

1 Phagocytosis-driven neurodegeneration through opposing roles of an ABC transporter in

2 neurons and phagocytes

3 Xinchen Chen, Bei Wang, Ankita Sarkar, Zixian Huang, Nicolas Vergara Ruiz, Ann T. Yeung, Rachael
4 Chen, and Chun Han[†]

5 Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell
6 University, Ithaca, NY 14853, USA

7 [†]Correspondence and lead contact: chun.han@cornell.edu

8 RUNNING TITLE

9 Eato in PS-induced neurodegeneration

10 **SUMMARY**

11 Lipid homeostasis is critical to the survival of neurons. Lipid transporters from the ATP-binding cassette
12 A (ABCA) subfamily are important regulators of lipid trafficking and are associated with multiple
13 neurodegenerative diseases. How ABCA transporters regulate specific aspects of lipid homeostasis to
14 impact neurodegeneration is an outstanding question. Here we report that the *Drosophila* ABCA protein
15 Engulfment ABC Transporter in the ovary (Eato) contributes to phagocytosis-dependent
16 neurodegeneration by playing two opposing roles in neurons and nearby phagocytes: In neurons, Eato
17 prevents dendrites and axons from being attacked and engulfed by neighboring phagocytes; in
18 phagocytes, however, Eato enhances the ability of these cells to detect neurons as engulfment targets.
19 Thus, *Eato* deficiency in neurons alone results in severe phagocytosis-dependent dendrite and axon
20 degeneration, whereas removing *Eato* from both neurons and phagocytes completely rescues the
21 neurite degeneration. Surprisingly, Eato exerts its functions in both neurons and phagocytes by
22 suppressing the effects of the eat-me signal phosphatidylserine (PS) exposed on the cell surface.
23 Interestingly, multiple human and *C. elegans* ABCA homologs can compensate for the loss of *Eato* in
24 phagocytes but not in neurons, suggesting both conserved and cell type-specific activities of these
25 ABCA proteins. These results reveal how ABCA proteins participate in neurodegeneration by regulating
26 PS homeostasis and imply possible mechanisms of neuron-phagocyte interactions in
27 neurodegenerative diseases.

28 **KEYWORDS**

29 ABCA, eat-me signal, phosphatidylserine, phagocytosis, dendrite, axon, neurodegeneration,
30 *Drosophila*, flippase, floppase

31

32

33 INTRODUCTION

34 For a neuron to survive and function, the composition and spatial distribution of its lipids need to be
35 dynamically maintained within a narrow range of optimal levels. Lipid homeostasis is controlled largely
36 by lipid transporters located on cell membranes. ATP-binding cassette (ABC) proteins comprise a large
37 family of transporters that contain conserved nucleotide-binding domains (NBDs) and that translocate
38 diverse substrates across cell membranes using energy from ATP (Dean et al., 2022; Quazi and
39 Molday, 2011). Among ABC proteins, the ABCA subfamily is best known for its functions in transporting
40 lipids across the bilayer and loading lipids onto apolipoprotein carriers (Albrecht and Viturro, 2007;
41 Broccardo et al., 1999; Quazi and Molday, 2011). The importance of ABCA genes in human health is
42 underscored by numerous mutations that are associated with diverse inheritable diseases related to
43 lipid transport, including multiple neurodegenerative diseases (Albrecht and Viturro, 2007; Bossaerts et
44 al., 2022; Pielher et al., 2012).

45 Several ABCA proteins in humans and other animals are protective of neurons. Genome-wide
46 association studies identified *ABCA1* and *ABCA7* as risk genes for Alzheimer's disease (AD)
47 (Bellenguez et al., 2022; Hollingworth et al., 2011). In mice, *ABCA1* promotes the efflux of excess
48 cholesterol from the brain and the lipidation of apolipoproteins, including the AD-associated ApoE (Do
49 et al., 2011; Kim et al., 2007; Wahrle et al., 2004). High membrane cholesterol promotes production of
50 the neurotoxic amyloid beta peptide (A β) (Anstey et al., 2017; Cho et al., 2020), while lipidated ApoE
51 can bind A β and is negatively correlated with AD (Tokuda et al., 2000; Zhao et al., 2017). *ABCA7*
52 reduces A β production by affecting amyloid precursor protein (APP) processing (Sakae et al., 2016;
53 Satoh et al., 2015) and can also reduce the buildup of extracellular A β by promoting phagocytosis (Fu
54 et al., 2016; Kim et al., 2013). Unlike most ABCA proteins, which act as flippases to export lipids from
55 the cytosolic to the extracellular leaflet of the plasma membrane, the Stargardt disease-associated
56 ABCA4 protein is a flippase responsible for importing retinoids into rod photoreceptors and retinal
57 pigment epithelial (RPE) cells (Lenis et al., 2018; Sun et al., 1999; Weng et al., 1999). Thus, mutations
58 in *ABCA4* result in accumulation of toxic retinoids and subsequent photoreceptor degeneration. In
59 *Drosophila*, two ABCA proteins, Engulfment ABC Transporter in the ovary (Eato) and Lipid droplet
60 defective (Ldd), export toxic lipids induced by oxidative stress from photoreceptors to nearby glia (Liu et
61 al., 2015; Moulton et al., 2021). Consequently, the loss of *Eato* or *Ldd* results in early photoreceptor
62 degeneration in the presence of oxidative stress (Moulton et al., 2021). Despite these advances,
63 whether ABCA proteins are involved in neurodegeneration through other means remains to be
64 explored.

65 Besides their structural roles in membranes, lipids can also contribute to neurodegeneration
66 through signaling functions. Phosphatidylserine (PS) is a phospholipid normally found in the inner
67 leaflet of the plasma membrane (Segawa and Nagata, 2015). However, in sick or degenerating
68 neurons, PS translocates to the extracellular leaflet, where it functions as a cell-surface “eat-me” signal
69 to induce phagocytosis of neurites by nearby phagocytes (Sapar and Han, 2019). PS-induced
70 phagocytosis not only enables clearance of neuronal debris resulting from degeneration but can also
71 potently break down neurites of live neurons (Ji et al., 2022; Sapar et al., 2018). The asymmetric
72 distribution of PS on the plasma membrane of healthy cells is established and maintained by flippases
73 that belong to the P4-ATPase family of lipid transporters (Segawa et al., 2014; Segawa and Nagata,
74 2015). On the other hand, lipid scramblases in the TMEM16 and XKR families disrupt PS asymmetry
75 and are responsible for PS exposure on platelets and apoptotic cells, respectively (Fujii et al., 2015;
76 Suzuki et al., 2013; Suzuki et al., 2010).

77 Among ABCA proteins, murine ABCA1 was first found to promote Ca^{2+} -induced PS exposure at
78 the plasma membrane (Hamon et al., 2000). Similarly, a *C. elegans* ABCA protein, CED-7, was later
79 discovered to facilitate PS exposure on apoptotic cells in the developing embryo and the subsequent
80 transfer of PS-exposing extracellular vesicles from apoptotic cells to phagocytes (Mapes et al., 2012;
81 Venegas and Zhou, 2007; Zhang et al., 2012). These observations are consistent with most ABCA
82 proteins being lipid flippases (Phillips, 2018; Quazi and Molday, 2011), and their ability to promote PS
83 exposure has been thought to be important for the functions of ABCA proteins in phagocytosis (Hamon
84 et al., 2000). To date, it remains unknown how ABCA proteins may participate in neurodegeneration by
85 regulating PS transport.

86 In this study, we show that the *Drosophila* ABCA protein Eato regulates phagocytosis-driven
87 dendrite and axon degeneration by playing opposing roles in neurons and phagocytes: In neurons, it
88 prevents dendrites and axons from being engulfed by phagocytes; in phagocytes, instead of being
89 required for phagocytosis, it makes the cell more sensitive to PS presented by nearby engulfment
90 targets. Thus, although the loss of *Eato* in neurons alone results in degeneration of diverse neurons in
91 both the peripheral and central nervous systems, removing *Eato* in both neurons and phagocytes
92 rescues neuronal degeneration. Despite these two distinct cell type-specific roles for Eato,
93 unexpectedly, it functions in both neurons and phagocytes by suppressing, rather than enhancing, the
94 effects of PS on cell surface. In support of Eato’s function in phagocytes, we further found that PS
95 exposure on phagocytes inhibits, instead of promoting, phagocytosis. Finally, we show that CED-7 and
96 several mammalian ABCA homologs can partially compensate for the loss of *Eato* in phagocytes, but

97 not in neurons, suggesting both conserved and cell type-specific functions of ABCA proteins in
98 regulating lipid homeostasis and phagocytosis-dependent neurodegeneration.

99 **RESULTS**

100 ***Eato* LOF in da neurons causes engulfment-dependent dendrite degeneration**

101 To search for lipid transporters that may affect exposure of eat-me signals on the plasma membrane of
102 neurons, we screened candidate genes in the ABCA subfamily by RNA interference (RNAi) and
103 CRISPR-induced mutagenesis (Poe et al., 2019) in *Drosophila* class IV dendritic arborization (C4da)
104 neurons. C4da neurons are somatosensory neurons that grow highly elaborated dendrites underneath
105 epidermal cells on the larval body wall (Grueber et al., 2002); these neurons are a well-established
106 model system for studying degeneration and phagocytosis of dendrites (Han et al., 2014; Ji et al., 2022;
107 Ji et al., 2023; Sapar et al., 2018). Among the genes we examined, only the loss-of-function (LOF) of
108 *Eato* led to dendrite degeneration. In these assays, C4da neurons were labeled by MApHS, a dual
109 fluorescent membrane marker that contains both a pH-sensitive pHluorin and an acid-resistant
110 tdTomato (tdTom) (Han et al., 2014). Degenerating dendrites are engulfed by larval epidermal cells,
111 resulting in tdTom-labeled neuronal debris inside phagosomes that are dispersed in epidermal cells
112 (Han et al., 2014). To knock out *Eato* in C4da neurons, we combined the C4da-specific *ppk-Cas9* (Poe
113 et al., 2019) with *gRNA-Eato*, which expresses ubiquitously two guide RNAs (gRNAs) targeting the
114 shared coding sequence of both *Eato* splicing variants (Figure S1). Compared to control neurons that
115 showed no debris (Figures 1A and 1F), *Eato* knockout (KO) neurons exhibited a 70.8% reduction in
116 dendrite length along with widespread dendrite debris in the epidermis at 96 h after egg laying (AEL),
117 indicating severe degeneration (Figures 1B, 1E and 1F). This phenotype was further confirmed by
118 C4da-specific *Eato* knockdown (KD) with a short hairpin RNA (shRNA) transgene (HMC06027)
119 targeting the shared coding sequence of *Eato* (Figures 1C–1F and S1). To understand how this
120 degeneration phenotype develops, we examined *Eato* KO neurons at multiple developmental stages
121 from 48 h AEL to 120 h AEL. *Eato* KO neurons did not show obvious signs of degeneration at 48 h AEL
122 but displayed significant debris and gradually more severe dendrite reduction from 72 h AEL onward
123 (Figures 1G–L), demonstrating a progressive loss of dendrites due to degeneration.

124 Degenerating neurons display the eat-me signal PS on their surface, which triggers phagocytic
125 clearance of neuronal debris by phagocytes (Sapar et al., 2018). Considering that *Eato* encodes a
126 putative ABCA lipid transporter, we wondered if *Eato* KO neurons display PS exposure. We previously
127 developed an *in vivo* extracellular PS labeling system in which PS binding probes fused to fluorescent
128 proteins, such as GFP-Lact, are expressed by the fat body and secreted into the larval body fluid
129 (Sapar et al., 2018). Peripheral tissues with surface PS exposure are coated by the probes. Using GFP-

130 Lact, we detected strong PS externalization on the dendrites of *Eato* KO neurons but not on control
131 neurons (Figures 1M–1N”), consistent with the degenerating state of these KO neurons.

132 We previously found that PS exposure on neuronal surfaces can induce neurite degeneration (Ji
133 et al., 2022; Sapar et al., 2018). In such a scenario, phagocytes engulf PS-exposing (but intact and
134 living) neurites, and the phagocytosis is responsible for the neurite degeneration. However, the
135 observation of PS exposure on *Eato* KO neurons does not necessarily indicate that phagocytosis
136 causes the degeneration, considering that PS exposure could be a consequence of membrane
137 disruptions expected of dendrite degeneration (Sapar et al., 2018). To determine if the dendrite
138 degeneration associated with *Eato* LOF depends on phagocytosis, we knocked out *Eato* in a null
139 mutant of *draper* (*drpr*), which encodes an engulfment receptor required for larval epidermal cells to
140 phagocytose degenerating dendrites (Han et al., 2014). Strikingly, dendrite degeneration of *Eato* KO
141 neurons was completely suppressed in the *drpr* mutant (Figures 1P–1S). These data show that
142 dendrite degeneration of *Eato* deficient neurons is caused by the phagocytic activity of epidermal cells.

143 ***Eato* LOF makes epidermal cells insensitive to degenerating dendrites**

144 To further investigate the LOF phenotype of *Eato*, we generated an *Eato* CRISPR mutant by knocking
145 out *Eato* in the germline. *Eato*¹⁰ contains a deletion of 709 nucleotides from exon 4 to exon 6 between
146 the two gRNA target sites (Figure S1), resulting in a reading-frame shift from amino acid 201, and thus
147 is expected to be a null allele. Surprisingly, when examining C4da neurons in heterozygotes of *Eato*¹⁰
148 and *Df(BSC812)*, a deficiency lacking the entire *Eato* locus, we did not observe any signs of dendrite
149 degeneration (Figures 2B, 2E and 2F), a sharp contrast with the C4da-specific KO of *Eato* (Figures 2A,
150 2E and 2F). *Eato* was previously shown to be involved in phagocytosis of nursing cells by follicular
151 epithelial cells during *Drosophila* oogenesis (Santoso et al., 2018), and ABCA homologs in worms
152 (CED-7) and mammals (ABCA1) participate in phagocytosis as well (Hamon et al., 2000; Venegas and
153 Zhou, 2007). Given the requirement of phagocytosis for the dendrite degeneration of *Eato*-deficient
154 neurons (Figures 1P–1S), we hypothesized that epidermal cells require *Eato* to engulf *Eato*-deficient
155 dendrites. To test this idea, we knocked down *Eato* simultaneously in both neurons and epidermal cells.
156 Indeed, this led to a wildtype (WT) dendrite phenotype (Figures 2D–2F), as compared to the severe
157 degeneration seen in neuron-specific KD (Figures 2C ,2E and 2F), confirming a requirement for *Eato* in
158 the phagocytic destruction of *Eato* mutant neurons by epidermal cells.

159 *Eato* could be required for epidermal cells to engulf *Eato*-deficient neurons specifically or to
160 engulf any neuron displaying eat-me signals. To distinguish between these two possibilities, we sought
161 to induce ectopic PS exposure on dendrites using the murine TMEM16F, a calcium-dependent
162 phospholipid scramblase whose activity results in externalization of PS on the plasma membrane

163 (Suzuki et al., 2010). Because expression of TMEM16F in C4da neurons causes only weak PS
164 exposure (Sapar et al., 2018), to induce stronger PS exposure on dendrites, we expressed a
165 constitutively active TMEM16F mutant (TMEM16F^{CA}) carrying two mutations (Y563K/D703R) that make
166 the scramblase calcium-independent (Le et al., 2019). As expected, TMEM16F^{CA} expression resulted in
167 a moderate level of dendrite debris in epidermal cells (Figures 2G and 2J). The dendrite debris was
168 completely eliminated, however, when *drpr* was simultaneously knocked out from epidermal cells using
169 tissue-specific CRISPR (Poe et al., 2019) (Figures 2H and 2J), confirming the dependence of this
170 dendrite degeneration on phagocytosis. Importantly, epidermal-specific *Eato* KO also suppressed the
171 dendrite debris of TMEM16F^{CA}-expressing neurons and increased the dendrite length (Figures 2I–2K),
172 even though in either case not as potently as *drpr* KO. These results suggest that *Eato* LOF in
173 epidermal cells impairs the ability of these cells to engulf PS-exposing dendrites.

174 To distinguish whether *Eato* is strictly required for phagocytosis or simply enhances the ability of
175 epidermal cells to engulf degenerating neurons, we knocked down *Eato* in epidermal cells and severed
176 C4da dendrites using laser. We previously showed that physical severing of dendrites induces rapid
177 and high PS exposure on the detached dendrites within a few hours, which drives engulfment and
178 fragmentation of the dendrites (Ji et al., 2022; Sapar et al., 2018) (Figures S2A and S2D). The
179 engulfment of such injured dendrites is blocked in *drpr* mutants (Han et al., 2014; Ji et al., 2022), as
180 reflected by dendrite fragments lined up in the original dendritic pattern 20 h after injury (AI) (Figure
181 S2B). In contrast, injured dendrites were completely engulfed in *Eato* KD, resulting in widely spread
182 dendrite debris in each epidermal cell (Figures S2C–S2E). These data suggest that *Eato* is not required
183 for phagocytosis per se; rather, it is needed for epidermal cells to detect moderate levels of PS
184 exposure on dendrites, such as in TMEM16F^{CA} expression.

185 To further confirm that *Eato* only enhances phagocyte sensitivity but is not required for
186 engulfment, we exposed *Eato*-deficient neurons (via KD) to both WT and *Eato*-deficient epidermal cells
187 in the same animal. The WT control epidermal cells are in the anterior half of each segment, while *Eato*
188 KD is induced in the posterior half of the segment by *en-Ga4* (Figure 2L). We reasoned that the
189 anterior WT epidermal cells should attack *Eato*-deficient neurons and cause dendrite injury. If the injury
190 signals spread to posterior dendrites, these dendrites may show elevated levels of eat-me signals and
191 thus allow us to test the ability of *Eato*-deficient posterior epidermal cells to engulf them. In 3rd instar
192 animals, we observed three classes of phenotypes: (1) a “no degeneration” phenotype, in which neither
193 the control domain (anterior) nor the *en*⁺ domain (posterior) showed dendrite degeneration (Figures 2M
194 and 2M'); (2) a “blocked degeneration” phenotype, in which only the control but not the *en*⁺ domain
195 showed dendrite degeneration (Figures 2N and 2N'); and (3) a “degeneration” phenotype, in which both

196 the control and the *en+* domain showed dendrite degeneration (Figures 2O and 2O'). At 72 h AEL,
197 most neurons (71.4%) showed “blocked degeneration”, and only small fractions showed “no
198 degeneration” (14.3%) or “degeneration” (14.3%) (Figures 2P), suggesting that posterior dendrites are
199 locally protected due to *Eato* LOF in posterior epidermal cells. However, the “degeneration” phenotype
200 increased to 32.1% at 96 h AEL and 82.1% at 120 h AEL (Figures 2P). These observations are
201 consistent with the idea that posterior dendrites become increasingly sick with age and are eventually
202 recognized and engulfed by *Eato*-deficient epidermal cells. Thus, *Eato* is not necessary for
203 phagocytosis in epidermal cells, but the loss of *Eato* reduces the sensitivity of epidermal cells to mildly
204 unhealthy dendrites and delays the initiation of phagocytosis.

205 ***Eato* LOF in da neurons causes glia-dependent axon degeneration**

206 Like dendrites, axons exhibit PS-induced engulfment and degeneration (Kim et al., 2010; Sapar et al.,
207 2018; Shacham-Silverberg et al., 2018). However, axons and dendrites differ in their requirements for
208 specific components of the axon-death pathway in injury-induced degeneration (Ji et al., 2022). We
209 thus tested if *Eato* is also required to maintain the integrity of C4da axons, which project to the ventral
210 nerve cord (VNC) in a ladder pattern (Figure 3A). When *Eato* was knocked out from C4da neurons, the
211 axon ladder became fragmented (Figures 3B and 3D), indicating axon degeneration. Like dendrite
212 degeneration, this axon degeneration was also completely suppressed in the *drpr* mutant (Figures 3C
213 and 3D), demonstrating that phagocytosis also drives axon degeneration of *Eato*-deficient neurons.

214 In the central nervous system (CNS), glia are the phagocytes that engulf dead neurons and
215 neuronal debris (Freeman, 2015; Sapar and Han, 2019). The axons of da neurons are surrounded by
216 glia in both peripheral nerves and the VNC. Hence, we asked whether glia are involved in axon
217 degeneration of *Eato*-deficient neurons by knocking down *Eato* in both C4da neurons and glia. Unlike
218 C4da-specific *Eato* KD, which showed drastic axon degeneration (Figures 3E and 3H), *Eato* KD in both
219 neurons and glia showed no axon degeneration (Figures 3F and 3H). These data confirm that glia are
220 required for the phagocytosis-dependent axon degeneration and further demonstrate that *Eato*
221 promotes phagocytic activity of glia.

222 Although the dendritic and axonal compartments of the same da neuron are attacked by
223 different phagocyte types, we wondered if degeneration of the two compartments is coupled. We thus
224 knocked down *Eato* in both neurons and epidermal cells to suppress dendrite degeneration (Figures
225 S3A, S3C, S3E and S3F) and examined axon morphology. Interestingly, these neurons showed much
226 weaker axon degeneration than neuronal KD alone (Figures 3E, 3G and 3H). In contrast, knocking
227 down *Eato* in both neurons and glia to suppress axon degeneration had no impact on dendrite
228 degeneration (Figures S3D and S3F). These data together suggest that damage to dendrites strongly

229 enhances phagocytosis of axons, likely by promoting exposure of eat-me signals on axons, but axon
230 degeneration is compartmentally restricted and does not affect dendrites in the same neuron.

231 ***Eato* encodes a membrane protein required for the integrity of diverse neurons in both the**
232 **peripheral and central nervous systems**

233 To determine where else *Eato* may play a role in protecting neurons from degeneration, we first
234 examined *Eato* expression patterns by generating an *Eato-Gal4* transcription reporter. *MiMIC^{MI14571}*
235 (Venken et al., 2011) is a transgenic insertion in the second intron, which is between two coding exons
236 shared by both *Eato* isoforms (Figure S1). We converted *MiMIC^{MI14571}* to a 2A-Gal4 Trojan exon through
237 recombinase-mediated cassette exchange (Figure S4A) (Diao et al., 2015). The resultant *Eato-Gal4*
238 should produce a short truncated *Eato* protein (102 amino acids) and, more importantly, a Gal4 driven
239 by the endogenous regulatory sequence of *Eato* that should recapitulate the *Eato* expression pattern.
240 By crossing to UAS-driven fluorescent reporters, we observed broad *Eato-Gal4* expression in
241 peripheral tissues, including da neurons, bipolar dendrite (bd) neurons, a subset of external sensory
242 (es) neurons, epidermal cells (Figures 4A–4A”), peripheral glia (Figures 4B–4B”), muscles (Figures S4B
243 and S4C), and the trachea (Figure S4D). In the VNC, *Eato-Gal4* expression overlaps with some but not
244 all neurons and glia (Figures 4C–4D”).

245 Next, we asked where the *Eato* protein is localized in cells. First, we generated a FLAG-tagged
246 *UAS-Eato* (the long isoform B) transgene and expressed it in epidermal cells. FLAG staining was
247 detected strongly on the lateral plasma membrane, overlapping with the membrane marker Nrg-GFP,
248 and also at lower levels in intracellular vesicles (Figures 4E and 4E’). Next, to determine the localization
249 of endogenous *Eato* proteins in epidermal cells and neurons, we inserted a (mNG₁₁-OLLAS)x4-2A-QF2
250 cassette in the *Eato* locus immediately before the stop codon of the longer isoform (Fig. S4E) using a
251 gRNA-donor vector optimized for CRISPR activity in the *Drosophila* germline (Koreman et al., 2021).
252 mNeonGreen₁₁ (mNG₁₁) is a fragment of split mNG and can reconstitute the full fluorescent mNG
253 protein when mNG₁₋₁₀ is co-expressed in the same cell (Feng et al., 2017). OLLAS is a short tag, for
254 which high-affinity antibodies are available (Park et al., 2008). 2A-QF2 in the construct allows
255 identification of knock-in (KI) candidates by crossing to QUAS-driven fluorescent reporters (Riabinina et
256 al., 2015). mNG₁₁ enables detection of *Eato* proteins in specific cells, while OLLAS staining can
257 visualize *Eato* proteins in all expressing tissues. Using OLLAS staining, we confirmed the presence of
258 *Eato* on the plasma membrane and intracellular vesicles of epidermal cells (stars in Figure 4F) and
259 detected signals that appeared as dendritic patterns of sensory neurons (arrowheads in Fig. 4F). By
260 expressing mNG₁₋₁₀ using a pan-neuronal Gal4 (*RabX4-Gal4*), we detected reconstituted mNG signals

261 on the soma, axons, and dendrites of da neurons (Figure 4G). mNG fluorescence appeared as smooth
262 signals on the neuronal surface and also in bright puncta resembling intracellular vesicles.

263 The broad expression of *Eato* in the nervous system prompts the question of whether *Eato* is
264 also important in neurons other than C4da. To answer this question, we generated MApHS-labeled
265 *Eato*¹⁰ homozygous mutant clones in both the peripheral nervous system (PNS) and the CNS of
266 otherwise *Eato*^{10/+} heterozygous animals using a technique called mosaic analysis by gRNA-induced
267 crossing-over (MAGIC) (Allen et al., 2021). *Eato*¹⁰ clones of class I-III da neurons showed severe
268 dendritic degeneration as indicated by reduced dendrites and extensive neuronal debris near dendrites
269 (Figures 4H, 4I and S4F). Mutant multi-dendritic dmd1 neurons also showed debris near dendrites
270 (Figure S4G). Interestingly, we did not observe obvious degeneration at axon terminals of motor
271 neurons (Fig. S4H). In the larval VNC (Figures S4I and S4J), the larval brain (Figures S4K and S4L),
272 adult optical lobe (Figures 4J and 4K), and central brain (Figures S4M and S4N), *Eato*¹⁰ mutant
273 neurons showed severely fragmented neurites with blebbing, contrasting with the smooth and
274 continuous signals on WT neuronal clones. These data show that *Eato* is required to maintain the
275 integrity of a broad range of neurons. Consistent with this conclusion, pan-neuronal *Eato* KD using
276 *RabX4-Gal4* caused pupal lethality. Considering that homozygous *Eato* mutant strains are viable and
277 fertile, degeneration of *Eato* homozygous mutant neurons in otherwise heterozygous animals is most
278 likely caused by *Eato*-dependent engulfment activity of resident phagocytes in the PNS and CNS, as is
279 the case for C4da neurons (Figure 2D).

280 **Putative ABCA transporter activity is required for *Eato*'s function**

281 The *Eato* locus produces two alternatively spliced transcripts of different lengths (Fig. S1): The longer
282 *Eato-RB* isoform encodes a full-length ABCA protein, with two ABC transporter-like ATP-binding
283 domains (InterPro IPR003439), while the shorter *Eato-RC* isoform ends before the first ABC
284 transporter-like domain. To determine if the full-length isoform is responsible for *Eato*'s function in
285 neurons and phagocytes, we knocked down *Eato* using two additional RNAi lines (GD1133 and
286 KK104197) that target *Eato-RB* only (Figure S1). Expression of *Eato-RNAi*^{KK104197} in C4da neurons with
287 *ppk-Gal4* caused strong dendrite degeneration, albeit slightly weaker than that with *Eato-RNAi*^{HMC06027}
288 (Figures 5A–5E). When driven by *Gal4*²¹⁻⁷, an early pan-da driver (Song et al., 2007), *Eato-RNAi*^{GD1133}
289 also caused strong dendrite degeneration in C4da neurons (Figures S5A–S5D). These data indicate
290 that the *Eato-RB* isoform is necessary for neuronal maintenance.

291 Next, to determine if the long *Eato* protein isoform is sufficient for *Eato*'s function, we expressed
292 *UAS-Eato(B)* in *Eato* KO animals. The gRNA target sequences in the *UAS-Eato(B)* coding sequence
293 were altered by silent mutations to make the transgene gRNA-resistant. *Eato(B)* overexpression does

294 not cause any dendrite phenotypes in WT neurons (Figures S5E–S5H), and it completely prevented
295 dendrite degeneration caused by *Eato* KO (Figures 5F–5H, 5J and 5K), demonstrating the sufficiency
296 of the long isoform in maintaining neuronal integrity. Furthermore, to determine if the putative ATPase
297 activity of Eato is needed for its function, we mutated the key lysine (K) residue of the Walker A motif in
298 each of the ATP-binding domains of Eato(B) into methionine (M). The resulting Eato(B.MM) mutant
299 protein is predicted to be incapable of binding ATP and to lack transporter function (Anderson and
300 Welsh, 1992; Hamon et al., 2000). In contrast to *UAS-Eato(B)*, *UAS-Eato(B.MM)* failed to rescue *Eato*
301 KO neurons (Figures 5I–5K).

302 Lastly, to test if Eato(B) can restore the phagocytic activity of *Eato*-deficient epidermal cells, we
303 expressed Eato(B) in epidermal cells of whole-body *Eato* KO animals. The KO was achieved by using a
304 ubiquitously expressed *tub-Cas9*, and Eato(B) expression was driven by *en-Gal4*, so that non-
305 expressing epidermal cells in the anterior hemi-segment can serve as an internal control. These
306 animals displayed dendrite degeneration specifically in the posterior hemi-segment, as indicated by the
307 reduced dendrite density and the presence of dendrite debris (Figures 5L–5N), suggesting successful
308 rescue of epidermal phagocytic activity. As a comparison, overexpressing Eato(B) in WT epidermal
309 cells did not enable them to engulf WT dendrites (Figures S5I–S5L).

310 Altogether, the above data indicate that the full ABCA sequence of Eato is necessary and
311 sufficient for its function in neurons and phagocytes, and that the putative transporter activity is
312 necessary for its function.

313 **Eato prevents dendrite degeneration by antagonizing neuronal PS exposure**

314 Given the role of PS exposure in inducing phagocytosis and the PS exposure observed on *Eato* KO
315 neurons, we wondered if the degeneration of *Eato*-deficient neurons is caused by PS exposure. To
316 answer this question, we overexpressed *Drosophila* ATP8A in *Eato* KO neurons. ATP8A is a PS
317 flippase that keeps PS in the inner leaflet of the plasma membrane (Ji et al., 2023) and its
318 overexpression can suppress PS exposure in both neurons and phagocytes (Ji et al., 2022; Ji et al.,
319 2023). Neuronal expression of ATP8A completely suppressed the degeneration of *Eato* KO neurons
320 (Figures 6A–6D), suggesting that PS exposure is indeed the cause of the degeneration. This result also
321 suggests that Eato's normal function in neurons is to prevent PS exposure. We thus tested whether
322 Eato(B) can antagonize ectopic PS exposure caused by disruptions of membrane lipid asymmetry.
323 Ectopic PS exposure in C4da neurons can be induced by overexpressing TMEM16F and simultaneous
324 KO of *CDC50* (Sapar et al., 2018), which encodes an obligatory chaperone for ATP8A (Tanaka et al.,
325 2011). Compared to these PS-exposing neurons, which were associated with moderate levels of
326 neuronal debris (Figures 6E and 6G), additional Eato(B) expression in the neurons eliminated neuronal

327 debris (Figures 6F and 6G). These results suggest that Eato normally suppresses PS exposure on
328 neuronal surface to prevent neurites from being engulfed by phagocytes.

329 **Epidermal Eato facilitates Drpr recruitment to degenerating dendrites**

330 The engulfment receptor Drpr is normally found only at low levels on the plasma membrane of
331 phagocytes, but it is recruited to the site of engulfment in response to PS exposure on the engulfment
332 target (Ji et al., 2023; MacDonald et al., 2006). To understand the engulfment defects of *Eato*-deficient
333 epidermal cells, we examined Drpr recruitment to degenerating dendrites. As expected, distinct Drpr
334 staining was detected along the degenerating dendrites of *Eato* KO neurons, in addition to the lateral
335 membranes of epidermal cells (Figures 6I–6I’). However, the dendrite-overlapping Drpr staining was
336 absent in whole-body *Eato* KO (Figures 6J–6J’). Considering that dendrites did not degenerate in
337 whole-body *Eato* KO, the lack of Drpr accumulation on dendrites could be due to the absence of
338 dendrite degeneration. To cause dendrites contacting *Eato*-deficient epidermal cells to degenerate, we
339 knocked down *Eato* in both C4da neurons and *en*⁺ epidermal cells. In these animals, branches that
340 straddle the border between WT and *Eato*-KD epidermal cells may undergo degeneration due to
341 phagocytic attack by WT epidermal cells (Figures 2N and 2N’) and thus expose higher PS. Indeed, we
342 observed dendrite branches that traversed single *Eato*-KD cells (Figures 6K–6K’). Interestingly, Drpr
343 was recruited to the sites of the dendrites on WT but not *Eato*-KD epidermal cells. Assuming that the
344 level of PS exposure along the branch is relatively even, these results suggest that epidermal Eato acts
345 upstream of Drpr recruitment.

346 Next, to test if supplying more Drpr can compensate for the loss of *Eato* in epidermal cells, we
347 overexpressed Drpr in *en*⁺ epidermal cells of whole-body *Eato* KO animals. The *en*⁺ domain showed
348 increased debris levels and reduced dendrites as compared to the anterior control region (Figures 6L–
349 6N), indicating rescue of engulfment. Thus, Eato sensitizes phagocytes by facilitating Drpr recruitment,
350 but more Drpr can compensate for the reduction of sensitivity caused by *Eato* deficiency.

351 **Eato promotes engulfment activity of epidermal cells by suppressing PS exposure**

352 Since Eato protects neurons by suppressing PS exposure on the cell surface, we wondered if Eato also
353 inhibits PS exposure on phagocytes. Thus, we knocked out *Eato* using *tub*-Cas9 (Poe et al., 2019) and
354 examined PS exposure on epidermal cells using GFP-Lact. We observed a moderate (3.39 folds)
355 increase in GFP-Lact labeling as compared to the WT control (Figures 7A–7C). Next, we asked
356 whether *Eato* can suppress ectopic PS exposure on epidermal cells caused by flippase ablation.
357 *CDC50* KO in epidermal cells resulted in strong labeling of GFP-Lact on the KO cells (Figure 7D),
358 consistent with *CDC50*/*ATP8A* being the primary PS flippase on the plasma membrane (Sapar et al.,

359 2018)(Sapar et al., 2018). Interestingly, overexpressing Eato in *CDC50* KO epidermal cells reduced
360 Lact-GFP labeling to 34.3% of the original level (Figures 7E and 7F), confirming that Eato is capable of
361 reducing PS exposure on epidermal cell surfaces. Next, to test if PS exposure contributes to the
362 reduced phagocytosis of *Eato*-deficient epidermal cells, we co-expressed *ATP8A* and its chaperone
363 *CDC50* in *en*⁺ epidermal cells of whole-body *Eato* KO animals to suppress PS exposure. Indeed, the
364 *en*⁺ domain showed elevated debris levels (Figures 7G and 7H), suggesting partial restoration of
365 engulfment activity.

366 The above data imply that PS exposure on phagocytes negatively impacts phagocytosis. To test
367 this idea directly, we ectopically induced PS exposure on epidermal cells by flippase KO and assayed
368 the ability of epidermal cells to engulf degenerating dendrites. We first examined degenerating
369 dendrites caused by neuronal KD of *Eato* (Figure 7I). Strikingly, *CDC50* KO in epidermal cells nearly
370 completely suppressed the dendrite degeneration (Figures 7J, 7L and 7M). *ATP8A* KO showed a
371 similar, albeit milder, suppression of dendrite degeneration (Figures 7K–7M). Next, we examined
372 dendrite degeneration caused by neuronal expression of *TMEM16F^{CA}* (Figure 7N). Again, *CDC50* KO
373 in epidermal cells suppressed this type of dendrite degeneration as effectively as *drpr* KO and *Eato* KO,
374 while *ATP8A* KO caused a lightly milder suppression (Figures 7O–7T).

375 Together, the above results suggest that PS exposure on phagocytes inhibits sensing of PS on
376 the engulfment target and that Eato promotes engulfment at least partially by suppressing PS exposure
377 on phagocytes.

378 **Lipid accumulation in cells is unlikely to account for the effects of *Eato* deficiency**

379 Eato is thought to function as a flippase to export excessive lipids from *Drosophila* photoreceptors
380 (Moulton et al., 2021). In these neurons, ineffective clearance of lipid accumulation caused by oxidative
381 stress speeds up neurodegeneration (Moulton et al., 2021). To investigate whether lipid accumulation
382 also contributes to the defects of *Eato*-deficient da neurons and epidermal cells, we first overexpressed
383 Brummer (Bmm), a *Drosophila* triglyceride lipase, in *Eato* KO neurons. Bmm overexpression was
384 previously shown to be effective in suppressing photoreceptor degeneration caused by lipid
385 accumulation (Moulton et al., 2021). However, we did not observe any rescue of dendrite degeneration
386 by Bmm overexpression (Figures S7A–S7D). Next, we used LSD-2-EGFP to visualize lipid droplets,
387 which store excessive neutral lipids, in neurons and epidermal cells. However, we did not observe
388 detectable increases of lipid droplets in either tissue upon whole-body *Eato* KO (Figures S7E–S7K).
389 Although these results cannot completely exclude the possibility of lipid accumulation in *Eato*-deficient
390 cells, they suggest that general lipid accumulation is not a significant cause of the defects of *Eato*-
391 deficient cells.

392 **Human and *C. elegans* ABCA proteins are functional homologs of Eato**

393 The human genome encodes 12 ABCA proteins involved in diverse biological processes (Albrecht and
394 Viturro, 2007). The *C. elegans* CED-7 is a ABCA protein involved in phagocytosis (Ellis et al., 1991;
395 Zhou et al., 2001). To explore potential functional conservation between Eato and these homologs, we
396 tested if human and *C. elegans* ABCA genes can replace Eato's functions in epidermal cells and
397 neurons. Towards this aim, we obtained *UAS-hABCA1* and *UAS-hABCA2* from the Bloomington
398 *Drosophila* Stock Center (BDSC) and generated *UAS*-driven hABC3, hABC4, hABC5, hABC12, and
399 CED-7 in our laboratory. We also made a *UAS-mouse ABC7 (mABC7)* transgene. In the following
400 tests, *UAS-Eato(B)* served as a positive control while *UAS-Eato(B.MM)* served as a negative control;
401 mammalian ABCA genes were expressed in flies at 29 °C to facilitate protein folding.

402 To test rescue of *Eato* LOF in epidermal cells, we expressed ABCA genes in the *en*⁺ domain of
403 whole-body *Eato* KO animals. Interestingly, except mABC7, all tested ABCA transgenes resulted in
404 elevated levels of dendrite debris in the posterior hemi-segment (Figures 8A–8P), suggesting varying
405 degrees of rescue. Among them, CED-7 rescued engulfment of dendrites as well as Eato(B), even
406 though its effects on dendrite reduction and debris level are more variable (Figures 8D, 8O and 8P).
407 The effects of human ABCA genes appear generally weaker than that of Eato(B) (Figures 8O and 8P).
408 We next tested rescue of *Eato* LOF in neurons. However, none of the ABCA homologs obviously
409 suppressed dendrite degeneration when expressed in *Eato*-KO C4da neurons, even though some of
410 them resulted in reduced debris levels (Figures S8). These data suggest that most of the ABCA
411 proteins examined share some similar biochemical activity that can boost engulfment activity of
412 phagocytes, but they do not seem to function the same way as Eato in neurons.

413 **DISCUSSION**

414 **Eato plays opposing roles in neurons and phagocytes to control phagocytosis-driven neurite
415 degeneration**

416 In this study, we discovered that a single ABCA transporter, Eato, plays opposite roles on the defensive
417 and the offensive sides of phagocytosis-driven neurodegeneration. On the defensive side, Eato
418 protects neurons from becoming targets of phagocytosis, but on the offensive side, Eato enhances the
419 ability of phagocytes to detect nearby engulfment targets. Consequently, the loss of *Eato* in neurons
420 alone causes surrounding phagocytes to attack and engulf the axons and dendrites, resulting in severe
421 neurodegeneration. In contrast, removing *Eato* from both neurons and resident phagocytes prevents
422 neurodegeneration because *Eato*-deficient phagocytes are no longer able to detect eat-me signals
423 exposed on neurons. Interestingly, Eato's opposing roles in neurons and phagocytes are both related to

424 its ability to suppress PS exposure on the cell surface, suggesting a common biochemical activity
425 underlying both phenotypes. Although multiple ABCA genes are known to be involved in
426 neurodegeneration in model organisms or implicated in neurodegenerative human diseases, to our
427 knowledge, such dual roles for ABCA genes in neurodegeneration have never been reported. Thus,
428 Eato's functions represent a new mechanism by which ABCA genes are involved in neurodegeneration.

429 Our results show that Eato protects diverse neurons in both the PNS and the CNS, suggesting
430 that Eato is required for a general biological process shared by many neuronal types. However, *Eato*
431 deficiency in some neuronal types (e.g. motor neurons) did not seem to cause degeneration (Figure
432 S4H). At least two possibilities might explain this neuronal diversity. First, another ABCA gene may play
433 similar roles as *Eato* in these neurons, such that the loss of *Eato* produces no effects. Along this line,
434 we found that although Eato is broadly expressed in the nervous system, its expression is absent in
435 some neurons. *Eato* LOF is not expected to cause degeneration of those neurons. Second, different
436 neurons may interact with surrounding cells of different phagocytic capabilities, such that *Eato* mutant
437 neurons are not engulfed if the neighboring cells are poor phagocytes. Supporting the idea of uneven
438 phagocytic capacities, we found that epidermal cells are potent phagocytes that can eat most dendrites
439 of live da neurons, while CNS glia cause only mild axon degeneration of da neurons on their own
440 (Figure 3).

441 Several ABCA genes, including *Eato*, are known to promote phagocytosis (Hamon et al., 2000;
442 Iwamoto et al., 2006; Santoso et al., 2018; Wu and Horvitz, 1998). Specifically, *Eato* is required for
443 follicle cells to engulf dying nurse cells in the female germline (Santoso et al., 2018). Consistent with
444 this finding, we found that *Eato* is also required for epidermal cells and glia to engulf dendrites and
445 axons, respectively, of *Eato*-deficient da neurons. Considering that loss of neuronal *Eato* causes
446 degeneration of diverse neurons while whole-animal *Eato* mutants show no signs of
447 neurodegeneration, *Eato* must be widely required for phagocytes in the nervous system to engulf *Eato*
448 mutant neurons. It was not previously known how Eato promotes phagocytosis. Using multiple models
449 of dendrite degeneration, we show here that Eato is not required for engulfment per se; rather, it boosts
450 the sensitivity of phagocytes towards PS-exposing targets. Eato does so by allowing for recruitment of
451 the engulfment receptor Drpr to the site of engulfment, similar to the role of *C. elegans* CED-7 in
452 recruitment of the Drpr homolog Ced-1 (Venegas and Zhou, 2007).

453 **PS exposure is responsible for the defects of *Eato* deficiency in both neurons and phagocytes**
454 Mechanistically, our results support the idea that Eato exerts its function in both neurons and
455 phagocytes by suppressing PS exposure. In both tissues, overexpression of the PS-specific flippase
456 ATP8A can rescue the defects caused by the loss of *Eato*, suggesting that surface PS exposure is

457 necessary for these defects. Meanwhile, *Eato* overexpression suppresses dendrite loss caused by
458 ectopic PS exposure in neurons and dramatically reduces PS exposure induced by flippase KO in
459 epidermal cells, suggesting that *Eato* can reduce cell surface PS exposure. Thus, it appears that *Eato*
460 carries out similar biochemical activities in both cell types, resulting in less cell surface PS.

461 How does *Eato* suppress PS exposure? Previous work has linked two ABCA genes with both
462 PS exposure and phagocytosis. Murine *ABCA1* is required for efficient clearance of apoptotic cells in
463 the developing limb bud and for the phagocytic activity of macrophages (Hamon et al., 2000).
464 Meanwhile, *ABCA1* promotes Ca^{2+} -induced PS exposure in blood cells (Hamon et al., 2000). In *C.*
465 *elegans* embryos, *CED-7* is also required for efficient PS exposure on apoptotic cells (Venegas and
466 Zhou, 2007). These observations are consistent with *ABCA1* and *CED-7* being lipid floppases that
467 export lipids from the interior of cells. In contrast, the effect of *Eato* on PS exposure appears to be
468 opposite to those of *ABCA1* and *CED-7* and is more similar to that of the flippase *ATP8A*. However, our
469 results also show important distinctions between *Eato* and the PS flippase. On the one hand, flippase
470 KO in epidermal cells results in high levels of PS exposure, whereas *Eato* KO produces a milder effect.
471 On the other hand, *Eato* KO in neurons causes much more severe dendrite degeneration than flippase
472 KO (Sapar et al., 2018). Thus, unlike P4-ATPases that import PS across the lipid bilayer and maintain
473 general PS asymmetry on the plasma membrane, *Eato* seems to specifically suppress certain potent
474 eat-me signals related to PS. One possibility to reconcile these observations is that *Eato* may function
475 to selectively clear a subset of PS lipids that are particularly potent in inducing phagocytosis from the
476 cell surface. *In vitro* analysis of *Eato*'s biochemical activity will be critical to establish how *Eato*
477 regulates PS homeostasis at the plasma membrane.

478 How does PS exposure on phagocytes inhibit engulfment of PS-exposing dendrites? A simple
479 hypothesis is that PS on the surface of phagocytes interacts with the engulfment receptor *Drpr* on the
480 same membrane and thus interferes with *Drpr*'s ability to interact with PS exposed on dendrites. This
481 hypothesis predicts that increasing the PS level on dendrites may outcompete PS on phagocytes and
482 restore engulfment. Indeed, injury induces rapid and high PS exposure on severed dendrites (Ji et al.,
483 2022; Sapar et al., 2018) and these dendrites can still be engulfed by *Eato*-KO epidermal cells.

484 *Eato* was previously linked to neurodegeneration through its role in exporting excessive lipids
485 from photoreceptors (Moulton et al., 2021). In these cells, the loss of *Eato* results in accumulation of
486 oxidized lipids inside lipid droplets, causing photoreceptors to die earlier in the presence of oxidative
487 stress. However, we do not think a similar mechanism accounts for the neurodegeneration observed
488 here. First, we did not detect lipid droplet increases in *Eato* mutant neurons. Second, reducing the lipid
489 load inside neurons by lipase overexpression did not affect the degeneration of *Eato* mutant neurons.

490 Third, the *Eato* mutant neurons we examined here degenerate much more rapidly (within 5 days) than
491 *Eato*-deficient photoreceptors exposed to oxidative stress (>20 days). Lastly, in the retina, glial cells
492 protect photoreceptors by taking up excessive lipids from photoreceptors rather than being responsible
493 for neurodegeneration by engulfing photoreceptors (Liu et al., 2015). Thus, we posit that, outside the
494 retina, *Eato* plays a much broader protective role in the nervous system by suppressing PS exposure.

495 **Conserved and diverged functions of ABCA proteins**

496 Besides human ABCA1 and CED-7, we found that several other ABCA proteins (hABCA2, hABCA3,
497 hABCA4, hABCA5, and hABCA12) can rescue the phagocytic defects of *Eato* KO epidermal cells to
498 various extents. These results are surprising, considering that ABCA proteins do not necessarily have
499 the same biochemical activities (Quazi and Molday, 2011). For example, although most of the ABCA
500 proteins characterized so far are involved in exporting lipids, ABCA4 is a flippase for N-retinylidene-
501 phosphatidylethanolamine (Quazi et al., 2012). However, our results suggest that many, if not all,
502 ABCA proteins may have some shared biochemical properties that can enhance phagocytosis.

503 Considering that *Eato*'s roles in neurons and phagocytes both involve suppression of PS
504 exposure, it is further surprising that, although several ABCA proteins can compensate for the loss of
505 *Eato* in epidermal cells, none of them can rescue *Eato* mutant neurons. One possibility to account for
506 this difference is that *Eato* may require additional, neuronal-specific factors to function properly in
507 neurons, and these factors do not interact with ABCA proteins derived from humans and worms.
508 Another possibility is that neurons require more complete suppression of PS exposure than phagocytes
509 to inhibit the effects of *Eato* LOF.

510 **Axons and dendrites contribute differently to overall neuronal integrity**

511 An interesting finding from our results is that phagocytic damage to dendrites affects the integrity of
512 axons much more than the other way around: Blocking engulfment of dendrites largely rescued axon
513 degeneration of *Eato* KO neurons, but suppressing axon engulfment had little effect on dendrite
514 degeneration. These results suggest that dendrites contribute more to the overall health of neurons
515 than axons. One possible explanation is that axons may be more separated metabolically or spatially
516 from the cell body than dendrites through cellular compartmentalization ,(Glock et al., 2021; Overly et
517 al., 1996) such that injury signals initiated in axons do not spread effectively to the cell body.
518 Alternatively, dendrites are more important to the overall health of da neurons because they occupy a
519 larger cellular volume than axons.

520 **Potential roles of ABCA genes in neurodegenerative diseases by regulating PS-mediated
521 phagocytosis**

522 Neuron-phagocyte interactions play important roles in the progress of neurodegeneration (Butler et al.,
523 2021). Besides clearing dead neurons and debris of neurites, phagocytosis can promote or even drive
524 neurodegeneration (Butler et al., 2021; Sapar and Han, 2019). For example, mutations in *Atp8a2* result
525 in spontaneous axon degeneration and paralysis in mice, most likely due to phagocytosis of axons
526 induced by ectopic PS exposure (Zhu et al., 2012). We recently found that disruption of NAD⁺
527 metabolism, which is common in neurodegenerative diseases (Fang et al., 2017; Verdin, 2015), can
528 cause neurons to lose neurites due to PS-induced phagocytosis (Ji et al., 2022). Here we present
529 another example where dysregulation of PS homeostasis on the plasma membrane results in
530 phagocytosis-dependent neurodegeneration. Several human ABCA genes are associated with
531 neurodegenerative diseases, including ABCA1, ABCA2, ABCA7 in Alzheimer's disease, ABCA5 in
532 Parkinson's disease, and ABCA4 in macular degeneration (Bosschaerts et al., 2022; Fu et al., 2015; Kim
533 and Halliday, 2012; Piehler et al., 2012). It is an intriguing question whether any human ABCA protein is
534 neuroprotective by suppressing PS exposure on neurons, like *Eato* in *Drosophila*. However, to address
535 this question, it is important to investigate neuronal-specific LOF of ABCA genes in *in vivo* mammalian
536 models, since potential neurodegeneration could be phagocytosis-dependent and the LOF of ABCA
537 genes in phagocytes could suppress neurodegeneration.

538 MATERIALS AND METHODS

539 *Drosophila* strains

540 The fly strains used in this study are listed in Table S1 (Key Resource Table). In general, C4da neurons
541 were labeled by *ppk-MApHS*, *ppk-CD4-tdTom*, or *ppk-Gal4 UAS-CD4-tdTom*; PS exposure on cell
542 surface was visualized by *dgc-Gal4 UAS-GFP-Lact* or *dgc-LexA LexAop-GFP-Lact*.

543 Molecular cloning and transgenic flies, generation of *Eato* KI, Gal4, and mutant flies, CRISPR-
544 TRiM, mosaic analysis, live imaging, injury, assay, dissection and staining, image analysis and
545 quantification, statistical analysis are described in Supplemental methods. Plasmids are available from
546 Addgene or upon request. *Drosophila* strains are available from Bloomington *Drosophila* Stock Center
547 or upon request.

548 ACKNOWLEDGMENTS

549 We thank Huanghe Yang (Duke University), Rando Allikmets (Columbia University), Ding Xue
550 (University of Colorado Boulder), Yannick Hamon and Dr. Giovanna Chimini (Aix Marseille University),
551 and *Drosophila* Genomics Resource Center (DGRC) for plasmids; Marc Freeman (Vollum Institute) and
552 Developmental Studies Hybridoma Bank for antibodies; Ben White (National Institute of Mental Health),
553 Michael Welte (University of Rochester), and Bloomington *Drosophila* Stock Center for fly stocks;

554 Cornell BRC Imaging facility for access to microscopes (funded by NIH grant S10OD018516); Cornell
555 CSCU for advice on statistics; Michael Goldberg, Jeremy Baskin, Quan Yuan, and members of the Han
556 lab for feedback on the manuscript. This work was supported by NIH grants (R01NS099125 and
557 R24OD031953) awarded to C.H..

558 **AUTHOR CONTRIBUTIONS**

559 Conceptualization: X.C., C.H.; Methodology: X.C., C.H.; Software: X.C., C.H.; Validation: X.C.; A.S.,
560 N.V.R., A.Y.; Formal analysis: X.C.; N.V.R., A.Y., R.C.; Investigation: X.C.; A.S., Z.H., N.V.R., A.Y.;
561 Resources: B.W.; Writing - Original Draft: X.C., C.H.; Writing - Review & Editing: X.C., C.H.; N.V.R.,
562 A.Y.; Visualization: X.C.; Supervision: C.H.; Funding acquisition: C.H.

563 **DECLARATION OF INTERESTS**

564 The authors declare no competing interests.

565 **REFERNECE**

566 Albrecht, C., and Viturro, E. (2007). The ABCA subfamily--gene and protein structures, functions and
567 associated hereditary diseases. *Pflugers Arch* 453, 581-589. DOI: 10.1007/s00424-006-0047-8
568 Allen, S.E., Koreman, G.T., Sarkar, A., Wang, B., Wolfner, M.F., and Han, C. (2021). Versatile
569 CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes.
570 *PLoS Biol* 19, e3001061. DOI: 10.1371/journal.pbio.3001061
571 Anderson, M.P., and Welsh, M.J. (1992). Regulation by ATP and ADP of CFTR chloride channels that
572 contain mutant nucleotide-binding domains. *Science* 257, 1701-1704. DOI: 10.1126/science.1382316
573 Anstey, K.J., Ashby-Mitchell, K., and Peters, R. (2017). Updating the Evidence on the Association
574 between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. *J Alzheimers
575 Dis* 56, 215-228. DOI: 10.3233/JAD-160826
576 Bellenguez, C., Kucukali, F., Jansen, I.E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A.C.,
577 Campos-Martin, R., Grenier-Boley, B., Andrade, V., *et al.* (2022). New insights into the genetic etiology
578 of Alzheimer's disease and related dementias. *Nat Genet* 54, 412-436. DOI: 10.1038/s41588-022-
579 01024-z
580 Bossaerts, L., Cacace, R., and Van Broeckhoven, C. (2022). The role of ATP-binding cassette
581 subfamily A in the etiology of Alzheimer's disease. *Mol Neurodegener* 17, 31. DOI: 10.1186/s13024-
582 022-00536-w
583 Broccardo, C., Luciani, M., and Chimini, G. (1999). The ABCA subclass of mammalian transporters.
584 *Biochim Biophys Acta* 1461, 395-404. DOI: 10.1016/s0005-2736(99)00170-4
585 Butler, C.A., Popescu, A.S., Kitchener, E.J.A., Allendorf, D.H., Puigdellivol, M., and Brown, G.C. (2021).
586 Microglial phagocytosis of neurons in neurodegeneration, and its regulation. *J Neurochem* 158, 621-
587 639. DOI: 10.1111/jnc.15327
588 Cho, Y.Y., Kwon, O.H., and Chung, S. (2020). Preferred Endocytosis of Amyloid Precursor Protein from
589 Cholesterol-Enriched Lipid Raft Microdomains. *Molecules* 25. DOI: 10.3390/molecules25235490
590 Dean, M., Moitra, K., and Allikmets, R. (2022). The human ATP-binding cassette (ABC) transporter
591 superfamily. *Hum Mutat* 43, 1162-1182. DOI: 10.1002/humu.24418
592 Diao, F., Ironfield, H., Luan, H., Diao, F., Shropshire, W.C., Ewer, J., Marr, E., Potter, C.J., Landgraf,
593 M., and White, B.H. (2015). Plug-and-play genetic access to drosophila cell types using exchangeable
594 exon cassettes. *Cell Rep* 10, 1410-1421. DOI: 10.1016/j.celrep.2015.01.059

595 Do, T.M., Ouellet, M., Calon, F., Chimini, G., Chacun, H., Farinotti, R., and Bourasset, F. (2011). Direct
596 evidence of abca1-mediated efflux of cholesterol at the mouse blood-brain barrier. Mol Cell Biochem
597 357, 397-404. DOI: 10.1007/s11010-011-0910-6

598 Ellis, R.E., Jacobson, D.M., and Horvitz, H.R. (1991). Genes required for the engulfment of cell corpses
599 during programmed cell death in *Caenorhabditis elegans*. Genetics 129, 79-94. DOI:
600 10.1093/genetics/129.1.79

601 Fang, E.F., Lautrup, S., Hou, Y., Demarest, T.G., Croteau, D.L., Mattson, M.P., and Bohr, V.A. (2017).
602 NAD(+) in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med 23, 899-916.
603 DOI: 10.1016/j.molmed.2017.08.001

604 Feng, S., Sekine, S., Pessino, V., Li, H., Leonetti, M.D., and Huang, B. (2017). Improved split
605 fluorescent proteins for endogenous protein labeling. Nat Commun 8, 370. DOI: 10.1038/s41467-017-
606 00494-8

607 Freeman, M.R. (2015). Drosophila Central Nervous System Glia. Cold Spring Harb Perspect Biol 7.
608 DOI: 10.1101/cshperspect.a020552

609 Fu, Y., Hsiao, J.H., Paxinos, G., Halliday, G.M., and Kim, W.S. (2015). ABCA5 regulates amyloid-beta
610 peptide production and is associated with Alzheimer's disease neuropathology. J Alzheimers Dis 43,
611 857-869. DOI: 10.3233/JAD-141320

612 Fu, Y., Hsiao, J.H., Paxinos, G., Halliday, G.M., and Kim, W.S. (2016). ABCA7 Mediates Phagocytic
613 Clearance of Amyloid-beta in the Brain. J Alzheimers Dis 54, 569-584. DOI: 10.3233/JAD-160456

614 Fujii, T., Sakata, A., Nishimura, S., Eto, K., and Nagata, S. (2015). TMEM16F is required for
615 phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc Natl Acad Sci
616 U S A 112, 12800-12805. DOI: 10.1073/pnas.1516594112

617 Glock, C., Biever, A., Tushev, G., Nassim-Assir, B., Kao, A., Bartnik, I., Tom Dieck, S., and Schuman,
618 E.M. (2021). The translatome of neuronal cell bodies, dendrites, and axons. Proc Natl Acad Sci U S A
619 118. DOI: 10.1073/pnas.2113929118

620 Grueber, W.B., Jan, L.Y., and Jan, Y.N. (2002). Tiling of the Drosophila epidermis by multidendritic
621 sensory neurons. Development 129, 2867-2878

622 Hamon, Y., Broccardo, C., Chambenoit, O., Luciani, M.F., Toti, F., Chaslin, S., Freyssinet, J.M.,
623 Devaux, P.F., McNeish, J., Marguet, D., and Chimini, G. (2000). ABC1 promotes engulfment of
624 apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2, 399-406. DOI:
625 10.1038/35017029

626 Han, C., Song, Y., Xiao, H., Wang, D., Franc, N.C., Jan, L.Y., and Jan, Y.N. (2014). Epidermal cells are
627 the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila.
628 Neuron 81, 544-560. DOI: 10.1016/j.neuron.2013.11.021

629 Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J.C., Carrasquillo, M.M., Abraham, R.,
630 Hamshire, M.L., Pahwa, J.S., Moskvina, V., et al. (2011). Common variants at ABCA7,
631 MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 43,
632 429-435. DOI: 10.1038/ng.803

633 Iwamoto, N., Abe-Dohmae, S., Sato, R., and Yokoyama, S. (2006). ABCA7 expression is regulated by
634 cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 47,
635 1915-1927. DOI: 10.1194/jlr.M600127-JLR200

636 Ji, H., Sapar, M.L., Sarkar, A., Wang, B., and Han, C. (2022). Phagocytosis and self-destruction break
637 down dendrites of Drosophila sensory neurons at distinct steps of Wallerian degeneration. Proc Natl
638 Acad Sci U S A 119. DOI: 10.1073/pnas.2111818119

639 Ji, H., Wang, B., Shen, Y., Labib, D., Lei, J., Chen, X., Sapar, M., Boulanger, A., Dura, J.M., and Han,
640 C. (2023). The Drosophila chemokine-like Orion bridges phosphatidylserine and Draper in phagocytosis
641 of neurons. Proc Natl Acad Sci U S A 120, e2303392120. DOI: 10.1073/pnas.2303392120

642 Kim, W.S., and Halliday, G.M. (2012). Changes in sphingomyelin level affect alpha-synuclein and
643 ABCA5 expression. J Parkinsons Dis 2, 41-46. DOI: 10.3233/JPD-2012-11059

644 Kim, W.S., Li, H., Ruberu, K., Chan, S., Elliott, D.A., Low, J.K., Cheng, D., Karl, T., and Garner, B.
645 (2013). Deletion of Abca7 increases cerebral amyloid-beta accumulation in the J20 mouse model of
646 Alzheimer's disease. *J Neurosci* 33, 4387-4394. DOI: 10.1523/JNEUROSCI.4165-12.2013
647 Kim, W.S., Rahmanto, A.S., Kamili, A., Rye, K.A., Guillemin, G.J., Gelissen, I.C., Jessup, W., Hill, A.F.,
648 and Garner, B. (2007). Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to
649 apolipoprotein E discs and suppression of amyloid-beta peptide generation. *J Biol Chem* 282, 2851-
650 2861. DOI: 10.1074/jbc.M607831200
651 Kim, Y.E., Chen, J., Chan, J.R., and Langen, R. (2010). Engineering a polarity-sensitive biosensor for
652 time-lapse imaging of apoptotic processes and degeneration. *Nat Methods* 7, 67-73. DOI:
653 10.1038/nmeth.1405
654 Koreman, G.T., Xu, Y., Hu, Q., Zhang, Z., Allen, S.E., Wolfner, M.F., Wang, B., and Han, C. (2021).
655 Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in *Drosophila*. *Proc Natl Acad Sci U S A*
656 118. DOI: 10.1073/pnas.2014255118
657 Le, T., Jia, Z., Le, S.C., Zhang, Y., Chen, J., and Yang, H. (2019). An inner activation gate controls
658 TMEM16F phospholipid scrambling. *Nat Commun* 10, 1846. DOI: 10.1038/s41467-019-09778-7
659 Lenis, T.L., Hu, J., Ng, S.Y., Jiang, Z., Sarfare, S., Lloyd, M.B., Esposito, N.J., Samuel, W., Jaworski,
660 C., Bok, D., *et al.* (2018). Expression of ABCA4 in the retinal pigment epithelium and its implications for
661 Stargardt macular degeneration. *Proc Natl Acad Sci U S A* 115, E11120-E11127. DOI:
662 10.1073/pnas.1802519115
663 Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J., Graham, B.H.,
664 Quintana, A., and Bellen, H.J. (2015). Glial lipid droplets and ROS induced by mitochondrial defects
665 promote neurodegeneration. *Cell* 160, 177-190. DOI: 10.1016/j.cell.2014.12.019
666 MacDonald, J.M., Beach, M.G., Porpiglia, E., Sheehan, A.E., Watts, R.J., and Freeman, M.R. (2006).
667 The *Drosophila* cell corpse engulfment receptor Draper mediates glial clearance of severed axons.
668 *Neuron* 50, 869-881. DOI: 10.1016/j.neuron.2006.04.028
669 Mapes, J., Chen, Y.Z., Kim, A., Mitani, S., Kang, B.H., and Xue, D. (2012). CED-1, CED-7, and TTR-52
670 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. *Curr Biol* 22, 1267-
671 1275. DOI: 10.1016/j.cub.2012.05.052
672 Moulton, M.J., Barish, S., Ralhan, I., Chang, J., Goodman, L.D., Harland, J.G., Marcogliese, P.C.,
673 Johansson, J.O., Ioannou, M.S., and Bellen, H.J. (2021). Neuronal ROS-induced glial lipid droplet
674 formation is altered by loss of Alzheimer's disease-associated genes. *Proc Natl Acad Sci U S A* 118.
675 DOI: 10.1073/pnas.2112095118
676 Overly, C.C., Rieff, H.I., and Hollenbeck, P.J. (1996). Organelle motility and metabolism in axons vs
677 dendrites of cultured hippocampal neurons. *J Cell Sci* 109 (Pt 5), 971-980. DOI: 10.1242/jcs.109.5.971
678 Park, S.H., Cheong, C., Idoyaga, J., Kim, J.Y., Choi, J.H., Do, Y., Lee, H., Jo, J.H., Oh, Y.S., Im, W., *et*
679 *al.* (2008). Generation and application of new rat monoclonal antibodies against synthetic FLAG and
680 OLLAS tags for improved immunodetection. *J Immunol Methods* 331, 27-38. DOI:
681 10.1016/j.jim.2007.10.012
682 Phillips, M.C. (2018). Is ABCA1 a lipid transfer protein? *J Lipid Res* 59, 749-763. DOI:
683 10.1194/jlr.R082313
684 Piehler, A.P., Ozcurumez, M., and Kaminski, W.E. (2012). A-Subclass ATP-Binding Cassette Proteins
685 in Brain Lipid Homeostasis and Neurodegeneration. *Front Psychiatry* 3, 17. DOI:
686 10.3389/fpsyg.2012.00017
687 Poe, A.R., Wang, B., Sapar, M.L., Ji, H., Li, K., Onabajo, T., Fazliyeva, R., Gibbs, M., Qiu, Y., Hu, Y.,
688 and Han, C. (2019). Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene
689 Redundancy and Perdurance in *Drosophila*. *Genetics* 211, 459-472. DOI:
690 10.1534/genetics.118.301736
691 Quazi, F., Lenevich, S., and Molday, R.S. (2012). ABCA4 is an N-retinylidene-
692 phosphatidylethanolamine and phosphatidylethanolamine importer. *Nat Commun* 3, 925. DOI:
693 10.1038/ncomms1927

694 Quazi, F., and Molday, R.S. (2011). Lipid transport by mammalian ABC proteins. *Essays Biochem* 50,
695 265-290. DOI: 10.1042/bse0500265

696 Riabinina, O., Luginbuhl, D., Marr, E., Liu, S., Wu, M.N., Luo, L., and Potter, C.J. (2015). Improved and
697 expanded Q-system reagents for genetic manipulations. *Nat Methods* 12, 219-222, 215 p following 222.
698 DOI: 10.1038/nmeth.3250

699 Sakae, N., Liu, C.C., Shinohara, M., Frisch-Daiello, J., Ma, L., Yamazaki, Y., Tachibana, M., Younkin,
700 L., Kurti, A., Carrasquillo, M.M., *et al.* (2016). ABCA7 Deficiency Accelerates Amyloid-beta Generation
701 and Alzheimer's Neuronal Pathology. *J Neurosci* 36, 3848-3859. DOI: 10.1523/JNEUROSCI.3757-
702 15.2016

703 Santoso, C.S., Meehan, T.L., Peterson, J.S., Cedano, T.M., Turlo, C.V., and McCall, K. (2018). The
704 ABC Transporter Eato Promotes Cell Clearance in the *Drosophila melanogaster* Ovary. *G3 (Bethesda)*
705 8, 833-843. DOI: 10.1534/g3.117.300427

706 Sapar, M.L., and Han, C. (2019). Die in pieces: How *Drosophila* sheds light on neurite degeneration
707 and clearance. *J Genet Genomics* 46, 187-199. DOI: 10.1016/j.jgg.2019.03.010

708 Sapar, M.L., Ji, H., Wang, B., Poe, A.R., Dubey, K., Ren, X., Ni, J.Q., and Han, C. (2018).
709 Phosphatidylserine Externalization Results from and Causes Neurite Degeneration in *Drosophila*. *Cell
710 Rep* 24, 2273-2286. DOI: 10.1016/j.celrep.2018.07.095

711 Satoh, K., Abe-Dohmae, S., Yokoyama, S., St George-Hyslop, P., and Fraser, P.E. (2015). ATP-
712 binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. *J Biol
713 Chem* 290, 24152-24165. DOI: 10.1074/jbc.M115.655076

714 Segawa, K., Kurata, S., Yanagihashi, Y., Brummelkamp, T.R., Matsuda, F., and Nagata, S. (2014).
715 Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
716 *Science* 344, 1164-1168. DOI: 10.1126/science.1252809

717 Segawa, K., and Nagata, S. (2015). An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure. *Trends
718 Cell Biol* 25, 639-650. DOI: 10.1016/j.tcb.2015.08.003

719 Shacham-Silverberg, V., Sar Shalom, H., Goldner, R., Golan-Vaishenker, Y., Gurwicz, N., Gokhman, I.,
720 and Yaron, A. (2018). Phosphatidylserine is a marker for axonal debris engulfment but its exposure can
721 be decoupled from degeneration. *Cell Death Dis* 9, 1116. DOI: 10.1038/s41419-018-1155-z

722 Song, W., Onishi, M., Jan, L.Y., and Jan, Y.N. (2007). Peripheral multidendritic sensory neurons are
723 necessary for rhythmic locomotion behavior in *Drosophila* larvae. *Proc Natl Acad Sci U S A* 104, 5199-
724 5204. DOI: 10.1073/pnas.0700895104

725 Sun, H., Molday, R.S., and Nathans, J. (1999). Retinal stimulates ATP hydrolysis by purified and
726 reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for
727 Stargardt disease. *J Biol Chem* 274, 8269-8281. DOI: 10.1074/jbc.274.12.8269

728 Suzuki, J., Denning, D.P., Imanishi, E., Horvitz, H.R., and Nagata, S. (2013). Xk-related protein 8 and
729 CED-8 promote phosphatidylserine exposure in apoptotic cells. *Science* 341, 403-406. DOI:
730 10.1126/science.1236758

731 Suzuki, J., Umeda, M., Sims, P.J., and Nagata, S. (2010). Calcium-dependent phospholipid scrambling
732 by TMEM16F. *Nature* 468, 834-838. DOI: 10.1038/nature09583

733 Tanaka, K., Fujimura-Kamada, K., and Yamamoto, T. (2011). Functions of phospholipid flippases. *J
734 Biochem* 149, 131-143. DOI: 10.1093/jb/mvq140

735 Tokuda, T., Calero, M., Matsubara, E., Vidal, R., Kumar, A., Permanne, B., Zlokovic, B., Smith, J.D.,
736 Ladu, M.J., Rostagno, A., *et al.* (2000). Lipidation of apolipoprotein E influences its isoform-specific
737 interaction with Alzheimer's amyloid beta peptides. *Biochem J* 348 Pt 2, 359-365

738 Venegas, V., and Zhou, Z. (2007). Two alternative mechanisms that regulate the presentation of
739 apoptotic cell engulfment signal in *Caenorhabditis elegans*. *Mol Biol Cell* 18, 3180-3192. DOI:
740 10.1091/mbc.e07-02-0138

741 Venken, K.J., Schulze, K.L., Haelterman, N.A., Pan, H., He, Y., Evans-Holm, M., Carlson, J.W., Levis,
742 R.W., Spradling, A.C., Hoskins, R.A., and Bellen, H.J. (2011). MiMIC: a highly versatile transposon
743 insertion resource for engineering *Drosophila melanogaster* genes. *Nat Methods* 8, 737-743. DOI:
744 10.1038/nmeth.1662

745 Verdin, E. (2015). NAD(+) in aging, metabolism, and neurodegeneration. *Science* 350, 1208-1213.
746 DOI: 10.1126/science.aac4854

747 Wahrle, S.E., Jiang, H., Parsadanian, M., Legleiter, J., Han, X., Fryer, J.D., Kowalewski, T., and
748 Holtzman, D.M. (2004). ABCA1 is required for normal central nervous system ApoE levels and for
749 lipidation of astrocyte-secreted apoE. *J Biol Chem* 279, 40987-40993. DOI: 10.1074/jbc.M407963200

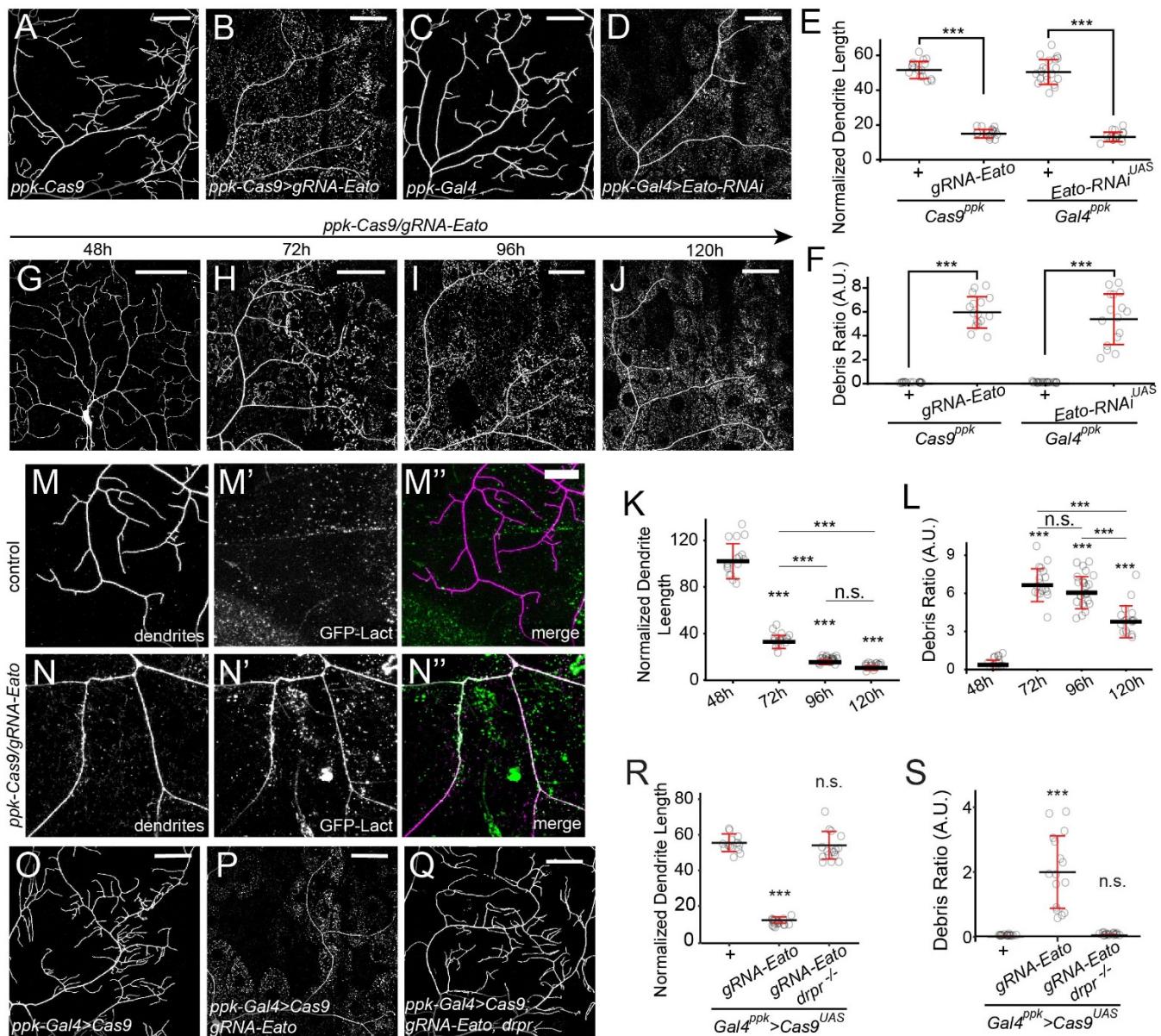
750 Weng, J., Mata, N.L., Azarian, S.M., Tzekov, R.T., Birch, D.G., and Travis, G.H. (1999). Insights into
751 the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in
752 abcr knockout mice. *Cell* 98, 13-23. DOI: 10.1016/S0092-8674(00)80602-9

753 Wu, Y.C., and Horvitz, H.R. (1998). The *C. elegans* cell corpse engulfment gene ced-7 encodes a
754 protein similar to ABC transporters. *Cell* 93, 951-960. DOI: 10.1016/s0092-8674(00)81201-5

755 Zhang, Y., Wang, H., Kage-Nakadai, E., Mitani, S., and Wang, X. (2012). *C. elegans* secreted lipid-
756 binding protein NRF-5 mediates PS appearance on phagocytes for cell corpse engulfment. *Curr Biol*
757 22, 1276-1284. DOI: 10.1016/j.cub.2012.06.004

758 Zhao, J., Davis, M.D., Martens, Y.A., Shinohara, M., Graff-Radford, N.R., Younkin, S.G., Wszolek, Z.K.,
759 Kanekiyo, T., and Bu, G. (2017). APOE epsilon4/epsilon4 diminishes neurotrophic function of human
760 iPSC-derived astrocytes. *Hum Mol Genet* 26, 2690-2700. DOI: 10.1093/hmg/ddx155

761 Zhou, Z., Hartwieg, E., and Horvitz, H.R. (2001). CED-1 is a transmembrane receptor that mediates cell
762 corpse engulfment in *C. elegans*. *Cell* 104, 43-56. DOI: 10.1016/s0092-8674(01)00190-8

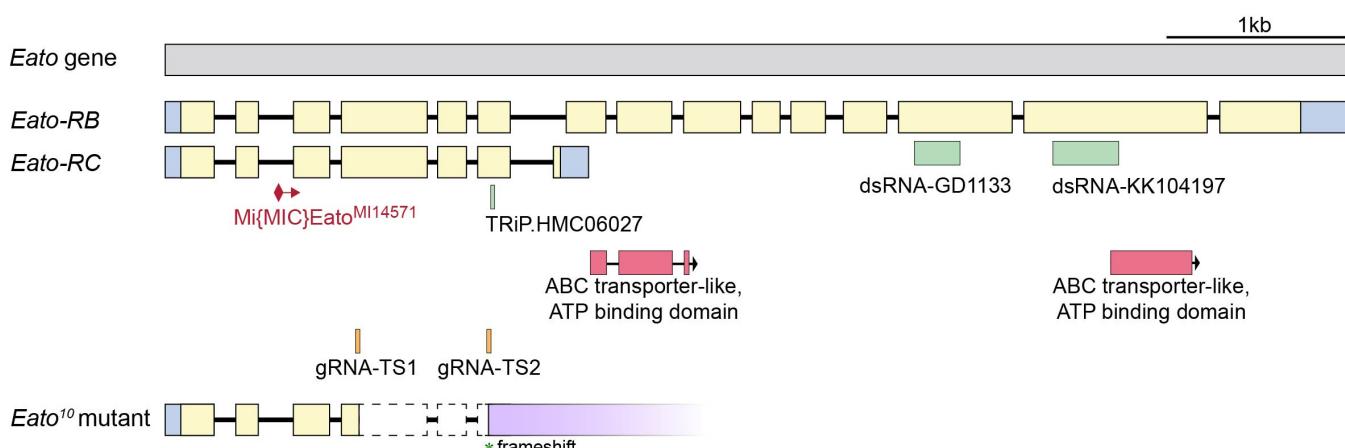

763 Zhu, X., Libby, R.T., de Vries, W.N., Smith, R.S., Wright, D.L., Bronson, R.T., Seburn, K.L., and John,
764 S.W. (2012). Mutations in a P-type ATPase gene cause axonal degeneration. *PLoS Genet* 8,
765 e1002853. DOI: 10.1371/journal.pgen.1002853

766

767

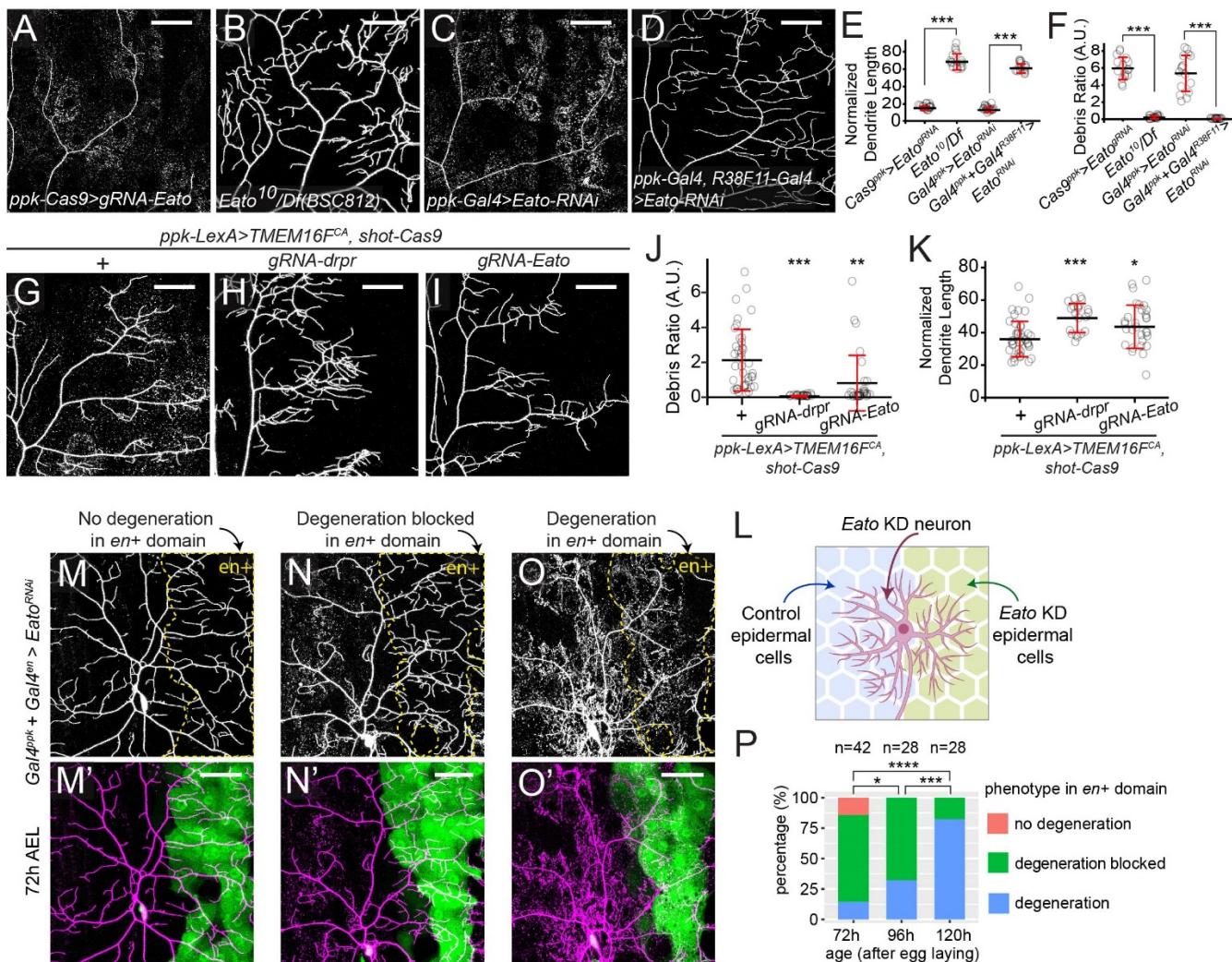
768

769 **FIGURES**


770

771 **Figure 1. Eato LOF in C4da neurons leads to engulfment-dependent dendrite degeneration.**

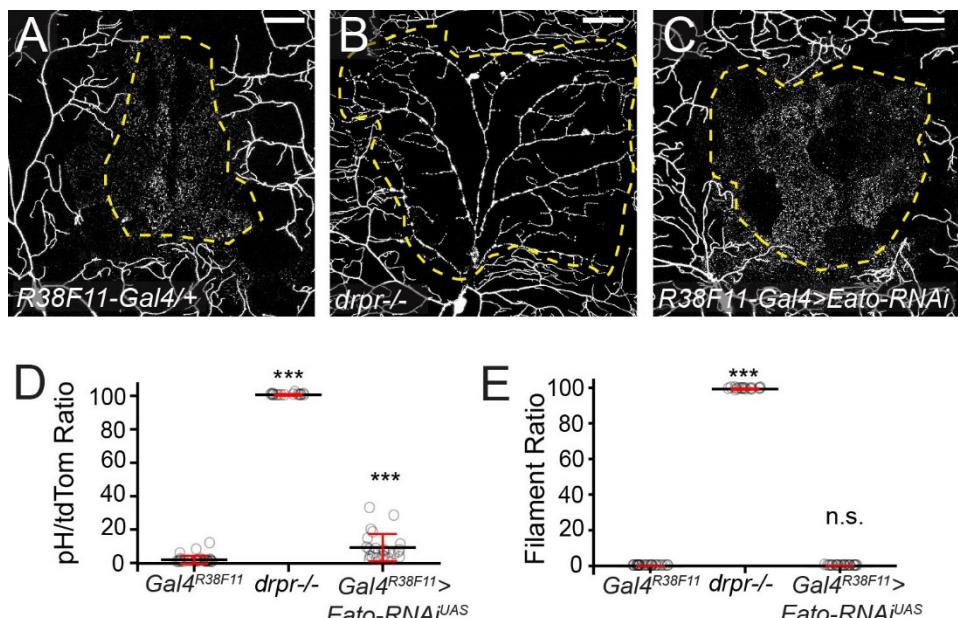
772 (A–B) Dendrites of C4da neurons in *ppk-Cas9* control (A), C4da-specific *Eato* knockout (KO) (B), *ppk-*
773 *Gal4* control (C), and C4da-specific *Eato* knockdown (KD) late 3rd instar larvae.


774 (E–F) Quantification of normalized dendrite length (total dendrite length/total area) (E) and debris ratio
775 (debris area/total area) (F) in A–D. -n = number of neurons and N = number of animals: *Cas9*^{ppk} (n = 16,
776 N = 9); *Cas9*^{ppk} *gRNA-Eato* (n = 16, N = 8); *Gal4*^{ppk} (n = 20, N = 11); *Gal4*^{ppk} *Eato-RNAi*^{UAS} (n = 16, N =
777 14).

778 (G–J) Dendrites of C4da-specific *Eato* KO across different developmental stages.
779 (K–L) quantification of normalized dendrite length (K) and debris ratio (L) in G–J. n = number of
780 neurons and N = number of animals: 48h (n = 16, N = 8); 72h (n = 17, N = 11); 96h (n = 24, N = 12);
781 120h (n = 16, N = 8).
782 (M–N'') Binding patterns of the PS sensor GFP-Lact on dendrites of control (M–M'') and *Eato* KO
783 neurons (N–N'') in late 3rd instar larvae. Fat body-specific *dcg-Ga4* drives expression of GFP-Lact.
784 (O–Q) C4da neuron dendrites in *ppk-Ga4 UAS-Cas9* control (O), C4da-specific *Eato* KO (P), and
785 C4da-specific *Eato* KO in *drpr^{indel3}* homozygous mutant late 3rd instar larvae.
786 (R–S) quantification of normalized dendrite length (R) and debris ratio (S) in O–Q. n = number of
787 neurons and N = number of animals: *Gal4^{ppk} > Cas9^{ppk}* (n = 15, N = 10); *Gal4^{ppk} > Cas9^{ppk} gRNA-Eato*
788 (n = 16, N = 11); *Gal4^{ppk} > Cas9^{ppk} gRNA-Eato drpr^{indel3}* (n = 16, N = 12).
789 C4da neurons were labeled by *ppk-MApHS* in (A–D) and (G–J), *ppk-CD4-tdTomato* in (M–N''), and
790 *ppk-Ga4 UAS-CD4-tdTomato* in (O–Q). Scale bars: 50 μ m in (A–D), (G–J), and (O–Q); 20 μ m in (M–
791 N''). In all plots, ***p<0.001; n.s., not significant; one-way ANOVA with Tukey post-hoc test.

792
793 **Figure S1. The gene structure of *Eato* and relevant reagents**

794 *Eato* has two mRNA isoforms: *Eato-RB* (long) and *Eato-RC* (short). *Eato^{MI14571}* (BDSC 59537) is a
795 MiMIC insertion in the shared second intron of both isoforms. The RNAi line TRiP.HMC06027 (BDSC
796 65080) targets both isoforms whereas dsRNA transgenes GD1133 (VDRC) and KK104197(VDRC)
797 target only the RB isoform. The locations of the two ATP-transporter-like ATP-binding domains are
798 indicated. *gRNA-Eato* expresses two gRNAs targeting the shared sequence between RB and RC
799 isoforms. *Eato¹⁰* contains a deletion from Exon 4 to Exon 6, causing frameshift after the deletion.

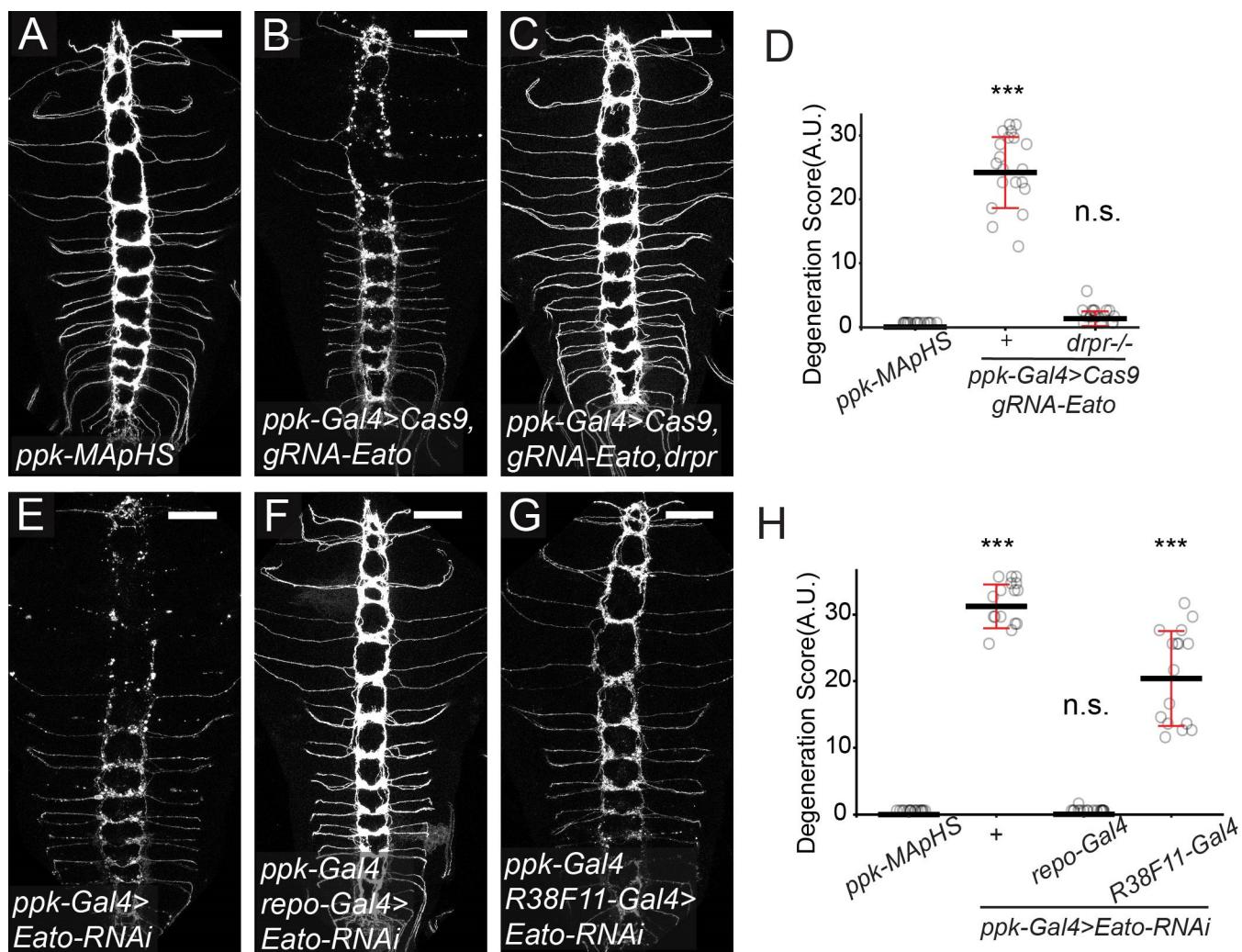

813 *LexA>TMEM16F^{CA} shot-Cas9 gRNA-drpr* (n = 21, N = 15); *ppk-LexA>TMEM16F^{CA} shot-Cas9 gRNA-*
814 *Eato* (n = 30, N = 15).

815 (L) A diagram of experiment design in (M–O'). *Eato* is knocked down in C4da neurons (by *ppk-Gal4*
816 driver) and the posterior epidermal cells of each segment (by *en-Gal4* driver). The anterior epidermal
817 cells where Gal4 is not expressed serve as an internal control.

818 (M–O') Dendrites of C4da neurons in 72 h AEL animals from the experiment described in (L). Binary
819 images (M, N, O) show dendrites only and color images show neurons and *en*+ domain (M', N', O').
820 *en*+ domains in binary images are enclosed by yellow dashed lines. Three categories of phenotypes
821 were observed: no degeneration (M–M'), degeneration blocked in the *en*+ domain (N–N'), and
822 degeneration in *en*+ domain (O–O').

823 (P) Quantification of percentage of three indicated genotypes in 72 h to 120 h AEL animals. n = number
824 of neurons and N = number of animals: 72h (n = 42, N = 18); 96h (n = 28, N = 14); 120h (n = 28, N =
825 14).

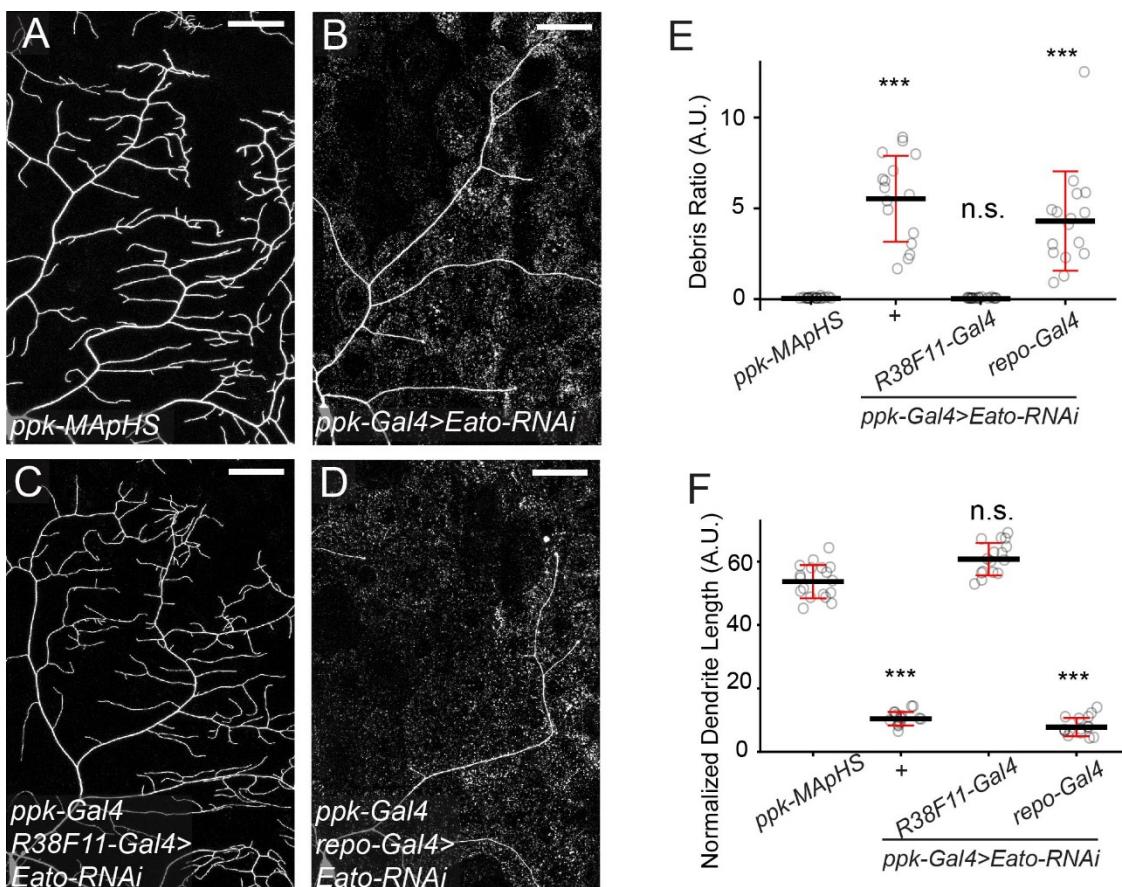
826 Pan-epidermal expression is driven *R38F11-Gal4*. Pan-epidermal KO is driven by *shot-Cas9*. C4da
827 neurons were labeled by *ppk-MApHS* in (A–D), (G–I) and (M–O'). Scale bars: 50 μ m. In all plots,
828 *p<0.05, ***p<0.001, ****p<0.0001; n.s., not significant. (E–F) and (J–K), one-way ANOVA with Tukey
829 post-hoc test; (P), chi-square test, p-value adjusted by FDR method.



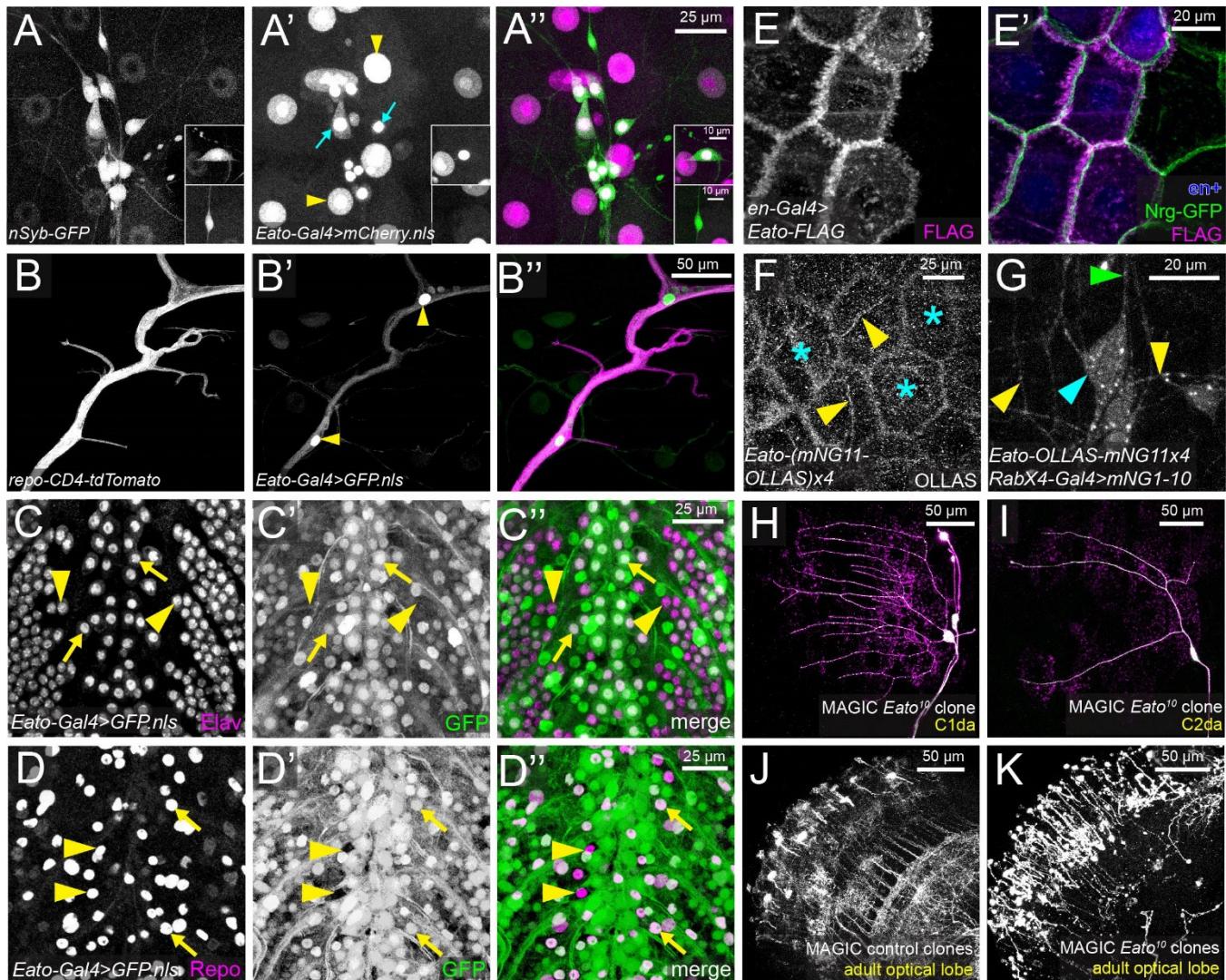
830

831 **Figure S2. *Eato* LOF in epidermal cells does not block injury-induced degeneration.**

832 (A–C) C4da neuron dendrites in control (A), *drpr*^{indel3} homozygous mutant (B), and epidermal cell-
833 specific *Eato* KD (C) late 3rd instar larvae 20h after laser injury. The dendrite territory before injury is
834 enclosed by yellow dashed line. Scale bar: 50 μ m.


835 (D–E) Quantification of pHluorin/tdTomato ratio (D), which indicates the percentage of unengulfed
836 materials, and the ratio of filament-like dendrite debris (E) in J–K. n = number of neurons and N =
837 number of animals: control (n = 28, N = 10); *drpr*[–] (n = 17, N = 7); *Gal4*^{R38F11} > *Eato-RNAi*^{UAS} (n = 24, N
838 = 9). Two-sample t-test, ***p<0.001.

840 **Figure 3. *Eato* LOF in da neurons causes glia-dependent axon degeneration.**


841 (A–D) Axons of C4da neurons in *ppk-Gal4* UAS-Cas9 control (A), C4da-specific *Eato* KO (B), and
842 C4da-specific *Eato* KO in *drpr*^{indel3} homozygous mutant (C) late 3rd instar larvae. Degeneration level is

843 quantified as degeneration score in (D) (see Materials and Methods). n = number of brains: *ppk-*
844 *MApHS* (n = 16); *ppk-Gal4>Cas9 gRNA-Eato* (n = 21); *ppk-Gal4>Cas9 gRNA-Eato drpr*^{-/-} (n = 19).
845 (E–H) Axons of C4da neurons in C4da-specific *Eato* KD (E), C4da and glia-specific *Eato* KD (F), and
846 C4da and epidermal cell-specific *Eato* KD (G) animals. Degeneration level is quantified as
847 degeneration score in (H). n = number of brains: *ppk-MApHS* (n = 16); *ppk-Gal4>Eato-RNAi* (n = 17);
848 *ppk-Gal4 + repo-Gal4 >Eato-RNAi* (n = 18), *ppk-Gal4 + R38F11-Gal4 >Eato-RNAi* (n = 16).
849 Glia-specific expression is driven by *repo-Gal4*. C4da neurons were labeled by *ppk-MApHS* in (A–C)
850 and (E–G). Scale bars: 50 μ m. In all plots, ***p<0.001; n.s., not significant, one-way ANOVA with Tukey
851 post-hoc test.

853 **Figure S3. *Eato* LOF in glia does not block C4da dendrite degeneration.**
854 (A–D) Dendrites of C4da neurons in *ppk-Gal4* control (A), C4da-specific *Eato* KD (B), C4da and
855 epidermal cell-specific *Eato* KD (C), and C4da and glia-specific *Eato* KD (D) late 3rd instar larvae. Scale
856 bar: 50 μ m.

857 (E–F) Quantification of debris ratio (E) and normalized dendrite length (F) in A–D. n = number of
858 neurons and N = number of animals: *ppk-MApHS* (n = 18, N = 10); *ppk-Gal4>Eato-RNAi* (n = 16, N =
859 14); *ppk-Gal4 + repo-Gal4 >Eato-RNAi* (n = 16, N = 9), *ppk-Gal4 + R38F11-Gal4 >Eato-RNAi* (n = 16,
860 N = 13). One-way ANOVA with Tukey post-hoc test, ***p<0.001.

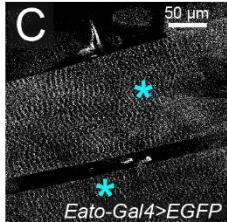
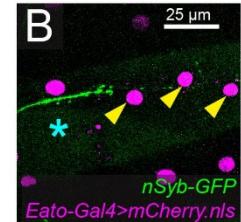
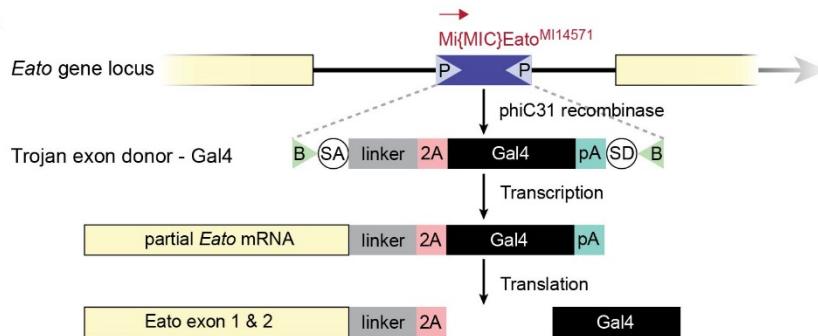
861
862 **Figure 4. *Eato* encodes a membrane protein required for the integrity of diverse neurons in both**
863 **PNS and CNS.**

864 (A–A'') *Eato* expression pattern on the body wall in a 96 h AEL larva. Neurons are labeled by *nSyb-*
865 *tdGFP* (A). *Eato-Gal4^{MI14571}* drives the expression of a nuclear mCherry (A'). Yellow arrowheads:
866 epidermal nuclei; blue arrows: neuronal nuclei. Upper insets show an es neuron expressing *Eato* and
867 lower insets show an es neuron without *Eato* expression.

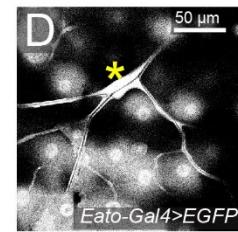
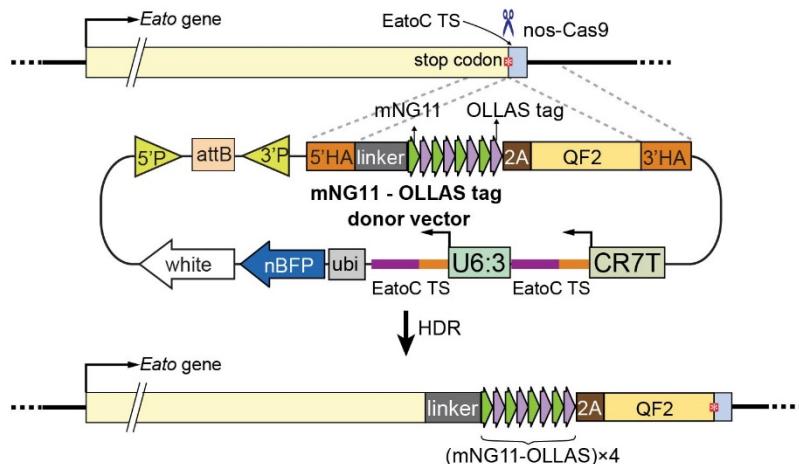
868 (B–B'') *Eato* expression in peripheral glial cells, showing an intersegmental nerve bundle. Glial cells are
869 labeled by *repo-CD4-tdTomato* (B). *Eato-Gal4^{MI14571}* drives the expression of a nuclear GFP (B'). Yellow
870 arrowheads: glial nuclei.

871 (C–D'') *Eato* expression pattern in the central nervous system (CNS). *Eato-Gal4^{MI14571}* drives the
872 expression of a nuclear GFP (C' and D'). (C–C'') show Elav staining to visualize neuronal nuclei.
873 Arrows: neurons with *Eato* expression; arrowheads: neurons without *Eato* expression. (D–D'') show
874 Repo staining to visualize glial nuclei. Arrows: glia with *Eato* expression; arrowheads: glia without *Eato*
875 expression.

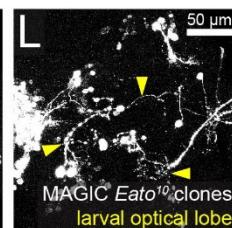
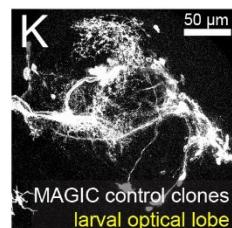
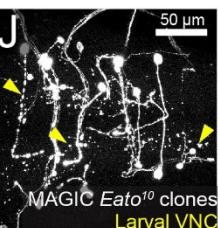
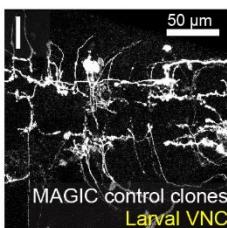
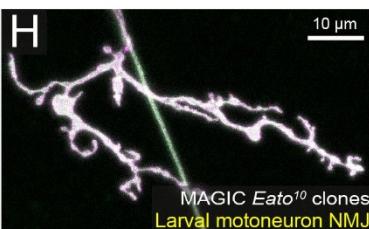
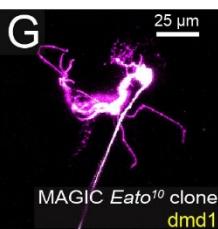
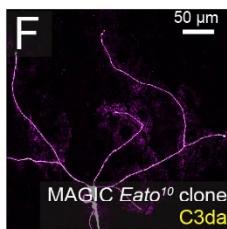
876 (E–E') Localization of FLAG-tagged Eato protein in epidermal cells. Eato(B) is expressed by *en-Gal4*
877 and detected by FLAG antibody staining. In (E'), the *en*+ domain is visualized by mIFP expression
878 (blue), and cell junctions are indicated by Nrg-GFP (green).

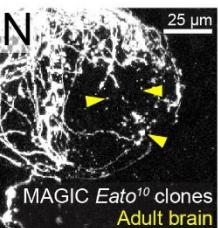
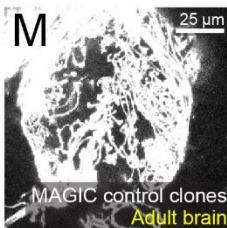



879 (F) Endogenous Eato in a homozygous *Eato-(mNG₁₁-OLLAS)_{x4}* knock-in larva as detected by OLLAS
880 staining. Yellow arrowheads: dendrite tracks; blue asterisks: epidermal cells.

881 (G) Endogenous Eato protein in neurons of homozygous *Eato-(mNG₁₁-OLLAS)_{x4}* detected by split-
882 mNeonGreen reconstitution. mNG₁₋₁₀ is expressed in all neurons by *RabX4-Gal4*. Cyan arrowhead:
883 soma; green arrowhead: axon; yellow arrowheads: dendrites.



884 (H–I) *Eato¹⁰* homozygous clones in class I da (C1da) (H) and class II da (C2da) (I) neurons generated
885 by the MAGIC method. Neuronal clones were labeled by *RabX4-Gal4 UAS-MApHS*. pHluorin is in
886 green and tdTom is in magenta. Magenta-only signals indicate neuronal debris engulfed by epidermal
887 cells.

888 (J–K) Control (J) and *Eato¹⁰* mutant (K) neuronal clones generated by the MAGIC method in the adult
889 optical lobe. Neuronal clones were labeled by *RabX4-Gal4 UAS-MApHS* but only tdTom signal is
890 shown.








A



E

F

M

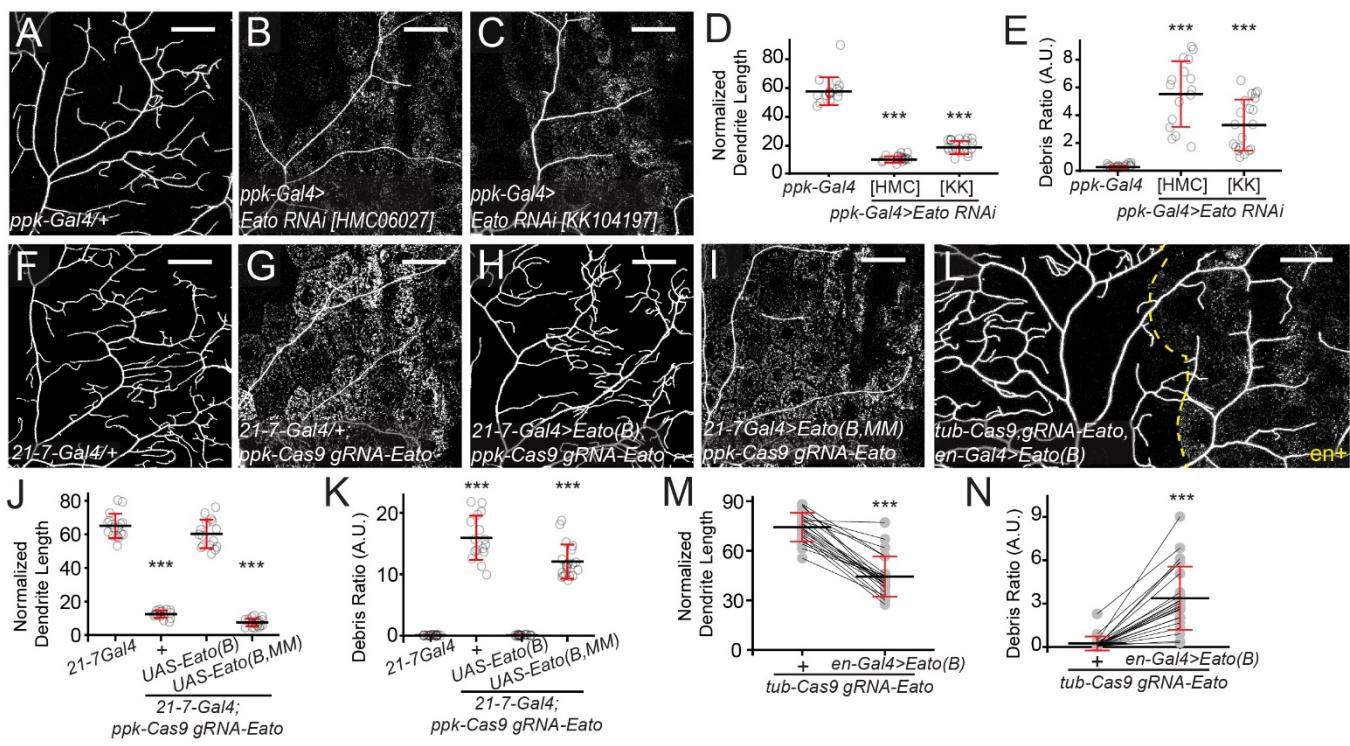
891

892 **Figure S4. Eato LOF causes neuronal degeneration in both PNS and CNS.**

893 (A) A diagram showing the method of generating *Eato-Gal4* line. The 2A-Gal4 trojan exon is used to
894 replace the MiMIC^{MI14571} insertion by recombinase-mediated cassette exchange. *T2A-Gal4* is expected
895 to be spliced into the *Eato* mRNA, resulting in the expression of a truncated Eato protein and a Gal4
896 protein under the control of endogenous *Eato* regulatory sequence.

897 (B–C) *Eato* expression in muscles. *Eato-Gal4*^{MI14571} drives expression of a nuclear mCherry (B) and a
898 cytosolic EGFP (C). Yellow arrowheads: muscle nuclei; cyan asterisks: muscle fibers.

899 (D) *Eato* expression in tracheas. *Eato-Gal4*^{MI14571} drives expression of a cytosolic EGFP. Yellow
900 asterisk: tracheas.


901 (E) A diagram showing the method of generating *Eato-(mNG₁₁-OLLAS)_{x4}* knock-in (KI) line. The gRNA-
902 donor vector contains two gRNA expression units targeting the C-terminus of *Eato*. The (mNG₁₁-
903 OLLAS)_{x4}-2A-QF2 cassette is flanked by 5' and 3' homology arms (HAs). Cas9-generated DNA break
904 at the stop codon induces homologous recombination at the HAs. QF2 allows identification of KI lines
905 by QUAS-driven reporters. A *ubi-nBFP* transgene on the vector allows negative selection of non-
906 specific insertions of the vector in the genome.

907 (F–G) *Eato*¹⁰ mutant clones of Class III da (C3da) neuron (D) and dmd1 neuron (E) generated by
908 MAGIC.

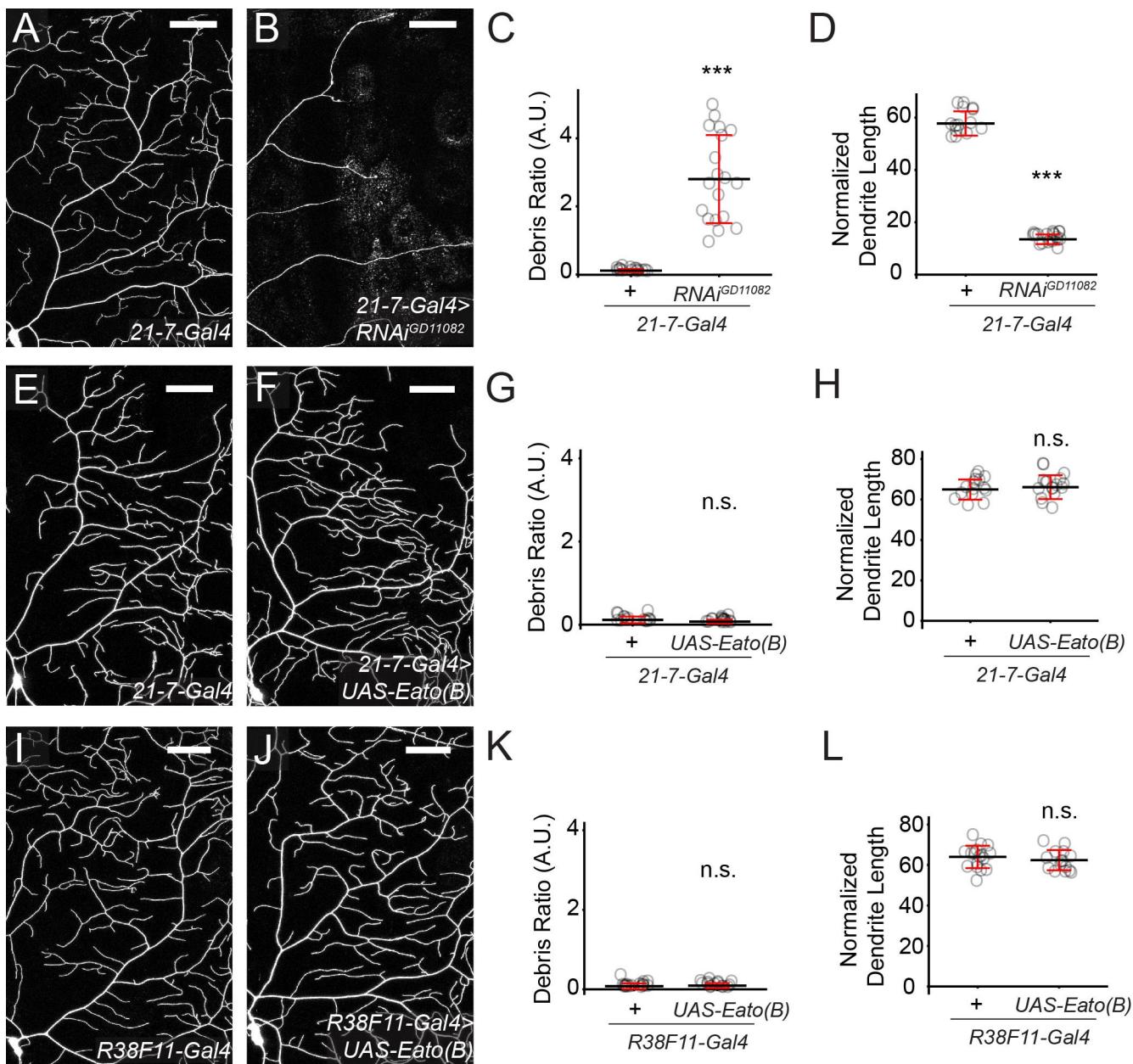
909 (H) The neuromuscular junction of an *Eato*¹⁰ mutant motoneuron clone.

910 (I–N) Control (I, K, M) and *Eato* mutant (J, L, N) neuronal clones generated by MAGIC in the CNS,
911 showing larval VNC (I–J), larval optical lobe (K–L), and adult brain (M–N). Yellow arrowheads indicate
912 debris.

913 Neurons were labeled by *RabX4-Gal4 UAS-MApHS* in (F–N). Both pHluorin (green) and tdTom
914 (magenta) are shown in (F–H); only tdTom is shown in (I–N).

915

916 **Figure. 5 Putative ABCA transporter activity is required for Eato's function.**

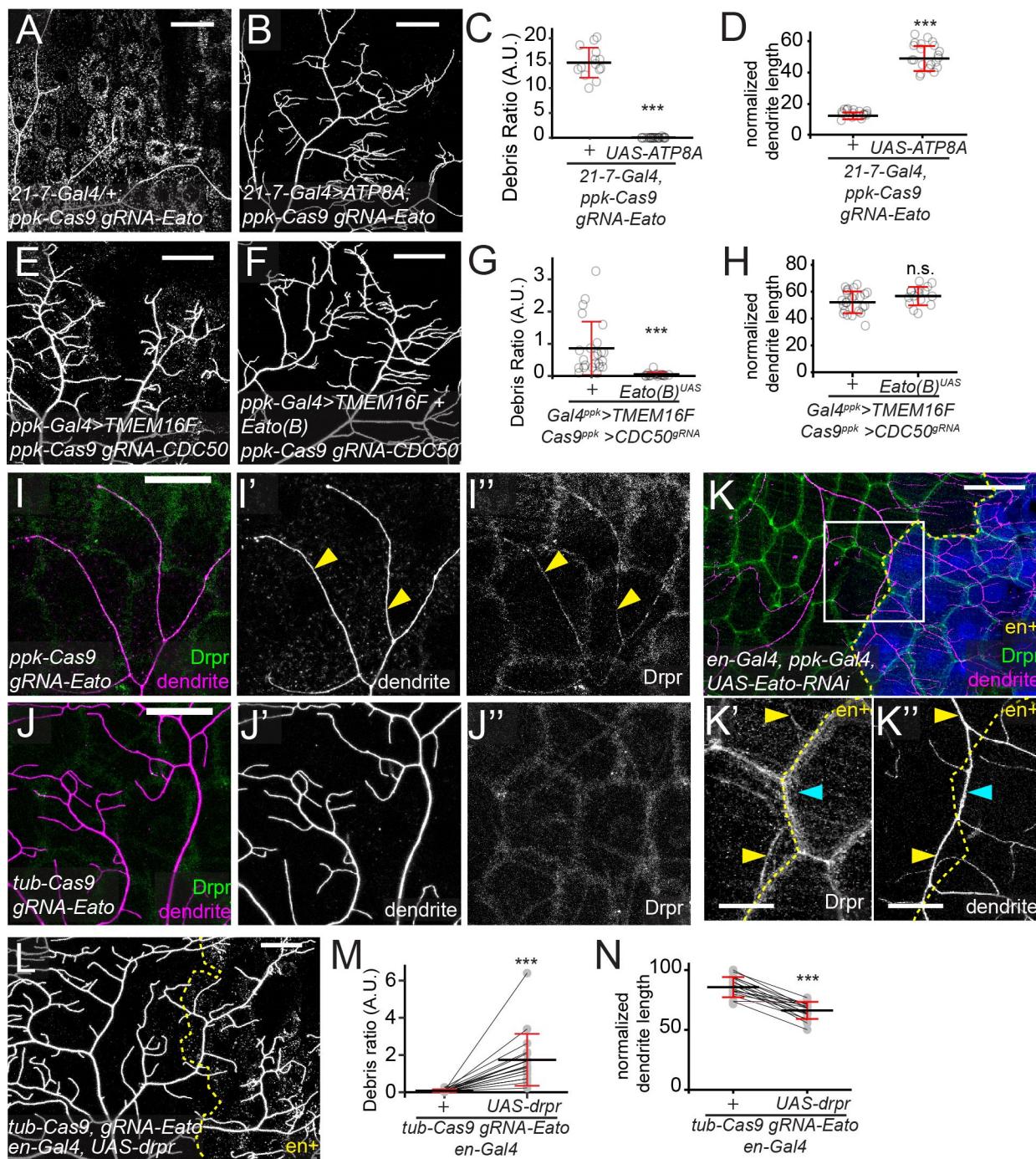

917 (A–C) Dendrites of C4da neurons in *ppk-Gal4* control (A), C4da-specific *Eato(B/C)* KD (B), and C4da-specific 918 *Eato(B)* KD (C) late 3rd instar larvae.

919 (D–E) Quantification of normalized dendrite length (D) and debris ratio (E) of neurons in (A–C). n = 920 number of neurons and N = number of animals: *ppk-Gal4* (n = 16, N = 11); *ppk-Gal4>Eato-RNAi[HMC]* 921 (n = 16, N = 14); *ppk-Gal4>Eato-RNAi[KK]* (n = 20, N = 13).

922 (F–K) Dendrites of C4da neurons in 21-7-Gal4 control (F), C4da-specific *Eato* KO (G), C4da-specific 923 *Eato* KO with da-specific *Eato(B)* OE (H), and C4da-specific *Eato* KO with da-specific *Eato(B.MM)* OE 924 (I) late 3rd instar larvae. Normalized dendrite length is quantified in (J), and debris ratio is quantified in 925 (K). n = number of neurons and N = number of animals: 21-7Gal4 (n = 16, N = 8); 21-7-Gal4 *ppk-Cas9* 926 *gRNA-Eato* (n = 16, N = 8); 21-7-Gal4>UAS-Eato(B) *ppk-Cas9 gRNA-Eato* (n = 17, N = 11), 21-7- 927 Gal4>UAS-Eato(B,MM) *ppk-Cas9 gRNA-Eato* (n = 20, N = 12).

928 (L) Dendrites of C4da neurons in *en-Gal4 UAS-Eato(B)*; *tub-Cas9 gRNA-Eato* UAS-mIFP animals. The 929 *en*+ domain is right to the yellow dashed line. The anterior non-expressing region serves as a control. 930 Comparisons between the control (+) and *en*+ domains are shown in (M) (for normalized dendrite 931 length) and (N) (for debris ratio). Data is from 23 neurons in 14 animals.

932 21-7-Gal4 drives expression in da neurons. C4da neurons were labeled by *ppk-MApHS* in (A–C), (F–I)
933 and (L). Scale bars: 50 μ m. In all plots, ***p<0.001; n.s., not significant. (D–E) and (J–K), one-way
934 ANOVA with Tukey post-hoc test. (M–N), paired t-test.

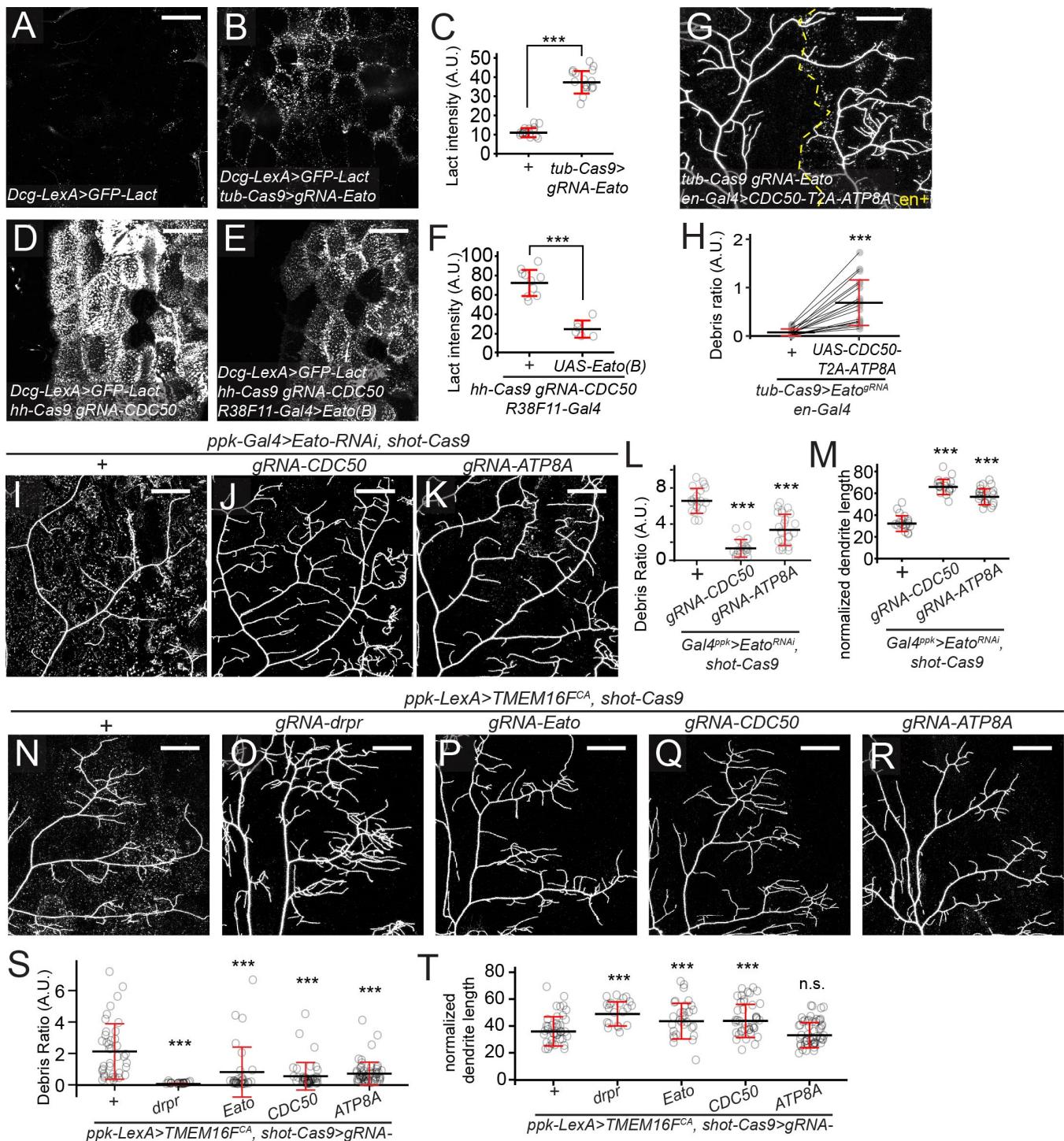

935
936 **Figure S5. Eato overexpression in wildtype cells does not cause phenotypes.**
937 (A–D) Dendrites of C4da neurons in 21-7-Gal4 control (A) and da-specific *Eato(B)* KD (B) late 3rd instar
938 larvae. Debris ratio is quantified in (C) and normalized dendrite length is quantified in (D). n = number

939 of neurons and N = number of animals: *21-7-Gal4* (n = 15, N = 8); *21-7-Gal4 RNAi^{GD11082}* (n = 19, N =
940 11).

941 (E–H) Dendrites of C4da neurons in *21-7-Gal4* control (E) and da-specific *Eato(B)* OE (F) late 3rd instar
942 larvae. Debris ratio is quantified in (G) and normalized dendrite length is quantified in (H). n = number
943 of neurons and N = number of animals: *21-7-Gal4* (n = 15, N = 8); *21-7-Gal4 UAS-Eato(B)* (n = 17, N =
944 9).

945 (I–L) Dendrites of C4da neurons in *R38F11-Gal4* control (I) and epidermal cell-specific *Eato(B)* OE (J)
946 animals. Debris ratio is quantified in (K), and normalized dendrite length is quantified in (L). n = number
947 of neurons and N = number of animals: *R38F11-Gal4* (n = 17, N = 9); *R38F11-Gal4 UAS-Eato(B)* (n =
948 15, N = 10).

949 C4da neurons were labeled by *ppk-CD4-tdTomato* in (A–B); *ppk-MApHS* in (E–F) and (I–J). Scale bars:
950 50 μ m. In all plots, ***p<0.001; n.s., not significant, two-sample t-test.



951

952 **Figure 6. Eato suppresses PS exposure in neurons and facilitates Drpr recruitment to**
 953 **degenerating dendrites in epidermal cells.**

954 (A–D) Dendrites of C4da neurons in C4da-specific *Eato* KO (A) and C4da-specific *Eato* KO with da-
 955 specific ATP8A expression (B) late 3rd instar larvae. Debris ratio is quantified in (C) and normalized
 956 dendrite length is quantified in (D). n = number of neurons and N = number of animals: 21-7-Gal4 ppk-
 957 Cas9 gRNA-Eato (n = 16, N = 8); 21-7-Gal4 UAS-ATP8A ppk-Cas9 gRNA-Eato (n = 21, N = 11).

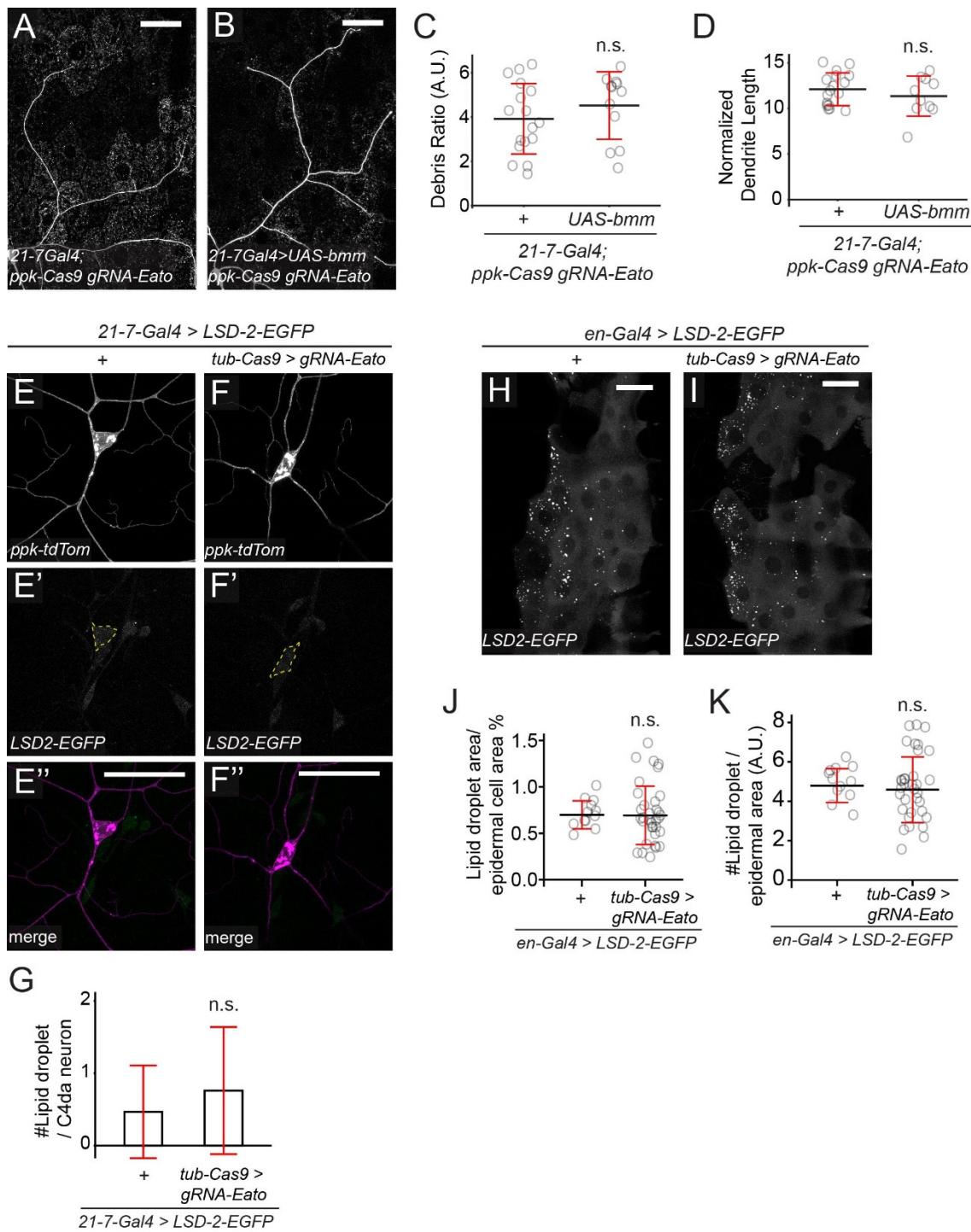
958 (E–H) Dendrites of C4da neurons with ectopic PS exposure (E) and additional *Eato*(B) overexpression
959 (F) in late 3rd instar larvae. Ectopic PS exposure was induced by *TMEM16F* overexpression and
960 simultaneous *CDC50* KO. Debris ratio is quantified in (G) and normalized dendrite length is quantified
961 in (H). n = number of neurons and N = number of animals: *Gal4^{ppk}>TMEM16F Cas9^{ppk}>CDC50^{gRNA}* (n =
962 24, N = 14); *Gal4^{ppk}>TMEM16F + Eato(B) Cas9^{ppk}>CDC50^{gRNA}* (n = 16, N = 12).
963 (I–J'') Drpr-GFP distribution in C4da-specific *Eato* KO (I–I'') and whole-body *Eato* KO (J–J'') mid-3rd
964 instar larvae. Yellow arrowheads: colocalization between dendrites and Drpr-GFP.
965 (K–K'') Drpr distribution in a mid-3rd instar larva where *Eato* is knocked down in both C4da neurons and
966 the *en*+ domain. The *en*+ domain is marked by mIFP (blue) in (K) and located right to the yellow
967 dashed line in (K' and K''). Drpr is detected by antibody staining. Yellow arrowheads: Drpr colocalized
968 with dendrites in control epidermal cells; cyan arrowheads: absence of Drpr along dendrites in *Eato* KD
969 epidermal cells.
970 (L) Dendrites of C4da neurons in a whole-body *Eato* KO late 3rd instar larva with Drpr overexpression
971 by *en-Ga4*. The *en*+ region is right to the yellow dashed line. Debris ratio in control (+) and Drpr
972 overexpressing epidermal cells is quantified in (M) and normalized dendrite length is quantified in (N).
973 Data is from 18 neurons in 11 animals.
974 C4da neurons were labeled by *ppk-MApHS* in (A–B) and (L); *ppk-CD4-tdTomato* in (E–F) and (I–K'').
975 Scale bars: 50 μ m in (A–B), (E–F), (I–J), (K) and (L); 20 μ m in (K'–K''). In all plots, ***p<0.001; n.s., not
976 significant. (C–D) and (G–H), two-sample t-test; (M–N), paired t-test.

977

978 **Figure 7. Eato promotes engulfment activity of epidermal cells by suppressing PS exposure.**

979 (A-C) Binding of the PS sensor GFP-Lact on control (A) and *Eato* KO (B) epidermal cells. *tub-Cas9*
980 induces *Eato* KO ubiquitously. *dgc-Gal4* drives GFP-Lact expression in the fat body. Average

981 fluorescence intensity of GFP-Lact on epidermal cells is quantified in (C). n = number of neurons and N
982 = number of animals: + (n = 16, N = 8); *tub-Cas9>gRNA-Eato* (n = 17, N = 11).

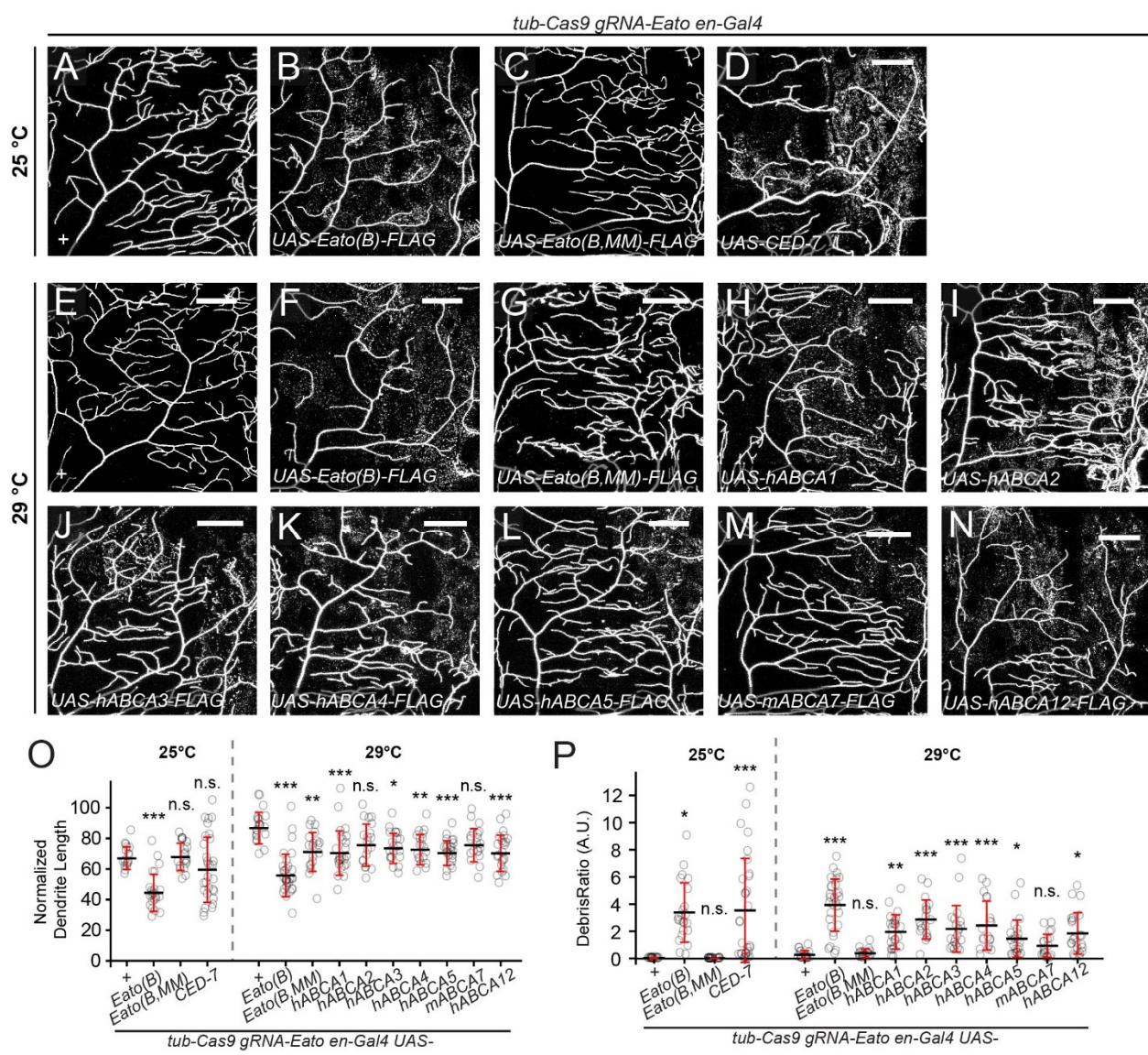

983 (D–F) GFP-Lact binding on *CDC50* KO (D) and *CDC50* KO with *Eato* overexpression (E) epidermal
984 cells. *hh-Cas9* induces KO in the posterior half of each larval segment. *dcg-Gal4* drives GFP-Lact
985 expression in the fat body. Images were acquired using a lower brightness setting than in (A) and (B) to
986 avoid oversaturation. Average fluorescence intensity of GFP-Lact on *hh*+ epidermal cells is quantified
987 in (F). n = number of neurons and N = number of animals: *hh-Cas9 gRNA-CDC50 R38F11-Gal4* (n =
988 10, N = 5); *hh-Cas9 gRNA-CDC50 R38F11-Gal4 UAS-Eato*(B) (n = 6, N = 4).

989 (G–H) Dendrites of C4da neurons in whole-body *Eato* KO with *CDC50-2A-ATP8A* overexpression in
990 *en*+ epidermal cells (G). The *en*+ domain is right to the yellow dashed line. Debris ratio in control (+)
991 and *CDC50-2A-ATP8A* overexpressing domains is quantified in (H). Data is from 19 neurons in 12
992 animals.

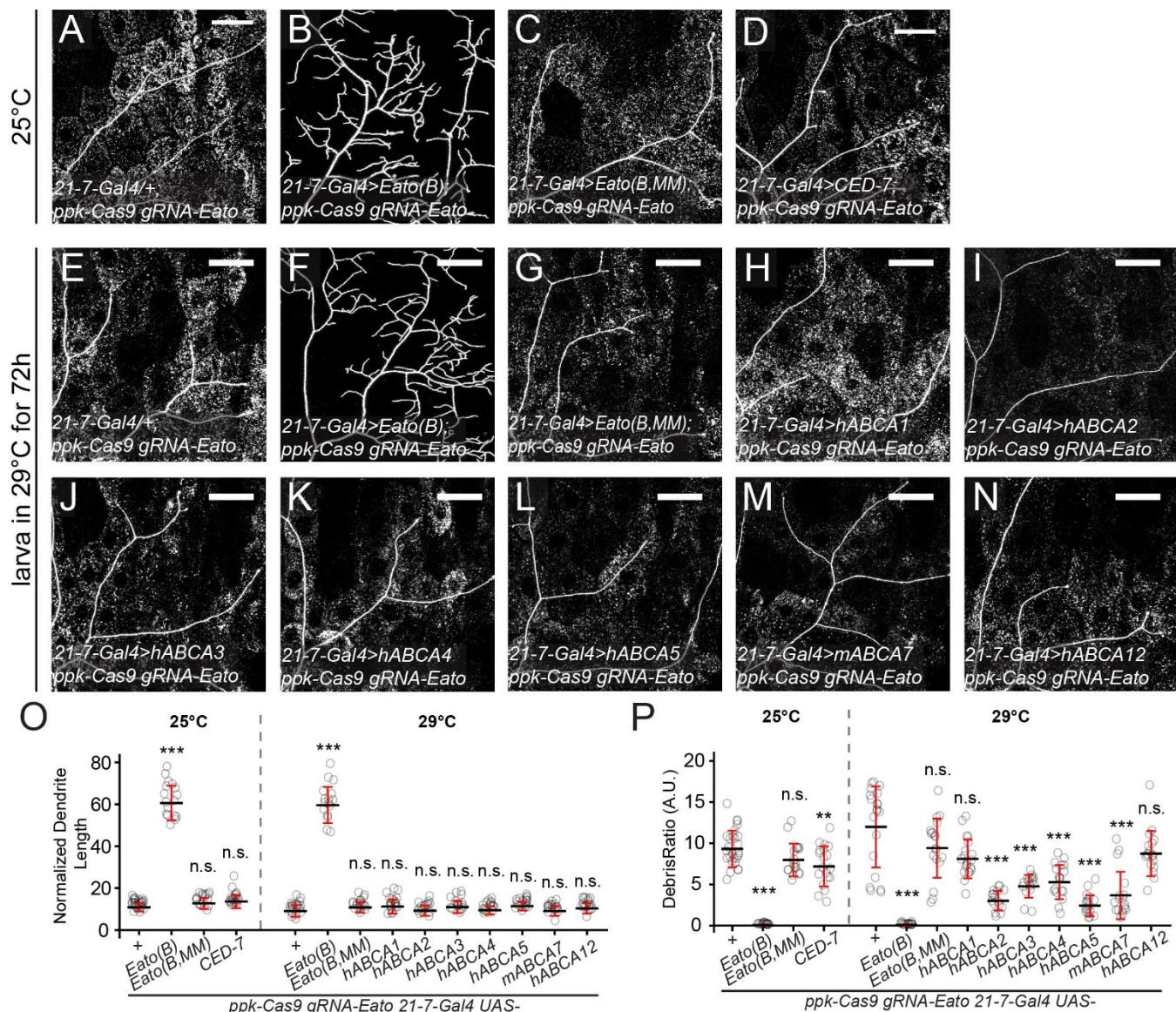
993 (I–M) Dendrites of C4da neurons with C4da-specific *Eato* KD (I) and additional epidermal *CDC50* KO
994 (J), or additional epidermal *ATP8A* KO (K). Debris ratio is quantified in (L) and normalized dendrite
995 length is quantified in (M). n = number of neurons and N = number of animals: *Gal4^{ppk}>Eato^{RNAi} shot-Cas9* (n = 19, N = 13); *Gal4^{ppk}>Eato^{RNAi} shot-Cas9 gRNA-CDC50* (n = 19, N = 13); *Gal4^{ppk}>Eato^{RNAi} shot-Cas9 gRNA-ATP8A* (n = 23, N = 14).

996 (N–T) Dendrites of C4da neurons with *TMEM16F^{CA}* OE (N) and additional epidermal *drpr* KO (O), or
997 additional epidermal *Eato* KO (P), or additional epidermal *CDC50* KO (Q), or additional epidermal
998 *ATP8A* KO (R). Debris ratio is quantified in (S), and normalized dendrite length is quantified in (T). n =
999 number of neurons and N = number of animals: *ppk-LexA>TMEM16F^{CA} shot-Cas9* (n = 40, N = 19);
1000 *ppk-LexA>TMEM16F^{CA} shot-Cas9 gRNA-drpr* (n = 21, N = 15); *ppk-LexA>TMEM16F^{CA} shot-Cas9*
1001 *gRNA-Eato* (n = 30, N = 15), *ppk-LexA>TMEM16F^{CA} shot-Cas9 gRNA-CDC50* (n = 41, N = 25), *ppk-*
1002 *LexA>TMEM16F^{CA} shot-Cas9 gRNA-ATP8A* (n = 54, N = 24).

1003 C4da neurons were labeled by *ppk-MApHS* in (G), (I–K) and (N–R). Scale bars: 50 μ m. In all plots,
1004 ***p<0.001; n.s., not significant. (C) and (F), t-test; (H), paired t-test; (L–M) and (S–T), one-way ANOVA
1005 with Tukey post-hoc test.



1008


1009 **Figure S6. Lipid accumulation in cells does not seem to account for *Eato* deficiency.**

1010 (A–B) Dendrites of *Eato* KO C4da neurons (A) and with additional overexpression of the lipase Bmm in
 1011 da neurons (B). Debris ratio is quantified in (C), and normalized dendrite length is quantified in (D). n =
 1012 number of neurons and N = number of animals: 21-7-Gal4 *ppk-Cas9 gRNA-Eato* (n = 17, N = 11); 21-7-
 1013 *Gal4 UAS-bmm ppk-Cas9 gRNA-Eato* (n = 12, N = 6).

1014 (E–G) Distribution of the lipid droplet marker LSD-2-EGFP in control (E–E'') and *Eato* KO (F–F'')
1015 neurons. Number of LSD-2 puncta is quantified in (G). n = number of neurons and N = number of
1016 animals: 21-7-*Gal4* > LSD-2-EGFP (n = 15, N = 6); 21-7-*Gal4* > LSD-2-EGFP tub-Cas9 gRNA-*Eato* (n
1017 = 25, N = 9).
1018 (H–K) Distribution of the lipid droplet marker LSD-2-EGFP in control (H) and *Eato* KO (I) epidermal
1019 cells. Proportions of LSD-2 occupied area are quantified in (J) and number of LSD-2 puncta is
1020 quantified in (K). n = number of neurons and N = number of animals: en-*Gal4* > LSD-2-EGFP (n = 12, N
1021 = 6); en-*Gal4* > LSD-2-EGFP tub-Cas9 gRNA-*Eato* (n = 34, N = 11).
1022 Scale bar: 50 μ m. In all plots, n.s., not significant; two-sample t-test.

1025 (A–D) Dendrites of C4da neurons in whole-body *Eato* KO (A) and with additional overexpression of
1026 *Eato(B)* (B), *Eato(B.MM)* (C), and *CED-7* (D) in the *en*⁺ domain. The larvae were raised at 25°C.
1027 (E–N) Dendrites of C4da neurons in whole-body *Eato* KO (E) and with additional overexpression of
1028 *Eato(B)* (F), *Eato(B.MM)* (G), human *ABCA1* (H), human *ABCA2* (I), human *ABCA3* (J), human *ABCA4*
1029 (K), human *ABCA5* (L), mouse *ABCA7* (M), and human *ABCA12* (N) in the *en*⁺ domain. The larvae
1030 were raised at 29°C.
1031 (O–P) Quantification of normalized dendrite length (O) and debris ratio (P) in A–N. n = number of
1032 neurons and N = number of animals. 25°C: + (n = 17, N = 10); *Eato(B)* (n = 23, N = 14); *Eato(B.MM)* (n
1033 = 20, N = 7); *CED-7* (n = 30, N = 11). 29°C: + (n = 20, N = 6); *Eato(B)* (n = 30, N = 13); *Eato(B.MM)* (n
1034 = 19, N = 6); *hABCA1* (n = 24, N = 7), *hABCA2* (n = 19, N = 6), *hABCA3* (n = 20, N = 6), *hABCA4* (n =
1035 19, N = 6), *hABCA5* (n = 23, N = 5), *mABCA7* (n = 20, N = 6), *hABCA12* (n = 23, N = 7).
1036 Scale bar: 50 μm. In all plots, ***p<0.001; **p<0.01; *p<0.05; n.s., not significant; one-way ANOVA with
1037 Tukey post-hoc test.

1038

1039 **Figure S7. Human or *C. elegans* ABCA proteins cannot rescue *Eato* LOF in neurons.**

1040 (A–D) Dendrites of *Eato* KO C4da neurons in control (A) and with da-specific overexpression of *Eato*(B) (B), *Eato*(B.MM) (C), and *CED*-7 (D). The larvae were raised at 25°C.

1042 (E–N) Dendrites of *Eato* KO C4da neurons in control (A) and with da-specific overexpression of *Eato*(B) (F), *Eato*(B.MM) (G), human ABCA1 (H), human ABCA2 (I), human ABCA3 (J), human ABCA4 (K), 1043 human ABCA5 (L), mouse ABCA7 (M), and human ABCA12 (N). The larvae were raised at 25°C for 24 1044 hours and switched to 29°C for 72 hours.

1046 (O–P) Quantification of normalized dendrite length (O) and debris ratio (P) in A–N. n = number of 1047 neurons and N = number of animals. 25°C: + (n = 26, N = 13); *Eato*(B) (n = 17, N = 11); *Eato*(B.MM) (n 1048 = 18, N = 12); *CED*-7 (n = 19, N = 8). 29°C: + (n = 20, N = 10); *Eato*(B) (n = 16, N = 8); *Eato*(B.MM) (n

1049 = 18, N = 9); *hABCA1* (n = 20, N = 10), *hABCA2* (n = 16, N = 8), *hABCA3* (n = 16, N = 8), *hABCA4* (n =
1050 18, N = 9), *hABCA5* (n = 18, N = 9), *mABCA7* (n = 17, N = 8), *hABCA12* (n = 18, N = 8).

1051 21.7-Gal4 drives expression of ABCA homologues in da neurons (A-N). Scale bar: 50 μ m. In all plots,
1052 ***p<0.001; **p<0.01, n.s., not significant; one-way ANOVA with Tukey post-hoc test.

1053