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Abstract

Helcococcus ovis (H. ovis) is an opportunistic bacterial pathogen of a wide range of animal hosts
including domestic ruminants, swine, avians, and humans. In this study, we sequenced the genomes of
35 Helcococcus sp. clinical isolates from the uterus of dairy cows and explored their antimicrobial
resistance and biochemical phenotypes. Phylogenetic and average nucleotide identity analyses placed
four Helcococcus isolates within a cryptic clade-representing an undescribed species, for which we
propose the name Helcococcus bovis sp. nov. We applied whole genome comparative analyses to
explore the pangenome, resistome, virulome, and taxonomic diversity of the remaining 31 H. ovis
isolates. H. ovis was more often isolated from cows with metritis, however, there was no associations
between H. ovis gene clusters and uterine infection. The phylogenetic distribution of high-virulence
determinants of H. ovis is consistent with convergent gene loss in the species. The majority of H. ovis
strains (30/31) contain mobile tetracycline resistance genes, leading to higher minimum inhibitory
concentrations of tetracyclines in vitro. In summary, this study showed that the presence of H. ovis is
associated with uterine infection in dairy cows, that mobile genetic element-mediated tetracycline
resistance is widespread in H. ovis, and that there is evidence of co-occurring virulence factors across
clades suggesting convergent gene loss in the species. Finally, we introduced a novel Helcococcus

species closely related to H. ovis, called H. bovis sp. nov.

Highlights

. The presence of Helcococcus ovis is associated with uterine infection in dairy cows
. Mobile genetic element-mediated tetracycline resistance is widespread in H. ovis
. Co-occurring virulence factors across clades suggest convergent gene loss in the species

. Helcococcus bovis is a novel species closely related to Helcococcus ovis
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Introduction

Helcococcus ovis (H. ovis) belongs to a clinically important genus of bacteria populated by five other
described species: Helcococcus kunzii, Helcococcus massiliensis, Helcococcus sueciensis, Helcococcus
seattlensis, and Helcococcus pyogenes, all of which are opportunistic pathogens of humans (1-4). Unlike
the remaining members of the genus, H. ovis is most often found as a co-infecting pathogen in mixed
infections of farm animals, such as metritis (5), mastitis (6), and pneumonia (7). Due to these
characteristics, its ability to independently cause disease had not been documented until recently (7—
10). H. ovis is capable of independently causing bovine valvular endocarditis (11), pneumonia, and
bursitis (12) in clinical infections, and mastitis in an experimentally infected mouse (Mus musculus)
model (6). The only confirmed human infection by H. ovis originates from a 2018 case study of an
artificial eye infection caused by the then-named Tongji strain, which displayed an atypical biochemical
profile for the species (13).

Although there is abundant data showing the geographical distribution, host range, and
infection sites of this pathogen, the mechanisms that lead to the establishment and progression of H.
ovis infections remain unexplored. As shown in an invertebrate infection model, H. ovis strains
originating from the uterus of dairy cows can display varying degrees of virulence (14). Based on the
virulence phenotypes from that study, whole genome comparative analyses identified potential high
virulence determinants in this organism, including Zinc ABC transporters, two hypothetical proteins, and
a pathogenicity island (15). These comparative analyses created a blueprint for investigating H. ovis
pathogenic capabilities, but the role these virulence factors may play in disease pathogenesis remains
unexplored.

One of the most prevalent and costly animal diseases associated with H. ovis is metritis in dairy

cows (5,16). This disease is characterized by acute uncontrolled opportunistic bacterial proliferation
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within the uterus in the face of immune dysregulation, leading to painful inflammation, impaired
fertility, and sometimes death. The primary causative agents of metritis have not been clearly identified,
but studies have shown that Bacteroides pyogenes, Fusobacterium necrophorum, Porphyromonas levii,
and Helcococcus ovis are of importance in its etiology (5,17,18). Among these organisms, H. ovis is
atypical in that it is a Gram-positive facultative anaerobic bacterium within an infection environment
dominated by Gram-negative obligate anaerobes. Exploring the genomic features and diversity of this
bacterium is a key step in unraveling its role in the pathogenesis of mixed infections.

Pangenomic analyses can provide valuable insights into the genomic diversity, virulence factors,
and potential antimicrobial resistance profiles of bacterial populations. By examining the pangenome,
which includes the core genome shared by all isolates and the accessory genome comprising genes
unique to specific isolates, we can identify genetic variations that may be associated with virulence or
adaptations to the uterine microenvironment in health or disease. A pangenomic analysis of H. ovis
isolates from the uterus of healthy dairy cows and those with metritis can offer a comprehensive view of
the bacterium's genomic characteristics and shed light on its pathogenic potential, host adaptation, and
implications for antimicrobial treatment options.

In this study, we sequenced the genomes of 35 Helcococcus clinical isolates from the uterus of
dairy cows and tested their antimicrobial resistance and biochemical phenotypes. Phylogenetic and
average nucleotide identity analyses placed 4 Helcococcus isolates within a cryptic clade, representing
an undescribed species. We applied whole genome comparative analyses to explore the pangenome,

resistome, virulome, and taxonomic diversity of the remaining 31 H. ovis isolates.

Results

Helcococcus ovis Isolation is Associated with Metritis
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Of the thirty-eight cows evaluated for metritis diagnosis, twenty-one were healthy and seventeen were
diagnosed with metritis. As shown in Table 1, six healthy cows and fifteen cows with metritis were
culture-positive for H. ovis. We used Fisher's exact test to examine the relationship between metritis
and the presence of live H. ovis in the uterus, which showed a statistically significant association (p <
0.001). The odds ratio (OR) for cows with metritis was found to be 18.75 (95% confidence interval: 3.14-
92.85), indicating an 18-fold increased risk of being culture-positive for H. ovis compared to healthy
cows. Clinical data for the cows used for this study and for those associated with strains included from
previous studies is presented in Supplemental File 1.

Table 1. Two-by-two contingency table of H. ovis isolation in healthy cows and cows with metritis.

Healthy Metritis Row Sum
H. ovis Positive 6 15 21
H. ovis Negative 15 2 17
Column Sum 21 17

p<0.001, OR=18.75 (95% Cl: 3.14-92.85)

Read Quality and Assemblies

A total of 30 H. ovis isolates were selected for lllumina sequencing. These included 20 recovered from
the screening portion of this study and ten previously isolated strains. [llumina reads from two
additional H. ovis strains (KG39 and KG40) were retrieved from the GenBank to make a total of 32 sets
of lllumina reads. Two isolates (KG111 and KG115) were excluded from further analysis because they did
not reach the desired coverage threshold of at least 15x. The remaining 30 samples had a mean of 163
mega base pairs (Mbp), ranging from 30 to 567. Using an expected H. ovis genome size of 1.8Mbp
resulted in a mean coverage of 90x, ranging from 16x to 308x. Detailed read quality metrics and SRA
accession numbers are listed in Supplemental File 2.

Of the resulting de-novo assemblies, five (KG101, KG116, KG93, KG118, KG97) resulted in unexpectedly

small genome sizes ranging from 1.02 to 1.48 Mbp compared to the expected range of 1.7-.1.85 Mbp.
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These genome assemblies also have fewer than the expected >1600 coding sequences (CDS) (1234-
1537) and fewer than the expected 33 tRNAs (23-29) found in H. ovis, and therefore they were excluded
from the pangenome analysis. However, they were retained for other analyses since they can provide
valuable taxonomic and gene presence information. Finally, we also included five complete H. ovis
genomes (KG36, KG37, KG38, KG104, and KG106) from a previous study (15). Genome assembly
statistics for all thirty-five genomes included in this study and their accession numbers are listed in

Supplemental File 3.

Helcococcus Cryptic Strains

In a recent study we identified a single putative H. ovis strain (KG38) whose average nucleotide identity
(ANI) with other H. ovis strains is lower than the suggested 96% threshold for same species
determination (15). Although the initial identification of H. ovis isolates for this experiment was
conducted based on 16S rRNA sequence identity comparisons, 16S rRNA sequence variations are often
not specific enough to discriminate between closely related species (19). To screen for the presence of
any cryptic species among our assembled genomes, we created a maximum likelihood phylogenetic tree

and evaluated all-vs-all ANI relationships between all the strains in this study.

Taxonomy and ANI

As shown in Figure 1, four (KG38, KG95, KG105, and KG197) of the 35 strains included in this study
cluster together in a clade forming an outgroup from the remaining 31 H. ovis strains. These strains have
ANIs lower than 90% with the rest of the H. ovis species and also a higher than 96% ANI between each
other. Although these three cryptic strains are closely related to H. ovis, their taxonomic position within
the genus Helcococcus and family Peptoniphilaceae is unclear. We selected one representative H. ovis

strain for each subclade within the species taxon and created a maximum likelihood phylogenetic tree
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which also includes the type strains for all species of the Helcococcus genus as well as the type species
for the most closely related genera to Helcococcus: Finegoldia and Parvimonas. Figure 2 shows this
phylogenetic tree alongside a heat map of ANI values between H. ovis strains and type strains of other
close species and genera. Strains KG38, KG95, KG105, and KG197 form a cryptic clade within
Helcococcus. Having less than 95% ANI with every other species of the Helcococcus genus is evidence
that these strains represent a distinct novel species. Furthermore, having a higher than 70% ANI with
the type strains of other Helcococcus species and less than 70% ANI with Finegoldia magna and
Parvimonas micra is robust evidence that these strains belong to the genus Helcococcus. These
observations are also supported by the maximum likelihood phylogenetic tree that was constructed with
232 orthologous genes shared across stains.

Although the only publicly available whole genome sequences of H. ovis are from isolates
associated with metritis in Holstein dairy cows, there are few publicly available near-complete H. ovis
16S rRNA sequences. As shown in Figure 3A, a multiple sequence alignment of near-complete H. ovis
16S rRNA sequences from this study, the Tongji strain, and the H. ovis type strain is able to discriminate
between the core H. ovis clade and the cryptic strains. However, as shown in Figure 3A, these
differences are driven by single nucleotide polymorphisms in hypervariable regions V2 and, to a lesser
extent, V6. Based on this multiple sequence alignment, the H. ovis Tongji strain can also be considered a
member of the cryptic Helcococcus sp. clade.

In an attempt to identify a single marker gene to resolve the two Helcococcus sp. groups we also
extracted the rpoB gene from the same genome assemblies in this study. Although there are no publicly
available rpoB sequences for H. ovis, it is an often-used core gene for bacterial phylogenetic analyses. As
shown in Figure 3B, the multiple sequence alignment is able to discriminate between the core H. ovis
clade and the cryptic strains while also having areas of sequence entropy across the gene, making it a

better candidate single marker gene than 16S rRNA for Helcococcus species differentiation.
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165

166 Proteome comparison

167 Finally, as shown in Figure 4, a protein blast alignment between the complete proteomes of three

168 representative H. ovis strains (KG36, KG37, and KG106) and three of the cryptic strains (KG38, KG95, and
169 KG105) illustrates that the cryptic strains have protein sequence identities with the reference H. ovis
170 KG36 as low as 80-70% across their genomes.

171

172 Phenotypic characteristics

173 Phenotypically, the cryptic Helcococcus sp. strains are Gram-positive facultative anaerobic cocci that
174  depend on pyridoxine supplementation for growth in vitro. They can be cultivated at 36-38 °C on

175  tryptone soy agar (TSA) with 5% defibrinated sheep blood and 0.001% pyridoxal HCI. After 72-96 hours
176  of incubation, they form pinpoint transparent colonies morphologically indistinguishable from H. ovis
177  and displaying little to no alpha hemolysis. As shown in Figure 5, cryptic strain KG38 displays weak

178  hemolysis on blood agar when compared to H. ovis strains. In liquid medium, both H. ovis and the

179 cryptic strains grow well in brain heart infusion (BHI) broth supplemented with 0.1% Tween80 and

180  0.001% pyridoxal HCI.

181 As shown in Table 2, eight isolates were assessed to identify their enzymatic activity. H. ovis
182 strains KG36, KG37, KG104, and KG106, and cryptic strains KG38, KG95, 105, and KG197 exhibited

183 positive results for both alanine arylamidase and L-proline arylamidase. However, in contrast to the
184  cryptic strains, H. ovis strains also demonstrated positive results for at least one of the following:

185  tyrosine arylamidase (3/4), Beta galactopyranosidase (2/4), D-mannose (3/4), or D-maltose (1/4). Cryptic
186  strain KG38 was the sole strain positive for leucine arylamidase and alanyl-phenylalanyl-proline

187  arylamidase. Although the Vitek 2 Gram-Positive ID card is capable of identifying Helcococcus kunzii

188  based on its biochemical profile, it is not designed to identify H. ovis. As a result, all but one tested strain
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189  produced "low confidence" or "unknown" species identification. Cryptic strain KG38 was misidentified as
190 99% probability "Dermacoccus nishinomiyaensis/Kytococcus sedentarius". These results indicate that
191  differentiating between H. ovis and the cryptic Helcococcus strains may be possible based on the

192  absence of specific enzymatic activity beyond alanine arylamidase and L-proline arylamidase. However,
193 a larger sample size is needed to draw any conclusions regarding the differential enzymatic activities of
194  these two clades.

195

196  Table 2. Biochemical characteristics and Vitek2 identification results of Helcococcus sp. isolates. Only
197  tests with at least one positive result are included. A complete list of biochemical tests is presented in

198 Supplemental File 4.

Isolate APPA  LeuA AlaA ProA TyrA BGAR dMAN dMAL Vitek2 ID
Helcococcus i i + + + + - - Low Discrimination
ovis KG104
Helcococcus ) ) + + + - + - Low Discrimination
ovis KG106
Helcococcus . -

- - + + - + + -
st Unidentified
Granulicatella
Helcococcus ) + + + } + + elegans
is KG37
ovis (95% Probability)
Dermacoccus
<hi . .
Helcococcus + + + + " /én;;:g::iz’;yd
bovis KG38 ¢ j
sedentarius

(99% Probability)

Helcococcus

- + + - _ _ _ . .. .
bovis KG95 Low Discrimination
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Helcococcus - - + + - - - - Low Discrimination
bovis KG105
Helcococcus e

_ - + + - - - - Low Discrimination

bovis KG197

199

200  H. ovis Pangenome Construction and Associations

201  The four genomes belonging to the cryptic strains were excluded from pangenomic analyses as this

202 study aims to explore the pangenome of H. ovis, the Helcococcus species associated with metritis in

203 dairy cows. A total of 31 genomes were initially included in the pangenome construction. However,

204  there were low-quality assemblies that did not result in complete enough genomes to warrant inclusion
205 into the pangenome. As shown in Figure 6, the number of new genes in the pan-genome plateaus after
206 25 genomes are included. We therefore excluded the five lowest-quality genome assemblies from the
207 pangenome construction and retained 26 assemblies in the analysis. The exclusion of these low-quality
208  assemblies resulted in the core genome expanding from 683 to 1045 gene families. The resulting core,
209  soft core, shell, and cloud genomes are shown in Figure 7. In short, the H. ovis pangenome consists of
210 845 core genes (99% <= strains <= 100%), 203 soft core genes (95% <= strains < 99%), 1078 shell genes
211 (15% <= strains < 95%), and 556 cloud genes (0% <= strains < 15%).

212 The final H. ovis pangenome includes 20 strains from cows with metritis and six strains from healthy
213 cows. The complete H. ovis pangenome, including the gene presence and absence table, is presented in
214  Supplemental File 5. We were interested in finding genes that were enriched in the metritis or healthy
215 group of strains. We ran a Scoary (20) analysis using both the 31-strain and the 26-strain pangenomes
216  with the Benjamini-Hochberg adjusted p-values to identify the genes most overrepresented in a specific
217 host group. Using a significance level of p<0.05 we did not find any gene group overrepresented in

218  either of the host groups.

219
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Virulome

After using Abricate for mass screening of virulence factors in the 26 H. ovis genomes against the
Virulence Factor Database, no positive hits were returned. To further investigate the virulome of 26 H.
ovis strains in this study, we curated a set of 22 putative virulence factor genes based on previous
comparative genome analyses (15). The resulting virulome is presented in Figure 8 as a heat map. There
is no observable pattern in the presence or absence of virulence factors in these strains in relation to the
health status of the host or farm location.

Two hypothetical proteins and a pathogenicity island have been recognized as potential high virulence
determinants of H. ovis in invertebrate infection models (14). These high virulence determinant CDS are
found in 69% (18) of the strains in this study and are absent in only eight strains. Both the hypothetical
proteins and the pathogenicity island are co-occurring in every genome where they are present and are
altogether absent in the remaining strains. We used mauve to visually inspect the spatial distribution of
these co-occurring high virulence determinants in the two complete H. ovis genomes where they are
present. In both KG37 and KG106, the two hypothetical protein CDS are found closely associated with a
ZnuABC locus located more than 500,000 base pairs away from the co-occurring pathogenicity island. To
further explore the cause of the co-occurrence and co-absence of these virulence determinant CDS we
identified and excluded loci containing elevated densities of base substitutions in the twenty-six
genomes and built an approximately-maximum-likelihood phylogenetic tree (Supplemental File 6). The
clades that do not contain the high virulence determinant CDS seem to be spread across the tree,
showing that the co-occurring CDS are not restricted to a single lineage but are found in multiple, more

distantly related lineages.

Resistome and Plasmids
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243  We also used Abricate for mass screening of acquired antimicrobial resistance genes (ARGs) against the
244  Comprehensive Antibiotic Resistance Database. The search was limited to acquired resistance genes
245 because not enough experimental data is available for H. ovis to evaluate resistance-associated point
246  mutations. We also screened for known plasmid sequences by querying against the PlasmidFinder

247 database. The results of these analyses are presented in Figure 9.

248 Strain KG107 is the only one of the thirty screened genomes that does not contain any acquired ARGs.
249 Nine H. ovis strains carry only tetM, 15 strains carry both tetA and tetB, and five strains carry both tetT
250 and /nuc. With the exception of Inuc, which confers resistance to lincosamides, all other ARGs found in
251  this experiment confer resistance to tetracyclines. Acquired antimicrobial resistance genes tetA and tetB
252 are, in all strains, located within a prophage region commonly found within H. ovis genomes. Similarly,
253 tetT and /nuC are found in conjunction within a prophage region in all strains where they occur. This

254  suggests prophage integration events are a significant driver of ARGs acquisition in H. ovis. Alternatively,
255 tetM is located within a previously described integrated plasmid region (repUS43_1 CDS12738(DOp1)),
256  often found in Streptococcus spp.

257  Atotal of ten strains were selected to be evaluated for resistance to 22 clinically relevant antimicrobials.
258 Subsets of strains from each AMR genotype including tetM only (KG100, KG106, and KG113),

259 tetA/tetB(KG36, KG37, KG92, KG196), tetT/InuC (KG104, KG109, KG120), and none (KG107), were

260 selected for minimum inhibitory concentration (MIC) testing. As shown in Table 3, MICs are reported in
261 ug/mL without antimicrobial resistance breakpoint interpretations because there are currently no

262 interpretive standards established by the Clinical and Laboratory Standards Institute (CLSI) for H. ovis in
263  the uterus of cattle. We used the MIC results of strain KG107 as the wild-type reference since it was the
264  only isolate that does not carry any known ARG. Strains carrying any tetracycline resistance gene (tetT,
265 tetM, or tetA/tetB) had a higher MIC for tetracycline. The wild-type strain had a tetracycline MIC < 0.250

266  pg/mL, and all other strains had a tetracycline MIC > 1.0 pg/mL. Although strains carrying tetM or tetT
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267  displayed resistance to doxycycline and minocycline compared to the wild type, strains carrying

268 tetA/tetB did not follow the same pattern. None of the tetA/tetB positive strains had increased

269  resistance to minocycline, and their resistance to doxycycline was inconsistent and less than that of
270  tetM and tetT positive strains. Although MIC for lincomycin were not evaluated, the strains that carry
271  InuC (KG104, KG109, KG120) did not show resistance to clindamycin, the only lincosamide tested.

272

273  Table 3. Antimicrobial resistance profiles of Helcococcus sp. Minimum inhibitory concentration values
274  arein microgram/milliliter (ug/ml). The rows of tetracycline class antibiotics are highlighted in grey.

tetA/tetB tetM tetT/InuC none

KG KG KG KG KG KG KG KG KG KG KG
37 36 92 196 113 100 106 104 109 120 107

Amikacin <16 <16 <16 <16 <16 <16 <16 <16 <16 <16 <16
Amox/Clav <025  <0.25 0.5 <025 <025 <025 <025  <0.25 0.5 0.5 <0.25
Ampicillin <025  <0.25 0.5 <025 <025 <025 <025  <0.25 0.5 0.5 <0.25
Cefazolin <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Cefovecin 2 2 4 1 1 1 0.5 2 4 4 0.5
Cefpodoxime <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Cephalothin <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Chloramphenicol <38 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8
Clindamycin <0.5 <05 <0.5 <0.5 <05 <05 <0.5 <05 <05 <05 <05
Doxycycline 025 <0.125 0.5 <0125  >05  >05 >0.5 >0.5 >0.5  >0.5  <0.125
<
Enrofloxacin <025 <025 <025 £0.25 025 <025 <025 <025 <025 <025 <025
Erythromycin 1 1 1 1 2 1 1 0.5 2 1 1
Gentamicin <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4
Imipenem <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Marbofloxacin <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Minocycline <05 <05 <0.5 <05 2 2 1 >2 >2 >2 <05
Oxacillin <025  <0.25 >2 >2 >2 >2 <025 <025 >2 >2 2
Penicillin 0.125  <0.06 0.25 <0.06 <0.06 <006  <0.06 <0.06 0.25 0.25 0.125
Rifampicin <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Tetracycline >1 >1 >1 1 1 >1 >1 >1 >1 >1 <0.25
Trim./Sulfa <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Vancomycin <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

275
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Finally, as shown in Table 3, some strains showed resistance to cefovecin and oxacillin without
carrying any ARG known for conferring resistance to beta-lactams. We ran a Scoary (Brynildsrud et al.,
2016) analysis using a resistance threshold of > 2 for cefovecin and > 0.5 for oxacillin, using the CLSI soft-
tissue cutoffs for non-Staphylococcus aureus staphylococci in dogs and cats as an approximation (21).
We used the Benjamini-Hochberg adjusted p-values to identify the genes most overrepresented in a
specific host group. We did not find any gene group overrepresented in either of the host groups using a
significance level of p<0.05. This suggests that beta-lactam resistance in H. ovis may be mediated by

chromosomal mutation resistance instead of mobile ARGs.

Discussion

In this study, we examined the genomes of H. ovis strains obtained from the uteri of both healthy dairy
cows and those with metritis. Our analysis focused on exploring the pangenome, resistome, virulome,
and taxonomic diversity of these strains. Additionally, we sought bacterial genome-wide associations
between H. ovis gene clusters and metritis in dairy cows.

While the costs of second-generation short-read whole-genome sequencing (WGS) have
significantly decreased in the past decade, third-generation long-read sequencing remains a less
affordable emerging technology. In our study, we opted for the more commonly used approach of
employing low-depth lllumina short-read sequencing to maximize the inclusion of a larger number of
strains in our analysis. As is evident in our findings, this approach may lead to the loss of genomes due
to low coverage and incomplete assemblies. However, this tradeoff is acceptable when considering the
low-cost, high-throughput generation of excellent-quality reads (Q>35).

The Helcococcus genus is comprised of five well-described species. However, their genetic
diversity remains unexplored due to the limited availability of sequenced genomes. Within this small

genus there are still unresolved and contradictory taxonomic classifications. For example, the species H.
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300 pyogenes was described as a new species isolated from a prosthetic joint infection based on biochemical
301 tests and a partial (518bp) 16S rRNA sequence identity in 2004 (2). A later study proposed another new
302  species, H. seattlensis, isolated from a human with urosepsis also based on 1512bp 16S rRNA sequence
303 identity, which also shares 99.4% sequence identity with H. pyogenes suggesting it is likely the same
304  species (3). Another taxonomic uncertainty within the genus is the classification of the H. ovis Tongji

305  strain, isolated from the only recorded H. ovis infection in a human (13). This strain displayed an atypical
306  biochemical profile for H. ovis and a 98.9% 16S rRNA sequence identity with the H. ovis type strain,

307  which led researchers to question its place within the species taxon. Phylogenomic analyses have shown
308 that, based on 16S rRNA sequence identity, the Tongji strain belongs to a subclade of the species also
309 populated by H. ovis strain KG38 (15). Whole genome-based multi-locus phylogenomic analyses in this
310  study confirmed these findings and identified three further strains (KG95, KG105, and KG197) belonging
311  to the cryptic clade. Average nucleotide identity, proteome identity, and phenotypic analyses provide
312 robust evidence that these strains belong to a distinct novel species, for which we propose the name H.
313  bovis sp. nov. (bo'vis. L. gen. n. bovis of the cow). H. ovis and H. bovis strains share 87-89% average

314 nucleotide identity with each other placing their relationship in the 0.2% of pairs that fall within the 83—
315 95% ANI valley range (22). This makes the relationship between the two species a rare candidate for
316 exploring bacterial speciation mechanisms and the role horizontal gene transfer has on the speciation
317 process. These H. bovis strains originated from two geographically separate farms in North Central

318 Florida. They were also retrieved from uteri of both cows with metritis (1) and healthy cows (3).

319 However, the sample size in this study is too small to draw conclusions about the association between
320 the presence of H. bovis and uterine health status. Strain KG38, part of the novel species group, has

321 been shown to have attenuated virulence when compared to other H. ovis isolates (14). Since H. bovis
322 occupies a similar biochemical niche as the more virulent H. ovis strains, its role as a commensal

323  organism of the reproductive tract is an area that warrants further exploration. Although the multiple
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sequence alignment of the whole 16 S rRNA gene can discriminate between H. ovis and H. bovis, the
responsible sequence variations are in hypervariable regions V2 and V6 which are not often targeted in
metagenomic amplicon studies. This means sequences belonging to H. bovis will contribute reads to the
amplicon sequence variants classified as H. ovis in most metagenomic studies amplifying the V3-V4
hypervariable regions. Unlike the 16S rRNA sequence, rpoB has more regions of dissimilarity between H.
ovis and H. bovis, making it a much more useful single-marker gene to resolve these two Helcococcus
species.

We screened a subset of cows from this study to show that isolation of H. ovis from the uterus
of dairy cows is strongly associated with metritis. Previous studies have shown that H. ovis DNA is more
abundant in relative and absolute terms in the uterus of dairy cows with metritis than in healthy cows at
the time of metritis diagnosis (5,17). Although all healthy cows have been shown to harbor H. ovis
genomic DNA (gDNA) in the uterus after parturition, this gDNA is not indicative of the presence of viable
bacteria, likely because healthy cows are able to mount adequate immune responses that neutralize
these organisms (23,24). Previous to this study, isolation of live H. ovis from the uterus of dairy cows had
been limited to only cows with metritis, and targeted comparative cultivation screenings have not been
conducted (10,25). These results are a robust addition to the current body of evidence showing H. ovis is
one of the key organisms in the pathogenesis of metritis in dairy cows at the time of diagnosis.

Our inability to find any H. ovis genotype association with metritis is likely due to the fact that
metritis is characterized by a dysbiosis of the uterine microbiota that is unlikely to be explained by gene
groups within a single component bacterial species (18,26). Furthermore, as is the case in microbial
communities in gut dysbiosis, it is possible that H. ovis is more prevalent in the diseased uterus because
the disease condition widens an independent metabolic niche which the bacterium can then fill without
having to play a key role in the necessary steps for the development of disease (27). The genome-wide

association analyses conducted in this study have been successfully used to find the genetic basis for
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high penetrance phenotypes in bacteria like virulence (28) or antimicrobial resistance (29), but we were
not able to establish any phenotype-genotype link with this approach. In this study we also measured
simple phenotypes like hemolysis and pyridoxal dependence in vitro for all strains but did not find any
insightful phenotypic variation between them.

Since H. ovis is not a well-known pathogen or a model organism, there is no experimentally verified
virulence factor (VF) data. We found that the putative pathogenicity island and the hypothetical VF
associated with a Zinc ABC transporter locus were either co-occurring or altogether absent from H. ovis
strains. Manual screening of the available complete genomes revealed that these putative VFs are not
part of the same operon in the species. This raises the question of whether they are functionally linked
or if they display this pattern in our samples by chance. As shown in Supplemental File 6, these putative
high virulence determinants are present and absent across different subclades of H. ovis and do not
show evidence of being driven by the founder effect. According to Protelnfer (30), both the ZincABC
transporter-associated VF and the conserved membrane-spanning protein within the pathogenicity
island participate in metal ion binding and transport. This suggests that, as has been shown in
Escherichia coli (31), these H. ovis accessory virulence genes co-occur due to having connected
functions, and the resulting phylogenetic distributions are the result of convergent gene loss instead of
founder effect.

All the ARGs found in our strains are located within mobile genetic elements like plasmids or
prophage regions, which makes H. ovis a reservoir of mobile ARGs in a food production setting. All but
one H. ovis strain (KG107) contain ARGs conferring resistance to tetracyclines. This strain is a valuable
clinical isolate since it can be used as a wild-type reference strain with no ARGs to benchmark the
susceptibility of H. ovis to antimicrobials. Unlike tetA/tetB positive strains, strains carrying genes
encoding the cytoplasmic ribosomal protection proteins TetM or TetT, also have elevated resistance to

doxycycline and minocycline. Oxytetracycline and ceftiofur are the only two antimicrobials labeled in the
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United States for the treatment of metritis in lactating dairy cattle. However, the United States Food and
Drug Administration has banned the extra-label use of ceftiofur in animals, and may move towards
policies like the Netherlands where the use of ceftiofur administration to agricultural animals is
restricted (32). The alternative, intrauterine oxytetracycline infusions, remains a frequent practice both
in clinical and research settings in the United States and Europe (33,34). Furthermore, dairy operations
often use oxytetracycline as prophylactics in heifer rearing or as a treatment for calf pneumonia, a type
of infection H. ovis has been implicated in (12). Although the MICs for oxytetracycline were not
assessed, there is no inherent difference between a tetracycline and an oxytetracycline resistance genes
(35), and 96.8% of isolates in this study carry at least one tetracycline resistance gene shown to confer
tetracycline resistance in vitro. These findings indicate that further studies are needed to evaluate the

effectiveness of tetracyclines as a treatment for metritis in dairy cattle.

Conclusion

This study found that the presence of viable H. ovis in the uterus of dairy cows is associated with
metritis. However, we found no evidence that a specific H. ovis genotype or gene cluster is associated
with the disease. Virulence factor comparisons showed two putative high virulence determinants are
common but have varying prevalence in these strains with a phylogenetic distribution consistent with
convergent gene loss. Based on the genetic dissimilarity and phenotypic characteristics, strains KG38,
KG95, KG105 and KG197 represent a novel species of the genus Helcococcus, for which we propose the
name Helcococcus bovis sp. Nov. (bo'vis. L. gen. n. bovis of the cow). The type strain for this species is
KG38 (Accession number CP121192). The significance of this species in the context of uterine health
remains to be explored. The majority (30/31) of H. ovis strains in this study carry antimicrobial resistance
genes conferring resistance to tetracyclines, which has significant clinical consequences for the

treatment of metritis and other H. ovis-associated respiratory infections in cattle. The convergence of
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396  widespread ARG-mediated tetracycline resistance in these uterine pathogens and initiatives to phase
397  out the use of ceftiofur to treat metritis reveals an immediate need to find alternative treatments and
398  prevention strategies for this important animal disease.

399

400 Materials and Methods

401  Metritis Diagnosis and Uterine Sample Collection

402 All procedures involving cows were approved by the Institutional Animal Care and Use Committee of the
403 University of Florida; protocol number 201910623. In this study, a total of 43 lactating Holstein Friesian
404  cows were used. Three cows were from North Florida Holsteins and 40 were from the University of

405 Florida’s Dairy Research Unit, both located in north central Florida. Each cow had uterine discharge

406  collected directly from the uterus with a sterile pipette, and evaluated at four, six, and eight days

407  postpartum. 500ul of uterine discharge was suspended in 500uL of BHI broth with 30% glycerol and

408  stored at-80 °C.

409  The uterine discharge was scored on a 5-point scale (Jeon et al., 2016). Score 1 indicates normal lochia,
410  viscous, clear, red, or brown discharge that was not fetid; Score 2 indicates cloudy mucoid discharge
411 with flecks of pus; Score 3 indicates mucopurulent discharge that was not fetid with less than 50% pus;
412 Score 4 indicates mucopurulent discharge that was not fetid with more than 50% pus; and Score 5

413 indicates fetid red-brownish, watery discharge. Cows with uterine discharge scores of 1-4 were

414  considered healthy, whereas those with a score of 5 were diagnosed with metritis. Nine cows that had a
415 uterine discharge score of 1 to 4 at the time of sampling but developed metritis sometime in the 21 days
416  after parturition were excluded from microbiological testing.

417

418 Bacteria Isolation and ldentification
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To selectively culture H. ovis from uterine discharge samples, 20uL of the discharge suspension was
streaked onto Helcococcus selective agar. The agar plates were incubated for 72 hours at 36°C under
aerobic conditions with 6% CO2 (11). Following incubation, individual pinpoint nonpigmented colonies
were selected and sub-cultured on tryptone soy agar with 5% defibrinated sheep blood and 0.001%
pyridoxal HCl for propagation. Species determination of the isolates was performed via comparative

analysis of Sanger sequencing of their 16S rRNA genes.

Whole Genome Sequencing

Genomic DNA (gDNA) was extracted using the DNeasy blood and tissue kit following the manufacturer’s
instructions (Qiagen). Genomic DNA purity was measured using a NanoDrop 2000 spectrophotometer;
final DNA concentration was confirmed with a Qubit 2.0 Fluorometer. DNA integrity was visualized via
agarose gel electrophoresis. Library preparation was done with the Nextera XT kit (lllumina, Inc.),
following the manufacturer’s instructions, and it was loaded into the MiSeq reagent kit V2. Sequencing
was performed on a MiSeq platform (lllumina, Inc.) with a 2 x 250-bp 500-cycle cartridge. Seven
previously sequenced strains were also included in this study. Two of them consist of lllumina
sequenced draft genomes KG39 (Accession number SRX5460741) and KG40 (Accession number
SRX5460742). The remaining five are complete genomes that were hybrid assembled using ONT and
Illumina sequencing for genomic comparisons performed in a previous study (15) (KG36, KG36, KG38,

KG104, KG106).

Genome Assembly and Annotation
After performing quality control with fastp (36) the resulting reads were evaluated using MultiQC
(v1.14).The minimum coverage threshold for inclusion in the study was set at 15x (37). De-novo genome

assembly was performed using Unicycler (v0.5.0) (38). Assembly quality was assessed using
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Benchmarking Universal Single-Copy Orthologs (v4.1.2) (39). Genome annotations were conducted using

Prokka and the genome annotation service in BV-BRC using the RAST tool kit (40,41)

Taxonomic analyses

Whole genomes of Helcococcus spp. and the type strains of the recognized species within the genera
Helcococcus, Finegoldia, and Parvimonas were used to create a phylogenetic tree with the BV-BRC
codon tree pipeline using 500 single-copy PGFams (42). In order to verify that the constructed
phylogenetic tree was not affected by recombination events, we used Snippy (v4.6.0) to align Illumina
reads of the 26 H. ovis genomes using the H. ovis KG37 complete genome assembly as reference (43).
We then used Gubbins (v3.3.3) to identify loci affected by recombination and construct a phylogeny
based on point mutations outside of these regions (44). Phylogenetic trees were visualized and
annotated using Interactive Tree of Life (iTOL v5) webtool (45). Average nucleotide identities (ANI) were
calculated via BLAST pair-wise comparisons of all sequences shared between two strains (ANIb) using
the JSpecies web server (Richter et al., 2016). 16S rRNA gene sequences were extracted from the raw
paired-end Illumina reads using phyloFlash (v3.4.2) and rpoB genes were extracted from the trycycler-
assembled contigs using the BV-BRC Comparative Systems Service (42). Extracted nucleotide sequences
were aligned using Mafft (v7) and visualized on the BV-BRC Multiple Sequence Alignment and SNP /

Variation Analysis Service (42,46).

Phenotype testing of select isolates

The biochemical profile and antimicrobial susceptibility phenotype of a subset of isolates was assessed
at the University of Georgia College of Veterinary Medicine Athens Veterinary Diagnostics Laboratory.
using the Vitek2 Gram-positive bacteria ID card for biochemical tests and the Sensititre COMPGP1F

plates (ThermoFisher) for MIC testing, according to the manufacturers’ instructions.
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For MICs, we inoculated sterile H,O with H. ovis to achieve a 0.5 McFarland; 10 uL of the inoculum was
added to 10 mis of Mueller-Hinton broth containing lysed horse blood and supplemented with 0.1 mg of
pyridoxal HCL. Finally, 50 uLs of the Mueller-Hinton broth containing H. ovis were aliquoted into each
well of the Sensititre plate, incubated at 35C in aerobic conditions, and read at 24 and 48 hours.

For biochemical testing on the Vitek2 system, we inoculated 0.45% saline with H. ovis to achieve a 0.5
McFarland and entered the cards into the Vitek2 system. The Vitek2 system then made the appropriate
dilutions and automatically read them at 15-minute intervals until completed, which was 5 to 8 hours,
depending on the isolate. We opted to use the Gram-positive ID card because it contains all of the
biochemical tests used to identify H. ovis in previous studies (13). For biochemical testing, we selected
the 4 H. ovis strains with complete genome assemblies (KG36, KG37, KG104, and KG106) and the 4
Helcococcus cryptic strains (KG38, KG95, KG105, KG197). For antimicrobial sensitivity testing, we
selected 10 H. ovis strains representing each tetracycline resistance gene profile including tetM only
(KG100, KG106, and KG113), tetA/tetB(KG36, KG92, KG196), tetT only (KG104, KG109, KG120), and none

(KG107).

Pangenome Analysis

The H. ovis pangenome was constructed using Roary with default parameters and gene clusters were
annotated using the BV-BRC Comparative Systems Service (42). To identify gene clusters associated with
metritis, we used Scoary with default parameters (20). Scoary identifies gene presence or absence
variants significantly associated with a trait by performing Fisher’s Exact Tests. It then uses the
phylogenetic relations between strains to look for the causal set of genes. Causal genes were defined as

those with Bonferroni-corrected p-values < 0.05.

Virulome and Resistome
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491  Abricate was used to screen all assembled genomes for ARGs using the NCBI AMRFinder and CARD

492 databases (github.com/tseemann/abricate) (47,48). ARGs associated with point mutations were

493  excluded due to a lack of experimental data for the Helcococcus genus. Abricate was also used to screen
494  for virulence factors against the VFDB for known plasmids against the PlasmidFinder database (49,50).
495 Virulence factors were further manually searched for using the BV-BRC Comparative Systems Service
496  (42).

497

498  Figures

499  Figure 1. Heat map of whole genome average nucleotide identity based on BLAST+ (ANIb) and

500 maximum-likelihood phylogenetic tree of 35 Helcococcus strains included in this study. The clade

501 colored in red represents cryptic Helcococcus clade.

502 Figure 2. Heat map of whole genome average nucleotide identity based on BLAST+ (ANIb) and

503 maximume-likelihood phylogenetic tree of the selected genomes of Helcococcus ovis and Helcococcus
504  bovis, the type strains of the remaining species of the Helcococcus genus, and the type species of the
505 most closely related genera to Helcococcus, Finegoldia and Parvimonas. [T] denotes the genome of a
506 type organism.

507 Figure 3. A) Multiple sequence alignment and sequence entropy plot of near-complete Helcococcus ovis
508 16S rRNA from this study, the Helcococcus ovis Tongji strain, and the Helcococcus ovis type strain. B)
509 Multiple sequence alighment and sequence entropy plot of rpoB sequences from this study. Alignment
510 windows display examples of areas of sequence entropy that can be used to differentiate between
511  Helcococcus ovis and Helcococcus bovis.

512 Figure 4. Circos plot of protein sequence alignments of three Helcococcus ovis and three Helcococcus
513 bovis strains. Percent protein sequence identities were calculated against the proteome of reference

514 strain Helcococcus ovis KG36.
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515 Figure 5. Examples of Helcococcus ovis KG37 (A) and Helcococcus bovis KG38 (B) culture on tryptone soy
516  agar with 5% defibrinated sheep’s blood and 0.001% pyridoxal HCI after 72 hours of incubation.

517  Figure 6. Plots depicting how the pangenome varies as genomes are randomly added to the pangenome
518  construction. The dashed blue line marks the 25-genome threshold selected for this study.

519 Figure 7. A) Helcococcus ovis pangenome gene matrix depicting the 2682 gene clusters identified by

520 Roary. B) Pangenome frequency plot depicting how many gene clusters are found in only 1 to only 25
521 genomes. C) Pie chart summarizing the pangenome structure.

522 Figure 8. Heat map of virulence factors of Helcococcus ovis strains explored in this study.

523 Figure 9. Heat map of antimicrobial resistance gene profiles of Helcococcus ovis strains sequenced in this

524  study.

525 Data Availability
526  The whole-genome sequences and the trimmed reads have been uploaded into the NCBI Sequence Read
527  Archive and are found under BioProject number PRJINA514352. SRA accession numbers for the trimmed

528 reads are listed in Supplemental File 2. GenBank accession numbers for the genome assemblies are

529 listed in Supplemental File 3.
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