

1 **Developmental Dynamics** Special Issue

2 *Short communication (Patterns & Phenotypes)*

3

4 **BMP4 regulates asymmetric Pkd2**

5 **distribution in mouse nodal immotile cilia**

6 **and ciliary mechanosensing required for**

7 **left–right determination**

8

9 Takanobu A. Katoh^{1,2,*}, Tim Lange², Yoshiro Nakajima³, Kenta Yashiro³, Yasushi Okada^{1,4,5}, Hiroshi
10 Hamada²

11

12 ¹ Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-
13 0033, Japan

14 ² Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe
15 650-0047, Japan

16 ³Division of Anatomy and Developmental Biology, Department of Anatomy, Kyoto Prefectural
17 University of Medicine, Kyoto 602-8566, Japan

18 ⁴Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita,
19 Osaka, Japan

20 ⁵Department of Physics, Universal Biology Institute and International Research Center for
21 Neurointelligence, The University of Tokyo, Hongo, Tokyo, Japan

22

23 ***Corresponding Author**

24 Takanobu A. Katoh

25 Current affiliation: Department of Cell Biology, Graduate School of Medicine, The University of
26 Tokyo, Tokyo 113-0033, Japan

27 Tel: +81-3-5841-3676

28 E-mail: takanobu.a.katoh@gmail.com

29 **Running Title:**

30 BMP4 regulates cilia Pkd2 distribution

31 **Keywords:**

32 Left-right symmetry breaking

33 Mouse nodal immotile cilia

34 Pkd2

35 STED microscopy

36 Optical tweezers

37 Mechanobiology

38

39 **Grant Sponsor**

40 This study was supported by the FOREST Program (grant no. JPMJFR224N) of the Japan Science
41 and Technology Agency (JST), Grant-in-Aid (grant no. 21K15096, 24K18107, and 24H01270) from
42 the Japan Society for the Promotion of Science (JSPS), RIKEN Special Postdoctoral Researcher
43 Program, The University of Tokyo Excellent Young Researcher Program, Ultrastructure Research
44 Fund from The Japanese Society of Microscopy to T.A.K.; by a grant from the Japan Society for the
45 Promotion of Science (no. 17H01435) to H.H.; by JSPS grants 19H05794, 19H05795 and 22H04926;
46 JST grants JPMJMS2025-14, JPMJCR20E2 to Y.O. This work was supported in part by the
47 University of Tokyo Research Internship Program (UTRIP) 2023 to Y.O.

48 **Conflict of Interest Disclosure**

49 The authors declare no conflicts of interest.

50

51

52

53 Abstract

54

55 Background

56 Mouse nodal immotile cilia mechanically sense the bending direction for left–right (L–R)
57 determination and activate the left-side-specific signaling cascade, leading to increased *Nodal* activity.
58 Asymmetric distribution of Pkd2, a crucial channel for L-R determination, on immotile cilia has been
59 reported recently. However, the causal relationship between the asymmetric Pkd2 distribution and
60 direction-dependent flow sensing is not well understood. Furthermore, the underlying molecular
61 mechanism directing this asymmetric Pkd2 distribution remains unclear.

62 Results

63 The effects of several recombinant proteins and inhibitors on the Pkd2 distribution were analyzed
64 using super-resolution microscopy. Notably, bone morphogenetic protein 4 (BMP4) affected the Pkd2
65 distribution. Additionally, three-dimensional manipulation of nodal immotile cilia using optical
66 tweezers revealed that excess BMP4 caused defects in the mechanosensing ability of the cilia.

67 Conclusions

68 Experimental data together with model calculations suggest that BMP4 regulates the asymmetric
69 distribution of Pkd2 in nodal immotile cilia, thereby affecting the ability of these cilia to sense the
70 bending direction for L–R determination. This study, for the first time, provides insight into the
71 relationship between the asymmetric protein distribution in cilia and their function.

72

73

74 1 Introduction

75 Establishment of left–right asymmetry in vertebrate embryos first occurs in the left–right organizer,
76 known as the node in mice.¹ The node is a small cavity located at the midline and is composed of two
77 types of ciliated cells: pit cells in the central region of the node that possess motile cilia² and generate
78 the leftward nodal flow responsible for establishing left–right determination³ and crown cells in the

79 peripheral region of the node that possess immotile (primary) cilia.⁴ Leftward nodal flow
80 mechanically activates the Pkd2 channel localized on immotile cilia,^{5,6} leading to an increase in the
81 frequency of calcium transients only on the left side of the cilia and cytoplasm.^{7,8} Particularly,
82 leftward nodal flow causes passive mechanical bending of immotile cilia in an asymmetrical manner,
83 wherein the left- and right-side cilia show ventral and dorsal bending, respectively.⁵ A previous
84 experiment involving the artificial manipulation of immotile cilia in three dimensions using optical
85 tweezers revealed that nodal immotile cilia preferentially respond to ventral bending,⁵ in the same
86 bending direction applied to left-side cilia by leftward nodal flow. Therefore, only the left-side
87 immotile cilia are activated by left-ward nodal flow. Activation of left-side immotile cilia induces
88 degradation of *Dand5* mRNA, whose protein acts as an antagonist to *Nodal* and activates left-side-
89 specific *Nodal* activity in crown cells.⁹

90

91 The Pkd2 channel was recently reported to exhibit asymmetric localization on immotile cilia,
92 which may play a crucial role in the initial step of left-right symmetry breaking. Precise measurement
93 of the membrane strain distribution during ventral bending induced by nodal flow suggested a
94 relationship between the preferential response to ventral bending and the asymmetric Pkd2
95 distribution. Notably, passive ventral bending induces an increase in strain on the dorsal side of the
96 cilia, where Pkd2 is preferentially localized.⁵ Therefore, the nodal immotile cilia may specifically
97 sense dorsal bending. Dorsal localization of Pkd2 on cilia may be associated with the dorsoventral
98 (D-V) and/or midline-lateral polarity. The asymmetric distribution of flagellar proteins, such as
99 Hv1,¹⁰ has been reported in human sperm; however, the mechanism by which the asymmetric Pkd2
100 distribution is generated in immotile cilia remains unknown.

101

102 Pit cells, located at the center of the node, exhibit planar cell polarity along the anterior–
103 posterior axis,^{11,12} and play a role in generating leftward nodal flow.^{3,13–15} Although cell polarity along
104 the midline to lateral direction has not been evaluated, some factors exhibit a gradient from the
105 midline to lateral regions. These factors may be involved in regulating the asymmetric distribution of
106 Pkd2. For instance, Noggin and Chordin, an antagonists of bone morphogenetic protein 4 (BMP4),¹⁶
107 are expressed in the node and notochord, whereas BMP4 is expressed in the lateral plate mesoderm
108 (LPM) from the emergence to disappearance of the node. We previously reported that exogenous
109 BMP2 does not significantly affect Pkd2 localization on immotile cilia,⁵ however, BMP4 is expressed
110 in the LPM. The interaction of Noggin and Chordin with BMP4 may generate a concentration
111 gradient. Another potential candidate is the sonic hedgehog (SHH), which is expressed in the node
112 and notochord.¹⁷ SHH, an extracellular protein involved in numerous signaling pathways, may
113 generate a concentration gradient from the node to LPM. Notch2 is expressed near the node, whereas
114 delta-like 1 is expressed in the area surrounding the node.¹⁸ These two genes regulate hair-bundle
115 polarity in lateral-line hair cells.^{19,20} Hence, they may contribute to the establishment of polarity along

116 the midline to lateral direction in crown cells. Furthermore, fibroblast growth factor 8 (FGF8) is
117 expressed in the primitive streak of E7.5 embryos²¹ and may affect D–V polarity. We predicted that
118 these factors establish the concentration gradient and/or polarity responsible for the asymmetric
119 distribution of Pkd2.

120 Additionally, the scaffold protein in cilia may be involved in generating and maintaining the
121 asymmetric distribution of Pkd2. Notably, the Pkd2-mastigoneme complex forms a linear array in
122 *Chlamydomonas*.^{22–24} Although mastigonemes have not been reported in nodal cilia, Pkd2 may require
123 other binding partners and/or scaffolds, such as Inversin. *Inversin* mutant mice exhibit *situs inversus*,²⁵
124 and Inversin, with its compartment composed of a fibrillloid structure, may function as a scaffold.²⁶ In
125 this study, we evaluated the contribution of these factors to the asymmetric distribution of Pkd2. We
126 also examined the relationship between the mechanosensory ability and organized distribution of
127 Pkd2 in mouse nodal immotile cilia.

128 2 Results

129 2.1 Excess BMP4 disrupts correctly organized Pkd2 distribution in 130 nodal immotile cilia

131 We examined whether the candidate factors BMP4, Noggin, Chordin, SHH signaling, Notch
132 signaling, and FGF8 are responsible for the asymmetric distribution of Pkd2. The asymmetric
133 distribution of Pkd2 was evaluated using confocal microscopy with an Airyscan detector after
134 treatment with the candidates. Pkd2 in the nodal immotile cilia was observed using the *NDE2–hsp–*
135 *Pkd2–Venus* transgene,⁶ which is driven by the nodal-specific enhancer (NDE) derived from the
136 mouse *Nodal* gene (Figure 1A). Embryos harboring the transgene were cultured from the late bud
137 (LB) stage, just before the beginning of node formation, to the 0–2 somite stages (ss), which is the
138 period when symmetry breaking occurs, with or without the reagent of interest (Figure 1A). The
139 distance along the *z*-axis between the center of Pkd2 localization and the axoneme, which represents
140 the localization of Pkd2 protein in a cilium, was analyzed using Gaussian fitting (Figure 1B).

141
142 First, we examined the effect of BMP4 signaling by supplementing the medium with
143 recombinant BMP4 or its antagonists, Noggin and Chordin. In embryos treated with 1 µg/mL
144 recombinant BMP4, the distance between the center of cilia and location of Pkd2 in immotile cilia
145 was apparently more polarized (133 ± 122 nm; mean \pm standard deviation) toward the dorsal side
146 compared with that in the control (Figure 1C). In contrast, Pkd2 localization did not significantly
147 differ between the Noggin-treated and control embryos or between the Noggin and Chordin double-
148 treated and control embryos (Figure 1D). We next evaluated the effects of SHH signaling in mutant

149 embryos lacking *Smo*,²⁷ which encodes a G protein-coupled receptor that plays a crucial role in the
150 Hedgehog signaling pathway. Pkd2 localization did not significantly differ between *Smo*^{-/-} mutant and
151 control embryos (Figure 1E, F). Finally, we investigated the involvement of Notch signaling by
152 supplementing the medium with *N*-[*N*-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine *t*-butyl
153 ester (DAPT), a γ -secretase inhibitor. No significant difference was observed in Pkd2 localization
154 between DAPT-treated and control embryos (Figure 1G, H). The effect of FGF signaling was
155 examined by supplementing the medium with recombinant FGF8 or SU5402 (inhibitor of the tyrosine
156 kinase activity of FGF and vascular endothelial growth factor receptors). These treatments did not
157 significantly affect Pkd2 localization (Figure 1I, J).

158 The results, derived from Airyscan images, suggest that an excessive amount of BMP4
159 influences the proper distribution of Pkd2 in immotile cilia, with no involvement of other signaling
160 factors. To confirm the effects of BMP4, Pkd2 localization in immotile cilia was examined using 3D-
161 stimulated emission depletion (STED) microscopy, which achieved a resolution of <100 nm in the *x*,
162 *y*, and *z* directions.²⁸ We determined the angular distribution of Pkd2::Venus protein on the transverse
163 plane of the axoneme by measuring the Venus intensity and angle from the center of gravity of
164 acetylated tubulin (Figure 2A).²⁹ Analysis of the STED images revealed that cilia in BMP4-treated
165 embryos exhibited a significantly biased Pkd2 distribution toward the dorsal side with a D/(D + V)
166 ratio of 0.65 ± 0.14 (*n* = 40; Figure 2B, C) compared with that in the control embryos with a ratio of
167 0.54 ± 0.12 , as previously reported.⁵ In contrast, cilia on Noggin-treated embryos showed an
168 asymmetric distribution with a D/(D + V) ratio of 0.55 ± 0.09 (*n* = 36), which was similar to that in
169 the control (Figure 2B, D).

170 To assess the association between the scaffold protein Inversin in cilia and asymmetric
171 distribution of Pkd2, we used *Inv/Inv* mutant mice. The localization of Pkd2 in immotile cilia was
172 evaluated using STED microscopy, employing the Pkd2 antibody rather than the *Pkd2–Venus*
173 transgene. Cilia on *Inv/Inv* embryos exhibited an asymmetric distribution with a D/(D + V) ratio of
174 0.57 ± 0.10 (*n* = 64), which was similar to that in control embryos with a ratio of 0.54 ± 0.14 , as
175 previously reported⁵ (Figure 2E). These results indicate that excess BMP4 disrupts the correct
176 distribution pattern of Pkd2, inducing a more polarized distribution toward the dorsal side of nodal
177 immotile cilia.

178

179 2.2 Model calculation supports that the BMP4 concentration gradient 180 is involved in an asymmetric Pkd2 distribution

181 We conducted model calculations to determine the effect of BMP4 on Pkd2. Initially, we
182 estimated the concentration gradient of BMP4 in the node of both wild-type (WT) embryos and

183 BMP4-treated embryos (Figure 3A, B). In the WT embryo model, BMP4 was secreted from the left
184 LPM. We set the BMP4 concentration of the LPM as 1 nM; the molecules diffused with a diffusion
185 constant of $3 \mu\text{m}^2/\text{s}$ (Table 1). Nodal immotile cilia were located 120 μm away from the LPM.
186 Despite considering internalization and non-specific degradation, measured as a clearance rate of 8.9
187 $\times 10^{-5}/\text{s}^{30}$ (Table 1), some secreted BMP4 reached the node and generated a concentration gradient
188 (Figure 3C). The estimated BMP4 concentration gradient at the nodal immotile cilia was
189 approximately $0.001 \text{ nM}/\mu\text{m}$ in WT (Figure 3D). In contrast, in the model under BMP4-treated
190 conditions, the node depth was 12 μm , with the immotile cilia 6 μm from the bottom of the node.
191 Considering the BMP4 clearance on the node surface (Table 1), a BMP4 concentration gradient was
192 expected to form along the node depth (Figure 3E). The estimated BMP4 concentration gradient at the
193 nodal immotile cilia was approximately $5.2 \text{ nM}/\mu\text{m}$ under the BMP4-treated condition (Figure 3F).
194 Based on the parameters derived from measurements in previous reports, the BMP4 concentration
195 gradient at the nodal immotile cilia was significantly increased under the BMP4-treated condition.

196 The relationship between the BMP4 concentration gradient and regulation of the Pkd2
197 asymmetric distribution remains unknown. A plausible hypothesis is that the BMP4 concentration
198 influences the Pkd2 distribution by biasing the diffusion of Pkd2 in response to the BMP4
199 concentration gradient. In this hypothetical model, when the BMP4 concentration decreased toward
200 the center (bottom) of the node, Pkd2 molecules exhibited biased diffusion, showing preferential
201 movement toward the dorsal side. We chose ‘S’ (sensitivity of BMP4 concentration gradient for
202 regulation of Pkd2 distribution; Table 1) as a model parameter to match the experimental values (see
203 Methods). Through this parameter adjustment, the model successfully reproduced the Pkd2
204 asymmetric distribution observed in the experimental data (Figure 3D, F). These models indicate that
205 the BMP4 concentration gradient influences the generation of the asymmetric Pkd2 distribution
206 (Figure 3A, B).

207

208 2.3 Excess BMP4 disrupts the calcium response in crown cells 209 triggered by mechanical stimuli to the cilium

210 To examine the relationship between the asymmetric Pkd2 distribution and its ability to sense the
211 bending direction of immotile cilia, we used optical tweezers to manipulate individual immotile cilia
212 and simultaneously measure the calcium response in the cytoplasm of crown cells.⁵ Briefly, *iv/iv*
213 embryos harboring the *NDE4-hsp-5HT₆-GCaMP6-2A-5HT₆-mCherry*^{5,7} and *NDE4-hsp-GCaMP6*⁵
214 transgenes were cultured from the LB to 0–2 ss in the presence of recombinant BMP4 or Noggin
215 protein (Figure 4A). The frequency of calcium transients in the cytoplasm was assessed while
216 applying dorsal and ventral bending of the cilium using a 3.5- μm -diameter bead trapped using optical

217 tweezers^{5,29,31} (Figure 4A). Immotile cilia in the left–right organizer of mouse⁵ and zebrafish³²
218 embryos function as mechanosensors. Furthermore, in mouse embryos, these immotile cilia
219 preferentially sense ventral bending.⁵ We postulated that the asymmetric distribution of Pkd2 is
220 associated with this directional sensing of bending.

221 In BMP4-treated embryos, crown cells exhibited intrinsic calcium oscillations, as previously
222 reported^{5,7,8}; however, the calcium frequency under dorsal or ventral bending was not significantly
223 increased compared with that before applying mechanical stimuli (Figure 4B). This result indicates
224 that nodal immotile cilia did not respond to mechanical stimuli under treatment with excess BMP4. In
225 contrast, in Noggin-treated embryos, the calcium frequency was significantly increased under ventral
226 bending compared with that under dorsal bending or before applying mechanical stimuli (Figure 4C),
227 similarly to in the WT embryos, as previously reported.⁵ Therefore, Noggin-treated cilia retained the
228 ability to sense the bending direction, whereas BMP4-treated cilia lost their mechanosensing ability.
229 Hence, correctly organized asymmetric distribution of Pkd2 in cilia may be crucial for sensing the
230 bending direction as well as for mechanosensing ability.

231 3 Discussion

232 BMP4 functions in left–right determination within the context of Nodal expression in the LPM. When
233 left-sided-specific Nodal activation occurs at the node, the signal is transmitted to the LPM.³³ In the
234 LPM, a self-enhancement and lateral-inhibition system involving Nodal and Lefty maintains robust
235 Nodal expression.³⁴ As BMP signaling represses Nodal expression in the LPM, the antagonism of
236 BMP by Noggin and Chordin in the left LPM relieves the repressive effects of BMP on Nodal
237 expression. Therefore, the asymmetric BMP signal distribution is involved in maintaining left–right
238 asymmetric Nodal expression in the LPM.¹⁶ In this study, we observed an additional role for BMP4 in
239 left–right determination. Notably, a specific concentration gradient of BMP4 is necessary to generate
240 a correctly organized asymmetric distribution of Pkd2 on cilia, thus affecting their mechanosensing
241 ability. The precise mechanism underlying regulation of the Pkd2 distribution by the BMP4
242 concentration remains unknown; however, cilia or the apical surface of crown cells may sense the
243 BMP4 concentration gradient along the D–V axis, which would place Pkd2 molecules away from the
244 higher BMP4 concentration (Figure 3A, B), bringing more Pkd2 molecules to the dorsal side. In
245 contrast, Inversin, the scaffold protein in cilia, is not involved in generating the asymmetric Pkd2
246 distribution.

247 The model calculation explained why Pkd2 distribution was more polarized toward the dorsal
248 side in the presence of excess BMP4. However, the biophysical mechanism underlying detection of
249 the BMP4 concentration gradient, particularly sensing of the shallow gradient of 0.001 nM/μm in the
250 WT embryos, remains unknown. Based on studies of the physics of chemoreception in

251 microorganisms,³⁵ sensing through the cell surface or a multicellular system coupled with sufficient
252 observation (integral) time is a more plausible mechanism than a simple receptor-based sensing
253 system within cilia. Notably, node emergence and ciliogenesis occur during the mid-streak to late
254 streak stages.³⁶ In contrast, BMP4 expression begins in the extra-embryonic mesoderm before node
255 emergence and later detected in the posterior primitive streak and LPM at embryonic day 7.5^{16,37,38}.
256 Based on these reports, the BMP4 concentration gradient may emerge prior to node formation.
257 Subsequently, during ciliogenesis and by utilizing this BMP4 concentration gradient, Pkd2 may
258 gradually be asymmetrically distributed over time.

259 The molecular pathway responsible for regulating the Pkd2 distribution via the BMP4
260 concentration gradient requires further analysis. Particularly, the reasons why Noggin and Chordin did
261 not affect the Pkd2 distribution remain unclear. Dand5, which is expressed in the crown cells and
262 functions as an antagonist of BMP4, may lead to these effects. However, to establish a robust
263 concentration gradient along the midline–lateral direction, BMP4 should antagonize a molecule
264 expressed in the center of the node, such as those found in pit cells. Another possibility is the
265 compensatory effect of BMPs, as BMPs exhibit considerable overlap in receptor-binding specificity.
266 For instance, both BMP4 and BMP6 bind to BMP receptor-II.³⁹ Notably, Noggin showed a stronger
267 inhibitory effect on BMP4 than on BMP6 in receptor binding⁴⁰. Following Noggin treatment, other
268 BMPs, such as BMP6, may compensate for the function of BMP4. BMP6 is expressed in the yolk sac
269 endoderm and anterior cardiogenic mesoderm on embryonic day 7.0 in mouse embryos,⁴¹ suggesting
270 that it plays a role in generating concentration gradients from the lateral side of the embryo to the
271 node. Pkd2 is trafficked to the cilia through its C-terminus, where it interacts with PKD1. Notably,
272 Pkd1 harbors a cilia-targeting sequence at its C-terminus⁴². However, the precise mechanism by which
273 the BMP4 concentration gradient regulates the Pkd2 distribution remains unclear. Certain molecules
274 capable of sensing BMP4 may be involved in regulating the asymmetric Pkd2 distribution. To identify
275 proteins that may interact with BMP4, we conducted a search using BioGRID,⁴³ focusing on ciliary
276 proteins,^{44–46} and identified the following nine candidates: CACL, MAP4, RPL4, RPL7, RPL9,
277 RPL12, RPL18, RPL21, and SYNCRIIP. SUFU was excluded from the list because *Smo* was not
278 involved in regulating the Pkd2 distribution (Figure 1F). These nine candidates may be involved in
279 regulating the Pkd2 distribution. Furthermore, BMP receptors are localized at the base of osteoblast
280 cilia.⁴⁷ Although the expression of these candidates in nodal immotile cilia has not been evaluated,
281 they may be involved in regulating the asymmetric distribution of Pkd2.

282 Our data demonstrate that an organized asymmetric Pkd2 distribution is necessary for the
283 mechanosensing ability of nodal immotile cilia. However, the exact mechanism of bending-direction
284 sensing using dorsally localized Pkd2 remains unknown. We induced excessive dorsal localization of
285 Pkd2 via BMP4 treatment. We hypothesized that the cilia exhibit an exaggerated response to ventral
286 bending, based on our previous study, as excessive dorsal localization of Pkd2 may be more sensitive
287 to the increase in membrane tension on the dorsal side of the cilia caused by ventral bending.

288 However, we found that the cilia lost their mechanosensing ability rather than exhibiting an
289 exaggerated response to ventral bending. The reason for this loss of mechanosensing ability in cilia
290 under BMP4 treatment requires further analysis. However, this may be attributed to the loss of the
291 mechanosensing function of Pkd2. Pkd2 functions by forming a heterocomplex with Pkd111 in the
292 nodal immotile cilia.^{48,49} Excessively polarized localization of Pkd2 may prevent the correct formation
293 of a complex with Pkd111 in the cilia. Considering the report on the Pkd2–mastigoneme complex in
294 *Chlamydomonas*,^{22–24} Pkd2 may require other binding partners and/or scaffolds, such as Inversin,^{25,26}
295 for its mechanosensing function, although Inversin was not involved in generating the asymmetric
296 Pkd2 distribution (Figure 2E). Notably, excessive BMP4 may affect these interactions. Another
297 possibility is that excessive BMP4 may disrupt signal transduction from the cilia to the cytoplasm. We
298 previously reported that calcium transients in cilia trigger calcium release from the endoplasmic
299 reticulum, which is abundant in the apical region of crown cells, in an IP3 receptor-dependent
300 manner.⁷ This cascade then activates *Dand5* mRNA degradation, ultimately establishing left–right
301 asymmetry^{7,9}. Although reports on the effect of BMP4 on this cascade remain lacking, BMP4 may
302 disrupt signal transduction through this pathway. Further studies are needed to understand the
303 molecular mechanism underlying the establishment of the organized polarized Pkd2 distribution based
304 on the BMP4 concentration gradient.

305

306 4 Experimental Procedures

307 4.1 Mice and transgenes

308 *Smo*^{+/−} mice (strain B6(D2)-Smo<Rgsc2073>) were obtained from the Riken Bioresource Center
309 (Ibaraki, Japan). Transgenic mouse lines harboring *NDE2-hsp-Pkd2-Venus*⁶, *NDE4-hsp-GCaMP6-*
310 *pA*⁵, and *NDE4-hsp-5HT6-GCaMP6-2A-5HT6-mCherry*⁷ were previously reported. *Inv/Inv* mutant
311 mice were previously reported²⁵. All animal experiments were approved by the Institutional Animal
312 Care and Use Committee of the RIKEN Kobe Branch and Committee for Animal Research of Kyoto
313 Prefectural University of Medicine.

314 4.2 Embryo culture

315 Mouse embryos were collected on embryonic day 7.5 in HEPES-buffered Dulbecco's modified
316 Eagle's medium (DMEM, pH 7.2). Embryos at the LB stage were selected and cultured using the
317 roller culture method at 5% CO₂ and 37 °C in 50-mL tubes containing DMEM supplemented with
318 75% rat serum. Agents were added to the medium at final concentrations of 1 µg/mL for BMP4

319 treatment (314-BP; R&D Systems, Minneapolis, MN, USA), 1% v/v of 4 mM HCl containing 0.1%
320 bovine serum albumin (BSA; A3311; Sigma-Aldrich, St. Louis, MO, USA) as the control of BMP4
321 treatment, 1 μ g/mL for Noggin treatment (1967-NG; R&D Systems), 1% v/v of phosphate-buffered
322 saline (PBS) containing 0.1% BSA as the control of Noggin treatment, 1 μ g/mL Noggin and 1 μ g/mL
323 Chordin as double treatment (758-CN; R&D Systems), 2% v/v of PBS containing 0.1% BSA as the
324 control Noggin and Chordin double treatment, 200 μ M for DAPT (AG-CR1-0016; AdipoGen, San
325 Diego, CA, USA), 25 μ M for SU5402 (CS-0200; ChemScene, Monmouth Junction, NJ, USA),
326 0.4325% dimethyl sulfoxide (276855; Sigma-Aldrich) as the control of DAPT treatment or SU5402
327 treatment, and 1 μ g/mL for FGF-8b (423-F8; R&D Systems), 0.5% v/v of PBS containing 0.1% BSA
328 as the control of FGF-8b treatment.
329

330 4.3 Analysis of Pkd2 localization in immotile cilia

331 Pkd2 localization in immotile cilia was analyzed as previously described.^{5,29} After roller culture, the
332 embryos were washed with PBS. Immunostaining was performed as previously described.^{5,29} Anti-
333 acetylated tubulin (1:200 dilution; T6793; Sigma-Aldrich) and anti-green fluorescent protein (1:200
334 dilution; ab13970; Abcam, Cambridge, UK) primary antibodies were used. The pair of secondary
335 antibodies used were anti-chick and anti-mouse conjugated either with AlexaFluor Plus 488 (1:200
336 dilution; A32931; Invitrogen, Carlsbad, CA, USA) and AlexaFluor Plus 555 (1:200 dilution; A32727;
337 Invitrogen) for Airyscan observation or STAR ORANGE (1:200 dilution; anti-chick; Abberior,
338 Göttingen, Germany) and STAR RED (1:200 dilution; anti-mouse; Abberior) for STED observation.

339 The nodes were observed using a Zeiss LSM 880 (Oberkochen, Germany) with an Airyscan
340 confocal microscope equipped with 100 \times (alpha-Plan-APOCHROMAT 100 Oil for SR 1.46 N.A.)
341 lenses. For accurate measurement, the treatment and control embryos were alternately measured with
342 in the same experiment set. 3D images were recorded with 2 \times 2 tiling and depth along the z-axis of
343 168 nm. After Airyscan processing, the distance along the z-axis between the centers of the red and
344 green channels was measured via Gaussian fitting with a fitting error of $\sigma < 20$ nm, as previously
345 described.⁵ 3D-STED imaging was performed using an Infinity instrument (Abberior) equipped with a
346 60 \times lens (UPLXAPO60XO 1.4 N.A.; Olympus, Tokyo, Japan) as previously described.^{5,29} Image
347 processing and analysis of the angular distribution of the intensity of Pkd2 signals were conducted as
348 previously described.^{5,29} For *Inv/Inv* embryos, we used a Pkd2 antibody (1:50 dilution; sc-28331,
349 Santa Cruz Biotechnology, Dallas, TX, USA) for immunostaining, as previously reported.⁵
350

351 4.4 Manipulation of cilia using optical tweezers and analysis of
352 calcium transients

353 A distal portion of each embryo including the node after roller culture with agents was excised, placed
354 in a chamber consisting of a glass slide fitted with a thick silicone rubber spacer (thickness: 400 μm),
355 covered with a coverslip (No.1S; Matsunami), and incubated at 5% CO₂ and 37 °C in FluoroBrite
356 DMEM (A1896701; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 75% rat
357 serum and agents. The experiment using optical tweezers⁵⁰ was performed using an IX83/CSU-W1
358 microscope equipped with a 60 \times lens (UPLSAPO 60XW 1.2 N.A.; Olympus), single-mode fiber laser
359 (wavelength of 1064 nm; YLR-5-1064-LP-SF; IPG Photonics, Novi, MI, USA), and filter set
360 (ZT1064rdc-sp-UF3, Chroma Technology, Bellows Falls, VT, USA and SIX870; Asahi, Tokyo,
361 Japan) as previously described.^{5,29}

362

363 4.5 Model and numerical simulations

364 Diffusion of BMP4 was calculated using the following equation:

$$365 \frac{\partial B}{\partial t} = D_B \frac{\partial^2}{\partial x^2} B - \lambda B$$

366 where B , λ , and D_B represent the concentration, degradation constant, and diffusion constant of
367 BMP4, respectively. As values for λ and D_B , we used reported values obtained for BMP2b in
368 zebrafish embryos.³⁰ Although the precise concentration of B in the LPM of WT embryos was
369 unknown, it was estimated to be approximately the order of 1 nM. The values of each parameter are
370 listed in Table 1. The geometric configurations of the models are illustrated in Figure 3C for WT
371 embryos and Figure 3E for BMP4-treated embryos. In the model, the concentration of B at $x = 0$ was
372 fixed at 1 nM for the WT and 30 μM (1 $\mu\text{g/mL}$) for the BMP4-treated condition. The initial
373 concentration of BMP4 was 0, except where at $x = 0$. The boundary conditions were defined by the
374 no-flux condition at the center of the node (L) for the WT and at the bottom of the node (L) for the
375 BMP4-treated condition: $\nabla B|_{x=L} = 0$. For numerical simulations of the model, we used the Crank–
376 Nicolson scheme with 751 grids for WT and 61 grids for BMP4-treated condition (grid width, 200
377 nm) and a constant time step of $\Delta t = 0.001\text{s}$.

378 The distribution of Pkd2 molecules in the cilium was modeled by simulating the diffusion of
379 individual Pkd2 molecules along the x -axis, representing the dorsoventral (transverse) axis of the
380 cilium, with the diffusion constant D_{Pkd} . The cilium was divided into 10 steps (width of each step,
381 0.1, corresponding to 20 nm) along the x -axis, and each Pkd2 molecule was moved with the following
382 probabilities:

383
$$\text{Step size} = \begin{cases} +0.1 & \dots \text{Probability: } p - p \times S \times \partial B(t)/\partial x|_{x=\text{location of cilium}} \\ -0.1 & \dots \text{Probability: } p + p \times S \times \partial B(t)/\partial x|_{x=\text{location of cilium}} \\ 0 & \dots \text{Probability: } 1 - 2p \end{cases}$$

384 where $p = \Delta t \times D_{Pkd}/(\text{step size})^2$ and S is the sensitivity of BMP4 concentration gradient for Pkd2
385 distribution regulation. When the BMP4 concentration gradient ($\partial B(t)/\partial x$) was 0, indicating the
386 absence of a BMP4 concentration gradient, Pkd2 molecules exhibited free diffusion. In contrast, when
387 $\partial B(t)/\partial x$ was a negative value, indicating a decrease in the BMP4 concentration toward the center
388 (bottom) of the node, Pkd2 molecules showed biased diffusion toward the dorsal side depending on
389 the parameter, S . The diffusion constant of Pkd2 within cilia was approximated using the value of
390 PTCH1.⁵¹ The parameter S was selected to ensure that the model replicated the observed asymmetric
391 Pkd2 distribution observed via STED microscopy. The boundary conditions were defined by the
392 reflective conditions at both the dorsal and ventral edges of the cilium. For numerical simulations, 100
393 Pkd2 molecules were initially located at the center of the cilia and then diffused according to the
394 model, and the positions of these molecules during 4500–5000 s (for WT; Figure 3D) and 3100–3600
395 s (for the BMP4-treated condition; Figure 3F) were plotted as the D/(D + V) ratio.
396
397

398 4.6 Statistical analysis

399 Statistical analysis and graph preparation were performed using IgorPro 8 (WaveMetrics, Portland,
400 OR, USA). Three-dimensional reconstructed images were generated using Imaris software (Oxford
401 Instruments, Oxford, UK). All statistical tests are described in the figure legends. $P < 0.05$ was
402 considered statistically significant.
403

404 Acknowledgments

405 We would like to thank X. Sai, S. Hiver, Y. Ikawa, and H. Nishimura for providing assistance with
406 the mouse embryo experiments, H.Y. Liu and S. Orii for help with STED image analysis; and T.
407 Furuya for secretarial assistance. Additionally, we would like to thank K. Kawaguchi and members of
408 his laboratory, as well as the members of the Okada laboratory, for their helpful discussion.
409
410

411 References

412

413 1. Hamada H. Molecular and cellular basis of left-right asymmetry in vertebrates. *Proc*
414 *Jpn Acad Ser B*. 2020;96(7):273-296. <https://doi.org/10.2183/pjab.96.021>

415 2. Nonaka S, Tanaka Y, Okada Y, et al. Randomization of Left-Right Asymmetry due to
416 Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking
417 KIF3B Motor Protein. *Cell*. 1998;95(6):829-837. <https://doi.org/10.1016/S0092->
418 8674(00)81705-5

419 3. Okada Y, Takeda S, Tanaka Y, Belmonte JCI, Hirokawa N. Mechanism of Nodal
420 Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination. *Cell*.
421 2005;121(4):633-644. <https://doi.org/10.1016/j.cell.2005.04.008>

422 4. McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two Populations of Node
423 Monocilia Initiate Left-Right Asymmetry in the Mouse. *Cell*. 2003;114(1):61-73.
424 [https://doi.org/10.1016/S0092-8674\(03\)00511-7](https://doi.org/10.1016/S0092-8674(03)00511-7)

425 5. Katoh TA, Omori T, Mizuno K, et al. Immotile cilia mechanically sense the direction of
426 fluid flow for left-right determination. *Science*. 2023;379(6627):66-71.
427 <https://doi.org/10.1126/science.abq8148>

428 6. Yoshioka S, Shiratori H, Kuo IY, et al. Cilia at the Node of Mouse Embryos Sense
429 Fluid Flow for Left-Right Determination via Pkd2. *Science*. 2012;338(6104):226-231.
430 <https://doi.org/10.1126/science.1222538>

431 7. Mizuno K, Shiozawa K, Katoh TA, et al. Role of Ca²⁺ transients at the node of the
432 mouse embryo in breaking of left-right symmetry. *Sci Adv*. 2020;6(30):eaba1195.
433 <https://doi.org/10.1126/sciadv.aba1195>

434 8. Takao D, Nemoto T, Abe T, et al. Asymmetric distribution of dynamic calcium signals
435 in the node of mouse embryo during left-right axis formation. *Dev Biol*. 2013;376(1):23-30.
436 <https://doi.org/10.1016/j.ydbio.2013.01.018>

437 9. Minegishi K, Rothé B, Komatsu KR, et al. Fluid flow-induced left-right asymmetric
438 decay of Dand5 mRNA in the mouse embryo requires a Bicc1-Ccr4 RNA degradation
439 complex. *Nat Commun*. 2021;12(1):4071. <https://doi.org/10.1038/s41467-021-24295-2>

440 10. Miller MR, Kenny SJ, Mannowetz N, et al. Asymmetrically Positioned Flagellar
441 Control Units Regulate Human Sperm Rotation. *Cell Rep*. 2018;24(10):2606-2613.
442 <https://doi.org/10.1016/j.celrep.2018.08.016>

443 11. Hashimoto M, Shinohara K, Wang J, et al. Planar polarization of node cells
444 determines the rotational axis of node cilia. *Nat Cell Biol*. 2010;12(2):170-176.
445 <https://doi.org/10.1038/ncb2020>

446 12. Song H, Hu J, Chen W, et al. Planar cell polarity breaks bilateral symmetry by
447 controlling ciliary positioning. *Nature*. 2010;466(7304):378-382.
448 <https://doi.org/10.1038/nature09129>

449 13. Cartwright JHE, Piro O, Tuval I. Fluid-dynamical basis of the embryonic development
450 of left-right asymmetry in vertebrates. *Proc Natl Acad Sci*. 2004;101(19):7234-7239.
451 <https://doi.org/10.1073/pnas.0402001101>

452 14. Nonaka S, Yoshioka S, Watanabe D, et al. De Novo Formation of Left-Right
453 Asymmetry by Posterior Tilt of Nodal Cilia. *PLOS Biol*. 2005;3(8):e268.
454 <https://doi.org/10.1371/journal.pbio.0030268>

455 15. Sai X, Ikawa Y, Nishimura H, et al. Planar cell polarity-dependent asymmetric
456 organization of microtubules for polarized positioning of the basal body in node cells.
457 *Development*. 2022;149(9):dev200315. <https://doi.org/10.1242/dev.200315>

458 16. Mine N, Anderson RM, Klingensmith J. BMP antagonism is required in both the node
459 and lateral plate mesoderm for mammalian left-right axis establishment. *Development*.
460 2008;135(14):2425-2434. <https://doi.org/10.1242/dev.018986>

461 17. Tsukui T, Capdevila J, Tamura K, et al. Multiple left-right asymmetry defects in
462 Shh-/- mutant mice unveil a convergence of the Shh and retinoic acid pathways in the
463 control of Lefty-1. *Proc Natl Acad Sci*. 1999;96(20):11376-11381.
464 <https://doi.org/10.1073/pnas.96.20.11376>

465 18. Krebs LT, Iwai N, Nonaka S, et al. Notch signaling regulates left-right asymmetry
466 determination by inducing Nodal expression. *Genes Dev*. 2003;17(10):1207-1212.
467 <https://doi.org/10.1101/gad.1084703>

468 19. Jacobo A, Dasgupta A, Erzberger A, Siletti K, Hudspeth AJ. Notch-Mediated
469 Determination of Hair-Bundle Polarity in Mechanosensory Hair Cells of the Zebrafish Lateral
470 Line. *Curr Biol*. 2019;29(21):3579-3587.e7. <https://doi.org/10.1016/j.cub.2019.08.060>

471 20. Jiang T, Kindt K, Wu DK. Transcription factor Emx2 controls stereociliary bundle
472 orientation of sensory hair cells. Nathans J, ed. *eLife*. 2017;6:e23661.
473 <https://doi.org/10.7554/eLife.23661>

474 21. Crossley PH, Martin GR. The mouse Fgf8 gene encodes a family of polypeptides and
475 is expressed in regions that direct outgrowth and patterning in the developing embryo.
476 *Development*. 1995;121(2):439-451. <https://doi.org/10.1242/dev.121.2.439>

477 22. Dai J, Ma M, Niu Q, et al. Mastigoneme structure reveals insights into the O-linked
478 glycosylation code of native hydroxyproline-rich helices. *Cell*. 2024;0(0).
479 <https://doi.org/10.1016/j.cell.2024.03.005>

480 23. Das P, Mekonnen B, Alkhofash R, et al. The Small Interactor of PKD2 protein
481 promotes the assembly and ciliary entry of the Chlamydomonas PKD2-mastigoneme
482 complexes. *J Cell Sci*. 2024;137(1):jcs261497. <https://doi.org/10.1242/jcs.261497>

483 24. Liu P, Lou X, Wingfield JL, Lin J, Nicastro D, Lechtreck K. Chlamydomonas PKD2
484 organizes mastigonemes, hair-like glycoprotein polymers on cilia. *J Cell Biol*.
485 2020;219(6):e202001122. <https://doi.org/10.1083/jcb.202001122>

486 25. Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FFB, Overbeek PA.
487 Reversal of Left-Right Asymmetry: a Situs Inversus Mutation. *Science*. 1993;260(5108):679-
488 682. <https://doi.org/10.1126/science.8480178>

489 26. Bennett HW, Gustavsson AK, Bayas CA, et al. Novel fibrillar structure in the inversin
490 compartment of primary cilia revealed by 3D single-molecule superresolution microscopy.
491 *Mol Biol Cell*. 2020;31(7):619-639. <https://doi.org/10.1091/mbc.E19-09-0499>

492 27. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened Mutants Reveal
493 Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the
494 Mouse Node. *Cell*. 2001;105(6):781-792. [https://doi.org/10.1016/S0092-8674\(01\)00385-3](https://doi.org/10.1016/S0092-8674(01)00385-3)

495 28. Vicedomini G, Moneron G, Han KY, et al. Sharper low-power STED nanoscopy by
496 time gating. *Nat Methods*. 2011;8(7):571-573. <https://doi.org/10.1038/nmeth.1624>

497 29. Katoh TA, Omori T, Ishikawa T, Okada Y, Hamada H. Biophysical Analysis of
498 Mechanical Signals in Immotile Cilia of Mouse Embryonic Nodes Using Advanced
499 Microscopic Techniques. *Bio-Protoc*. 2023;13(14):e4715.
500 <https://doi.org/10.21769/BioProtoc.4715>

501 30. Pomreinke AP, Soh GH, Rogers KW, Bergmann JK, Bläßle AJ, Müller P. Dynamics
502 of BMP signaling and distribution during zebrafish dorsal-ventral patterning. Yelon D, ed.
503 *eLife*. 2017;6:e25861. <https://doi.org/10.7554/eLife.25861>

504 31. Katoh TA, Ikegami K, Uchida N, et al. Three-dimensional tracking of microbeads
505 attached to the tip of single isolated tracheal cilia beating under external load. *Sci Rep.*
506 2018;8(1):15562. <https://doi.org/10.1038/s41598-018-33846-5>

507 32. Djenoune L, Mahamdeh M, Truong TV, et al. Cilia function as calcium-mediated
508 mechanosensors that instruct left-right asymmetry. *Science*. 2023;379(6627):71-78.
<https://doi.org/10.1126/science.abq7317>

510 33. Oki S, Hashimoto R, Okui Y, et al. Sulfated glycosaminoglycans are necessary for
511 Nodal signal transmission from the node to the left lateral plate in the mouse embryo.
512 *Development*. 2007;134(21):3893-3904. <https://doi.org/10.1242/dev.009464>

513 34. Nakamura T, Mine N, Nakaguchi E, et al. Generation of Robust Left-Right
514 Asymmetry in the Mouse Embryo Requires a Self-Enhancement and Lateral-Inhibition
515 System. *Dev Cell*. 2006;11(4):495-504. <https://doi.org/10.1016/j.devcel.2006.08.002>

516 35. Berg HC, Purcell EM. Physics of chemoreception. *Biophys J*. 1977;20(2):193-219.
[https://doi.org/10.1016/S0006-3495\(77\)85544-6](https://doi.org/10.1016/S0006-3495(77)85544-6)

518 36. Sulik K, Dehart DB, Inagaki T, et al. Morphogenesis of the murine node and
519 notochordal plate. *Dev Dyn*. 1994;201(3):260-278. <https://doi.org/10.1002/aja.1002010309>

520 37. Lawson KA, Dunn NR, Roelen BAJ, et al. Bmp4 is required for the generation of
521 primordial germ cells in the mouse embryo. *Genes Dev*. 1999;13(4):424-436.

522 38. Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is
523 required for mesoderm formation and patterning in the mouse. *Genes Dev*. 1995;9(17):2105-
524 2116. <https://doi.org/10.1101/gad.9.17.2105>

525 39. Krause C, Guzman A, Knaus P. Noggin. *Int J Biochem Cell Biol*. 2011;43(4):478-481.
<https://doi.org/10.1016/j.biocel.2011.01.007>

527 40. Song K, Krause C, Shi S, et al. Identification of a Key Residue Mediating Bone
528 Morphogenetic Protein (BMP)-6 Resistance to Noggin Inhibition Allows for Engineered
529 BMPs with Superior Agonist Activity*. *J Biol Chem*. 2010;285(16):12169-12180.
<https://doi.org/10.1074/jbc.M109.087197>

531 41. Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 Are Required for Cushion
532 Formation and Septation in the Developing Mouse Heart. *Dev Biol*. 2001;235(2):449-466.
<https://doi.org/10.1006/dbio.2001.0284>

534 42. Su X, Wu M, Yao G, et al. Regulation of polycystin-1 ciliary trafficking by motifs at its
535 C-terminus and polycystin-2 but not by cleavage at the GPS site. *J Cell Sci*.
536 2015;128(22):4063-4073. <https://doi.org/10.1242/jcs.160556>

537 43. Oughtred R, Rust J, Chang C, et al. The BioGRID database: A comprehensive
538 biomedical resource of curated protein, genetic, and chemical interactions. *Protein Sci*.
539 2021;30(1):187-200. <https://doi.org/10.1002/pro.3978>

540 44. Ishikawa H, Thompson J, Yates JR, Marshall WF. Proteomic Analysis of Mammalian
541 Primary Cilia. *Curr Biol*. 2012;22(5):414-419. <https://doi.org/10.1016/j.cub.2012.01.031>

542 45. May EA, Kalocsay M, D'Auriac IG, et al. Time-resolved proteomics profiling of the
543 ciliary Hedgehog response. *J Cell Biol*. 2021;220(5):e202007207.
<https://doi.org/10.1083/jcb.202007207>

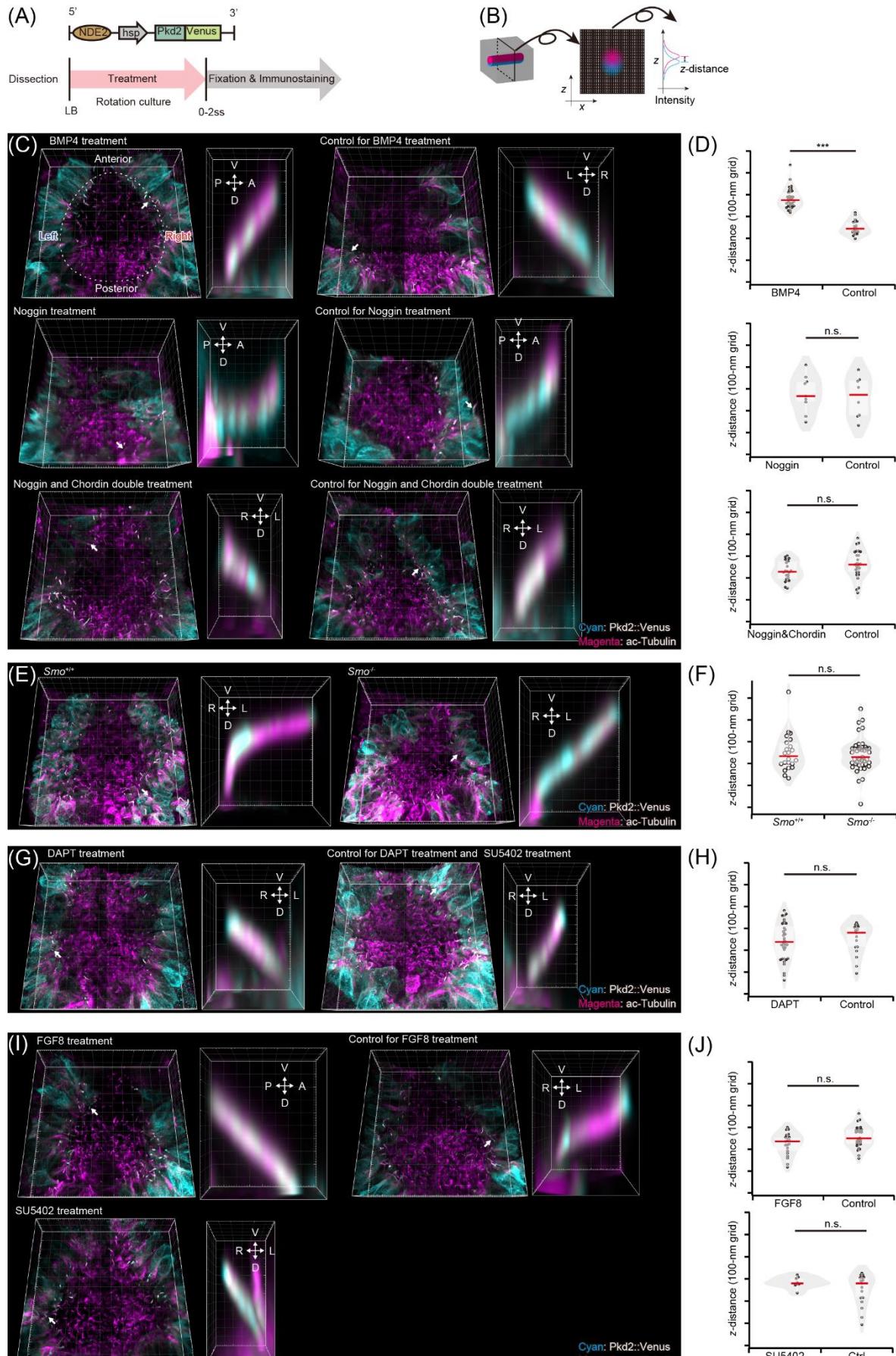
545 46. Mick DU, Rodrigues RB, Leib RD, et al. Proteomics of Primary Cilia by Proximity
546 Labeling. *Dev Cell*. 2015;35(4):497-512. <https://doi.org/10.1016/j.devcel.2015.10.015>

547 47. Xie YF, Shi WG, Zhou J, et al. Pulsed electromagnetic fields stimulate osteogenic
548 differentiation and maturation of osteoblasts by upregulating the expression of BMPRII

549 localized at the base of primary cilium. *Bone*. 2016;93:22-32.
550 <https://doi.org/10.1016/j.bone.2016.09.008>

551 48. Field S, Riley KL, Grimes DT, et al. Pkd1l1 establishes left-right asymmetry and
552 physically interacts with Pkd2. *Development*. 2011;138(6):1131-1142.
553 <https://doi.org/10.1242/dev.058149>

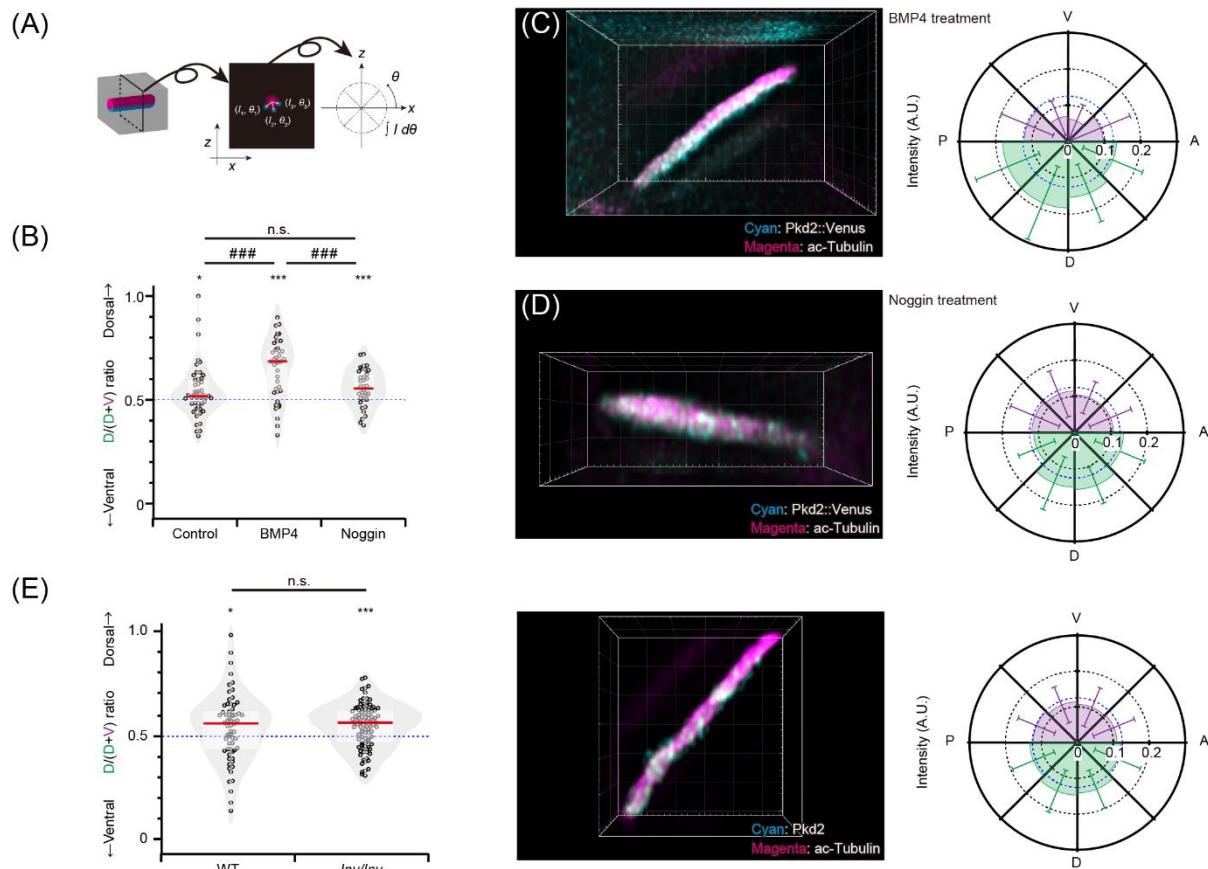
554 49. Grimes DT, Keynton JL, Buenavista MT, et al. Genetic Analysis Reveals a Hierarchy
555 of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function
556 during Left-Right Determination. *PLOS Genet*. 2016;12(6):e1006070.
557 <https://doi.org/10.1371/journal.pgen.1006070>


558 50. Katoh TA, Fukai YT, Ishibashi T. Optical microscopic imaging, manipulation, and
559 analysis methods for morphogenesis research. *Microscopy*. Published online December 15,
560 2023:dfad059. <https://doi.org/10.1093/jmicro/dfad059>

561 51. Weiss LE, Milenkovic L, Yoon J, Stearns T, Moerner WE. Motional dynamics of
562 single Patched1 molecules in cilia are controlled by Hedgehog and cholesterol. *Proc Natl
563 Acad Sci*. 2019;116(12):5550-5557. <https://doi.org/10.1073/pnas.1816747116>

564

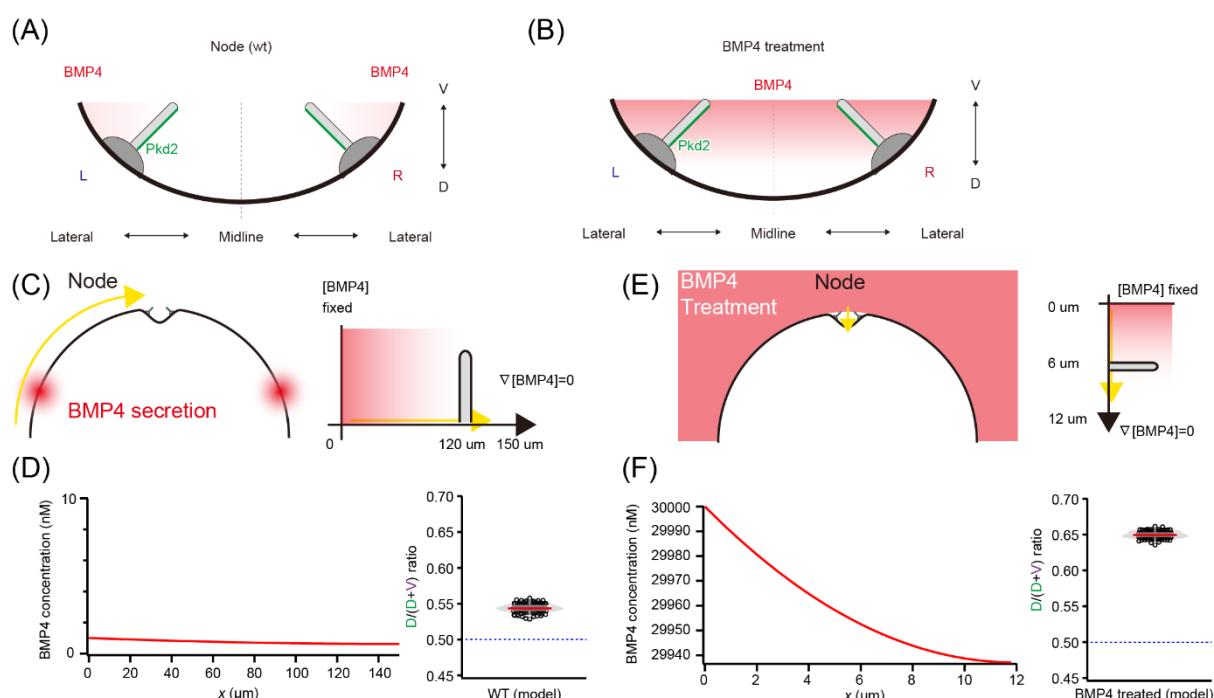
565


566 Figure Legends

568 **Figure 1. Pkd2 distribution in immotile cilia in the presence of various recombinant proteins**
569 **and inhibitors and mutant embryos.**

570 (A) Wild-type mouse embryo harboring the *NDE2-hsp-Pkd2-Venus* transgene was cultured in agent-
571 containing medium from the late bud (LB) stage to 0–2 somite stages (ss). The embryos were fixed
572 with paraformaldehyde and immunostained with the Pkd2::Venus fusion protein and acetylated
573 tubulin. Nodal immotile cilia were observed using a confocal microscope equipped with an Airyscan
574 detector and 100× objective. (B) Distance between the centers of the red and green channels along the
575 z-axis was measured via one-dimensional Gaussian fitting (illustrated in magenta and cyan,
576 respectively). (C, E, G, I) Immunofluorescence analysis to detect the Pkd2::Venus fusion protein
577 (cyan) and acetylated (ac) tubulin (magenta) at the node using an Airyscan microscope. Magnified
578 images of the dorsoventral (D–V) sections of nodal immotile cilia, indicated by white arrows, are
579 shown on the right. Grid size, 5 and 0.5 μm for the main and magnified panels, respectively. (C)
580 Effect of the bone morphogenetic protein 4 (BMP4) signal on the Pkd2 distribution. Images of
581 embryos cultured in a 1 $\mu\text{g}/\text{mL}$ BMP4-containing medium (left top image), 1 $\mu\text{g}/\text{mL}$ Noggin-
582 containing medium (left middle image), 1 $\mu\text{g}/\text{mL}$ Noggin- and 1 $\mu\text{g}/\text{mL}$ Chordin-containing medium
583 (left bottom image), and under control conditions (right images). (D) Distance along the z-axis
584 between the red and green channels in BMP4-treated embryos was larger ($133 \pm 122 \text{ nm}$) than that in
585 control embryos ($n = 32$ and 19 cilia for BMP4-treatment and control, respectively; upper panel).
586 Distance along the z-axis between the red and green channels in Noggin-treated embryos was slightly
587 smaller ($15 \pm 316 \text{ nm}$) than that in control embryos, but the difference in distribution was not
588 significant ($n = 26$ and 12 cilia for Noggin-treatment and the control, respectively; middle panel).
589 Distance along the z-axis between the red and green channels in Noggin and Chordin double-treated
590 embryos was slightly smaller ($31 \pm 107 \text{ nm}$) than that in control embryos, but the difference was not
591 significant ($n = 22$ and 27 cilia for Noggin and Chordin double-treatment and control, respectively;
592 lower panel). (E) Effect of the sonic hedgehog (SHH) signal on Pkd2 distribution. Images of *Smo*^{-/-}
593 (left images) and control (right images) embryos. (F) Distance along the z-axis between the red and
594 green channels in *Smo*^{-/-} embryos was slightly smaller ($9 \pm 205 \text{ nm}$) than that in control embryos, but
595 the difference in distribution was not significant ($n = 43$ and 22 cilia for *Smo*^{-/-} and control embryos,
596 respectively). (G) Effect of the Notch signal on Pkd2 distribution. Images of embryos cultured in a
597 200 μM *N*-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine *t*-butyl ester (DAPT)-containing
598 medium (left images) and under control conditions (right images). (H) Distance along the z-axis
599 between the red and green channels in DAPT-treated embryos was slightly smaller ($11 \pm 170 \text{ nm}$)
600 than that in the control embryos, but the difference in distribution was not significant ($n = 36$ and 17
601 cilia for DAPT-treatment and control, respectively). (I) Effect of the fibroblast growth factor (FGF)
602 signal on the Pkd2 distribution. Images of embryos cultured in a 1 $\mu\text{g}/\text{mL}$ FGF-8b-containing medium
603 (left upper images), 25 μM SU5402-containing medium (left upper images), and under control
604 conditions (right images). (J) Distance along the z-axis between the red and green channels in FGF-

605 8b-treated embryos was slightly smaller (32 ± 40 nm) than that in the control embryos, but the
606 difference in distribution was not significant ($n = 21$ and 30 cilia for FGF-8b treatment and control,
607 respectively). Distance along the z -axis between the red and green channels in SU5402-treated
608 embryos was larger (70 ± 147 nm) than that in the control embryos (same data as the control for
609 DAPT-treatment), but the difference in distribution was not significant ($n = 17$ cilia for SU5402
610 treatment). **(H, J)** Note that the control for DAPT treatment and SU5402 treatment is the same
611 dataset. **(D, F, H, J)** Red bars indicate the median values. *** $P < 0.001$; n.s., not significant (Mann–
612 Whitney U test).

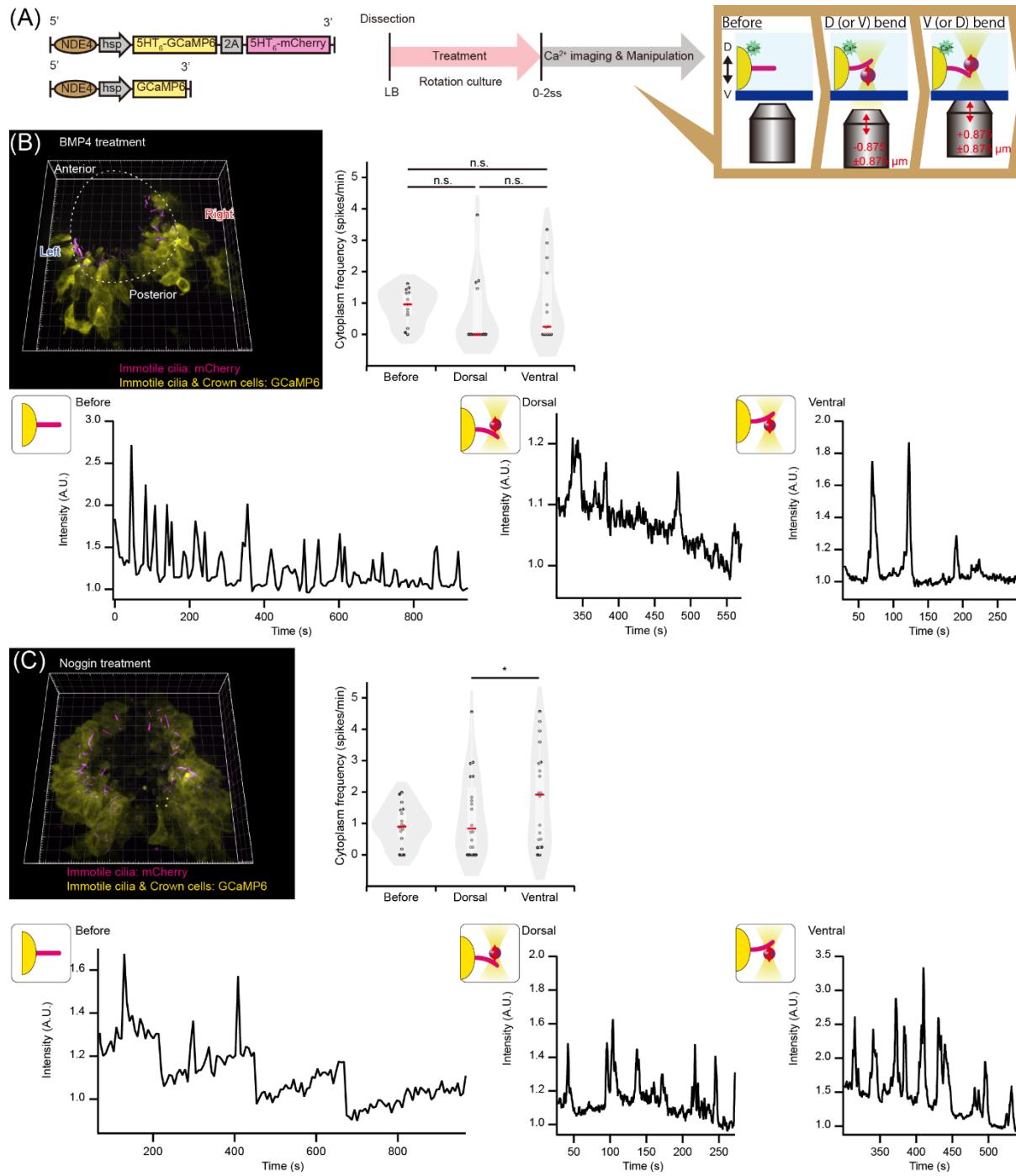


613

614 **Figure 2. Angular distribution of Pkd2 in the presence of recombinant BMP4 or Noggin protein**
615 **evaluated using 3D-stimulated emission depletion (STED) microscope.**

616 (A) Wild-type mouse embryos harboring the *NDE2-hsp-Pkd2-Venus* transgene were cultured in
617 agent-containing medium from LB to 0–2 ss. The embryos were immunostained with anti-green
618 fluorescent protein (green channel; illustrated in cyan) and anti-acetylated tubulin (red channel;
619 illustrated in magenta) and observed using 3D-STED microscopy. Green fluorescence intensity in
620 transverse planes of each cilium was analyzed and plotted with each 45° sector based on the gravity
621 center of red fluorescence intensity. (B) Ratio of Pkd2::Venus signal intensity on the dorsal side to
622 that on the dorsal plus ventral sides (D / [D + V]). Ratio in the cilia of BMP4-treated embryos was
623 significantly larger than that in the cilia of previously reported wild-type embryos⁵ and Noggin-treated
624 embryos. Interestingly, the ratio in the cilia of Noggin-treated embryos did not significantly differ
625 compared with that of previously reported wild-type embryos.⁵ Red bars indicate the median values.
626 *P < 0.05; ***P < 0.001 (one-sample t test). #P < 0.001; n.s., not significant (Mann–Whitney U
627 test). (C, D) Immunofluorescence analysis to detect the Pkd2::Venus fusion protein (cyan) and
628 acetylated (ac) tubulin (magenta) at the node using a 3D-STED microscope after BMP4 (C) or Noggin
629 (D) treatment. Grid size, 500 nm. (C) Magnified views of D–V sections of BMP4-treated cilia
630 observed using the 3D-STED microscope (left). Angular distribution of green fluorescence intensity
631 in the transverse planes of BMP4-treated cilia was analyzed (n = 40 cilia; right). (D) Magnified views
632 of D–V sections of Noggin-treated cilium observed using the 3D-STED microscope (left). Angular

633 distribution of green fluorescence intensity in the transverse planes of Noggin-treated cilia was
634 analyzed ($n = 36$ cilia; right). (E) Ratio of Pkd2 signal intensity on the dorsal side to that on the dorsal
635 plus ventral sides (D / [D + V]). Ratio of the signal intensity in the cilia of *Inv/Inv* embryos was
636 comparable to that of previously reported wild-type embryos.⁵ Red bars indicate the median values.
637 * $P < 0.05$; *** $P < 0.001$ (one-sample t test). # $\#\#P < 0.001$; n.s., not significant (Mann–Whitney U
638 test). Grid size, 500 nm.



639

640 **Figure 3. Calculation of BMP4 concentration and model of regulation of asymmetric Pkd2**
 641 **distribution.**

642 (A) BMP4 is expressed in the lateral plate mesoderm (LPM). Endogenous expression of BMP4
 643 generates a concentration gradient from the LPM to the node. The asymmetric distribution may be
 644 explained by this BMP4 gradient, which enables the arrangement of Pkd2 molecules away from the
 645 high BMP4 concentration regions. (B) In the presence of excess BMP4, the BMP4 gradient may be
 646 increased locoregionally, causing more asymmetric Pkd2 distribution and enrichment in the dorsal
 647 region. (C) Schematic of the model of the wild-type (WT) embryo. BMP4 was secreted from the LPM
 648 (depicted as a red sphere), with the left side of the LPM defined as $x = 0 \mu\text{m}$. The center of the node
 649 was positioned 150 μm from the left side of LPM, and immotile cilia on the left side were 120 μm
 650 from the left side of LPM. BMP4 concentration was maintained at 1 nM on the left side of LPM, and
 651 BMP4 diffused from this point. (D) Calculated BMP4 concentration along the left side of LPM to the
 652 node in the WT embryo (left). The concentration at 5000 s, after reaching a plateau, is shown. The
 653 resulting Pkd2 distribution in cilia is shown as the $D/(D + V)$ ratio (right). (E) Schematic of the model
 654 of BMP4 treatment. The medium contained a high concentration of BMP4 (depicted in red). Upper
 655 side of the node was defined as $x = 0 \mu\text{m}$, and the node depth was defined as 12 μm . Immotile cilia
 656 were 6 μm from the bottom of the node. BMP4 concentration in the medium was maintained at 30
 657 μM , and BMP4 diffused into the node. (F) Calculated BMP4 concentration from the upper to the
 658 bottom of the node under BMP4 treatment (left). The concentration at 3600 s, after reaching a plateau,
 659 is shown. The resulting Pkd2 distribution in cilia is shown as the $D/(D + V)$ ratio (right).

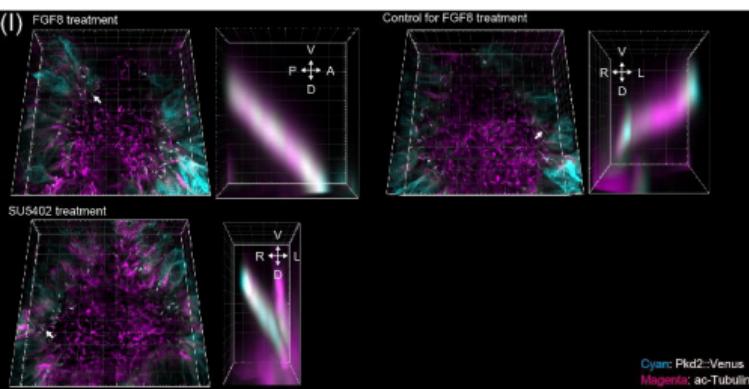
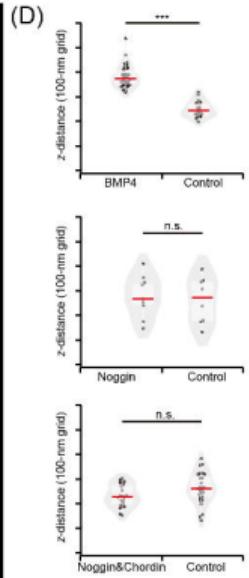
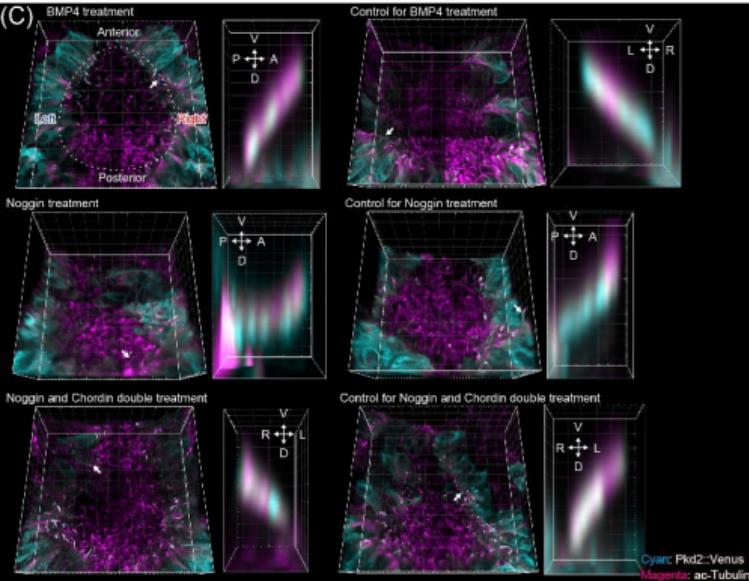
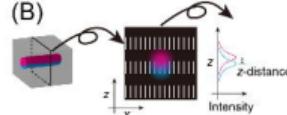
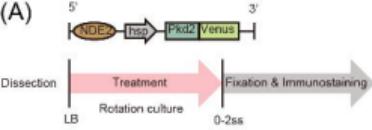
660

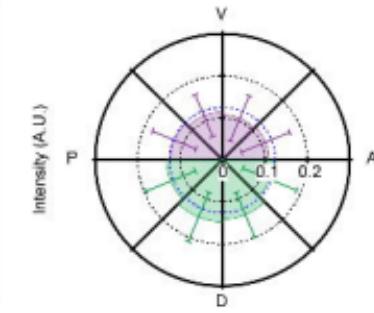
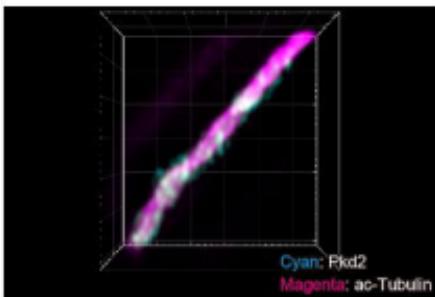
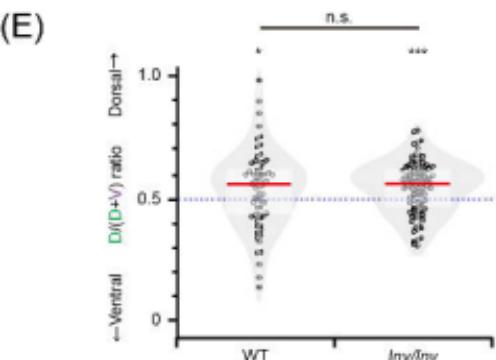
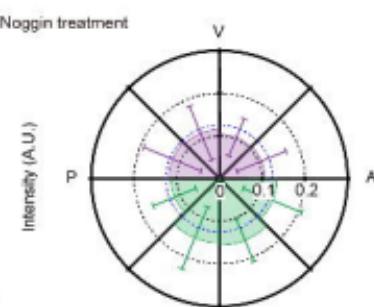
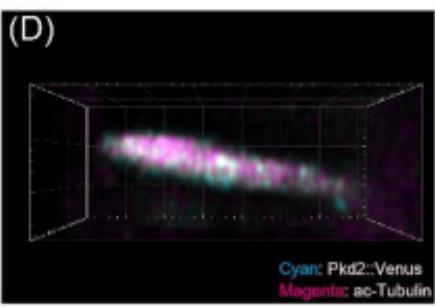
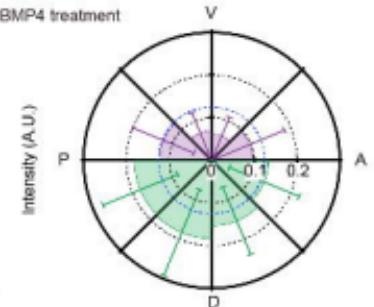
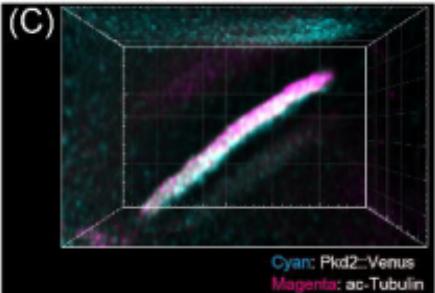
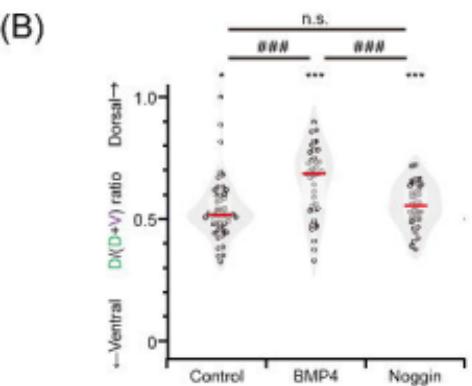
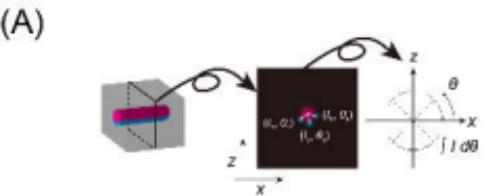
661

662 **Figure 4. Calcium response in crown cells triggered by mechanical stimuli to the cilium in the**
 663 **presence of recombinant BMP4 or Noggin protein.**

664 (A) Experiments were performed using *iv/iv* mouse embryos harboring two transgenes. Immotile cilia
 665 at the node were visualized based on mCherry expression, which is regulated by a nodal-specific
 666 enhancer (NDE) and targeted to cilia by a 5-hydroxytryptamine receptor isoform 6 (5HT₆) sequence
 667 (upper left). GCaMP6 was expressed in the cytoplasm for cytoplasmic calcium imaging (lower left).
 668 The embryos were cultured in agent-containing medium from LB to 0–2 ss and subjected to calcium
 669 imaging (middle panel). The cilium was subjected to sequential dorsal and ventral bending by a
 670 polystyrene bead trapped using optical tweezers. A bead was trapped, displaced to $z = -1.75 \mu\text{m}$

671 (equivalent to the radius of the bead; the minus sign indicates the ventral direction according to the
672 use of an inverted microscope), and made to contact the ventral side of the cilium. The cilium was
673 subjected to dorsal bending of $-0.875 \mu\text{m}$ at 2 Hz with an amplitude of $\pm 0.875 \mu\text{m}$ for approximately
674 250 s (cilium was bent 0 to $1.75 \mu\text{m}$ toward the dorsal side; middle in the right panel) and then bent
675 ventrally at $+0.875 \mu\text{m}$ at 2 Hz with an amplitude of $\pm 0.875 \mu\text{m}$ for approximately 250 s (right in the
676 right panel). **(B)** Three-dimensional image of the node of a BMP4-treated embryo (left top). Grid size,
677 $10 \mu\text{m}$. The mean frequency of the calcium transient in the cytoplasm before stimulation, during
678 dorsal bending, and during ventral bending ($n = 13$ cilia; right top). Average \pm standard deviation
679 (SD) values of the mean calcium frequency were 0.89 ± 0.53 , 0.66 ± 1.13 , and 0.98 ± 1.19 Hz before
680 stimulation, during dorsal bending, and during ventral bending, respectively. Red bars indicate the
681 median values. Time course of cytoplasmic calcium signal intensity in the crown cell before
682 stimulation (left bottom), during dorsal bending (middle bottom), and during ventral bending (right
683 bottom) (GCaMP6 F/F_0 ratiometric values). **(C)** Three-dimensional image of the node of Noggin-
684 treated embryos (left top). Grid size, $10 \mu\text{m}$. The mean frequency of calcium transient in the
685 cytoplasm before stimulation, during dorsal bending, and during ventral bending ($n = 18, 20$, and 20
686 cilia for before stimulation, during dorsal bending, and during ventral bending, respectively; right
687 top). Average \pm SD values of the mean calcium frequency were 0.93 ± 0.61 , 1.27 ± 1.25 , and $1.83 \pm$
688 1.49 Hz before stimulation, during dorsal bending, and during ventral bending, respectively. Red bars
689 indicate the median values. Time course of cytoplasmic calcium signal intensity in the crown cells
690 before stimulation (left bottom), during dorsal bending (middle bottom), and during ventral bending
691 (right bottom; GCaMP6 F/F_0 ratiometric values).

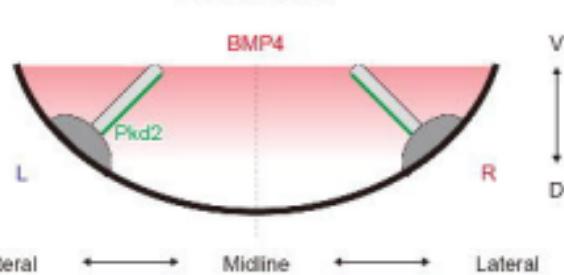





692










693 **Table**

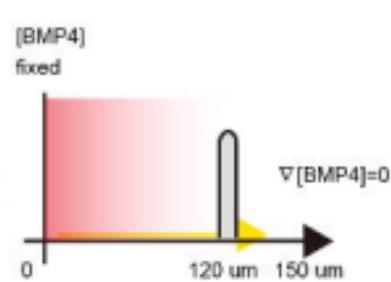
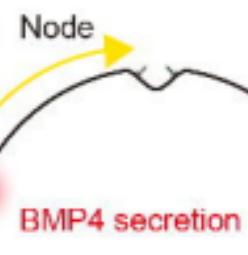
694 **Table 1. Model parameters** (see Figure 4)

		Wild-type	BMP4 treatment
Parameters for calculating BMP4 diffusion	Diffusion constant of BMP4 (D_b ; use value for BMP2b ³⁰)	3 $\mu\text{m}^2/\text{s}$	3 $\mu\text{m}^2/\text{s}$
	Initial concentration of BMP4 at the center of the node	0 M	0 M
	BMP4 concentration in LPM	1 nM	-
	BMP4 concentration in the medium	-	30 μM (1 $\mu\text{g/mL}$)
	Degradation constant of BMP4 (λ ; use value for BMP2b ³⁰)	$8.9 \times 10^{-5} / \text{s}$	$8.9 \times 10^{-5} / \text{s}$
	Duration	5000 s	3600 s
Parameters for modeling the asymmetric Pkd2 distribution in cilia	Diffusion constant of Pkd2 in cilia (value for PTCH1 ⁵¹)	0.1 $\mu\text{m}^2/\text{s}$	0.1 $\mu\text{m}^2/\text{s}$
	Sensitivity of BMP4 concentration gradient for Pkd2 distribution regulation (S)	8×10^{10}	6×10^7
	Estimated D/(D + V) ratio of Pkd2 (see Figure 4D,F)	0.54 ± 0.01	0.65 ± 0.01

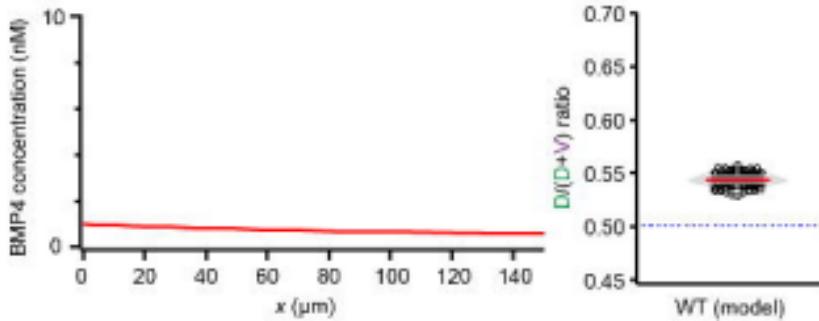
695


(A)

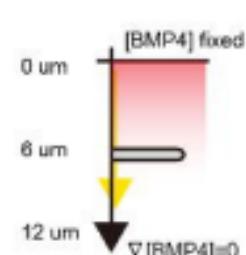
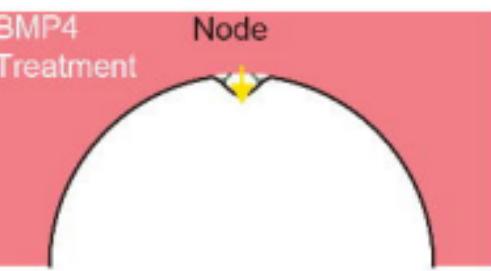
Node (wt)

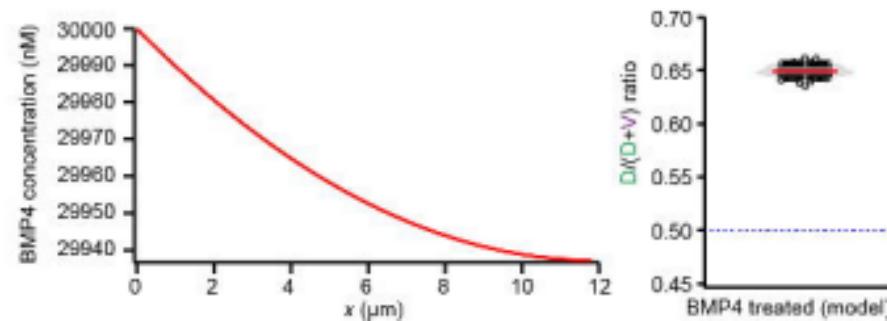
(B)

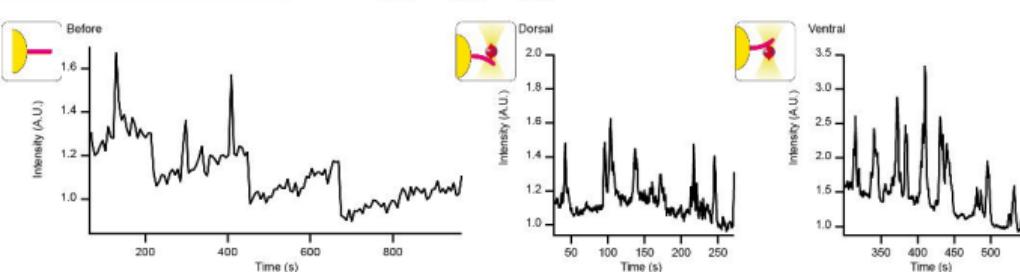
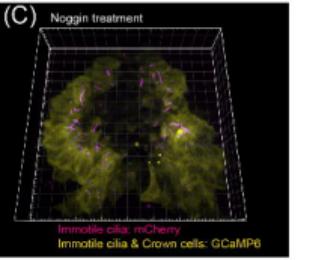
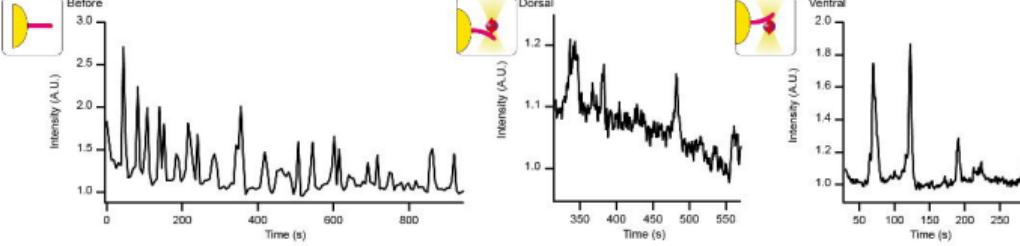
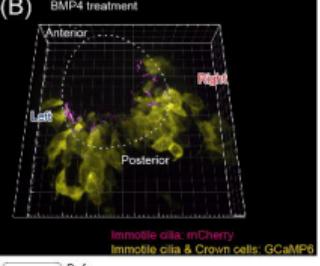
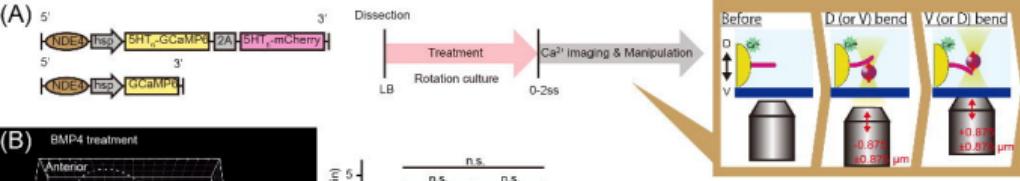

BMP4 treatment

(C)

(D)








(E)

BMP4 Treatment

(F)

