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Abstract 

Telomere-to-telomere phased assemblies have become the norm in genomics. To achieve 

these for diploid and even polyploid genomes, the contemporary approach involves a 

combination of two long-read sequencing technologies: high-accuracy long reads, e.g. 

Pacific Biosciences (PacBio) HiFi or Oxford Nanopore (ONT) 'Duplex' reads, and ultra-long 

ONT 'Simplex' reads. Using two different technologies increases the cost and the required 

amount of genomic DNA. Here, we show that comparable results are possible using error 

correction of ultra-long ONT Simplex reads and then assembling them using state-of-the-art 

de novo assembly methods. To achieve this, we have developed the deep learning-based 

HERRO framework, which corrects ONT Simplex reads while carefully preserving differences 
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in related genomic sequences. Taking into account informative positions that differentiate 

the haplotypes or genomic repeat copies, HERRO achieves an increase of read accuracy of 

up to 100-fold for diploid human genomes. By combining HERRO with Verkko assembler, we 

achieve high contiguity on several human genomes by reconstructing many chromosomes 

telomere-to-telomere, including chromosomes X and Y. HERRO supports both R9.4.1 and 

R10.4.1 ONT Simplex reads and generalizes well to other species. These results provide an 

opportunity to reduce the cost of genome sequencing and use corrected ONT reads to 

analyze more complex genomes with different levels of ploidy or even aneuploidy.  

Introduction 

Both accuracy and contiguity of genome assemblies have seen substantial improvements in 

recent years due to advancements in long-read sequencing technologies, new de novo 

assembly methods and dedicated work of the scientific community on manual curation. 

Resolving most chromosomes, haplotype-resolved telomere-to-telomere (T2T)1 diploid 

assemblies have become a standard. 

To achieve haplotype-resolved T2T assemblies, it is currently necessary to use multiple 

technologies, primarily high-accuracy long reads such as HiFi reads produced by Pacific 

Biosciences sequencers or Duplex reads2,3 produced by Oxford Nanopore Technologies 

(ONT). ONT Simplex ultra-long (UL) reads, are also required. Moreover, chromosome-scale 

phasing usually requires either parental data4, single-cell DNA template strand sequencing 

(Strand-seq5) or cross-linking technology (such as Hi-C, Omni-C or Pore-C). 
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Using multiple technologies can significantly increase both the wet lab and dry lab 

workloads as well as the overall project cost. This approach requires a larger quantity of high 

molecular weight (HMW) gDNA, with separate library preparation and sequencing needed 

for each technology. Additionally, more complex algorithms are required to integrate reads 

from different technologies. Contemporary de novo assembly methods use high-accuracy 

long reads to construct initial assembly graphs, with lower-accuracy ONT Simplex reads 

longer than 100kb (known as ultra-long reads) serving as auxiliary data to simplify these 

graphs. Although PacBio HiFi and ONT Duplex reads offer high accuracy, they are usually 

insufficient for assembling complex regions, such as centromeres, on their own. They 

require the addition of ultra-long reads, which, even with their initial lower accuracy, are 

essential for successfully assembling these challenging regions and achieving haplotype-

resolved T2T assemblies. Therefore, using ONT Simplex ultra-long reads as a single long-

read sequencing technology can reduce the required gDNA, eliminate the need for 

additional DNA library preparation, streamline the sequencing workflow and unlock their full 

potential. 

Several pipelines use error correction of noisy reads, such as ONT Simplex or PacBio CLR 

reads, at some stage to produce either collapsed, primary/alt or fully phased, haplotype-

resolved assemblies. These include Canu6 + purge_dups7, FALCON-Unzip8, 

Flye9+HapDup10,11, Shasta12, and PECAT13. However, according to the results published in a 

recent study13, their performance is inferior compared to strategies that utilize both high-

accuracy long reads and ultra-long ONT reads. For example, using recent ultra-long ONT 

data for the HG002 genome (Table 2), PECAT, the top performer among them, achieved a 
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maximum (paternal/maternal) NG50 of 91.4/80.2 Mbp. In contrast, Hifiasm14–16 and Verkko17, 

utilizing multiple sequencing technologies – PacBio HiFi reads, ONT UL reads, and Illumina 

parental reads – produced assemblies with NG50 values exceeding 130 Mbp (ref. 17, Results). 

They also outperformed PECAT in phasing accuracy, as indicated by a considerably lower 

Hamming error rate (2.99%/1.49%13 per haplotype vs 0.5%17 total). 

NextDenovo18, another recently published de novo assembler for noisy long reads, does not 

phase genomes. Hypo-assembler19 uses short Illumina reads to correct ONT reads. 

Here, we present HERRO, a framework based on a deep learning model capable of correcting 

ONT Simplex reads. HERRO is optimized for both R9.4.1. and R10.4.1 pores and chemistry 

and supports both standard and ultra-long ONT Simplex reads. 

HERRO achieves up to 100-fold improvement in read accuracy while preserving differences 

between related genomic sequences, e.g. heterozygous variants and differences between 

segmental duplications or satellite array copies. To accomplish this, we developed a novel 

deep learning model utilizing convolutional networks and self-attention architecture to 

process all-vs-all read overlap pile-ups. Model training has heavily benefitted from the 

availability of high-quality HG002 genome assembly (https://github.com/marbl/HG002). 

Combining HERRO with existing de novo assemblers, such as Hifiasm, Verkko, and LJA20, we 

achieve highly contiguous haplotype-resolved assemblies, with many chromosomes 

represented as T2T contigs or scaffolds. Remarkably, despite being trained on only a few less 

complex chromosomes of the HG002 human genome, the HERRO model generalizes 

effectively to a wide range of organisms. 
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Fig. 1 HERRO deep-learning model: The input to the model consists of embedded bases concatenated with base 
qualities, obtained by stacking pairwise alignments between a target read and the reads aligned to it. The first 
convolutional block extracts local information for each read independently. The second convolutional block aggregates 
information from different reads at a specific position in the target read. Next, only informative position candidates are 
indexed and fed into the Transformer encoder. The output from the Transformer encoder is used for base prediction. 
Bases at other target read positions are predicted using majority voting. The informative position prediction task is used 
for model training. 
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We developed HERRO, a method (Extended Data Fig. 1) and software package aimed at 

increasing the quality of ONT reads. HERRO is a read correction model that focuses on 

positions in reads representing differences between haplotypes or specific segments within 

segmental duplications. Since these positions hold valuable information for phasing, we 

refer to them as informative positions. 

HERRO incorporates a newly developed deep learning model (Fig. 1) that combines 

convolutional blocks with a Transformer encoder. The model processes windows of stacked 

bases and quality scores extracted from all-vs-all pairwise alignments (obtained with 

minimap221). Initially, the convolutional blocks process these windows to extract local 

information from each base and to aggregate information across different reads at the same 

position, generating representations for each read position. Subsequently, the model 

selectively processes informative position candidates – defined as those having at least two 

different bases (including gap symbol) that each appear a minimum of three times – through 

the Transformer encoder. This encoder is designed to learn interactions between these 

positions. By learning to predict bases at these challenging positions, HERRO accurately 

corrects reads while preserving the differences between haplotypes. For the remaining read 

positions, we use a simple majority voting method to predict the correct bases. 
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HERRO effectively corrects ONT Simplex reads 

We evaluated the alignment-based accuracy of the HERRO-corrected reads on several R10 

and one R9 ONT datasets with existing high-quality assemblies. In terms of human samples, 

we considered HG002 data from Human Pangenome Reference Consortium (HPRC) and 

Genome In a Bottle (GIAB), CHM13 (pseudo-haploid) data from the Telomere-to-Telomere 

(T2T) consortium and I002C Indian male data with a recently released high-quality assembly 

(https://github.com/lbcb-sci/I002C or https://github.com/LHG-GG/I002C). We also used 

two inbred datasets D. rerio (zebrafish, TU strain) from the Vertebrate Genomes Project22 

(VGP) and A. thaliana (thale cress, Col-0 strain) 23 (see Data Availability). The CHM13 data 

were sequenced using e8 chemistry and R9.4.1 flow cells. The other datasets were 

sequenced using e8.2 chemistry and R10.4.1 flow cells. 

Fig. 2 Qc before and after correction. a) A hexbin plot representing the empirical joint distribution of Qc values before and 
after correction for reads aligned to paternal and maternal chromosome 9 of the HG002 assembly v1.0.11,17,22–24. The color 
indicates the density of data points in each hexagonal bin on a logarithmic scale. Bins above the dashed diagonal line 
indicate an improvement in accuracy after correction, while bins below it indicate a reduction. The “PM” at the end of 
each axis stands for “Perfect Match”. b) Box plot showing the distribution of Qc before and after correction across multiple 
datasets. I002C is a male Indian sample with a recently released reference (Data Availability). For all datasets, alignments 
that perfectly match the reference were excluded. Chromosomes of HG002 used to train the HERRO model were 
excluded (1, 2, 17, 18, and 20). CHM13 data was sequenced using R9.4.1 pore. All datasets shown here, except for A. 
thaliana, were sequenced with an ultra-long kit. Data in the box plots are displayed as follows: the centre line indicates 
the median, the bounds of the box represent the first and third quartiles (Q1 and Q3), and the whiskers extend to the 
minimum and maximum values within 1.5 times the interquartile range (IQR). Outliers beyond this range are plotted 
individually. 
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We aligned both uncorrected and corrected reads to the references using minimap2 and 

used bamConcordance tool24 to obtain a read quality measure (Qconcordance or Qc) and 

compute the rates of different types of errors (Methods, Analysis methods). Only primary 

alignments were considered in the evaluation. For reads successfully processed by HERRO, 

we observe that HERRO considerably improved Qc for the majority of reads (Fig. 2a). There is 

a significant upward shift in the overall distribution of Qc values for all considered datasets 

with an almost 100-fold increase in the median accuracy following correction (Fig. 2b). 

Extended Data Fig. 2 shows that a similar increase is also observed for higher quality (Q28) 

HG002 UL dataset. 

Table 1 shows the rates of different types of errors in the reads before and after correction. 

HERRO significantly reduced the rates across all error types, achieving, on average, a 50-fold 

reduction in the total number of errors across all datasets. Even for the D. rerio dataset, 

which showed the smallest reduction, the error rate has decreased nearly tenfold. The most 

substantial improvement was observed in mismatch errors, which in human datasets 

dropped from more than 100 errors per 10 kbp to less than 1. Similar reductions were 

observed for other types of errors except for non-homopolymer deletions in the D. rerio 

dataset. The higher error rate for non-HP deletions in this dataset may be due to the 

prevalence of highly repetitive, low-complexity elements in the genome25. 
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HERRO enables T2T-grade assemblies without high-accuracy long reads 

Next, we evaluated the performance of HERRO-corrected ONT reads in a de novo assembly 

setting using several assemblers: Hifiasm, Verkko and LJA (only for datasets with very low 

heterozygosity). In addition to the datasets used to measure read accuracy in the previous 

section, we included three additional datasets: HG02818 from HPRC, HG005 from GIAB and 

a Drosophila melanogaster dataset (see Data Availability). All datasets were sequenced 

using e8.2 chemistry and R10.4.1 flow cells. For diploid human datasets, we also used 

available parental Illumina reads to enable the 'trio analysis' modes in Hifiasm and Verkko. 

HERRO-corrected reads were provided as high-accuracy long inputs, while original reads 

have been provided as ultra-long inputs. Corrected reads were downsampled to ~35x for 

assembly if their coverages were considerably higher than 35x (38x or above) to control the  

Dataset Correction  Mismatch 
per  
10 kbp  

Non-
Hp 
Ins 
per  
10 
kbp 

Non-Hp Del 
per  
10 kbp 

Hp-
Ins  
per  
10 
kbp 

Hp-Del  
per  
10 kbp 

Errors  
per  
10 kbp 

HG002 Before 133.15 45.56 58.54 26.22 71.02 334.48 

After (66x) 0.23 0.63 0.74 0.41 1.77 3.78 

I002C Before 186.86 58.76 79.74 33.41 99.44 458.21 

After (63x) 0.22 1.01 1.72 0.50 2.18 5.64 

CHM13 Before 158.63 74.75 91.23 46.91 128.49 500.01 

After 0.38 0.34 0.85 1.23 1.60 4.39 

A. thaliana Before 38.59 27.84 22.82 10.03 29.09 128.37 

After 0.70 1.37 1.92 0.05 2.85 6.89 

D. rerio Before 71.84 29.64 50.04 17.27 41.64 210.43 

After 0.41 2.23 15.15 0.10 3.88 21.77 

Table 1 Counts of errors before and after correction, by type. We used bamConcordance to obtain counts of errors in 
reads before and after correction, based on alignments to a high-quality reference. In addition to the total number of 
errors, counts are provided for different categories: mismatch, non-homopolymer insertion, non-homopolymer deletion, 
homopolymer insertion, and homopolymer deletion. 
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effect of input coverage on assembly results and reduce computational requirements. To 

mitigate the issues related to contained read exclusion while running Hifiasm26,27, corrected 

reads were cut into 30 kbp subreads, filtering out any fragments shorter than 10 kbp. LJA only 

used the corrected reads as input. For details, see Methods. Key assembly metrics across 

Assembly Haplotype Size 
(Gb) 

NG50  
(Mb) 

NGA50 
(Mbp) 

QV Hamming, 
switch errors 
(%) 

Single-copy 
genes lost, 
duplicated, multi-
copy genes lost 
(%) 

Number of 
T2T 
 contigs 
(plus 
scaffold) 

Diploid assemblies 

HG002 
(Verkko trio) 

Maternal 3.120 135 134 55.86 0.06,0.03 0.67,0.25, 5.34 9(13) 

Paternal 2.999 134 111 54.96 0.02,0.02 0.85,0.28, 8.03 9(12) 

HG002 HiFi + UL 
(Verkko trio) 
Cheng et al16 

Maternal 3.026 112 110 56.50 0.07,0.04 0.91,0.21,5.29 4(5) 

Paternal 2.946 134 133 55.95 0.04,0.03 0.92,0.30,7.98 3(10) 

HG002 Duplex + 
UL (Verkko trio) 
Koren et al2 

Maternal 3.037 147 114 53.59 0.05,0.03 0.78,0.34,5.19 6(11) 

Paternal 2.943 134 134 53.23 0.03,0.02 0.85,0.26,8.03 10(15) 

I002C 
(Verkko trio) 

Maternal 3.057 146 124 61.06 0.29,0.27 0.58,0.27,4.34  6(13) 

Paternal 2.988 134 111 55.74 0.19,0.18 0.82,0.31,5.89 5(12) 

Low-heterozygosity assemblies 

CHM13 (LJA) Pseudo-
Haploid 

3.052 93 92 47.52 N.A. 0.04,0.009,0.55 4(4) 

D. rerio (LJA) Inbred 1.451 56 56 53.26 N.A. 4.79,0.22,22.29 7(7) 

A. thaliana 
(Hifiasm) 

Inbred 0.133 26 26 48.40 N.A. 0.05,0.02,0.87 3(3) 

D. melanogaster 
(Hifiasm) 

Inbred 0.164 24 22 45.01 N.A. 0.0007,0.0006, 
0.05 

N.A. 

Table 2 Metrics of the assemblies for samples with a high-quality reference. We evaluated the assemblies of HERRO-
corrected reads using high-quality references. NG50 and NGA50 metrics were calculated with minigraph28, while quality 
value (QV), switch errors, and Hamming errors were assessed using Merqury29. Gene completeness and duplication levels 
were measured with asmgene21 against CHM13 v2.0 for human samples and against high-quality assemblies for non-
human samples. T2T contigs and scaffolds were identified using a script that searches for canonical telomeric motifs on 
the sides of assembled sequences and their alignment to a reference, with D. melanogaster being excluded due to its 
special telomere structure (Methods, Analysis methods). Sequences shorter than 500 kbp were excluded from the 
assembly analysis for A. thaliana (Supplementary Table 6). The HG002 assembly result corresponds to a 66x run 
(Supplementary Table 2), and the I002C assembly result corresponds to a 63x run (Supplementary Table 3). For 
comparison on the HG002 genome when HiFi + UL reads are used, we added results for an assembly from a recent 
publication16 by Cheng et al. They used an UL dataset, extracting only reads longer than 100kbp. For comparison on the 
HG002 genome when Duplex + UL reads are used, we added results evaluated for an assembly from a recent preprint2 by 
Koren et al. All assembly evaluations were done on scaffolds whenever scaffolds were produced. 
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selected assemblies are summarized in Table 2. To differentiate between assembly runs, the 

assembler name and input coverage used in correction are included in the run names. For 

more details regarding the different runs, refer to Supplementary Tables 1-8. 

Diploid human genomes 

Multiple diploid human datasets, including HG002, I002C (Table 2), and HG02818 

(Supplementary Table 1), were assembled. For each dataset, more than half of the 46 

chromosomes were obtained as T2T contigs or scaffolds. Verkko generally achieves higher 

contiguity and produces more T2T chromosomes, whereas Hifiasm assemblies tend to have 

higher QV for some datasets (Supplementary Tables 1-4). 

In multiple runs, the X and Y chromosomes were assembled as T2T contigs or scaffolds, with 

some runs remarkably achieving T2T contigs for both. While Hifiasm successfully 

assembled the X chromosome as T2T in some runs, only Verkko managed to assemble the 

challenging30 chromosome Y as T2T. These contigs were evaluated against HG002 assembly 

v1.0.1's X and Y chromosomes using QUAST31 (Methods, Analysis methods), achieving 

genome fractions of 100% and 99.98% for X and Y, respectively, with a total of seven 

misassemblies (Table 3). 

We ran experiments at various coverage levels for each diploid ultra-long human dataset to 

evaluate the impact of different data coverages on correction and assembly. Most of these 

runs were performed on I002C data, which was not used for training and for which a high-

quality reference is available. We observed a consistent increase in contiguity and the 

number of T2T chromosomes obtained as the data coverage increased. For instance, with 
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71x coverage (after filtering out short and low-quality reads), we achieved an NG50 of 146 

Mbp for both haplotypes of I002C. At lower coverages, around 35x, the NG50 ranged from 

about 90 Mbp to 130 Mbp (Supplementary Tables 1-3). 

To further isolate the effect of coverage used for correction on the quality of reads and, 

consequently, on the assembly, we compared I002C reads corrected at 45x, 63x and 71x 

coverage, which were then downsampled to 35x before being inputted as high-accuracy 

reads. Alongside these, the same uncorrected UL reads, fixed at 56x coverage were used as 

the UL input for Verkko (Supplementary Table 3). We observed an increasing trend in the 

number of T2T contigs or scaffolds as the coverage of the input reads to correction 

increased, with counts rising from 15 to 21 to 28. Due to a crash with the default version of 

Verkko (v2.0) during the 71x run, we used a newer version of Verkko for this experiment. To 

assess the effect of the version difference, we reran the assembly for the 45x run using the 

newer version of Verkko and found no change in the number of T2T chromosomes. 

Additionally, we calculated yak14 QVs for the I002C reads corrected at different input 

coverages, finding that QVs increased as coverage increased (Supplementary Table 9). 

Table 3 Quast evaluation results of assembled T2T contigs of chromosomes X and Y. Assembled T2T contigs of 
chromosomes X and Y using corrected HG002 reads were evaluated against HG002 v1.0.1 using Quast. The reads were 
corrected at 66x coverage, assembled with Verkko, with and without using parental data, respectively. All the 
misassemblies are relocations. 

Assembly Genome 
fraction 
(%) 

Misassemblies Mismatches 
per 100kbp 

Total 
mismatches 

Indels 
per 
100kbp 

Total 
Indels 

Indel 
<=5 
bp 

Indel >5bp 

ChrX, trio 100 2 0.19 286 8.43 13018 12672 346 

ChrY, trio 99.98 5 1.18 736 4.08 2544 2410 134 

ChrX, no-
trio 

100 2 0.17 270 8.43 13007 12656 351 

ChrY, no-
trio 

99.98 5 1.16 724 4.07 2539 2405 134 
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Besides HERRO-based runs, Table 2 also presents the evaluation of the HG002 trio Verkko 

assemblies from Cheng et al.16 and Koren et al.2, which correspondingly used  HiFi and ONT 

Duplex data as high-accuracy inputs. The results are comparable, showing the power of 

correction of ultra-long ONT Simplex reads. 

To test on non-UL human data, we corrected and assembled the HG005 dataset. Although 

this is not a UL dataset, it still has 10x coverage of reads 50 kbp or longer. In addition to the 

ONT reads, parental data was also provided to assemblers. When assembled with Verkko, 

17 T2T chromosomes were obtained, including two that are T2T in single contigs. Full details 

about this run, as well as other runs for the HG005 dataset, can be found in Supplementary 

Table 4. Lastly, we corrected and assembled experimental higher-accuracy (Q28) ultra-long 

HG002 reads using a model trained on standard R10 data. Verkko produced 11 T2T contigs 

and 14 T2T scaffolds with the corrected reads but produced none without correction. 

Hifiasm, on the other hand, was able to produce 1 T2T contig and 18 T2T scaffolds without 

correction, and 7 T2T contigs and 12 T2T scaffolds with correction. The QV for each 

haplotype increased by around 10 with correction. These results demonstrate that error-

correcting highly accurate data improves assembly contiguity, resulting in more T2T 

chromosomes in contigs with higher accuracy (Supplementary Table 10). 

Difference between genomes 

While evaluating error rates and assembly quality, we noticed discrepancies in the results 

depending on the reference genome used in the evaluation. Hence, we decided to quantify 

the differences in SNVs and indels ( 50 bp) across the different genomes. 
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Table 4 shows aggregated error rates of corrected reads evaluated by mapping to different 

high-quality assemblies. Since the error rate of corrected reads is very low, it can be almost 

neglected. The results show that differences in mean mismatch and indel rate are 0.15%–

0.19% and 0.14%–0.19%, respectively. In addition, we see notable differences in the NGA50 

measure when evaluating genome assemblies against different references, with differences 

possibly exceeding 20% (Supplementary Table 12). It's important to note that significant 

variations persist even when another haplotype from the same genome is used as a 

reference. 

These results highlight the importance of using high-quality assemblies and reads 

originating from the same genome when training deep-learning models. Since the error rate 

Table 4 The aggregated error rates of HERRO-corrected reads with respect to different assemblies. The error rates for 
HERRO-corrected reads were estimated by aligning them to several high-quality assemblies. All sets of reads were 
aligned to CHM13 v2.0 and CN1 '0.8 curated'32. HG002 reads were aligned to the HG002 v1.0.1 assembly, and I002C 
reads were aligned to the I002C v0.4 assembly. When aligning reads from different samples to the HG002 or I002C 
assemblies, only one autosomal haplotype was used (the paternal haplotype for HG002 and the maternal haplotype for 
I002C). Reads aligned to mitochondrial DNA or EBV sequences were excluded from the calculations. Indels longer than 
50 bp were also excluded. 

Corrected reads 
dataset 

Reference Mean 
error  
rate (%) 

Mean mismatch 
rate (%) 

Mean 
indel  
rate (%) 

Median error 
rate (%) 

Percentage 
mapped (%) 

HG002 HG002 0.023 0.0019 0.021 0.014 99.995 

CHM13 0.30 0.16 0.14 0.16 99.94 

CN1 0.36 0.19 0.17  0.17 99.94 

I002C 0.32 0.18 0.15 0.17 99.94 

I002C  HG002 0.34 0.18 0.16 0.17 99.97 

CHM13 0.33 0.18 0.15 0.17 99.97 

CN1 0.34 0.18 0.16 0.17 99.97 

I002C 0.031 0.0056 0.026 0.014 99.97 

CHM13  HG002 0.31 0.15 0.16 0.16 99.98 

 CHM13 0.048 0.0052 0.043 0.025 99.98 

 CN1 0.36 0.17 0.19 0.17 99.98 

 I002C 0.33 0.16 0.16 0.17 99.98 
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of mapping reads to a high-quality assembly from the same individual is low, we hypothesize 

that mapping highly accurate reads from one individual to a high-quality assembly of another 

can provide a rapid estimate of the differences between two genomes. Interestingly, the 

mean percentage of mismatches remains stable across genome pairs, offering an estimate 

of the number of single nucleotide variants (SNVs). The observed range of 0.15%-0.19% is 

higher than some previous estimates of 0.1%33. However, it is consistent with more recent 

findings where authors reported that the percentage of SNVs in segmental duplication 

regions is around 0.15%34. Moreover, a recently published preprint35 suggests similar 

differences between genomes for both SNVs and indels, with indels not having been 

quantified in previous studies.  

Low-heterozygosity non-human genomes 

We corrected and assembled ONT R10 data of highly homozygous samples for three non-

human organisms: A. thaliana (Col-0 strain), D. melanogaster (iso-1 strain), and D. rerio (TU 

strain), with only D. rerio being ultra-long dataset. For A. thaliana, Hifiasm assembled three 

out of five chromosomes as T2T contigs (Table 2). LJA outperformed Hifiasm and Verkko in 

assembling D. rerio, achieving four T2T contigs compared to zero and one, respectively 

(Supplementary Table 5). Surprisingly, when we used D. rerio corrected reads longer than 90 

kbp for assembly with LJA, the number of T2T contigs increased from four to seven 

(Supplementary Table 5). 
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R9.4.1 data 

To test the ability of HERRO to correct R9.4.1 ONT Simplex reads, we corrected and 

assembled an ultra-long dataset for the CHM131 genome. Across the different assemblers 

used, we achieved an NG50 of around 90 Mbp and up to five chromosomes as T2T contigs 

(Supplementary Table 8). Hifiasm and LJA produced similar results, with the most notable 

being that the Hifiasm assembly achieved the highest number of T2T chromosomes, while 

the LJA assembly produced more complete genes, as calculated using asmgene. Full results 

for all assembles can be found in Supplementary Table 8. 

Runtime assessment 

Comprehensive runtime assessments for all datasets are presented in Supplementary 

Tables 1-8. For the HG002 dataset, with 66x input coverage, the correction process required 

approximately 69 hours of wall clock time in total. The majority of the time, about 64 hours, 

was spent running minimap2 to obtain all-vs-all alignments, using 64 threads and peaking 

at 102 GB of RAM. Following this, the correction phase took approximately 5 hours with peak 

RAM consumption of 550 GB using 64 threads. More details can be found in the Methods. 

Discussion 

Long high-accuracy PacBio HiFi and ONT Duplex reads have created new opportunities for 

reconstructing large and complex genomes. Their low error rates have enabled the assembly 

of challenging regions, such as segmental duplications, by distinguishing tiny variations 

between each segment. Moreover, these reads and new assembly methods considerably 

improved haplotype resolution. However, to reconstruct the most complex regions, like 
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centromeres and other satellite arrays, and to fully phase the haplotypes, ultra-long ONT 

reads are required. Due to the higher error rate, their usage as a basis for the construction of 

high-resolution assembly graphs was limited, leading to a hybrid strategy in which an 

assembly graph is first built from long high-accuracy reads, with further integration of ultra-

long ONT data. This approach combined with trio analysis and manual curation, has led to 

several breakthroughs. These include the telomere-to-telomere (T2T) reconstruction of a 

pseudo-haploid human genome, the reconstruction of complete human chromosome Y, 

and the T2T haplotype-resolved assembly of the HG002 diploid human genome. 

We began our work with the goal of fully leveraging the potential of ultra-long ONT Simplex 

reads, thereby removing the need for PacBio HiFi or ONT Duplex reads in assembly projects. 

To achieve this, we decided to try reducing the error rate of ONT reads through self-

correction. However, heuristics-based approaches, such as those used in Racon36, PECAT13, 

Hifiasm14, or HiCanu37, have proven inadequate as they may overcorrect important, 

informative positions that are crucial for reconstructing segmental duplications and phasing 

polyploid genomes. Therefore, we set out to develop a new error-correcting method focused 

on those key positions. 

Using HERRO, a deep learning model trained on ONT Simplex reads labelled with the high-

quality HG002 assembly, allows us to correct reads to a level where they can be used in 

existing assemblers as long accurate reads, without overcorrecting informative positions. 

However, these assemblers were not initially designed to fully exploit the potential of ultra-

long accurate reads. Inspired by RAFT26, we chopped the corrected UL reads before inputting 

them into Hifiasm, which improved the results. In contrast, our tests showed that using 
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unchopped reads resulted in lower-quality genomes produced by Hifiasm. For Verkko and 

LJA, chopping reads was unnecessary. 

The results indicate that we can achieve high contiguity comparable to approaches that 

combine HiFi or Duplex with ultra-long ONT reads. However, we believe the current assembly 

results are not yet optimal due to several factors, including potential under- or over-

correction by HERRO and the need for assemblers to be further tailored for ultra-long reads. 

Notably, we demonstrate routine reconstruction of complete human chromosomes X and Y 

from ultra-long ONT reads. This gives us hope that with further improvements in error 

correction, and the optimization of assemblers for high-accuracy ultra-long reads, we will be 

able to routinely assemble even the most complex parts of the genomes (e.g. rDNAs) and 

fully assemble polyploids, achieving chromosomes in T2T contigs, without reliance on high-

accuracy long reads. 

We acknowledge that there is room for improvement in all parts of the pipeline, including 

better alignment (e.g., using optimized pairwise aligners such as Edlib38 or A*39), reducing 

memory and computational requirements, optimizing window length, and gaining a better 

understanding of the remaining errors. Using minimap2 to find all-vs-all alignments may be 

suboptimal in terms of both runtime and accuracy. Modern assemblers like Hifiasm and 

Verkko use built-in overlappers specifically designed for long, high-accuracy (or ultra-long) 

reads. Developing an overlapper tailored specifically for ONT pre-corrected reads could 

produce more accurate overlaps in less time. Some promising approaches involve 

parallelizing specific components of minimap2 on CPU40 or GPU41 or developing entirely new 

algorithms. 
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Furthermore, HERRO handles indels up to 30 nucleotides long, and exploring options for 

longer indels is important. Training on more data, including other organisms, could lead to 

even lower error rates. Another area worth exploring is the assembly of metagenomic 

samples42–44. Moreover, here we haven't yet explored the impact of highly accurate long ONT 

reads on the assemblers tailored to produce collapsed haploid assemblies such as Raven45 

and Flye9. While these assemblers do not reconstruct individual haplotypes, they require 

neither UL reads nor parental (or other long-range) data, while still providing meaningful 

assemblies often suitable as references for population studies. Increased accuracy of the 

input data allows for adjustments throughout the assembly pipeline, improving performance 

and separation of more diverged segmental duplication copies. Finally, adding methylation 

information (e.g., using Rockfish46 or similar tools) might improve the identification of 

informative positions.  

Our results indicate that mapping long, highly accurate reads to a high-quality assembly 

from another individual results in differences of 0.15%–0.19% in mismatches and 0.14%–

0.19% in short indels. Additionally, we found that the structural concordance metrics, such 

as NGA50, can vary depending on the reference genome used for assessment. These 

observations highlight the importance of using de novo assemblies generated from reads 

from the same individual rather than relying on reference sequences built from a different 

individual. While we acknowledge that our sample size is small and that a more 

comprehensive analysis is needed, this demonstrates the potential of using long, highly 

accurate reads to estimate genomic differences quickly. These insights may provide 
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guidelines for future machine learning methods that rely on read mapping, such as error 

correction, DNA modification detection, and similar. 

In summary, this paper introduces HERRO, an error correction method that enables high-

quality assembly using ONT Simplex reads as the sole long-read sequencing technology. 

This approach results in lower costs and reduced genomic DNA requirements while 

achieving state-of-the-art assemblies. Moreover, by providing a model that supports R9.4.1 

reads, HERRO allows researchers to use even older data in state-of-the-art assembly 

pipelines. 

Looking ahead, accurate long and ultra-long ONT reads open new possibilities for studying 

more complex genomes, including those with different ploidy and aneuploidy levels. 

Methods 

Data preprocessing 

Data preprocessing consists of read basecalling, adapter trimming, read splitting on middle 

adapters and filtering out short and low-quality reads. All datasets were basecalled using 

Dorado (https://github.com/nanoporetech/dorado), with the model version depending on 

the pore type. R9.4.1 data was basecalled using the dna_r9.4.1_e8_sup@v3.6 model, 

R10.4.1 4 kHz data using the dna_r10.4.1_e8.2_400bps_sup@v4.1.0 model and R10.4.1 5 

kHz data using the dna_r10.4.1_e8.2_400bps_sup@v4.3.0 model. Adapter trimming is done 

using Porechop47, wherein we recognize and remove adapter sets with at least one match 

over 95%. Next, we detect middle adapters and split reads using the split_on_adapter script 
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from Duplex Tools (https://github.com/nanoporetech/duplex-tools). Dorado versions v0.5.0 

or higher implement adapter trimming and splitting, making Porechop and Duplex Tools 

unnecessary. Finally, reads shorter than 10 kbp and those with a mean base quality below 

10 are discarded using SeqKit48,49. Only the resulting reads will be used in the error correction 

process. Read filtering by length and quality was used in our experiments and is 

recommended but is not built into the main pipeline. Additional details and the 

preprocessing script are available in the Supplementary Information. 

Feature generation 

To generate features, we first perform all-vs-all alignment using minimap221,50. If multiple 

alignments between two reads exist, we keep only the first one, assuming that alignment is 

optimal. We perform error correction on each read independently. The read that will be 

corrected is named target read, while the reads aligned with it are named query reads.  

Initially, we divide a target read into chunks by defining non-overlapping windows of length 

𝐿𝑇 = 4096 base pairs (bp). We extract the corresponding segments from the query reads for 

each window based on the alignments (CIGAR string). Any query segment that doesn't cover 

the entire window is discarded. Moreover, a query segment for a window is also discarded if 

any insertion or deletion is longer than 30 bp. Next, we sort segments by alignment accuracy 

and retain only the top 30 segments. All segments are retained if there are fewer than 30 for 

a window. For each window, we define two tensors: 𝐵 ∈ ℝ31 × 𝐿 and 𝑄 ∈ ℝ31 × 𝐿, 

corresponding to the stacked pairwise bases and stacked pairwise base qualities, 

respectively. The first row in both tensors corresponds to the target read, while the 
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subsequent rows contain the sorted segments in decreasing order. If fewer than 30 

segments exist, we insert a special "no alignment" token ('.') in the remaining rows. 

Moreover, we define a special gap token ('*') to denote insertions with respect to the target 

read. This results in a total tensor length 𝐿 = 𝐿𝑇 + ∑ 𝐿𝐼
𝑖𝐿𝑇

𝑖=1  where 𝐿𝐼
𝑖  is the length of the longest 

insertion at the target position 𝑖. Each column, which can be either a target or inserted 

position, is later called independently. Information about the alignment strand is given 

implicitly; bases from different strands are encoded differently. There are 11 tokens: five 

bases (A, C, G, T, and '*') for each strand (forward and reverse) plus a no-alignment token. 

Base qualities for the insertions are set to 0. 

In addition to features, we also extract information about informative position candidates. 

We define a position as an informative position candidate if at least two different bases 

(including gap) are supported by a minimum of three reads at that specific position. Positions 

that do not meet this criterion are considered to be non-candidate positions. The deep 

learning model predicts only the target bases for informative position candidates. 

Deep learning model and training 

Model architecture 

HERRO deep learning model consists of three parts. In the first part, we update information 

for each base based on its local neighbourhood before pooling information from each base 

at the same position to obtain a vector representation for each position. Initially, the base 

tensor is embedded using an embedding layer, resulting in the embedded bases 𝐸𝐵 ∈

ℝ31×𝐿×6. This tensor and the quality base tensor are concatenated into an input tensor 𝐼 ∈
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ℝ31×𝐿×7, processed through two convolutional blocks. Each convolutional block consists of 

1D convolution, Batch Normalization and Rectified Linear Unit (ReLU).  The output of the first 

stage is the intermediate tensor 𝐻(1) ∈ ℝ𝐿×256. In the second part, we focus only on 

representations from informative position candidates, updating them based on interactions 

with other candidates. By concentrating only on the candidates, we process only a fraction 

of all positions, drastically reducing the computational demands. The tensor 𝐻(2) ∈ ℝ𝑆×256, 

containing representations of informative position candidates are fed into a Pre-LN 

Transformer encoder51,52. The output from the encoder is passed to the final part of the 

model, which consists of two classification heads: the base prediction head and the 

informative position prediction head. The base prediction head consists of a fully connected 

layer followed by a softmax layer, produces base probabilities 𝑌𝐵 ∈ ℝ𝑆×5 for every candidate 

position. For each candidate position, it predicts whether the correct base is one of the 

canonical bases (A, C, G, T) or a gap symbol ('*'). The informative position prediction head, 

defined as a fully connected layer followed by a sigmoid, outputs the probabilities 𝑌𝐼 ∈ ℝ𝑆×1, 

which denotes whether each candidate is an informative position. A candidate position is 

deemed informative if different haplotypes have different bases at that position. The block 

diagram, which displays the entire architecture with defined parameters, is shown in 

Extended Data Fig. 3. 

Model training 

We perform multi-task learning to find the optimal model's parameters. The total model loss 

for one window is the sum of the losses from each candidate position. The total loss for the 

candidate position 𝑖, where 𝑖 ∈ {1, 2, … , 𝑆}, is a sum of two losses: base prediction loss and 
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informative position prediction loss and is given by:  

𝐿 = 𝐿𝐵 + 𝐿𝐼 = 𝐶𝐸(𝑌𝐵
𝑖 , 𝑏𝑖) + 𝐵𝐶𝐸 (𝑌𝐼

𝑖 , 𝟙𝑏ℎ1
𝑖 ≠𝑏ℎ2

𝑖 ) 

where 𝐶𝐸 is the cross-entropy loss, 𝐵𝐶𝐸 is the binary cross-entropy loss, 𝑌𝐵
𝑖  represents the 

predicted base probabilities, 𝑏𝑖  is the true base, 𝑌𝐼
𝑖  denotes the predicted probability that a 

candidate position is informative, and 𝟙𝑏ℎ1
𝑖 ≠𝑏ℎ2

𝑖  is the indicator function that equals to 1 if the 

bases on haplotypes ℎ1 and ℎ2 are different, and 0 otherwise. 

We trained the model on four A100 GPUs for a maximum of one million steps. The batch size 

was 128, so the model saw 128 million examples. Validation was performed every 2000 

steps, and we selected the model with the highest validation F1 score for the base prediction 

task. The Adam optimizer was used for training with default 𝛽1 = 0.9 and 𝛽2 = 0.999 

parameters. We used a cosine learning rate scheduler with an initial learning rate of 

3 × 10−4. Weight decay was set to 0.1 and gradients were clipped using the ℓ2-norm with a 

maximum norm value of 1. The dropout value in transformer was set to 0.1. The complete 

list of hyperparameters can be found in Supplementary Table 11. 

Training dataset 

We used a portion of the HG002 dataset internally sequenced by ONT for training (HG002 

internal), specifically chromosomes 1-2 and 17-18. Chromosome 20 was used for validation. 

The remaining chromosomes were excluded from training and model selection. The reads 

were first aligned to the recently published high-quality assembly using minimap2. This 

diploid assembly allowed us to assign the chromosome and haplotype to each read. Only 

reads with primary alignments to the specified chromosomes and mapping quality of 2 or 
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higher were processed further, as previously described. To identify correct bases and 

informative positions, we mapped both contigs (haplotypes) corresponding to the assigned 

chromosome to each read. We extracted the correct base from the assigned haplotype for 

each position on a read. If the bases differed between the two haplotypes at a particular 

position, that position was labelled informative. If there was no mapping for the non-

assigned haplotype, all positions were automatically labelled as non-informative. 

Consensus 

After obtaining predictions from the deep learning model for the candidate positions, we 

determine a consensus sequence for each window. For non-candidate positions, we use 

simple majority voting. If two or more bases (including gaps) occur with the same frequency 

and one of them is a target base, we copy the target base; otherwise, the base is chosen 

randomly. For the candidate positions, we select the base with the highest predicted 

probability. Consecutive windows are stitched into a single sequence. If a window contains 

fewer than two alignments, the window is discarded, and the read is split. The resulting 

sequences are written to a FASTA file. 

Analysis methods 

Generating assemblies with Hifiasm  

We ran Hifiasm v0.19.8 to generate assemblies for all corrected datasets, subsampling them 

to 35x coverage if they exceeded 38x. The corrected reads were chopped to 30 kbp and 

filtered to retain only those longer than 10 kbp. According to our experiments, this was 

necessary because Hifiasm did not perform optimally with longer reads as high-accuracy 
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inputs. This could be related to the nature of its algorithm26,27. Reads that were trimmed 

(using porechop and duplex_tools on the fastq or trimmed during basecalling by Dorado 

v0.5.0 and above) but not yet corrected and that were 50 kbp or longer were used as the UL 

input for Hifiasm. In the case of haploid genomes, primary assemblies are evaluated. For 

diploid samples, parental data were processed using yak and used with Hifiasm's built-in 

trio-binning mode to obtain phased assemblies. For detailed commands, versions and 

parameters, see Supplementary Information, Assembly section. 

Generating assemblies with Verkko  

Verkko was run on all corrected datasets to generate assemblies, subsampling them to 35x 

if their coverage was 38x or above. We generally used Verkko v2.0 by default; however, in 

some instances where it crashed, we used a newer version (Supplementary Information, 

Assembly). For Verkko, the corrected reads were used as is, without chopping. Trimmed, 

uncorrected reads were used as the UL input for Verkko without filtering by length. For diploid 

samples, Meryl and Merqury were used to process parental data in Verkko's trio-mode to 

generate phased assemblies. Homozygous or haploid samples were run with the "--haploid" 

option to improve the alignment of ONT reads. Refer to the Supplementary Information, 

Assembly section for detailed commands, versions and parameters. 

Generating haploid assemblies with LJA 

LJA (v0.2) was run on all homozygous or haploid corrected datasets to generate assemblies, 

subsampling them to 35x if they were 38x or above. Only the downsampled corrected reads 
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were used as input for LJA. For detailed commands, see Supplementary Information, 

Assembly section. 

Evaluation of gene completeness  

We evaluated the gene completeness of assemblies using three different methods – 

asmgene, BUSCO53,54 and compleasm55. 

For asmgene, a reference assembly was used for each sample. Minimap2 2.26-r1175 was 

used to align cDNA sequences to the reference assembly and then to the constructed 

assembly (for diploid samples, each haplotype's assembly is assessed separately). We then 

ran asmgene from paftools 2.26-r1175 and used its outputs to calculate how many single-

copy or multi-copy genes found on the reference remained single- or multi-copy on the 

assembly. From this, we calculated the proportion of single-copy genes on the reference that 

were no longer single-copy on the assembly, the proportion of single-copy genes that 

became duplicated, and the proportion of multi-copy genes that were no longer multi-copy 

by the following: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑜𝑠𝑡 𝑠𝑖𝑛𝑔𝑙𝑒-𝑐𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑠 =  
𝑓𝑢𝑙𝑙_𝑠𝑔𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −  𝑓𝑢𝑙𝑙_𝑠𝑔𝑙𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝑓𝑢𝑙𝑙_𝑠𝑔𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝑠𝑖𝑛𝑔𝑙𝑒-𝑐𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑠 =  
𝑓𝑢𝑙𝑙_𝑑𝑢𝑝𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝑓𝑢𝑙𝑙_𝑠𝑔𝑙𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑜𝑠𝑡 𝑚𝑢𝑙𝑡𝑖-𝑐𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑠 =  
𝑑𝑢𝑝_𝑐𝑛𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −  𝑑𝑢𝑝_𝑐𝑛𝑡𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝑑𝑢𝑝_𝑐𝑛𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

For non-human datasets, we also additionally ran BUSCO 5.6.1 and compleasm 0.2.5 to 

obtain a measure of gene completeness by checking for the existence of conserved single-

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.05.18.594796doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.18.594796
http://creativecommons.org/licenses/by-nd/4.0/


copy orthologs in the assembly. For detailed commands and reference for each sample, see 

Supplementary Information, Evaluation. 

Reference-based evaluation of assemblies 

Minigraph 0.20-r574-dirty with paftools 2.26-r1175 was used to assess each assembly's 

contiguity, completeness and correctness against a reference by alignment. We first aligned 

assembly sequences to the reference sequences using minigraph and indexed the reference 

with Samtools56 1.19.2 (Using htslib57 1.19.1). Paftools then used this information to 

calculate metrics such as NG50 and NGA50. NG50 is calculated by summing the lengths of 

the assembled sequences in descending order, and NGA50 is similar but uses aligned 

segments of assembly sequences to the reference; both metrics identify the sequence 

length at the point where cumulative length equals or exceeds 50% of the genome length. 

The percentage of the reference sequences aligned to a sequence in the assemblies 

measures assembly completeness (Rcov; Supplementary Tables 1-8, Supplementary Table 

10). Additionally, Quast 5.2.0 with minimap2 2.24-r1122 was used to evaluate T2T X and Y 

contigs for HG002 against the X and Y chromosomes in HG002 assembly v1.0.1. For detailed 

commands and the references used, see Supplementary Information, Evaluation. 

K-mers based evaluation of assemblies 

We used Merqury (with Meryl) and yak to assess assemblies using short, accurate reads from 

the same sample. k-mers in the short reads were counted and compared with the k-mers in 

assembly sequences to estimate the assembly's QV (a log-scaled measure of base error 

rate). For diploid samples, maternal- and paternal-specific k-mers were derived from the 
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short reads of the parents of the assembled sample. This approach identifies k-mers from 

both parents in the assembled sequences, allowing it to identify switch and Hamming errors. 

Refer to the Supplementary information, Evaluation for detailed versions, commands and 

parameters. 

Counting T2T chromosomes in assemblies 

The script from https://github.com/prasad693/Tel_Sequences was used to identify 

telomere-to-telomere (T2T) sequences in the assemblies of all samples, except for D. 

melanogaster, for which telomeres do not consist of short motif repeats58. The script 

searches for species-specific canonical telomeric motifs at the ends of each sequence in 

the assembly and attempts to align these sequences to a reference sequence. Assembly 

sequences that cover the full length of the reference chromosome and also have motif 

repeat counts exceeding a specified threshold were considered T2T. For detailed 

commands, see Supplementary Information, Evaluation. 

Measurement of reads' quality 

Reads before and after correction were aligned to a reference for samples with a high-quality 

reference using minimap2 2.26-r1175. The bamConcordance tool was used on the 

alignments to calculate Qconcordance (Qc), a score that is a log-scaled measure of base error 

probabilities. It also outputs the counts of different types of errors – mismatch, non-

homopolymer insertion, non-homopolymer deletion, homopolymer insertion, and 

homopolymer deletion of the reads compared to the reference. Only the records for the 

primary alignments were used. Yak 0.1-r69-dirty was used to estimate QV, a log-scaled 
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measure of base error probabilities of the reads for I002C reads corrected at different 

coverages. Corrected reads from HG002 (at 66x), I002C (at 63x) and CHM13 (67x) were also 

aligned to different high-quality human assemblies to estimate the error rates of reads with 

respect to them. Error rates were calculated by the following: 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =  
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛

𝑚𝑎𝑡𝑐ℎ +  𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛
∗ 100% 

𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 =  
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝑚𝑎𝑡𝑐ℎ + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛
∗ 100% 

𝐼𝑛𝑑𝑒𝑙 𝑟𝑎𝑡𝑒 =  
𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛

𝑚𝑎𝑡𝑐ℎ + 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ + 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛
∗ 100% 

Indels longer than 50 bp are typically classified as structural variants (SVs) and were 

therefore excluded from the analysis. Additionally, reads aligned to mitochondrial DNA or 

EBV were also excluded. For detailed commands and alignment references, see 

Supplementary Information, Evaluation. 

Measurement of computational resources used 

The elapsed time, CPU time, and peak RAM usage were measured for the all-versus-all read 

alignment, correction, and assembly steps. These numbers were taken from the output log 

for Hifiasm assembly runs and obtained with "/usr/bin/time -v" for the rest. All-versus-all 

alignment was performed on the nodes of a computing cluster, using 64 threads on an AMD 

EPYC 7543 32-core processor for each run. GPU inference (correction step) was run on GPU 

nodes on a cluster, with 4 NVIDIA A100-SXM4-80GB being used for each run, along with 64 

worker threads on an AMD EPYC 7713P 64-core processor. Most of the assembly runs used 
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64 threads on an AMD EPYC 7742 64-core processor, except the run 'Danio rerio, 80x LJA' in 

Supplementary Table 5 which used 16 threads.  

Data availability 

HG02818 ULONT data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=submissions/3471c92c-5b6a-4c20-9953-13e3a851debc-

-UCSC_HPRC_PLUS_nanopore_WashU_samples/HG02818/ ; HG02818 and parents’ short 

reads data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=working/HPRC_PLUS/HG02818/raw_data/Illumina/ ; 

HG005 ONT data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=submissions/5b73fa0e-658a-4248-b2b8-cd16155bc157--

UCSC_GIAB_R1041_nanopore/HG005_R1041_Sheared/ ; HG005 and parents’ short reads 

data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=working/HPRC_PLUS/HG005/raw_data/Illumina/ ; HG002 

ULONT data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=submissions/5b73fa0e-658a-4248-b2b8-cd16155bc157--

UCSC_GIAB_R1041_nanopore/HG002_R1041_UL/dorado/v0.4.0_wMods/ (Only the data 

from the four files with ‘ULCIR’ or ‘ULNEB’ in their filenames were used) ; HG002 and 

parents’ short reads data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=working/HPRC_PLUS/HG002/raw_data/Illumina/ ; D. 

melanogaster ONT data: https://labs.epi2me.io/open-data-drosophila/ ; D. melanogaster 

short reads data: https://www.ncbi.nlm.nih.gov/sra/SRR6702604 ; A.thaliana ONT data: 
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https://www.ncbi.nlm.nih.gov/sra/?term=SRR29061597 (See Supplementary Information, 

Additional notes on Arabidopsis thaliana data); A. thaliana Illumina data: 

https://ngdc.cncb.ac.cn/gsa/browse/CRA005350 ; D. rerio ULONT data: 

https://genomeark.s3.amazonaws.com/index.html?prefix=species/Danio_rerio/fDanRer17

/genomic_data/ont/ (PAG68679 was not used for consistency because it has a different 

data sampling frequency from all the rest) ; D. rerio short reads data: 

https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=1029986 ; 

CHM13 ULONT data: https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=T2T/CHM13/nanopore/fast5/ (some partitions were 

skipped due to reasons such as having too many fast5 files, see Supplementary 

information: CHM13 data partitions used); CHM13 short reads data: 

https://www.ncbi.nlm.nih.gov/sra/?term=SRX1082031 ; HG002 v1.0.1: 

https://github.com/marbl/HG002 ; CHM13 v2.0: https://github.com/marbl/CHM13 ; I002C 

v.04: https://github.com/lbcb-sci/I002C or https://github.com/LHG-GG/I002C; CN1: 

https://github.com/T2T-CN1/CN1 ; D. rerio assembly used as reference: 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_033170195.2/ ; A. thaliana 

assembly used as reference: https://ngdc.cncb.ac.cn/gwh/Assembly/21820/show ; D. 

melanogaster assembly used as reference: 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_018904365.1/ ; Human cDNA used: 

https://ftp.ensembl.org/pub/release-

111/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz ; D. melanogaster 

cDNA used: https://ftp.ensembl.org/pub/release-
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111/fasta/drosophila_melanogaster/cdna/Drosophila_melanogaster.BDGP6.46.cdna.all.fa

.gz ; A. thaliana cDNA used: https://ftp.ensemblgenomes.ebi.ac.uk/pub/plants/release-

58/fasta/arabidopsis_thaliana/cdna/Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz ; D. rerio 

cDNA used: https://ftp.ensembl.org/pub/release-

111/fasta/danio_rerio/cdna/Danio_rerio.GRCz11.cdna.all.fa.gz; HG002 UL Q28 dataset 

used: https://labs.epi2me.io/gm24385_ncm23_preview/; HG002 data (HG002 internal) 

used for training R10 model will be available for peer-reviewers upon request; Data for 

I002C will be available prior to publication; HG002 data used for training R9 model: 

https://labs.epi2me.io/gm24385_2021.05/ ; HiFi reads’ assembly in Table 2: https://s3-us-

west-2.amazonaws.com/human-pangenomics/index.html?prefix=submissions/53FEE631-

4264-4627-8FB6-09D7364F4D3B--ASM-COMP/HG002/assemblies/verkko_1.3.1/trio/ ; 

Duplex reads’ assembly in Table 2: 

https://obj.umiacs.umd.edu/marbl_publications/duplex/HG002/asms/duplex_50x_30xUL_t

rio.tar.gz ; Most of the assemblies evaluated in this paper: 

https://zenodo.org/records/13702708 ; Q28 ULONT assemblies evaluated in this paper: 

https://zenodo.org/records/13703130 ; 

Code availability 

HERRO code is available at https://github.com/lbcb-sci/HERRO. The pre-trained models 

are available at https://zenodo.org/records/12683277. 
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Extended Data Fig. 1 Overview of the HERRO method pipeline: The input to the pipeline are  ONT sequencing reads. After 
trimming adapters and splitting at middle adapters, short and low-quality reads are filtered out. Next, all-vs-all alignments 
are performed using minimap2. In feature generation, we chunk the target read and its alignments into multiple windows. 
For each window, we define two matrices representing stacked bases and base qualities. These windows are then 
processed by a deep-learning model. To predict the correct base for the candidate positions, we use predictions from the 
model. For non-candidate positions, we apply simple majority voting. The final error-corrected read is obtained by stitching 
together the consensus sequence from each window. 
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Extended Data Fig. 2 Qc before and after correction for Q28 ultra-long HG002 reads. a) A hexbin plot representing the 
data density for specific pairs of Qc values before and after correction for reads aligned to paternal and maternal 
chromosome 9 of the HG002 assembly v1.0.1. The color intensity indicates the density of data points in each hexagonal bin 
on a logarithmic scale. Bins above the dashed diagonal line indicate an improvement in accuracy after correction, while 
bins below it denote a reduction. The "PM" at the end of each axis stands for "Perfect Match". b) This plot shows the 
distribution of Qc before and after correction. Alignments that perfectly match the reference were excluded. Data in the box 
plots are presented as follows: the centre line indicates the median, the bounds of the box represent the first and third 
quartiles (Q1 and Q3), and the whiskers extend to the minimum and maximum values within 1.5 times the interquartile 
range (IQR). Outliers beyond this range are plotted individually. 
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Extended Data Fig. 3 HERRO Model Architecture: The block diagram displays the complete architecture of the HERRO 
model, including layers and hyperparameters. The convolutional block, which consists of a convolutional layer, batch 
normalization, and a ReLU activation function, is fully defined on the right side of the figure. 
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