 

in some individuals (Table S6,S7; Fig. 3; Extended Fig. 6). Therefore, chemotherapeutic 

agents of the same class, some used interchangeably in cancer treatment, may confer 

substantially different mutation burdens in normal blood cells. 

 

Flow sorting of monocytes, B cells, T memory cells, and T naïve cells enabled investigation of 

the responses of different cell types to identical chemotherapy exposures. Overall, patterns of 

SBS signature burdens in monocytes were similar to HSPCs, whereas B and T lymphocytes 

showed differences for some agents. For example, SBSG, caused by 5-

fluorouracil/capecitabine, contributed additional mutation burdens in B and T lymphocytes, 

but was undetectable in HSPCs and monocytes (Fig. 4). In contrast, SBSF, caused by the 

platinum agents, contributed larger mutation burdens in HSPCs, monocytes and B cells than in 

T naïve and T memory cells, albeit we only have T cell data for one carboplatin exposed 

individual (Fig. 4). The mutation loads contributed by SBSA, caused by procarbazine, were 

similar across cell types. Therefore, some chemotherapeutic agents engender different mutation 

burdens in different cell types.  
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Figure 4| Mutation burden and SBS mutational signatures across different blood cell types. Stacked 

barplots represent the absolute contributions of each SBS mutational signature to the SBS mutation burden 

across cells types (left), compared to the proportionate contribution of each signature (right). HSPC data 

generated by pooling HSPC WGS colony data from each individual. Mature blood cell data generated using 

duplex sequencing of ~40,000 cells of each type. For the normal unexposed individuals the T cell subset data 

is from CD4+ T cells whereas for the chemotherapy exposed individuals the T cell subsets contain both 

CD4+ and CD8+ cells. SBSUnassigned indicates mutations that could not confidently be assigned to any 

reported signature. SBSNA indicates duplex sequencing data is unavailable for this subset. 
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Chemotherapy can change haematopoietic cell population structure 

 
To investigate the effect of chemotherapies on the architecture of cell populations, extensive 

phylogenies of HSPCs from six chemotherapy-exposed individuals were generated and 

compared to non-exposed individuals of similar ages. An exemplar HSPC phylogeny of a 

normal, chemotherapy non-exposed 48-year-old shows only one barely-detectable clonal 

expansion and no ‘driver’ mutations in cancer genes (Fig. 5a). Such trees are typical of healthy 

middle-aged adults24.  
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Figure 5| HSPC phylogenies for two normal unexposed and two chemotherapy exposed adult individuals. 

Phylogenies for two normal unexposed donors (top): one young and one elderly adult individual. Phylogenies 

for two young adult chemotherapy-treated individuals (bottom), who had both received more than one 

chemotherapy exposure. Phylogenies were constructed using shared mutation data and the algorithm MPBoot 

(Methods). Branch lengths reflect the number of mutations assigned to the branch with terminal branches 

adjusted for sequence coverage, and overall root-to-tip branch lengths have been normalized to the same total 

length (because all colonies were collected from a single time point). The y-axis represents the number of SBSs 

accumulating over time. Each tip on a phylogeny represents a single colony, with the respective numbers of 

colonies of each cell and tissue type recorded at the top. Onto these trees, we have layered clone and colony-

specific phenotypic information. We have highlighted branches on which we have identified known oncogenic 

drivers in one of 18 clonal haematopoiesis genes (Table S2) color-coded by gene. A heat map at the bottom of 

each phylogeny highlights colonies from known driver clades coloured by gene, and the expanded clades 

(defined as those with a clonal fraction above 1%) in blue. d, The acute myeloid leukaemia derived from the 

bi-allelic TP53 mutated clade carrying TP53 p.I195F and TP53 p.C176Y. 
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By contrast, a 48-year-old female (PD47703) treated for Hodgkin lymphoma with 

chlorambucil and procarbazine aged 10, and bendamustine aged 47, showed multiple 

independent clonal expansions carrying ‘driver’ mutations in the DNA damage response gene 

PPM1D (Fig. 5c).  A similar pattern, with expanded PPM1D and TP53 mutant clones, was 

observed in a 43-year-old female (PD37580) after long-term chlorambucil treatment (Fig. 5d). 

This pattern of multiple, large clonal expansions is characteristic of normal individuals aged 

>70 years24. However, in healthy elderly individuals, the clonal expansions exhibit 

predominantly DNMT3A and TET2 driver mutations, or no apparent driver (Fig. 5b).  

Chemotherapy could induce this prematurely-aged HSPC cell population profile by increasing 

mutation loads and/or by altering microenvironmental selection. Chemotherapy administered 

to elderly individuals favours survival of clonal haematopoiesis of indeterminate potential 

(CHIP) clones with driver mutations in PPM1D, TP53 and CHEK221, which usually predate 

the chemotherapy. Similarly, the HSPC phylogenetic tree of PD37580 indicates that at least 

two PPM1D driver mutations arose before chemotherapy was given during childhood 

(Extended Fig. 7a). Furthermore, in PD47703, comparison of two samples taken one year 

apart, during which additional chemotherapy (cyclophosphamide, doxorubicin and vincristine) 

had been administered, revealed a ~50% increase in the size of pre-existing PPM1D mutated 

clones and no new mutant clones (Extended Fig. 7b). Thus, chemotherapy-induced changes 

in selection appear more influential than chemotherapy-induced creation of new driver 

mutations in generating the prematurely aged HSPC profile. 

 

The prematurely aged architecture of the HSPC population was not observed in two other 

young adult individuals (PD50308 aged 29 and PD50307 aged 40) who received chemotherapy 

which caused substantial increases in mutation load and was administered two years or less 

before sampling (Extended Fig. 8), or in two further individuals, treated with 

cyclophosphamide and oxaliplatin (PD44579 aged 63 and PD47537 aged 61), who exhibited 

minimally increased mutation loads (Extended Fig. 9). It is, therefore, conceivable that 

multiple and/or prolonged chemotherapeutic exposures are required to generate the 

prematurely aged architecture. However, it is also possible that chemotherapy-engendered 

clonal expansions require decades to become detectable, as already demonstrated for clones 

under positive selection during normal ageing24,38.  
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The changes in clonal architecture resulting from chemotherapy exposure are significant for 

two reasons: firstly PPM1D mutant clones reduce the regenerative ability of the bone marrow 

in the setting of autologous bone marrow transplantation39, likely contributing to prolonged 

cytopenias and the death of PD47703 from infection 19 months post autograft. Secondly 

selection of TP53 mutant clones confers a high risk of developing secondary myeloid 

malignancies, including AML as seen in PD37580, whose disease was treatment refractory and 

carried bi-allelic TP53 mutations in association with a complex karyotype. 

 

Discussion 
 

The results of this survey demonstrate that some commonly used chemotherapies, at dose 

regimens employed in clinical practice, increase somatic mutation burdens and alter the 

population structure of normal blood cells. Individuals with elevated mutation burdens have 

likely experienced very high mutation rates over short time periods. For example, an additional 

1000 SBSs acquired in an HSPC due to chemotherapy administered during the course of one 

year is equivalent to a ~50-fold increase in average mutation rate over the year, and it is 

plausible that mutation rates within hours or days of chemotherapy are even higher. The 

additional long-term mutation loads were also sometimes considerable. A three-year-old 

treated for neuroblastoma had >10-fold the number of somatic SBSs expected for his age, 

exceeding the burden in normal 80-year-olds.  

 

The additional mutation burdens differed substantially both between chemotherapy classes and 

between agents of the same class. Since an important mechanism underlying the therapeutic 

effect of many chemotherapies is thought to be DNA damage induction, it is notable that 

different agents of the same class at their therapeutic doses have such different impacts on 

mutation generation in normal cells. The reasons for this are unclear, but may reflect subtle 

differences between agents in the nature of the DNA damage caused, the ability of damage to 

be repaired, the extent of induction of normal cell death and in the levels of normal cell 

exposure. For example, cyclophosphamide is thought to relatively spare HSPCs due to their 

higher levels of aldehyde dehydrogenase, an enzyme which inactivates a cyclophosphamide 

intermediary40. It may also be the case, however, that the extent of DNA damage does not 

directly correlate with the level of cytotoxicity of some chemotherapies.  
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The additional mutation burdens caused by chemotherapies are characterized by distinct 

mutational signatures, often shared by agents of the same class. The signatures are similar to 

those induced by the same agents in cancer cells, suggesting that the patterns of induced DNA 

damage, and its processing into mutations through DNA repair and replication, are similar in 

normal and cancer cells, even if tolerance of DNA damage by normal and cancer cells differs. 

 

Increases in mutation loads imposed by chemotherapies differed between blood cell types and 

the profile of differences between cell types differed between chemotherapeutic agents. The 

mechanisms underlying these complex landscapes are uncertain, but may reflect intrinsic 

differences in the metabolic capabilities, DNA repair capacities and cell division rates of the 

different cell types.  

    

Changes in the architecture of blood cell populations characterized by increasing dominance 

of large clones, often with driver mutations in cancer genes are a feature of normal ageing. 

Chemotherapy caused a similar pattern of change prematurely in some middle-aged adults, 

albeit with a different repertoire of mutated genes. However, these changes were not observed 

in all individuals. Whether these chemotherapy-induced changes in population architecture are 

contingent on long duration/multiplicity of treatment, or simply the passage of decades post 

treatment (which may allow clones with limited growth advantage under normal conditions to 

become detectable), requires further investigation. 

 

In conclusion, some chemotherapies impose additional mutational loads and change the cell 

population structure of normal blood. Both impacts plausibly contribute to long-term 

consequences, including second malignancies, infertility, and loss of normal tissue resilience. 

Clinical data support this view, with the most mutagenic agents in this study having measurably 

greater long-term treatment toxicities. For example, of the bifunctional alkylating agents 

melphalan and chlorambucil are associated with higher risks of secondary malignancies than 

cyclophosphamide3,41,42. In addition, procarbazine has been associated with a particularly high 

risk of second cancer and infertility and is for this reason no longer used in the treatment of 

paediatric Hodgkin lymphoma43. Given that in many cancer types chemotherapeutic agents 

within a single class can be used interchangeably to achieve similar clinical outcomes44–46, it 

may be possible to  prospectively utilise these types of data when improving existing regimens 

or developing new treatment protocols. In patients previously exposed to chemotherapy, 

knowledge of their altered mutational and clonal landscape could prompt discussions as to 
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suitability for standard treatment protocols, particularly in the autologous transplant setting, 

and allow exploration of alternative options where appropriate. 

 

The current study, together with others17,32,47, points to a future agenda for systematic genomic 

analysis of normal tissues after chemotherapy. This could incorporate multiple tissue sampling 

pre and post treatment, after short and long periods, across the range of chemotherapies, in 

substantial numbers of individuals, with detailed clinical and functional characterisation, and 

incorporating new sequencing technologies to enable feasibility at scale. A comprehensive 

prospective survey of this nature would improve understanding of the consequences of a 

widespread, self-administered mutagenic exposure in human populations and provide a 

scientific basis for optimising long-term patient health.  

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.594942doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594942
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. DeVita, V. T. & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 

(2008). 

2. Tilsed, C. M., Fisher, S. A., Nowak, A. K., Lake, R. A. & Lesterhuis, W. J. Cancer 

chemotherapy: insights into cellular and tumor microenvironmental mechanisms of 

action. Front. Oncol. 12, 960317 (2022). 

3. Kollmannsberger, C., Hartmann, J. T., Kanz, L. & Bokemeyer, C. Risk of secondary 

myeloid leukemia and myelodysplastic syndrome following standard-dose chemotherapy 

or high-dose chemotherapy with stem cell support in patients with potentially curable 

malignancies. J. Cancer Res. Clin. Oncol. 124, 207–214 (1998). 

4. Bhatia, S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol 40, 

(2013). 

5. Morton, L. M. et al. Association of Chemotherapy for Solid Tumors With Development 

of Therapy-Related Myelodysplastic Syndrome or Acute Myeloid Leukemia in the 

Modern Era. JAMA Oncol. 5, 318 (2019). 

6. Bhatia, S. & Sklar, C. Second cancers in survivors of childhood cancer. Nat. Rev. Cancer 

2, 124–132 (2002). 

7. Travis, L. B. The Epidemiology of Second Primary Cancers. Cancer Epidemiol. 

Biomarkers Prev. 15, 2020–2026 (2006). 

8. Allan, J. M. & Travis, L. B. Mechanisms of therapy-related carcinogenesis. Nat. Rev. 

Cancer 5, 943–955 (2005). 

9. Nicolaysen, A. Nephrotoxic Chemotherapy Agents: Old and New. Adv. Chronic Kidney 

Dis. 27, 38–49 (2020). 

10. Groopman, J. E. & Itri, L. M. Chemotherapy-induced anemia in adults: Incidence and 

treatment. J. Natl. Cancer Inst. 91, 1616–1634 (1999). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.594942doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594942
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Crawford, J., Dale, D. C. & Lyman, G. H. Chemotherapy-Induced Neutropenia: Risks, 

Consequences, and New Directions for Its Management. Cancer 100, 228–237 (2004). 

12. Szász, R., Telek, B. & Illés, Á. Fludarabine-Cyclophosphamide-Rituximab Treatment in 

Chronic Lymphocytic Leukemia, Focusing on Long Term Cytopenias Before and After 

the Era of Targeted Therapies. Pathol. Oncol. Res. 27, 97 (2021). 

13. Robison, L. L. & Hudson, M. M. Survivors of childhood and adolescent cancer: life-long 

risks and responsibilities. Nat. Rev. Cancer 14, 61–70 (2014). 

14. Erdmann, F. et al. Childhood cancer: Survival, treatment modalities, late effects and 

improvements over time. Cancer Epidemiol. 71, 101733 (2021). 

15. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 

415–421 (2013). 

16. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 

578, 94–101 (2020). 

17. Pich, O. et al. The mutational footprints of cancer therapies. Nat. Genet. 2019 5112 51, 

1732–1740 (2019). 

18. de Kanter, J. K. et al. Antiviral treatment causes a unique mutational signature in cancers 

of transplantation recipients. Cell Stem Cell 28, 1726-1739.e6 (2021). 

19. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. 

Nature 574, 532–537 (2019). 

20. Kaplanis, J. et al. Genetic and chemotherapeutic influences on germline hypermutation. 

Nature 605, 503–508 (2022). 

21. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. 

Nat. Genet. 52, 12219–1226 (2020). 

22. Hsu, J. I. et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic 

Chemotherapy. Cell Stem Cell 23, 700-713.e6 (2018). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.594942doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594942
http://creativecommons.org/licenses/by-nc-nd/4.0/


23. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-

hematologic cancers is common and impacts clinical outcome. Cell Stem Cell 21, 374 

(2017). 

24. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 

606, 343–350 (2022). 

25. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 

405–410 (2021). 

26. Zhang, W., Gou, P., Dupret, J. M., Chomienne, C. & Rodrigues-Lima, F. Etoposide, an 

anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. 

Transl. Oncol. 14, 101169 (2021). 

27. Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids 

Res. 47, D941–D947 (2019). 

28. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic 

mutations. Nature 561, 473–478 (2018). 

29. Osorio, F. G. et al. Somatic Mutations Reveal Lineage Relationships and Age-Related 

Mutagenesis in Human Hematopoiesis. Cell Rep. 25, 2308–2316 (2018). 

30. Machado, H. E. et al. Diverse mutational landscapes in human lymphocytes. Nature 608, 

724–732 (2022). 

31. Maura, F. et al. Molecular Evolution of Classic Hodgkin Lymphoma Revealed Through 

Whole-Genome Sequencing of Hodgkin and Reed Sternberg Cells. Blood Cancer Discov. 

4, 208–227 (2023). 

32. Bertrums, E. J. M. et al. Elevated Mutational Age in Blood of Children Treated for 

Cancer Contributes to Therapy-Related Myeloid Neoplasms. Cancer Discov. 12, 1860–

1872 (2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.594942doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594942
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple 

myeloma. Nat. Commun. 5, (2014). 

34. Rustad, E. H. et al. Timing the initiation of multiple myeloma. Nat. Commun. 2020 111 

11, 1–14 (2020). 

35. Maura, F. et al. The mutagenic impact of melphalan in multiple myeloma. Leuk. 2021 

358 35, 2145–2150 (2021). 

36. Coorens, T. H. H. et al. Clonal hematopoiesis and therapy-related myeloid neoplasms 

following neuroblastoma treatment. Blood 137, 2992–2997 (2021). 

37. Christensen, S. et al. 5-Fluorouracil treatment induces characteristic T>G mutations in 

human cancer. Nat. Commun. 10, 1–11 (2019). 

38. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal 

haematopoiesis. Nature 606, 335–342 (2022). 

39. Stelmach, P. et al. Clonal hematopoiesis with DNMT3A and PPM1D mutations impairs 

regeneration in autologous stem cell transplant recipients. Haematologica 108, 3308–

3320 (2023). 

40. Brodsky, R. A. High dose cyclophosphamide treatment for autoimmune disorders. 

ScientificWorldJournal 2, 1808–1815 (2002). 

41. Curtis, R. E. et al. Risk of Leukemia after Chemotherapy and Radiation Treatment for 

Breast Cancer. N. Engl. J. Med. 326, 1745–1751 (1992). 

42. Kaldor, J. M. et al. Leukemia Following Hodgkin’s Disease. N. Engl. J. Med. 322, 7–13 

(1990). 

43. Mauz-Körholz, C. et al. Procarbazine-Free OEPA-COPDAC Chemotherapy in Boys and 

Standard OPPA-COPP in Girls Have Comparable Effectiveness in Pediatric Hodgkin’s 

Lymphoma: The GPOH-HD-2002 Study. J. Clin. Oncol. 28, 3680–3686 (2010). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.594942doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594942
http://creativecommons.org/licenses/by-nc-nd/4.0/


44. Eichhorst, B. et al. First-line chemoimmunotherapy with bendamustine and rituximab 

versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic 

lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-

inferiority trial. Lancet Oncol. 17, 928–942 (2016). 

45. Lacout, C. et al. R-DHA-oxaliplatin (R-DHAOx) versus R-DHA-cisplatin (R-DHAP) 

regimen in B-cell lymphoma treatment: A eight-year trajectory study. Eur. J. Haematol. 

105, 223–230 (2020). 

46. Mehmood, R. K. Review of Cisplatin and Oxaliplatin in Current Immunogenic and 

Monoclonal Antibody Treatments. Oncol. Rev. 8, (2014). 

47. Koh, G. C. C. et al. The chemotherapeutic drug CX-5461 is a potent mutagen in cultured 

human cells. Nat. Genet. 56, 23–26 (2024). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.20.594942doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.20.594942
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Extended Data Fig. 1| Mean sequencing depth in the normal and chemotherapy exposed HSPC colonies 

used for mutation burden analysis. a, Box plot representing the quartile distribution of mean sequencing 

depth in 90 colonies from normal (blue) and 189 colonies from chemotherapy exposed (red) individuals. b, 

Boxplot comparing the mean sequencing depth between Alkylating/ Platinum agent exposed and non-exposed 

colonies. The number of colonies in each agent group are shown at the top of the plot.  
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Extended Data Fig. 2| Indel mutational burden in normal and chemotherapy exposed HSPCs. a, 

Barplot of small indel burden with age (years) across normal (blue) and the four chemotherapy exposed 

(red) individuals with the highest indel burdens. The boxes indicate the median and interquartile range, 

the whiskers denote the minimum and maximum, with points representing outlying values. The blue line 

represents a regression of age on mutation burden, with 95% CI shaded. b, Depiction of data as in a, but 

the y-axis is cut off at 120 indels for better visualisation of the majority of the data. c,d, Bar plots showing 

the number of structure variant types (c) and the number of the number of independently acquired 

autosomal copy number aberrations (CNAs) (d) in each individual from chemotherapy and normal groups. 

The absolute number of events found in each individual is shown at the top of each bar. Individuals and 

the total number of isolated colonies are sorted by age within each group. 
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Extended Data Fig. 3| Indel signatures that are present in normal and chemotherapy exposed blood. a, 

Three indel signatures (ID1/2, ID3/5/9, IDA) were extracted by sigHDP. The context on the x-axis show the 

contributions of different types of indels, grouped by whether variants are deletions or insertions, the size of 

the event, the presence within repeat units and the sequence content of the indel. b, The proportion of indels 

and indels burden per mutational signatures across 22 chemotherapy exposed and 9 normal individuals, 

extracting using msigHDP (Methods).  Each column represents samples from one individual. Signatures with 

the contribution <5% are considered as ‘unassigned’. 
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Extended Data Fig. 4| Phylogenetic trees and mutational signatures in normal individuals. Branch 

lengths correspond to SBS burdens. A stacked bar plot represents the SBS mutational signatures contributing 

to each branch with color code below the trees. SBSUnassigned indicates mutations that could not 

confidently be assigned to any reported signature.  
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Extended Data Fig. 5| Phylogenetic trees and mutational signatures in individuals treated with 

alkylating agents. a, Phylogenetic tree of 48-year-old chemotherapy exposed female (PD47703). 

Branch lengths correspond to SBS burdens. A stacked bar plot represents the SBS mutationsal 

signatures contributing to each branch with color code below the trees. SBSUnassigned indicates 

mutations that could not confidently be assigned to any reported signature. She had been treated 

with chlorambucil and procarbazine at age 10 (early), and bendamustine at age 47 (late). 

b, Phylogenetic trees and SBS mutational signatures in individuals treated with cyclophosphamide.  
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Extended Data Fig. 6| Phylogenetic trees and mutational signatures in individuals treated with 

oxaliplatin. Branch lengths correspond to SBS burdens. A stacked bar plot represents the SBS mutational 

signatures contributing to each branch with color code below the trees. SBSUnassigned indicates mutations 

that could not confidently be assigned to any reported signature.  
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Extended Data Fig. 7| Annotated HSPC phylogenies for two chemotherapy treated individuals. 

Phylogenies were constructed for PD37580 (a) and PD47703 (b) individuals using shared mutation data and 

the algorithm MPBoot (Methods). In all phylogenies, branch lengths reflect the number of SBS mutations 

assigned to the branch. The y-axis represents the number of SBSs accumulating over time. Each tip on a 

phylogeny represents a single colony. Chemotherapy agents and the age of exposure to them are shown on 

top of the trees. a, PD37580 phylogeny of early life, truncated at 400 SBS mutations to allow better 

visualisation of the timing of acquisition of two early PPM1D mutations (pink). The number of mutations at 

age 13 was estimated using the linear mixed model described in Mitchell et al with 95% CI based on 

mutation burden being Poisson distributed as described in methods (241-306 single base subsitutions). b, 

Comparison of phylogenies created from peripheral blood samples taken from PD44703 one year apart. 

Pathogenic mutations in PPM1D have been highlighted (pink) to facilitate comparison of clone sizes at each 

timepoint. In addition a loss of function mutation in CSF3R has been highlighted (blue), which could also be 

contributing to loss of haematopoietic reserve and cytopenias. Red bars show the size of clonal fractions at 

each timepoint. Terminal branches have been adjusted for sequence coverage, and overall root-to-tip branch 

lengths have been normalized to the same total length (because all colonies were collected from a single time 

point).   
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Extended Data Fig. 8| HSPC phylogenies for three young adult individuals. Phylogenies for one normal 

young adult individuals (top) and two young adult chemotherapy-treated individuals (bottom) were 

constructed using shared mutation data and the algorithm MPBoot (Methods). Branch lengths reflect the 

number of mutations assigned to the branch with terminal branches adjusted for sequence coverage, and 

overall root-to-tip branch lengths have been normalized to the same total length (because all colonies were 

collected from a single time point). The y-axis represents the number of SBSs accumulating over time. Each 

tip on a phylogeny represents a single colony, with the respective numbers of colonies of each cell and tissue 

type recorded at the top. Onto these trees, we have layered clone and colony-specific phenotypic information. 

We have highlighted branches on which we have identified known oncogenic drivers in one of 18 clonal 

haematopoiesis genes (Table S2) color-coded by gene. A heat map at the bottom of each phylogeny 

highlights colonies from known driver clades coloured by gene, and the expanded clades (defined as those 

with a clonal fraction above 1%) in blue.   
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Extended Data Fig 9| HSPC phylogenies for four older adult indiviudals. Phylogenies for two normal 

individuals (top) and two chemotherapy-treated individuals (bottom) were constructed using shared mutation 

data and the algorithm MPBoot (Methods). Branch lengths reflect the number of mutations assigned to the 

branch with terminal branches adjusted for sequence coverage, and overall root-to-tip branch lengths have 

been normalized to the same total length (because all colonies were collected from a single time point). The 

y-axis represents the number of SBSs accumulating over time. Each tip on a phylogeny represents a single 

colony, with the respective numbers of colonies of each cell and tissue type recorded at the top. Onto these 

trees, we have layered clone and colony-specific phenotypic information. We have highlighted branches on 

which we have identified known oncogenic drivers in one of 18 clonal haematopoiesis genes (Table S2) 

color-coded by gene. A heat map at the bottom of each phylogeny highlights colonies from known driver 

clades coloured by gene, and the expanded clades (defined as those with a clonal fraction above 1%) in blue. 
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Supplementary Methods 
 

Data reporting 
No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment. 

 

Samples 
Blood or bone marrow samples from individuals un-exposed to chemotherapy were obtained 

from three sources: 1) Stem Cell Technologies provided frozen mononuclear cells (MNCs) for 

the cord blood sample that had been collected with informed consent, including for whole 

genome sequencing (catalog #70007); all data previously published. 2) Cambridge Blood and 

Stem Cell Biobank (CBSB) provided fresh peripheral blood samples taken with informed 

consent from two patients at Addenbrooke’s Hospital (NHS Cambridgeshire 4 Research Ethics 

Committee reference 07/MRE05/44 for samples collected pre-November 2019 and Cambridge 

East Ethics Committee reference 18/EE/0199 for samples collected from November 2019 

onwards; all data previously published. 3) Cambridge Biorepository for Translational Medicine 

(CBTM) provided frozen bone marrow +/- peripheral blood MNCs taken with informed 

consent from seven deceased organ donors. Samples were collected at the time of abdominal 

organ harvest (Cambridgeshire 4 Research Ethics Committee reference 15/EE/0152); data 

previously published from 4 individuals with new data generated from an additional 2 

individuals (PD49236 and PD49327).  

 

Blood samples from individuals previously exposed to chemotherapy were obtained from two 

sources: 1) Cambridge Blood and Stem Cell Biobank (CBSB) provided fresh peripheral blood 

samples taken with informed consent from 22 patients at Addenbrooke’s Hospital (NHS 

Cambridgeshire 4 Research Ethics Committee reference 07/MRE05/44 for samples collected 

pre-November 2019 and Cambridge East Ethics Committee reference 18/EE/0199 for samples 

collected from November 2019 onwards; all unpublished data. One chemotherapy exposed 

individual, PD44703, had two samples taken at timepoints a year apart. All others were 

sampled at a single timepoint. 2) Baylor College of Medicine provided single cell-derived 

haematopoietic colonies from bone marrow taken following informed consent from 1 patient 

from MD Anderson Cancer Centre; Research Ethics Committee of the University of Texas MD 

Anderson Cancer Centre Institutional Review Board reference PA12-0305 (genomic analysis 

protocol) and LAB01-473 (laboratory protocol). 

 

Details of the individuals studied and the samples they provided are listed in Fig. 1a, with 

additional information in Table S1. 

 

Isolation of MNCs from fresh peripheral blood samples 
Whole blood was diluted 1:1 with PBS, after which mononuclear cells (MNCs) were isolated 

using lymphoprepTM density gradient centrifugation (STEMCELL Technologies. Red cell lysis 

was performed on the MNC fraction using 1 incubation at 4C for 15 mins with RBC lysis 

buffer (BioLegend).  
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Single-cell colony expansion in vitro – liquid culture (unexposed samples) 
For all the unexposed samples normal samples and the PD44703 second timepoint sample, 

single-cell colony expansion in vitro was undertaken in liquid culture, exactly as previously 

described1.  

 

Peripheral blood and cord blood MNC samples underwent CD34+ selection using the EasySep 

human whole blood CD34 positive selection kit (STEMCELL Technologies), with only a 

single round of magnetic selection. Bone marrow MNCs were not CD34 selected prior to cell 

sorting. 

 

MNC or CD34 enriched samples were stained (30 minutes at 4C) in PBS/3%FBS containing 

the following antibodies: CD3/FITC, CD90/PE, CD49f/PECy5, CD38/PECy7, CD33/APC, 

CD19/A700, CD34/APCCy7, CD45RA/BV421 and Zombie/Aqua (Table S3). Cells were then 

washed and resuspended in PBS/3%FBS for cell sorting. Either a BD Aria III or BD Aria 

Fusion cell sorter (BD Biosciences) was used to sort ‘HSC/MPP’ pool cells (Lin-, CD34+, 

CD38-, CD45RA-) at the NIHR Cambridge BRC Cell Phenotyping hub. Supplementary Fig. 

1 illustrates the gating strategy used.  

 

 

 

 
 
Supplementary Fig. 1| Flow-sorting strategy for single HSPCs (CD34+CD38-) cells. A, Sorting of single 

human HSPCs from cord blood, peripheral blood and bone marrow. Cells were stained with the panel of 

antibodies in Table S3 then single HSPCs were index sorted according to the strategy depicted into 

individual wells of 96 well plates. 
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Single phenotypic ‘HSPC’ cells were index sorted into single wells of 96 well plates containing 

StemPro media (Stem Cell Technogies), StemPro Nutrients (0.035%, Stem Cell Technologies),  

L-Glutamine (1%, ThermoFisher), Penicillin-Streptomycin (1%, ThermoFisher) and cytokines 

(SCF, 100 ng/ml; FLT3, 20 ng/ml; TPO, 100 ng/ml; EPO 3 ng/ml; IL-6, 50 ng/ml; IL-3, 10 

ng/ml; IL-11, 50 ng/ml; GM-CSF, 20 ng/ml; IL-2 10 ng/ml; IL-7 20 ng/ml; lipids 50 ng/ml), 

and expanded into colonies. Cells were incubated at 37C and the colonies that formed were 

topped up with 50l StemPro media plus supplements at 14 +/- 2 days as necessary. At 21 +/- 

2 days colonies were harvested. DNA extraction was performed using either the DNEasy 96 

blood and tissue plate kit (Qiagen) or the Arcturus Picopure DNA Extraction kit 

(ThermoFisher) as per the manufacturer’s instructions. 

 

Single-cell colony expansion in vitro – Methocult (chemotherapy-exposed samples) 
For the chemotherapy-exposed peripheral blood samples, single-cell colonies were expanded 

in Methocult (H4435 or H4034, STEMCELL Technologies). MNCs were plated at a density 

of 7.5-45-x104/ml in Methocult and incubated at 37C for 14 days. The cell suspensions were 

made up in StemSpan II (STEMCELL technologies) before being mixed thoroughly with 

MethoCult and plated into a SmartDish (STEMCELL technologies). Individual BFU-E or 

CFU-GM colonies were picked into 17ul of proteinase K (PicoPure DNA extraction kit, Fisher 

Scientific- each vial lyophilised proteinase k resuspended in 130ul reconstitution buffer) and 

incubated 65C for 6hrs, 75C for 30mins to extract DNA in preparation for sequencing.  

 

Previous studies have shown that there is no difference in mutation burden between HSCs and 

haematopoietic progenitor cells1 and that there is only a mutation burden difference of ~30 

SBS mutations between HSCs and mature granulocytes2. 

 

Whole genome sequencing of colonies 
Whole genome sequencing libraries were prepared from 1-5ng of extracted DNA from each 

colony using a low input enzymatic fragmentation-based library preparation method3,4. Whole 

genome sequencing was performed on the NovaSeq platform (Illumina). 150bp paired end 

reads were aligned to the human reference genome (NCBI build37) using BWA mem.  

 

Single-base-substitution and indel calling 
The method for substitution calling involves three main steps: mutation discovery, filtering, 

and genotyping, as describe in previous paper (ref- Lee-Six, H. et al., 

https://doi.org/10.1038/s41586-019-1672-7).  

 

Mutation discovery is initiated using the CaVEMan algorithm5, configured with copy-number 

settings of major copy number 5 and minor copy number 2 for normal clones to maximize 

sensitivity. An unmatched normal sample is utilized to prevent the misclassification of 

embryonic mutations as germline mutations, crucial for accurate phylogenetic analysis. 

 

Various filters are applied to the data. Filtering against a panel of 75 unmatched normal samples 

helps eliminate common single-nucleotide polymorphisms (SNPs). Additional filters target 

mapping artefacts associated with BWA-MEM alignment, setting thresholds such as requiring 

a median alignment score ≥140 and less than half of reads to be clipped. Fragment-based 

statistics are employed to prevent calling variants supported by a low number of fragments. 

Variants are further annotated and filtered based on fragment coverage, number of fragments 

supporting the variant, fragment-based allele fraction. 
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The genotyping stage involves creating a pile-up of all samples from an individual, counting 

mutant and wild-type reads. Stringent criteria, including a variant allele frequency (VAF) >0.2, 

depth >7, and ≥4 mutant reads, are employed for mutation calling. Positions with insufficient 

data or conflicting information across samples are marked as not applicable (NA) for tree 

construction. Germline positions are identified based on consistent presence or NA status 

across samples from an individual.  

 

Insertion/ deletion calling  
Indels were called with the Pindel argorithm6 using a matched normal. The same dataset-

specific filters used for substitutions as described above were also applied to indels. 

Subsequently, indels were genotyped, requiring a VAF >0.2, a minimum depth of 10, and 

support from at least 5 mutant reads.  

 

Structural variant and copy-number calling 
Structural variants (SVs) were detected using GRIDSS8, confirmed visually and by adhering 

to the expected phylogenetic distribution based on single-base substitutions (SBS). SVs larger 

than 1kb with QUAL >=250 and those smaller than 30kb with QUAL >=300 were retained. 

Additionally, SVs required support from at least four discordant and two split reads, with a 

standard deviation of alignment positions > five being filtered out. A panel of normal samples 

(n=350) was incorporated to the GRIDSS panel to eliminate potential germline SVs and 

artefacts. 

 

Autosomal copy number aberrations (CNAs) were identified using ASCAT (Allele-Specific 

Copy number Analysis of Tumours)5. The matched normal sample with coverage > 15X and 

no Y loss was selected for as for call structure variants. The in-house algorithm BRASS 

(Breakpoint AnalySiS)6 was used to call CNAs on sex chromosomes by generating read count 

information across 500bp segments. Y loss was determined by comparing X and Y 

chromosome coverage means, validated through visual inspection of read depth. 

 

Additional variant filtering steps 
Larger dataset containing samples sequenced at lower sequencing depth 

For creation of the larger phylogenies (subset of 6 chemotherapy and 5 unexposed individuals 

with more than 40 sequenced colonies), a binomial filtering strategy could be applied as 

previously described1. (https://github.com/emily-

mitchell/normal_haematopoiesis/2_variant_filtering_tree_building/scripts/). 

 

 

Small dataset containing samples sequenced at relatively high sequencing depth 

For the subset of colonies sequenced at highest depth (4-10 colonies per individual), we were 

unable to use binomial filtering approaches due to low sample number. Instead the following 

filters were applied to the data using a custom R script: 1) Variants present in more than half 

the samples from an individual were removed as being most likely germline. 2) Variants were 

only called as present in a given sample if they had 2 or more supporting reads and were present 

at a variant allele fraction  0.2 in autosomes or  0.4 for sex chromosomes. 3) High and low 

depth sites with a mean depth more than 50 or less than 8 across all samples from an individual 

were removed. 

 

This variant filtering approach was validated using samples from the normal individuals, in 

whom both the binomial and non-binomial filtering strategies were applied to the same 
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samples, giving comparable results (Supplementary fig. 2). This dataset, comparable across 

all the individuals in the study, was used for analysis of SBS and indel mutation burdens. 

 

 
 
Supplementary figure 2| Validation of variant filtering approach. a, SNV mutation burden of 10 samples 

per normal individual with variants filtered using the binomial filtering strategy that made use of several 

hundred other samples sequenced from the individual (left). SNV mutation burden of the same 10 samples 

per normal individual with variants filtered using the adapted filtering strategy that required only 10 samples 

per individual (right). 

 

 

Filtering at the colony level 
We removed a total of 96 colonies from the dataset of 931 previously unpublished colonies: 32 

for being technical duplicates, 29 for showing evidence of non-clonality or contamination and 

23 due to low coverage. Visual inspection of the VAF distribution plots and a peak VAF 

threshold of < 0.4 was used (after the removal of in vitro variants) to identify colonies with 

evidence of non-clonality. 

 

Mutation burden analysis 
Due to the difficulty in correcting for sequencing depth when only a small number of samples 

is sequenced per individual, SBS and indel burden analysis was performed on raw data from 

the subset of chemotherapy and unexposed samples sequenced at relatively high depth (4-10 

samples per individual; mean coverage 23X, range 13X-33X). We have previously shows that 

sequencing depth has little impact on SBS mutation burden over this higher range1. There were 

minor differences in sequencing depth when comparing the chemotherapy and normal cohorts 

or comparing sequencing depth by chemotherapy exposure that would not be expected to 

impact the interpretation of the results presented (Extended Fig. 1). 

 

Construction of phylogenetic trees 
MPBoot, a maximum parsimony tree approximation method7, was used to build and annotate 

phylogenetic trees of the relationships between their sampled HSPCs as previously described1.  

 

The key steps to generate the phylogenies shown in Figures 5 and Extended Figs. 8 and 9 

are as follows: 

1. Generate a ‘genotype matrix’ of mutation calls for every colony within a donor – Our 

protocol, based on whole genome sequencing of single-cell-derived colonies, generates 

consistent and even coverage across the genome, leading to very few missing values within 

this matrix (ranging from 0.005 – 0.034 of mutated sites in a given colony across different 

donors within our cohort). This generates a high degree of accuracy in the constructed trees. 
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2. Reconstruct phylogenetic trees from the genotype matrix – This is a standard and well-

studied problem in phylogenetics. The low fraction of the genome that is mutated in a given 

colony (<1/million bases) coupled with the highly complete genotype matrix mean that 

different phylogenetics methods produce reassuringly concordant trees. We used the 

MPBoot algorithm for the tree reconstruction, as it proved both accurate and 

computationally efficient for our dataset. 

3. Correct terminal branch lengths for sensitivity to detect mutations in each colony – The trees 

generated in the previous step have branch lengths proportional to the number of mutations 

assigned to each branch. For the terminal branches, which contain mutations unique to that 

colony, variable sequencing depth can underestimate the true numbers of unique mutations, 

so we correct these branch lengths for the estimated sensitivity to detect mutations based on 

genome coverage. 

4. Make phylogenetic trees ultrametric – After step 3, there is little more than Poisson variation 

in corrected mutation burden among colonies from a given donor. Since these colonies all 

derived from the same timepoint, we can normalise the branch lengths to have the same 

overall distance from root to tip (known as an ultrametric tree). We used an ‘iteratively 

reweighted means’ algorithm for this purpose. 

5. Scale trees to chronological age – Since mutation rate is constant across the human lifespan, 

we can use it as a ‘molecular clock’ to linearly scale the ultrametric tree to chronological 

age.  

6. Overlay phenotypic and genotypic information on the tree – The tip of each branch in the 

resulting phylogenetic tree represents a specific colony in the dataset, meaning that we can 

depict phenotypic information about each colony underneath its terminal branch (the 

coloured stripes along the bottom of Fig. 5 and Extended Figs. 8 and 9). Furthermore, 

every mutation in the dataset is confidently assigned to a specific branch in the phylogenetic 

tree. This means that we can highlight branches on which specific genetic events occurred 

(such as DNMT3A or other driver mutations). 

 

More detailed information on these steps is provided below: 

MPBoot, a maximum parsimony tree approximation method7, was used to build phylogenetic 

trees of the relationships between the sampled cells. Variants were genotyped as ‘present’ 

(coded as 1) in a sample if 2 or more variant reads supported the variant. Variants were 

genotyped as ‘absent’ (coded as 0) in a sample if 0 variant reads were present at a given site 

and depth at that site was 6 or more. Sites that did not fall into either of the above categories 

were marked as ‘unknown’ (coded as 0.5).  In all cases only a small minority of sites (< 5%) 

were categorised as ‘unknown’ or ‘missing data’ as shown in the table below. 

 

The genotype matrix of shared variants was converted to a ‘DNA string’ for each sample with 

‘W’ representing a ‘wildtype’ position, ‘V’ a ‘variant’ position and ‘?’ representing ‘unknown’. 

The DNA strings were then used as the input for MPBoot, which outputs unscaled trees with 

uninformative branch lengths. We explicitly added a ‘dummy sample’ (called “Ancestral”) into 
the DNA strings that MPBoot used, which has non-mutant genotypes across all sites i.e. 
representing the genotypes of the reference genome. After tree construction the ‘ancestral’ 

branch was dropped prior to downstream analyses.”A maximum likelihood approach and the 

original count data was then used to assign each mutation in an individual’s dataset to a branch 

in their MPBoot generated phylogenetic tree 

(https://github.com/NickWilliamsSanger/treemut). Tree edge lengths were then made 

proportional to the number of mutations assigned to the branch.  
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The sensitivity of mutation calling in each sample was used to correct phylogeny branch 

lengths for sequencing coverage. Sensitivity was calculated as the fraction of known germline 

variants identified by CaVEMan in a specific sample. Mutation burden was corrected by 

multiplying the number of variants by 1/sensitivity for private branches. The sensitivity was 

adjusted to allow for the higher sensitivity on shared branches due to multiple samples 

containing the variant. Specifically, sensitivity was assessed by measuring the ability of the 

mutation-calling algorithms to detect heterozygous germline single nucleotide polymorphisms 

(SNPs) in each sample. Heterozygous SNPs should have the same VAF distribution and 

sensitivity as true somatic mutations. For private branches, the SNV component of branch 

lengths was scaled according to: 

 

=
𝑛𝑆𝑁𝑉
𝑝𝑖

 

Where 𝑛𝑐𝑆𝑁𝑉is the corrected number of SNVs in sample i, 𝑛𝑆𝑁𝑉is the uncorrected number of 

SNVs called in sample i and 𝑝𝑖is the proportion of germline SNPs called by the Caveman 

algorithm in sample i. 

 

For shared branches, it was assumed that (1) the regions of low sensitivity were independent 

between samples, (2) if a somatic mutation was called in at least one sample within the clade, 

it would also be correctly called (or ‘rescued’) in other samples in the clade (even in lower 

sensitivity samples). Shared branches were therefore scaled according to: 

 
𝑛𝑆𝑁𝑉

1 − 𝜋𝑖(1 − 𝑝𝑖)
 

 

Where the product is taken for 1 − 𝑝𝑖 for each sample i within the clade.  However, both of 

these assumptions will not hold true in all cases. Firstly, regions with low coverage are not 

randomly distributed, with some genomic regions likely to have low coverage in multiple 

samples. Secondly, while many mutations will be ‘rescued’ in subsequent samples once they 

have been called in a first sample - because the treemut algorithm for mutation assignment uses 

original read count data, meaning that even a single variant read in a subsequent sample is 

likely to result in the mutation being correctly assigned - this will not be true in every case. 

Some samples with very low coverage have 0 variant reads at a given site will by chance. In 

this situation, a mutation may not be correctly placed. While these factors may lead to an under-

correction of shared branches, this approach provides a reasonable approximation. Corrected 

SNV burdens for each sample can then be calculated as the sum of corrected ancestral branch 

lengths back to the root of the phylogeny. 
 

The phylogenies were then made ultrametric (or linearised) using a previously published 

bespoke algorithm to make all branch lengths equal1. Starting from the root of the tree and 

moving progressively towards each tip, the fraction of time for the given shared branch is 

calculated as the fraction of remaining time times the number of mutations on the given shared 

branch divided by the mean number of mutations of all descendants from that shared branch. 

The function is called recursively, updating the fraction of remaining time, as the algorithm 

moves from root to tip. This algorithm therefore has the property that the most confident 

timings (nodes near the root) are defined first, anchoring the timings of subsequent, less 

confident nodes. 
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Additional information in the form of driver mutations was then overlaid on the final 

ultrametric version of to generate the final phylogenies depicted in Fig. 5 and Extended Figs. 

8 and 9.   

 

To estimate the number of somatic mutations that may have already been acquired by PD37580 

by age 13 (prior to commencing chlorambucil), we used the linear mixed model defined in 

Mitchell et al1. This model estimates an intercept of 54.57 (ie the mean number of somatic 

mutations present at birth), with a slope of 16.832 representing the mean number of somatic 

mutations acquired each year of life. This results in an expected mean somatic mutation burden 

of 273 at age 13. Assuming this mutation burden is Poisson distributed provides a 

95% prediction interval of 241-306. 

 

Analysis of driver variants 
Variants identified were annotated with VAGrENT (Variation Annotation GENeraTor) 

(https://github.com/cancerit/VAGrENT) to identify protein coding mutations and putative 

driver mutations in each dataset. Table S4 lists the 18 genes we have used as our top clonal 

haematopoiesis genes (those identified by Fabre et al as being under positive selection in a 

targeted sequencing dataset of 385 older individuals, with CHEK2 added as being an additional 

gene commonly under positive selection in chemotherapy exposed individuals). ‘Oncogenic’ 

mutations (as assessed by EM) are shown in Figure 5 and Extended Figs. 8 and 9. 

 

Bulk cell sorts for Nanoseq sequencing (chemotherapy-exposed samples) 
Chemotherapy-exposed samples: 

Mononuclear cells were stained for 30 minutes at 4C in PBS/3%FCS containing the following 

antibodies: Zombie Aqua, CD3 APC, CD19 AF700, CD45RA PerCPCy5.5, CCR7 BV711, 

CD14 BV605. Cells were then washed and resuspended in PBS/3%FBS for cell sorting. Either 

a BD Aria III or BD Aria Fusion cell sorter (BD Biosciences) was used to sort various mature 

cell compartments (B cells, T naive cells, T memory cells, and monocytes) at the NIHR 

Cambridge BRC Cell Phenotyping hub.  For each cell type ~40,000 cells were sorted into 

Eppendorf tubes containing 50 l PBS.  Further details in Table S4 and Supplementary Fig. 

3. 
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Supplementary figure 3| Flow-sorting strategy for single mature blood cells from chemotherapy 

exposed individuals. a, Sorting of single human mature blood cells from peripheral blood. Cells were 

stained with the panel of antibodies in Table S4 then single cells were bulk sorted according to the strategy 

depicted into individual Eppendorf tubes. 
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Unexposed normal samples: 

Mononuclear cells were stained for 30 minutes at 4C in PBS/3%FCS containing the following 

antibodies: CD3 APC, CD4 BV785, CD8 BV785, CD14 BV605, CD19 AF700, CD20 PE 

Dazzle, CD27 BV421, CD34 APC-Cy7, CD38 FITC, CD45RA PerCPCy5.5, CD56 PE, CCR7 

BV711, IgD PECy7, Zombie Aqua. Cells were then washed and resuspended in PBS/3%FBS 

for cell sorting. Either a BD Aria III or BD Aria Fusion cell sorter (BD Biosciences) was used 

to sort various mature cell compartments (B cells, CD4+T naive cells, CD4+T memory cells, 

CD8+ T naïve cells, CD8+ T memory cells and monocytes) at the NIHR Cambridge BRC Cell 

Phenotyping hub.  For each cell type ~40,000 cells were sorted into Eppendorf tubes containing 

50 l PBS.   Further details in Table S5 and Supplementary Fig. 4:  

 

 

 
 
Supplementary figure 4| Flow-sorting strategy for single mature blood cells from unexposed normal 

individuals. a, Sorting of single human mature blood cells from peripheral blood. Cells were stained with the 

panel of antibodies in Table S5 then single cells were bulk sorted according to the strategy depicted into 

individual Eppendorf tubes. 

 
 

DNA extraction from bulk mature cell sorts 
Approximately 40,000 cells of each mature cell type from the above sorts sort (suspended in 

200ul PBS) were added to single wells of a 96 well PCR plate and centrifuged. Pellets were 

resuspended in 17ul proteinase K (PicoPure DNA extraction kit, Fisher Scientific; with each 

vial lyophilised proteinase k resuspended in 130ul reconstitution buffer) and incubated at 65C 

for 6hrs, 75C for 30mins to extract DNA in preparation for sequencing.  
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Nanoseq (duplex) sequencing 
The lysate from bulk cell sorts (20μl) were submitted to the NanoSeq pipeline for library 

preparation and sequencing, as has been described in the previous paper2. They were then 

purified using 50μl water and 50μl Ampure XP beads (Beckman Coulter) at room temperature. 

After a 5-min binding reaction and magnetic bead separation, genomic DNA was washed twice 

with 75% ethanol, then eluted with 20μl nuclease-free water (NFW). Subsequently, 20 μl of 

the bead suspension was subjected to an on-bead fragmentation reaction. This fragmentation 

process took place in a final volume of 25 μl, containing 2.5 μl of 10× CutSmart buffer 

(consisting of 500 mM potassium acetate, 200 mM Tris-acetate, 100 mM magnesium acetate, 

1 mg ml-1 BSA, pH 7.9 at 25 °C), 0.5 μl of 5 U μl-1 HpyCH4V, and 2 μl NFW. The fragmentation 

reactions were then incubated at 37 °C for 15 min, followed by purification with 2.5× AMPure 

XP beads and resuspension in 15 μl NFW. Subsequent A-tailing of the fragmented DNA was 

conducted in 15 μl reactions, including 10 μl of fragmentation product, 1.5 μl of 10× NEBuffer 

4 (consisting of 500 mM potassium acetate, 200 mM Tris-acetate, 100 mM magnesium acetate, 

10 mM DTT, pH 7.9 at 25 °C), 0.15 μl of 5 U μl-1 Klenow fragment (3′ to 5′ exo-, NEB), either 

1.5 μl of 1 mM dATP or 1.5 μl of 1 mM equimolar dATP/ddBTPs , and 1.85 μl NFW. Here, 

ddBTPs refer to ddTTP, ddCTP, and ddGTP. The reactions were incubated at 37 °C for 30 min. 

Following this, the 15-μl A-tailing reaction product was combined with 22.4 μl of ligation mix, 

comprising 2.24 μl of 10× NEBuffer 4, 3.74 μl of 10 mM ATP, 0.33 μl of 15 μM xGen Duplex 

Seq Adapters (IDT, 1080799), 0.56 μl of 400 U μl-1 T4 DNA ligase (NEB), and 15.53 μl NFW. 

The resulting reactions were incubated at 20 °C for 20 min and subsequently purified with 1× 

AMPure XP beads, followed by resuspension in 50 μl of NFW. 

 

DNA was quantified by qPCR using a KAPA library quantification kit (KK4835). Samples 

were diluted in NFW to the standard amount (0.3 fmol for a 15X run) to reach a final volume 

of 25μl. Subsequently, libraries were amplified using PCR and cleaned up using two 

consecutive 0.7x AMPure XP beads.  

 

We generated paired-end sequencing reads (150PE) using Illumina NovaSeq platform, 

resulting in a minimum of 20X per sample.   

 

The sequencing data were then analysed with the BotSeq bioinformatics pipeline (v2.3.2), as 

described in the previous paper2. Sequences were aligned to the human reference genome 

(hs37d5) using BWA-MEM (v.0.7.5a-r405). Matched normal samples were used to filter out 

germline SNP from NanoSeq samples. We called indels and normalised the output using 

bcftools (ref- https://doi.org/10.1093/gigascience/giab008) . To assess the authenticity of DNA 

samples, we used VerifyBamID28, and removed all samples having contamination level > 1% 

(3 from PD47541, 3 from PD50306, 2 from PD47695). The correction of mutation burden and 

trinucleotide substitution profiles were generated within the BotSeq pipeline.  

 

Mutational signature analysis 
Hierarchical Dirichlet process (HDP; https://github.com/nicolaroberts/hdp), based on the 

Bayesian hierarchical Dirichlet process, was used to extract mutational signatures.  HDP was 

run without priors on SBS derived from phylogenetic trees obtained from HSPCs and 

mutations from NanoSeq samples. The NanoSeq mutations were corrected for the trinucleotide 

context abundance for each sample. This analysis was performed with two hierarchies, 

sequencing method and individual id. Both the clustering hyperparameters, alpha and beta, 

were set to one. The Gibbs sampler was run with 30,000 iterations, spacing of 200 iterations 
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and 100 iterations were collected. After each iteration, three iterations of concentration 

parameters were performed. Twelve components were extracted, of which five components 

appeared to be combinations of previously reported signatures. The COSMIC (v3.3) signatures 

identified were SBS1, SBS5, SBS7a, SBS9 and SBS17. One of the HDP components 

corresponded to the SBSBlood signature previously reported9. Seven components were de-

novo signatures called predominantly in individuals with chemotherapy. Only signatures with 

contribution more than 5% of the mutations of the sample’s burden were considered. Signatures 

with less than 5 percent contribution were termed as overfitting and their contribution was 

moved under Unassigned.   

 

Eight chemotherapy related signatures derived from HDP (SBSA-SBSH) were examined for 

their occurrence in exposed vs non-exposed individuals. The proportion of the signatures 

contributing to the samples in the exposed vs the non-exposed groups were compared using t-

test for independent samples, with an equal variance assumption. The test was performed two 

ways a) per cell type (Table S6); b) combining the samples across cell types for each individual 

(Table S7). The p-values were adjusted for multiple testing corrections using FDR and 

Bonferroni methods. 

 

Indel signatures were extracted from small indels called from the HSPC dataset using two 

different methods. Firstly mSigHdp was run and identified three distinct indel signatures 

(https://github.com/steverozen/mSigHdp)10. To investigate whether the extracted de novo 

signatures were composed of reference COSMIC signatures the SigProfilerAssignment 

decompose tool was used (https://github.com/AlexandrovLab/SigProfilerAssignment)11. Two 

signatures successfully decomposed, the first into ID1 and ID2 with a reconstructed cosine 

similarity of 0.99 (compared to the de novo signature). The second signature decomposed into 

ID3, ID5 and ID9 with a reconstructed cosine similarity of 0.93. The final signature, IDA, was 

initially decomposed into ID2 and ID18 with a reconstructed cosine similarity of 0.88. ID18 is 

a signature associated with colibactin exposure12, which is unlikely in this context. This is in 

combination with the lower cosine similarity and strong support from the mutation spectra of 

individuals treated with procarbazine led to this decomposition being rejected.  

 

HDP was also run on the dataset of small indels, without any hierarchy or priors. The 

hyperparameters and parameters were the same as used for SBS signature extraction. Five ID 

signatures were extracted, of which one component was similar to COSMIC ID1 signature 

(ID1; cosine similarity 0.98). Another was a composite of ID3/ID5/ID9 as above. Three 

novel ID signatures were also extracted: IDA, IDB, IDC; which were associated with 

platinum, procarbazine and chlorambucil treatments, respectively. Again, only signatures 

with more than 5% contribution were considered as active. For reporting in the main text we 

used the more conservative mSigHDP results because of the relatively low numbers of indels 

in our dataset compared to SBS mutations. 
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Supplementary figure 5| Indel signatures that are present in normal and chemotherapy exposed blood. 

a, Five indel signatures (ID1/2, ID3/5/9, IDA, IDB, IDC) were extracted by HDP. The context on the x-axis 

show the contributions of different types of indels, grouped by whether variants are deletions or insertions, the 

size of the event, the presence within repeat units and the sequence content of the indel. b, The proportion of 

indels and indels burden per mutational signatures across 23 chemotherapy exposed and 9 normal individuals, 

extracting using HDP. Each column represents samples from one individual. Signatures with the contribution 

<5% are considered as ‘unassigned’. 
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Data availability 
Additional data is available on github (https://github.com/emily-mitchell/chemotherapy/).  

Raw sequencing data is available on EGA (accession number WGS dataset 

EGAD00001015339 and Nanoseq dataset  

EGAD00001015340). The main data needed to reanalyse / reproduce the results presented is 

available on Mendeley Data (XXX) 

 

Code availability 
Code is available on github: 

https://github.com/emily-mitchell/chemotherapy/   
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