

1 **Germline status and micronutrient availability regulate a somatic mitochondrial quality**
2 **control pathway via short-chain fatty acid metabolism.**

3

4 James P. Held¹, Nadir H. Dbouk¹, Adrianna M. Strozak¹, Lantana K. Grub¹, Hayeon Ryou¹,
5 Samantha H. Schaffner¹, & Maulik R. Patel^{1,2,3,4,5*}

6

7 ¹Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA

8 ²Department of Cell & Developmental Biology, Vanderbilt University School of Medicine,
9 Nashville, TN, USA

10 ³Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA

11 ⁴Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN,
12 USA

13 ⁵Quantitative Systems Biology Center, Vanderbilt University, Nashville, TN, USA

14 *Lead contact and corresponding author: maulik.r.patel@vanderbilt.edu

15

16

17

18

19

20

21

22

23

24

25

26

27 **ABSTRACT**

28 Reproductive status, such as pregnancy and menopause in women, profoundly influences
29 metabolism of the body. Mitochondria likely orchestrate many of these metabolic changes.
30 However, the influence of reproductive status on somatic mitochondria and the underlying
31 mechanisms remain largely unexplored. We demonstrate that reproductive signals modulate
32 mitochondria in the *Caenorhabditis elegans* soma. We show that the germline acts via an RNA
33 endonuclease, HOE-1, which despite its housekeeping role in tRNA maturation, selectively
34 regulates the mitochondrial unfolded protein response (UPR^{mt}). Mechanistically, we uncover a
35 fatty acid metabolism pathway acting upstream of HOE-1 to convey germline status. Furthermore,
36 we link vitamin B12's dietary intake to the germline's regulatory impact on HOE-1-driven UPR^{mt}.
37 Combined, our study uncovers a germline-somatic mitochondrial connection, reveals the
38 underlying mechanism, and highlights the importance of micronutrients in modulating this
39 connection. Our findings provide insights into the interplay between reproductive biology and
40 metabolic regulation.

41

42

43

44

45

46

47

48

49

50

51

52 **MAIN**

53 Reproduction is a fundamental biological process. Considering the substantial energetic
54 investment required for reproduction, organisms display acute sensitivity to various stages of their
55 reproductive phases and instigate metabolic changes to accommodate these demands ¹⁻³. As
56 cellular hubs for metabolism, mitochondria likely lie at the heart of many of these metabolic
57 adjustments ⁴⁻⁶. However, the impact of reproductive status on mitochondria within somatic cells
58 and the molecular mechanisms that underlie these changes remain largely unexplored.

59

60 To elucidate the regulatory role that the germline exerts on somatic mitochondria, we focused on
61 the mitochondrial unfolded protein response (UPR^{mt}) ^{7,8}. Best characterized in *Caenorhabditis*
62 *elegans*, UPR^{mt} is a key mitochondrial quality control pathway activated in response to a variety
63 of mitochondrial perturbations ⁹. UPR^{mt} entails expression of numerous target genes including
64 mitochondrial proteases that degrade damaged or improperly folded proteins, and chaperones
65 that increase the protein folding capacity of mitochondria to accommodate newly synthesized
66 proteins ¹⁰. UPR^{mt} also boosts the expression of mitochondrial protein transport machinery, aiding
67 in mitochondrial import recovery. Finally, activation of UPR^{mt} results in metabolic remodeling and
68 tolerance to reactive oxygen species toxicity. Taken together, as a vital mechanism for
69 mitochondrial quality control that reconfigures mitochondrial function, UPR^{mt} is optimally situated
70 to adapt mitochondrial responses to alterations in reproductive status.

71

72 We recently reported a surprising function of the *C. elegans* homolog of ELAC2, known as HOE-
73 1, as a central regulator of UPR^{mt}¹¹. ELAC2, also referred to as RNaseZ, is an RNA endonuclease
74 that cleaves 3'-trailer sequences from nascent tRNAs in both the nucleus and mitochondria ¹²⁻¹⁵.
75 This cleavage is a crucial step in tRNA maturation—essential for subsequent modifications and
76 amino acid charging. Mutations in ELAC2 are associated with prostate cancer and are known to
77 cause hypertrophic cardiomyopathy ¹⁵⁻²². Notably, our investigations revealed that it is the nuclear

78 isoform of HOE-1, rather than its mitochondrial counterpart, that governs UPR^{mt} dynamics.
79 Preventing HOE-1 nuclear import resulted in the attenuation of UPR^{mt}, while increasing HOE-1
80 nuclear levels through the deletion of its nuclear export signal induced a robust UPR^{mt} response
81 that depended on ATFS-1, the central transcription factor necessary for UPR^{mt}²³. Furthermore,
82 either introducing a mutation disrupting HOE-1's enzymatic function or inhibiting the canonical
83 tRNA exportin effectively suppressed HOE-1-triggered UPR^{mt}, suggesting that HOE-1 exerts its
84 regulatory influence via its tRNA or tRNA-like substrates. Consistent with its involvement in UPR^{mt},
85 the nuclear localization of HOE-1 is dynamically responsive to ATFS-1 activity. Taken together,
86 there is an unusual connection between UPR^{mt}, a response specific to mitochondria, and HOE-1,
87 an RNA processing enzyme primarily associated with an essential housekeeping function.

88

89 Here, we report our discovery that the germline exerts non-cell autonomous control over HOE-1
90 triggered UPR^{mt} in the soma. Moreover, HOE-1 activates UPR^{mt} specifically in the intestine—
91 functionally analogous to metabolic organs in mammals, and only after animals have reached
92 reproductive adulthood. The germline exerts its effects by promoting nuclear accumulation of
93 HOE-1. Mechanistically, we show that a mitochondrially localized propionate shunt pathway
94 mediated by an acyl-CoA dehydrogenase, ACDH-1, regulates HOE-1 in a germline cell non-
95 autonomous manner. Specifically, we isolated gain-of-function and loss-of-function mutations in
96 key pathway enzymes including in ACDH-1 that, combined with the genetic analysis of other
97 enzymes, identified the specific metabolic step regulated by the germline to control HOE-1.
98 Interestingly, the expression of ACDH-1 and other enzymes in the propionate metabolism pathway
99 is sensitive to vitamin B12 availability. Consequently, we find that the germline regulation of HOE-
100 1 triggered UPR^{mt} is completely dependent on the dietary presence of vitamin B12. In summary,
101 our findings unveil an interplay where germline status and micronutrient availability emerge as
102 crucial determinants in the orchestration of HOE-1-triggered UPR^{mt}.

103

104 **RESULTS**

105 **Increased nuclear activity of HOE-1 has a strong mitochondrial signature.**

106 We previously demonstrated that enhancing the nuclear localization of HOE-1 by disrupting its
107 nuclear export signal (allele mpt67, denoted as *hoe-1*(ΔNES)), robustly activates UPR^{mt} while
108 showing no activation of the endoplasmic reticulum UPR¹¹. This suggests specific involvement
109 of HOE-1 in mitochondrial regulation. To comprehensively assess the broader cellular
110 consequences of increased nuclear activity of HOE-1, we conducted RNA sequencing on wildtype
111 vs *hoe-1*(ΔNES) adult animals, which revealed a unique transcriptional profile (Figures S1A and
112 S1B). This was conducted in a germline-less *gfp-1* temperature sensitive background to
113 specifically assess the somatic consequences. Our analysis revealed 1,110 significantly
114 upregulated genes and 838 significantly downregulated genes in *hoe-1*(ΔNES) animals, with an
115 adjusted p-value <0.05 and a log₂ fold change >1 or <-1, respectively (Figure 1A). Notably, gene
116 ontology (GO) analysis of significantly upregulated genes showed a significant overrepresentation
117 of mitochondrial associated genes (Figures 1B). Knockdown of ATFS-1 strongly compromised the
118 differentially expressed gene profile (Figures 1C). Additionally, high confidence *atfs-1* target genes
119 ²⁴, *clec-17*, *cyp-14A4*, *hsp-6*, *hsp-60*, *hrg-9*, and *K09E9.1*, exhibited upregulation in *hoe-1*(ΔNES)
120 animals, and this effect was completely abolished on *atfs-1* RNAi (Figures 1D). Taken together,
121 these data demonstrate an outsized role of HOE-1 in regulating the expression of genes
122 associated with mitochondrial function, many through UPR^{mt}.

123

124 **HOE-1-dependent UPR^{mt} has distinct features.**

125 In characterizing HOE-1 dependent UPR^{mt}, we identified multiple features that differ between
126 HOE-1 UPR^{mt} and UPR^{mt} induced by directly inducing mitochondrial stress. A loss-of-function
127 mutation in the electron transport chain subunit *nuo-6* (allele qm200, denoted as *nuo-6-/-*)²⁵
128 activates UPR^{mt} across somatic tissues, as evidenced by the *hsp-6p::GFP* reporter activation
129 (Figures 2A and 2B). This is consistent with previous reports that systemic mitochondrial stress

130 or constitutive UPR^{mt} activation by *atfs-1* gain-of-function mutants induce pan-somatic UPR^{mt}^{26,27}.
131 In contrast, *hoe-1*(ΔNES) induces the UPR^{mt} reporter specifically in the intestine (Figures 2A and
132 2B). Additionally, we note that *nuo-6*- animals initiate UPR^{mt} early in development, persisting into
133 adulthood (Figures 2C, 2D, and S2A). In contrast, UPR^{mt} activation in *hoe-1*(ΔNES) animals is
134 delayed until late in development, achieving robust activation only in adulthood (Figures 2C, 2D,
135 and S2A).

136

137 Given these distinctive features of HOE-1-dependent UPR^{mt}, we aimed to identify contexts that
138 recapitulate these outcomes. One major physiological change that coincides with the transition to
139 adulthood in *C. elegans* is the proliferation of the germline²⁸. Thus, we hypothesized that germline
140 status may contribute to HOE-1-dependent UPR^{mt}. Indeed, we find that compromising the
141 germline (via conditional *glp-1* loss-of-function allele e2144, denoted *glp-1*(ts)) or pan-somatically
142 overexpressing HOE-1 (single copy knock-in strain mptSi1, denoted as *hoe-1*(OE)) individually
143 only mildly activates UPR^{mt}, but their combined effect robustly activates UPR^{mt}, akin to *hoe-*
144 *1*(ΔNES) animals (Figures 2E, 2F, and S2B). These findings suggest that germline status can cell
145 non-autonomously regulate HOE-1-induced UPR^{mt}.

146

147 Additionally, *hoe-1*(OE); *hoe-1* loss-of-function (allele mpt31, denoted as *hoe-1*-) double mutant
148 animals develop normally into adults but have germline defects (since *hoe-1*(OE) only rescues
149 somatic defects of *hoe-1*- animals) (Figure S2C). These animals exhibit robust activation of
150 UPR^{mt} post-developmentally like that in *hoe-1*(ΔNES) and *gdp-1*(ts);*hoe-1*(OE) animals (Figures
151 S2D, S2E and S2F). These findings are consistent with the *gdp-1*(ts) experiment, suggesting that
152 overexpression of HOE-1 is sufficient to induce UPR^{mt} but only when reproduction is
153 compromised. Taken together, our findings reveal that the germline exerts cell non-autonomous
154 control over HOE-1 dependent UPR^{mt}.

155

156 **Forward genetic screen for HOE-1-like UPR^{mt} activators yields *acdh-1* gain-of-function**
157 **mutants.**

158 To unravel how the germline regulates HOE-1 dependent UPR^{mt} in the soma, we conducted a
159 forward genetic mutagenesis screen of UPR^{mt} reporter animals, to identify genes with UPR^{mt}
160 activation characteristics similar to HOE-1. We isolated mutants where UPR^{mt} is activated post-
161 developmentally and specifically in the intestine ([Figure 3A](#)). We recovered six independent
162 mutants from this screen ([Figures 3B and S3A](#)). Interestingly, in two of the mutant strains, whole
163 genome sequencing revealed missense mutations in the *acdh-1* gene that encodes an acyl-CoA
164 dehydrogenase (mpt134: G294E and mpt136: A365V) ([Figure 3C](#)). CRISPR-mediated
165 introduction of both mutations independently in a clean genetic background activated UPR^{mt} post-
166 developmentally and specifically in the intestine, confirming their causality ([Figures 3D–F, S3B,](#)
167 [and S3C](#)).

168
169 To ascertain the functional nature of these mutations, we initially examined whether a known loss-
170 of-function mutation in *acdh-1* (allele ok1489, denoted as *acdh-1*–/–), could activate UPR^{mt}. In
171 contrast to the *acdh-1* point mutants, loss of *acdh-1* only mildly activates the UPR^{mt} reporter
172 suggesting that *acdh-1*(G294E) and *acdh-1*(A365V) are unlikely loss-of-function ([Figures 3G, 3H](#)
173 [and S3D](#)). To further examine the characteristics of the *acdh-1* missense mutations, we produced
174 trans-heterozygous animals by crossing *acdh-1*(G294E) and *acdh-1*(A365V) with both wildtype
175 (+) and loss-of-function (–) alleles of *acdh-1*. Notably, only homozygous G294E and A365V
176 animals exhibit robust UPR^{mt} activation, whereas trans-heterozygous combinations (G294E/+,
177 G294E–, A365V/+, and A365V–) display little to no UPR^{mt} reporter activation ([Figures 3I–L and](#)
178 [S3E](#)). These results confirm that both *acdh-1* missense mutations are gain-of-function that do not
179 act dominantly. In conclusion, increased activity of ACDH-1 induces UPR^{mt} in a manner analogous
180 to HOE-1.

181

182 **ACDH-1 triggered UPR^{mt} is sensitive to vitamin B12 levels.**

183 ACDH-1 is known to play an important role in propionate metabolism ²⁹. Propionyl-CoA, a three-
184 carbon fatty acid, is generated through the breakdown of certain amino acids and the final stage
185 of odd-chain fatty acid β -oxidation. In contrast to even-chain fatty acids, which yield two-carbon
186 acetyl-CoA molecules during β -oxidation, propionyl-CoA undergoes additional metabolic
187 transformations (Figure 4A) ³⁰. Specifically, a series of enzymatic reactions converts propionyl-
188 CoA into succinyl-CoA. Notably, one of these enzymes, methylmalonyl-CoA mutase, relies on
189 vitamin B12 as a cofactor ^{31,32}. However, when vitamin B12 is deficient, propionyl-CoA takes an
190 alternative route, breaking down into acetyl-CoA ³³. Importantly, ACDH-1 initiates the first step of
191 the vitamin B12 independent pathway, and its expression is regulated by vitamin B12 availability
192 ^{29,33}. *Acdh-1* exhibits high expression under the standard laboratory diet of *E. coli* strain OP50,
193 which is low in vitamin B12 ^{33,34}. Conversely, vitamin B12 supplementation inhibits *acdh-1*
194 expression^{29,33}. Thus, we hypothesized that if *acdh-1*(G294E) and *acdh-1*(A365V) activate UPR^{mt}
195 via increased *acdh-1* activity, then vitamin B12 supplementation should counteract UPR^{mt}
196 activation. Indeed, vitamin B12 supplementation reduces UPR^{mt} reporter activation to wildtype
197 levels in both *acdh-1* mutants (Figures 4B, 4C, S4A, and S4B). Moreover, UPR^{mt} reporter
198 activation was completely abolished by vitamin B12 supplementation in both mutant strains that
199 we recovered from the screen containing mutations in *acdh-1* (Figures S4C–S4F). This vitamin
200 B12 dependence is specific to ACDH-1-induced UPR^{mt}, as vitamin B12 supplementation has
201 minimal effect on UPR^{mt} in *nuo-6*-/- animals (Figures 4D, 4E, and S4G). Taken together, these
202 findings illustrate that ACDH-1 activates UPR^{mt} in a manner sensitive to the dietary levels of
203 vitamin B12.

204

205 **ACDH-1 is required in the mitochondria to activate UPR^{mt}.**

206 Next, we aimed to identify where ACDH-1 functions in the cell to trigger UPR^{mt}. ACDH-1 carries a
207 mitochondrial targeting sequence and is predicted to localize to mitochondria ³⁵. Confirming this,

208 GFP-tagged ACDH-1 (allele mpt161, denoted as ACDH-1::GFP) we generated using CRISPR
209 localizes to mitochondria as evidenced by colocalization with the mitochondrial specific dye,
210 TMRE (Figure 4F). Removal of the mitochondrial targeting sequence in *acdhl-1(G294E)* animals
211 (*acdhl-1(ΔMTS,G294E)*) completely abolishes UPR^{mt} reporter activity (Figures 4G, 4H, and S4H).
212 These data suggest that ACDH-1 is required in the mitochondria to mediate UPR^{mt}.

213

214 **Acrylyl-CoA, an intermediate metabolite downstream of ACDH-1 and upstream of ECH-6,
215 likely signals UPR^{mt} activation.**

216 The B12-independent propionate shunt pathway, initiated by ACDH-1, involves a series of
217 enzymatic reactions that transform propionyl-CoA into acetyl-CoA (reference Figure 4A)^{29,36}. We
218 aimed to identify the specific step in the propionate shunt pathway responsible for ACDH-1-
219 dependent UPR^{mt}. First, we revisited the strains from our forward genetic screen to determine
220 whether we had recovered mutations in other enzymes within this pathway. We identified a clear
221 loss-of-function mutation in *hach-1*, a gene encoding a hydroxyacyl-CoA hydrolase, that operates
222 further downstream in the shunt pathway, in strain mpt138 (splice acceptor mutation chr
223 III:5556870a>t). To validate the role of *hach-1* in UPR^{mt}, we introduced the *hach-1* mutation into
224 a clean genetic background using CRISPR (allele mpt152, denoted as *hach-1*-). This was
225 sufficient to activate robust UPR^{mt} only in the intestine (Figures 5A, 5B, and S5A). This outcome
226 suggests that the accumulation of a metabolite between ACDH-1 and HACH-1 triggers UPR^{mt}. To
227 further validate this hypothesis, we examined whether *hach-1*- induced UPR^{mt} is dependent on
228 *acdhl-1*. Indeed, UPR^{mt} reporter activation by *hach-1*- was completely abolished in the absence
229 of *acdhl-1* (Figures 5C, 5D, and S5B).

230

231 Only one enzyme, an enoyl-CoA hydratase called ECH-6, is positioned between ACDH-1 and
232 HACH-1 in this pathway²⁹. ECH-6 converts acrylyl-CoA, a highly reactive and unstable trans-
233 enoyl-CoA, into 3-hydroxypropionyl-CoA. To pinpoint the precise metabolic step triggering ACDH-

234 1 dependent UPR^{mt}, we attempted to knockout *ech-6* using CRISPR. However, we could not
235 recover homozygous loss-of-function mutants, suggesting that *ech-6* is essential. Consequently,
236 we employed RNAi to knockdown *ech-6*, which resulted in robust UPR^{mt} activation in an *acdh-1*
237 dependent manner (Figures 5E, 5F, and S5C). Notably, loss-of-function mutations in the
238 downstream components of the propionate shunt pathway, *hphd-1* and *alh-8* (alleles: ok3580 and
239 ww48 respectively, denoted as *hphd-1*- and *alh-8*-), had no impact on the UPR^{mt} reporter
240 (Figure 5G, 5H, and S5D). Collectively, these findings suggest that the accumulation of a short-
241 chain fatty acid intermediate metabolite, acrylyl-CoA, positioned between ACDH-1 and ECH-6,
242 serves as a signal for UPR^{mt} activation.

243

244 **HOE-1 functions downstream of ACDH-1**

245 We have established that both HOE-1 and ACDH-1 activate post-developmental, intestinal-
246 specific UPR^{mt}. Therefore, our next objective was to investigate whether they function within the
247 same genetic pathway. Our findings reveal that the complete loss of *acdh-1* or the targeted loss
248 of *acdh-1* within mitochondria strongly attenuates UPR^{mt} in *glp-1*(ts);*hoe-1*(OE) animals (Figures
249 6A–D, S6A, and S6B). Moreover, akin to the ACDH-1-dependent UPR^{mt}, the UPR^{mt} triggered by
250 HOE-1 overexpression in animals lacking a germline is also inhibited by vitamin B12
251 supplementation (Figures 6E, 6F, and S6C).

252

253 In *C. elegans*, vitamin B12 is required as a cofactor for two enzymes: methylmalonyl-CoA mutase
254 of the vitamin B12-dependent propionate metabolism pathway (parallel to the propionate shunt
255 pathway), and methionine synthase of the one carbon cycle ³⁶. Thus, while vitamin B12 is
256 sufficient to attenuate *acdh-1* expression, it is also possible that vitamin B12 supplementation may
257 indirectly affect UPR^{mt} via rescue of the one carbon cycle. To validate that this suppression by
258 vitamin B12 supplementation is mediated through *acdh-1* directly, we repeated these experiments
259 in animals lacking PCCA-1, the alpha subunit of the propionyl coenzyme A carboxylase that

260 functions in the vitamin B12-dependent propionate metabolism pathway³⁷. In the absence of
261 PCCA-1, *acdh-1* expression persists even in the presence of elevated vitamin B12 levels³³. Our
262 findings indicate that the loss of *pcca-1* restores UPR^{mt} activation in *glp-1(ts);hoe-1(OE)* animals,
263 when vitamin B12 is supplemented (Figures 6E, 6F, and S6C). Collectively, the ACDH-1 and
264 vitamin B12 dependency of HOE-1-induced UPR^{mt} establishes ACDH-1 and HOE-1 as
265 components of the same genetic pathway.

266

267 Next, we aimed to elucidate the epistatic relationship between ACDH-1 and HOE-1 by
268 investigating their interdependence. Knockdown of *hoe-1* inhibited *acdh-1* expression, precluding
269 us from assessing whether ACDH-1-driven UPR^{mt} relies on *hoe-1* (Figures S6D and S6E).
270 However, we found that UPR^{mt} in *hoe-1(ΔNES)* animals, is still robustly activated despite vitamin
271 B12 supplementation (Figure 6G, 6H, and S6F). These findings position HOE-1 downstream of
272 ACDH-1.

273

274 **Germline non-autonomously regulates ACDH-1 pathway activity**

275 A model emerges from our data for UPR^{mt} induction wherein a non-functional germline cell non-
276 autonomously influences an ACDH-1-dependent pathway to enhance HOE-1 activity. It is still
277 unclear, however, through what mechanism the germline impacts the ACDH-1 pathway. To
278 address this, we examined the *acdh-1* transcriptional reporter in *glp-1(ts)* animals, which revealed
279 increased *acdh-1* in *glp-1(ts)* animals at an early adult stage (Figure 7A, 7B, and S7A).
280 Considering that reducing *ech-6* activity produces the same outcome as activating *acdh-1*, we
281 also assessed ECH-6 protein levels using a GFP-tagged CRISPR strain (allele mpt188, denoted
282 as ECH-6::GFP). We observed a substantial decrease in ECH-6 protein levels in *glp-1(ts)* animals
283 (Figure 7C, 7D and S7B). Together, these data show that the germline non-autonomously alters
284 the propionate shunt pathway by upregulating *acdh-1* expression and reducing ECH-6 levels.

285

286 **Nonfunctional germline promotes nuclear accumulation of HOE-1**

287 The second question raised by our model pertains to how the germline influences HOE-1 activity.
288 Given that the loss of germline induced by *glp-1(ts)* robustly activates UPR^{mt} in combination with
289 *hoe-1(OE)*, one possibility is that *glp-1(ts)* facilitates nuclear accumulation of HOE-1, elevating
290 HOE-1 levels in the nucleus beyond a critical threshold required to trigger UPR^{mt}. In line with this
291 possibility, *glp-1(ts)* animals exhibit higher nuclear localization of HOE-1::GFP compared to
292 wildtype animals (Figure 7E, 7F, and S7C). Notably, supplementation with vitamin B12 drastically
293 reduces HOE-1 nuclear levels in both wildtype and *glp-1(ts)* animals (Figure 7E, 7F, and S7C).
294 Taken together, these data support our model, indicating that the germline modulates nuclear
295 levels of HOE-1 through ACDH-1 (Figure 7G).

296

297 **DISCUSSION**

298 The capacity of somatic cells to sense, integrate, and respond to reproductive cues forms the
299 basis of metabolic adaptation in females. Here we show how reproductive status and dietary
300 availability of vitamin B12 can work together to control UPR^{mt}, a mitochondrial quality control
301 pathway. Mechanistically, ACDH-1, a mitochondrially localized acyl-CoA dehydrogenase, serves
302 as the critical link between germline status and HOE-1 regulation in the soma. Specifically, the
303 state of the germline regulates the ACDH-1-dependent propionate shunt pathway in the soma.
304 This pathway, via a metabolic intermediate, regulates the movement of HOE-1 into the nucleus,
305 leading to the activation of UPR^{mt}. Our findings uncover fundamental principles by which cells
306 synthesize physiological signals to regulate mitochondrial quality control.

307

308 ELAC2, the mammalian counterpart of HOE-1, functions as an RNA endonuclease primarily
309 associated with an essential housekeeping task in tRNA processing ^{12–15}. Therefore, HOE-1's
310 unexpected role in selectively regulating mitochondrial function and UPR^{mt} is both surprising and
311 potentially insightful. Mutations in ELAC2 are linked to prostate cancer and are known to cause

312 hypertrophic cardiomyopathy¹⁵⁻²². The cellular logic underlying ELAC2's involvement in these
313 diseases has remained elusive. While one hypothesis posits that these conditions stem from
314 mitochondrial dysfunction due to compromised tRNA processing in mitochondria, our findings
315 suggest an alternate paradigm. Specifically, mutations in ELAC2 may induce mitochondrial
316 dysfunction, in part, by disrupting the nuclear-localized function of HOE-1 in the regulation of
317 mitochondrial quality control. Investigating this paradigm in the future, particularly within
318 mammalian systems, holds the potential to yield valuable insights into ELAC2's disease
319 mechanisms.

320

321 Interestingly, although ELAC2 has a well-established role in processing precursor tRNAs,
322 emerging evidence indicates that ELAC2 can cleave mature tRNAs, generating tRNA fragments
323 with biological activity^{38,39}. Additionally, ELAC2 exhibits non-tRNA target cleavage, exemplified
324 by its processing of MALAT1, a long noncoding RNA implicated in many cancers⁴⁰. Collectively,
325 these findings suggest ELAC2 has an essential role in the fundamental function of tRNA
326 maturation and hint at additional roles in RNA biology. It will be interesting to determine which
327 HOE-1 RNA substrates induce UPR^{mt} and to delineate their mechanism of action.

328

329 In the broader context of exploring HOE-1's role in regulating mitochondrial quality control, it is
330 crucial to understand the physiologically relevant conditions governing HOE-1 activity. Within this
331 framework, our findings reveal the critical involvement of the germline's functional status as a key
332 cell non-autonomous factor influencing the dynamics of HOE-1's nuclear localization.
333 Mechanistically, the germline achieves this by activating the ACDH-1-dependent propionate shunt
334 pathway localized in the mitochondria within somatic cells. ACDH-1, in turn, generates acrylyl-
335 CoA, which our genetic analysis suggests serves as a signaling factor promoting the nuclear
336 localization of HOE-1. Interestingly, because the expression of *acdh-1* is influenced by the
337 availability of vitamin B12^{29,33}, the germline's ability to modulate HOE-1-induced UPR^{mt} is dictated

338 by the levels of this essential dietary micronutrient. Thus, the ACDH-1 pathway integrates
339 information about both the germline status and vitamin B12 availability to regulate HOE-1-
340 mediated mitochondrial quality control.

341

342 Acrylyl-CoA is an unstable and highly reactive metabolic intermediate in the propionate shunt
343 pathway ⁴¹. In metazoans, it has predominantly been studied in the context of disease arising
344 from loss-of-function mutations in ECHS1, the mammalian homolog of ECH-6 ⁴²⁻⁴⁷. Interestingly,
345 these diseases exhibit phenotypic similarities to Leigh syndrome, typically associated with
346 mitochondrial dysfunction ^{42,47}. While detecting acrylyl-CoA is challenging, diseases linked to
347 EHCS1 deficiency can be diagnosed by evaluating acrylyl-CoA conjugate levels in patients. It is
348 hypothesized that acrylyl-CoA toxicity is the basis for pathogenicity in EHCS1-defective patients
349 ^{42,47}. Our study provides evidence for acrylyl-CoA's role as a signaling molecule rather than a mere
350 toxin. In this sense, acrylyl-CoA is akin to reactive oxygen species (ROS), acting as signaling
351 molecules when produced in a controlled manner but turning toxic at pathologically high levels ⁴⁸.
352 The concept of acrylyl-CoA playing a signaling role is not unprecedented as it is part of a larger
353 family of acyl-CoAs such as acetyl-CoA and crotonyl-CoA that have well-established and
354 emerging functions as signaling agents ^{49,50}. Exploring the signaling role of acrylyl-CoA by
355 identifying its molecular targets promises to be fruitful avenue for further investigation.

356

357 The impact of germline status on the soma has been most extensively studied within the context
358 of aging in *C. elegans* ⁵¹. The absence of a germline is recognized for its remarkable ability to
359 significantly prolong lifespan ^{52,53}. The impact on lifespan seems to be mediated, at least partly,
360 by the regulation of somatic stress responses ⁵⁴⁻⁵⁶. Reproductive maturity coincides with a
361 significant impairment in the ability to initiate various stress responses ⁵⁷. However, adult animals
362 lacking a functional germline maintain the ability to robustly activate the heat shock response ⁵⁷.
363 Here, we discovered that instead of merely preserving the capacity of adults to induce UPR^{mt}, the

364 absence of a functional germline actively facilitates UPR^{mt} induction. This unique and unusual
365 finding suggests potential differences in the mechanisms involved. The identification and
366 subsequent comparison of these mechanisms promises to provide insights into the intricate
367 interplay between germline status and somatic stress responses.

368

369 Although the germline plays a significant role in regulating HOE-1 dependent UPR^{mt}, we
370 discovered that it is highly sensitive to vitamin B12 levels. Why has the regulation of UPR^{mt}
371 evolved to be responsive to vitamin B12? One possible explanation is that vitamin B12 is crucial
372 for mitochondrial function, especially in the context of reproduction. Consistent with this notion,
373 several studies have reported the impact of vitamin B12 on mitochondria, with one recent finding
374 demonstrating that vitamin B12 affects reproductive aging through its effect on mitochondrial
375 positioning in oocytes^{58–62}. Moreover, the importance of vitamin B12 in human reproduction has
376 long been recognized while the molecular mechanisms are still being uncovered. It will be
377 insightful to further investigate the specific connection between vitamin B12 and mitochondria.

378

379 **ACKNOWLEDGEMENTS**

380 We thank WormBase for invaluable tools and information used to plan and execute the research
381 described. Some strains were provided by the CGC, which is funded by NIH Office of Research
382 Infrastructure Programs (P40 OD010440). RNA and whole genome sequencing were conducted
383 by the Vanderbilt University Medical Center's VANTAGE Core (NIH 1U24OD035523-01). Some
384 schematics were generated using BioRender. This work was generously supported by R01
385 GM123260 (MRP), R35 GM145378 (MRP), pilot grant from the Evolutionary Studies at Vanderbilt
386 (MRP). JPH, LKG, and SHS are supported by the Training Program in Environmental Toxicology
387 (T32ES007028). LKG is supported by National Defense Science & Engineering Graduate

388 Fellowship through the US Department of Defense. SHS is supported by the Graduate Research
389 Fellowship Program through the National Science Foundation.

390

391 **AUTHOR CONTRIBUTIONS**

392 Conceptualization, J.P.H and M.R.P.; Methodology, J.P.H and M.R.P.; Validation, J.P.H., A.M.S.,
393 and H.R.; Formal Analysis, J.P.H. and L.K.G.; Investigation, J.P.H., N.H.D, A.M.S, L.K.G., H.R.,
394 and M.R.P.; Resources, J.P.H., H.R., S.H.S., and M.R.P.; Data Curation, J.P.H., and L.K.G.;
395 Writing – Original Draft, J.P.H. and M.R.P.; Writing – Review & Editing, J.P.H., N.H.D, A.M.S,
396 L.K.G., H.R., S.H.S., and M.R.P.; Visualization, J.P.H. and L.K.G.; Supervision, J.P.H. and M.R.P.;
397 Project Administration, J.P.H. and M.R.P.; Funding Acquisition, M.R.P.

398

399 **DECLARATION OF INTERESTS**

400 The authors declare no competing interests.

401 **FIGURE LEGENDS**

402 **Figure 1: Increased nuclear activity of HOE-1 has a strong mitochondrial signature.**

403 (A) A volcano plot of gene expression differences between wildtype and *hoe-1*(ΔNES) animals on
404 control RNAi. A \log_2 fold change cutoff of 1 or -1 (vertical dashed gray line) and a $-\log_{10}$ adjusted
405 p-value cutoff of $p < 0.05$ (horizontal dashed gray line) are included. Genes with no significant
406 change, genes with a significant increase in gene expression and genes with significantly
407 decreased expression are represented by gray, red and blue points respectively. (B) Gene
408 ontology analysis of genes significantly upregulated with a \log_2 fold change >1 in *hoe-1*(ΔNES)
409 animals relative to wildtype. Shown are the 10 most significant terms for each analysis by false
410 discovery rate (FDR). (C) Heat map of gene expression in wildtype (WT) and *hoe-1*(ΔNES)
411 animals on control and *atfs-1* RNAi. Gene expression is visualized by a z-score calculated on a

412 gene-by-gene basis. A z-score equal to zero is yellow, positive z-scores are red, and negative z-
413 scores are blue. (D) Normalized transcript counts from RNA-seq of high-confidence *atfs-1* target
414 genes *clec-17*, *cyp-14A4*, *hsp-6*, *hsp-60*, *hrg-9*, and *K09E9.1* in wildtype (WT) and *hoe-1*(ΔNES)
415 animals on control and *atfs-1* RNAi.

416

417 **Figure 2: HOE-1-dependent UPR^{mt} has distinct features.**

418 Fluorescence overlayed brightfield image of UPR^{mt} reporter (*hsp-6p::GFP*) in the (A) anterior and
419 (B) posterior of *hoe-1*(ΔNES), and *nuo-6* loss-of-function (*nuo-6-/-*) animals. The intestine is
420 traced with a dotted line. Scale bar 50 μ m. (C) Fluorescence images of UPR^{mt} reporter (*hsp-*
421 *6p::GFP*) activation in wildtype, *hoe-1*(ΔNES), and *nuo-6-/-* animals across development: larval
422 stage 2 (L2), larval stage 4 (L4), day 1 adult (D1A), day 2 adult (D2A). Scale bar 200 μ m – L2 and
423 L4 share scale bar, D1A and D2A share scale bar. (D) Relative mean fluorescence intensity
424 quantification of *hsp-6p::GFP* in wildtype, *hoe-1*(ΔNES), and *nuo-6-/-* animals across
425 development normalized to wildtype L4 animals (n=24, mean and SD shown, ordinary two-way
426 ANOVA with Tukey's multiple comparisons test). (E) Fluorescence images of UPR^{mt} reporter (*hsp-*
427 *6p::GFP*) activation in day 2 adult wildtype, *glp-1* temperature-sensitive loss-of-function (*glp-*
428 *1(ts)*), *hoe-1* somatic overexpression (*hoe-1(OE)*), and *glp-1(ts);hoe-1(OE)* animals at both a
429 permissive (16°C – *glp-1(ts)* are fertile) and restrictive (25°C – *glp-1(ts)* are sterile) temperature.
430 Scale bar 200 μ m. (F) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in
431 wildtype, *glp-1(ts)*, *hoe-1(OE)*, and *glp-1(ts);hoe-1(OE)* animals at both a permissive (16°C) and
432 restrictive (25°C) temperature (n=24, mean and SD shown, ordinary two-way ANOVA with Tukey's
433 multiple comparisons test).

434

435 **Figure 3: Forward genetic screen reveals gain-of-function *acdh-1* mutants induce post-**
436 **developmental, intestinal specific UPR^{mt}.**

437 (A) Schematic outline of forward genetic mutagenesis screen. (B) Fluorescence images of UPR^{mt}
438 reporter (*hsp-6p::GFP*) activation in mutant strains recovered from forward genetic screen.
439 Animals imaged as day 2 adults. Scale bar 200 μ m. (C) Protein schematic of ACDH-1. Missense
440 mutations identified in mutant strain mpt134 (G294E) and mpt136 (A365V) are indicated. (D)
441 Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in *acdh-1*(G294E) and *acdh-*
442 1(A365V) animals across development: larval stage 2 (L2), larval stage 4 (L4), day 1 adult (D1A),
443 day 2 adult (D2A). Scale bar 200 μ m – L2 and L4 share scale bar, D1A and D2A share scale bar.
444 (E) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in wildtype and *acdh-*
445 1(G294E) animals across development normalized to wildtype L4 animals (n=24, mean and SD
446 shown, ordinary two-way ANOVA with Tukey's multiple comparisons test). (F) Relative mean
447 fluorescence intensity quantification of *hsp-6p::GFP* in wildtype and *acdh-1*(A365V) animals
448 across development normalized to wildtype L4 animals (n=24, mean and SD shown, ordinary two-
449 way ANOVA with Tukey's multiple comparisons test). (G) Fluorescence images of UPR^{mt} reporter
450 (*hsp-6p::GFP*) activation in day 2 adult wildtype and *acdh-1* loss-of-function (*acdh-1*−/−) animals.
451 Scale bar 200 μ m (H) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day
452 2 adult wildtype and *acdh-1*−/− animals (n=24, mean and SD shown, unpaired t-test). (I)
453 Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype (+/+),
454 *acdh-1*(G294E) (G294E/G294E), *acdh-1*(G294E) x wildtype trans-heterozygous (G294E/+), and
455 *acdh-1*(G294E) x *acdh-1* loss-of-function trans-heterozygous (G294E−) animals. Scale bar 200
456 μ m. (J) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype
457 (+/+), *acdh-1*(A365V) (A365V/A365V), *acdh-1*(A365V) x wildtype trans-heterozygous (A365V/+),
458 and *acdh-1*(A365V) x *acdh-1* loss-of-function trans-heterozygous (A365V−) animals. Scale bar
459 200 μ m. (K) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult
460 wildtype (+/+), *acdh-1*(G294E) (G294E/G294E), *acdh-1*(G294E) x wildtype trans-heterozygous
461 (G294E/+), and *acdh-1*(G294E) x *acdh-1* loss-of-function trans-heterozygous (G294E−) animals
462 (n=24, mean and SD shown, ordinary one-way ANOVA with Tukey's multiple comparisons test).

463 (L) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype
464 (+/+, *acdh-1(A365V)* (A365V/A365V), *acdh-1(A365V)* x wildtype trans-heterozygous (A365V/+),
465 and *acdh-1(A365V)* x *acdh-1* loss-of-function trans-heterozygous (A365V/-) animals (n=24, mean
466 and SD shown, ordinary one-way ANOVA with Tukey's multiple comparisons test).

467

468 **Figure 4: ACDH-1 is dependent upon vitamin B12 and required in the mitochondria to**
469 **activate UPR^{mt}.**

470 (A) Schematic of the parallel pathways known to metabolize the short chain propionic acid. (B)
471 Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult *acdh-1(G294E)*
472 and *acdh-1(A365V)* animals supplemented with 0nM or 64nM vitamin B12. Scale bar 200 μ m. (C)
473 Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype, *acdh-*
474 *1(G294E)*, and *acdh-1(A365V)* animals supplemented with 0nM or 64nM vitamin B12 (n=24,
475 mean and SD shown, ordinary two-way ANOVA with Tukey's multiple comparisons test). (D)
476 Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype and *nuo-*
477 *6-/-* animals supplemented with 0nM or 64nM vitamin B12. Scale bar 200 μ m. (E) Relative mean
478 fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype and *nuo-6-/-* animals
479 supplemented with 0nM or 64nM vitamin B12 (n=24, mean and SD shown, ordinary two-way
480 ANOVA with Tukey's multiple comparisons test). (F) Fluorescence images of the midsection of a
481 wildtype animal expressing ACDH-1::GFP (green) stained with TMRE (magenta) to visualize
482 mitochondria. GFP and TMRE co-localization shown in white in merged image. Scale bar 10 μ m.
483 (G) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype,
484 *acdh-1(G294E)*, *acdh-1(ΔMTS)*, and *acdh-1(ΔMTS,G294E)* animals. Scale bar 200 μ m. (H)
485 Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype, *acdh-*
486 *1(G294E)*, *acdh-1(ΔMTS)*, and *acdh-1(ΔMTS,G294E)* animals (n=24, mean and SD shown,
487 ordinary one-way ANOVA with Tukey's multiple comparisons test).

488

489 **Figure 5: Acrylyl-CoA, an intermediate metabolite downstream of ACDH-1 and upstream of**
490 **ECH-6, likely signals UPR^{mt} activation.**

491 (A) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype and
492 *hach-1* loss-of-function (*hach-1-/-*) animals. Scale bar 200 μ m. (B) Relative mean fluorescence
493 intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype and *hach-1-/-* animals (n=24, mean
494 and SD shown, unpaired t-test). (C) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*)
495 activation in day 2 adult wildtype, *hach-1-/-*, *acdh-1-/-* and *acdh-1-/-;hach-1-/-* animals. Scale bar
496 200 μ m. (D) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult
497 wildtype *hach-1-/-*, *acdh-1-/-*, and *acdh-1-/-;hach-1-/-* double mutant animals (n=24, mean and SD
498 shown, ordinary one-way ANOVA with Tukey's multiple comparisons test). (E) Fluorescence
499 images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype and *acdh-1-/-* animals
500 on control and *ech-6* RNAi. Scale bar 200 μ m. (F) Relative mean fluorescence intensity
501 quantification of *hsp-6p::GFP* in day 2 adult wildtype and *acdh-1-/-* animals on control and *ech-6*
502 RNAi (n=24, mean and SD shown, ordinary two-way ANOVA with Tukey's multiple comparisons
503 test). (G) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype,
504 *hphd-1* loss-of-function (*hphd-1-/-*), and *alh-8* loss-of-function (*alh-8-/-*) animals. Scale bar 200
505 μ m. (H) Relative mean fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult
506 wildtype, *hphd-1-/-*, and *alh-8-/-* animals (n=24, mean and SD shown, ordinary one-way ANOVA
507 with Tukey's multiple comparisons test).

508

509 **Figure 6: HOE-1 functions downstream of ACDH-1.**

510 (A) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype, *hoe-*
511 *1*(OE), *acdh-1-/-*, and *acdh-1-/-;hoe-1*(OE) animals all of which are in a *g/p-1(ts)* background at

512 the restrictive temperature (25°C). Scale bar 200 μ m. (B) Relative mean fluorescence intensity
513 quantification of *hsp-6p::GFP* in day 2 adult wildtype, *hoe-1*(OE), *acd-1*-, and *acd-1*-;*hoe-1*(OE)
514 animals all of which are in a *glp-1*(ts) background at the restrictive temperature (25°C)
515 (n=24, mean and SD shown, ordinary one-way ANOVA with Tukey's multiple comparisons test).
516 (C) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype, *hoe-1*(OE),
517 *acd-1*(ΔMTS), and *acd-1*(ΔMTS);*hoe-1*(OE) animals all of which are in a *glp-1*(ts)
518 background at the restrictive temperature. Scale bar 200 μ m. (D) Relative mean fluorescence
519 intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype, *hoe-1*(OE), *acd-1*(ΔMTS), and
520 *acd-1*(ΔMTS);*hoe-1*(OE) animals all of which are in a *glp-1*(ts) background at the restrictive
521 temperature (25°C) (n=24, mean and SD shown, ordinary one-way ANOVA with Tukey's multiple
522 comparisons test). (E) Fluorescence images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2
523 adult wildtype, *pcca-1* loss-of-function mutant (*pcca-1*-, *hoe-1*(OE), and *pcca-1*-;*hoe-1*(OE)
524 animals all of which are in a *glp-1*(ts) background at the restrictive temperature (25°C),
525 supplemented with either 0 or 64 nM vitamin B12. Scale bar 200 μ m. (F) Relative mean
526 fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype, *pcca-1*-, *hoe-1*(OE),
527 and *pcca-1*-;*hoe-1*(OE) animals all of which are in a *glp-1*(ts) background at the restrictive
528 temperature (25°C), supplemented with either 0 or 64 nM vitamin B12 (n=24, mean and SD
529 shown, ordinary two-way ANOVA with Tukey's multiple comparisons test). (G) Fluorescence
530 images of UPR^{mt} reporter (*hsp-6p::GFP*) activation in day 2 adult wildtype and *hoe-1*(ΔNES)
531 animals supplemented with 0nM and 64nM vitamin B12. Scale bar 200 μ m. (H) Relative mean
532 fluorescence intensity quantification of *hsp-6p::GFP* in day 2 adult wildtype and *hoe-1*(ΔNES)
533 animals supplemented with 0nM and 64nM vitamin B12 (n=24, mean and SD shown, ordinary
534 two-way ANOVA with Tukey's multiple comparisons test).
535

536 **Figure 7: The germline non-cell autonomously regulates ACDH-1 pathway activity,**
537 **influencing nuclear accumulation of HOE-1.**

538 (A) Fluorescence images of *acdh-1* transcriptional reporter (*acdh-1p::GFP*) activation in day 1
539 (D1) and day 2 (D2) adult wildtype and *glp-1(ts)* animals at the restrictive temperature (25°C).
540 Scale bar 200 μ m. (B) Relative mean fluorescence intensity quantification of *acdh-1p::GFP*
541 activation in day 1 (D1) and day 2 (D2) adult wildtype and *glp-1(ts)* animals at the restrictive
542 temperature (25°C) (n=24, mean and SD shown, ordinary two-way ANOVA with Tukey's multiple
543 comparisons test). (C) Fluorescence images of ECH-6 protein reporter (ECH-6::GFP) activation
544 in day 2 adult wildtype and *glp-1(ts)* animals at the restrictive temperature (25°C). Scale bar 200
545 μ m. (D) Relative mean fluorescence intensity quantification of ECH-6::GFP activation in day 2
546 adult wildtype and *glp-1(ts)* animals at the restrictive temperature (25°C) (n=24, mean and SD
547 shown, ordinary one-way ANOVA with Tukey's multiple comparisons test). (E) Fluorescence
548 images of HOE-1 protein reporter (HOE-1::GFP) in wildtype and *glp-1(ts)* animals at the restrictive
549 temperature (25°C) supplemented with 0 or 64 nM vitamin B12 (zoomed in on posterior half of
550 animals). Scale bar 200 μ m. (F) Number of intestinal nuclei per animal with a HOE-1::GFP
551 fluorescence intensity exceeding a pixel intensity threshold of 100 in wildtype and *glp-1(ts)*
552 animals at the restrictive temperature (25°C) supplemented with 0 or 64 nM vitamin B12 (n=24,
553 mean and SD shown, ordinary two-way ANOVA with Tukey's multiple comparisons test). (G)
554 Compromised germline integrity cell non-autonomously regulates the mitochondrial propionate
555 shunt pathway resulting in accumulation of acrylyl-CoA which in turn drives increased nuclear
556 accumulation of HOE-1 triggering intestinal specific UPR^{mt} (figure generated using BioRender).

557

558 **STAR METHODS**

559

560 **RESOURCE AVAILABILITY**

561 **Lead Contact**

562 Further information and requests for resources and reagents should be directed to the lead
563 contact, Maulik R. Patel (maulik.r.patel@vanderbilt.edu).

564

565 **Materials Availability**

566 Any reagent generated for this manuscript is available from the lead contact upon request.

567

568 **Data and Code Availability**

569 Processed data is provided as supporting documentation with this manuscript. All raw and
570 processed data and analysis codes will be made publicly available upon final publication. Any
571 additional information required to reanalyze the data reported in this paper is available from the
572 lead contact upon request.

573

574 **METHOD DETAILS**

575 ***C. elegans* Maintenance**

576 Worms were grown on nematode growth media (NGM) seeded with OP50 *E. coli* bacteria and
577 maintained at 20°C. Strains containing temperature sensitive mutants were maintained at 16°C.
578 All experiments were conducted under these conditions unless otherwise stated.

579

580 **Bacterial Strains**

581 Bacterial strain OP50 *E. coli* was obtained from the *Caenorhabditis* Genetics Center (RRID:
582 WBStrain00041969). RNAi bacterial strains are all in the *E. coli* strain HT115 as part of the
583 Ahringer RNAi Library [S1].

584

585 **Mutant and Transgenic Lines**

586 A full list of mutant and transgenic worm strains used can be found in the Key Resource Table.
587 All new mutant and transgenic strains generated via CRISPR/Cas9 for this study were
588 confirmed by Sanger sequencing.

589

590 **CRISPR/Cas9**

591 CRISPR was conducted as previously described using Alt-R S.p. Cas9 Nuclease V3 (IDT
592 #1081058) and tracrRNA (IDT #1072532) [S2]. However, instead of using the *rol-6* plasmid, we
593 used *dpy-10* endogenous editing as a co-injection marker as previously described [S3]. Once
594 the edit of interest was recovered, the *dpy-10* co-marker was outcrossed using a wildtype (N2,
595 RRID: WBStrain00000001) background. A complete list of crRNA and repair template
596 sequences purchased from IDT can be found in Table S1.

597

598 **Genetic Crosses**

599 Strains resulting from genetic crosses were generated by crossing 15-20 heterozygous males of
600 a given strain to 5-8 larval stage 4 (L4) hermaphrodites of another strain (heterozygous males
601 were first generated by crossing wildtype N2 males to L4 hermaphrodites of a strain). F1
602 generation L4s were subsequently cloned out from cross plates. Once F2 progeny were laid,
603 F1s were genotyped/screened for allele(s) of interest. F2 progeny were cloned out from F1s
604 heterozygotes, and once F3 progeny were laid, F2s were genotyped/screened for homozygosity
605 of alleles of interest. All genotyping primers were purchased from IDT and can be found in Table
606 S1.

607

608 **RNA Extraction for RNA Sequencing**

609 Stage synchronized animals were grown from embryo at 25°C for 72 hours. 800 adult animals
610 were collected for each replicate and transferred into 1 ml of M9 Buffer in a 1.5 mL
611 microcentrifuge tube. Worms were pelleted at 500xg for 1 minute, supernatant removed and

612 then washed once with 1 ml of fresh M9, and then once with 1 ml of M9 supplemented with
613 0.01% Tween-20 following the same spin and supernatant removal. After removing as much of
614 the last supernatant as possible, 250 ul of Qiazol was added to each sample and snap-frozen in
615 liquid nitrogen. Samples were then run through 3 freeze thaw cycles: 37°C bead bath for 2 min
616 followed by liquid nitrogen for 1 minute. Following freeze thaw cycles, samples were completely
617 thawed and incubated at room temperature for 5 minutes. 50 ul of chloroform was added to
618 each sample, vigorously vortexed for 30 s and incubated at room temperature for 3 minutes.
619 Then, samples were centrifuged at 4°C for 15 minutes at 12,000xg for 15 min. Following the
620 spin, 125 ul of the upper aqueous phase was transferred to a fresh 1.5 ml tube. 187.5 ul of
621 100% molecular grade ethanol was then added to each sample and pipetted up and down to
622 mix. Samples were then transferred to Qiagen RNeasy Mini Kit columns, centrifuged at 8,000xg
623 for 30 seconds, and flow through discarded. Then, 700 ul of RW1 buffer was added to column,
624 centrifuged at 8,000xg for 30 seconds, and flow through discarded. 500 ul RPE buffer added to
625 column, centrifuged at 8,000xg for 30 seconds, and flow through discarded. Then again 500 ul
626 of RPE buffer was added, centrifuged at 12,000xg for 2 min, and flow through discarded.
627 Columns were then transferred to fresh collection tubes, centrifuged at 13,000xg for 1 minute
628 with tube lids open to dry columns. Samples were then eluted from column with 20 ul of RNase
629 free water into a fresh 1.5 ml microcentrifuge tube by centrifuging at 13,000xg for 1 min.
630
631 Following RNA extraction, RNA samples were DNase treated with Turbo DNA-free Kit
632 (Invitrogen #AM1907) following manufacturer's directions. Briefly, 2 ul of 10x Turbo DNase
633 Buffer and 1 ul of Turbo DNase were added to 20 ul RNA samples and gently mixed by pipetting
634 up and down. Samples were then incubated in a 37°C bead bath for 20 min. Following
635 incubation, 3 ul of resuspended Inactivation Reagent was added to each sample and mixed well
636 by pipetting up and down. Samples were incubated at 25°C for 5 min. Then, samples were

637 centrifuged at 10,000xg for 90 sec. The RNA containing supernatants were transferred to fresh
638 tubes and stored at -80°C until RNA sequencing.

639

640 **RNA Sequencing**

641 RNA quality control, library preparation, and RNA sequencing were conducted by the Vanderbilt
642 University Medical Center Vanderbilt Technologies for Advanced Genomics (VANTAGE) core.
643 RNA sample quality and integrity was assessed by fluorometry Qubit or Picogreen (for
644 concentration) and by BioAnalyzer or TapeStation (for integrity), respectively. Stranded mRNA
645 library preparation was conducted using NEBNext® Poly(A) selection. Sequencing was
646 performed at Paired-End 150 bp on the Illumina NovaSeq 6000 targeting an average of 50M
647 reads per sample.

648

649 **RNA Sequencing Analysis**

650 An average of ~40,000,000 reads were generated per sample and the Q30+ percentage was
651 ~92% on average. Initial read quality was assessed with FastQC. Paired end reads were
652 trimmed using Trimmomatic-0.39 [S4]. The universal Illumina adapter was removed, and reads
653 were trimmed with a 4:15 sliding window. STAR 2.5.4 was used to align reads to the genome
654 and transcriptome (WBcel.235) using default parameters [S5]. Salmon was used to generate
655 transcript pseudo counts with the following options: --validateMappings --recoverOrphans --
656 numBootstraps=30 --useVBOpt --seqBias --gcBias --writeUnmappedNames [S6]. The *C.*
657 *elegans* Ensembl database was used to collate gene IDs. Tximport was used to import data
658 from the salmon files, including read abundance, length, counts, counts from abundance [S7].
659 DESeq2 was used to generate a contrast and determine significantly different transcript levels
660 [S8]. DESeq2 was also used to normalize counts to account for variation in library size.

661

662 **Gene Ontology Analysis**

663 Gene Ontology Analysis was conducted using the STRING database [S9]. For Figure 1B, genes
664 with a \log_2 fold change >1 and an adjusted p-value <0.05 were compiled for entry into the
665 'multiple proteins' feature of STRING.

666

667 **Fluorescence Microscopy**

668 All whole animal imaging was done using a Zeiss Axio Zoom V16 stereo zoom microscope. For
669 all imaging, worms were immobilized on 2% agar pads on microscope slides in $\sim 1 \mu\text{l}$ of 100 mM
670 levamisole (ThermoFisher #AC187870100) and then coverslip applied.

671

672 **Fluorescence Image Analysis**

673 For whole animal fluorescence intensity quantification, mean fluorescence intensity of each
674 individual animal was determined by tracing the outline of each worm and then using the
675 'measure' feature in ImageJ/Fiji (which calculates the average pixel intensity by dividing the sum
676 total of fluorescence intensity by the total number of pixels within bounds of the trace). For HOE-
677 1::GFP image analysis (Figure 7E, 7F), the 'threshold' feature of ImageJ/Fiji was used to count
678 the number of gut cell nuclei that were saturated at a pixel intensity threshold of 100.

679

680 **EMS Mutagenesis Screen**

681 Mutagenesis was conducted as previously described [S10]. Briefly, zcls13 animals were
682 washed off of four, 60 mm plates (containing at least a few hundred larval stage 4 (L4) animals
683 total) with sterile M9 buffer. Worms were collected in a 15 ml conical tube which was centrifuged
684 at 1500xg for 3 min to pellet worms. Supernatant was removed by aspiration. The worm pellet
685 was resuspended in 2 ml of M9. In a separate tube, 20 μl of ethyl methanesulfonate (EMS) was
686 added to 2 ml of M9 buffer then vortexed. The 2 ml of EMS supplemented M9 buffer was added
687 to the 2 ml worm suspension (final concentration of EMS in solution is $\sim 50 \text{ mM}$). The worms
688 were incubated for 4 hours at room temperature constantly mixing on a nutator. After incubation,

689 worms were pelleted by centrifugation at 1500xg for 3 minutes, supernatant was removed.
690 Worms were then washed 3 times with 5 ml of fresh M9 buffer by sequential centrifugation at
691 1500xg for 3 minutes, removal of supernatant, and addition of M9. After the final wash, worms
692 were resuspended in a minimal volume of M9 buffer (~200 – 500 μ l) and then transferred to
693 NGM plates seeded with OP50 bacteria. Worms were allowed to recover for 2 hours, then 5 L4
694 animals (considered P0 generation) were transferred to separate OP50 seeded plates (10 – 20
695 plates of 5 L4s each per round of mutagenesis). 3 – 5 days following mutagenesis, L4 or young
696 adult F1 animals were cloned out to individual 35 mm plates (500 animals per day over a three-
697 day period; ~1500 animals per round of mutagenesis). A minimum of 6000 F1 animals were
698 cloned in total. Once F1 containing plates had a majority of progeny reach adulthood (3 – 5
699 days post F1 cloning), F2 populations were screened for UPR^{mt} activation. Special attention was
700 paid to plates that had UPR^{mt} activation in adult animals but not larval animals as well as UPR^{mt}
701 activation only in the intestine. Putative ‘hits’ (UPR^{mt} intestinal activation and in adults only) were
702 transferred to individual plates. These populations were subsequently assessed to confirm that
703 UPR^{mt} was only activated in adults and that the causal mutation was homozygous (all offspring
704 exhibited UPR^{mt} activation). These were the populations that were kept as true hits (which were
705 mpt134, mpt135, mpt136, mpt137, mpt138, and mpt140). Six rounds of backcrossing were
706 conducted for each mutant to remove the majority of passenger mutations caused by EMS.
707

708 **DNA Extraction for Whole Genome Sequencing**

709 DNA extraction was conducted as previously described [S11, S12]. *C. elegans* of each mutant
710 recovered from the screen were collected from a densely populated 150 mm plates by washing
711 the animals off the plate with M9 buffer and collected in 15 ml conical tubes. Worms were
712 pelleted by centrifugation at 450 x g for 3 min. The supernatant was discarded, worms were
713 washed three times with 15 mL of M9 buffer and pelleted at 450 x g. Worms were then washed
714 once with 15 mL of milliQ water, spun down, and the supernatant was discarded. Total worm

715 pellet collected was ~1 ml. Animals were resuspended in 2 mL of worm lysis buffer (0.1M Tris-Cl
716 pH 8.5, 0.1M NaCl, 50 mM EDTA pH 8.0, 1% SDS) and supplemented with 100 μ L of
717 Proteinase K 20 mg/mL (ThermoFisher, 25530049). These were mixed by inversion and
718 incubated for 1 hour at 62°C. After incubation, samples were supplemented with 400 μ L 5 M
719 NaCl and mixed by inversion. Samples were further supplemented with 400 μ L of CTAB solution
720 (10% CTAB, 4% NaCl) and incubated for 10 min at 37°C. To that mixture, 2 ml of chloroform
721 (Sigma Aldrich, C2432) was added and vortexed vigorously for ten seconds. Phase separation
722 was achieved by centrifuging at 2000 x g for 10 min at room temperature. The aqueous phase
723 was recovered and mixed with 2 mL of Phenol:Chloroform:Isoamyl Alcohol (25:24:1) saturated
724 with 10 mM Tris, pH 8.0, 1 mM EDTA (Sigma Aldrich, P3803). This was vortexed vigorously for
725 10 seconds and phase separation was achieved by centrifugation at 2000 x g for 10 min at
726 room temperature. The aqueous phase was transferred to a 2 ml microcentrifuge tube,
727 supplemented with 0.6 volumes of -20°C isopropanol, and mixed by inversion. DNA was
728 precipitated by chilling samples at -20°C for 30 min followed by centrifugation at 13,000 x g for 5
729 min at room temperature. The pellet was washed twice with ice cold 70% ethanol and then
730 resuspended in 200 μ L TE. The 200 μ L DNA sample was supplemented with 20 μ L of RNase A
731 (Thermo Fisher, EN053) and mixed by flicking the tube and inverting several times. The
732 samples were incubated for 2 hours at 37°C. The sample was then supplemented with 20 μ L of
733 20% SDS, 10 μ L of 0.5 M EDTA pH 8.0, and 20 μ L of Proteinase K. The samples were
734 incubated for 1 hour at 62°C. Following incubation, samples were supplemented with 40 μ L 10
735 M ammonium acetate and mixed. The DNA was extracted with an equal volume of
736 Phenol:Chloroform:Isoamyl Alcohol saturated with TE pH 8.0. The sample was mixed vigorously
737 by vortexing and phase separation was achieved by centrifuging 5 min at 5000 x g. The
738 aqueous phase was recovered and was extracted again with an equal volume of chloroform.
739 The sample was mixed vigorously by vortexing and phase separation was achieved by
740 centrifuging 5 min at 5000 x g. DNA was precipitated by adding 2 volumes of -20°C 100%

741 ethanol. The sample was mixed by inversion several times and allowed to chill at -20°C for 1
742 hour. The DNA was pelleted by centrifugation at 13,000 x g for 5 min at room temperature. The
743 DNA pellet was washed twice with ice cold 70% ethanol and resuspended in 50 µL nuclease
744 free water.

745

746 **Whole Genome Sequencing**

747 DNA quality control, library preparation, and whole genome sequencing were conducted by the
748 Vanderbilt University Medical Center Vanderbilt Technologies for Advanced Genomics
749 (VANTAGE) core. DNA quality and content was assessed via Qubit. Then library preparation was
750 conducted (Illumina Nextera DNA Flex). WGS was conducted on Illumina NovaSeq6000 with
751 PE150 targeting 30x coverage per sample. Initial analysis to generate variant call files was
752 conducted in Illumina's BaseSpace program.

753

754 **Whole Genome Analysis and Variant Identification**

755 We filtered the variants first by eliminating variants with an allele count >4 and then those
756 present in <85% of the reads. This left us with high confidence variants as variants that are
757 causal mutations should be present in nearly all reads and due to the outcrossing strategy.
758 Remaining variants were manually identified and annotated in IGV to identify candidate causal
759 mutations.

760

761 **TMRE Staining**

762 A 10 mM stock solution of TMRE (Sigma Allrich #87917) in DMSO was first prepared. 100 µl of
763 1 µM TMRE solution (diluted from stock in sterile water) was added to the top of a 1-day seeded
764 OP50 NGM plate and allowed to dry in the dark for 2 hours. Then, larval stage 4 (L4) worms
765 were transferred to TMRE plates and incubated at 20°C in the dark for 24 hours. Following
766 incubation, worms were transferred to a non-TMRE containing OP50 seeded NGM plate and

767 allowed to recover from the dye (i.e. remove any excess dye from intestinal lumen, body wall,
768 etc.) for 1 hour in the dark. Following recovery, animals were imaged immediately.

769

770 **Vitamin B12 Supplementation**

771 During NGM plate preparation, a stock of 1 mM vitamin B12 in water was supplemented to
772 molten agar (once cooled to <55°C) to a final concentration of 64 nM.

773

774 **RNAi**

775 RNAi by feeding was conducted as previously described [S13]. Briefly, RNAi clones were grown
776 overnight from single colony in 2 ml liquid culture of LB supplemented with 50 µg/ml ampicillin.
777 To make 16 RNAi plates, 50 ml of LB supplemented with 50 µg/ml ampicillin and inoculated with
778 500 µl of overnight culture, then incubated while shaking at 37 °C for 4–5 hours (to an OD550-
779 600 of ~0.8). Then, to induce expression of double stranded RNA, cultures were supplemented
780 with an additional 50 ml of LB supplemented with 50 µg/ml ampicillin and 4 mM IPTG and then
781 continued incubating while shaking at 37 °C for 4 hours. Following incubation, bacteria were
782 pelleted by centrifugation at 3900 rpm for 6 min. Supernatant was decanted and pellets were
783 gently resuspended in 4 ml of LB supplemented with 8 mM IPTG. 250 µl of resuspension was
784 seeded onto standard NGM plates containing 1 mM IPTG. The bacterial background used for
785 RNAi, *E. coli* HT115, has higher B12 levels than OP50. Thus, NGM plates were prepared with
786 soy peptone to reduce accessible vitamin B12. Plates were left to dry overnight and then used
787 within 1 week. Bacterial RNAi feeder strains were from Ahringer RNAi Feeding Library, grown
788 from single colony and identity confirmed by Sanger sequencing. Ech-6 (T05G5.6) hoe-1
789 (E04A4.4).

790

791 **Statistical Analysis**

792 Experiment-specific details regarding sample size and statistical test used can be found in the
793 corresponding Figure Legends. Significant p-values under 0.05 are denoted on all graphs and
794 p-values above 0.05 are considered non-significant (ns). All statistical analysis was performed in
795 GraphPad Prism 9. All data points for each experiment are included (no outlier exclusion was
796 performed). For all whole animal fluorescence analysis, a sample size of 24 animals was used,
797 each animal is considered a biological replicate.

798

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Bacterial and virus strains		
E. coli Bacteria OP50	Caenorhabditis Genetics Center(CGC)	RRID: WB-STRAIN: WBStrain00041969
Biological samples		
Chemicals, peptides, and recombinant proteins		
Vitamin B12	Sigma-Aldrich	V2876
Ethyl methanesulfonate (EMS)	Sigma-Aldrich	M0880
Qiazol	Qiagen	79306
Alt-R® S.p. Cas9 Nuclease V3	IDT	1081058
Tetramethylrhodamine ethyl ester perchlorate (TMRE)	Sigma-Aldrich	87917
Critical commercial assays		
RNeasy Mini Kit	Qiagen	74104
TURBO DNA-free Kit	ThermoFisher	AM1907
Deposited data		

Raw and analyzed RNA sequencing data: Raw data available upon publication (NCBI GEO). Analyzed data provided as a supporting document with submission.	This study	
Experimental models: Cell lines		
Experimental models: Organisms/strains		
<i>C. elegans</i> wild isolate	CGC	RRID: WB-STRAIN: WBStrain00000001
zcls13[hsp-6p::GFP] V	CGC	RRID: WB-STRAIN: WBStrain00034068
acdh-1(ok1489) I	CGC	RRID: WB-STRAIN: WBStrain00036246
wwls24[acdh-1p::GFP + unc-119(+)]	CGC	RRID: WB-STRAIN: WBStrain00040155
hphd-1(ok3580) II	CGC	RRID: WB-STRAIN: WBStrain00033247
alh-8(ww48) II	CGC	RRID: WB-STRAIN: WBStrain00040157
glp-1(e2144) III	CGC	RRID: WB-STRAIN: WBStrain00007730
pcca-1(ok2282) X	CGC	RRID: WB-STRAIN: WBStrain00032465
nuo-6(qm200) I; zcls13[hsp-6p::GFP] V	Held et al eLife 2022	MRP232
hoe-1(mpt14[HOE-1::GFP]) IV	Held et al eLife 2022	MRP258
hoe-1(mpt67[ΔNES])/tmC25 IV; zcls13 V	Held et al eLife 2022	MRP379
mpt134;zcls13 V	This study	MRP644
mpt135;zcls13 V	This study	MRP663
mpt136;zcls13 V	This study	MRP646
mpt137;zcls13 V	This study	MRP647
mpt138;zcls13 V	This study	MRP666
mpt140;zcls13 V	This study	MRP650
acdh-1(mpt142[G294E])I; zcls13 V	This study	MRP797
acdh-1(mpt145[A365V])I; zcls13 V	This study	MRP806
acdh-1(ok1489) I; zcls13 V	This study	MRP800
acdh-1(mpt154[ΔMTS])I; zcls13 V	This study	MRP845
acdh-1(mpt157[ΔMTS,G294E])I; zcls13 V	This study	MRP834
hach-1(mpt152[III:5556870a>t]) III; zcls13 V	This study	MRP899
acdh-1(ok1489) I; hach-1(mpt152) III; zcls13 V	This study	MRP846
hphd-1(ok3580) II; zcls13 V	This study	MRP820
alh-8(ww48) II; zcls13 V	This study	MRP819
glp-1(e2144) III; zcls13 V	This study	MRP511

mptSi1[eft-3p::3XFLAG::hoe-1(isoB ORF)::unc-54 3'UTR], zcls13 V	This study	MRP428
glp-1(e2144) III; mptSi1, zcls13 V	This study	MRP525
acdh-1(ok1489) I; glp-1(e2144) III; zcls13 V	This study	MRP812
acdh-1(ok1489) I; glp-1(e2144) III; mptSi1, zcls13V	This study	MRP785
acdh-1(mpt154[ΔMTS]) I; glp-1(e2144) III; zcls13 V	This study	MRP910
acdh-1(mpt154[ΔMTS]) I; glp-1(e2144) III; mptSi1, zcls13 V	This study	MRP909
glp-1(e2144) III; zcls13 V; pcca-1(ok2282) X	This study	MRP833
glp-1(e2144) III; mptSi1,zcls13 V; pcca-1(ok2282)X	This study	MRP832
acdh-1(mpt161[ACDH-1::GFP])/tmC20 I	This study	MRP854
glp-1(2144) III; wwls24	This study	MRP807
ech-6(mpt188[ECH-6::GFP])/+ III	This study	MRP929
glp-1(e2144), ech-6(mpt188[ECH-6::GFP])/+ III	This study	MRP969
Oligonucleotides		
A complete list can be found in Table S1		
Recombinant DNA		
Plasmid: pJA245	addgene	21506
Software and algorithms		
ImageJ/Fiji		
GraphPad Prism		
Integrative Genomics Viewer (IGV)		
Trimmomatic-0.39		
STAR 2.5.4		
Salmon		
Tximport		
DeSeq2		
BioRender		
Adobe Illustrator		
Other		

801 **REFERENCES**

- 802 1. Speakman, J. R. The physiological costs of reproduction in small mammals. *Philos. Trans. R. Soc. B Biol. Sci.* **363**, 375–398 (2007).
- 803 2. Wang, M. C., O'Rourke, E. J. & Ruvkun, G. Fat Metabolism Links Germline Stem Cells and Longevity in *C. elegans*. *Science* **322**, 957–960 (2008).
- 804 3. Hansen, M., Flatt, T. & Aguilaniu, H. Reproduction, Fat Metabolism, and Life Span: What Is 805 the Connection? *Cell Metab.* **17**, 10–19 (2013).
- 806 4. Mowry, A. V., Donoviel, Z. S., Kavazis, A. N. & Hood, W. R. Mitochondrial function and 807 bioenergetic trade-offs during lactation in the house mouse (*Mus musculus*). *Ecol. Evol.* **7**, 2994–3005 (2017).
- 808 5. Hyatt, H. W., Zhang, Y., Hood, W. R. & Kavazis, A. N. Changes in Metabolism, Mitochondrial 809 Function, and Oxidative Stress Between Female Rats Under Nonreproductive and 3 810 Reproductive Conditions. *Reprod. Sci.* **26**, 114–127 (2019).
- 811 6. Parry, H. A., Randall, R. B., Hyatt, H. W., Hood, W. R. & Kavazis, A. N. Short and long-term 812 effect of reproduction on mitochondrial dynamics and autophagy in rats. *Helix* **7**, e08070 813 (2021).
- 814 7. Ng, M. Y. W., Wai, T. & Simonsen, A. Quality control of the mitochondrion. *Dev. Cell* **56**, 881–905 (2021).
- 815 8. Naresh, N. U. & Haynes, C. M. Signaling and Regulation of the Mitochondrial Unfolded 816 Protein Response. *Cold Spring Harb. Perspect. Biol.* **11**, a033944 (2019).
- 817 9. Haynes, C. M. & Hekimi, S. Mitochondrial dysfunction, aging, and the mitochondrial 818 unfolded protein response in *Caenorhabditis elegans*. *Genetics* **222**, iyac160 (2022).
- 819 10. Nargund, A. M., Fiorese, C. J., Pellegrino, M. W., Deng, P. & Haynes, C. M. Mitochondrial 820 and Nuclear Accumulation of the Transcription Factor ATFS-1 Promotes OXPHOS Recovery 821 during the UPRmt. *Mol. Cell* **58**, 123–133 (2015).
- 822 11. Held, J. P. *et al.* A tRNA processing enzyme is a key regulator of the mitochondrial unfolded 823 protein response. *eLife* **11**, e71634 (2022).
- 824 12. Dubrovsky, E. B., Dubrovskaya, V. A., Levinger, L., Schiffer, S. & Marchfelder, A. Drosophila 825 RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo. *Nucleic Acids Res.* **32**, 255–262 (2004).
- 826 13. Brzezniak, L. K., Bijata, M., Szczesny, R. J. & Stepien, P. P. Involvement of human ELAC2 827 gene product in 3' end processing of mitochondrial tRNAs. *RNA Biol.* **8**, 616–626 (2011).
- 828 14. Lopez Sanchez, M. I. G. *et al.* RNA processing in human mitochondria. *Cell Cycle* **10**, 2904– 829 2916 (2011).
- 830 15. Siira, S. J. *et al.* Concerted regulation of mitochondrial and nuclear non-coding RNAs by a 831 dual-targeted RNase Z. *EMBO Rep.* **19**, e46198 (2018).
- 832 16. Tavtigian, S. V. *et al.* A candidate prostate cancer susceptibility gene at chromosome 17p. 833 *Nat. Genet.* **27**, 172–180 (2001).

839 17. Noda, D. *et al.* ELAC2, a putative prostate cancer susceptibility gene product, potentiates
840 TGF- β /Smad-induced growth arrest of prostate cells. *Oncogene* **25**, 5591–5600 (2006).

841 18. Stentenbach, M. *et al.* Multi-omic profiling reveals an RNA processing rheostat that
842 predisposes to prostate cancer. *EMBO Mol. Med.* **15**, e17463 (2023).

843 19. Haack, T. B. *et al.* ELAC2 Mutations Cause a Mitochondrial RNA Processing Defect
844 Associated with Hypertrophic Cardiomyopathy. *Am. J. Hum. Genet.* **93**, 211–223 (2013).

845 20. Shinwari, Z. M. A. *et al.* The Phenotype and Outcome of Infantile Cardiomyopathy Caused
846 by a Homozygous ELAC2 Mutation. *Cardiology* **137**, 188–192 (2017).

847 21. Saoura, M. *et al.* Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair
848 mitochondrial tRNA 3'-end processing. *Hum. Mutat.* **40**, 1731–1748 (2019).

849 22. Migunova, E. *et al.* ELAC2/RNaseZ-linked cardiac hypertrophy in *Drosophila melanogaster*.
850 *Dis. Model. Mech.* **14**, dmm048931 (2021).

851 23. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M.
852 Mitochondrial Import Efficiency of ATFS-1 Regulates Mitochondrial UPR Activation. *Science*
853 **337**, 587–590 (2012).

854 24. Soo, S. K. & Van Raamsdonk, J. M. High confidence ATFS-1 target genes for quantifying
855 activation of the mitochondrial unfolded protein response. *MicroPublication Biol.* (2021)
856 doi:10.17912/micropub.biology.000484.

857 25. Yang, W. & Hekimi, S. Two modes of mitochondrial dysfunction lead independently to
858 lifespan extension in *Caenorhabditis elegans*. *Aging Cell* **9**, 433–447 (2010).

859 26. Baker, B. M., Nargund, A. M., Sun, T. & Haynes, C. M. Protective Coupling of Mitochondrial
860 Function and Protein Synthesis via the eIF2 α Kinase GCN-2. *PLOS Genet.* **8**, e1002760
861 (2012).

862 27. Rauthan, M., Ranji, P., Aguilera Pradenas, N., Pitot, C. & Pilon, M. The mitochondrial
863 unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate
864 pathway. *Proc. Natl. Acad. Sci.* **110**, 5981–5986 (2013).

865 28. Kimble, J. E. & White, J. G. On the control of germ cell development in *Caenorhabditis*
866 *elegans*. *Dev. Biol.* **81**, 208–219 (1981).

867 29. Watson, E. *et al.* Metabolic network rewiring of propionate flux compensates vitamin B12
868 deficiency in *C. elegans*. *eLife* **5**, e17670 (2016).

869 30. Bhagavan, N. V. CHAPTER 18 - Lipids I: Fatty Acids and Eicosanoids. in *Medical*
870 *Biochemistry (Fourth Edition)* (ed. Bhagavan, N. V.) 365–399 (Academic Press, San Diego,
871 2002). doi:10.1016/B978-012095440-7/50020-2.

872 31. Gurnani, S., Mistry, S. P. & Connor Johnson, B. Function of vitamin B12 in methylmalonate
873 metabolism I. Effect of a cofactor form of B12 on the activity of methylmalonyl-CoA
874 isomerase. *Biochim. Biophys. Acta* **38**, 187–188 (1960).

875 32. Mancia, F. *et al.* How coenzyme B12 radicals are generated: the crystal structure of
876 methylmalonyl-coenzyme A mutase at 2 \AA resolution. *Structure* **4**, 339–350 (1996).

877 33. Watson, E. *et al.* Interspecies Systems Biology Uncovers Metabolites Affecting *C. elegans*
878 Gene Expression and Life History Traits. *Cell* **156**, 759–770 (2014).

879 34. Watson, E., MacNeil, L. T., Arda, H. E., Zhu, L. J. & Walhout, A. J. M. Integration of
880 Metabolic and Gene Regulatory Networks Modulates the *C. elegans* Dietary Response. *Cell*
881 **153**, 253–266 (2013).

882 35. Fukasawa, Y. *et al.* MitoFates: Improved Prediction of Mitochondrial Targeting Sequences
883 and Their Cleavage Sites*. *Mol. Cell. Proteomics* **14**, 1113–1126 (2015).

884 36. Giese, G. E. *et al.* *Caenorhabditis elegans* methionine/S-adenosylmethionine cycle activity
885 is sensed and adjusted by a nuclear hormone receptor. *eLife* **9**, e60259 (2020).

886 37. Wongkittichote, P., Ah Mew, N. & Chapman, K. A. Propionyl-CoA carboxylase – A review.
887 *Mol. Genet. Metab.* **122**, 145–152 (2017).

888 38. Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived
889 RNA fragments (tRFs). *Genes Dev.* **23**, 2639–2649 (2009).

890 39. Choi, E.-J. *et al.* ELAC2, an Enzyme for tRNA Maturation, Plays a Role in the Cleavage of a
891 Mature tRNA to Produce a tRNA-Derived RNA Fragment During Respiratory Syncytial Virus
892 Infection. *Front. Mol. Biosci.* **7**, (2021).

893 40. Wilusz, J. E., Freier, S. M. & Spector, D. L. 3' End Processing of a Long Nuclear-Retained
894 Noncoding RNA Yields a tRNA-like Cytoplasmic RNA. *Cell* **135**, 919–932 (2008).

895 41. Bernhardsgrütter, I. *et al.* The multicatalytic compartment of propionyl-CoA synthase
896 sequesters a toxic metabolite. *Nat. Chem. Biol.* **14**, 1127–1132 (2018).

897 42. Peters, H. *et al.* ECHS1 mutations in Leigh disease: a new inborn error of metabolism
898 affecting valine metabolism. *Brain* **137**, 2903–2908 (2014).

899 43. Ferdinandusse, S. *et al.* Clinical and biochemical characterization of four patients with
900 mutations in ECHS1. *Orphanet J. Rare Dis.* **10**, 79 (2015).

901 44. Haack, T. B. *et al.* Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac
902 involvement. *Ann. Clin. Transl. Neurol.* **2**, 492–509 (2015).

903 45. Yamada, K. *et al.* Clinical, biochemical and metabolic characterisation of a mild form of
904 human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-
905 carboxypropyl)cysteine excretion. *J. Med. Genet.* **52**, 691–698 (2015).

906 46. Al Mutairi, F., Shamseldin, H. e., Alfadhel, M., Rodenburg, R. j. & Alkuraya, F. s. A lethal
907 neonatal phenotype of mitochondrial short-chain enoyl-CoA hydratase-1 deficiency. *Clin.
908 Genet.* **91**, 629–633 (2017).

909 47. Kuwajima, M. *et al.* Valine metabolites analysis in ECHS1 deficiency. *Mol. Genet. Metab.
910 Rep.* **29**, 100809 (2021).

911 48. Sies, H. *et al.* Defining roles of specific reactive oxygen species (ROS) in cell biology and
912 physiology. *Nat. Rev. Mol. Cell Biol.* **23**, 499–515 (2022).

913 49. Jiang, G., Li, C., Lu, M., Lu, K. & Li, H. Protein lysine crotonylation: past, present,
914 perspective. *Cell Death Dis.* **12**, 1–11 (2021).

915 50. Xu, Y., Shi, Z. & Bao, L. An Expanding Repertoire of Protein Acylations. *Mol. Cell. Proteomics* **21**, 100193 (2022).

917 51. Gaddy, M. A., Kuang, S. & Lee, M. A. A. & M. H. The soma-germline communication:
918 implications for somatic and reproductive aging. *BMB Rep.* **54**, 253–259 (2021).

919 52. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of *C.*
920 *elegans*. *Nature* **399**, 362–366 (1999).

921 53. Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of Life-Span by Germ-Line
922 Stem Cells in *Caenorhabditis elegans*. *Science* **295**, 502–505 (2002).

923 54. Wei, Y. & Kenyon, C. Roles for ROS and hydrogen sulfide in the longevity response to
924 germline loss in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci.* **113**, E2832–E2841 (2016).

925 55. Calcutti, G. *et al.* Systemic regulation of mitochondria by germline proteostasis prevents
926 protein aggregation in the soma of *C. elegans*. *Sci. Adv.* **7**, eabg3012 (2021).

927 56. van Oosten-Hawle, P. Exploiting inter-tissue stress signaling mechanisms to preserve
928 organismal proteostasis during aging. *Front. Physiol.* **14**, (2023).

929 57. Labbadia, J. & Morimoto, R. I. Repression of the Heat Shock Response Is a Programmed
930 Event at the Onset of Reproduction. *Mol. Cell* **59**, 639–650 (2015).

931 58. Revtovich, A. V., Lee, R. & Kirienko, N. V. Interplay between mitochondria and diet mediates
932 pathogen and stress resistance in *Caenorhabditis elegans*. *PLoS Genet.* **15**, e1008011
933 (2019).

934 59. Amin, M. R., Mahmud, S. A., Dowgielewicz, J. L., Sapkota, M. & Pellegrino, M. W. A novel
935 gene-diet interaction promotes organismal lifespan and host protection during infection via
936 the mitochondrial UPR. *PLoS Genet.* **16**, e1009234 (2020).

937 60. Wei, W. & Ruvkun, G. Lysosomal activity regulates *Caenorhabditis elegans* mitochondrial
938 dynamics through vitamin B12 metabolism. *Proc. Natl. Acad. Sci.* **117**, 19970–19981 (2020).

939 61. Chen, S. *et al.* Metabolic plasticity sustains the robustness of *Caenorhabditis elegans*
940 embryogenesis. *EMBO Rep.* **24**, e57440 (2023).

941 62. Lee, Y.-T. *et al.* Mitochondrial GTP metabolism controls reproductive aging in *C. elegans*.
942 *Dev. Cell* **58**, 2718–2731.e7 (2023).

943

944

945 **SUPPLEMENTAL ONLY REFERENCES**

946 S1. Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot,
947 N., Moreno, S., Sohrmann, M., *et al.* (2003). Systematic functional analysis of the
948 *Caenorhabditis elegans* genome using RNAi. *Nature* **421**, 231–237. 10.1038/nature01278.

949 S2. Dokshin, G.A., Ghanta, K.S., Piscopo, K.M., and Mello, C.C. (2018). Robust Genome
950 Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in
951 *Caenorhabditis elegans*. *Genetics* **210**, 781–787. 10.1534/genetics.118.301532.

952 S3. Paix, A., Folkmann, A., Rasoloson, D., and Seydoux, G. (2015). High Efficiency, Homology-
953 Directed Genome Editing in *Caenorhabditis elegans* Using CRISPR-Cas9
954 Ribonucleoprotein Complexes. *Genetics* 201, 47–54. 10.1534/genetics.115.179382.

955 S4. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
956 sequence data. *Bioinformatics* 30, 2114–2120. 10.1093/bioinformatics/btu170.

957 S5. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
958 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*
959 29, 15–21. 10.1093/bioinformatics/bts635.

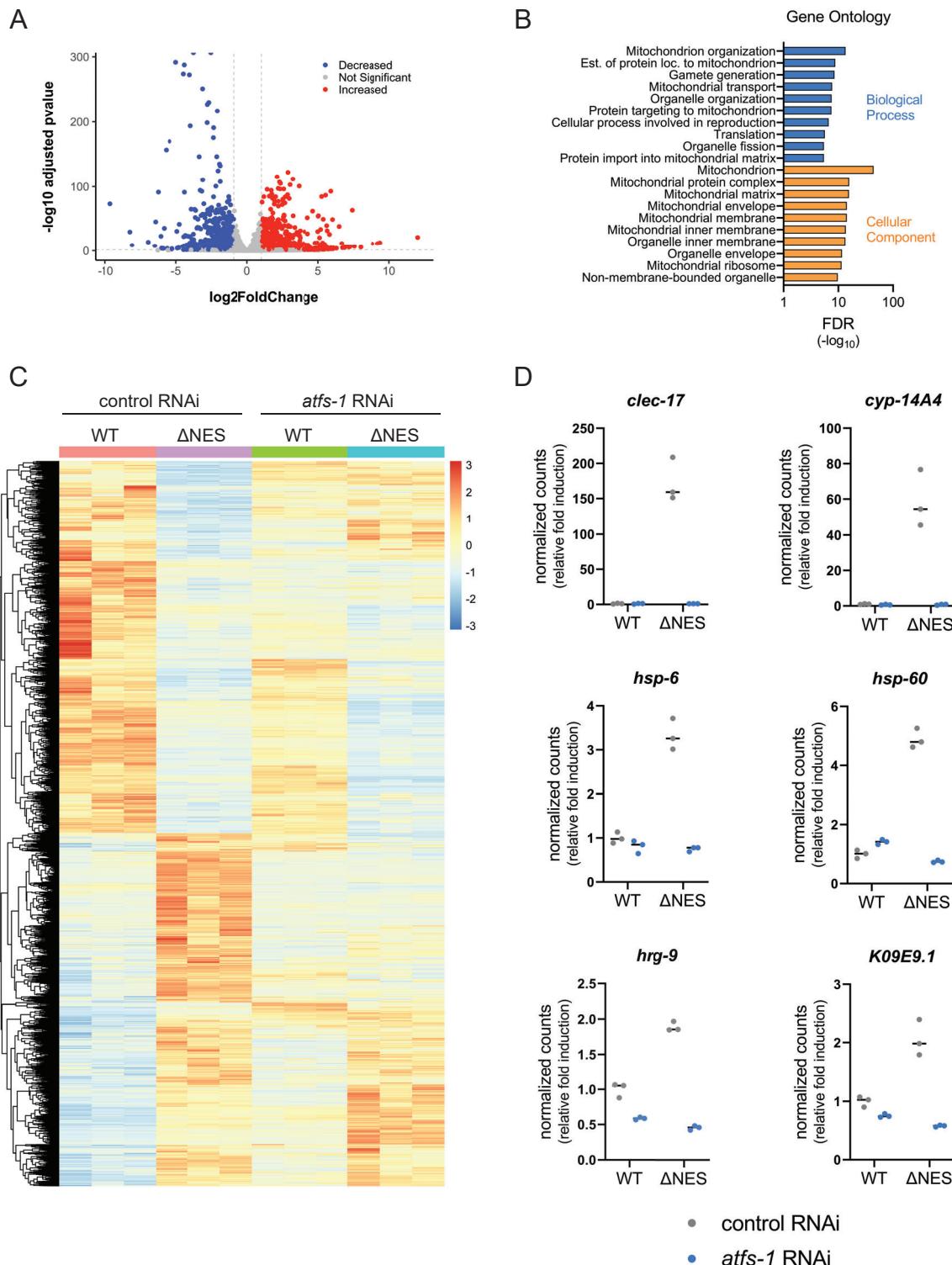
960 S6. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides
961 fast and bias-aware quantification of transcript expression. *Nat. Methods* 14, 417–419.
962 10.1038/nmeth.4197.

963 S7. Soneson, C., Love, M.I., and Robinson, M.D. (2016). Differential analyses for RNA-seq:
964 transcript-level estimates improve gene-level inferences. Preprint at F1000Research,
965 10.12688/f1000research.7563.2 10.12688/f1000research.7563.2.

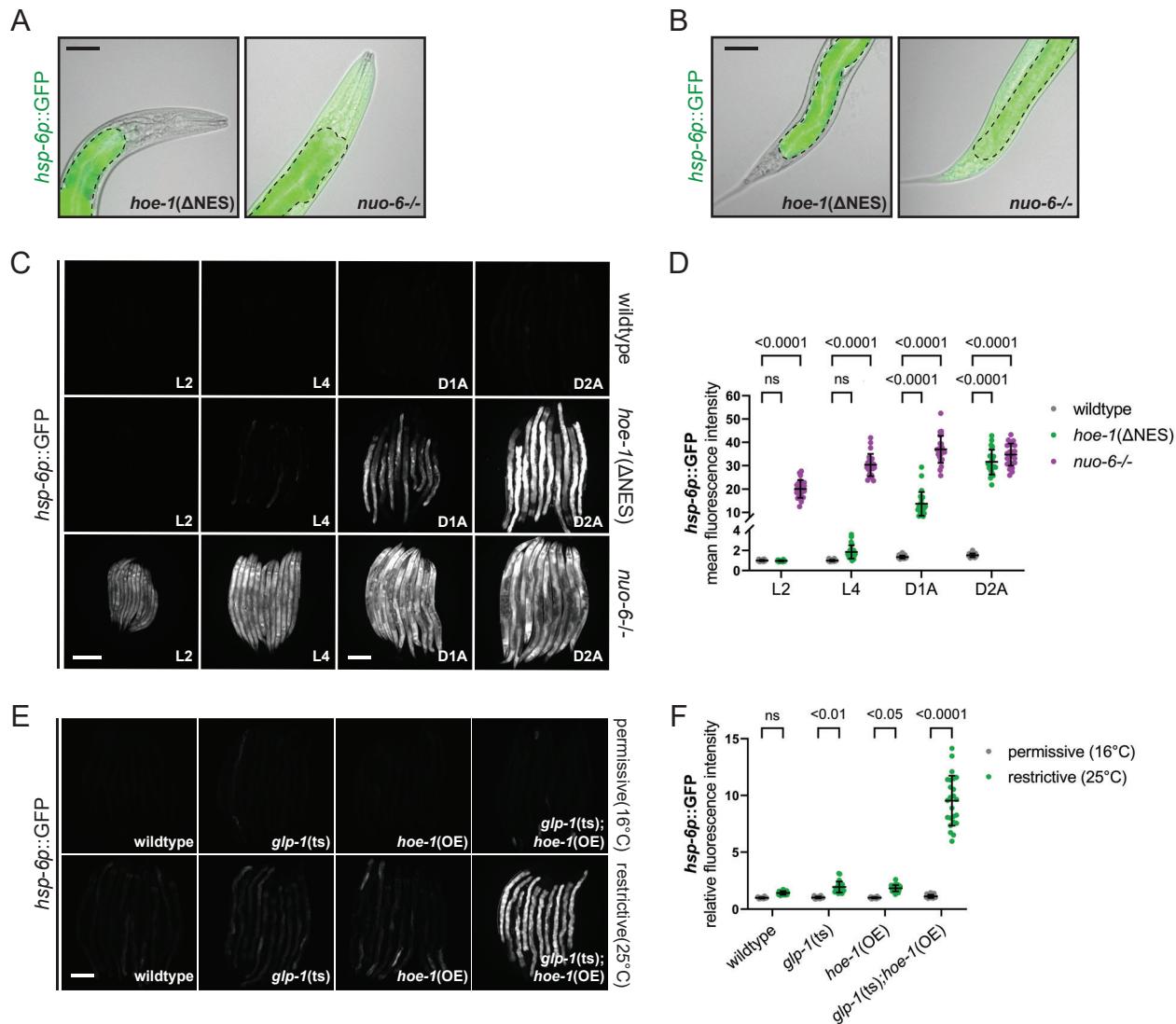
966 S8. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
967 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 1–21. 10.1186/s13059-014-
968 0550-8.

969 S9. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A.L.,
970 Fang, T., Doncheva, N.T., Pyysalo, S., et al. (2023). The STRING database in 2023:
971 protein–protein association networks and functional enrichment analyses for any
972 sequenced genome of interest. *Nucleic Acids Res.* 51, D638–D646. 10.1093/nar/gkac1000.

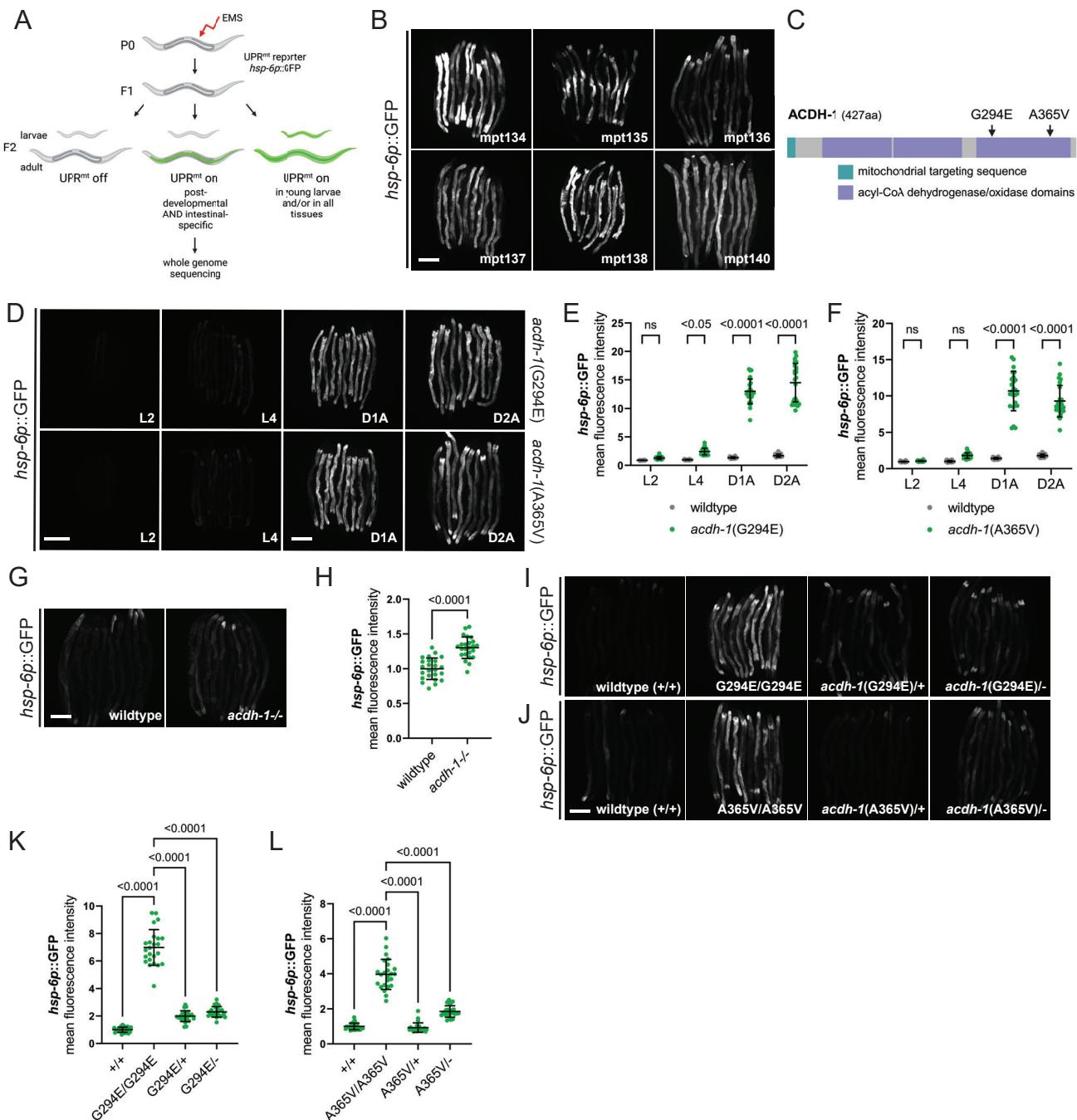
973 S10. Brenner, S. (1974). THE GENETICS OF CAENORHABDITIS ELEGANS. *Genetics* 77, 71–
974 94. 10.1093/genetics/77.1.71.

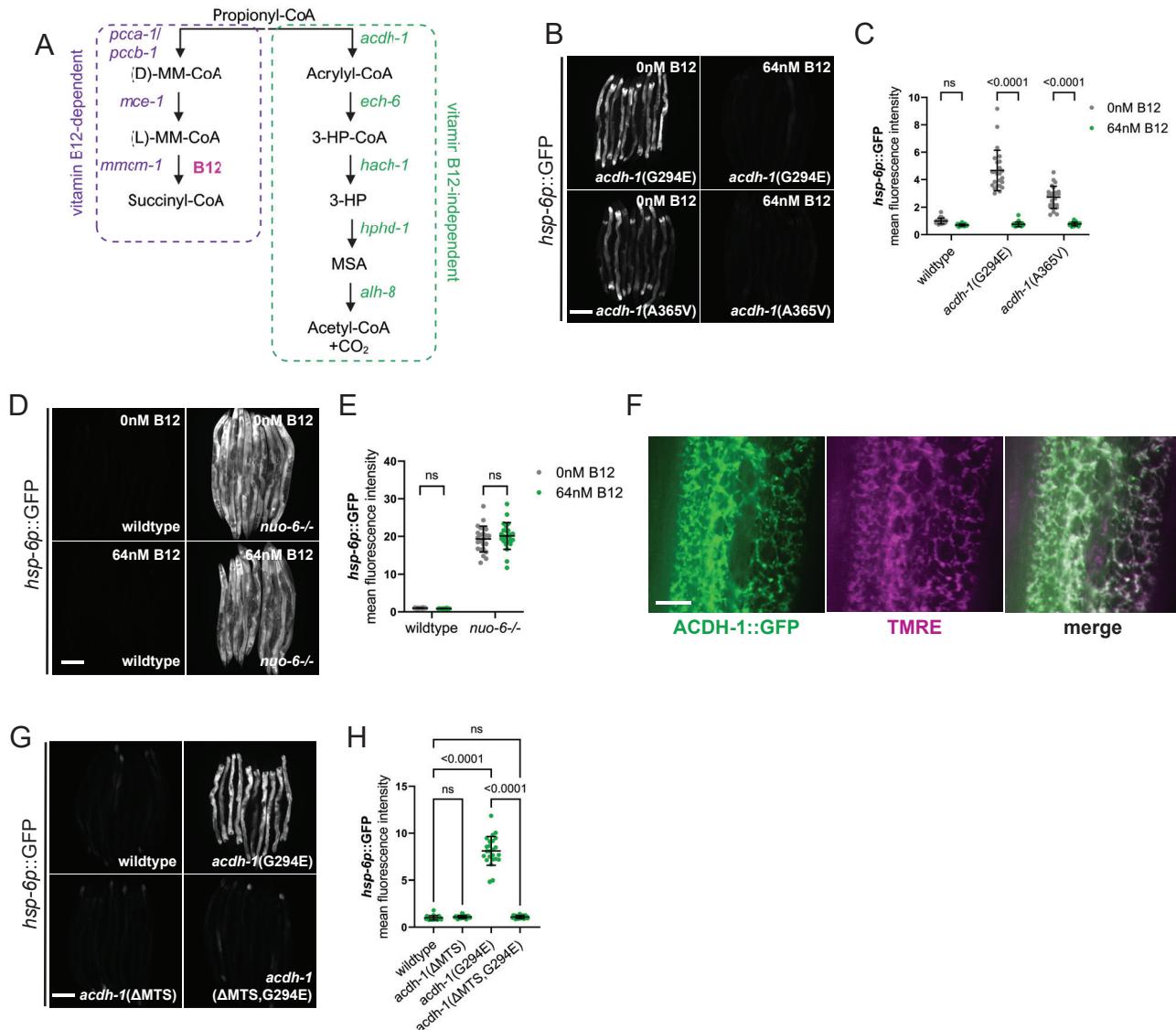

975 S11. Shoura, M.J., Gabdank, I., Hansen, L., Merker, J., Gotlib, J., Levene, S.D., and Fire, A.Z.
976 (2017). Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA)
977 in *Caenorhabditis elegans* and *Homo sapiens*. *G3 GenesGenomesGenetics* 7, 3295–3303.
978 10.1534/g3.117.300141.

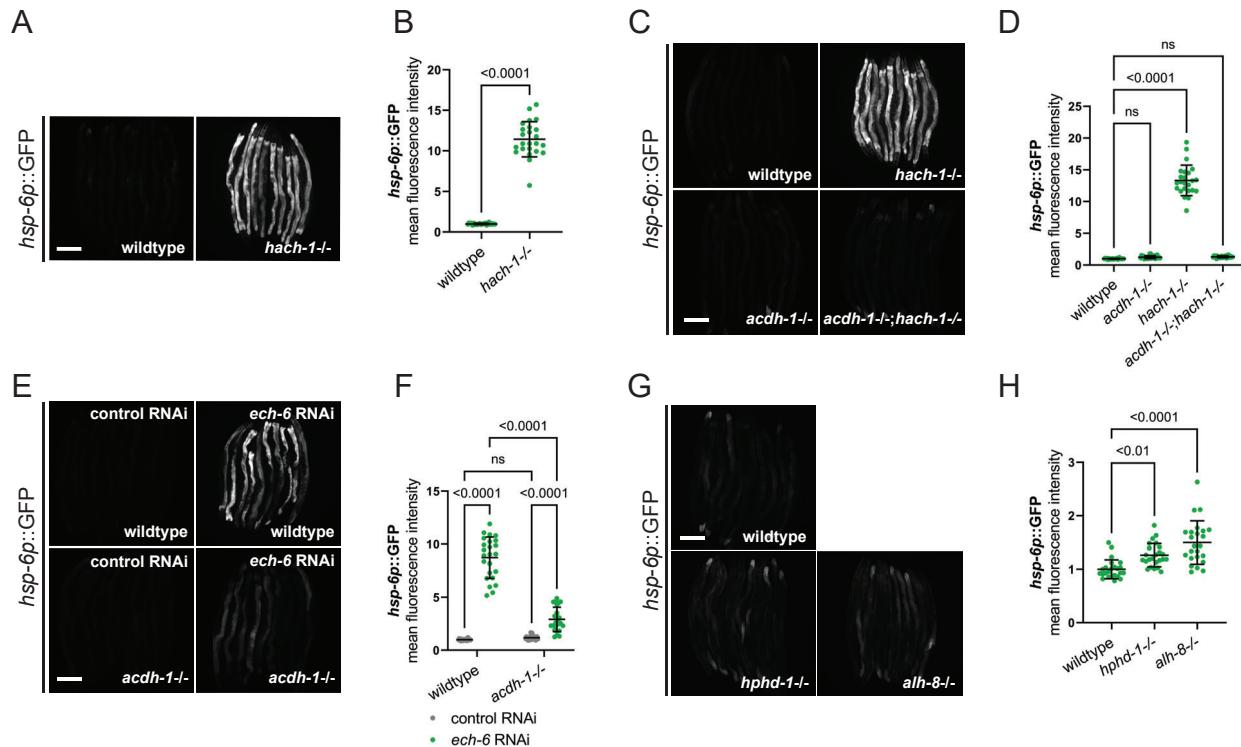
979 S12. Grub, L.K., Held, J.P., Hansen, T.J., Schaffner, S.H., Canter, M.R., Malagise, E.M., and
980 Patel, M.R. (2023). A role for N6-methyldeoxyadenosine in *C. elegans* mitochondrial
981 genome regulation. Preprint at bioRxiv, 10.1101/2023.03.27.534452
982 10.1101/2023.03.27.534452.

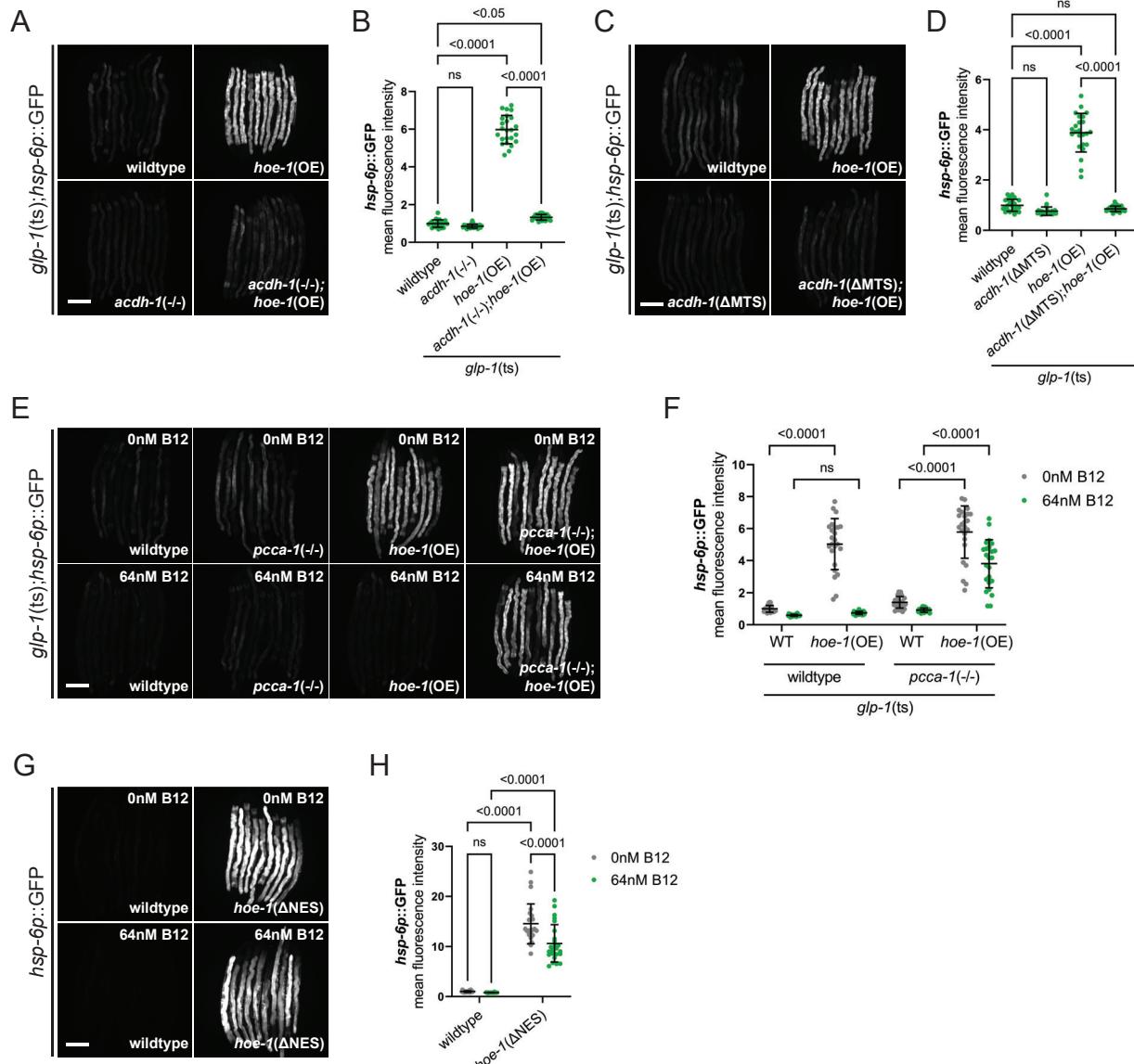

983 S13. Gitschlag, B.L., Kirby, C.S., Samuels, D.C., Gangula, R.D., Mallal, S.A., and Patel, M.R.
984 (2016). Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in *C.*
985 *elegans*. *Cell Metab.* 24, 91–103. 10.1016/j.cmet.2016.06.008.

986


Figure 1.


Figure 2.


Figure 3.


Figure 4.

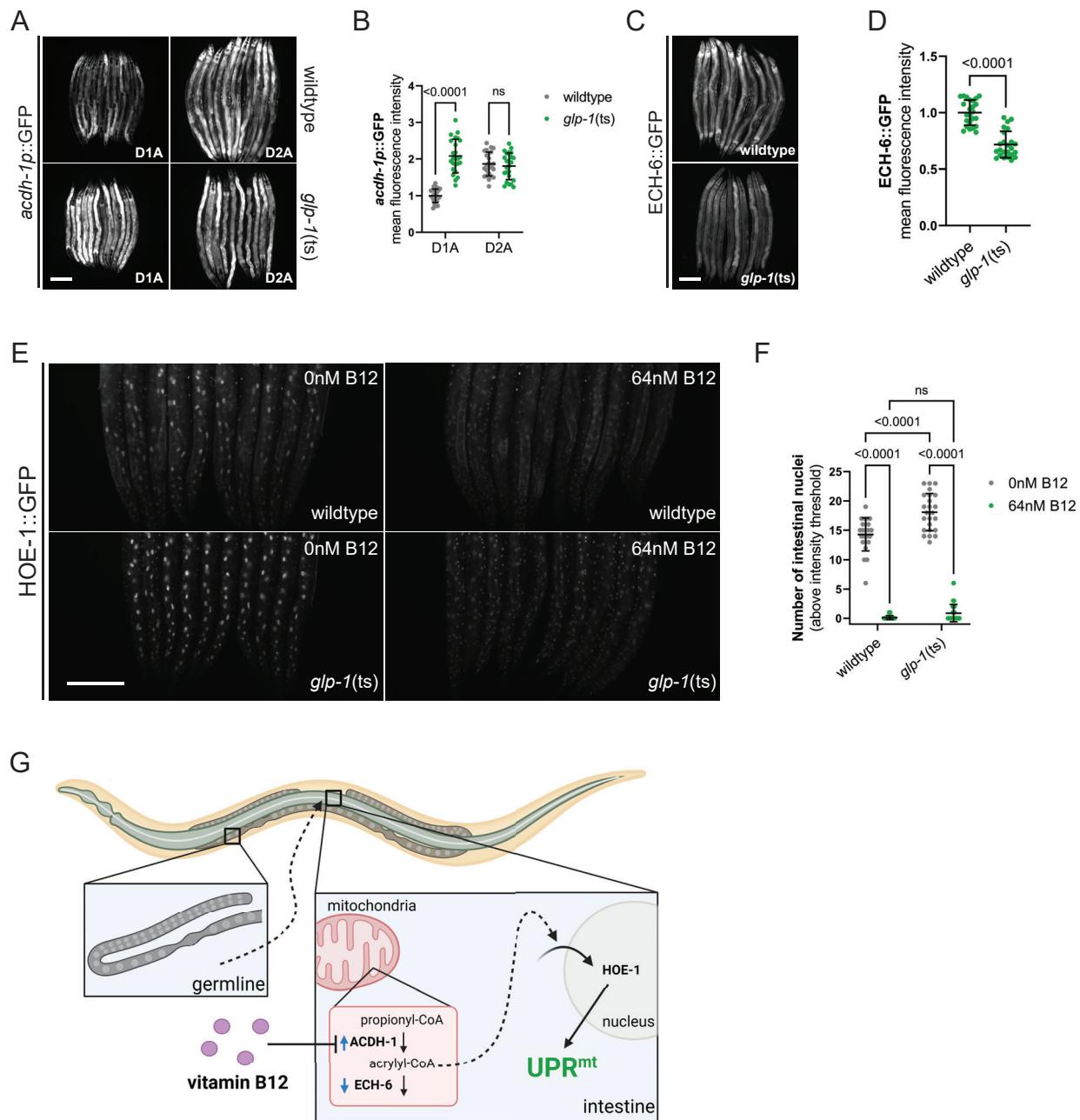

Figure 5.

Figure 6.

Figure 7.

