

1 ZBTB11 Depletion Targets Metabolic Vulnerabilities in

2 K-Ras Inhibitor Resistant PDAC

3 Nathan L. Tran*,^{1,5} Jiewei Jiang*,¹ Min Ma¹, Gillian E. Gadbois¹, Kevin C. M. Gulay², Alyssa
4 Verano⁶, Haowen Zhou³, Chun-Teng Huang³, David A. Scott³, Anne G. Bang³, Herve Tiriac²,
5 Andrew M. Lowy², Eric S. Wang^{#, 5}, Fleur M. Ferguson^{#, 1,4}

6 1. Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA.

7 2. Department of Surgery, Division of Surgical Oncology, UCSD Moores Cancer Center, University of California San
8 Diego, La Jolla, CA.

9 3. Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.

10 4. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA.

11 5. Cancer Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical
12 Discovery Institute, La Jolla, CA.

13 6. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115.

14 * These authors contributed equally.

15 # Correspondence: fmferguson@ucsd.edu, ewang@sbpdiscovery.org

18 ABSTRACT

19 Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras.
20 Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming
21 towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition
22 of complex I is poorly tolerated in patients due to on-target induction of peripheral neuropathy. In
23 this work, we develop molecular glue degraders against ZBTB11, a C₂H₂ zinc finger transcription
24 factor that regulates the nuclear transcription of components of the mitoribosome and electron
25 transport chain. Our ZBTB11 degraders leverage the differences in demand for biogenesis of
26 mitochondrial components between human neurons and rapidly-dividing pancreatic cancer cells,
27 to selectively target the K-Ras inhibitor resistant state in PDAC. Combination treatment of both K-
28 Ras inhibitor-resistant cell lines and multidrug resistant patient-derived organoids resulted in
29 superior anti-cancer activity compared to single agent treatment, while sparing hiPSC-derived
30 neurons. Proteomic and stable isotope tracing studies revealed mitoribosome depletion and
31 impairment of the TCA cycle as key events that mediate this response. Together, this work
32 validates ZBTB11 as a vulnerability in K-Ras inhibitor-resistant PDAC and provides a suite of
33 molecular glue degrader tool compounds to investigate its function.

34 INTRODUCTION

35 Highly aggressive pancreatic ductal adenocarcinomas (PDAC) make up >90% of all pancreatic
36 cancers and are the third leading cause of cancer deaths in the US.¹ Innovations in surgical
37 management and adjuvant therapy have led to improved outcomes for patients with resectable
38 (Stage 0-IIIB) PDAC, who have a 5-year overall survival rate of 21%.² Unfortunately, as early stage
39 PDAC has few symptoms, the majority (>85%) of PDAC patients are diagnosed with unresectable
40 Stage III and Stage IV disease, where the 5-year overall survival remains *below* 1% due to an
41 absence of efficacious anticancer drugs.² Over 95% of PDAC patients harbor tumors driven by
42 activating mutations in K-Ras,³ and inhibitors that target oncogenic K-Ras were anticipated to
43 herald paradigm-shifting improvements in patient outcomes. Unfortunately, the initial results in
44 patients treated with drugs targeting K-Ras^{G12C} suggest these benefits may not be realized, due
45 to the rapid onset of K-Ras inhibitor drug resistance.⁴

46 All of the oncogenic K-Ras mutants found in PDAC are now targetable by at least one clinical-
47 stage inhibitor, and development of both reversible and covalent mutant K-Ras inhibitors is now

48 a highly productive field of research.⁵⁻⁹ Currently approved K-Ras inhibitors include sotorasib and
49 adagrasib, which were FDA approved for treatment of K-Ras^{G12C} mutant NSCLC in 2021 and
50 2022 respectively.^{10,11} Although encouraging responses to sotorasib in PDAC have been
51 reported, resistance swiftly arises.⁴ In a Ph I/II study of patients with K-Ras^{G12C} pancreatic cancer
52 who received at least one previous systemic therapy, an encouraging 21% objective overall
53 response rate and an 84% disease control rate were reported, but this led to a meager 4 month
54 progression-free survival benefit and 5.7 month median duration of response.^{4,12} In both clinical
55 and laboratory studies of K-Ras inhibitor resistance, acquired secondary mutations in K-Ras itself
56 are relatively rare, occurring ~ 3 - 4% of the time.^{13,14} Resistance to K-Ras inhibition is more
57 commonly mediated by the accumulation of mutations and activation events in other pathways,
58 posing a challenge for the development of second-line K-Ras inhibitors, vertical pathway
59 targeting, or combination therapies once resistance has developed.^{15,16} These data highlight the
60 urgent need to identify and validate new targets that can combat acquired resistance to K-Ras
61 inhibition in PDAC.

62 Adaptive K-Ras inhibitor resistance is accompanied by significant metabolic reprogramming of
63 cancer cells, including hyperactivation of the PI3K/AKT pathway^{17,18}, elevated TCA cycle flux¹⁹,
64 Myc amplification²⁰, and upregulation of mitochondrial biogenesis²¹, culminating in heightened
65 reliance on oxidative phosphorylation (OXPHOS).^{21,22} As K-Ras pathway inhibition impairs
66 glycolysis, forcing cancer cells to rely on OXPHOS for their energetic demands, this mechanism
67 of clinical resistance is expected to impact the entire pharmacological class and is already being
68 reported in laboratory studies of other K-Ras mutant targeting drug candidates.^{14,15} For example,
69 K-Ras^{G12D} is the most common K-Ras mutation in PDAC³ and inhibitors that selectively target K-
70 Ras^{G12D} are currently the subject of Ph I clinical trials in PDAC patients (NCT05737706). We
71 recently demonstrated that acquired resistance to the K-Ras^{G12D} inhibitor MRTX1133 in human
72 PDAC cells is associated with feedback activation of ERBB/AKT signaling and enhanced
73 OXPHOS.¹⁴ Resistance to the mechanistically orthogonal pan K-Ras(ON) inhibitor RM-7977 has
74 been recently reported in murine models of PDAC, and is associated with Myc amplification²⁰.
75 While metabolic profiling was not performed in this study, Myc overexpression has been shown
76 to result in increased mitochondrial biogenesis²³, and over 200 OXPHOS genes are regulated by
77 Myc. These K-Ras inhibitor resistance studies concur with genetic studies in inducible K-
78 Ras^{G12D}/p53^{+/−} PDAC murine models, which identified a subpopulation of cancer cells able to
79 overcome genetic ablation of K-Ras^{G12D} to re-seed tumors, and that this subpopulation was highly
80 dependent on OXPHOS.²¹ Pairing oncogenic K-Ras inhibition with OXPHOS inhibition is therefore
81 an attractive therapeutic strategy in PDAC and other Ras addicted malignancies.

82 Unfortunately, most existing OXPHOS inhibitors have properties limiting their clinical use,
83 including insufficient potency²⁴ and poor selectivity^{25,26}. Others, such as the mitochondrial
84 complex I inhibitor IACS-010759, display dose-limiting on-target toxicity in the clinic due to their
85 action on actively respiring mitochondria in peripheral neurons.²⁷ To identify mechanistically
86 orthogonal approaches to combating OXPHOS-mediated adaptive K-Ras inhibitor resistance, we
87 evaluated public datasets to find targets that met the following four criteria: 1) Upregulated at the
88 protein level during the development of K-Ras inhibitor resistance in PDAC cells at a minimum of
89 one time point.²² 2) Essential for cell survival in glycolysis suppression media (low glucose, plus
90 galactose), which forces dependency on OXPHOS.²⁸ 3) Not a component of complex I, to identify
91 mechanistically orthogonal targets, with the goal of limiting effects on peripheral neurons and
92 other high-OXPHOS healthy cells.²⁷ 4) Chemically tractable via inhibition or targeted protein
93 degradation.^{29,30} This approach identified Zinc Finger and BTB Domain Containing 11 (ZBTB11)
94 as an attractive anti-OXPHOS target for molecular glue degrader development.

95 ZBTB11 is a zinc finger transcription factor that cooperates with GABPa to regulate the nuclear
96 expression of components of complex I and the mitoribosome, thereby maintaining functional
97 homeostasis in mitochondria.³¹⁻³³ ZBTB11 is transiently upregulated in PDAC cells during the
98 development of K-Ras inhibitor resistance, potentially to sustain increased demands on the
99 biogenesis of mitochondrial components.²² Although ZBTB11 is a pan-essential gene³⁴⁻³⁶, we
100 hypothesized that partial loss of ZBTB11 would impair K-Ras inhibitor resistant PDAC fitness but
101 have minimal effects on post-mitotic neurons due to differences in the demands on mitochondrial
102 biogenesis between these cell types.³⁷ ZBTB11 contains several C₂H₂ zinc finger domains with
103 the CXXCG sequence motif in their beta-hairpin loops, making it potentially chemically targetable
104 via molecular glue degrader-mediated recruitment to the CRL4^{CRBN} E3 ligase complex.³⁸ In this
105 study, we validate ZBTB11 as a mechanistically orthogonal target for addressing OXPHOS-
106 dependent drug-resistant states in PDAC, using both genetic and pharmacological approaches.

107 RESULTS

108 **ZBTB11 regulates OXPHOS levels in PDAC cells.** To validate that K-Ras inhibitor resistance
109 reliably generates a high-OXPHOS state, and to develop in-house PDAC models, we cultured 3
110 independent K-Ras^{G12C} MIA PaCa-2 lines with escalating sublethal concentrations of sotorasib
111 (AMG-510) to generate sotorasib-resistant cell lines R1, R2 and R3 (Fig. 1A, Fig. S1A). We
112 characterized the cellular metabolic state using Seahorse bioenergetic analysis, where a
113 mitochondrial stress test revealed increased basal and maximal oxidative phosphorylation in the
114 resistant cells compared to parental cell controls, as well as increased extracellular acidification
115 rate (ECAR) resulting in overall higher concentrations of ATP produced per minute per cell (Fig.
116 1B-C). We performed Seahorse bioenergetic analysis on our previously reported K-Ras^{G12D}
117 MRTXR SUIT2 lines¹⁴ which are resistant to MRTX1133 and compared them to parental SUIT2
118 cells (Fig. S2A-C). Here we also observed increased basal and maximal oxidative
119 phosphorylation, and overall higher concentrations of ATP produced per minute per cell in
120 MRTXR cells. Finally, we performed mass-spectrometry based metabolomics following ¹³C
121 glucose or ¹³C glutamine labeling to identify differences between parental and resistant MIA
122 PaCa-2 cells (Fig. S1B, Dataset 1) and parental and resistant SUIT2 cells (Fig. S2D, Dataset 1).
123 Metabolite set enrichment analysis identified changes in diverse metabolic pathways including
124 branched chain amino acid biosynthesis/degradation, glycolysis/gluconeogenesis, and the TCA
125 cycle. These data highlight the breadth of metabolites and pathways altered during the
126 development of resistance, that culminate in the observed increases in OXPHOS.

127 ZBTB11 regulates nuclear transcription of components of the mitoribosome and complex I in
128 murine embryonic stem cells and HEK293 cells³³ to modulate OXPHOS, but its functions in PDAC
129 have not been characterized. To evaluate if human ZBTB11 regulates these genes, we developed
130 inducible ZBTB11 CRISPRi cell lines to evaluate effects of ZBTB11 depletion genetically,
131 confirming knockdown by immunoblot and qPCR (Fig. S3A-B, D). We selected 4 representative
132 mitoribosome genes (MRPL48, MRPL44, MRPL1, MRPL30) and 4 complex I genes (NDUF37,
133 NDUFA12, NDUFC2, NDUFAF1) reported to be regulated by murine ZBTB11³³, and performed
134 qPCR to quantify their mRNA levels 1 and 3 days after hZBTB11 CRISPRi knockdown. We
135 observed reduction of the mitoribosome mRNA set 24 hrs after dCas9-KRAB induction, and
136 reduction of the complex I mRNA set after 3 days (Fig. 1D, Fig. S3C, E). To test if ZBTB11
137 depletion leads to reduced OXPHOS, we performed Seahorse bioenergetic analysis and
138 observed the expected reduction in oxygen consumption rate (OCR), with no change to the ECAR
139 24 hrs following dCas9-KRAB induction (Fig. 1E-F). We conclude that ZBTB11 is a transcriptional
140 regulator of mitochondrial genes and OXPHOS in K-Ras mutant PDAC, consistent with its
141 reported role in other organisms and cell types.

142 **Development of a CCRN-recruiting molecular glue degrader of ZBTB11.** Although ZBTB11
143 harbors the CXXCG beta-hairpin motif found in many CCRN molecular glue targets, no CCRN-
144 recruiting degraders of ZBTB11 have been reported.³⁸ To enable high-throughput quantification
145 of ZBTB11 protein levels in 384 well plates, we used CRISPR/cas9 to knock in a HiBiT tag at the
146 c-terminus of the endogenous ZBTB11 locus and used this reporter system to profile a proprietary
147 library of CCRN-binding molecular glue candidates (Fig. 2A). We identified several multi-targeted
148 hits from the same chemical series that were able to deplete ZBTB11 by greater than 30% (Fig.
149 2B-C). Medicinal chemistry optimization (to be reported elsewhere), culminated in the
150 identification of JWJ-01-306 (Fig. 2C) which degrades ZBTB11 up to a $D_{max, 10 \mu M}$ of 60% by HiBiT
151 quantification, and up to a $D_{max, 10 \mu M}$ of 90% by immunoblot (Fig. 2D, Fig. S4B). We confirmed
152 rescue of JWJ-01-306 mediated ZBTB11 degradation using pre-treatment with proteasomal
153 inhibitor carfilzomib, NAE1 inhibitor MLN4924, and by competition with the CCRN binder
154 lenalidomide (Fig. 2E).³⁹

155 Molecular glue degraders depend on the formation of ternary complexes for their cellular activity.
156 To measure intracellular ternary complex between our molecules, ZBTB11, and CCRN, we
157 developed a NanoBRET assay, and used it to confirm that JWJ-01-306 promotes a
158 CCRN:molecular glue:ZBTB11 ternary complex (Fig. 2F). To enable structure-based design of
159 improved ZBTB11 degraders and controls, we established ternary complex molecular modeling
160 protocols (Fig. 2G). ZBTB11 contains 12 C₂H₂ zinc finger domains, 7 of which harbor a CXXCG
161 motif (Fig. S4F). We generated NLuc tagged ZF constructs and quantified the change in individual
162 ZF-NLuc fusion protein levels upon treatment with ZBTB11 degrader molecules, to elucidate that
163 zinc finger 10 (ZF10) contains the primary CCRN/JWJ degron (Fig. S4C-E). Next, we generated
164 an AlphaFold2⁴⁰ model of ZBTB11 ZF10 and used this structure to perform Rosetta protein-
165 complex docking to JWJ-01-306-bound CCRN.⁴¹ Manual inspection of the clusters revealed a
166 binding mode consistent with previously reported cryo-EM structures of CCRN-binding molecular
167 glue degraders.⁴² The glutarimide binds in the tri-tryptophan pocket of CCRN where it makes two
168 H-bonds to H378 and one H-bond to the backbone amide of S379 (Fig. 2G). The aniline ring
169 engages in an edge-to-face π interaction with H353 of CCRN, and 3-substitution orients the
170 benzylic cyclobutane ring towards the interface of CCRN and ZBTB11 ZF10, making hydrophobic
171 contact with CCRN P352. Finally, ZBTB11 residue K866 and CCRN residue E377 form a cation-
172 π -anion stacking interaction with the 4-Cl, 3-CF₃ substituted phenyl ring in JWJ degraders that
173 bridges the ternary complex.⁴³ These interactions agree with trends in the ZBTB11 degrader
174 structure activity relationships.

175 To aid interpretation of phenotypic data and confirm observed effects are on-target, we developed
176 two negative control compounds: JWJ-01-334 and JWJ-01-368. To rescue all CCRN-dependent
177 pharmacology, we synthesized JWJ-01-334, which contains an N-Methyl glutarimide that
178 prevents binding to CCRN⁴⁴, ZBTB11 ternary complex formation, and ZBTB11 degradation (Fig.
179 2D, F, Fig. S4A). To rescue ZBTB11-dependent pharmacology, we synthesized JWJ-01-368,
180 which lacks the aromatic CF₃ substituent crucial for achieving the cation- π -anion interaction that
181 promotes CCRN:JWJ:ZBTB11 ternary complex formation. In live cells, JWJ-01-368 efficiently
182 binds CCRN (Fig. S4A) but fails to promote both ZBTB11 ternary complex formation (Fig. 2F) and
183 ZBTB11 degradation (Fig. 2D).

184 We evaluated the selectivity of JWJ-01-306 and JWJ-01-368 in MIA PaCa-2 cells by global
185 proteomics analysis, following a 5 hr treatment with 10 μM compound (Fig. 2H and Fig. S5A,
186 Dataset 2). In JWJ-01-306 treated cells, we observed potent ZBTB11 downregulation, and off-
187 target degradation of three related C₂H₂ zinc finger transcription factors: ZFP91, ZBTB21 and
188 WIZ. In JWJ-01-368 treated cells, we did not observe ZBTB11 degradation, indicating JWJ-01-
189 368 is a suitable control compound for rescue of ZBTB11-specific pharmacology (Fig. S5A,

190 Dataset 2). Next, as common CRBN-recruiting molecular glue degrader off-target IKZF1 is not
191 expressed in PDAC, we performed follow-up screening in a Jurkat IKZF1-HiBiT cell line. Here,
192 JWJ-01-306 and JWJ-01-368 showed potent activity, indicating they would not be selective in
193 certain lymphoid or myeloid cell lines and should be used with caution in that context (Fig. S4G).
194 Finally, to confirm selectivity against the anti-tumor target GSPT1⁴⁵, we performed follow-up
195 screening in a Jurkat GSPT1-HiBiT cell line, where all 3 compounds were inactive (Fig. S4H).

196 To account for pharmacology that may be mediated by off-target activities of JWJ-01-306, we
197 sought to design a degradation-resistant mutant for use as a genetic control in rescue
198 experiments. From our structural models, we predicted that K866 made critical contributions to
199 ternary complex formation between CRBN and ZBTB11 ZF10 (Fig. 2G). In contrast, ZBTB11 ZF3,
200 which has a CXXCG motif but a threonine (T659) in the equivalent position to K866, was not
201 degraded as an NLuc fusion by our molecules (Fig. 2K). We performed site-directed mutagenesis
202 to generate ZBTB11^{K866T}, which ablated both ternary complex formation and degradation of full
203 length ZBTB11 by JWJ-01-306 (Fig. 2I-J). To examine if a lysine in the K866 position alone can
204 promote degradation by JWJ-01-306, we mutated ZF3 T659 to generate ZF3^{T659K}. This construct
205 remained recalcitrant to degradation, indicating that K866 is necessary but not sufficient for
206 degradation by our compounds and highlighting the importance of the additional contacts made
207 between CRBN and ZBTB11 ZF10 in the ternary complex that drive the specificity of our degrader
208 proteome-wide (Fig. 2H, K).

209 To evaluate the kinetics of JWJ-01-306 mediated degradation, we performed time-course studies
210 which indicated that the majority of the observed degradation occurs within 2 hrs (Fig. S5B). Next,
211 we evaluated the rebound rate of ZBTB11 levels following compound washout. Here, we
212 observed no rebound in ZBTB11 levels over a 24 hr time period, although we cannot completely
213 rule out insufficient washout as a confounding factor (Fig. S5C). Finally, we performed
214 pharmacokinetic analysis in C57BL/6 mice dosed via intraperitoneal (IP) injection with 10 mg/kg
215 JWJ-01-306.HCl. Here, we observed a half-life of 91 minutes and a C_{max} of 1.67 μ M (Fig. S5D,
216 Dataset 3). Plasma protein binding analysis revealed that JWJ-01-306 is over 99% protein bound
217 (Dataset 3). Taken together, these data indicate that the free drug levels of JWJ-01-306 *in vivo*
218 are unlikely to be sufficient to support ZBTB11 degradation at reasonable dosing regimens, and
219 that further chemistry optimization is needed to improve the stability and physicochemical
220 properties of JWJ-01-306. Therefore, JWJ-01-306 is best suited as a cell-based tool compound
221 for target validation and mechanistic studies.

222 **ZBTB11 degradation impairs proliferation of K-Ras inhibitor resistant PDAC cells.** To
223 determine the effectiveness of our ZBTB11 degraders for targeting K-Ras inhibitor-resistant
224 PDAC, we performed cell proliferation assays via cell counting over time (MIA PaCa-2, 14d) and
225 live cell brightfield-imaging (SUIT2, 6d) (Fig. 3A-B). As expected, proliferation of parental MIA
226 PaCa-2 cells was completely impaired by high concentrations of sotorasib. In these highly
227 glycolytic cells,⁴⁶ single agent JWJ-01-306 treatment had only mild effects on proliferation over a
228 2-week time period, comparable to the negative control JWJ-01-368 (Fig. 3A). K-Ras inhibitor-
229 resistant MIA PaCa-2 cells showed significantly impaired proliferation only in the presence of
230 sotorasib + JWJ-01-306 (Fig. 3A), but not sotorasib + JWJ-01-368. In SUIT2, proliferation of
231 parental cells was completely impaired by high concentrations (500 nM) of MRTX1133 and by
232 JWJ-01-306 as a single agent within 5 days (10 μ M, Fig. 3B). Gratifyingly, cell growth in
233 MRTX1133-resistant SUIT2 lines was blocked by JWJ-01-306 single agent treatment and
234 MRTX1133 + JWJ-01-306, but not MRTX1133 alone or MRTX1133 + JWJ-01-368 (Fig. 3B).
235 These data demonstrate that JWJ-01-306 can counter K-Ras inhibitor resistance in multiple types
236 of mutant K-Ras-driven PDAC and may also have single agent antiproliferative activity in some
237 PDAC contexts.

238 **ZBTB11 degradation reprograms cellular metabolism to reduce OXPHOS and the TCA**
239 **cycle.** We next sought to mechanistically interrogate the metabolic, transcriptomic and proteomic
240 changes induced by JWJ-01-306 in the context of K-Ras inhibitor-resistant PDAC. To identify how
241 both K-Ras inhibitors and ZBTB11 degraders affect the cellular state at phenotypically relevant
242 time points, we performed global proteomics analysis of sotorasib-resistant MIA PaCa-2 cells
243 treated with DMSO, 1 μ M sotorasib (resistant cell media), 10 μ M JWJ-01-306 and 1 μ M sotorasib
244 + 10 μ M JWJ-01-306 for 3 and 5 days (Fig. 3C, Fig. S6, Fig. S7, Dataset 4). We compared the
245 proteomic changes between treatment groups and performed K-nearest neighbor clustering
246 analysis to identify protein groups with the same changes in protein abundance in response to
247 each treatment condition (Fig. 3C, Fig. S6, Dataset 4). Next, we performed gene ontology analysis
248 to identify the biological pathways enriched within each protein cluster. Proteins downregulated
249 by JWJ-01-306 treatment correspond to mitochondrial, oxidative phosphorylation, mitoribosome,
250 and differentiation pathways (Fig. 3C cluster 3, 7 and 9, Fig. S6 cluster 4). Protein sets primarily
251 responsive to sotorasib include upregulation of mitochondrial ATP synthesis, and changes to
252 glycine, serine, and threonine metabolism pathway proteins, consistent with the observed
253 metabolic and metabolomic differences we observed between parental and sotorasib-resistant
254 cell lines (Fig. 3C cluster 8, Fig. S6 cluster 5). Finally, clusters representing proteins that change
255 only in response to the combination treatment are enriched for nucleoside metabolism, ER
256 membrane, and gene expression (upregulated), and DNA replication (downregulated, Fig. 3C
257 cluster 4). To further elucidate the effects of ZBTB11 depletion on mitochondrial proteins, we
258 evaluated proteins downregulated in JWJ-01-306 treatment conditions and compared them to the
259 MitoCarta 3.0 database of mitochondrial proteins (Fig. S7A). We observed significant overlap
260 (592 proteins day 5, 554 proteins day 3), in each condition with mitochondrial proteins. We
261 confirmed ZBTB11 is downregulated in JWJ-01-306 treated samples (Fig. S7B) alongside a
262 subset of ZBTB11 downstream proteins (NDUFS7, NDUFA12, NDUFC2, NDUFAF1, MRPL48,
263 MRPL44, MRPL1, MRPL30, Fig S7B). K-Ras levels were also reduced in the 5 d samples in
264 response to JWJ-01-306 but not sotorasib (Fig. S7B).

265 To evaluate the impact of ZBTB11 degradation and consequent downstream proteome changes
266 on OXPHOS levels, we treated parental and sotorasib-resistant MIA PaCa-2 cells with 10 μ M
267 JWJ-01-306, JWJ-01-334 or JWJ-01-368 and performed a mitochondrial stress test at the 24 hr
268 time point (Fig. 4A, Fig. S8A). We observed significant reductions in basal and maximal oxidative
269 phosphorylation in cells treated with JWJ-01-306 but not JWJ-01-334 or JWJ-01-368. We also
270 observed changes in the metabolic index (mitoATP/glycoATP ratio) in cells treated with JWJ-01-
271 306 but not JWJ-01-334 or JWJ-01-368, reflecting the greater reduction in OXPHOS (Fig. 4B,
272 Fig. S8B). Finally, we repeated these experiments in parental and MRTX1133-resistant SUIT2
273 cells, and also observed JWJ-01-306-dependent reductions in basal, maximal, and
274 mitoATP/glycoATP ratios, that were rescued by the control compounds (Fig. 4C-D, Fig. S8D-E).
275 To confirm these effects are specific to ZBTB11 degradation, we stably expressed full length
276 ZBTB11^{WT} or ZBTB11^{K866T} in sotorasib-resistant MIA PaCa-2 cells, followed by treatment with 10
277 μ M JWJ-01-306, and performed a mitochondrial stress test after 24 hrs of drug treatment (Fig.
278 4E). We observed complete rescue of oxidative phosphorylation and restoration of the metabolic
279 index by the ZBTB11^{K866T} mutant relative to WT control (Fig. 4E-F).

280 To identify how the expression of mitoribosome and complex I genes downstream of ZBTB11 are
281 directly altered by ZBTB11 degraders to affect the observed proteomic and metabolic changes,
282 we performed qPCR in parental and sotorasib-resistant MIA PaCa-2 cells treated with 10 μ M
283 JWJ-01-306, JWJ-01-334 or JWJ-01-368 for 24 hrs. Here, we observed downregulation of
284 transcripts by JWJ-01-306 but not negative controls JWJ-01-334 or JWJ-01-368 (Fig. 4G, Fig.
285 S8C). We confirmed these results in matched experiments in parental and MRTX1133-resistant
286 SUIT2 cells (Fig. S8F-G). To confirm these effects are specific to ZBTB11 degradation, we treated

287 sotorasib-resistant MIA PaCa-2 cells that stably expressed ZBTB11^{WT} or ZBTB11^{K866T} with 10 μ M
288 JWJ-01-306 for 24 hrs and assessed levels of relevant downstream transcripts by qPCR. Here,
289 we observed complete rescue of transcript loss by the degradation-resistant ZBTB11^{K866T} mutant
290 for 7/8 downstream genes, and partial rescue of MRPL1 (Fig. 4H). Finally, we examined effects
291 of ZBTB11 degraders on ZBTB11 and K-Ras transcript levels, where we observed compensatory
292 upregulation of ZBTB11 in the presence of JWJ-01-306 but not negative controls JWJ-01-334
293 and JWJ-01-368 in parental and resistant MIA PaCa-2 cells and SUIT2 cells (Fig. S8C, F, G, H).
294 Varied effects on K-Ras transcript levels were observed, indicating that K-Ras transcription is not
295 regulated by ZBTB11 (Fig. S8C, F, G, H).

296 To identify the metabolic pathway alterations that mediate the effects of ZBTB11 degradation on
297 cellular respiration, we performed metabolomics on sotorasib-resistant MIA PaCa-2 cells treated
298 with 10 μ M JWJ-01-306 for 24 hrs and labeled with ¹³C-glucose or ¹³C-glutamine. Metabolite set
299 enrichment analysis revealed JWJ-01-306 treatment induced changes consistent with reduced
300 OXPHOS, including in the TCA cycle and pyruvate metabolism (Fig. S9K, Dataset 5). Manual
301 inspection of metabolite abundances and mass isotopomer distributions aligned with this analysis
302 and indicated significant changes in the TCA cycle pathway. (Fig. 4I-M, Dataset 5). The cellular
303 abundance of citrate, a TCA cycle intermediate, was reduced with JWJ-01-306 treatment (Fig.
304 4I). As tumor cells utilize reductive glutamine metabolism to support various cellular processes
305 when activity of the electron transport chain (ETC) is inhibited or the TCA cycle is perturbed^{47,48},
306 we sought to determine whether ZBTB11 degradation would promote reductive glutamine
307 metabolism. We found that the labeling pattern of citrate (derived from ¹³C-glutamine) in cells
308 treated with JWJ-01-306 was altered, with an increased proportion of m+3 and m+5 isotopomers,
309 indicative of increased reductive carboxylation of glutamine-derived α -ketoglutarate (Fig. 4I).
310 Consistent with these results, we also observed JWJ-01-306-dependent increases in aspartate,
311 malate and fumarate m+3 isotopomers indicative of reductive glutamine metabolism (Fig. 4J-K,
312 Dataset 5). Furthermore, shifts in TCA substrate abundances (Fig. 4I-4L) and the α -
313 ketoglutarate/citrate ratio (Fig. 4M) were in agreement with previous observations in cells with
314 perturbed mitochondrial respiration^{49,50}. Taken together, these data demonstrate that JWJ-01-306
315 treatment impairs the ETC and disrupts normal flux through the TCA cycle.

316 **ZBTB11 degraders show reduced neurotoxicity compared to complex I inhibitors.** Having
317 established the mechanism-of-action of JWJ-01-306, we next sought to compare ZBTB11
318 degradation to complex I inhibition in human models of neuronal health. The primary safety liability
319 of OXPHOS-targeting drugs are toxic effects on neurons, which rely heavily on mitochondrial
320 metabolism to sustain their bioenergetic needs.²⁷ These effects often go unnoticed in murine
321 studies, due to species differences between the human and murine nervous system, and
322 challenges with accurately measuring neuropathy in mice.⁵¹ Furthermore, molecular glue
323 degraders often have different target profiles in murine and human systems due to sequence
324 differences in both CCRN and the targets that alter the induced protein-protein interaction
325 interface⁵²⁻⁵⁴. To overcome these limitations and provide an early readout of the propensity of our
326 ZBTB11 degraders to cause neuropathy, we profiled the neurotoxicity of ZBTB11 degraders using
327 a suite of assays to monitor neuronal viability, morphology, and mitochondrial function in human
328 induced pluripotent stem cell (hiPSC)-derived neurons.⁵⁵⁻⁵⁸ We found that hiPSC-derived neurons
329 exposed to 1 μ M IACS-010759 for 24 hrs exhibit significantly decreased mitochondrial membrane
330 potential (MMP) and increased reactive oxygen species (ROS), consistent with inhibition of
331 mitochondrial complex I and reported adverse events in clinical trials²⁷ (Fig. 5A). Following
332 treatment with 1 μ M IACS-010759 for 72 hrs, neurite length and neuronal survival were also
333 decreased (Fig. 5B). In contrast, 1 μ M JWJ-01-306 showed minimal effects on all phenotypes
334 assayed (Fig. 5A-B). Together, these results show our panel accurately identifies neurotoxic

335 compounds targeting mitochondrial function and demonstrate that ZBTB11 degradation has
336 reduced acute neuronal toxicity *in vitro* relative to complex I inhibition.

337 **ZBTB11 degraders deepen the response to K-Ras inhibition in PDAC patient-derived**
338 **organoids.** To validate ZBTB11 degrader co-treatment as a potential therapeutic strategy in a
339 more clinically relevant context, we turned to patient-derived organoid models of K-Ras^{G12D} driven
340 PDAC⁵⁹. Personalized tumor drug sensitivity profiling using these models was shown to correlate
341 with patient-responses, and their predictive value is currently being assessed in a clinical trial
342 (NCT04469556). As MRTX1133 is still being evaluated in early phase clinical trials, no
343 MRTX1133-resistant patient-derived organoids are available. We therefore sought to evaluate if
344 JWJ-01-306 could deepen the response to MRTX1133 as a combination therapy in organoids
345 derived from tumor samples from both a chemotherapy-naive patient (hF44) and a highly
346 pretreated multi-drug resistant patient (hM1E, Fig. 5C). We treated organoids with DMSO, JWJ-
347 01-306 (1 μ M), MRTX1133 (100 nM), or JWJ-01-306 (1 μ M) + MRTX1133 (100 nM) combination
348 and monitored cell proliferation by brightfield imaging over 7 d (Fig. 5C). Both organoids had a
349 partial response to MRTX1133, and greater anti-proliferative effects were achieved by combining
350 treatment with JWJ-01-306, indicating that enhanced responses to K-Ras inhibitors can be
351 accomplished by preemptive blockade of metabolic escape pathways. Together, these
352 experiments establish ZBTB11 degradation as an attractive therapeutic strategy to combat the
353 aberrant metabolic switch to OXPHOS that drives resistance to K-Ras inhibitors.

354

355 DISCUSSION

356 In this manuscript, we disclose molecular glue degraders of the transcription factor ZBTB11. By
357 generating a comprehensive set of chemical and genetic tools we identified ZBTB11-governed
358 metabolic networks in human PDAC. In contrast to existing OXPHOS inhibitors, most of which
359 are thought to target complex I-V enzymatic activity, JWJ-01-306 directly targets the
360 transcriptional upregulation of OXPHOS genes associated with cancer drug resistance. We
361 demonstrate that pharmacological degradation of ZBTB11 counters this metabolic
362 reprogramming associated with acquired resistance to K-Ras inhibitors in multiple *ex vivo* models
363 of PDAC, identifying ZBTB11 as a druggable therapeutic vulnerability in PDAC.

364 A major limitation for targeting aberrant OXPHOS are the neurotoxic side effects of complex I
365 inhibition, observed as on-target adverse events in clinical trials and in follow-up murine studies.²⁷
366 Using human iPSC-derived neuronal models, we demonstrated that ZBTB11 degradation had
367 minimal effects on neuronal viability and function at phenotypically relevant time points (3d), in
368 contrast to complex I inhibitor IACS-010759. While comprehensive studies in *in vivo* mammalian
369 models at extended time points will be critical for establishing the preclinical therapeutic window
370 of ZBTB11 degradation in PDAC, our work marks a critical milestone by identifying a
371 mechanistically orthogonal therapeutic strategy for targeting high OXPHOS cancer states.

372 Our patient-derived organoid study demonstrated that concurrent K-Ras and ZBTB11 blockade
373 deepens responses to K-Ras^{G12D} inhibition in PDAC organoids that had not been previously
374 treated with MRTX1133, including in the multi-drug resistant PDAC line hM1E. ZBTB11
375 degradation may therefore have applications in other cancers that upregulate OXPHOS to drive
376 resistance to therapeutic interventions, including chemotherapies⁶⁰⁻⁶², anti-angiogenic
377 therapies⁶³, and targeted therapies such as inhibition of BCL2⁶⁴, tyrosine kinases⁶⁵, and BRAF⁶⁶.
378 We anticipate that our suite of chemical and genetic tools will accelerate efforts to map ZBTB11
379 sensitive cancer cell states and identify additional tumor types where ZBTB11 depletion can
380 address cancer drug resistance.

381 **ACKNOWLEDGEMENTS**

382 N.L.T. was supported by the NSF Graduate Research Fellowship (DGE-2038238) and the
383 NIH/NCI Cancer Cell Signaling & Communication Training Grant (T32CA009523). G.E.G. was
384 supported by an NIH Molecular Biophysics Training Grant (T32GM139795). Research reported
385 in this publication was supported by the NCI Cancer Center Support Grant P30 CA030199.
386 K.C.M.G., H.T. and A.M.L. were supported by a grant from The Lustgarten Foundation and the
387 Research for a Cure of Pancreatic Cancer fund. We would like to acknowledge support from the
388 UCSD BMPMSF Proteomics Core, and the SBP Proteomics, Cancer Metabolism, and Functional
389 Genomics Core Facilities. We would like to acknowledge Nathanael Gray for providing the CRBN-
390 targeting molecular glue screening library.

391 **AUTHOR CONTRIBUTIONS**

392 N.L.T. performed Seahorse, RT-qPCR, HiBiT and NanoLuc luminescence assays, NanoBRET
393 ternary complex assays, trypan blue exclusion, computational modeling, generated inducible
394 CRISPRi cell lines, and prepared samples for proteomics and metabolomics studies. N.L.T. and
395 M.M. conducted the proteomics experiments, performed proteomics and metabolomics analysis,
396 and prepared figures. J.W.J. designed and performed molecule synthesis. C.H. designed and
397 generated CRISPRi constructs. D.A.S. performed metabolomic studies in collaboration with
398 N.L.T. G.E.G performed CRBN target engagement assay. N.L.T and E.S.W. designed and cloned
399 DNA plasmid constructs, generated ZBTB11-HiBiT cell lines, and performed immunoblot
400 experiments. E.S.W supervised the research, performed study design and analysis, prepared
401 figures, and edited the manuscript. F.M.F. supervised the research, performed study design and
402 analysis, funding acquisition, prepared the figures, wrote the manuscript (first draft). K.C.M.G.,
403 H.T. and A.M.L. developed MRTX1133-resistant cell lines, performed bright-field proliferation
404 assays and edited the manuscript. All authors have read and approved the final manuscript.

405 **CONFLICT OF INTEREST**

406 F.M.F., E.S.W., J.W.J. and N.L.T. are inventors on a patent application relating to this work (US
407 63/515,472). F.M.F. is a scientific co-founder and equity holder in Proximity Therapeutics, and
408 was previously a scientific advisory board member (SAB) of Triana Biomedicines. F.M.F. is or
409 was recently a consultant or received speaking honoraria from Eli Lilly and Co., RA Capital, Tocris
410 BioTechne, and Plexium Inc. The Ferguson lab receives or has received research funding or
411 resources in kind from Ono Pharmaceutical Co. Ltd, Eli Lilly and Co., and Merck and Co. F.M.F.'s
412 interests have been reviewed and approved by the University of California San Diego in
413 accordance with its conflict-of-interest policies.
414

415 **REFERENCES**

416 1 National Cancer Institute, D. S. R. P.
417 2 National Cancer Institute DCCPS Surveillance Research Program. in *Underlying mortality*
418 *data provided by NCHS* (www.cdc.gov/nchs).
419 3 Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable
420 RAS: Mission possible? *Nat Rev Drug Discov* **13**, 828-851, doi:10.1038/nrd4389 (2014).
421 4 Strickler, J. H. et al. First data for sotorasib in patients with pancreatic cancer with KRAS
422 p.G12C mutation: A phase I/II study evaluating efficacy and safety. *Journal of Clinical*
423 *Oncology* **40**, 360490-360490, doi:10.1200/JCO.2022.40.36_suppl.360490 (2022).
424 5 Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is
425 the undruggable drugged? *Nat Rev Drug Discov* **19**, 533-552, doi:10.1038/s41573-020-
426 0068-6 (2020).
427 6 Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the art and
428 future trends in RAS-targeted cancer therapies. *Nat Rev Clin Oncol* **19**, 637-655,
429 doi:10.1038/s41571-022-00671-9 (2022).
430 7 Zheng, Q., Zhang, Z., Guiley, K. Z. & Shokat, K. M. Strain-release alkylation of Asp12
431 enables mutant selective targeting of K-Ras-G12D. *Nat Chem Biol*, doi:10.1038/s41589-
432 024-01565-w (2024).
433 8 Zhang, Z., Morstein, J., Ecker, A. K., Guiley, K. Z. & Shokat, K. M. Chemosselective
434 Covalent Modification of K-Ras(G12R) with a Small Molecule Electrophile. *J Am Chem*
435 *Soc* **144**, 15916-15921, doi:10.1021/jacs.2c05377 (2022).
436 9 Zhang, Z., Guiley, K. Z. & Shokat, K. M. Chemical acylation of an acquired serine
437 suppresses oncogenic signaling of K-Ras(G12S). *Nat Chem Biol* **18**, 1177-1183,
438 doi:10.1038/s41589-022-01065-9 (2022).
439 10 Skoulidis, F. et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. *New England*
440 *Journal of Medicine* **384**, 2371-2381, doi:10.1056/NEJMoa2103695 (2021).
441 11 Riely, G. J. et al. 99O_PR KRYSTAL-1: Activity and preliminary pharmacodynamic (PD)
442 analysis of adagrasib (MRTX849) in patients (Pts) with advanced non-small cell
443 lung cancer (NSCLC) harboring KRASG12C mutation. *Journal of Thoracic Oncology* **16**,
444 S751-S752, doi:10.1016/S1556-0864(21)01941-9 (2021).
445 12 Strickler, J. H. et al. Sotorasib in KRAS p.G12C-Mutated Advanced Pancreatic Cancer.
446 *New England Journal of Medicine* **388**, 33-43, doi:10.1056/NEJMoa2208470 (2022).
447 13 Zhao, Y. et al. Diverse alterations associated with resistance to KRAS(G12C) inhibition.
448 *Nature* **599**, 679-683, doi:10.1038/s41586-021-04065-2 (2021).
449 14 Gulay, K. C. M. et al. Dual Inhibition of KRASG12D and Pan-ERBB Is Synergistic in
450 Pancreatic Ductal Adenocarcinoma. *Cancer Res* **83**, 3001-3012, doi:10.1158/0008-
451 5472.CAN-23-1313 (2023).
452 15 Awad, M. M. et al. Acquired Resistance to KRAS(G12C) Inhibition in Cancer. *N Engl J*
453 *Med* **384**, 2382-2393, doi:10.1056/NEJMoa2105281 (2021).
454 16 Tanaka, N. et al. Clinical Acquired Resistance to KRASG12C Inhibition through a Novel
455 KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK
456 Reactivation. *Cancer Discovery* **11**, 1913-1922, doi:10.1158/2159-8290.Cd-21-0365
457 (2021).
458 17 Brown, W. S. et al. Overcoming Adaptive Resistance to KRAS and MEK Inhibitors by Co-
459 targeting mTORC1/2 Complexes in Pancreatic Cancer. *Cell Rep Med* **1**, 100131,
460 doi:10.1016/j.xcrm.2020.100131 (2020).
461 18 Muzumdar, M. D. et al. Survival of pancreatic cancer cells lacking KRAS function. *Nat*
462 *Commun* **8**, 1090, doi:10.1038/s41467-017-00942-5 (2017).
463 19 Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation
464 of nucleotide synthesis. *Nat Commun* **9**, 4945, doi:10.1038/s41467-018-07472-8 (2018).

465 20 Wasko, U. N. *et al.* Tumor-selective activity of RAS-GTP inhibition in pancreatic cancer. *Nature*, doi:10.1038/s41586-024-07379-z (2024).

466 21 Viale, A. *et al.* Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. *Nature* **514**, 628-632, doi:10.1038/nature13611 (2014).

467 22 Santana-Codina, N. *et al.* Defining and Targeting Adaptations to Oncogenic KRAS(G12C) Inhibition Using Quantitative Temporal Proteomics. *Cell Rep* **30**, 4584-4599 e4584, doi:10.1016/j.celrep.2020.03.021 (2020).

468 23 Morrish, F. & Hockenberry, D. MYC and mitochondrial biogenesis. *Cold Spring Harb Perspect Med* **4**, doi:10.1101/cshperspect.a014225 (2014).

469 24 Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. *Biochem J* **462**, 475-487, doi:10.1042/BJ20140620 (2014).

470 25 Betarbet, R. *et al.* Chronic systemic pesticide exposure reproduces features of Parkinson's disease. *Nat Neurosci* **3**, 1301-1306, doi:10.1038/81834 (2000).

471 26 Sanchez, M., Gastaldi, L., Remedi, M., Caceres, A. & Landa, C. Rotenone-induced toxicity is mediated by Rho-GTPases in hippocampal neurons. *Toxicol Sci* **104**, 352-361, doi:10.1093/toxsci/kfn092 (2008).

472 27 Yap, T. A. *et al.* Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. *Nat Med* **29**, 115-126, doi:10.1038/s41591-022-02103-8 (2023).

473 28 Arroyo, J. D. *et al.* A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. *Cell Metab* **24**, 875-885, doi:10.1016/j.cmet.2016.08.017 (2016).

474 29 Sharma, K. R., Colvis, C. M., Rodgers, G. P. & Sheeley, D. M. Illuminating the druggable genome: Pathways to progress. *Drug Discov Today* **29**, 103805, doi:10.1016/j.drudis.2023.103805 (2023).

475 30 Schneider, M. *et al.* The PROTACtable genome. *Nat Rev Drug Discov* **20**, 789-797, doi:10.1038/s41573-021-00245-x (2021).

476 31 Harrap, R. *et al.* Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. *Mol Psychiatry* **23**, 973-984, doi:10.1038/mp.2017.60 (2018).

477 32 Fattah, Z. *et al.* Biallelic missense variants in ZBTB11 can cause intellectual disability in humans. *Hum Mol Genet* **27**, 3177-3188, doi:10.1093/hmg/ddy220 (2018).

478 33 Wilson, B. C. *et al.* Intellectual disability-associated factor Zbtb11 cooperates with NRF-2/GABP to control mitochondrial function. *Nat Commun* **11**, 5469, doi:10.1038/s41467-020-19205-x (2020).

479 34 Wang, T. *et al.* Identification and characterization of essential genes in the human genome. *Science* **350**, 1096-1101, doi:10.1126/science.aac7041 (2015).

480 35 Blomen, V. A. *et al.* Gene essentiality and synthetic lethality in haploid human cells. *Science* **350**, 1092-1096, doi:10.1126/science.aac7557 (2015).

481 36 Tsherniak, A. *et al.* Defining a Cancer Dependency Map. *Cell* **170**, 564-576 e516, doi:10.1016/j.cell.2017.06.010 (2017).

482 37 Terman, A., Kurz, T., Navratil, M., Arriaga, E. A. & Brunk, U. T. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. *Antioxid Redox Signal* **12**, 503-535, doi:10.1089/ars.2009.2598 (2010).

483 38 Sievers, Q. L. *et al.* Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. *Science* **362**, doi:10.1126/science.aat0572 (2018).

484 39 Tran, N. L., Leconte, G. A. & Ferguson, F. M. Targeted Protein Degradation: Design Considerations for PROTAC Development. *Curr Protoc* **2**, e611, doi:10.1002/cpz1.611 (2022).

515 40 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
516 583-589, doi:10.1038/s41586-021-03819-2 (2021).

517 41 Drake, Z. C., Seffernick, J. T. & Lindert, S. Protein complex prediction using Rosetta,
518 AlphaFold, and mass spectrometry covalent labeling. *Nat Commun* **13**, 7846,
519 doi:10.1038/s41467-022-35593-8 (2022).

520 42 Watson, E. R. *et al.* Molecular glue CELMoD compounds are regulators of cereblon
521 conformation. *Science* **378**, 549-553, doi:10.1126/science.add7574 (2022).

522 43 Kim, D., Lee, E. C., Kim, K. S. & Tarakeshwar, P. Cation-pi-anion interaction: a theoretical
523 investigation of the role of induction energies. *J Phys Chem A* **111**, 7980-7986,
524 doi:10.1021/jp073337x (2007).

525 44 Mahan, S. D., Riching, K. M., Urh, M. & Daniels, D. L. Kinetic Detection of
526 E3:PROTAC:Target Ternary Complexes Using NanoBRET Technology in Live Cells.
527 *Methods Mol Biol* **2365**, 151-171, doi:10.1007/978-1-0716-1665-9_8 (2021).

528 45 Matyskiela, M. E. *et al.* A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN)
529 ubiquitin ligase. *Nature* **535**, 252-257, doi:10.1038/nature18611 (2016).

530 46 Cheng, G. *et al.* Profiling and targeting of cellular bioenergetics: inhibition of pancreatic
531 cancer cell proliferation. *Br J Cancer* **111**, 85-93, doi:10.1038/bjc.2014.272 (2014).

532 47 Mullen, A. R. *et al.* Reductive carboxylation supports growth in tumour cells with defective
533 mitochondria. *Nature* **481**, 385-388, doi:10.1038/nature10642 (2011).

534 48 Metallo, C. M. *et al.* Reductive glutamine metabolism by IDH1 mediates lipogenesis under
535 hypoxia. *Nature* **481**, 380-384, doi:10.1038/nature10602 (2011).

536 49 Mullen, A. R. *et al.* Oxidation of alpha-ketoglutarate is required for reductive carboxylation
537 in cancer cells with mitochondrial defects. *Cell Rep* **7**, 1679-1690,
538 doi:10.1016/j.celrep.2014.04.037 (2014).

539 50 Fendt, S. M. *et al.* Reductive glutamine metabolism is a function of the alpha-ketoglutarate
540 to citrate ratio in cells. *Nat Commun* **4**, 2236, doi:10.1038/ncomms3236 (2013).

541 51 Tsuji, A., Akao, T., Masuya, T., Murai, M. & Miyoshi, H. IACS-010759, a potent inhibitor of
542 glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I
543 through a unique mechanism. *J Biol Chem* **295**, 7481-7491,
544 doi:10.1074/jbc.RA120.013366 (2020).

545 52 Kronke, J. *et al.* Lenalidomide induces ubiquitination and degradation of CK1alpha in
546 del(5q) MDS. *Nature* **523**, 183-188, doi:10.1038/nature14610 (2015).

547 53 Fink, E. C. *et al.* Crbn (I391V) is sufficient to confer in vivo sensitivity to thalidomide and
548 its derivatives in mice. *Blood* **132**, 1535-1544, doi:10.1182/blood-2018-05-852798 (2018).

549 54 Donovan, K. A. *et al.* Thalidomide promotes degradation of SALL4, a transcription factor
550 implicated in Duane Radial Ray syndrome. *eLife* **7**, doi:10.7554/eLife.38430 (2018).

551 55 Pre, D., Wooten, A. T., Zhou, H., Neil, A. & Bang, A. G. Assaying Chemical Long-Term
552 Potentiation in Human iPSC-Derived Neuronal Networks. *Methods Mol Biol* **2683**, 275-
553 289, doi:10.1007/978-1-0716-3287-1_22 (2023).

554 56 Pre, D. *et al.* Development of a platform to investigate long-term potentiation in human
555 iPSC-derived neuronal networks. *Stem Cell Reports* **17**, 2141-2155,
556 doi:10.1016/j.stemcr.2022.07.012 (2022).

557 57 Puppo, F., Pre, D., Bang, A. G. & Silva, G. A. Super-Selective Reconstruction of Causal
558 and Direct Connectivity With Application to in vitro iPSC Neuronal Networks. *Front
559 Neurosci* **15**, 647877, doi:10.3389/fnins.2021.647877 (2021).

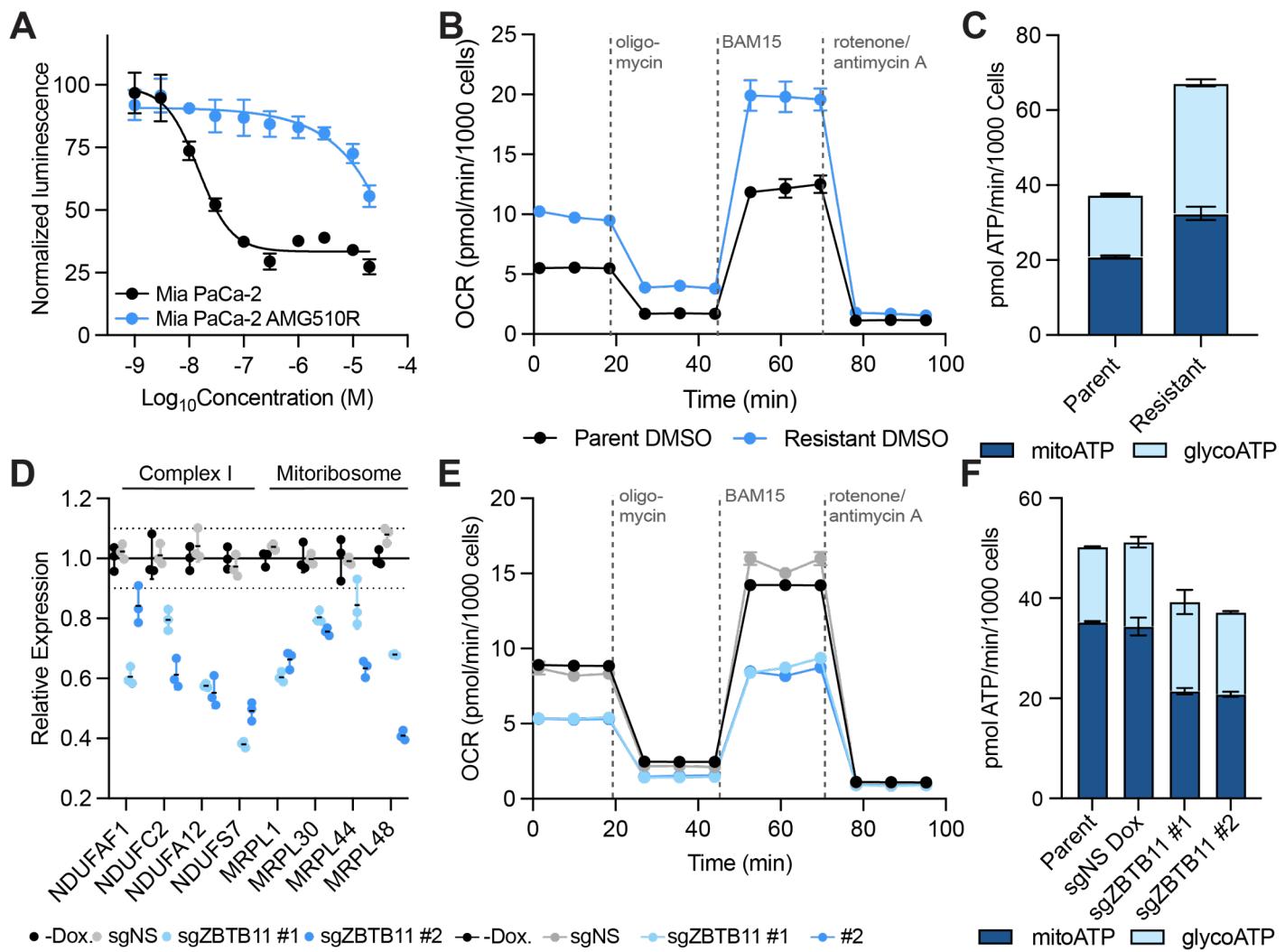
560 58 Sherman, S. P. & Bang, A. G. High-throughput screen for compounds that modulate
561 neurite growth of human induced pluripotent stem cell-derived neurons. *Dis Model Mech*
562 **11**, doi:10.1242/dmm.031906 (2018).

563 59 Tiriac, H. *et al.* Organoid Profiling Identifies Common Responders to Chemotherapy in
564 Pancreatic Cancer. *Cancer Discov* **8**, 1112-1129, doi:10.1158/2159-8290.CD-18-0349
565 (2018).

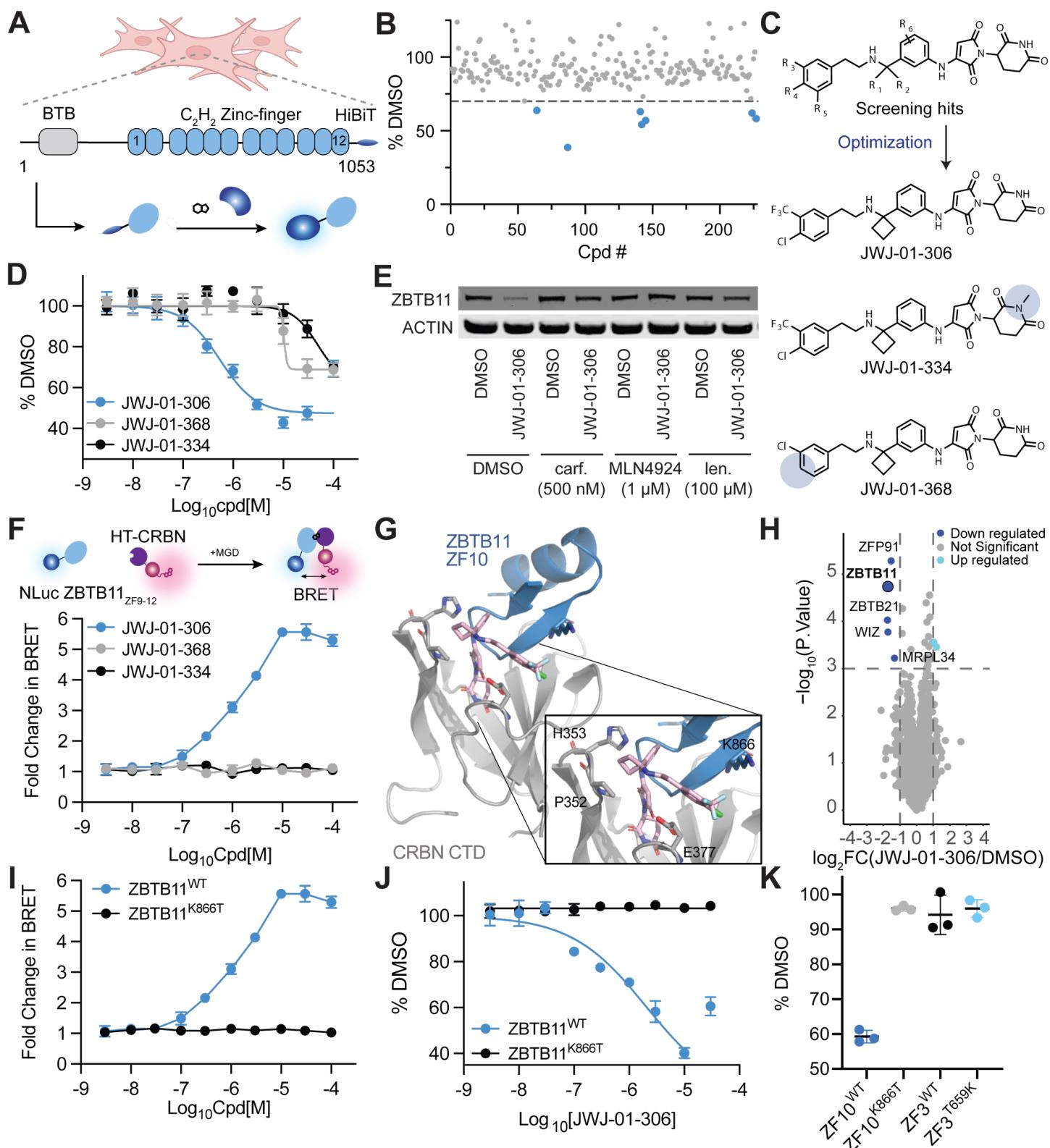
566 60 Farge, T. *et al.* Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not
567 Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. *Cancer Discov* **7**,
568 716-735, doi:10.1158/2159-8290.CD-16-0441 (2017).

569 61 Henkenius, K. *et al.* Maintenance of cellular respiration indicates drug resistance in acute
570 myeloid leukemia. *Leuk Res* **62**, 56-63, doi:10.1016/j.leukres.2017.09.021 (2017).

571 62 Lee, K. M. *et al.* MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast
572 Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. *Cell Metab*
573 **26**, 633-647 e637, doi:10.1016/j.cmet.2017.09.009 (2017).


574 63 Navarro, P. *et al.* Targeting Tumor Mitochondrial Metabolism Overcomes Resistance to
575 Antiangiogenics. *Cell Rep* **15**, 2705-2718, doi:10.1016/j.celrep.2016.05.052 (2016).

576 64 Guieze, R. *et al.* Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition
577 in Lymphoid Malignancies. *Cancer Cell* **36**, 369-384 e313, doi:10.1016/j.ccr.2019.08.005
578 (2019).


579 65 Kuntz, E. M. *et al.* Targeting mitochondrial oxidative phosphorylation eradicates therapy-
580 resistant chronic myeloid leukemia stem cells. *Nat Med* **23**, 1234-1240,
581 doi:10.1038/nm.4399 (2017).

582 66 Haq, R. *et al.* Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF.
583 *Cancer Cell* **23**, 302-315, doi:10.1016/j.ccr.2013.02.003 (2013).

584

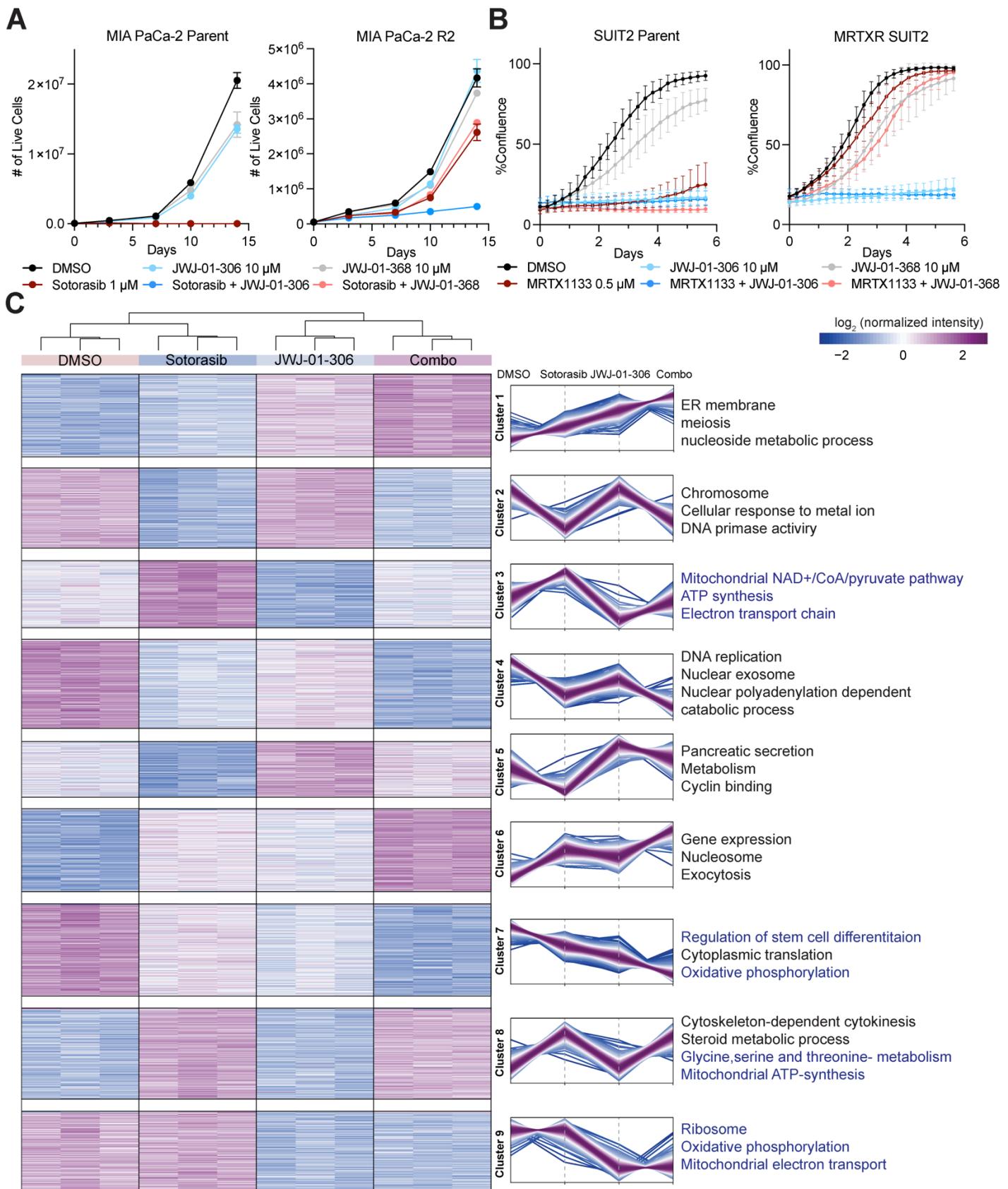
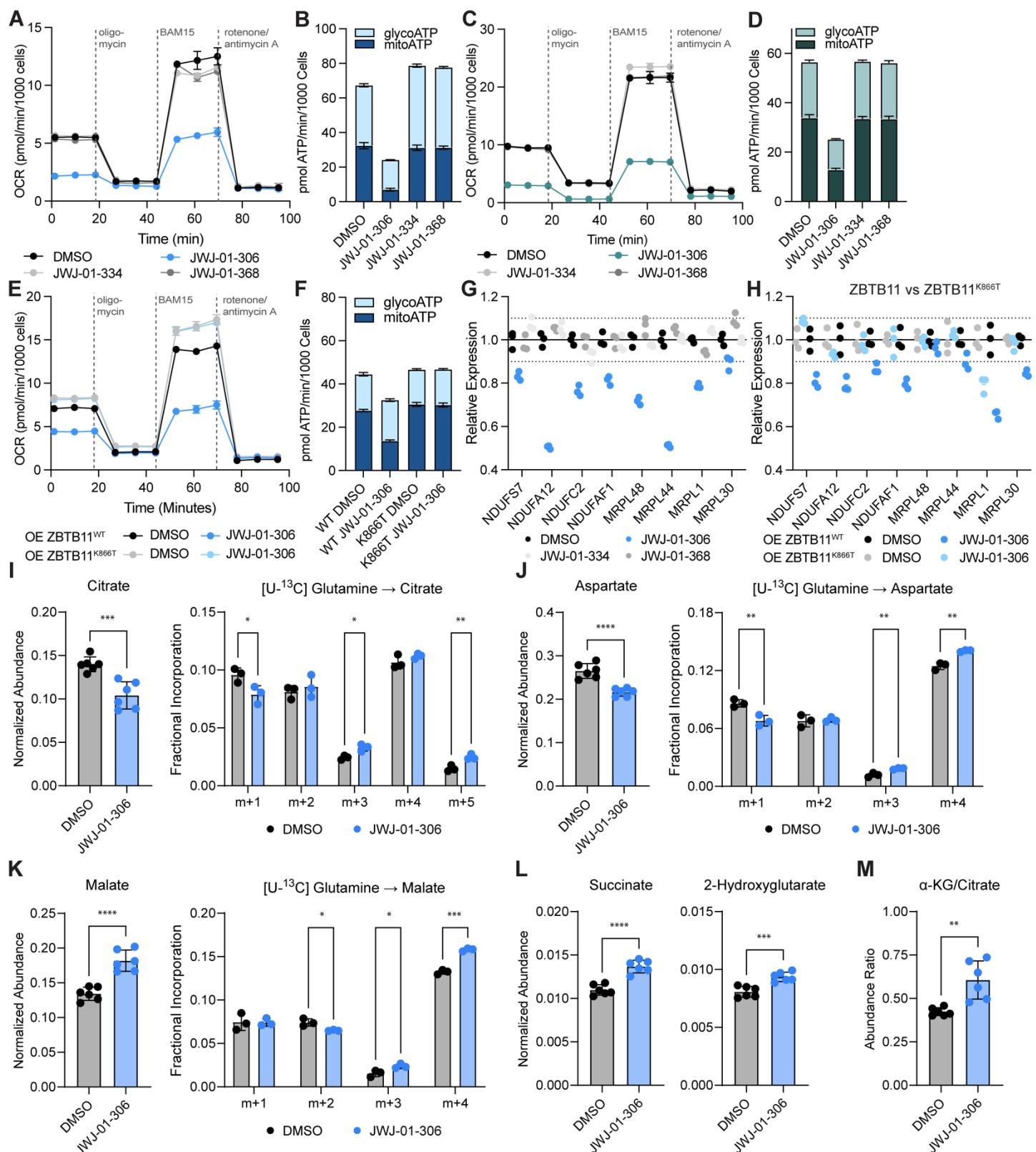
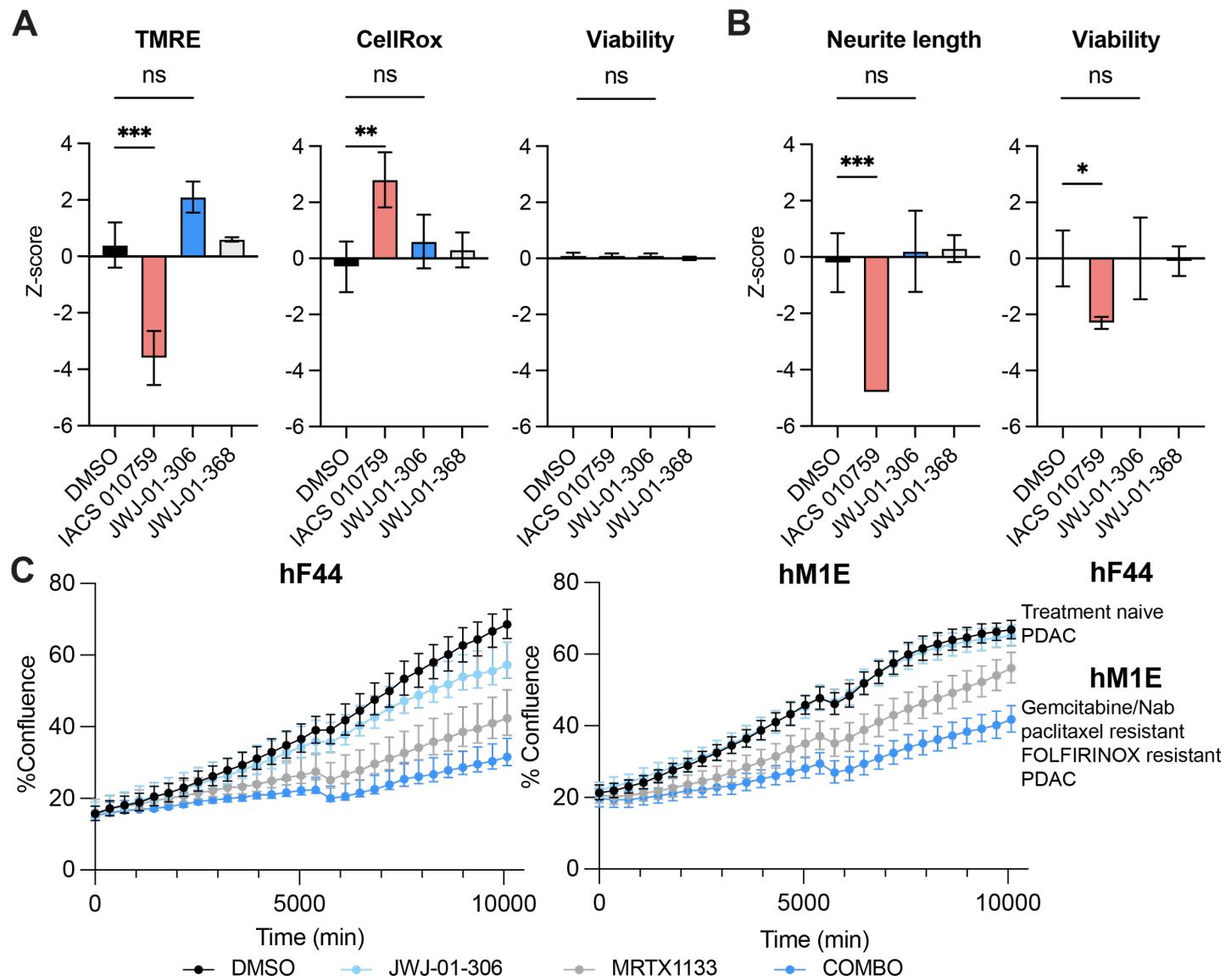


Figure 1 | OXPHOS is upregulated in K-Ras inhibitor resistant PDAC cells, and countered by ZBTB11 knockdown. A. Sotorasib/AMG-510-resistant MIA PaCa-2 cells are 100-fold less sensitive to sotorasib/AMG-510 than parental MIA PaCa-2 cells. Cells were treated with the indicated dose of sotorasib for 72 hrs, and viability was evaluated by CellTiterGlo®. Data is depicted as the average +/- standard deviation (S.D.) of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment controls. See also Fig. S1A. B. Sotorasib-resistant MIA PaCa-2 cells perform higher basal and maximal levels of OXPHOS than parental MIA PaCa-2 cells. C. Sotorasib-resistant MIA PaCa-2 cells are more energetic than parental MIA PaCa-2 cells. D. Expression of genes regulated by ZBTB11 decreases following CRISPRi-mediated knockdown. Cells were treated with 500 ng/ml of doxycycline for 72 hrs to induce Cas9 expression, and mRNA levels were quantified by RT-qPCR. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to H₂O vehicle treatment controls. See also Fig. S2. E. ZBTB11 knockdown reduces rates of OXPHOS. Cells were treated with 500 ng/ml of doxycycline for 72 hrs to induce Cas9 expression. F. ZBTB11 knockdown reduces ATP production by OXPHOS. B-C, E-F. Cellular respiration rates were evaluated in a mitochondrial stress test using a Seahorse analyzer. Oxygen Consumption Rates (OCR) and Extracellular Acidification Rates (ECAR) from the mitochondrial stress test were used to calculate ATP production rates. Data is depicted as the average +/- S.D. of $n = 2$ biological replicates with $n = 3$ technical replicates each.


Figure 2 | Development of a ZBTB11 molecular glue degrader. A. Depiction of ZBTB11 domains and the ZBTB11-HiBiT assay. B. Screening of glutarimide-containing analogues in the ZBTB11-HiBiT assay identifies candidate ZBTB11 degraders. MOLT-4 ZBTB11-HiBiT knock-in cells were treated with 10 μ M compound for 8 hrs. Data is depicted as the average of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment control. C. Chemical structure of screening hits and optimized ZBTB11 degrader and negative controls. D. JWJ-01-306, but not negative controls, degrades ZBTB11-HiBiT in MIA PaCa-2 knock-in cells. Cells were treated for 5 hrs with the indicated compound. E. Mechanism-based controls rescue ZBTB11-HiBiT degradation in MIA PaCa-2 knock-in cells. Cells were pre-treated with carfilzomib, MLN4924, or lenalidomide for 1 hr prior to treatment with the indicated compound for 5 hrs. Protein levels were quantified by western blot. Depicted blots are representative of $n = 3$ independent experiments. Uncropped blots found in Source Data. F. JWJ-01-306, but not negative controls, induces CRBN:degrader:ZBTB11 complex in NanoBRET™ ternary complex assay. A MOLT-4 cell line with stable expression of the indicated constructs was generated. Cells were pre-treated with carfilzomib and the HaloTag® NanoBRET™ 618 Ligand for 1 hr prior to treatment with the indicated compound for 5 hrs. G. Computationally generated

model of the CRBN:JWJ-01-306:ZBTB11 ZF10 complex reveals binding mode and key residues for complex stabilization. Top ten scoring structure clusters found in Source Data. H. Global proteomics analysis of MIA PaCa-2 cells treated with 10 μ M JWJ-01-306 for 5 hrs. Samples were prepared as $n = 3$ biological replicates. Full datasets in Dataset 2. I. ZBTB11 K866T ablates ternary complex formation. MOLT-4 cell lines with stable expression of the indicated constructs were generated and used in the NanoBRET™ ternary complex assay. J. ZBTB11 K866T rescues JWJ-01-306-mediated degradation. MIA PaCa-2 cell lines with stable expression of the indicated constructs were generated. Cells were treated with JWJ-01-306 for 5 hrs. K. K866 is necessary but not sufficient for ZBTB11 degradation. MOLT-4 cell lines with stable expression of the indicated constructs were generated. Cells were treated with 1 μ M screening hit compound ALV-05-184 for 5 hrs. D, F, I-K. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment control.


Figure 3 | JWJ-01-306 combination treatment overcomes acquired resistance to K-Ras inhibitors in PDAC via metabolic pathway reprogramming. A. JWJ-01-306 synergizes with sotorasib to inhibit proliferation of sotorasib-resistant MIA PaCa-2 cells. Cells were treated with the indicated compounds and cell numbers were measured using trypan blue exclusion. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates. B. JWJ-01-306 effectively inhibits proliferation of SUIT2 cells. Cells were treated with the indicated compounds and cell confluence was measured using a Cellcyte X live cell analyzer. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates with $n = 4$ technical replicates each. C. Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO, 1 μM sotorasib, 10 μM JWJ-01-306, or 1 μM sotorasib + 10 μM JWJ-01-306 (combo) for 72 hrs followed by global proteomics analysis, $n = 3$ biological

replicates per condition. Protein abundance changes were analyzed by one-way ANOVA test (FDR < 0.05) and clustered using K-nearest neighbors clustering. Each line within the clusters is color-coded according to its distance from the cluster center, ranging from purple (close) to light blue (far). Proteins in each cluster were then evaluated for pathway enrichment using GO and KEGG pathway analysis. Representative pathways are shown and pathways associated with ZBTB11 function are highlighted in blue text. Full datasets in Dataset 4.

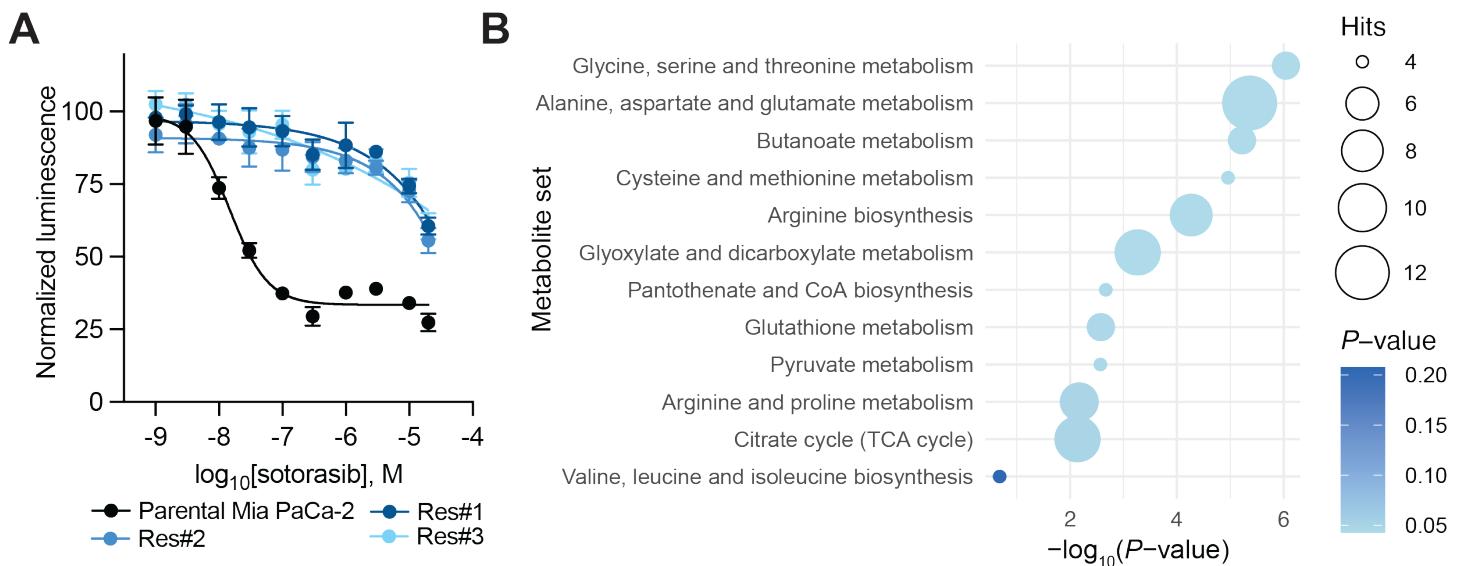


Figure 4 | Metabolic reprogramming of K-Ras inhibitor resistant PDAC cells by ZBTB11 degradation. A. ZBTB11 degradation reduces rates of OXPHOS in sotorasib-resistant MIA PaCa-2 cells. Cells were treated with 10 μ M of the indicated compound for 24 hrs. B. ZBTB11 degradation reduces ATP production by OXPHOS in sotorasib-resistant MIA PaCa-2 cells. C. ZBTB11 degradation reduces rates of OXPHOS in MRTX1133-resistant SUIT2 cells. Cells were treated with 10 μ M of the indicated compound for 24 hrs. D. ZBTB11 degradation reduces ATP production by OXPHOS in MRTX1133-resistant SUIT2 cells. E. Overexpression of ZBTB11^{WT} or ZBTB11^{K866T} rescues JWJ-01-306-mediated reduction of OXPHOS. Sotorasib-resistant MIA PaCa-2 cell lines with stable expression of NanoLuc-ZBTB11^{WT} or NanoLuc-ZBTB11^{K866T} were generated. Cells were treated with 10 μ M JWJ-01-306 for 24 hrs. F. Overexpression of ZBTB11^{WT} or ZBTB11^{K866T} rescues JWJ-01-306-mediated reduction of ATP production by OXPHOS. G. ZBTB11 degradation induces downregulation of ZBTB11-regulated genes. Sotorasib-resistant MIA PaCa-2 cells were treated with 10 μ M of the indicated compound for 24 hrs. H. Overexpression of ZBTB11^{WT} or ZBTB11^{K866T} rescues JWJ-01-306-mediated downregulation of ZBTB11-regulated genes.

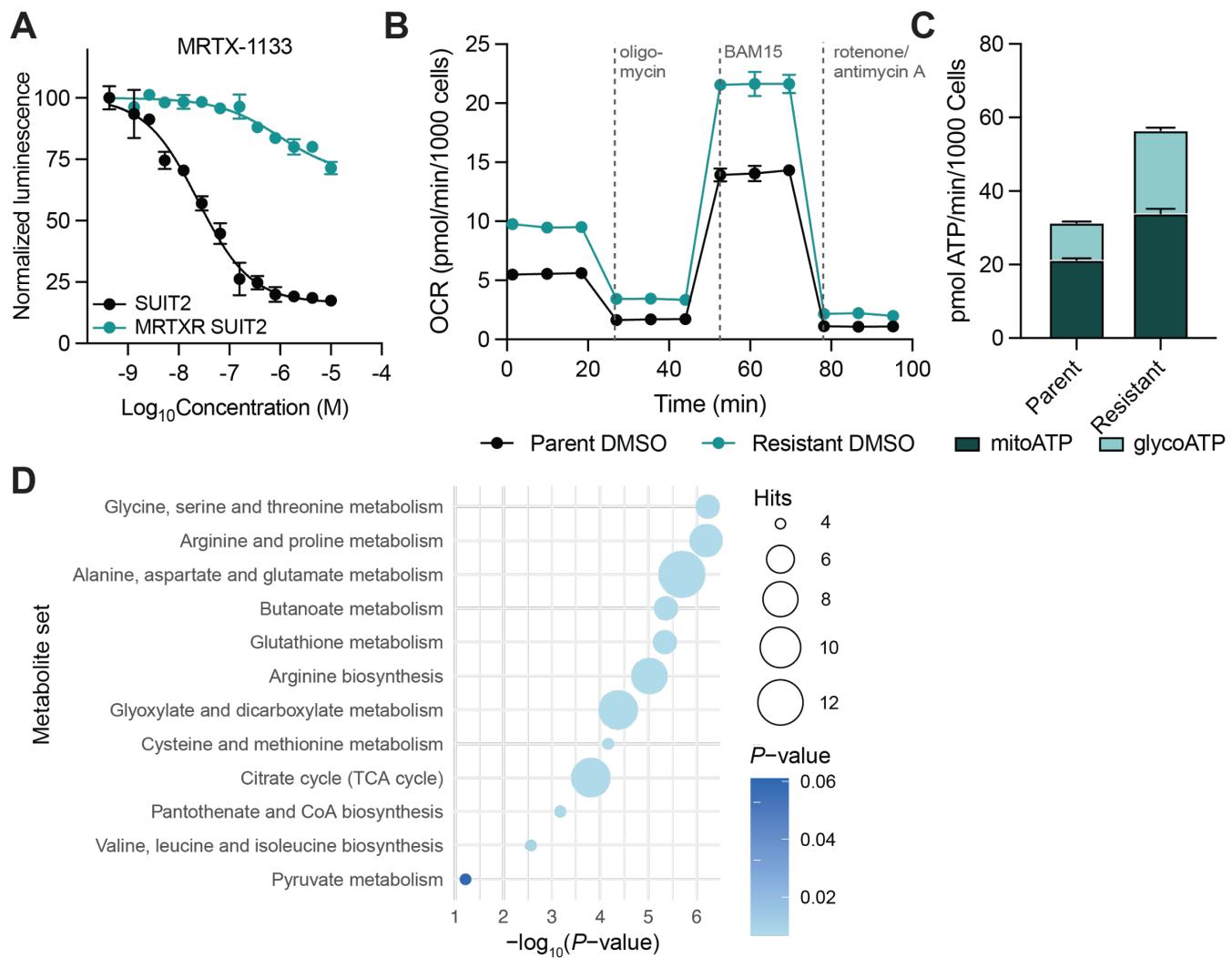
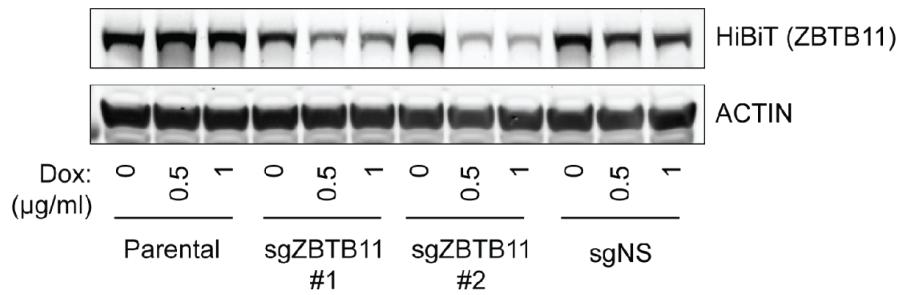
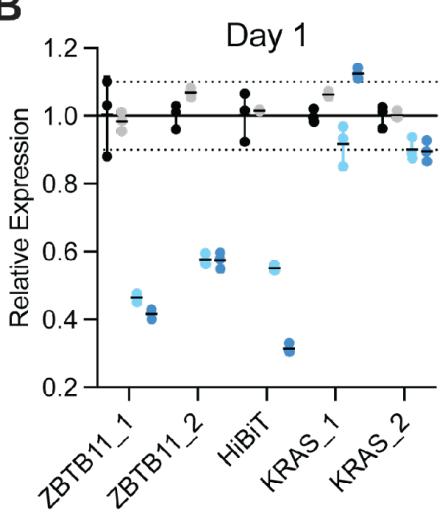

Cells were treated with 10 μ M JWJ-01-306 for 24 hrs. I-M. JWJ-01-306 disrupts TCA cycle flux and induces reductive glutamine metabolism. Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO or 10 μ M JWJ-01-306 for 24 hrs. Cells were then labeled with ^{13}C -labeled glucose or glutamine for an additional 24 hrs followed by global metabolomics analysis, $n = 3$ biological replicates per condition. A-F. Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse analyzer. OCR and ECAR from the mitochondrial stress test were used to calculate ATP production rates. A-D. Data is depicted as the average +/- S.D. of $n = 2$ biological replicates with $n = 3$ technical replicates each. E-F. Data is depicted as the average +/- S.D. of $n = 5$ biological replicates with $n = 3$ technical replicates each. G-H. mRNA levels were quantified by RT-qPCR. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment controls. I-M. Metabolite abundance data is depicted as the average +/- S.D. of $n = 6$ biological replicates (3 replicates each from ^{13}C -labeled glucose and glutamine). Mass isotopomer distribution data is depicted as the average +/- S.D. of $n = 3$ biological replicates. Significance level is marked with asterisks (two-tailed student's t-test, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).

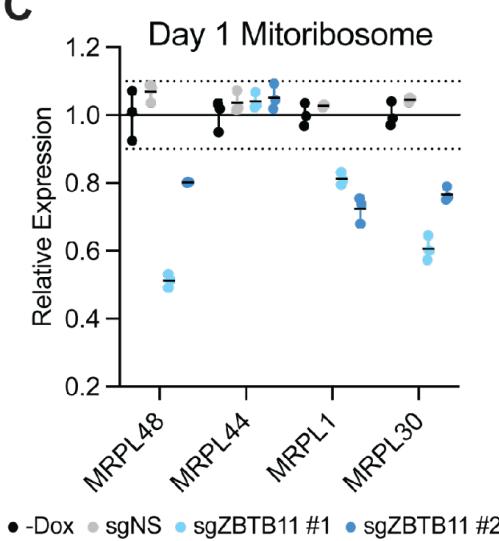
Figure 5 | ZBTB11 degradation spares neurons and deepens the response of PDAC patient-derived organoids to K-Ras inhibitors. A. Mitochondrial activity and oxidative stress assays show differential pharmacology of Complex I and ZBTB11 perturbation. hiPSC-derived neurons were treated for 24 h with DMSO, 1 μ M IACS 010759, 1 μ M JWJ-01-306 or 1 μ M JWJ-01-368. B. Neurotoxicity assays show differential pharmacology of Complex I and ZBTB11 perturbation. hiPSC-derived neurons were treated for 72 h with DMSO, 1 μ M IACS 010759, 1 μ M JWJ-01-306 or 1 μ M JWJ-01-368. C. Proliferation assays show ZBTB11 + K-Ras inhibitor combination has superior antiproliferative effects in PDAC patient-derived organoids. Cells were treated with DMSO vehicle, 1 μ M JWJ-01-306, 200 nM MRTX1133 or 1 μ M JWJ-01-306 + 200 nM MRTX1133 (COMBO) and cellular confluence observed using brightfield imaging at the indicated timepoints. A.C. Data plotted as mean +/- S.D. of $n = 3$ biological replicates.

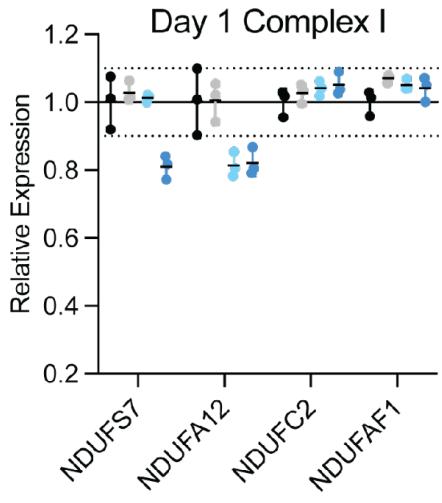


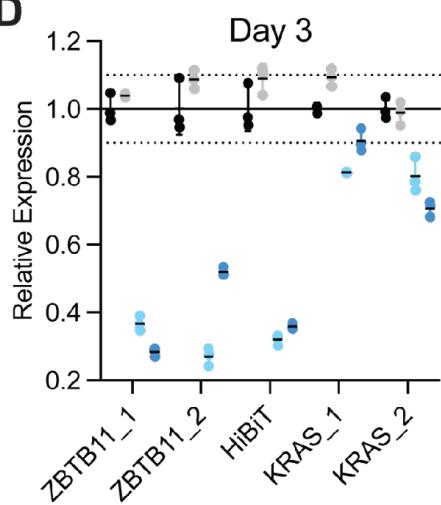
Supporting Figure 1 | Metabolomic profiling of parental and K-Ras G12C inhibitor resistant PDAC cell lines. A. Sotorasib/AMG-510-resistant MIA PaCa-2 cells are 100-fold less sensitive to sotorasib/AMG-510 than parental MIA PaCa-2 cells. Cells were treated with the indicated dose of sotorasib for 72 hrs, and viability was evaluated by CellTiterGlo®. Data is depicted as the average +/- standard deviation (S.D.) of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment controls. B. MSEA identifies amino acid metabolic pathways as major metabolic shifts between parental and sotorasib-resistant MIA PaCa-2 cells. Parental and sotorasib-resistant MIA PaCa-2 cells were labeled with ^{13}C -labeled glucose or glutamine for 24 hrs followed by global metabolomics analysis, $n = 3$ biological replicates per condition. Metabolite abundance changes were analyzed by the global test ($P < 0.05$). Metabolites were then evaluated using metabolite set enrichment analysis (MSEA) using KEGG pathways and filtered for pathways containing a minimum of four hits. Full datasets in Dataset 1.

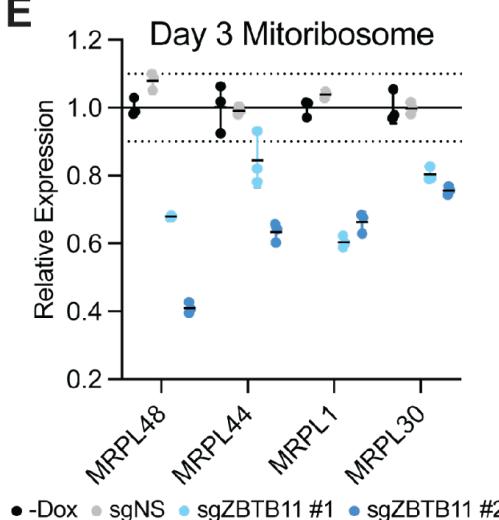


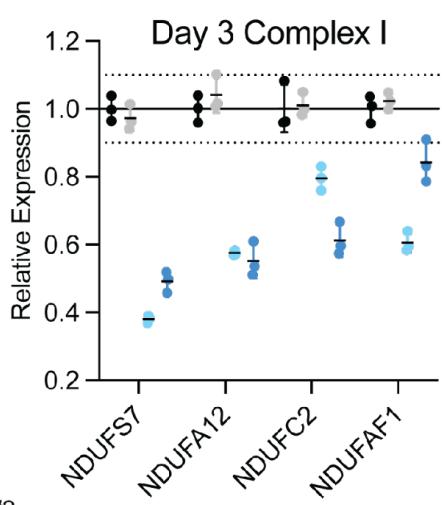
Supporting Figure 2 | Metabolic profiling of parental and K-Ras G12D inhibitor resistant PDAC cell lines. A. MRTX1133-resistant SUIT2 cells are 100-fold less sensitive to MRTX1133 than parental SUIT2 cells. Cells were treated with the indicated dose of MRTX1133 for 72 hrs, and viability was evaluated by CellTiterGlo®. Data is depicted as the average +/- standard deviation (S.D.) of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment controls. B. MRTX1133-resistant SUIT2 cells perform higher basal and maximal levels of OXPHOS than parental SUIT2 cells. C. MRTX1133-resistant SUIT2 cells are more energetic than parental SUIT2 cells. B-C. Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse analyzer. OCR and ECAR from the mitochondrial stress test were used to calculate ATP production rates. Data is depicted as the average +/- S.D. of $n = 2$ biological replicates with $n = 3$ technical replicates each. D. MSEA identifies oxidative stress and amino acid-related pathways as major metabolic shifts between parental and MRTX1133-resistant SUIT2 cells. Parental and MRTX1133-resistant SUIT2 cells were labeled with ¹³C-labeled glucose or glutamine for 24 hrs followed by global metabolomics analysis, $n = 3$ biological replicates per condition. Metabolite abundance changes were analyzed by the global test ($P < 0.05$). Metabolites were then evaluated for pathway enrichment using KEGG pathway analysis and filtered for pathways containing a minimum of four hits. Full datasets in Dataset 1.

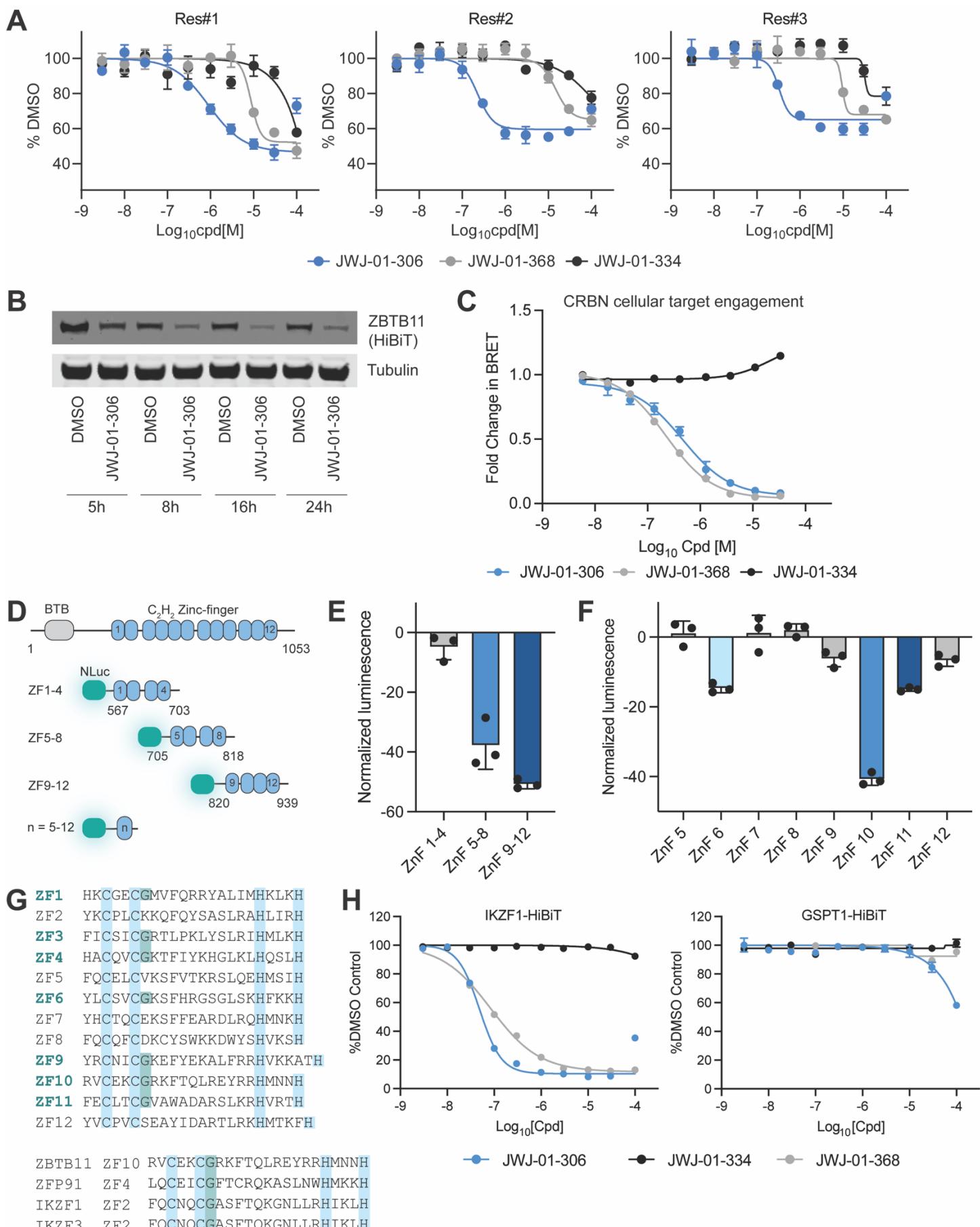

A

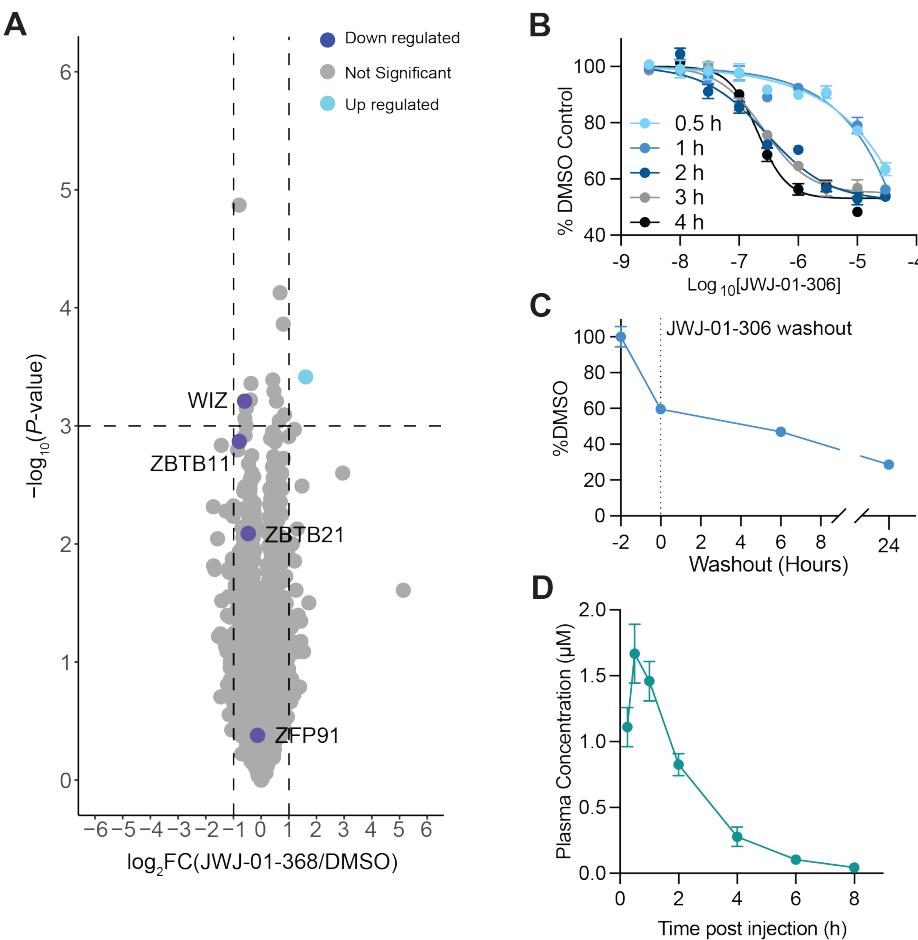

B

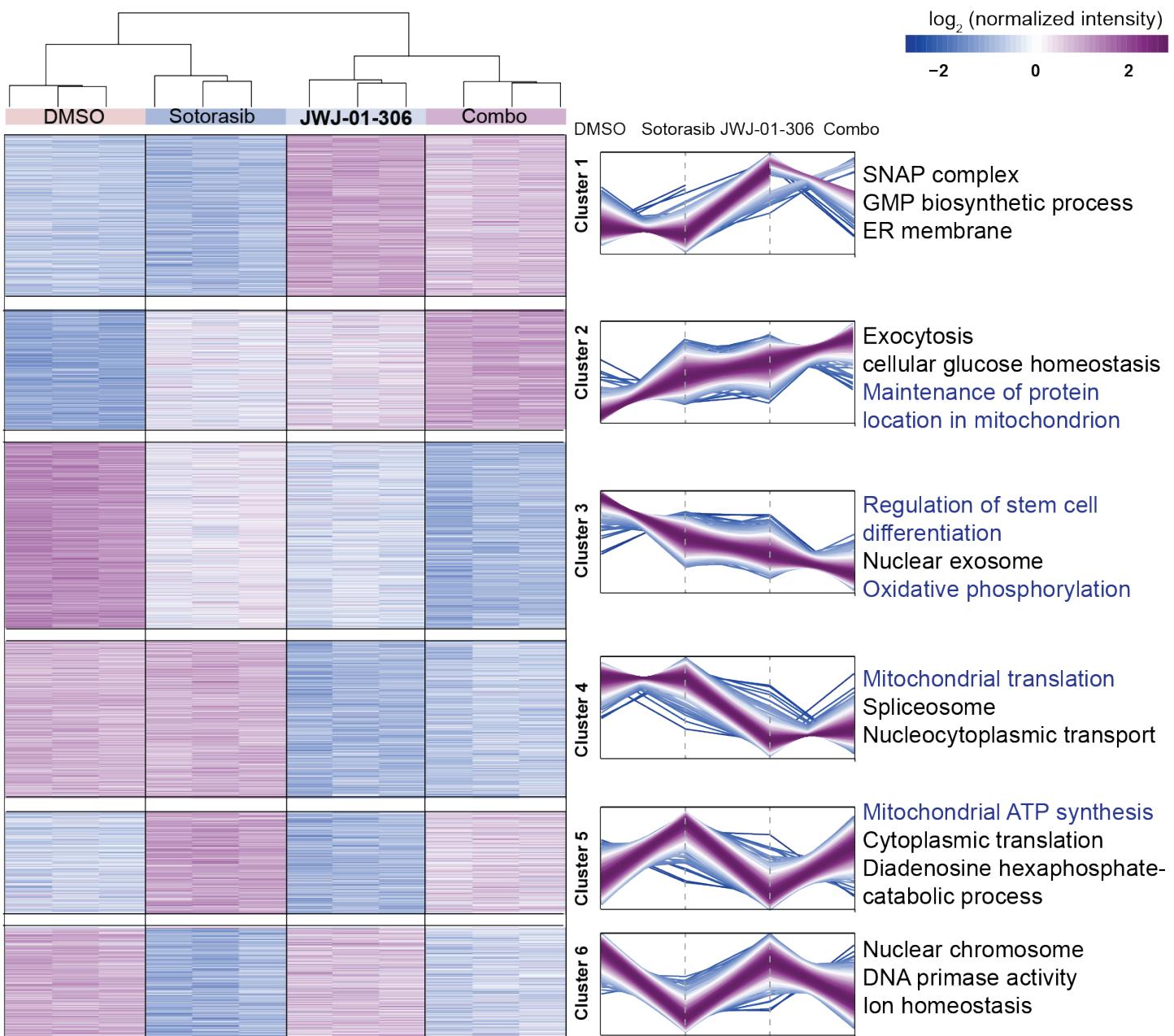

C

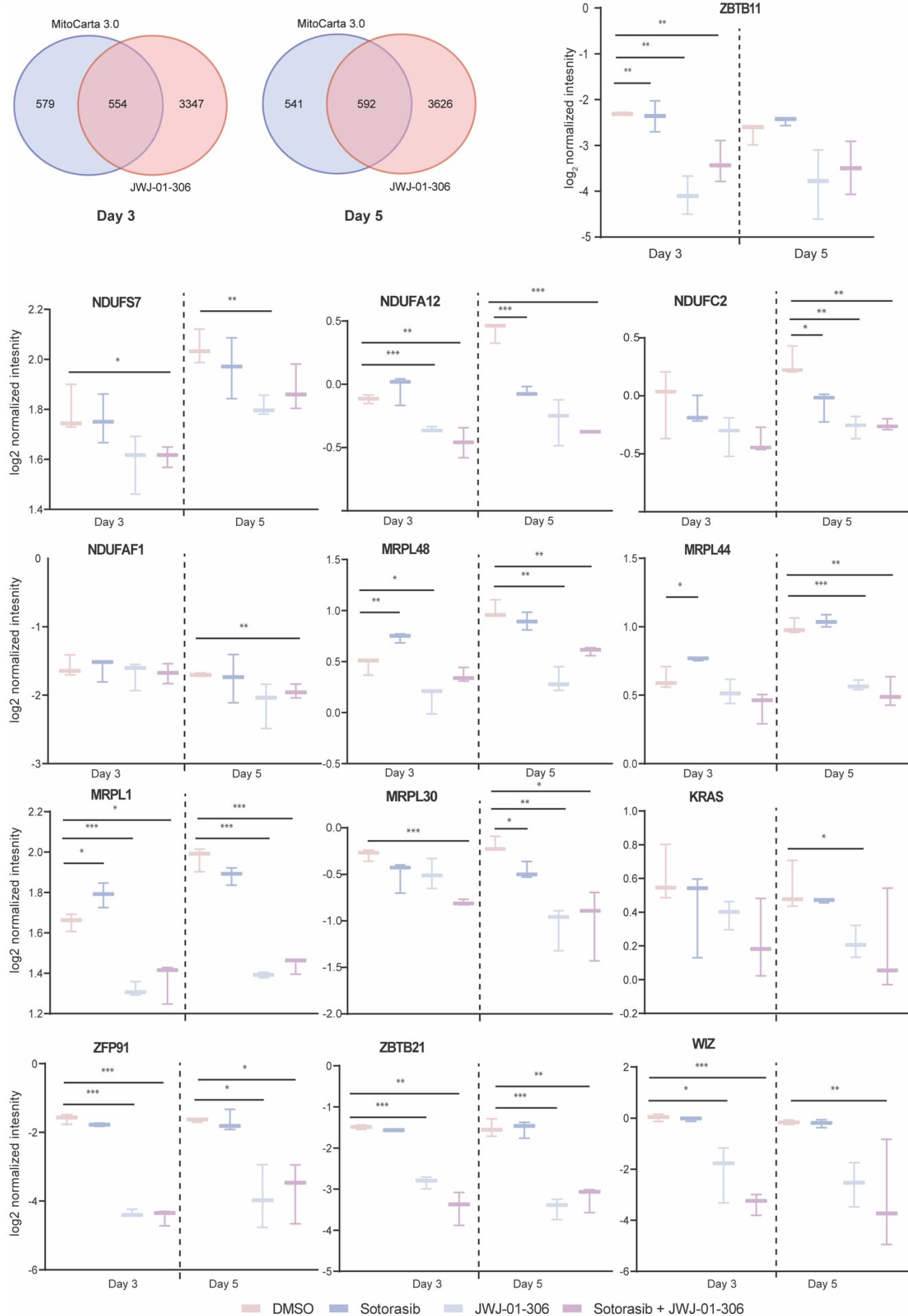

Day 1 Complex I


D

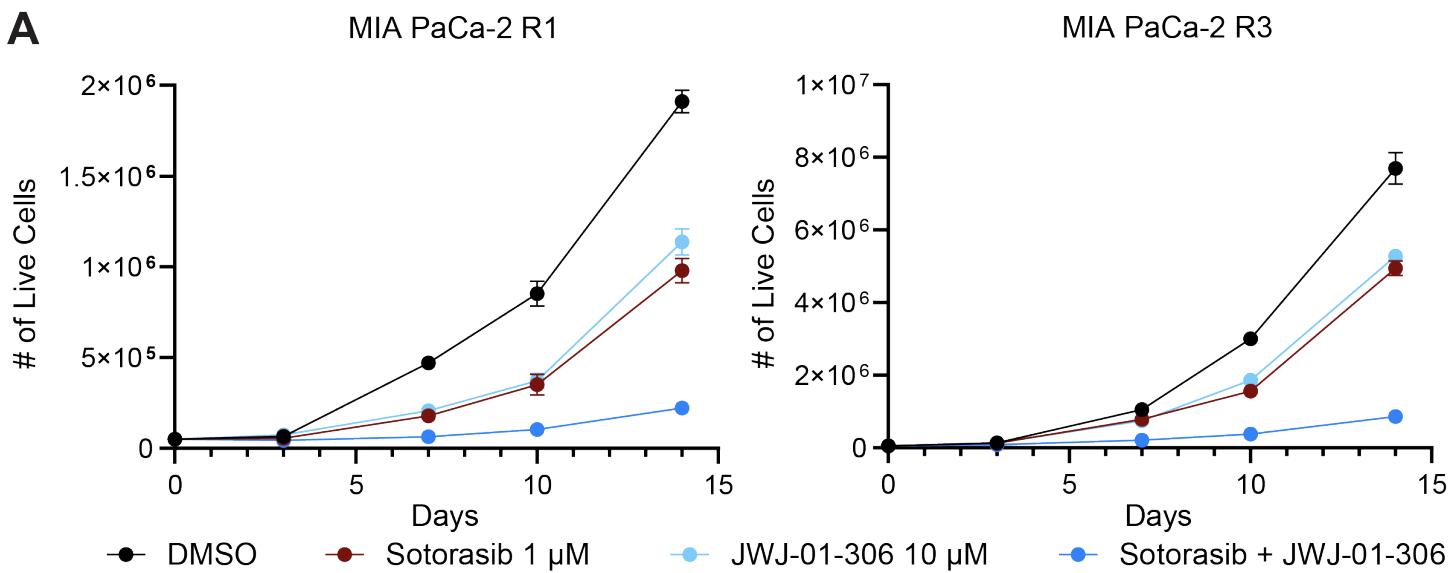

E


Day 3 Complex I

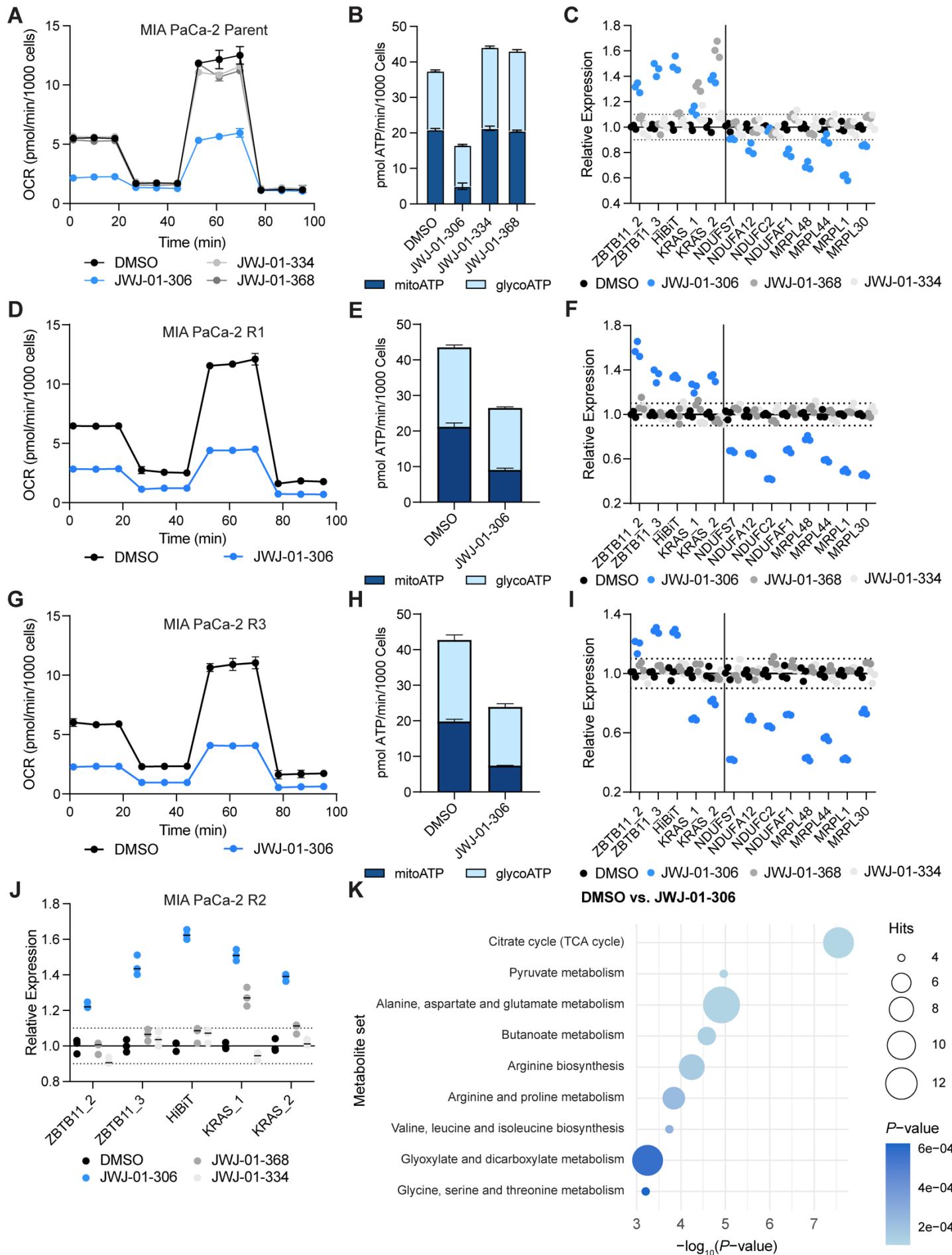

Supporting Figure 3 | CRISPRi ZBTB11 knockdown impacts OXPHOS-related genes. A. ZBTB11-targeting sgRNAs facilitate CRISPRi-mediated knockdown of ZBTB11. Cells were treated with 500 ng/ml of doxycycline for 72 hrs to induce Cas9 expression, and protein levels were quantified by WB. Depicted blots are representative of $n = 2$ independent experiments. Uncropped blots found in Source Data. B-E. CRISPRi-mediated knockdown induces downregulation of ZBTB11 and ZBTB11-regulated genes. Cells were treated with 500 ng/ml of doxycycline for 24 or 72 hrs to induce Cas9 expression, and mRNA levels were quantified by RT-qPCR. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to H_2O vehicle treatment controls.


Supporting Figure 4 | Characterization of the ZBTB11 degrader pharmacology. A. JWJ-01-306, but not negative controls, degrades ZBTB11-HiBiT in sotorasib-resistant MIA PaCa-2 knock-in cells. Cells were treated for 5 hrs with the indicated compound. B. Time-course ZBTB11-HiBiT degradation. Cells were treated with 10 μ M JWJ-01-306 for indicated amount of time, and protein levels were quantified by western blot. Depicted blots are representative of $n = 2$ independent experiments. Uncropped blots found in Source Data. C. Cellular CRBN engagement. HEK293 cells were transiently transfected with NanoLuc-CRBN and treated with the NanoBRET™ Tracer Reagent and indicated compound for 2 hrs. D. Construct design for ZBTB11 ZF fingerprinting experiments. E-F. ZBTB11 ZF fingerprinting reveals ZF10 as the primary CRBN target degron. MOLT-4 cell lines with stable expression of the indicated constructs were generated. Cells were treated with 1 μ M screening hit compound ALV-05-184 for 5 hrs. G. Sequence alignment of the ZBTB11 ZF domains and common IMID target proteins with C₂H₂, and CXXCG residues highlighted. H. IKZF1-HiBiT and GSPT1-HiBiT degradation in Jurkat knock-in cells. Cells were treated for 8 hrs with the indicated compound. A, C, E-F, H. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment control.

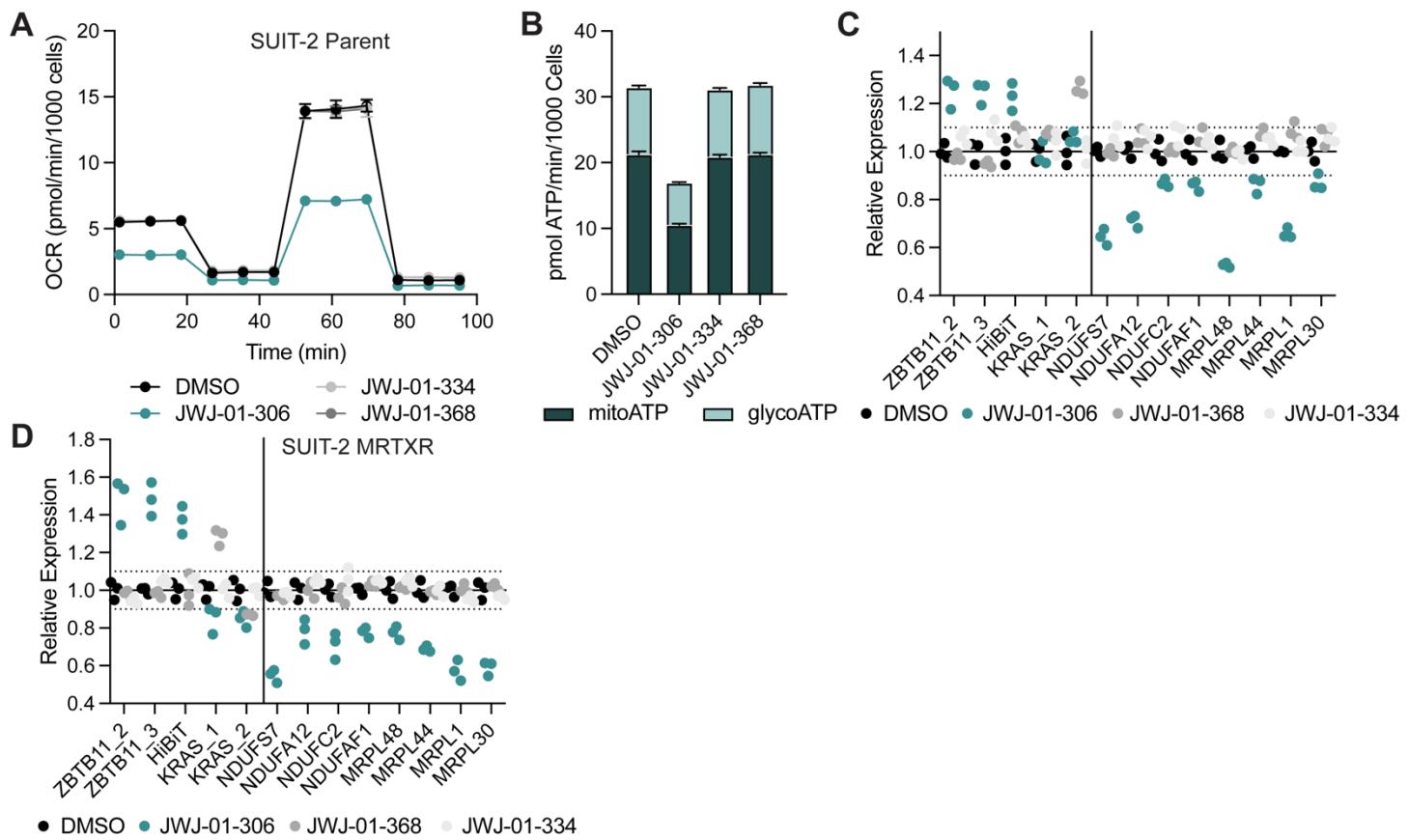
Supporting Figure 5 | Further characterization of ZBTB11 degrader compound and controls. A. Global proteomics analysis of MIA PaCa-2 cells treated with 10 μM JWJ-01-368 for 5 hrs. Samples were prepared as $n = 3$ biological replicates. Full datasets in Dataset 2. B. ZBTB11-HiBiT degradation by JWJ-01-306 achieves optimal kinetics by 2 hrs. MIA PaCa-2 knock-in cells were treated for the indicated time. C. ZBTB11-HiBiT protein levels decrease following JWJ-01-306 washout. MIA PaCa-2 knock-in cells were treated for 2 hrs with 10 μM JWJ-01-306, followed by three media washes to remove drug. ZBTB11 levels were evaluated by ZBTB11-HiBiT luminescence assay. D. Pharmacokinetics of JWJ-01-306 in C57BL/6 mice dosed intraperitoneal with 10 mg/kg JWJ-01-306-HCl. Full datasets in Dataset 3. B-C. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment control.



Supporting Figure 6 | Cellular processes targeted by K-Rasi+ZBTB11 degrader combinations in K-Rasi resistant PDAC at 5d.
 Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO, 1 μ M sotorasib, 10 μ M JWJ-01-306, or 1 μ M sotorasib + 10 μ M JWJ-01-306 (combo) for 120 hrs followed by global proteomics analysis, $n = 3$ biological replicates per condition. Protein abundance changes were analyzed by one-way ANOVA test (FDR < 0.05) and clustered using K-nearest neighbors clustering. Each line within the clusters is color-coded according to its distance from the cluster center, ranging from purple (close) to light blue (far). Proteins in each cluster were then evaluated for pathway enrichment using GO and KEGG pathway analysis. Representative pathways are shown and pathways associated with ZBTB11 function are highlighted in blue text. Full datasets in Dataset 4.



Supporting Figure 7 | JWJ-01-306 leads to reduction in ZBTB11 downstream mitochondrial proteins. A. Comparison between MitoCarta 3.0 database and significantly regulated protein hits identified in proteomics reveals enrichment of mitochondria-related proteins. B. Protein abundances of ZBTB11-regulated targets decrease with treatment of 10 μ M JWJ-01-306. Each boxplot represents the median value, with the bounds indicating the 25th and 75th percentiles. Significance level is marked with asterisks (two-tailed moderated t-test, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).


A

Supporting Figure 8 | JWJ-01-306 combines with K-Ras inhibition to overcome acquired resistance. JWJ-01-306 synergizes with sotorasib to inhibit proliferation of sotorasib-resistant MIA PaCa-2 cells. Cells were treated with the indicated compounds and cell numbers were measured using trypan blue exclusion. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates.

Supporting Figure 9 | Metabolic reprogramming of parental and K-Ras^{G12C} inhibitor resistant PDAC cells by ZBTB11 degradation.
A-B, D-E, G-H. ZBTB11 degradation reduces rates of OXPHOS in parental and sotorasib-resistant MIA PaCa-2 cells. C, F, I-J. ZBTB11 degradation induces compensatory genetic upregulation of ZBTB11 and downregulation of ZBTB11-regulated genes in MIA PaCa-2 cells. K. MSEA identifies the TCA cycle as the major metabolic pathway disrupted by ZBTB11 degradation. Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO or 10 μ M JWJ-01-306 for 24 hrs. Cells were then labeled with ¹³C-labeled glucose or glutamine for an additional 24 hrs followed by global metabolomics analysis, $n = 3$ biological replicates per condition. Metabolite abundance changes were analyzed by the global test ($P < 0.05$). Metabolites were then evaluated for pathway enrichment using KEGG pathway analysis and filtered for pathways containing a minimum of four hits. Full datasets in Dataset 5. A-J. Cells were treated with 10 μ M of the indicated compound for 24 hrs. A-B, D-E, G-H. Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse analyzer. OCR and ECAR from the mitochondrial stress test were used to calculate ATP production rates. C, F, I. mRNA levels were quantified by RT-qPCR. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment controls.

Supporting Figure 10 | Metabolic reprogramming of parental and K-Ras^{G12D} inhibitor resistant PDAC cells by ZBTB11 degradation. A-B. ZBTB11 degradation reduces rates of OXPHOS in parental SUIT2 cells. C-D. ZBTB11 degradation induces compensatory genetic upregulation of ZBTB11 and downregulation of ZBTB11-regulated genes in SUIT2 cells. A-D. Cells were treated with 10 μ M of the indicated compound for 24 hrs. A-B. Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse analyzer. OCR and ECAR from the mitochondrial stress test were used to calculate ATP production rates. C-D. mRNA levels were quantified by RT-qPCR. Data is depicted as the average +/- S.D. of $n = 3$ biological replicates and is normalized to DMSO vehicle treatment controls.