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ABSTRACT

Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras.
Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming
towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition
of complex | is poorly tolerated in patients due to on-target induction of peripheral neuropathy. In
this work, we develop molecular glue degraders against ZBTB11, a C2H: zinc finger transcription
factor that regulates the nuclear transcription of components of the mitoribosome and electron
transport chain. Our ZBTB11 degraders leverage the differences in demand for biogenesis of
mitochondrial components between human neurons and rapidly-dividing pancreatic cancer cells,
to selectively target the K-Ras inhibitor resistant state in PDAC. Combination treatment of both K-
Ras inhibitor-resistant cell lines and multidrug resistant patient-derived organoids resulted in
superior anti-cancer activity compared to single agent treatment, while sparing hiPSC-derived
neurons. Proteomic and stable isotope tracing studies revealed mitoribosome depletion and
impairment of the TCA cycle as key events that mediate this response. Together, this work
validates ZBTB11 as a vulnerability in K-Ras inhibitor-resistant PDAC and provides a suite of
molecular glue degrader tool compounds to investigate its function.

INTRODUCTION

Highly aggressive pancreatic ductal adenocarcinomas (PDAC) make up >90% of all pancreatic
cancers and are the third leading cause of cancer deaths in the US." Innovations in surgical
management and adjuvant therapy have led to improved outcomes for patients with resectable
(Stage 0-11B) PDAC, who have a 5-year overall survival rate of 21%.% Unfortunately, as early stage
PDAC has few symptoms, the majority (>85%) of PDAC patients are diagnosed with unresectable
Stage Il and Stage IV disease, where the 5-year overall survival remains below 1% due to an
absence of efficacious anticancer drugs.? Over 95% of PDAC patients harbor tumors driven by
activating mutations in K-Ras,® and inhibitors that target oncogenic K-Ras were anticipated to
herald paradigm-shifting improvements in patient outcomes. Unfortunately, the initial results in
patients treated with drugs targeting K-Ras®'?¢ suggest these benefits may not be realized, due
to the rapid onset of K-Ras inhibitor drug resistance.*

All of the oncogenic K-Ras mutants found in PDAC are now targetable by at least one clinical-
stage inhibitor, and development of both reversible and covalent mutant K-Ras inhibitors is now
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a highly productive field of research.>® Currently approved K-Ras inhibitors include sotorasib and
adagrasib, which were FDA approved for treatment of K-Ras®'*® mutant NSCLC in 2021 and
2022 respectively.'®"  Although encouraging responses to sotorasib in PDAC have been
reported, resistance swiftly arises.* In a Ph /Il study of patients with K-Ras®'*® pancreatic cancer
who received at least one previous systemic therapy, an encouraging 21% objective overall
response rate and an 84% disease control rate were reported, but this led to a meager 4 month
progression-free survival benefit and 5.7 month median duration of response.*'? In both clinical
and laboratory studies of K-Ras inhibitor resistance, acquired secondary mutations in K-Ras itself
are relatively rare, occurring ~ 3 - 4% of the time."'* Resistance to K-Ras inhibition is more
commonly mediated by the accumulation of mutations and activation events in other pathways,
posing a challenge for the development of second-line K-Ras inhibitors, vertical pathway
targeting, or combination therapies once resistance has developed.''® These data highlight the
urgent need to identify and validate new targets that can combat acquired resistance to K-Ras
inhibition in PDAC.

Adaptive K-Ras inhibitor resistance is accompanied by significant metabolic reprogramming of
cancer cells, including hyperactivation of the PIBK/AKT pathway'"'®, elevated TCA cycle flux'®,
Myc amplification®®, and upregulation of mitochondrial biogenesis?', culminating in heightened
reliance on oxidative phosphorylation (OXPHOS).?"??2 As K-Ras pathway inhibition impairs
glycolysis, forcing cancer cells to rely on OXPHOS for their energetic demands, this mechanism
of clinical resistance is expected to impact the entire pharmacological class and is already being
reported in laboratory studies of other K-Ras mutant targeting drug candidates.'*"'® For example,
K-Ras®'?" is the most common K-Ras mutation in PDAC? and inhibitors that selectively target K-
Ras®'?® are currently the subject of Ph | clinical trials in PDAC patients (NCT05737706). We
recently demonstrated that acquired resistance to the K-Ras®'?® inhibitor MRTX1133 in human
PDAC cells is associated with feedback activation of ERBB/AKT signaling and enhanced
OXPHOS. Resistance to the mechanistically orthogonal pan K-Ras(ON) inhibitor RM-7977 has
been recently reported in murine models of PDAC, and is associated with Myc amplification®°.
While metabolic profiling was not performed in this study, Myc overexpression has been shown
to result in increased mitochondrial biogenesis®, and over 200 OXPHOS genes are regulated by
Myc. These K-Ras inhibitor resistance studies concur with genetic studies in inducible K-
Ras®'?’/p53*- PDAC murine models, which identified a subpopulation of cancer cells able to
overcome genetic ablation of K-Ras®'? to re-seed tumors, and that this subpopulation was highly
dependent on OXPHOS.?" Pairing oncogenic K-Ras inhibition with OXPHOS inhibition is therefore
an attractive therapeutic strategy in PDAC and other Ras addicted malignancies.

Unfortunately, most existing OXPHOS inhibitors have properties limiting their clinical use,
including insufficient potency?® and poor selectivity?®2?®. Others, such as the mitochondrial
complex | inhibitor IACS-010759, display dose-limiting on-target toxicity in the clinic due to their
action on actively respiring mitochondria in peripheral neurons.?” To identify mechanistically
orthogonal approaches to combating OXPHOS-mediated adaptive K-Ras inhibitor resistance, we
evaluated public datasets to find targets that met the following four criteria: 1) Upregulated at the
protein level during the development of K-Ras inhibitor resistance in PDAC cells at a minimum of
one time point.?? 2) Essential for cell survival in glycolysis suppression media (low glucose, plus
galactose), which forces dependency on OXPHOS.?® 3) Not a component of complex |, to identify
mechanistically orthogonal targets, with the goal of limiting effects on peripheral neurons and
other high-OXPHOS healthy cells.?” 4) Chemically tractable via inhibition or targeted protein
degradation.?**° This approach identified Zinc Finger and BTB Domain Containing 11 (ZBTB11)
as an attractive anti-OXPHOS target for molecular glue degrader development.
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95 ZBTB11 is a zinc finger transcription factor that cooperates with GABPa to regulate the nuclear
96 expression of components of complex | and the mitoribosome, thereby maintaining functional
97  homeostasis in mitochondria.*'* ZBTB11 is transiently upregulated in PDAC cells during the
98 development of K-Ras inhibitor resistance, potentially to sustain increased demands on the
99 biogenesis of mitochondrial components.?? Although ZBTB11 is a pan-essential gene®*¢, we
100 hypothesized that partial loss of ZBTB11 would impair K-Ras inhibitor resistant PDAC fitness but
101 have minimal effects on post-mitotic neurons due to differences in the demands on mitochondrial
102  biogenesis between these cell types.*” ZBTB11 contains several CoH: zinc finger domains with
103 the CXXCG sequence motif in their beta-hairpin loops, making it potentially chemically targetable
104  via molecular glue degrader-mediated recruitment to the CRL4°REN E3 ligase complex.®® In this
105 study, we validate ZBTB11 as a mechanistically orthogonal target for addressing OXPHOS-
106  dependent drug-resistant states in PDAC, using both genetic and pharmacological approaches.

107 RESULTS

108 ZBTB11 regulates OXPHOS levels in PDAC cells. To validate that K-Ras inhibitor resistance
109 reliably generates a high-OXPHQOS state, and to develop in-house PDAC models, we cultured 3
110  independent K-Ras®'*“ MIA PaCa-2 lines with escalating sublethal concentrations of sotorasib
111 (AMG-510) to generate sotorasib-resistant cell lines R1, R2 and R3 (Fig. 1A, Fig. S1A). We
112  characterized the cellular metabolic state using Seahorse bioenergetic analysis, where a
113  mitochondrial stress test revealed increased basal and maximal oxidative phosphorylation in the
114  resistant cells compared to parental cell controls, as well as increased extracellular acidification
115 rate (ECAR) resulting in overall higher concentrations of ATP produced per minute per cell (Fig.
116 1B-C). We performed Seahorse bioenergetic analysis on our previously reported K-Ras®'?"
117  MRTXR SUIT2 lines' which are resistant to MRTX1133 and compared them to parental SUIT2
118 cells (Fig. S2A-C). Here we also observed increased basal and maximal oxidative
119  phosphorylation, and overall higher concentrations of ATP produced per minute per cell in
120 MRTXR cells. Finally, we performed mass-spectrometry based metabolomics following '*C
121 glucose or "*C glutamine labeling to identify differences between parental and resistant MIA
122  PaCa-2 cells (Fig. S1B, Dataset 1) and parental and resistant SUIT2 cells (Fig. S2D, Dataset 1).
123  Metabolite set enrichment analysis identified changes in diverse metabolic pathways including
124  branched chain amino acid biosynthesis/degradation, glycolysis/gluconeogenesis, and the TCA
125 cycle. These data highlight the breadth of metabolites and pathways altered during the
126  development of resistance, that culminate in the observed increases in OXPHOS.

127  ZBTB11 regulates nuclear transcription of components of the mitoribosome and complex | in
128  murine embryonic stem cells and HEK293 cells* to modulate OXPHOS, but its functions in PDAC
129  have not been characterized. To evaluate if human ZBTB11 regulates these genes, we developed
130 inducible ZBTB11 CRISPRI cell lines to evaluate effects of ZBTB11 depletion genetically,
131 confirming knockdown by immunoblot and gPCR (Fig. S3A-B, D). We selected 4 representative
132  mitoribosome genes (MRPL48, MRPL44, MRPL1, MRPL30) and 4 complex | genes (NDUF37,
133  NDUFA12, NDUFC2, NDUFAF1) reported to be regulated by murine ZBTB11*®, and performed
134 gPCR to quantify their mRNA levels 1 and 3 days after hZBTB11 CRISPRi knockdown. We
135 observed reduction of the mitoribosome mRNA set 24 hrs after dCas9-KRAB induction, and
136  reduction of the complex | mRNA set after 3 days (Fig. 1D, Fig. S3C, E). To test if ZBTB11
137  depletion leads to reduced OXPHOS, we performed Seahorse bioenergetic analysis and
138  observed the expected reduction in oxygen consumption rate (OCR), with no change to the ECAR
139 24 hrs following dCas9-KRAB induction (Fig. 1E-F). We conclude that ZBTB11 is a transcriptional
140 regulator of mitochondrial genes and OXPHOS in K-Ras mutant PDAC, consistent with its
141 reported role in other organisms and cell types.
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142 Development of a CRBN-recruiting molecular glue degrader of ZBTB11. Although ZBTB11
143  harbors the CXXCG beta-hairpin motif found in many CRBN molecular glue targets, no CRBN-
144  recruiting degraders of ZBTB11 have been reported.* To enable high-throughput quantification
145  of ZBTB11 protein levels in 384 well plates, we used CRISPR/cas9 to knock in a HiBiT tag at the
146  c-terminus of the endogenous ZBTB11 locus and used this reporter system to profile a proprietary
147 library of CRBN-binding molecular glue candidates (Fig. 2A). We identified several multi-targeted
148 hits from the same chemical series that were able to deplete ZBTB11 by greater than 30% (Fig.
149  2B-C). Medicinal chemistry optimization (to be reported elsewhere), culminated in the
150 identification of JWJ-01-306 (Fig. 2C) which degrades ZBTB11 up to @ Dmax, 10 um Of 60% by HIiBiT
151 quantification, and up to @ Dmax, 10 um Of 90% by immunoblot (Fig. 2D, Fig. S4B). We confirmed
152  rescue of JWJ-01-306 mediated ZBTB11 degradation using pre-treatment with proteasomal
153  inhibitor carfilzomib, NAE1 inhibitor MLN4924, and by competition with the CRBN binder
154  lenalidomide (Fig. 2E).*®

155  Molecular glue degraders depend on the formation of ternary complexes for their cellular activity.
156 To measure intracellular ternary complex between our molecules, ZBTB11, and CRBN, we
157 developed a NanoBRET assay, and used it to confirm that JWJ-01-306 promotes a
158 CRBN:molecular glue:ZBTB11 ternary complex (Fig. 2F). To enable structure-based design of
159 improved ZBTB11 degraders and controls, we established ternary complex molecular modeling
160  protocols (Fig. 2G). ZBTB11 contains 12 C2H2 zinc finger domains, 7 of which harbor a CXXCG
161 motif (Fig. S4F). We generated NLuc tagged ZF constructs and quantified the change in individual
162  ZF-NLuc fusion protein levels upon treatment with ZBTB11 degrader molecules, to elucidate that
163  zinc finger 10 (ZF10) contains the primary CRBN/JWJ degron (Fig. S4C-E). Next, we generated
164  an AlphaFold2*° model of ZBTB11 ZF10 and used this structure to perform Rosetta protein-
165  complex docking to JWJ-01-306-bound CRBN.*' Manual inspection of the clusters revealed a
166  binding mode consistent with previously reported cryo-EM structures of CRBN-binding molecular
167  glue degraders.*? The glutarimide binds in the tri-tryptophan pocket of CRBN where it makes two
168 H-bonds to H378 and one H-bond to the backbone amide of S379 (Fig. 2G). The aniline ring
169 engages in an edge-to-face T interaction with H353 of CRBN, and 3-substitution orients the
170  benzylic cyclobutane ring towards the interface of CRBN and ZBTB11 ZF10, making hydrophobic
171 contact with CRBN P352. Finally, ZBTB11 residue K866 and CRBN residue E377 form a cation-
172  T-anion stacking interaction with the 4-Cl, 3-CF3; substituted phenyl ring in JWJ degraders that
173  bridges the ternary complex.*® These interactions agree with trends in the ZBTB11 degrader
174  structure activity relationships.

175  To aid interpretation of phenotypic data and confirm observed effects are on-target, we developed
176  two negative control compounds: JWJ-01-334 and JWJ-01-368. To rescue all CRBN-dependent
177  pharmacology, we synthesized JWJ-01-334, which contains an N-Methyl glutarimide that
178  prevents binding to CRBN**, ZBTB11 ternary complex formation, and ZBTB11 degradation (Fig.
179 2D, F, Fig. S4A). To rescue ZBTB11-dependent pharmacology, we synthesized JWJ-01-368,
180  which lacks the aromatic CF3 substituent crucial for achieving the cation-1r-anion interaction that
181 promotes CRBN:JWJ:ZBTB11 ternary complex formation. In live cells, JWJ-01-368 efficiently
182  binds CRBN (Fig. S4A) but fails to promote both ZBTB11 ternary complex formation (Fig. 2F) and
183  ZBTB11 degradation (Fig. 2D).

184  We evaluated the selectivity of JWJ-01-306 and JWJ-01-368 in MIA PaCa-2 cells by global
185  proteomics analysis, following a 5 hr treatment with 10 uM compound (Fig. 2H and Fig. S5A,
186  Dataset 2). In JWJ-01-306 treated cells, we observed potent ZBTB11 downregulation, and off-
187  target degradation of three related C,H. zinc finger transcription factors: ZFP91, ZBTB21 and
188  WIZ. In JWJ-01-368 treated cells, we did not observe ZBTB11 degradation, indicating JWJ-01-
189 368 is a suitable control compound for rescue of ZBTB11-specific pharmacology (Fig. S5A,
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190 Dataset 2). Next, as common CRBN-recruiting molecular glue degrader off-target IKZF1 is not
191 expressed in PDAC, we performed follow-up screening in a Jurkat IKZF1-HiBiT cell line. Here,
192 JWJ-01-306 and JWJ-01-368 showed potent activity, indicating they would not be selective in
193  certain lymphoid or myeloid cell lines and should be used with caution in that context (Fig. S4G).
194  Finally, to confirm selectivity against the anti-tumor target GSPT1%, we performed follow-up
195  screening in a Jurkat GSPT1-HiBIT cell line, where all 3 compounds were inactive (Fig. S4H).

196 To account for pharmacology that may be mediated by off-target activities of JWJ-01-306, we
197 sought to design a degradation-resistant mutant for use as a genetic control in rescue
198  experiments. From our structural models, we predicted that K866 made critical contributions to
199  ternary complex formation between CRBN and ZBTB11 ZF10 (Fig. 2G). In contrast, ZBTB11 ZF3,
200 which has a CXXCG motif but a threonine (T659) in the equivalent position to K866, was not
201  degraded as an NLuc fusion by our molecules (Fig. 2K). We performed site-directed mutagenesis
202  to generate ZBTB11"%%¢T which ablated both ternary complex formation and degradation of full
203 length ZBTB11 by JWJ-01-306 (Fig. 2I-J). To examine if a lysine in the K866 position alone can
204  promote degradation by JWJ-01-306, we mutated ZF3 T659 to generate ZF3™°. This construct
205 remained recalcitrant to degradation, indicating that K866 is necessary but not sufficient for
206  degradation by our compounds and highlighting the importance of the additional contacts made
207  between CRBN and ZBTB11 ZF10 in the ternary complex that drive the specificity of our degrader
208 proteome-wide (Fig. 2H, K).

209 To evaluate the kinetics of JWJ-01-306 mediated degradation, we performed time-course studies
210  which indicated that the majority of the observed degradation occurs within 2 hrs (Fig. S5B). Next,
211 we evaluated the rebound rate of ZBTB11 levels following compound washout. Here, we
212  observed no rebound in ZBTB11 levels over a 24 hr time period, although we cannot completely
213  rule out insufficient washout as a confounding factor (Fig. S5C). Finally, we performed
214 pharmacokinetic analysis in C57BL/6 mice dosed via intraperitoneal (IP) injection with 10 mg/kg
215  JWJ-01-306.HCI. Here, we observed a half-life of 91 minutes and a Cmax of 1.67 uM (Fig. S5D,
216  Dataset 3). Plasma protein binding analysis revealed that JWJ-01-306 is over 99% protein bound
217  (Dataset 3). Taken together, these data indicate that the free drug levels of JWJ-01-306 in vivo
218  are unlikely to be sufficient to support ZBTB11 degradation at reasonable dosing regimens, and
219 that further chemistry optimization is needed to improve the stability and physicochemical
220  properties of JWJ-01-306. Therefore, JWJ-01-306 is best suited as a cell-based tool compound
221  for target validation and mechanistic studies.

222 ZBTB11 degradation impairs proliferation of K-Ras inhibitor resistant PDAC cells. To
223  determine the effectiveness of our ZBTB11 degraders for targeting K-Ras inhibitor-resistant
224  PDAC, we performed cell proliferation assays via cell counting over time (MIA PaCa-2, 14d) and
225 live cell brightfield-imaging (SUIT2, 6d) (Fig. 3A-B). As expected, proliferation of parental MIA
226 PaCa-2 cells was completely impaired by high concentrations of sotorasib. In these highly
227  glycolytic cells,*® single agent JWJ-01-306 treatment had only mild effects on proliferation over a
228  2-week time period, comparable to the negative control JWJ-01-368 (Fig. 3A). K-Ras inhibitor-
229 resistant MIA PaCa-2 cells showed significantly impaired proliferation only in the presence of
230 sotorasib + JWJ-01-306 (Fig. 3A), but not sotorasib + JWJ-01-368. In SUIT2, proliferation of
231 parental cells was completely impaired by high concentrations (500 nM) of MRTX1133 and by
232 JWJ-01-306 as a single agent within 5 days (10 pM, Fig. 3B). Gratifyingly, cell growth in
233 MRTX1133-resistant SUIT2 lines was blocked by JWJ-01-306 single agent treatment and
234 MRTX1133 + JWJ-01-306, but not MRTX1133 alone or MRTX1133 + JWJ-01-368 (Fig. 3B).
235 These data demonstrate that JWJ-01-306 can counter K-Ras inhibitor resistance in multiple types
236  of mutant K-Ras-driven PDAC and may also have single agent antiproliferative activity in some
237 PDAC contexts.
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238 ZBTB11 degradation reprograms cellular metabolism to reduce OXPHOS and the TCA
239 cycle. We next sought to mechanistically interrogate the metabolic, transcriptomic and proteomic
240 changes induced by JWJ-01-306 in the context of K-Ras inhibitor-resistant PDAC. To identify how
241 both K-Ras inhibitors and ZBTB11 degraders affect the cellular state at phenotypically relevant
242  time points, we performed global proteomics analysis of sotorasib-resistant MIA PaCa-2 cells
243  treated with DMSO, 1 uM sotorasib (resistant cell media), 10 yM JWJ-01-306 and 1 uM sotorasib
244  +10 uM JWJ-01-306 for 3 and 5 days (Fig. 3C, Fig. S6, Fig. S7, Dataset 4). We compared the
245  proteomic changes between treatment groups and performed K-nearest neighbor clustering
246  analysis to identify protein groups with the same changes in protein abundance in response to
247  each treatment condition (Fig. 3C, Fig. S6, Dataset 4). Next, we performed gene ontology analysis
248 to identify the biological pathways enriched within each protein cluster. Proteins downregulated
249 by JWJ-01-306 treatment correspond to mitochondrial, oxidative phosphorylation, mitoribosome,
250 and differentiation pathways (Fig. 3C cluster 3, 7 and 9, Fig. S6 cluster 4). Protein sets primarily
251 responsive to sotorasib include upregulation of mitochondrial ATP synthesis, and changes to
252  glycine, serine, and threonine metabolism pathway proteins, consistent with the observed
253 metabolic and metabolomic differences we observed between parental and sotorasib-resistant
254  cell lines (Fig. 3C cluster 8, Fig. S6 cluster 5). Finally, clusters representing proteins that change
255 only in response to the combination treatment are enriched for nucleoside metabolism, ER
256 membrane, and gene expression (upregulated), and DNA replication (downregulated, Fig. 3C
257  cluster 4). To further elucidate the effects of ZBTB11 depletion on mitochondrial proteins, we
258  evaluated proteins downregulated in JWJ-01-306 treatment conditions and compared them to the
259  MitoCarta 3.0 database of mitochondrial proteins (Fig. S7A). We observed significant overlap
260 (592 proteins day 5, 554 proteins day 3), in each condition with mitochondrial proteins. We
261  confirmed ZBTB11 is downregulated in JWJ-01-306 treated samples (Fig. S7B) alongside a
262  subset of ZBTB11 downstream proteins (NDUFS7, NDUFA12, NDUFC2, NDUFAF1, MRPLA48,
263 MRPL44, MRPL1, MRPL30, Fig S7B). K-Ras levels were also reduced in the 5 d samples in
264  response to JWJ-01-306 but not sotorasib (Fig. S7B).

265 To evaluate the impact of ZBTB11 degradation and consequent downstream proteome changes
266 on OXPHOS levels, we treated parental and sotorasib-resistant MIA PaCa-2 cells with 10 yM
267 JWJ-01-306, JWJ-01-334 or JWJ-01-368 and performed a mitochondrial stress test at the 24 hr
268 time point (Fig. 4A, Fig. S8A). We observed significant reductions in basal and maximal oxidative
269  phosphorylation in cells treated with JWJ-01-306 but not JWJ-01-334 or JWJ-01-368. We also
270 observed changes in the metabolic index (mitoATP/glycoATP ratio) in cells treated with JWJ-01-
271 306 but not JWJ-01-334 or JWJ-01-368, reflecting the greater reduction in OXPHOS (Fig. 4B,
272  Fig. S8B). Finally, we repeated these experiments in parental and MRTX1133-resistant SUIT2
273 cells, and also observed JWJ-01-306-dependent reductions in basal, maximal, and
274  mitoATP/glycoATP ratios, that were rescued by the control compounds (Fig. 4C-D, Fig. S8D-E).
275 To confirm these effects are specific to ZBTB11 degradation, we stably expressed full length
276  ZBTB11"" or ZBTB11X®%*T in sotorasib-resistant MIA PaCa-2 cells, followed by treatment with 10
277  uM JWJ-01-306, and performed a mitochondrial stress test after 24 hrs of drug treatment (Fig.
278 4E). We observed complete rescue of oxidative phosphorylation and restoration of the metabolic
279  index by the ZBTB11%®¢T mutant relative to WT control (Fig. 4E-F).

280 To identify how the expression of mitoribosome and complex | genes downstream of ZBTB11 are
281  directly altered by ZBTB11 degraders to affect the observed proteomic and metabolic changes,
282 we performed gPCR in parental and sotorasib-resistant MIA PaCa-2 cells treated with 10 yM
283  JWJ-01-306, JWJ-01-334 or JWJ-01-368 for 24 hrs. Here, we observed downregulation of
284  transcripts by JWJ-01-306 but not negative controls JWJ-01-334 or JWJ-01-368 (Fig. 4G, Fig.
285  S8C). We confirmed these results in matched experiments in parental and MRTX1133-resistant
286  SUIT2 cells (Fig. S8F-G). To confirm these effects are specific to ZBTB11 degradation, we treated
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287  sotorasib-resistant MIA PaCa-2 cells that stably expressed ZBTB11"" or ZBTB11®%¢T with 10 uM
288  JWJ-01-306 for 24 hrs and assessed levels of relevant downstream transcripts by gPCR. Here,
289  we observed complete rescue of transcript loss by the degradation-resistant ZBTB11X8¢T mutant
290 for 7/8 downstream genes, and partial rescue of MRPL1 (Fig. 4H). Finally, we examined effects
291 of ZBTB11 degraders on ZBTB11 and K-Ras transcript levels, where we observed compensatory
292  upregulation of ZBTB11 in the presence of JWJ-01-306 but not negative controls JWJ-01-334
293 and JWJ-01-368 in parental and resistant MIA PaCa-2 cells and SUIT2 cells (Fig. S8C, F, G, H).
294  Varied effects on K-Ras transcript levels were observed, indicating that K-Ras transcription is not
295  regulated by ZBTB11 (Fig. S8C, F, G, H).

296 To identify the metabolic pathway alterations that mediate the effects of ZBTB11 degradation on
297  cellular respiration, we performed metabolomics on sotorasib-resistant MIA PaCa-2 cells treated
298  with 10 uM JWJ-01-306 for 24 hrs and labeled with "*C-glucose or *C-glutamine. Metabolite set
299  enrichment analysis revealed JWJ-01-306 treatment induced changes consistent with reduced
300 OXPHOS, including in the TCA cycle and pyruvate metabolism (Fig. S9K, Dataset 5). Manual
301 inspection of metabolite abundances and mass isotopomer distributions aligned with this analysis
302 and indicated significant changes in the TCA cycle pathway. (Fig. 41-M, Dataset 5). The cellular
303 abundance of citrate, a TCA cycle intermediate, was reduced with JWJ-01-306 treatment (Fig.
304  4l). As tumor cells utilize reductive glutamine metabolism to support various cellular processes
305 when activity of the electron transport chain (ETC) is inhibited or the TCA cycle is perturbed*’ 2,
306 we sought to determine whether ZBTB11 degradation would promote reductive glutamine
307 metabolism. We found that the labeling pattern of citrate (derived from "*C-glutamine) in cells
308 treated with JWJ-01-306 was altered, with an increased proportion of m+3 and m+5 isotopomers,
309 indicative of increased reductive carboxylation of glutamine-derived a-ketoglutarate (Fig. 4l).
310  Consistent with these results, we also observed JWJ-01-306-dependent increases in aspartate,
311 malate and fumarate m+3 isotopomers indicative of reductive glutamine metabolism (Fig. 4J-K,
312  Dataset 5). Furthermore, shifts in TCA substrate abundances (Fig. 41-4L) and the a-
313  ketoglutarate/citrate ratio (Fig. 4M) were in agreement with previous observations in cells with
314  perturbed mitochondrial respiration*®°. Taken together, these data demonstrate that JWJ-01-306
315  treatment impairs the ETC and disrupts normal flux through the TCA cycle.

316 ZBTB11 degraders show reduced neurotoxicity compared to complex | inhibitors. Having
317  established the mechanism-of-action of JWJ-01-306, we next sought to compare ZBTB11
318  degradation to complex | inhibition in human models of neuronal health. The primary safety liability
319  of OXPHOS-targeting drugs are toxic effects on neurons, which rely heavily on mitochondrial
320 metabolism to sustain their bioenergetic needs.?” These effects often go unnoticed in murine
321  studies, due to species differences between the human and murine nervous system, and
322 challenges with accurately measuring neuropathy in mice.*’ Furthermore, molecular glue
323  degraders often have different target profiles in murine and human systems due to sequence
324  differences in both CRBN and the targets that alter the induced protein-protein interaction
325 interface®®®*. To overcome these limitations and provide an early readout of the propensity of our
326  ZBTB11 degraders to cause neuropathy, we profiled the neurotoxicity of ZBTB11 degraders using
327  a suite of assays to monitor neuronal viability, morphology, and mitochondrial function in human
328 induced pluripotent stem cell (hiPSC)-derived neurons.%**® We found that hiPSC-derived neurons
329  exposed to 1 uyM IACS-010759 for 24 hrs exhibit significantly decreased mitochondrial membrane
330 potential (MMP) and increased reactive oxygen species (ROS), consistent with inhibition of
331  mitochondrial complex | and reported adverse events in clinical trials®” (Fig. 5A). Following
332  treatment with 1 uM IACS-010759 for 72 hrs, neurite length and neuronal survival were also
333  decreased (Fig. 5B). In contrast, 1 yM JWJ-01-306 showed minimal effects on all phenotypes
334  assayed (Fig. 5A-B). Together, these results show our panel accurately identifies neurotoxic
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335 compounds targeting mitochondrial function and demonstrate that ZBTB11 degradation has
336  reduced acute neuronal toxicity in vitro relative to complex | inhibition.

337 ZBTB11 degraders deepen the response to K-Ras inhibition in PDAC patient-derived
338 organoids. To validate ZBTB11 degrader co-treatment as a potential therapeutic strategy in a
339  more clinically relevant context, we turned to patient-derived organoid models of K-Ras®'? driven
340 PDAC®. Personalized tumor drug sensitivity profiling using these models was shown to correlate
341  with patient-responses, and their predictive value is currently being assessed in a clinical trial
342  (NCT04469556). As MRTX1133 is still being evaluated in early phase clinical trials, no
343  MRTX1133-resistant patient-derived organoids are available. We therefore sought to evaluate if
344  JWJ-01-306 could deepen the response to MRTX1133 as a combination therapy in organoids
345 derived from tumor samples from both a chemotherapy-naive patient (hF44) and a highly
346  pretreated multi-drug resistant patient (hnM1E, Fig. 5C). We treated organoids with DMSO, JWJ-
347  01-306 (1 pM), MRTX1133 (100 nM), or JWJ-01-306 (1 uM) + MRTX1133 (100 nM) combination
348  and monitored cell proliferation by brightfield imaging over 7 d (Fig. 5C). Both organoids had a
349  partial response to MRTX1133, and greater anti-proliferative effects were achieved by combining
350 treatment with JWJ-01-306, indicating that enhanced responses to K-Ras inhibitors can be
351  accomplished by preemptive blockade of metabolic escape pathways. Together, these
352  experiments establish ZBTB11 degradation as an attractive therapeutic strategy to combat the
353  aberrant metabolic switch to OXPHOS that drives resistance to K-Ras inhibitors.

354
355 DISCUSSION

356  In this manuscript, we disclose molecular glue degraders of the transcription factor ZBTB11. By
357  generating a comprehensive set of chemical and genetic tools we identified ZBTB11-governed
358  metabolic networks in human PDAC. In contrast to existing OXPHOS inhibitors, most of which
359 are thought to target complex |-V enzymatic activity, JWJ-01-306 directly targets the
360 transcriptional upregulation of OXPHOS genes associated with cancer drug resistance. We
361 demonstrate that pharmacological degradation of ZBTB11 counters this metabolic
362 reprogramming associated with acquired resistance to K-Ras inhibitors in multiple ex vivo models
363 of PDAC, identifying ZBTB11 as a druggable therapeutic vulnerability in PDAC.

364 A major limitation for targeting aberrant OXPHOS are the neurotoxic side effects of complex |
365 inhibition, observed as on-target adverse events in clinical trials and in follow-up murine studies.?’
366  Using human iPSC-derived neuronal models, we demonstrated that ZBTB11 degradation had
367  minimal effects on neuronal viability and function at phenotypically relevant time points (3d), in
368  contrast to complex | inhibitor IACS-010759. While comprehensive studies in in vivo mammalian
369 models at extended time points will be critical for establishing the preclinical therapeutic window
370 of ZBTB11 degradation in PDAC, our work marks a critical milestone by identifying a
371 mechanistically orthogonal therapeutic strategy for targeting high OXPHOS cancer states.

372  Our patient-derived organoid study demonstrated that concurrent K-Ras and ZBTB11 blockade
373  deepens responses to K-Ras®'?® inhibition in PDAC organoids that had not been previously
374  treated with MRTX1133, including in the multi-drug resistant PDAC line hM1E. ZBTB11
375  degradation may therefore have applications in other cancers that upregulate OXPHOS to drive
376 resistance to therapeutic interventions, including chemotherapies®®? anti-angiogenic
377 therapies®, and targeted therapies such as inhibition of BCL2%, tyrosine kinases®, and BRAF®.
378  We anticipate that our suite of chemical and genetic tools will accelerate efforts to map ZBTB11
379  sensitive cancer cell states and identify additional tumor types where ZBTB11 depletion can

380 address cancer drug resistance.
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Figure 1 | OXPHOS is upregulated in K-Ras inhibitor resistant PDAC cells, and countered by ZBTB11 knockdown. A.
Sotorasib/AMG-510-resistant MIA PaCa-2 cells are 100-fold less sensitive to sotorasib/AMG-510 than parental MIA PaCa-2 cells. Cells
were treated with the indicated dose of sotorasib for 72 hrs, and viability was evaluated by CellTiterGlo®. Data is depicted as the average
+/- standard deviation (S.D.) of n = 3 biological replicates and is normalized to DMSO vehicle treatment controls. See also Fig. S1A. B.
Sotorasib-resistant MIA PaCa-2 cells perform higher basal and maximal levels of OXPHOS than parental MIA PaCa-2 cells. C. Sotorasib-
resistant MIA PaCa-2 cells are more energetic than parental MIA PaCa-2 cells. D. Expression of genes regulated by ZBTB11 decreases
following CRISPRi-mediated knockdown. Cells were treated with 500 ng/ml of doxycycline for 72 hrs to induce Cas9 expression, and
mRNA levels were quantified by RT-qgPCR. Data is depicted as the average +/- S.D. of n = 3 biological replicates and is normalized to
H>O vehicle treatment controls. See also Fig. S2. E. ZBTB11 knockdown reduces rates of OXPHOS. Cells were treated with 500 ng/ml
of doxycycline for 72 hrs to induce Cas9 expression. F. ZBTB11 knockdown reduces ATP production by OXPHOS. B-C, E-F. Cellular
respiration rates were evaluated in a mitochondrial stress test using a Seahorse analyzer. Oxygen Consumption Rates (OCR) and
Extracellular Acidification Rates (ECAR) from the mitochondrial stress test were used to calculate ATP production rates. Data is depicted
as the average +/- S.D. of n = 2 biological replicates with n = 3 technical replicates each.
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Figure 2 | Development of a ZBTB11 molecular glue degrader. A. Depiction of ZBTB11 domains and the ZBTB11-HiBiT assay. B.
Screening of glutarimide-containing analogues in the ZBTB11-HiBiT assay identifies candidate ZBTB11 degraders. MOLT-4 ZBTB11-
HiBiT knock-in cells were treated with 10 uM compound for 8 hrs. Data is depicted as the average of n = 3 biological replicates and is
normalized to DMSO vehicle treatment control. C. Chemical structure of screening hits and optimized ZBTB11 degrader and negative
controls. D. JWJ-01-306, but not negative controls, degrades ZBTB11-HiBiT in MIA PaCa-2 knock-in cells. Cells were treated for 5 hrs
with the indicated compound. E. Mechanism-based controls rescue ZBTB11-HiBiT degradation in MIA PaCa-2 knock-in cells. Cells were
pre-treated with carfilzomib, MLN4924, or lenalidomide for 1 hr prior to treatment with the indicated compound for 5 hrs. Protein levels
were quantified by western blot. Depicted blots are representative of n = 3 independent experiments. Uncropped blots found in Source
Data. F. JWJ-01-306, but not negative controls, induces CRBN:degrader:ZBTB11 complex in NanoBRET™ ternary complex assay. A
MOLT-4 cell line with stable expression of the indicated constructs was generated. Cells were pre-treated with carfilzomib and the
HaloTag® NanoBRET™ 618 Ligand for 1 hr prior to treatment with the indicated compound for 5 hrs. G. Computationally generated
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model of the CRBN:JWJ-01-306:ZBTB11 ZF10 complex reveals binding mode and key residues for complex stabilization. Top ten scoring
structure clusters found in Source Data. H. Global proteomics analysis of MIA PaCa-2 cells treated with 10 yM JWJ-01-306 for 5 hrs.
Samples were prepared as n = 3 biological replicates. Full datasets in Dataset 2. |. ZBTB11 K866T ablates ternary complex formation.
MOLT-4 cell lines with stable expression of the indicated constructs were generated and used in the NanoBRET™ ternary complex assay.
J. ZBTB11 K866T rescues JWJ-01-306-mediated degradation. MIA PaCa-2 cell lines with stable expression of the indicated constructs
were generated. Cells were treated with JWJ-01-306 for 5 hrs. K. K866 is necessary but not sufficient for ZBTB11 degradation. MOLT-4
cell lines with stable expression of the indicated constructs were generated. Cells were treated with 1 uM screening hit compound ALV-
05-184 for 5 hrs. D, F, I-K. Data is depicted as the average +/- S.D. of n = 3 biological replicates and is normalized to DMSO vehicle
treatment control.
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Figure 3 | JWJ-01-306 combination treatment overcomes acquired resistance to K-Ras inhibitors in PDAC via metabolic pathway
reprogramming. A. JWJ-01-306 synergizes with sotorasib to inhibit proliferation of sotorasib-resistant MIA PaCa-2 cells. Cells were
treated with the indicated compounds and cell numbers were measured using trypan blue exclusion. Data is depicted as the average +/-
S.D. of n = 3 biological replicates. B. JWJ-01-306 effectively inhibits proliferation of SUIT2 cells. Cells were treated with the indicated
compounds and cell confluence was measured using a Cellcyte X live cell analyzer. Data is depicted as the average +/- S.D. of n = 3
biological replicates with n = 4 technical replicates each. C. Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO, 1 uM sotorasib,
10 uM JWJ-01-306, or 1 uyM sotorasib + 10 uM JWJ-01-306 (combo) for 72 hrs followed by global proteomics analysis, n = 3 biological
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replicates per condition. Protein abundance changes were analyzed by one-way ANOVA test (FDR < 0.05) and clustered using K-nearest
neighbors clustering. Each line within the clusters is color-coded according to its distance from the cluster center, ranging from purple
(close) to light blue (far). Proteins in each cluster were then evaluated for pathway enrichment using GO and KEGG pathway analysis.

Representative pathways are shown and pathways associated with ZBTB11 function are highlighted in blue text. Full datasets in Dataset
4.
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Figure 4 | Metabolic reprogramming of K-Ras inhibitor resistant PDAC cells by ZBTB11 degradation. A. ZBTB11 degradation
reduces rates of OXPHOS in sotorasib-resistant MIA PaCa-2 cells. Cells were treated with 10 yM of the indicated compound for 24 hrs.
B. ZBTB11 degradation reduces ATP production by OXPHOS in sotorasib-resistant MIA PaCa-2 cells. C. ZBTB11 degradation reduces
rates of OXPHOS in MRTX1133-resistant SUIT2 cells. Cells were treated with 10 uM of the indicated compound for 24 hrs. D. ZBTB11
degradation reduces ATP production by OXPHOS in MRTX1133-resistant SUIT2 cells. E. Overexpression of ZBTB11WT or ZBTB11 K866T
rescues JWJ-01-306-mediated reduction of OXPHOS. Sotorasib-resistant MIA PaCa-2 cell lines with stable expression of NanoLuc-
ZBTB11WT or NanoLuc-ZBTB11K86T were generated. Cells were treated with 10 uM JWJ-01-306 for 24 hrs. F. Overexpression of
ZBTB11WT or ZBTB11 K886T rescues JWJ-01-306-mediated reduction of ATP production by OXPHOS. G. ZBTB11 degradation induces
downregulation of ZBTB11-regulated genes. Sotorasib-resistant MIA PaCa-2 cells were treated with 10 uM of the indicated compound
for 24 hrs. H. Overexpression of ZBTB11WT or ZBTB11 K86T rescues JWJ-01-306-mediated downregulation of ZBTB11-regulated genes.
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Cells were treated with 10 yM JWJ-01-306 for 24 hrs. I-M. JWJ-01-306 disrupts TCA cycle flux and induces reductive glutamine
metabolism. Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO or 10 uM JWJ-01-306 for 24 hrs. Cells were then labeled with
3C-labeled glucose or glutamine for an additional 24 hrs followed by global metabolomics analysis, n = 3 biological replicates per
condition. A-F. Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse analyzer.
OCR and ECAR from the mitochondrial stress test were used to calculate ATP production rates. A-D. Data is depicted as the average +/-
S.D. of n = 2 biological replicates with n = 3 technical replicates each. E-F. Data is depicted as the average +/- S.D. of n = 5 biological
replicates with n = 3 technical replicates each. G-H. mRNA levels were quantified by RT-qPCR. Data is depicted as the average +/- S.D.
of n = 3 biological replicates and is normalized to DMSO vehicle treatment controls. I-M. Metabolite abundance data is depicted as the
average +/- S.D. of n = 6 biological replicates (3 replicates each from '3C-labeled glucose and glutamine). Mass isotopomer distribution
data is depicted as the average +/- S.D. of n = 3 biological replicates. Significance level is marked with asterisks (two-tailed student’s t-
test, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).
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Figure 5 | ZBTB11 degradation spares neurons and deepens the response of PDAC patient-derived organoids to K-Ras
inhibitors. A. Mitochondrial activity and oxidative stress assays show differential pharmacology of Complex | and ZBTB11 perturbation.
hiPSC-derived neurons were treated for 24 h with DMSO, 1 yM IACS 010759, 1 yM JWJ-01-306 or 1 yM JWJ-01-368. B. Neurotoxicity
assays show differential pharmacology of Complex | and ZBTB11 perturbation. hiPSC-derived neurons were treated for 72 h with DMSO,
1 uM IACS 010759, 1 uM JWJ-01-306 or 1 uM JWJ-01-368. C. Proliferation assays show ZBTB11 + K-Ras inhibitor combination has
superior antiproliferative effects in PDAC patient-derived organoids. Cells were treated with DMSO vehicle, 1 yM JWJ-01-306, 200 nM
MRTX1133 or 1 yM JWJ-01-306 + 200 nM MRTX1133 (COMBO) and cellular confluence observed using brightfield imaging at the
indicated timepoints. A.C. Data plotted as mean +/- S.D. of n = 3 biological replicates.
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Supporting Figure 1 | Metabolomic profiling of parental and K-Ras G12C inhibitor resistant PDAC cell lines. A. Sotorasib/AMG-
510-resistant MIA PaCa-2 cells are 100-fold less sensitive to sotorasib/AMG-510 than parental MIA PaCa-2 cells. Cells were treated with
the indicated dose of sotorasib for 72 hrs, and viability was evaluated by CellTiterGlo®. Data is depicted as the average +/- standard
deviation (S.D.) of n = 3 biological replicates and is normalized to DMSO vehicle treatment controls. B. MSEA identifies amino acid
metabolic pathways as major metabolic shifts between parental and sotorasib-resistant MIA PaCa-2 cells. Parental and sotorasib-
resistant MIA PaCa-2 cells were labeled with '*C-labeled glucose or glutamine for 24 hrs followed by global metabolomics analysis, n =
3 biological replicates per condition. Metabolite abundance changes were analyzed by the global test (P < 0.05). Metabolites were then
evaluated using metabolite set enrichment analysis (MSEA) using KEGG pathways and filtered for pathways containing a minimum of
four hits. Full datasets in Dataset 1.
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Supporting Figure 2 | Metabolic profiling of parental and K-Ras G12D inhibitor resistant PDAC cell lines. A. MRTX1133-resistant
SUIT2 cells are 100-fold less sensitive to MRTX1133 than parental SUIT2 cells. Cells were treated with the indicated dose of MRTX1133
for 72 hrs, and viability was evaluated by CellTiterGlo®. Data is depicted as the average +/- standard deviation (S.D.) of n = 3 biological
replicates and is normalized to DMSO vehicle treatment controls. B. MRTX1133-resistant SUIT2 cells perform higher basal and maximal
levels of OXPHOS than parental SUIT2 cells. C. MRTX1133-resistant SUIT2 cells are more energetic than parental SUIT2 cells. B-C.
Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse analyzer. OCR and
ECAR from the mitochondrial stress test were used to calculate ATP production rates. Data is depicted as the average +/- S.D. of n = 2
biological replicates with n = 3 technical replicates each. D. MSEA identifies oxidative stress and amino acid-related pathways as major
metabolic shifts between parental and MRTX1133-resistant SUIT2 cells. Parental and MRTX1133-resistant SUIT2 cells were labeled with
13C-labeled glucose or glutamine for 24 hrs followed by global metabolomics analysis, n = 3 biological replicates per condition. Metabolite
abundance changes were analyzed by the global test (P < 0.05). Metabolites were then evaluated for pathway enrichment using KEGG
pathway analysis and filtered for pathways containing a minimum of four hits. Full datasets in Dataset 1.
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Supporting Figure 3 | CRISPRi ZBTB11 knockdown impacts OXPHOS-related genes. A. ZBTB11-targeting sgRNAs facilitate
CRISPRIi-mediated knockdown of ZBTB11. Cells were treated with 500 ng/ml of doxycycline for 72 hrs to induce Cas9 expression, and
protein levels were quantified by WB. Depicted blots are representative of n = 2 independent experiments. Uncropped blots found in
Source Data. B-E. CRISPRi-mediated knockdown induces downregulation of ZBTB11 and ZBTB11-regulated genes. Cells were treated
with 500 ng/ml of doxycycline for 24 or 72 hrs to induce Cas9 expression, and mRNA levels were quantified by RT-gPCR. Data is depicted
as the average +/- S.D. of n = 3 biological replicates and is normalized to HO vehicle treatment controls.
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Supporting Figure 4 | Characterization of the ZBTB11 degrader pharmacology. A. JWJ-01-306, but not negative controls, degrades
ZBTB11-HiBIiT in sotorasib-resistant MIA PaCa-2 knock-in cells. Cells were treated for 5 hrs with the indicated compound. B. Time-course
ZBTB11-HiBiT degradation. Cells were treated with 10 uM JWJ-01-306 for indicated amount of time, and protein levels were quantified
by western blot. Depicted blots are representative of n = 2 independent experiments. Uncropped blots found in Source Data. C. Cellular
CRBN engagement. HEK293 cells were transiently transfected with NanoLuc-CRBN and treated with the NanoBRET™ Tracer Reagent
and indicated compound for 2 hrs. D. Construct design for ZBTB11 ZF fingerprinting experiments. E-F. ZBTB11 ZF fingerprinting reveals
ZF10 as the primary CRBN target degron. MOLT-4 cell lines with stable expression of the indicated constructs were generated. Cells
were treated with 1 uM screening hit compound ALV-05-184 for 5 hrs. G. Sequence alignment of the ZBTB11 ZF domains and common
IMiD target proteins with CoH,, and CXXCG residues highlighted. H. IKZF1-HiBiT and GSPT1-HiBiT degradation in Jurkat knock-in cells.
Cells were treated for 8 hrs with the indicated compound. A, C, E-F, H. Data is depicted as the average +/- S.D. of n = 3 biological
replicates and is normalized to DMSO vehicle treatment control.
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Supporting Figure 5 | Further characterization of ZBTB11 degrader compound and controls. A. Global proteomics analysis of MIA
PaCa-2 cells treated with 10 yM JWJ-01-368 for 5 hrs. Samples were prepared as n = 3 biological replicates. Full datasets in Dataset 2.
B. ZBTB11-HiBiT degradation by JWJ-01-306 achieves optimal kinetics by 2 hrs. MIA PaCa-2 knock-in cells were treated for the indicated
time. C. ZBTB11-HiBiT protein levels decrease following JWJ-01-306 washout. MIA PaCa-2 knock-in cells were treated for 2 hrs with 10
puM JWJ-01-306, followed by three media washes to remove drug. ZBTB11 levels were evaluated by ZBTB11-HiBiT luminescence assay.
D. Pharmacokinetics of JWJ-01-306 in C57BL/6 mice dosed intraperitoneal with 10 mg/kg JWJ-01-306-HCI. Full datasets in Dataset 3.
B-C. Data is depicted as the average +/- S.D. of n = 3 biological replicates and is normalized to DMSO vehicle treatment control.
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Supporting Figure 6 | Cellular processes targeted by K-Rasi+ZBTB11 degrader combinations in K-Rasi resistant PDAC at 5d.
Sotorasib-resistant MIA PaCa-2 cells were treated with DMSO, 1 yM sotorasib, 10 yM JWJ-01-306, or 1 uM sotorasib + 10 yM JWJ-01-
306 (combo) for 120 hrs followed by global proteomics analysis, n = 3 biological replicates per condition. Protein abundance changes
were analyzed by one-way ANOVA test (FDR < 0.05) and clustered using K-nearest neighbors clustering. Each line within the clusters is
color-coded according to its distance from the cluster center, ranging from purple (close) to light blue (far). Proteins in each cluster were
then evaluated for pathway enrichment using GO and KEGG pathway analysis. Representative pathways are shown and pathways
associated with ZBTB11 function are highlighted in blue text. Full datasets in Dataset 4.
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Supporting Figure 7 | JWJ-01-306 leads to reduction in ZBTB11 downstream mitochondrial proteins. A. Comparison between
MitoCarta 3.0 database and significantly regulated protein hits identified in proteomics reveals enrichment of mitochondria-related
proteins. B. Protein abundances of ZBTB11-regulated targets decrease with treatment of 10 pM JWJ-01-306. Each boxplot represents
the median value, with the bounds indicating the 25" and 75" percentiles. Significance level is marked with asterisks (two-tailed
moderated t-test, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).
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Supporting Figure 8 | JWJ-01-306 combines with K-Ras inhibition to overcome acquired resistance. JWJ-01-306 synergizes with
sotorasib to inhibit proliferation of sotorasib-resistant MIA PaCa-2 cells. Cells were treated with the indicated compounds and cell numbers
were measured using trypan blue exclusion. Data is depicted as the average +/- S.D. of n = 3 biological replicates.
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Supporting Figure 9 | Metabolic reprogramming of parental and K-Ras®'2C inhibitor resistant PDAC cells by ZBTB11 degradation.
A-B, D-E, G-H. ZBTB11 degradation reduces rates of OXPHOS in parental and sotorasib-resistant MIA PaCa-2 cells. C, F, I-J. ZBTB11
degradation induces compensatory genetic upregulation of ZBTB11 and downregulation of ZBTB11-regulated genes in MIA PaCa-2 cells.
K. MSEA identifies the TCA cycle as the major metabolic pathway disrupted by ZBTB11 degradation. Sotorasib-resistant MIA PaCa-2
cells were treated with DMSO or 10 uM JWJ-01-306 for 24 hrs. Cells were then labeled with '*C-labeled glucose or glutamine for an
additional 24 hrs followed by global metabolomics analysis, n = 3 biological replicates per condition. Metabolite abundance changes were
analyzed by the global test (P < 0.05). Metabolites were then evaluated for pathway enrichment using KEGG pathway analysis and filtered
for pathways containing a minimum of four hits. Full datasets in Dataset 5. A-J. Cells were treated with 10 uM of the indicated compound
for 24 hrs. A-B, D-E, G-H. Cellular respiration rates were evaluated in a mitochondrial stress test with the indicated drugs using a Seahorse
analyzer. OCR and ECAR from the mitochondrial stress test were used to calculate ATP production rates. C, F, I. mRNA levels were
quantified by RT-gPCR. Data is depicted as the average +/- S.D. of n = 3 biological replicates and is normalized to DMSO vehicle
treatment controls.
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Supporting Figure 10 | Metabolic reprogramming of parental and K-Ras®'?® inhibitor resistant PDAC cells by ZBTB11
degradation. A-B. ZBTB11 degradation reduces rates of OXPHOS in parental SUIT2 cells. C-D. ZBTB11 degradation induces
compensatory genetic upregulation of ZBTB11 and downregulation of ZBTB11-regulated genes in SUIT2 cells. A-D. Cells were treated
with 10 uM of the indicated compound for 24 hrs. A-B. Cellular respiration rates were evaluated in a mitochondrial stress test with the
indicated drugs using a Seahorse analyzer. OCR and ECAR from the mitochondrial stress test were used to calculate ATP production
rates. C-D. mRNA levels were quantified by RT-gPCR. Data is depicted as the average +/- S.D. of n = 3 biological replicates and is
normalized to DMSO vehicle treatment controls.
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