

The nitrogen-fixing fern *Azolla* has a complex microbiome characterized by multiple modes of transmission

Michael J. Song^{1,*}, Fay-Wei Li², Forrest Freund³, Carrie M. Tribble⁴, Erin Toffelmier⁵, Courtney Miller⁵, H. Bradley Shaffer⁵, and Carl J. Rothfels⁶

¹*Department of Biology, Skyline College, San Bruno, CA 94066, USA*

²*Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA*

³*Bureau of Land Management, USA*

⁴*School of Life Sciences, University of Hawai'i at Manoa, HI, United States; Current address: Department of Biology, University of Washington, Seattle, Washington*

⁵*Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA; La Kretz Center for California Conservation Science, Institute for Environment and Sustainability, University of California, Los Angeles, CA 90095, USA*

⁶*Ecology Center and Department of Biology, Utah State University, Logan, UT 84322, USA*

*corresponding author: songm@smccd.edu

Abstract

Azolla is a floating fern that has closely evolved with a vertically transmitted obligate cyanobacterium endosymbiont—*Anabaena azollae*—that performs nitrogen fixation in specialized *Azolla* leaf pockets. This cyanobacterium has a greatly reduced genome and appears to be in the “advanced” stages of symbiosis, potentially evolving into a nitrogen-fixing organelle. However, there are also other lesser-known inhabitants of the leaf pocket whose role and mode of transmission are unknown. We sequenced 112 *Azolla* specimens collected across the state of California and characterized their metagenomes in order to identify the common bacterial endosymbionts of the leaf pocket and assess their patterns of co-diversification. Four taxa were found across all samples, establishing that there are multiple endosymbionts that consistently inhabit the *Azolla* leaf pocket. We found varying degrees of co-diversification across these taxa as well as varying degrees of isolation by distance and of pseudogenation, which implies that the endosymbiotic community is transmitted by a mix of horizontal and vertical mechanisms, and that some members of the microbiome are more facultative symbionts than others. These results show that the *Azolla* symbiotic community is complex, featuring members at potentially different stages of symbiosis evolution, further supporting the utility of the *Azolla* microcosm as a system for studying the evolution of symbioses.

Key Words: [Azolla, California Conservation Genomics Project, codiversification, coevolution, holobiont, microbiome, nitrogen-fixation, nitroplast, symbiosis]

1 Introduction

2 *Azolla* Lam. (Salviniaceae; Salvinales) is a genus of
3 approximately nine species of floating ferns with spe-
4 cialized leaf pockets that house endosymbiotic bacte-
5 ria. The most notable microbial inhabitant of the leaf
6 pocket is *Anabaena azollae* (syn. *Nostoc azollae*, *Trichormus*
7 *azollae*), which is a nitrogen-fixing cyanobacterium; the
8 *Azolla*-*Anabaena* symbiosis can fix nitrogen at rates twice
9 that of the legume-*Rhizobium* symbiosis (Watanabe, 1986;
10 Beringer and Johnston, 1984), allowing, among other
11 things, for *Azolla* populations to double their biomass in
12 as little as two days (Peters et al., 1980). The *Anabaena*
13 is vertically transmitted (Zheng et al., 2009) and shows
14 near-perfect codiversification with its *Azolla* host (the *An-*
15 *abaena* and *Azolla* phylogenies match each other; Li et al.,
16 2018). In addition, the endosymbiont has a considerably
17 reduced genome and can no longer live on its own (Ran
18 et al., 2010; Li et al., 2018): it is potentially evolving into
19 a nitrogen-fixing organelle, like the recently discovered
20 nitroplast in some marine algae (Coale et al., 2024).

21 There are other known inhabitants of the leaf pocket in
22 addition to the *Anabaena*, including members of the Rhi-
23 zobiales, two novel species of which have been identified
24 and found to perform denitrification and lack nitrogen
25 fixation genes (Dijkhuizen et al., 2018), and potentially
26 other cyanobacteria like *Fischerella* (Gunawardana and
27 Pushpakumara, 2023). Other studies have further clari-
28 fied that the *Azolla* microbiome is not only diverse, with
29 many different bacteria having potential roles in promot-
30 ing plant growth, but also exhibits substantial variation
31 across host species (Banach et al., 2019; Yang et al., 2022).
32 However, there is still no knowledge of the degree to
33 which the members outside of *Anabaena azollae* have co-
34 diversified with the host, and, more generally, the degree
35 to which the symbiotic community is a cohesive entity or

an idiosyncratic assemblage of largely independent taxa.

36 A powerful tool for understanding novel associa-
37 tions is examining codiversification (Janz, 2011) between
38 individual endosymbionts and a host. By assessing
39 co-phylogenies and geographic patterns, we can infer
40 whether the members of the core microbiome are mostly
41 obligate or mostly facultative, which will give us a better
42 understanding of the ecosystem within the leaf pocket.
43 In particular, the leaf pocket provides an opportunity to
44 study the evolution of symbioses by allowing glimpses
45 of the process at different stages for different taxa—a spec-
46 trum that ranges from loose association and recruitment
47 to intracellular endosymbiosis, such as the chloroplast or
48 nitroplast which represents the far end of this spectrum
49 Coale et al. (2024).

50 Here, we characterize the metagenome of *Azolla* and as-
51 sess patterns of co-diversification across the common bac-
52 terial endosymbionts, using a large resequencing dataset
53 set generated as part of the California Conservation Ge-
54 nomics Project.

55 Methods

56 Sample collection and sequencing

57 Field collections and identification

58 A total of one hundred and twelve samples of *Azolla* were
59 collected (Supplemental Table 1) across the state of Cali-
60 fornia as a part of the California Conservation Genome
61 Project (CCGP; Shaffer et al., 2022). Potential collection
62 sites were identified using the California Consortium of
63 Herbaria Consortium of California Herbaria (2023) and
64 iNaturalist (iNaturalist, 2023). Results were screened for
65 georeferenced observations made after 2016 that included
66 photographs to confirm the *Azolla* identification.

At each field site, the population was photo-documented at the habitat level and the super-macro-level using a Canon PowerShot SX20 IS (Canon, Huntington, New York, USA) and the geographic coordinates were recorded with a Garmin inReach (Garmin Ltd., Schaffhausen, Switzerland). No more than 5% of the total population was sampled, or no more than a 5cm x 5cm mat, whichever was smaller. For plants that were growing neustonically, a pool-skimmer net was used to collect plants away from the shore, in an effort to gather specimens that were relatively undamaged by shoreline wave action. Plants growing terrestrially were carefully removed from the substrate as a matt. All specimens were placed into small, sealable plastic containers and stored in a cooler with ice until they were processed. If collections were made from the same water body, they were taken from at least 1 km apart.

Surface sterilization

In order to remove any surface bacterial contaminants, we followed a modified version of the surface sterilization the protocol in Dijkhuizen et al. (2018). After the first treatment, each specimen was transferred to a second 15ml centrifuge tube, and vortexed on low speed three times successively for 1–2 seconds in 3–4ml deionized water. Following the rinse, each individual was surface-sterilized by placing it into a 15ml centrifuge tube with 3–4ml 10% bleach and vortexing on low speed for 3–4 seconds. Once surface sterilized, the specimens were rinsed as above, dried with kimwipes, and flash-frozen at -80°C until it was time to extract DNA.

DNA extraction and sequencing

Total genomic and symbiont DNA was extracted using standard CTAB extraction protocols described in (Doyle and Doyle, 1987). After extractions were complete, DNA quality and quantity were checked using 1% Agarose gel electrophoresis with 0.1% GelRed Nuclease Dye (Biotum Inc., Fremont CA, USA) and Qubit spectrometry (Thermo Fisher Scientific, Waltham, Massachusetts, U.S.).

Library preparation was performed by the QB3-Berkeley Functional Genomics Laboratory at UC Berkeley. DNA was fragmented with an S220 Focused-Ultrasonicator (Covaris), and libraries prepared using the KAPA Hyper Prep kit for DNA (Roche KK8504). Truncated universal stub adapters were ligated to DNA fragments, which were then extended via PCR using unique dual indexing primers into full length Illumina adapters. Library quality was checked on an AATT (now Agilent) Fragment Analyzer. Libraries were then transferred to the QB3-Berkeley Vincent J. Coates Genomics Sequencing Laboratory, also at UC Berkeley. Library molarity was

measured via quantitative PCR with the KAPA Library Quantification Kit (Roche KK4824) on a BioRad CFX Connect thermal cycler. Libraries were then pooled by molarity and sequenced on an Illumina NovaSeq 6000 S4 flow-cell for 2 x 150 cycles, targeting at least 10Gb per sample. Fastq files were generated and demultiplexed using Illumina bcl2fastq2 v2.20 and default settings, on a server running CentOS Linux 7. Whole genome resequencing was performed at an average read depth of around 10x (mean = 12.16x; standard deviation = 5.9; min = 3.6x; max = 44.3x).

Additionally, one reference sample (collection FF365) was sequenced using PacBio HiFi Sequencing (HiFi) producing long-read sequencing data (average depth = 65.56x). The HiFi SMRTbell library was constructed using the SMRTbell gDNA Sample Amplification Kit (Pacific Biosciences, Menlo Park, CA; Cat. no. 101-980-000) and the SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences; Cat. no. 100-938-900) according to the manufacturer's instructions. Approximately 10 kb sheared DNA by the Megaruptor 3 system (Diagenode, Belgium; Cat. no. B06010003) was used for removal of single-strand overhangs at 37C for 15 minutes, DNA damage repair at 37C for 30 minutes, end-repair and A-tailing at 20C for 30 minutes and 65C for 30 minutes, and ligation of overhang adapters at 20C for 60 minutes. To prepare for library amplification by PCR, the library was purified with ProNex beads (Promega, Madison, WI; Cat. no. NG2002) for two PCR amplification conditions at 15 cycles each then another ProNex bead purification. Purified amplified DNA from both reactions were pooled in equal mass quantities for another round of enzymatic steps that included DNA repair, end-repair/A-tailing, overhang adapter ligation, and purification with ProNex beads. The PippinHT system (Sage Science, Beverly, MA; Cat no. HPE7510) was used for SMRTbell library size selection to remove fragments < 6–10 kb. The 10–11 kb average HiFi SMRTbell library was sequenced at UC Davis DNA Technologies Core (Davis, CA) using one 8M SMRT cell, Sequel II sequencing chemistry 2.0, and 30-hour movies each on a PacBio Sequel IIe sequencer.

All data generated by CCGP can be found in the NCBI SRA (PRJNA720569).

Metagenome assembly and binning

We mapped the HiFi reads from our reference-genome sample against the *Azolla filiculoides* genome (v1.2; Li et al., 2018) using BWA v0.7.17 (Li and Durbin, 2010); this *A. filiculoides* genome was sequenced from an axenic, symbiont-free strain. We then extracted the unmapped reads using Samtools v1.9 (Li et al., 2009). These unmapped reads, which we expect are from the metagenome, were then uploaded to the BugSeq pipeline (Fan et al., 2021) for long-read taxonomic classification

172 and metagenome binning (Supplemental Table 2). The
173 fasta assemblies from the metagenome binning were
174 used downstream as reference sequences for the leaf
175 pocket microbial taxa. Bacterial genome annotation
176 was performed using Prokka v1.14.6 using default pa-
177 rameters (Seemann, 2014) and genes involved in nitro-
178 gen metabolism were identified manually by looking for
179 genes with “nitrogen” in the annotation. The Prokka
180 annotations were used to assess pseudogenation using
181 Pseudofinder v1.1.0 (Syberg-Olsen et al., 2022). Rela-
182 tive abundance of microbes in the resequencing samples
183 was assessed using METAgenomic PHyLogenetic ANA-
184 lysis for metagenomic taxonomic profiling using default
185 parameters (MetaPhlAn 4.0.3; Blanco-Míguez et al., 2023).

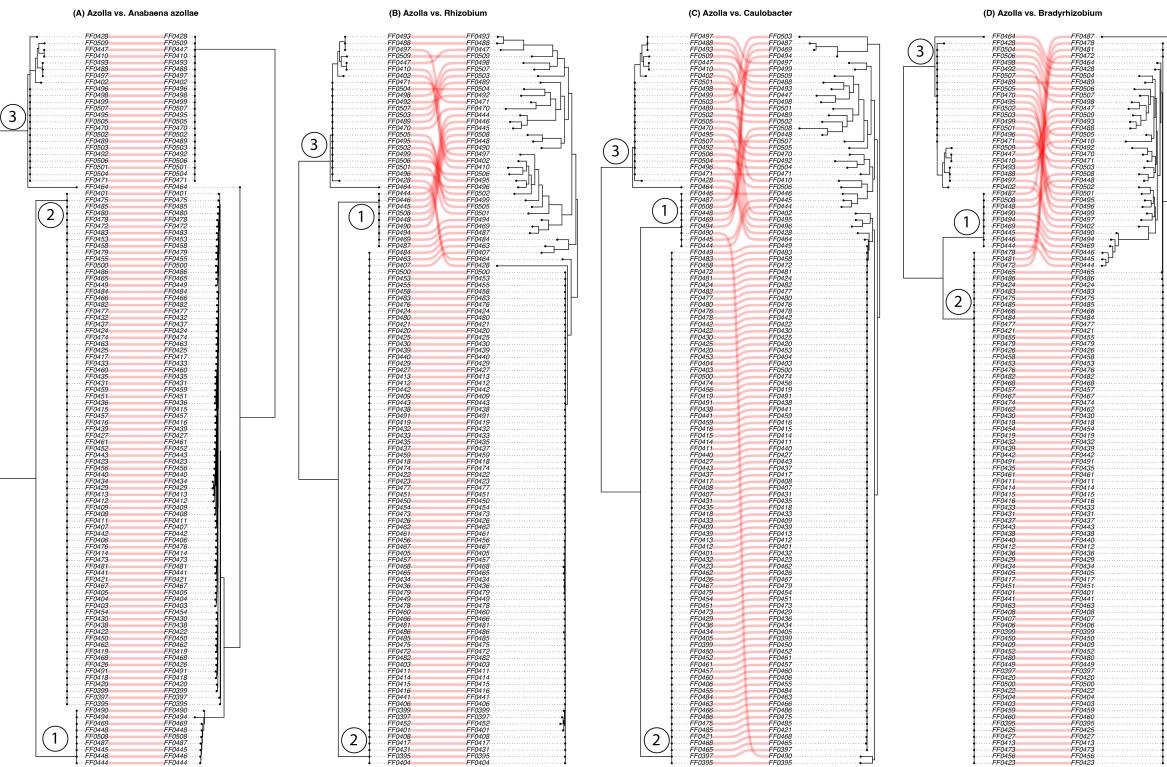
186 Variant calling and phylogeny inference

187 Resequencing samples had Illumina adapters removed
188 and were trimmed using Trimmomatic (v0.39, Bolger
189 et al. (2014)) using the following parameters: LEADING:3
190 TRAILING:3 MINLEN:36. Samples were then mapped
191 to the *Azolla filiculoides* genome (v1.2; Li et al., 2009) us-
192 ing BWA (0.7.17; Li and Durbin, 2010). bcftools (v1.9;
193 Danecek et al., 2021) was used to create an mpileup for
194 all the samples and to call variants. Variants were filtered
195 to have a $\text{QUAL} \geq 30$ and to remove multiallelic SNPs and
196 indels, monomorphic SNPs, and SNPs in the close prox-
197 imity of indels ($-\text{SnpGap} 10$). Reads that did not map to
198 the *Azolla filiculoides* nuclear or chloroplast genome were
199 then recovered and mapped to the metagenome assem-
200 blies from the BugSeq output: *Anabaena azollae*, *Rhizo-
201 bium*, *Caulobacter*, *Bradyrhizobium*, and *Rhizobiaceae*. For
202 each microbial taxon, an mpileup was created and vari-
203 ants were called using bcftools (v1.9, Danecek et al.
204 (2021)) with the following additional parameter: $-\text{ploidy}$
205 1. Variants were then filtered to have a $\text{QUAL} \geq 30$ and no
206 monomorphic SNPs using bcftools (v1.9; Danecek et al.,
207 2021).

208 Alignments of SNPs for the *Azolla* samples and for each
209 of the five focal microbionts that were found in each sam-
210 ple (*Anabaena azollae*, *Rhizobium*, *Caulobacter*, *Bradyrhizo-
211 bium*, and *Rhizobiaceae* sp. 2) were then created using the
212 phylo command in VCF-kit (v0.2.9; Cook and Andersen,
213 2017)). For the *Azolla* alignment, heterozygous sites were
214 excluded as per the recommended usage (Cook and An-
215 dersen, 2017). Maximum likelihood trees were then in-
216 ferred for these taxa using IQTree (v1.6.12; Nguyen et al.,
217 2015) under the GTR+ASC model, which accounts for
218 the variable-only ascertainment bias in SNP datasets, and
219 support values were estimated with the ultrafast boot-
220 strap approximation (Minh et al., 2013; Hoang et al., 2018)
221 with 1000 bootstrap replicates.

222 Assemblies and alignments of whole *Azolla* chloro-
223 plasts were produced using GetOrganelle v1.7.7.0 and
224 Homblocks, both with default parameters (Bi et al.,

225 2018; Jin et al., 2020). We included in this align-
226 ment all of the previously published *Azolla* chloro-
227 plast genomes (Genbank: MF177092.1, MF177091.1,
228 ON684377.1, MF177090.1, MF177089.1, MF177088.1,
229 MF177094.1, MF177093.1). From this alignment we in-
230 ferred a tree using IQTree v1.6.12 under a GTR+I+G
231 model with 1000 ultrafast bootstrap replicates (Nguyen
232 et al., 2015).


233 We also used a coalescent-based approach, since we
234 expect incongruence due to our intraspecific sampling
235 (Supplemental Figure 4). Trees were inferred from the
236 *Azolla* nuclear SNP alignment described above using
237 SVDquartets (Chifman and Kubatko, 2014) implemented
238 in PAUP* (v4.0; Swofford, 2003). One hundred boot-
239 strap replicates were performed with quartet sampling of
240 100,000 quartets. We then made a majority rule consen-
241 sus tree from the bootstrap trees and resolved polytomies
242 randomly for downstream analysis that require bifurcat-
243 ing trees using the “fix.poly” function in the RRphylo
244 package in R (Castiglione et al., 2018).

245 Codiversification and spatial analyses

246 Codiversification analyses and data visualization was
247 performed using R (R Core Team et al., 2013) with the
248 packages ape (Paradis et al., 2004) and phytools (Revell,
249 2012). For the plastome tree, we rooted the tree with
250 *Azolla nilotica*. The other trees were visualized using mid-
251 point rooting since they are unrooted; this orientation re-
252 sulted in two major clades—*A. filiculoides* + *A. rubra* on
253 one side and *A. caroliniana*, *A. microphylla*, and allies on
254 the other—consistent with the results of studies that ap-
255 plied outgroup rooting (e.g., Li et al., 2018; Metzgar et al.,
256 2007; Madeira et al., 2013). Statistical tests of codiversifi-
257 cation were performed between two trees based on tree
258 distance for both RF (Robinson and Foulds, 1981) and
259 SPR (Swofford, 1990) distances using the “cospeciation”
260 function in phytools. P-values were calculated both by
261 simulation of pure-birth trees and by permutation of tip
262 labels on a fixed tree. Five hundred simulations (and 500
263 permutations) were performed for each test of the null
264 hypothesis that there are no similarity between trees. An-
265 other statistical test of codiversification was performed
266 using the “parafit” function (described in Legendre et al.,
267 2002) in ape using the default parameters and 999 permu-
268 tations.

269 The spatial distribution of the taxa was visualized us-
270 ing R and the packages phytools (Revell, 2012) and maps
271 (code by Richard A. Becker et al., 2021). A Mantel test
272 based on Spearman’s rank correlation rho was performed
273 with 9999 permutations using the vegan package in R
274 in order to test for isolation by distance (Oksanen et al.,
275 2022).

Codiversification of leaf pocket microbiota with *Azolla*

Figure 1: Co-phylogenies in order from left to right: *Azolla* and *Anabaena azollae*, *Azolla* and *Rhizobium*, *Azolla* and *Caulobacter*, and *Azolla* and *Bradyrhizobium*. All *Azolla* phylogenies are from the plastome data.

Table 1: Testing for isolation by distance. Mantel statistics based on Spearman's rank correlation rho, permutations = 9999

Taxon	Mantel statistic r	Significance
<i>Anabaena azollae</i>	0.2462	1.00E-04
<i>Rhizobium</i>	0.2271	0.0017
<i>Caulobacter</i>	0.3791	1.00E-04
<i>Bradyrhizobium</i>	-0.04252	0.7271
Azolla Plastome Tree	-0.1013	0.9679

Results

Characterization of the *Azolla* leaf pocket metagenome

From the reference-genome HiFi data, the BugSeq pipeline assembled 30 unique metagenomic bins ranging from 7.1 Kbp to 5,361.4 Kbp with N50 scores ranging from 7.1 to 1,079.5 Kbp (Supplemental Table 2). Five of these putative bacterial genomes were found in all of our samples. Two of these genomes were nearly complete according to BUSCO scores using the default BugSeq pipeline datasets (Simão et al., 2015; Fan et al., 2021): *Anabaena azollae* and *Rhizobium* sp. Genomes with mapped reads from every sample were included for downstream

analysis. These included *Anabaena azollae* (53.6%), *Rhizobium* sp. (1.7%), *Bradyrhizobium* sp. (0.2%), *Caulobacter* sp. (0.2%) and a member of Rhizobiaceae species 2 (0.2%). When comparing the phylogenies inferred from SNP data, we found that the trees of *Rhizobium* sp. and Rhizobiaceae sp. 2 were essentially identical, implying that they are the same taxon and therefore, only *Rhizobium* sp. was analysed in the later analyses.

The prokka annotation found six nitrogen fixation (nif) coding sequences in *Anabaena azollae* and none in *Caulobacter* sp., *Rhizobium* sp., or *Bradyrhizobium* sp. Two *nar* nitrate reductase coding sequences were found in *Anabaena azollae* and none in *Caulobacter* sp., *Rhizobium* sp., or *Bradyrhizobium* sp. No *nir* nitrite reductase or *nos* nitrous oxide reductase coding sequences were found in any of the assemblies.

The Pseudofinder analysis revealed that there is some pseudogenization occurring across all of the common microbiome members. In the main endosymbiont, 32.4% of genes were found to be pseudogenized; *Rhizobium* sp. was found to have 5.6% of genes pseudogenized, *Bradyrhizobium* sp. 6.3%, and *Caulobacter* sp. 5.8%.

The MetaPhlAn taxonomic profiling of samples revealed that the vast majority of reads were of the main endosymbiont cyanobacterium (average across all sam-

314 ples = 94.89%, Supplemental Figure 2) followed by Proteobacteria (4.6%). However, for two samples (FF0505, 315 FF0489) *Anabaena azollae* was not found to be at the highest abundance, possibly due to contamination or disease. A diverse group of phyla were found at much 316 lower abundances, including: Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, 317 Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Spirochaetes, Verrucomicrobia, 318 as well as unclassified bacteria. 319 320 321 322 323

324 *Azolla* phylogenies

325 Phylogenies inferred from the plastome sequences (Sup- 326 plemental Fig. 1), the concatenated nuclear SNPs (Sup- 327 plemental Fig. 3), and the nuclear “species tree” in- 328 ferred with SVDquartets (Supplemental Figure 4) were 329 all congruent. For simplicity, and to avoid any 330 complications due to coalescent variance, we focus down- 331 stream analyses on the plastome phylogeny. Most 332 distantly related to the other samples is a clade correspond- 333 ing to *A. filiculoides* (Clade 3, Figure 1). This *A. filiculoides* 334 group has surprisingly very long branch lengths on the 335 concatenated-SNP tree (Supplemental Fig. 3). Our other 336 samples fall in two clades, the largest of which (Clade 337 2, Figure 1) includes reference sequences of *A. caroliniana* 338 and the smaller of which (Clade 1, Figure 1) is sister 339 to (but divergent from) published plastomes of *A. mexicana/microphylla* (Supplemental Fig. 1; a putative *A. 340 pinnata* sequence that falls in this last clade is an “UN- 341 VERIFIED” sequence on Genbank that is almost certainly 342 misidentified—*Azolla pinnata* belongs to a different sub- 343 genus and is only distantly related to the taxa in this 344 study). 345

346 Codiversification of endosymbionts

347 *Azolla* and its symbionts have varying degrees of 348 codiversification (Figure 1). *Azolla* and its main endosym- 349 biонт *Anabaena azollae* exhibit strong co-diversification, as 350 expected, with three major clades found in each. The 351 other focal symbionts are inferred to have a large major 352 clade that is associated with the Clade 2 in the *Azolla* phy- 353 logeny, but with more variation and longer branches in 354 the other more distantly related groups.

355 The *Azolla* and *Anabaena azollae* trees significantly 356 exhibited co-diversification across four of the five tests 357 (Supplemental Table 3). Similarly, *Rhizobium* sp. also 358 exhibited a strong signal of co-diversification with the 359 plastome tree (4/5 tests significant). The other two taxa 360 (*Caulobacter* sp. and *Bradyrhizobium* sp.) exhibited some 361 signal of co-diversification: 3/5 and 2/5 tests significant, 362 respectively.

363 The endosymbiont phylogenies also had significant as- 364 sociations with other endosymbionts. *Caulobacter* sp. was

365 found to be significantly associated with *Bradyrhizobium* 366 sp. across all tests and with *Rhizobium* sp. across four of 367 the five tests. *Bradyrhizobium* sp. was found to be signifi- 368 cantly associated with *Rhizobium* sp. in two tests, and 369 *Anabaena azollae* with *Caulobacter* sp. in two tests and 370 with *Bradyrhizobium* sp. in one test. 371

Geographic Patterns

371 Clades 1 and 2 (red in Supplemental Fig. 5) are gener- 372 ally associated with northern samples and Clade 3 (blue 373 in Supplemental Fig. 5) is frequently southern, although 374 these patterns are not consistent (Supplemental Figure 5). 375 Despite these trends, we cannot reject the null hypothe- 376 sis that there is no relationship between genetic and geo- 377 graphic distances for *Azolla* (Table 1). This is likewise 378 the case for *Bradyrhizobium*. However for *Anabaena azollae*, 379 *Caulobacter* sp., and *Rhizobium* sp., there is a significant 380 correlation between the geographic and phylogenetic dis- 381 tance matrices for each taxon, which implies isolation by 382 distance for these groups (Table 1). 383

Discussion

Azolla diversity in California

385 The diversity of *Azolla* in California is often treated under 386 two species: *Azolla filiculoides* Lam. and a second taxon 387 treated as either *Azolla microphylla* Kaulf. or *A. mexicana* 388 C.Presl. (Jepson eFlora, 2020; Flora of North America 389 Editorial Committee, 1993). In addition, the potentially 390 invasive *A. pinnata* has been recently reported from the 391 state (Song et al., 2023). Our results highlight the need 392 for further study of the taxonomic diversity of *Azolla* in 393 California, as we find at least three major clades (within 394 subgenus *Azolla*—*A. pinnata*, in subgenus *Rhizosperma*, is 395 outside our taxonomic scope). Of these three clades, one 396 is fairly confidently attributable to *A. filiculoides* (Sup- 397 plemental Fig. 1). However, the identity of members of the 398 other two clades is unclear. Surprisingly, neither clade 399 appears to correspond to *A. microphylla/A. mexicana*; ap- 400 parently, despite our expectation that this would be the 401 most common taxon in California, it was absent from our 402 sample. Instead Clade 1, sister to the *A. microphylla/mex- 403 icana* reference sequences, includes samples from eastern 404 North America, and likely corresponds to the taxon usu- 405 ally treated as *A. caroliniana*. If these plants are indeed *A. 406 caroliniana*, that would be a remarkable extension to the 407 known range of that species, which is currently under- 408 stood to be restricted to eastern North America (Flora of 409 North America Editorial Committee, 1993). Clade 2— 410 comprising 77 of our 112 samples—is even more enig- 411 matic: it is sister to Clade 1 + *A. microphylla/mexicana*, and 412 also corresponds to the taxon usually treated as *A. car-* 413

414 *oliniana*. Further analysis of just the plastid *trnGR* region,
415 places these sequences within a group containing the lin-
416 eage Madeira et al. (2013) refer to as an undescribed “*A.*
417 species”. However, a thorough examination of the type
418 specimens and other data will be necessary to confidently
419 attach names to these lineages; this work, and a broader
420 taxonomic revision of *Azolla*, is not within the scope of
421 this paper, but our findings should encourage a thorough
422 reassessment of the group in California given the new ge-
423 nomic resources available.

424 The *Azolla* symbiotic community

425 While dominated by its main endosymbiont, we found
426 three other major endosymbiont taxa in the *Azolla* leaf
427 pocket. *Bradyrhizobium* sp. and *Rhizobium* sp. are both
428 members of Rhizobiales, corroborating the results of Di-
429 jkhuizen et al. (2018) who found two major Rhizobiales
430 taxa in the *Azolla filiculoides* leaf pocket. The other mem-
431 ber, *Caulobacter* sp., is a well-known and common bac-
432 terium in freshwater systems, although it can be found
433 in diverse environments (Wilhelm, 2018). These four taxa
434 were found in every one of the 112 samples. Importantly,
435 we found that all of these non *Anabaena azollae* members
436 exhibit pseudogenization of around 5% of their genes;
437 *Anabaena azollae*, on the other hand, had around 30% of
438 its genes pseudogenized. This high degree of pseudoge-
439 nization is similar to the main endosymbiont in *Azolla fili-
440 culoides*, which is also around 30% pseudogenized (Ran
441 et al., 2010). To put this into context, the normal amount
442 of pseudogenization for non-endosymbiotic bacteria is
443 zero, such as was found in other free-living members of
444 Nostocales (Ran et al., 2010).

445 When we assessed the phylogenies for co-
446 diversification, we found strong evidence that *Anabaena
447 azollae* is co-evolving with *Azolla*, which is what we ex-
448 pected due to its vertical transmittance (Ran et al., 2010;
449 Li et al., 2018) and underscores the efficacy of this ap-
450 proach. When we assessed the other taxa, we found that
451 there is some signal for co-diversification between *Azolla*
452 and *Rhizobium* sp., *Bradyrhizobium* sp. and *Caulobacter* sp.
453 We also found that the phylogenies of the endosymbionts
454 were associated with each other and hypothesized that
455 this was due to shared patterns of isolation by distance.
456 When we tested for this, we found that the ML plastome
457 tree did not exhibit a pattern of isolation by distance.
458 For the bacterial taxa, all but *Bradyrhizobium* exhibited
459 patterns of isolation by distance.

460 If everything in the leaf pocket were to be vertically
461 transmitted like *Anabaena azollae*, then all of the phylo-
462 genies should mirror that of the host. If nothing is be-
463 ing vertically transmitted, we expect to find random pat-
464 terns between the endosymbiont and the host and pat-
465 terns that are geographic. We do not find evidence for
466 either of those scenarios, but rather an intermediate be-

467 tween them, which implies that there is some hori-
468 zontal transmission as well as some vertical transmission oc-
469 ccurring. While the limitations of Mantel tests are well
470 known (Bradburd et al., 2013), this pattern is supported
471 by the additional evidence that these taxa were consis-
472 tently found in every single sample, they all exhibit con-
473 siderable degrees of pseudogenation, and that they do
474 not exhibit strong co-diversification with the host.

475 One potential hypothesis for why there is a consis-
476 tent core microbiome but only loose patterns of co-
477 diversification, could be that some bacteria are able to
478 be consistently recruited (maybe by interfacing with the
479 well characterized ammonium and sucrose exchange;
480 Eily et al., 2019), while others end up in the leaf pocket
481 as a general refugium for bacteria (de Vries and de Vries,
482 2022). Then once in the leaf pocket, microbes may find
483 themselves being transmitted vertically with the host, but
484 in the absence of strong selection for them, they also may
485 find themselves outcompeted and displaced by similar
486 taxa that invade or that the host also recruits from the
487 environment, only to be picked up again later on.

488 Even though these were partial genome assemblies and
489 so we were unable to assess all of the genes that these
490 endosymbionts have and metabolic roles that they play,
491 the possibility remains that some taxa have evolved to be
492 freeloaders off of the *Anabaena* nitrogen-fixation symbio-
493 sis and its associated metabolic products and may even
494 be in conflict with *Anabaena* (Dijkhuizen et al., 2018). The
495 taxonomy and function of these endosymbionts should
496 be investigated in more depth in the future in order to
497 understand what functions and roles these taxa may play
498 in the leaf pocket, if at all. For example, the symbionts
499 may be in metabolic collaboration, competition, or there
500 may be Black Queen processes operating whereby there is
501 a division of labor (Koskella and Bergelson, 2020; Morris
502 et al., 2012). Future work should attempt to get full length
503 assemblies of these bacterial genomes to assess genome
504 reduction as an additional line of evidence for the differ-
505 ences between these putatively obligate and facultative
506 members of the microbiome.

507 **Author Contributions**

508 M.J.S, F-W.L., F.F., E.T., C.M., B.S., and C.J.R designed and
509 executed the experiment. M.J.S performed the analyses.
510 M.J.S, F-W.L., F.F., E.T., C.M., B.S., C.M.T. and C.J.R con-
511 tributed with the manuscript.

512 **Acknowledgements**

513 We would like to thank Britt Koskella for her discussion
514 and insights.

515 **Data accessibility**

516 All data generated by CCGP can be found in the NCBI
517 SRA (PRJNA720569).

518 **Supplemental Tables and Figures**

519 List of Supplemental Tables:

520 Supplemental Table 1. Sample collection data for this
521 study.

522 List of Supplemental Figures:

523 Supplemental Figure 2. Violin plots of the relative
524 abundance of the two most abundant phyla across all
525 samples with the mean and standard deviation in red.

526 Supplemental Figure 3. ML phylogeny of *Azolla* sam-
527 ples inferred from SNP data with bootstrap values at
528 nodes and branch length units in nucleotide substitutions
529 per site.

530 Supplemental Figure 4. Coalescent tree inferred using
531 SVDQuartets with bootstrap values at nodes and branch
532 lengths in coalescent units.

533 References

534 Banach, A., Kuźniar, A., Menczel, R., and Wolińska, A. (2019). The
535 study on the cultivable microbiome of the aquatic fern *azolla filicul-
536 loides* l. as new source of beneficial microorganisms. *Applied Sciences*,
537 9(10):2143.

538 Beringer, J. E. and Johnston, A. W. (1984). The significance of symbiotic
539 nitrogen fixation in plant production. *Critical reviews in plant sciences*,
540 1(4):269–286.

541 Bi, G., Mao, Y., Xing, Q., and Cao, M. (2018). Homblocks: a multiple-
542 alignment construction pipeline for organelle phylogenomics based
543 on locally collinear block searching. *Genomics*, 110(1):18–22.

544 Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L. J., Thompson,
545 K. N., Zolfo, M., Manghi, P., Dubois, L., Huang, K. D., Thomas,
546 A. M., et al. (2023). Extending and improving metagenomic taxo-
547 nomic profiling with uncharacterized species using metaphlan 4. *Nature
548 Biotechnology*, pages 1–12.

549 Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
550 trimmer for illumina sequence data. *Bioinformatics*, 30(15):2114–2120.

551 Bradburd, G. S., Ralph, P. L., and Coop, G. M. (2013). Disentangling the
552 effects of geographic and ecological isolation on genetic differentia-
553 tion. *Evolution*, 67(11):3258–3273.

554 Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A.,
555 Serio, C., Di Febbraro, M., and Raia, P. (2018). A new method for test-
556 ing evolutionary rate variation and shifts in phenotypic evolution.
557 *Methods in Ecology and Evolution*, 9(4):974–983.

558 Chifman, J. and Kubatko, L. (2014). Quartet inference from snp data
559 under the coalescent model. *Bioinformatics*, 30(23):3317–3324.

560 Coale, T. H., Loconte, V., Turk-Kubo, K. A., Vanslembrouck, B., Mak,
561 W. K. E., Cheung, S., Ekman, A., Chen, J.-H., Hagino, K., Takano,
562 Y., et al. (2024). Nitrogen-fixing organelle in a marine alga. *Science*,
563 384(6692):217–222.

564 code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhance-
565 ments by Thomas P Minka, A. R. W. R., and Deckmyn., A. (2021).
566 *maps: Draw Geographical Maps*. R package version 3.4.0.

567 Consortium of California Herbaria (2023). University of California and
568 Jepson Herbaria. <https://ucjeps.berkeley.edu/consortium/>.
569 Accessed Mar 3rd, 2023.

570 Cook, D. E. and Andersen, E. C. (2017). Vcf-kit: assorted utilities for the
571 variant call format. *Bioinformatics*, 33(10):1581–1582.

572 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard,
573 M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M.,
574 et al. (2021). Twelve years of samtools and bcftools. *Gigascience*,
575 10(2):giab008.

576 de Vries, S. and de Vries, J. (2022). Evolutionary genomic insights into
577 cyanobacterial symbioses in plants. *Quantitative Plant Biology*, 3:e16.

578 Dijkhuizen, L. W., Brouwer, P., Bolhuis, H., Reichart, G.-J., Koppers, N.,
579 Huettel, B., Bolger, A. M., Li, F.-W., Cheng, S., Liu, X., et al. (2018). Is
580 there foul play in the leaf pocket? the metagenome of floating fern
581 *azolla* reveals endophytes that do not fix n₂ but may denitrify. *New
582 Phytologist*, 217(1):453–466.

583 Doyle, J. J. and Doyle, J. L. (1987). A rapid dna isolation procedure for
584 small quantities of fresh leaf tissue. *Phytochemical bulletin*.

585 Eily, A. N., Pryer, K. M., and Li, F.-W. (2019). A first glimpse at genes
586 important to the azolla–nostoc symbiosis. *Symbiosis*, 78:149–162.

Fan, J., Huang, S., and Chorlton, S. D. (2021). Bugseq: a highly accurate
587 cloud platform for long-read metagenomic analyses. *BMC bioinfor-
588 matics*, 22:1–12.
589

Flora of North America Editorial Committee, e. (1993). *Flora of North
590 America: Volume 2: Pteridophytes and Gymnosperms*, volume 2. Oxford
591 University Press.
592

Gunawardana, D. and Pushpakumara, B. U. (2023). Molecular
593 characterization of *fischerella uthpalarensis*, the first subsection v
594 cyanobiont from a tropical *azolla* species containing dual nitro-
595 genases. *bioRxiv*, pages 2023–03.
596

Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., and Vinh,
597 L. S. (2018). Ufboot2: improving the ultrafast bootstrap approxima-
598 tion. *Molecular biology and evolution*, 35(2):518–522.
599

iNaturalist (2023). <https://www.inaturalist.org/>. Accessed Mar
600 3rd, 2023.
601

Janz, N. (2011). Ehrlich and raven revisited: mechanisms underlying
602 codiversification of plants and enemies. *Annual review of ecology, evo-
603 lution, and systematics*, 42:71–89.
604

Jepson eFlora (2020). Jepson eflora project.
605

Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., DePamphilis, C. W., Yi, T.-S., and
606 Li, D.-Z. (2020). Getorganelle: a fast and versatile toolkit for accurate
607 de novo assembly of organelle genomes. *Genome biology*, 21:1–31.
608

Koskella, B. and Bergelson, J. (2020). The study of host–microbiome (co)
609 evolution across levels of selection. *Philosophical Transactions of the
610 Royal Society B*, 375(1808):20190604.
611

Legendre, P., Desdevises, Y., and Bazin, E. (2002). A statistical test for
612 host–parasite coevolution. *Systematic biology*, 51(2):217–234.
613

Li, F.-W., Brouwer, P., Carretero-Paulet, L., Cheng, S., De Vries, J., De-
614 laux, P.-M., Eily, A., Koppers, N., Kuo, L.-Y., Li, Z., et al. (2018). Fern
615 genomes elucidate land plant evolution and cyanobacterial sym-
616 bioses. *Nature plants*, 4(7):460–472.
617

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with
618 burrows–wheeler transform. *Bioinformatics*, 26(5):589–595.
619

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
620 Marth, G., Abecasis, G., Durbin, R., and Subgroup, . G. P. D. P. (2009).
621 The sequence alignment/map format and samtools. *bioinformatics*,
622 25(16):2078–2079.
623

Madeira, P. T., Center, T. D., Coetze, J. A., Pemberton, R. W., Purcell,
624 M. F., and Hill, M. P. (2013). Identity and origins of introduced and
625 native *Azolla* species in Florida. *Aquatic botany*, 111:9–15.
626

Metzgar, J. S., Schneider, H., and Pryer, K. M. (2007). Phylogeny and
627 divergence time estimates for the fern genus *Azolla* (Salviniales).
628 *International Journal of Plant Sciences*, 168(7):1045–1053.
629

Minh, B. Q., Nguyen, M. A. T., and Von Haeseler, A. (2013). Ultrafast
630 approximation for phylogenetic bootstrap. *Molecular biology and evo-
631 lution*, 30(5):1188–1195.
632

Morris, J. J., Lenski, R. E., and Zinser, E. R. (2012). The black queen
633 hypothesis: evolution of dependencies through adaptive gene loss.
634 *MBio*, 3(2):e00036–12.
635

Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q.
636 (2015). Iq-tree: a fast and effective stochastic algorithm for estimat-
637 ing maximum-likelihood phylogenies. *Molecular biology and evolution*,
638 32(1):268–274.
639

640 Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P.,
641 Minchin, P. R., O'Hara, R., Solymos, P., Stevens, M. H. H., Szoecs,
642 E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D.,
643 Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista,
644 H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill,
645 M. O., Lahti, L., McGlinn, D., Ouellette, M.-H., Ribeiro Cunha, E.,
646 Smith, T., Stier, A., Ter Braak, C. J., and Weedon, J. (2022). *vegan: Community Ecology Package*. R package version 2.6-4.

648 Paradis, E., Claude, J., and Strimmer, K. (2004). Ape: analyses of phylogenetics and evolution in r language. *Bioinformatics*, 20(2):289–290.

650 Peters, G. A., Toia Jr, R. E., Evans, W. R., Crist, D. K., Mayne, B. C.,
651 and Poole, R. E. (1980). Characterization and comparisons of five n2-fixing azolla-anabaena associations. i. optimization of growth conditions for biomass increase and n content in a controlled environment. *Plant, Cell & Environment*, 3(4):261–269.

655 R Core Team, R. et al. (2013). R: A language and environment for statistical computing.

657 Ran, L., Larsson, J., Vigil-Stenman, T., Nylander, J. A., Ininbergs, K.,
658 Zheng, W.-W., Lapidus, A., Lowry, S., Haselkorn, R., and Bergman,
659 B. (2010). Genome erosion in a nitrogen-fixing vertically transmitted
660 endosymbiotic multicellular cyanobacterium. *PLoS One*, 5(7):e11486.

661 Revell, L. J. (2012). phytools: an r package for phylogenetic comparative
662 biology (and other things). *Methods in ecology and evolution*, (2):217–
663 223.

664 Robinson, D. F. and Foulds, L. R. (1981). Comparison of phylogenetic
665 trees. *Mathematical biosciences*, 53(1-2):131–147.

666 Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation.
667 *Bioinformatics*, 30(14):2068–2069.

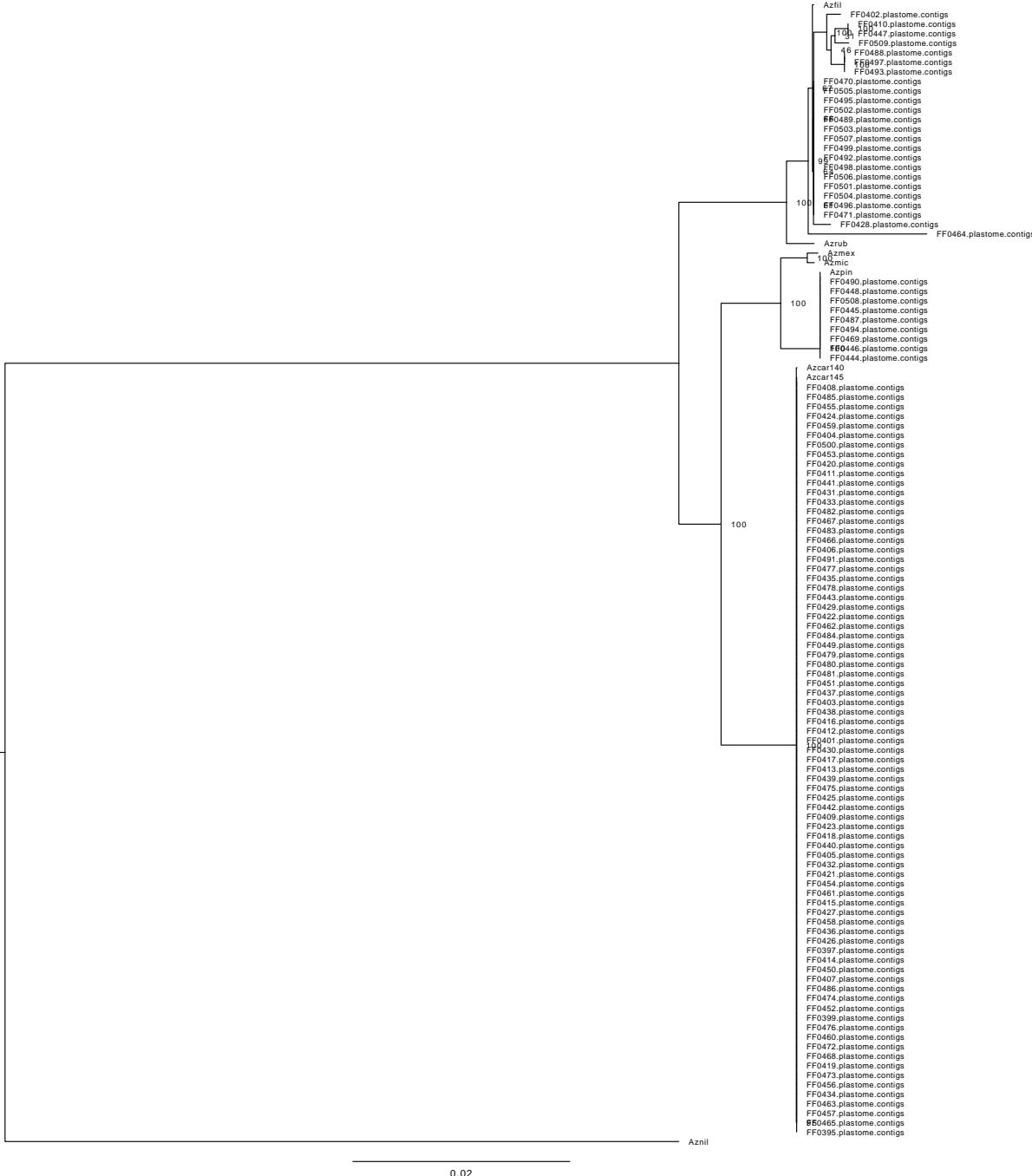
668 Shaffer, H. B., Toffelmier, E., Corbett-Detig, R. B., Escalona, M., Erickson,
669 B., Fiedler, P., Gold, M., Harrigan, R. J., Hodges, S., Luckau,
670 T. K., et al. (2022). Landscape genomics to enable conservation actions:
671 the california conservation genomics project. *Journal of Heredity*, 113(6):577–588.

673 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and
674 Zdobnov, E. M. (2015). Busco: assessing genome assembly and annotation
675 completeness with single-copy orthologs. *Bioinformatics*,
676 31(19):3210–3212.

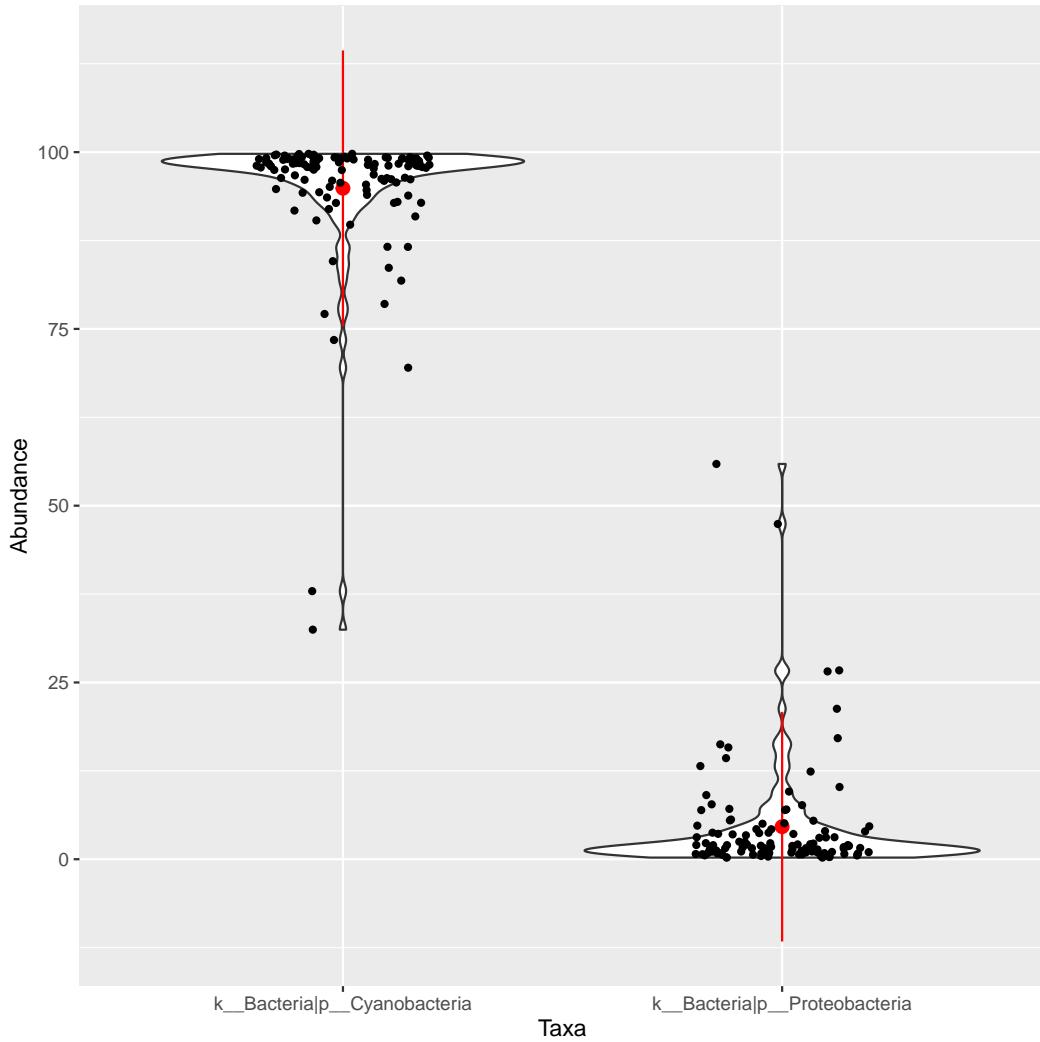
677 Song, M. J., Huynh, M., Lahmeyer, S., and Sedaghatpour, M. (2023). First
678 record of the invasive *Azolla pinnata* subsp. *pinnata* (Salviniales) in
679 California. *American Fern Journal*, 113(1):56–57.

680 Swofford, D. L. (1990). Phylogenetic reconstruction. *Molecular systematics*,
681 pages 411–501.

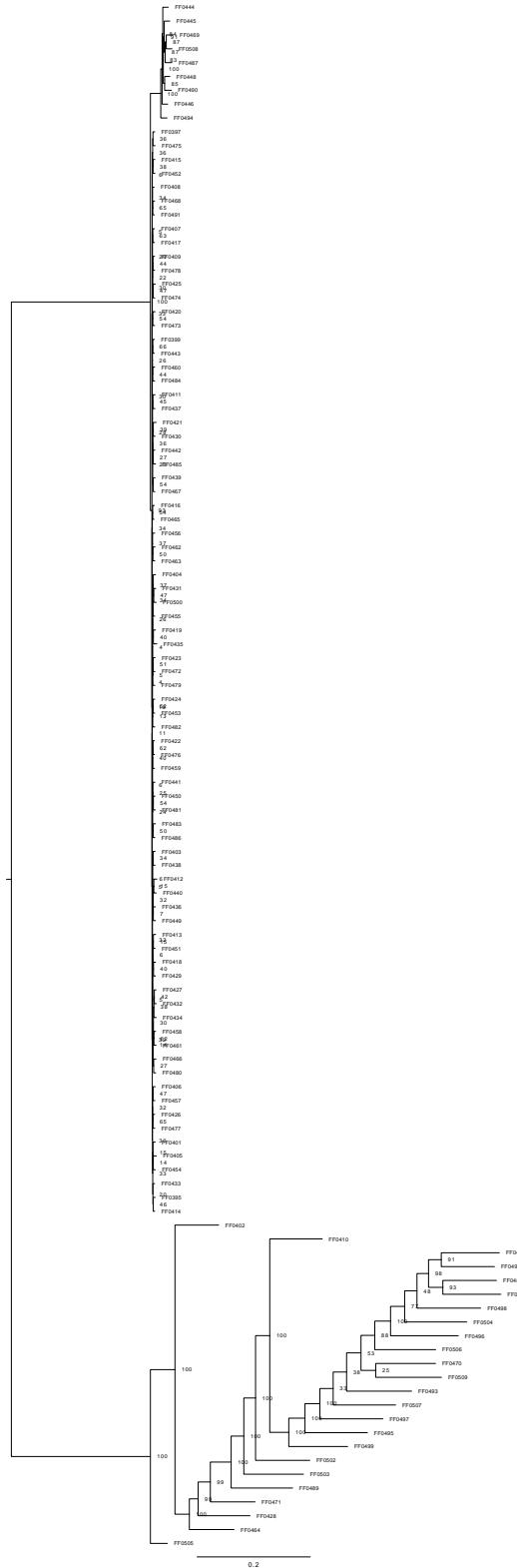
682 Swofford, D. L. (2003). Paup^* phylogenetic analysis using parsimony
683 (^* and other methods). version 4. <http://paup.csit.fsu.edu/>.

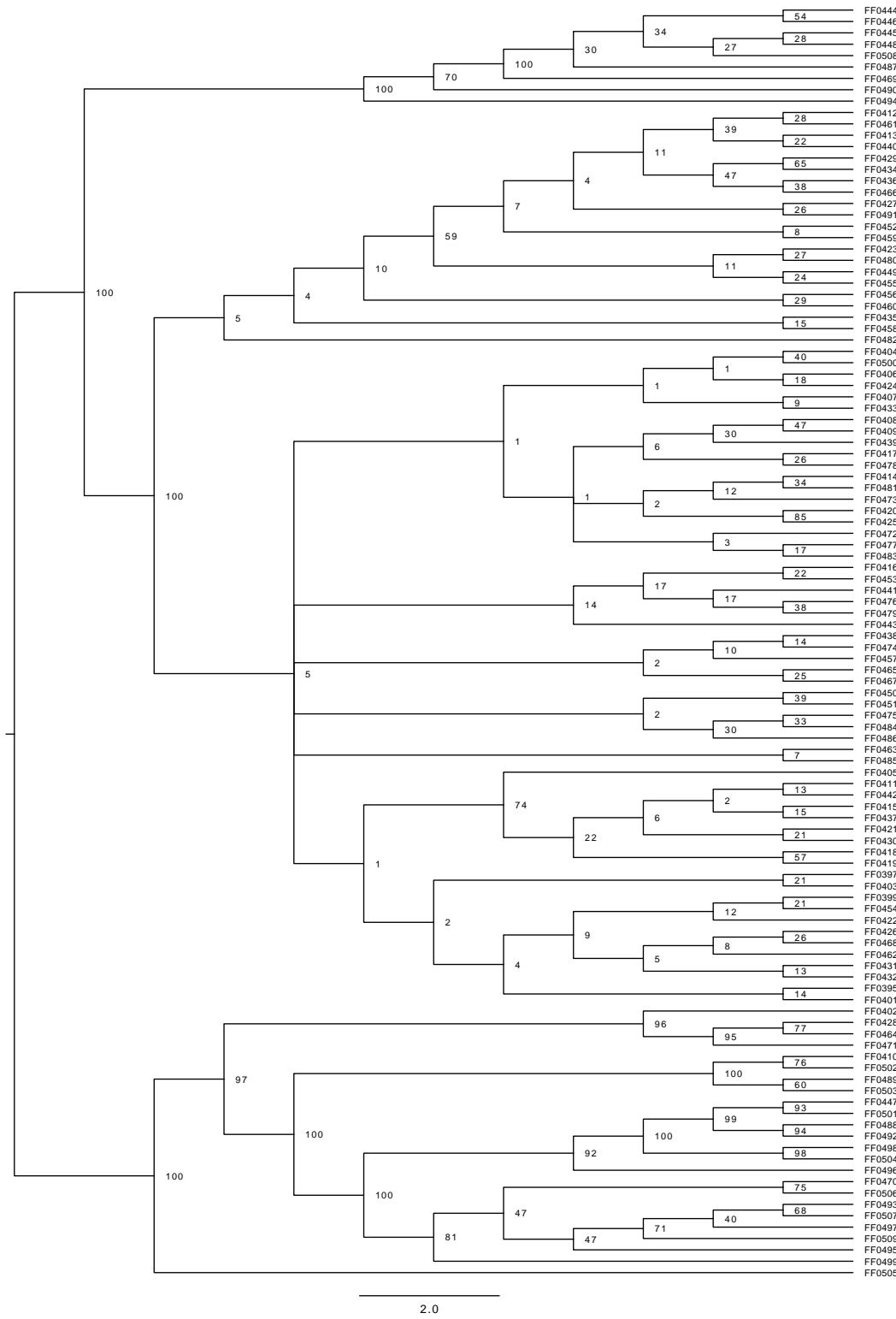

684 Syberg-Olsen, M. J., Garber, A. I., Keeling, P. J., McCutcheon, J. P.,
685 and Husnik, F. (2022). Pseudofinder: detection of pseudogenes in
686 prokaryotic genomes. *Molecular biology and evolution*, 39(7):msac153.

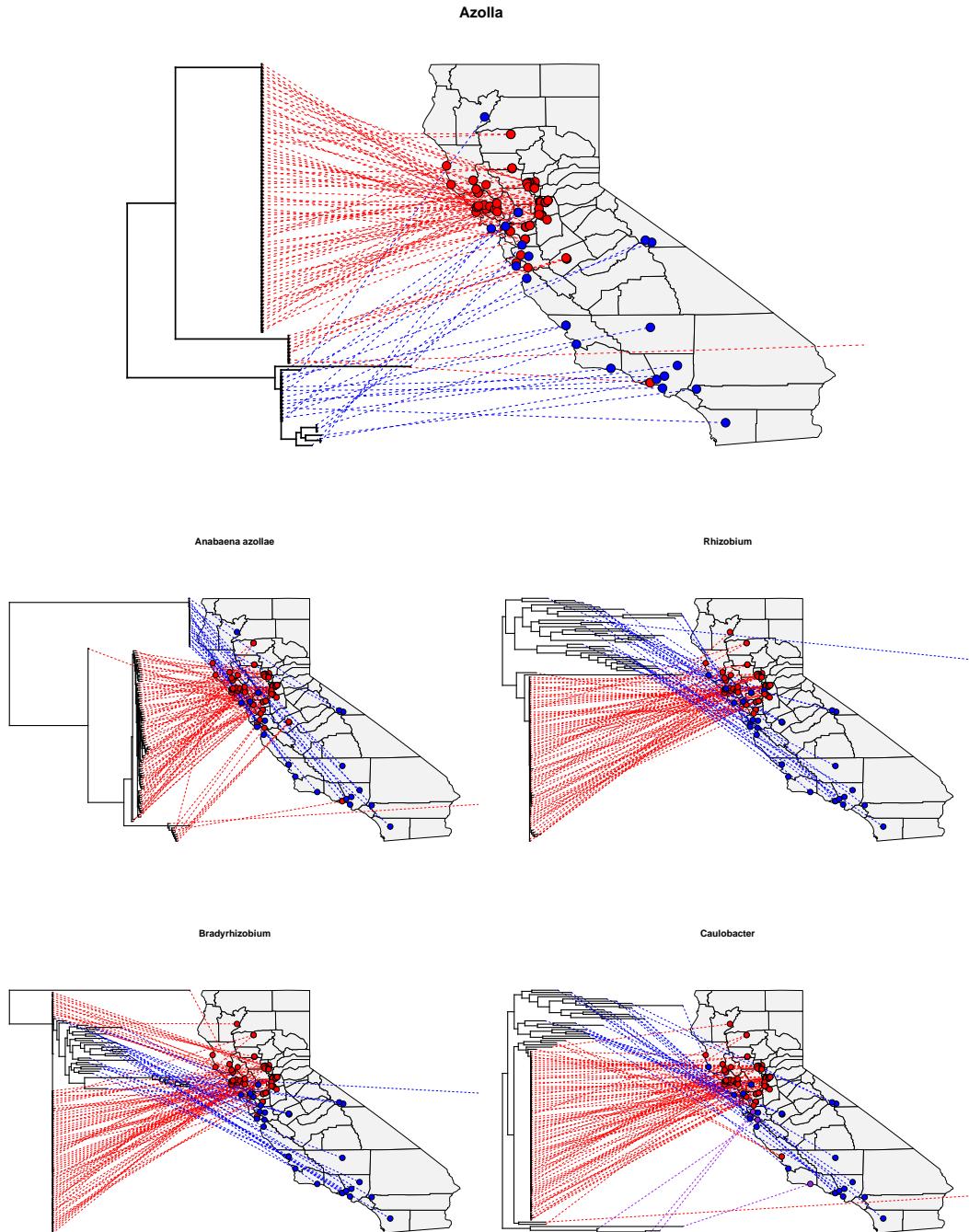
687 Watanabe, I. (1986). Nitrogen fixation by non-legumes in tropical agriculture
688 with special reference to wetland rice. *Plant and Soil*, 90:343–
689 357.


690 Wilhelm, R. C. (2018). Following the terrestrial tracks of caulobacter—
691 redefining the ecology of a reputed aquatic oligotroph. *The ISME journal*, 12(12):3025–3037.

693 Yang, Y.-Q., Deng, S.-F., Yang, Y.-Q., and Ying, Z.-Y. (2022). Comparative
694 analysis of the endophytic bacteria inhabiting the phyllosphere of aquatic fern
695 azolla species by high-throughput sequencing. *BMC microbiology*, 22(1):1–11.


697 Zheng, W., Bergman, B., Chen, B., Zheng, S., Xiang, G., and Rasmussen,
698 U. (2009). Cellular responses in the cyanobacterial symbiont during
699 its vertical transfer between plant generations in the azolla microphylla
700 symbiosis. *New Phytologist*, 181(1):53–61.


Supp. Fig. 1: Plastome phylogeny of *Azolla* samples with bootstrap values at nodes. The large clade is found to be similar to *A. caroliniana*, which is sister to a *A. microphylla*/*A. mexicana* clade (the *A. pinnata* chloroplast being a clear error in Genbank). These two clades are sister to an *A. filiculoides*/*A. rubra* clade. These relationships reflect the current understanding of these taxa's evolutionary history.


Supp. Fig. 2: Violin plots of the relative abundance of the two most abundant phyla across all samples with the mean and standard deviation in red.

Supp. Fig. 3: ML phylogeny of *Azolla* samples inferred from SNP data with bootstrap values at nodes and branch length units in nucleotide substitutions per site.

Supp. Fig. 4: Coalescent tree inferred using SVDQuartets with bootstrap values at nodes and branch lengths in coalescent units.

Supp. Fig. 5: Phylogenies of *Azolla* and its leaf pocket microbial taxa projected onto the samples' geographic location. Colors are broadly associated across trees to reflect potentially similar major groups in each taxa as well as to assist readability, although they should not be read as formal statements of co-diversification.

Supp. Tab. 1: Sample collection data

Sample name	Collection name	Geographic Location	Collection.date	Latitude and Longitude	Coverage
FF0395	F.Freund_293-14979	Spring Lake Park, Sonoma county, California	2021-Feb-10	38.45929,-122.65443	9.81336
FF0397	F.Freund_294-14980	Spring Lake Park, Sonoma county, California	2021-Feb-10	38.4512,-122.65347	8.61308
FF0399	F.Freund_295-14981	Laguna De Santa Rosa trail, Sonoma county, California	2021-Feb-10	38.41676,-122.8113	14.217
FF0401	F.Freund_296-14982	Riverside County Park, Sonoma county, California	2021-Feb-12	38.51644,-122.86393	11.4929
FF0402	F.Freund_292-14978	UC Berkeley, Alameda county, California	2021-Feb-05	37.874914,-122.238244	4.56492
FF0403	F.Freund_293-14979	Spring Lake Park, Sonoma county, California	2021-Feb-10	38.45929,-122.65443	7.88676
FF0404	F.Freund_294-14980	Spring Lake Park, Sonoma county, California	2021-Feb-10	38.4512,-122.65347	6.88168
FF0405	F.Freund_295-14981	Laguna De Santa Rosa trail, Sonoma county, California	2021-Feb-12	38.41676,-122.8113	7.10254
FF0406	F.Freund_296-14982	Riverside County Park, Sonoma county, California	2021-Feb-12	38.51644,-122.86393	9.19929
FF0407	F.Freund_297-14983	Cloverdale Riverfront Park, Sonoma county, California	2021-Feb-13	38.82603,-123.00664	9.32088
FF0408	F.Freund_298-14984	Cloverdale Riverfront Park, Sonoma county, California	2021-Feb-13	38.82293,-123.00974	9.96116
FF0409	F.Freund_299-14985	Cloverdale Riverfront Park, Sonoma county, California	2021-Feb-13	38.81849,-123.01181	11.0842
FF0410	F.Freund_300-14986	Audobon Canyon Ranch, Marin county, California	2021-Feb-16	37.9299,-122.68219	7.86395
FF0411	F.Freund_301-14987	Shadow Cliffs Regional Park, Alameda county, California	2021-Mar-02	37.66603,-121.83488	11.741
FF0412	F.Freund_302-14988	Shadow Cliffs Regional Park, Alameda county, California	2021-Mar-02	37.66691,-121.83823	44.3409
FF0413	F.Freund_303-14989	Shadow Cliffs Regional Park, Alameda county, California	2021-Mar-02	37.66814,-121.84361	25.2772
FF0414	F.Freund_304-14990	Contra Loma Regional Park, Contra Costa county, California	2021-Mar-04	37.97168,-121.82599	9.35674
FF0415	F.Freund_305-14991	Contra Loma Regional Park, Contra Costa county, California	2021-Mar-04	37.97356,-121.83136	8.94355
FF0416	F.Freund_306-14992	Contra Loma Regional Park, Contra Costa county, California	2021-Mar-04	37.97398,-121.82255	11.903
FF0417	F.Freund_307-14993	Cosumnes River Preserve, Sacramento county, California	2021-Mar-07	38.263732,-121.440121	7.97947
FF0418	F.Freund_308-14994	Cosumnes River Preserve, Sacramento county, California	2021-Mar-07	38.259844,-121.43760	8.79881
FF0419	F.Freund_309-14995	Cosumnes River Preserve, Sacramento county, California	2021-Mar-07	38.258056,-121.43182	7.69457
FF0420	F.Freund_310-14996	Cosumnes River Preserve, Sacramento county, California	2021-Mar-07	38.259191,-121.42678	7.45506
FF0421	F.Freund_311-14997	Cosumnes River Preserve, Sacramento county, California	2021-Mar-07	38.261154,-121.420542	10.9616
FF0422	F.Freund_312-14998	Cosumnes River Preserve, Sacramento county, California	2021-Mar-07	38.256748,-121.43916	10.5525
FF0423	F.Freund_313-14999	Sacramento National Wildlife Refuge, Glenn county, California	2021-Mar-09	39.42227,-122.16944	18.6806
FF0424	F.Freund_314-15000	Sacramento National Wildlife Refuge, Glenn county, California	2021-Mar-09	39.42213,-122.16398	9.64979
FF0425	F.Freund_315-15001	Sacramento National Wildlife Refuge, Glenn county, California	2021-Mar-09	39.43667,-122.16423	7.8067
FF0426	F.Freund_316-15002	Payne Creek BLM land, Tehama county, California	2021-Mar-09	40.27373,-122.19778	11.1772
FF0427	F.Freund_317-15003	Payne Creek BLM land, Tehama county, California	2021-Mar-10	40.27242,-122.19543	21.4705
FF0428	F.Freund_318-15004	Bucktail Hollow BLM land, Trinity county, California	2021-Mar-10	40.70494,-122.84583	6.14647
FF0429	F.Freund_319-15005	American River Parkway, Sacramento county, California	2021-Mar-22	38.60228,-121.48409	27.2787
FF0430	F.Freund_320-15006	Sutter's Landing Regional Park, Sacramento county, California	2021-Mar-22	38.58858,-121.4612	10.7989
FF0431	F.Freund_321-15007	Sutter's Landing Regional Park, Sacramento county, California	2021-Mar-22	38.5897,-121.4572	10.043
FF0432	F.Freund_322-15008	Sutter's Landing Regional Park, Sacramento county, California	2021-Mar-22	38.59023,-121.45422	12.8365
FF0433	F.Freund_323-15009	Sutter's Landing Regional Park, Sacramento county, California	2021-Mar-22	38.58936,-121.45016	10.2334
FF0434	F.Freund_324-15010	William B. Pond Regional Park, Sacramento county, California	2021-Mar-22	38.584,-121.34401	30.9599
FF0435	F.Freund_325-15011	William B. Pond Regional Park, Sacramento county, California	2021-Mar-22	38.58292,-121.33186	15.6081
FF0436	F.Freund_326-15012	William B. Pond Regional Park, Sacramento county, California	2021-Mar-22	38.58222,-121.33048	16.4053
FF0437	F.Freund_327-15013	William B. Pond Regional Park, Sacramento county, California	2021-Mar-22	38.58112,-121.33005	10.9599
FF0438	F.Freund_328-15014	William B. Pond Regional Park, Sacramento county, California	2021-Mar-22	38.5817,-121.33311	11.0392
FF0439	F.Freund_329-15015	William B. Pond Regional Park, Sacramento county, California	2021-Mar-22	38.58572,-121.33083	9.4962
FF0440	F.Freund_330-15016	Sunrise Recreation Area, Sacramento county, California	2021-Mar-22	38.63205,-121.27296	33.5765
FF0441	F.Freund_331-15017	Sunrise Recreation Area, Sacramento county, California	2021-Mar-22	38.62505,-121.28121	16.3838
FF0442	F.Freund_332-15018	Sunrise Recreation Area, Sacramento county, California	2021-Mar-22	38.62882,-121.27628	9.7094
FF0443	F.Freund_333-15019	Sunrise Recreation Area, Sacramento county, California	2021-Mar-22	38.62778,-121.2761	13.0143
FF0444	F.Freund_334-15020	San Luis National Wildlife Refuge, Merced county, California	2021-Mar-24	37.17493,-120.80167	9.17148
FF0445	F.Freund_335-15021	San Luis National Wildlife Refuge, Merced county, California	2021-Mar-24	37.17963,-120.81879	10.9122
FF0446	F.Freund_336-15022	San Luis National Wildlife Refuge, Merced county, California	2021-Mar-24	37.20337,-120.82523	7.77105
FF0447	F.Freund_337-15023	Malibu Creek State park, Los Angeles, California	2021-Mar-31	34.10312,-118.73864	14.5
FF0448	F.Freund_338-15024	Malibu Creek State park, Los Angeles, California	2021-Mar-31	34.09861,-118.73326	8.45417
FF0449	F.Freund_341-15025	MacKerricher State Park, Mendocino county, California	2021-Apr-14	39.4903,-123.79458	18.0248
FF0450	F.Freund_342-15026	Mill Creek road, Mendocino county, California	2021-Apr-14	39.12759,-123.12984	10.5229
FF0451	F.Freund_343-15027	Mill Creek road, Mendocino county, California	2021-Apr-14	39.13116,-123.13448	13.8941
FF0452	F.Freund_344-15028	Clear Lake State Park, Lake county, California	2021-Apr-14	39.01961,-122.81251	17.8488
FF0453	F.Freund_345-15029	Russian River, Mendocino county, California	2021-Apr-15	38.90751,-123.05816	9.28703
FF0454	F.Freund_346-15030	Nagasawa Community Park, Sonoma county, California	2021-Apr-15	38.48432,-122.71689	13.3198
FF0455	F.Freund_347-15031	Anadel State Park, Sonoma county, California	2021-Apr-16	38.40925,-122.59766	15.8904
FF0456	F.Freund_348-15032	Sugarloaf State Park, Sonoma county, California	2021-Apr-16	38.45018,-122.54028	14.7872
FF0457	F.Freund_349-15033	Sonoma Development Center, Sonoma county, California	2021-Apr-16	38.346185,-122.535045	12.5075
FF0458	F.Freund_350-15034	Tilden East Bay Regional Park, Alameda county, California	2021-May-03	37.896849,-122.24980	15.4308
FF0459	F.Freund_351-15035	Bodega Bay, Sonoma county, California	2021-May-06	38.33653,-123.02502	15.7808
FF0460	F.Freund_352-15036	Russian River, Sonoma county, California	2021-May-06	38.46469,-123.04729	14.1506
FF0461	F.Freund_353-15037	Russian River, Sonoma county, California	2021-May-06	38.46022,-123.02557	28.7906
FF0462	F.Freund_354-15038	Russian River, Sonoma county, California	2021-May-06	38.4669,-123.01187	10.6643
FF0463	F.Freund_355-15039	Russian River, Sonoma county, California	2021-May-06	38.49938,-122.9986	14.7847
FF0464	F.Freund_356-15041	Coyote Hills, Alameda county, California	2021-May-10	37.52162,-121.91858	5.22008
FF0465	F.Freund_357-15042	Sibley Volcanic Regional Preserve, Contra Costa county, California	2021-May-11	37.85937,-122.20583	7.82156
FF0466	F.Freund_358-15043	Big Break Regional Park, Contra Costa county, California	2021-May-28	38.00983,-121.72736	19.2938
FF0467	F.Freund_359-15044	Big Break Regional Park, Contra Costa county, California	2021-May-28	38.01221,-121.72827	12.5762
FF0468	F.Freund_360-15045	Big Break Regional Park, Contra Costa county, California	2021-May-28	38.00768,-121.72279	12.6423
FF0469	F.Freund_364-15046	Los Gatos City Park creek, Santa Clara county, California	2021-Jul-06	37.27298,-121.94801	8.21433
FF0470	F.Freund_366-15048	Laguna Park, Solano county, California	2021-Jul-30	38.32702,-122.0097	10.7304
FF0471	F.Freund_367-15049	Laguna Park, Solano county, California	2021-Jul-30	38.33517,-122.01347	5.12965
FF0472	F.Freund_368-15050	Feather River off Wilson Rd., Sutter county, California	2021-Jul-30	39.01206,-121.60035	9.01463
FF0473	F.Freund_369-15051	Feather River off Wilson Rd., Sutter county, California	2021-Jul-30	39.01146,-121.59948	8.35643
FF0474	F.Freund_370-15052	Feather River off Garden Hwy., Sutter county, California	2021-Jul-30	39.058,-121.61065	12.0956
FF0475	F.Freund_371-15053	Shanghai Bend Park, Sutter county, California	2021-Jul-30	39.09758,-121.59581	9.7154
FF0476	F.Freund_372-15054	Culvert on Ozwald Rd., Sutter county, California	2021-Jul-30	39.06889,-121.70841	15.6527
FF0477	F.Freund_374-15056	Levi on Hughes Rd., Sutter county, California	2021-Jul-30	39.07366,-121.74496	11.61
FF0478	F.Freund_375-15057	Hughes Rd., Sutter county, California	2021-Jul-30	39.07336,-121.74614	6.22105
FF0479	F.Freund_376-15058	Ozwald Rd., Sutter county, California	2021-Jul-30	39.06978,-121.78728	11.5675
FF0480	F.Freund_377-15059	Acme and Progress rd., Sutter county, California	2021-Jul-30	39.04421,-121.80074	15.7527
FF0481	F.Freund_378-15060	Reclamation rd., Sutter county, California	2021-Jul-30	38.96416,-121.7602	10.7168
FF0482	F.Freund_379-15061	Marcus rd., Sutter county, California	2021-Jul-30	38.95254,-121.61932	15.6968
FF0483	F.Freund_380-15071	Stone Lake National Wildlife Refuge, Pond 1, Sacramento County, California	2021-Sept-20	38.37058,-121.49361	9.80097
FF0484	F.Freund_381-15072	Parker Slough, Stone Lakes National Wildlife Refuge, Sacramento County, California	2021-Sept-20	38.42707,-121.49921	11.1858
FF0485	F.Freund_382-15073	Snowgrass Slough, Twin Cities Rd., Sacramento County, California	2021-Sept-20	38.27668,-121.49536	12.058
FF0486	F.Freund_383-15074	Lake Lodi, San Joaquin county, California	2021-Sept-20	38.14939,-121.2966	12.7236
FF0487	Al Keuter.s-n.-14970	Quail Hollow Ranch County Park, Santa Cruz County, California	2021-Aug-16	37.08265,-122.062571	14.4974
FF0488	Al Keuter.s-n.-14971	Thimman Greenhouse, University of California, Santa Cruz., Santa Cruz County, California	2021-Oct-1	36.99815702,-122.06219327	14.0945
FF0489	Beth Pearson.s-n.-14972	Cleveland National Forest, San Diego County, California	2021-May-24	33.106122,-116.86062	7.01314
FF0490	C.J.Rothfels.3479-859	Flat River Impoundment, Durban County, North Carolina	2009-Sep-13	36.123,-78.826	8.54456
FF0491	C.J.Rothfels.4489-10078	Vicinity of Bobalina Sanctuary, Sutter county, California	2014-Feb-05	38.93017,-121.60771	10.8109
FF0492	C.J.Rothfels.5437-4973	Hilltop Lake, Hilltop Lake Park, Richmond, Contra Costa County, California	2021-Jun-07	37.98697,-122.327583	14.0906
FF0493	C.J.Rothfels.5439-3496	Marina Locke-Paddon Wetland Community Park, Monterey County, California	2021-Jul-07	36.691383,-121.80205	10.984
FF0494	C.J.Rothfels.5440-14969	Pinto Lake, N. end of Watsonville, Santa Cruz County, California	2021-Jul-07	36.959763,-121.77293	5.9746
FF0495	David Kell.38123-14976	Santa Rita Ranch Preserve, San Luis Obispo County, California	2021-Jun-01	35.523981,-120.82749	9.80869
FF0496	David Kell.38202-14974	Santa Rita Ranch Preserve, San Luis Obispo County, California	2021-Jun-21	35.523981,-120.827494	12.7811
FF0497	David Kell.38286-14975	Black Lake Canyon., San Luis Obispo County, California	2021-Jun-15	35.05557,-120.566325	10.473
FF0498	Eric Cleveland.s-n.-14977	Ballona Freshwater Marsh., Los Angeles County, California	2021-Jun-30	33.966,-118.428	13.4723
FF0499	Isobel Gonzalez Ramirez	Sequoia National Forest	2021-MAY-07	35.473097,-118.728447	9.57706
FF0500	Isobel Gonzalez Ramirez.255-15062	Castello di amorosa winery., Napa County, California	2021-Jul-23	38.55848,-122.542149	5.64189
FF0501	Joshua Der.s-n.-15063	Owens River George, Mono County, California	2021-May-31	37.58824,-118.69506	13.697
FF0502	Joshua Der.s-n.-15064	Mammoth Lakes., Mono County, California	2021-Jul-05	37.641792,-118.854125	7.29138
FF0503	Matt.Guilliams.s-n.-6703	Sierra Barbara Botanic Garden, Santa Barbara County, California	2021-Jun-01	34.45635,-119.710018	6.56854
FF0504	Mike Hundst.s-n.-15065	Basking Ridge Conservation Area., Santa Clara County, California	2021-May-15	37.24239,-121.75324	13.1312
FF0505	Mike Letteriello.1-15066	Palmdale, California., Kern County, California	2021-Apr-15	34.528065,-118.058212	3.59121
FF0506	Richard Rachman.2-15067	Hansen Dam Wildlife Preserve., Los Angeles County, California	2021-Apr-15	34.182529,-118.57566	10.6588
FF0507	Richard Rachman.2-15067	Pierce College, Los Angeles County, California	2021-Apr-15	34.182529,-118.57566	10.6588
FF0508	Roger Birkhead.s-n.-15069	Pomo Lake Park, Manchester, Mendocino County, California	2021-Jul-27	39.023809,-123.681963	10.6223
FF0509	Sonia Rosnratnia.s-n.-15070	Santa Ana River, Riverside County, California	2021-May-15	33.941,-117.5847	10.5998

Supp. Tab. 2: Summary statistics for BugSeq metagenome assembly and taxonomic profiling

Sample Name	Abundance	N50 (Kbp)	Assembly Length (Kbp)	$\geq 20X$	$\geq 50X$	Median	Complete single copy BUSCOs
<i>Anabaena azollae</i>	53.6%	1079.5	5361.4	97.0%	97.0%	229.0X	119 (96%)
Root	32.9%	26.0	39736.7				NA
<i>Rhizobium</i>	1.7%	451.8	4245.0				112 (90.3%)
<i>Bradyrhizobium</i>	0.2%	21.5	1384.2				18 (14.5%)
<i>Caulobacter</i>	0.2%	22.9	960.9				42 (33.9%)
<i>Rhizobiaceae</i>	0.2%	304.0	516.0				9 (7.3%)
Alphaproteobacteria	0.0%	29.7	193.1				0
Ascomycota	0.0%	11.4	11.4				NA
<i>Bosea</i>	0.0%	8.1	8.1				0
<i>Chachezhania</i>	0.0%	10.0	10.0				0
<i>Costertonia</i>	0.0%	12.1	12.1				0
<i>Dyadobacter</i>	0.0%	7.1	7.1				0
<i>Fusarium</i>	0.0%	9.1	9.1				NA
<i>Ginsengibacter</i>	0.0%	11.2	11.2				0
<i>Hoeflea</i>	0.0%	12.2	12.2				1 (0.8%)
<i>Kinneretia</i>	0.0%	7.6	7.6				0
<i>Maribacter</i>	0.0%	8.5	8.5				0
<i>Methylibium</i>	0.0%	7.4	7.4				1 (0.8%)
<i>Mucilaginibacter</i>	0.0%	10.2	73.7				0
<i>Pandorea soli</i>	0.0%	8.1	8.1			0.0X	0
<i>Pedobacter</i>	0.0%	8.7	70.5				2 (1.6%)
<i>Pirellula</i>	0.0%	8.4	8.4				0
<i>Pseudomonadota</i>	0.0%	43.4	52.9				0
<i>Pseudoxanthomonas</i>	0.0%	9.1	9.1				0
<i>Reyranella</i>	0.0%	9.1	9.1				1 (0.8%)
<i>Rhodopseudomonas</i>	0.0%	8.8	8.8				0
<i>Rhodospirillales</i>	0.0%	13.9	51.6				1 (0.8%)
<i>Tardiphaga</i>	0.0%	14.5	14.5				0
<i>Trichoderma</i>	0.0%	9.6	18.9				NA
<i>Undibacter</i>	0.0%	7.2	7.2				0

Supp. Tab. 3: Statistical tests of codiversification (“cospeciation” in phytools and “parafit” in ape) between two trees based on tree distance. The tests run in the package “cospeciation” were performed for both RF and SPR distances and p-values calculated either by simulation of pure-birth trees (simulation) or permutation of tip labels on a fixed tree (permutation). The number of simulations or permutations for each test: n=500. For the parafit global test, 999 permutations were performed for each test. The null hypothesis for all tests is that there are no similarity between trees.

Tree 1	Tree 2	RF distance permutation, Mean (SD) from null, p-value	RF distance simulation, Mean (SD) from null, p-value	SPR distance permutation, Mean (SD) from null, p-value	SPR distance simulation, Mean (SD) from null, p-value	ParaFitGlobal test statistic, p-value	Tests significant
<i>Azolla</i> nuc. tree	<i>Anabaena azollae</i>	206, 217.7 (0.8), 0.001996	206, 216.2 (1.8), 0.001996	46, 51.1 (1.1), 0.003992	24.05071, 0.01	5/7	
<i>Azolla</i> nuc. tree	<i>Rhizobium</i>	218, 217.7 (0.8), 1	218, 216.5 (1.6), 1	50, 51.1 (1.3), 0.326733	50, 51.6 (1), 0.138614	7.991151, 0.555	0/5
<i>Azolla</i> nuc. tree	<i>Caulobacter</i>	216, 217.6 (0.8), 0.165669	216, 216.4 (1.6), 0.582834	40, 50.7 (1.3), 0.0499	48, 51.3(1.1), 0.005988	4.79612, 0.735	2/5
<i>Azolla</i> nuc. tree	<i>Bradyrhizobium</i>	214, 217.6 (0.9), 0.021956	214, 214.9 (2.4), 0.457086	49, 51 (1.2), 0.103792	49, 50.9 (1.2), 0.0998	26.48987, 0.001	2/5
<i>Anabaena azollae</i>	<i>Caulobacter</i>	214, 217.7 (0.8), 0.011976	214, 215.1 (2.3), 0.437126	49, 50 (1.4), 0.325349	49, 50.6 (1.2), 0.181637	17.21153, 0.001	2/5
<i>Anabaena azollae</i>	<i>Bradyrhizobium</i>	212, 217.7 (0.8), 0.001996	212, 214.8 (2.4), 0.223553	48, 50.3 (1.3), 0.091816	48, 50.2 (1.3), 0.093812	32.66356, 0.133	1/5
<i>Anabaena azollae</i>	<i>Rhizobium</i>	216, 217.7 (0.7), 0.127745	216, 215.5 (2.1), 0.742515	50, 50.4 (1.4), 0.51497	50, 50.6 (1.2), 0.461078	28.72107, 0.001	1/5
<i>Bradyrhizobium</i>	<i>Caulobacter</i>	196, 217.7 (0.7), 0.001996	196, 213.3 (2.9), 0.001996	44, 50 (1.4), 0.001996	43, 49.6 (1.4), 0.001996	36.28696, 0.312	4/5
<i>Bradyrhizobium</i>	<i>Rhizobium</i>	204, 217.8 (0.6), 0.001996	204, 213 (3), 0.011976	48, 50.3 (1.4), 0.111776	48, 49.5 (1.3), 0.193613	55.31025, 0.233	2/5
<i>Caulobacter</i>	<i>Rhizobium</i>	217, 217.7 (0.7), 0.001996	192, 211.7 (3.4), 0.001996	43, 50.1 (1.4), 0.001996	43, 49 (1.3), 0.001996	18.60991, 0.002	5/5
<i>Azolla</i> SVDQ tree	<i>Anabaena azollae</i>	200, 217.5 (1), 0.001996	200, 213.6(2.9), 0.001996	47, 51.6 (1.1), 0.001996	47, 49.9 (1.3), 0.02994	67868.59, 0.001	5/5
<i>Azolla</i> SVDQ tree	<i>Rhizobium</i>	216, 217.7 (0.8), 0.141717	216, 214.9 (2.2), 0.832335	49, 51.6 (1.1), 0.301936	49, 50.7 (1.1), 0.137725	24971.56, 0.001	2/5
<i>Azolla</i> SVDQ tree	<i>Caulobacter</i>	218, 217.6 (0.9), 1	218, 215.4 (2.2), 1	51, 51.1 (1.2), 0.592814	51, 50.6 (1.2), 0.776447	16085.25, 0.001	1/5
<i>Azolla</i> SVDQ tree	<i>Bradyrhizobium</i>	216, 217.6 (0.9), 0.201597	216, 215.1 (2.2), 0.518363	48, 51.5 (1.1), 0.011976	48, 50.6 (1.2), 0.0499	39594.57, 0.052	3/5
<i>Azolla</i> plastome tree	<i>Anabaena azollae</i>	206, 218 (0.2), 0.001996	206, 216.2 (1.8), 0.001996	39, 41.9 (1.9), 0.103792	39, 51.2 (1.1), 0.001996	0.02433967, 0.005	4/5
<i>Azolla</i> plastome tree	<i>Rhizobium</i>	216, 217.9 (0.3), 0.027944	216, 216 (1.8), 0.668663	39, 41.6 (2), 0.135729	39, 51.2 (1.1), 0.001996	0.01266035, 0.31	4/5
<i>Azolla</i> plastome tree	<i>Caulobacter</i>	216, 217.9 (0.4), 0.027944	215, 215.7 (2), 0.702595	37, 41.4 (2), 0.037924	37, 50.9 (1.1), 0.001996	0.007746964, 0.694	3/5
<i>Azolla</i> plastome tree	<i>Bradyrhizobium</i>	218, 217.9 (0.4), 1	218, 216.2 (1.7), 1	38, 41.7 (2), 0.045908	38, 51.1 (1.1), 0.001996	0.02544839, 0.664	2/5