

1 Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance

2 and mitochondrial metabolism in *Drosophila melanogaster*

3

4 Nader H. Mahmoudzadeh^{1,‡}, Yasaman Heidarian^{1,‡}, Jason P. Tourigny¹, Alexander J.
5 Fitt¹, Katherine Beebe², Hongde Li¹, Arthur Luhur¹, Kasun Buddika¹, Liam Mungcal¹,
6 Anirban Kundu³, Robert A. Policastro¹, Garrett J. Brinkley⁴, Gabriel E. Zentner¹, Travis
7 Nemkov⁵, Robert Pepin⁶, Geetanjali Chawla⁷, Sunil Sudarshan⁴, Aylin R. Rodan²,
8 Angelo D'Alessandro⁵, and Jason M. Tennessen^{1,8*}

9

10 ¹Department of Biology, Indiana University, Bloomington, IN 47405, USA

11 ²Department of Internal Medicine, Division of Nephrology and Hypertension, and

12 Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;

13 Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City,

14 UT, USA.

15 3D 1

20 Eminence, Dadri, Uttar Pradesh 201314, India

21 ^aAffiliate Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA

22

23 [#]Authors contributed equally to this manuscript.

24 *Corresponding Author

25 Email: jtenness@iu.edu

26 **Key words:** L-2-hydroxyglutarate; L2hgdh oncometabolite; hypoxia, *Drosophila*

27 **Running title:** L2hgdh protects against reoxygenation stress

28 **ABSTRACT**

29 The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates
30 the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable
31 of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions.
32 Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in
33 neurodevelopmental defects, altered immune cell function, and enhanced growth of
34 clear cell renal cell carcinomas. To better understand the molecular mechanisms that
35 underlie these disease pathologies, we used the fruit fly *Drosophila melanogaster* to
36 investigate the endogenous functions of L2hgdh. Our studies revealed that while
37 L2hgdh is not essential for growth or viability under standard culture conditions, *L2hgdh*
38 mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with
39 severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal
40 system (Malpighian tubules; MTs) is a key site of L2hgdh activity, as *L2hgdh* mutants
41 that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit
42 normal levels of mitochondrial metabolites. We also demonstrate that even under
43 normoxic conditions, *L2hgdh* mutant MTs experience significant metabolic stress and
44 are sensitized to aberrant growth upon Egfr activation. Overall, our findings present a
45 model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly
46 regulating the balance between glycolytic and mitochondrial metabolism, enabling
47 successful recovery from hypoxia exposure, and ensuring renal tissue integrity.

48

49 **INTRODUCTION**

50 L-2-hydroxyglutarate (L-2HG) is a potent signaling molecule that acts as a
51 competitive inhibitor of α -ketoglutarate (α KG)-dependent dioxygenases (Chowdhury et
52 al., 2011, Xu et al., 2011, Du and Hu, 2021). As a result, ectopic L-2HG accumulation
53 can interfere with activity of the tricarboxylic acid (TCA) enzyme α -ketoglutarate
54 dehydrogenase, the Jmj-class of histone lysine demethylases, the Tet family of
55 enzymes, and prolyl hydroxylase 2 (PHD2), which regulates stability of the transcription
56 factor Hypoxia Inducible Factor α (HIF1 α) (Williams et al., 2022, Chowdhury et al.,
57 2011, Xu et al., 2011, Tyrakis et al., 2016, Intlekofer et al., 2017, Brinkley et al., 2020).
58 Therefore, ectopic L-2HG accumulation can broadly disrupt mitochondrial metabolism,
59 gene expression programs, chromatin architecture, and cell fate decisions (Intlekofer et
60 al., 2017, Brinkley et al., 2020, Williams et al., 2022, Shelar et al., 2018, Taub et al.,
61 2022, Ma et al., 2017, Tyrakis et al., 2016).

62 The ability of L-2HG to disrupt cellular processes forces animal cells to tightly
63 control L-2HG metabolism. In this regard, the mitochondrial enzyme L-2-
64 hydroxyglutarate dehydrogenase (L2hgdh) serves a key role in directly regulating L-
65 2HG abundance by irreversibly converting L-2HG to α KG in an FAD-dependent manner
66 (Rzem et al., 2004, Yang et al., 2023). The importance of this enzymatic reaction is
67 evident by disease phenotypes caused by loss-of-function mutations in *L2hgdh* genes.
68 Loss of L2hgdh activity in dogs, cats, and humans results in a rare disease known as L-
69 2-hydroxyglutaric aciduria, which is characterized by developmental delays, seizures
70 and other neurological symptoms, and in severe cases, childhood demise (Rzem et al.,
71 2004, Rzem et al., 2007, Kranendijk et al., 2012, Christen et al., 2021, Christen et al.,

72 2023, Sanchez-Masian et al., 2012, Farias et al., 2012). Similarly, *L2hgdh* mutant mice
73 display both neurological pathologies and significant alterations in mitochondrial
74 metabolism (Rzem et al., 2015, Ma et al., 2017, Brinkley et al., 2020). L-2HG also acts
75 as an oncometabolite in the context of clear cell renal cell carcinomas (ccRCCs), where
76 *L2hgdh* loss-of-function mutations induce ectopic L-2HG accumulation and lead to
77 changes in DNA methylation, RNA methylation, mitochondrial metabolism, and amino
78 acid synthesis. As a result, loss of *L2hgdh* activity within ccRCC cells promotes tumor
79 growth and metastasis (Shim et al., 2014, Shelar et al., 2018, Brinkley et al., 2020, Taub
80 et al., 2022).

81 While aberrant L-2HG accumulation is associated with several human diseases,
82 mounting evidence indicates that L-2HG is also a product of normal cellular metabolism.
83 For example, cultured cells accumulate L-2HG in response to hypoxia, low cellular pH,
84 elevated NADH levels, and mitochondrial disruptions, suggesting that L-2HG production
85 is part of the normal cellular response to oxidative stress (Intlekofer et al., 2015, Oldham
86 et al., 2015, Mahmoudzadeh et al., 2020, Hunt et al., 2019, Li et al., 2020, Mullen et al.,
87 2014, Nadtochiy et al., 2016, Reinecke et al., 2012). These links between L-2HG
88 accumulation and cellular redox balance is further emphasized by the fact that L-2HG is
89 synthesized from α KG by noncanonical activity of Lactate dehydrogenase (Ldh) and
90 Malate dehydrogenase (Mdh) – two enzymes whose activity is intimately connected with
91 cellular redox balance (Struys et al., 2007, Intlekofer et al., 2017, Intlekofer et al., 2015,
92 Oldham et al., 2015, Rzem et al., 2007, Li et al., 2017, Teng et al., 2016). Finally, under
93 certain circumstances, L-2HG appears capable of stabilizing HIF1 α via inhibition of
94 PHD2 (Intlekofer et al., 2017, Williams et al., 2022), thus highlighting a possible

95 mechanism by which L-2HG production coordinates gene expression programs with
96 changes in oxygen availability and cellular redox balance.

97 The importance of L-2HG metabolism is also becoming evident at the organismal
98 level. A recent mouse study revealed that L2hgdh inhibition protects cardiac cells
99 against ischemia-reperfusion injury (He et al., 2022), supporting the hypothesis that
100 L2hgdh, and by extension L-2HG, plays an important and underappreciated role in the
101 cellular response to oxidative stress. Similarly, L-2HG accumulates in CD8+ T-cells
102 upon T-cell receptor activation and in macrophages stimulated with LPS (Tyrakis et al.,
103 2016, Williams et al., 2022), with the accumulation of L-2HG in both cell types
104 associated with HIF1 α activation. These observations indicate that L-2HG metabolism
105 serves an endogenous role in healthy tissues and suggest that additional studies of L-
106 2HG and L2hgdh *in vivo* would lead to a better understanding of how ectopic L-2HG
107 accumulation drives human disease.

108 *Drosophila* has emerged as an ideal system for studying L-2HG metabolism due
109 to the facts that (i) the mechanisms that regulate L-2HG production and accumulation
110 are conserved between flies and mammals (Yang et al., 2023, Li et al., 2017, Li et al.,
111 2018), and (ii) *Drosophila* larvae accumulate millimolar levels of L-2HG during larval
112 (juvenile) development in a controlled and highly predictable manner (Li et al., 2017).
113 Moreover, adult flies, like mammalian cells, generate high concentrations of L-2HG in
114 response to hypoxia and oxidative stress (Mahmoudzadeh et al., 2020, Li et al., 2020,
115 Hunt et al., 2019). These observations establish the fly as the only genetic model where
116 L-2HG and L2hgdh functions can be studied *in vivo* with high levels of control and
117 precision. Here we exploited this genetic system to demonstrate that renal L2hgdh

118 activity is essential for maintaining mitochondrial metabolism and ensuring successful
119 recovery from hypoxia.

120 Using previously described *L2hgdh* mutants (Li et al., 2017), we examined the
121 effects of excess L-2HG accumulation on *Drosophila* growth, maturation, and
122 metabolism. Our studies revealed that *L2hgdh* mutants exhibit few phenotypes under
123 standard culture conditions but are hypersensitive to hypoxia. However, *L2hgdh*
124 mutants do not die as the result of reduced oxygen availability, as nearly all mutant
125 animals survive the hypoxia exposure; rather, *L2hgdh* mutants die during the
126 reoxygenation phase with severe defects in mitochondrial metabolism. Subsequent
127 tissue-specific studies revealed that the renal system (i.e., Malpighian tubules; MTs) is a
128 key site of L2hgdh activity during hypoxia exposure, as expression of an *L2hgdh*
129 transgene specifically within principal cells (PCs) of the MTs ensures successful
130 recovery and rescues hypoxia-induced mitochondrial dysfunction. Finally, we
131 demonstrated that L2hgdh serves an essential role in PCs even under normoxic
132 conditions, as *L2hgdh* mutant PCs not only display reduced mitochondrial membrane
133 potential and elevated ROS accumulation, but also exhibit aberrant growth upon Egfr
134 activation. Overall, our studies reveal an ancient and conserved role for L2hgdh activity
135 in the renal system and hints at a model in which this enzyme regulates L-2HG pool
136 size as a means of coordinating mitochondrial flux with oxygen availability.

137 **RESULTS**

138 **L2hgdh is required for recovery from hypoxia**

139 To better understand the *in vivo* functions of L-2HG and L2hgdh (Figure 1A), we
140 examined *Drosophila L2hgdh* mutants for defects in development, gene expression, and
141 metabolism. Consistent with earlier studies (Li et al., 2017), we found that *L2hgdh*^{12/14}
142 mutant adult males accumulate very high L-2HG levels but exhibit no obvious
143 differences in developmental timing, body mass, climbing behavior, or lifespan (Figure
144 1B, S1A-C, S2A,B). RNAseq analysis of *L2hgdh*^{12/14} mutants also revealed modest
145 changes in gene expression, 119 genes were up-regulated and 240 genes were down-
146 regulated (Figure S3, Table S1, S2). Notably, we found no indication of enhanced
147 HIF1 α /Sima signaling or hypoxia-related signaling, as expression levels of *Ldh* (Wang
148 et al., 2016), *Hph* (also known as *fatiga*; FBgn0264785)(Acevedo et al., 2010), and *Thor*
149 (Barreto et al., 2020) were unchanged in *L2hgdh* mutants (Table S1, S2). *L2hgdh*
150 mutations also had little effect on the expression of genes associated with metabolism,
151 with only 44 metabolic genes exhibiting significantly altered mRNA transcript levels,
152 none of which were associated with glycolysis, the TCA cycle, or the electron transport
153 chain (Table S3). In fact, Pathway, Network and Gene-set Enrichment Analysis
154 (PANGEA) analysis revealed only four GO categories that were significantly enriched
155 among those genes that were either up- or down-regulated in *L2hgdh* mutants (Table
156 S4)– sensory perception (GO:0007600), immune response (GO:0006955), cuticle
157 development (GO:0042335), and response to external stimulus (GO:0009605).
158 Considering that L-2HG and L2hgdh also regulate the immune response in mammals

159 (Tyrakis et al., 2016, Williams et al., 2022), this finding is of considerable interest and
160 will be the focus of future studies.

161 Although ectopic L-2HG accumulation has little effect on *Drosophila*
162 development, lifespan, or gene expression, a semi-targeted metabolomic analysis
163 revealed that *L2hgdh*^{12/14} mutant males displayed an unexpected metabolic profile when
164 compared with *L2hgdh*^{14/+} heterozygous controls (Figure 1C, S4, Table S5). While both
165 2HG and lysine were elevated in *L2hgdh*^{12/14} mutants (Figure 1D,E), a result consistent
166 with previous studies in mammals (Brinkley et al., 2020; Rzem et al., 2015), we also
167 observed an unexpected increase in both lactate and pyruvate (Figure 1E). Subsequent
168 GC-MS studies confirmed that *L2hgdh*^{12/14} mutant males accumulate excess 2HG,
169 lysine, and lactate in both whole animal extracts and hemolymph when compared with
170 either the heterozygous control or a *L2hgdh*^{12/14}; *p{L2hgdh}* rescue line (Figure S5A-D).
171 Moreover, this increase in lactate accumulation was independent of changes in either
172 *Ldh* gene expression or Ldh enzyme activity (Table S1, Figure S6). We also note that
173 although pyruvate levels were inconsistently altered across these GC-MS-based
174 validation experiments (Figure S5C), subsequent LC-MS-based studies described
175 below revealed consistent increases in pyruvate levels. Overall, our results suggest that
176 loss of L2hgdh activity shifts the balance of cellular metabolism towards a more
177 glycolytic state in a manner that is independent of gene expression.

178 The presence of elevated lactate levels within *Drosophila L2hgdh* mutants
179 suggests that loss of L2hgdh activity disrupts oxidative metabolism. We tested this
180 possibility by asking if *L2hgdh* mutants are sensitive to hypoxia exposure (1% O₂).
181 Indeed, when compared with *L2hgdh*^{14/+} heterozygous controls and a *L2hgdh*^{12/14};

182 *p{L2hgdh}* rescue line, a significantly higher percentage of *L2hgdh*^{12/14} mutants died
183 following 6 hr, 12 hr, and 24 hr hypoxia treatment, with less than 25% of animals
184 surviving the 12 hr and 24 hr exposures (Figure 2A-C). While quantifying survivorship,
185 however, we noticed that greater than 90% of *L2hgdh*^{12/14} mutant animals responded to
186 physical touch immediately following removal from the hypoxia chamber (Figure 2D),
187 indicating that *L2hgdh* mutants survive hypoxia but expire during the reoxygenation
188 phase. Notably, this failure to recover from hypoxia exposure correlates with
189 significantly elevated L-2HG levels in *L2hgdh* mutants, both immediately following 12 hr
190 hypoxia exposure as well as 1 hr post-recovery (Figure 2E). Together, our findings
191 indicate that *L2hgdh* limits L-2HG accumulation in hypoxia-exposed animals and
192 ensures successful recovery.

193

194 **Mitochondrial metabolism is disrupted in hypoxia-treated *L2hgdh* mutants**

195 To further explore the function of *L2hgdh* in the hypoxia response, we used semi-
196 untargeted LC-MS-based metabolomics to examine *L2hgdh* mutants and the two
197 control strains at three timepoints: (i) immediately following a 12 hr incubation in
198 normoxia (Norm), (ii) immediately following a 12 hr hypoxia exposure (H+0 hr), and (iii)
199 12 hrs of hypoxia followed by 1 hr of normoxia (H+1 hr; note that we only assayed living
200 flies; Table S6). Principal component analysis (PCA) revealed that the normoxic
201 metabolome of *L2hgdh* mutants was similar to that of the *L2hgdh*^{14/+} heterozygous
202 controls and the *L2hgdh*^{12/14}; *p{L2hgdh}* rescue line (Figure 3A). However, hypoxia
203 (PC1) induced significant metabolic changes in *L2hgdh* mutant males relative to the
204 controls, and these differences persisted at the H+1 hr timepoint (Figure 3A). Moreover,

205 while the H+0 hr and H+1 hr metabolomes of both control groups separate with no
206 overlap of their confidence intervals (Figure 3A), the H and H+1 *L2hgdh* mutants sample
207 groups segregate from the controls along PC2 and completely overlap one another,
208 suggesting that *L2hgdh* is essential for the metabolome to recover from hypoxia
209 treatment. Consistent with the PCA analysis, hierarchical clustering reveals that the H+0
210 hr and H+1 hr *L2hgdh* mutant samples share a lowest common ancestor (Figure S7).
211 The control and rescue strains, however, primarily segregate by recovery time, with the
212 H+0 hr and H+1 hr samples from these genotypes defining distinct subclusters (Figure
213 S7). Overall, our analyses demonstrate that the *L2hgdh* mutant metabolome is
214 significantly disrupted by hypoxia exposure and indicate that *L2hgdh* activity is essential
215 during the reoxygenation phase for to reestablish normal oxidative metabolism.

216 To determine what factors drive the metabolomic differences between the
217 control, rescue, and mutant strains, we used a correlation analysis to identify
218 metabolites that are altered in response to elevated 2HG levels (note that L-2HG
219 represents the bulk of the adult 2HG pool upon hypoxia treatment, see Figure 2E). This
220 approach revealed that L-2HG levels positively correlate with the abundance of
221 pyruvate and lactate, among others (Figure 3B). In contrast, concentrations of the TCA
222 cycle metabolites citrate, succinate, fumarate, and malate, as well as the anaplerotic
223 amino acids glutamate, proline, and aspartate, displayed inversely proportional
224 relationships with L-2HG abundance (Figure 3B).

225 The importance of these metabolomic results become apparent upon closer
226 examination of the datasets. As expected, hypoxia induced 2HG and lactate
227 accumulation in all three strains; however, hypoxia-exposed *L2hgdh* mutants display a

228 significantly larger increase in the abundance of both metabolites (Figure 3C,D, and
229 S8). Moreover, although the control and rescue strain contained similar amounts of
230 glucose and pyruvate across all three timepoints, hypoxia-treated *L2hgdh* mutants
231 harbored elevated amounts of both molecules at H+0 and pyruvate levels remained
232 elevated at H+1 (Figure 3D, S8). Similarly, while levels of citrate, succinate, fumarate,
233 and malate, as well as glutamate, proline, and aspartate, remained at near constant
234 levels in control strains regardless of timepoint, *L2hgdh* mutants displayed significant
235 decreases in all of these molecules at both the H+0 hr and H+1 hr timepoints (Figure
236 3C,D, S9A-D, S10A-C). Intriguingly, we also noted that while the control strains
237 accumulate higher levels of serine following hypoxia treatment, *L2hgdh* mutants do not
238 (Figure S10D). This result is notable considering that raised L-2HG (due to loss of
239 L2HGDH expression) also disrupt serine metabolism on renal cancer cells (Kundu et al.,
240 2024).

241 We confirmed our metabolomic results using GC-MS to measure the relative
242 abundance of specific metabolites in glycolysis, the TCA cycle, as well as a subset of
243 amino acids in the control, mutant, and rescue strain. For this analysis, we assayed the
244 three timepoints described above as well as a fourth timepoint, 12 hours of hypoxia
245 followed by 12 hours of normoxia (H+12). The resulting data mirrored those generated
246 in our LC-MS study – in all three strains, hypoxia induced elevated levels of 2HG and
247 lactate, with *L2hgdh* mutant adults displaying significantly increased quantities of 2HG
248 and lactate at both the H+0 and H+1 timepoints (Figure 4A,B,D,E). We also observed
249 elevated 2HG levels in *L2hgdh* mutant at the H+12 timepoint (Figure 4C), but the
250 relative abundance of L-2HG at this timepoint was less than that observed at H+0 and

251 H+1 (Figure 4A-C). Similarly, lactate levels returned to normal in H+12 *L2hgdh* mutants
252 (Figure 4F).

253 Analysis of TCA cycle intermediates similarly validated our initial metabolomic
254 study. While α KG, succinate, fumarate, and malate levels were decreased in the
255 hypoxia-treated control strains at H+0, the *L2hgdh* mutants displayed a notably larger
256 decrease in nearly all TCA cycle intermediates at this timepoint (Figure 5A). Moreover,
257 while levels of TCA cycle intermediates in the H+1 control strain had recovered to those
258 observed in untreated samples, H+1 mutant samples contained significantly lower levels
259 of citrate, succinate, fumarate, and malate (Figure 5B). At the H+12 timepoints,
260 however, nearly all TCA cycle metabolites either returned to levels seen in the normoxic
261 controls or exhibited an unexpected increase – a trend observed in all three genotypes
262 (Figure 5C). Overall, our results suggest that *L2hgdh* limits the amount of L-2HG that
263 accumulates during hypoxia exposure, and in its absence, *L2hgdh* mutants fail to
264 strike a proper balance between glycolytic and mitochondrial metabolism, resulting in
265 death during reoxygenation.

266

267 **Hif1 α target genes are properly regulated in hypoxia-treated *L2hgdh* mutants**

268 As a complement to the metabolomic studies, we compared gene expression in
269 *L2hgdh* mutants with *L2hgdh*^{14/+} heterozygous control animals at the same four
270 timepoints used in our targeted metabolomic assays (as in Figures 4, 5). Both strains
271 responded to changes in oxygen availability by activating similar gene expression
272 programs, with mutant and control samples exhibiting similar numbers of up- and down-
273 regulated genes (Table 1, Tables S7-S12). PCA analysis of differentially expressed

274 genes across the genotypes and timecourse placed the H+0 and H+1 datasets at
275 similar positions on the PC1 axis (Figure 6A), which is strongly correlated with treatment
276 condition (hypoxia) and a combination of treatment and genotype (Figure S11A). In
277 addition, the mutant and control samples at each timepoint segregate along the PC2
278 axis, which is largely attributable to genotype (Figure S11A). Interestingly, we note that
279 the H+12 samples locate midway between the normoxic and H+0/H+1 samples along
280 the PC1 axis (Figure 6A), suggesting that gene expression in both control and mutant
281 animals was returning to normoxic levels by 12h. These patterns are also reflected in a
282 hierarchical clustering analysis, which revealed that the normoxic and H+12 samples
283 grouped together under a lowest common parent node, as did the H+0 and H+1
284 samples (Figure 6B). Overall, these observations suggest that control and *L2hgdh*
285 mutants mount similar transcriptional responses to hypoxia and reoxygenation.

286 A closer examination of the RNA-seq data revealed that not only were fewer than
287 260 genes significantly altered in the mutant strain at any of the four timepoints (Table
288 S8), but the *Hif1α/sima* target genes *Ldh* and *Hph* were also expressed at similar levels
289 in mutant and control animals throughout the timecourse (Figure S11B-D). PANGEA
290 analysis of the RNAseq data revealed that, under both normoxia and hypoxia, the most
291 significantly altered Gene Set present at all timepoints was “Toll and Imd signaling
292 pathway” (KEGG path:map04624; Table S13), again highlighting the link between L-
293 2HG metabolism and the innate immune response. There was, however, no enrichment
294 for gene categories or pathways related to glycolysis, mitochondrial metabolism, or
295 HIF1α/sima signaling (Table S13). These results indicate that the hypoxia induced

296 metabolic defects observed in *L2hgdh* mutants stem from disruption of mitochondrial
297 metabolism, not a defect in HIF1 α /sima signaling.

298

299 **Renal *L2hgdh* activity ensures recovery from hypoxia treatment**

300 To better understand why *L2hgdh* mutants exhibit defects in mitochondrial
301 metabolism and hypoxia sensitivity, we shifted from whole-animal analyses to tissue-
302 specific studies of the renal and nervous systems – tissues that both express significant
303 levels of *L2hgdh* transcripts and exhibit the most dramatic phenotypes in *L2hgdh* mutant
304 mammals (Li et al., 2022, Shim et al., 2014, Rzem et al., 2015, Rzem et al., 2004). For
305 our initial tissue-specific studies, we exposed *L2hgdh*^{12/14} mutants that expressed a
306 *UAS-L2hgdh* transgene in either neurons (*elav-GAL4*) (Yannoni and White, 1997) or
307 principal cells (PCs) of the Malpighian tubules (*C42-GAL4*) (Rosay et al., 1997) to 1% O₂
308 for 12 hours. To our surprise, all *L2hgdh*^{12/14}; *C42-GAL4 UAS-L2hgdh* animals (from
309 here on referred to as *L2hgdh*; *C42-L2hgdh*) survived 12 hr hypoxia exposures (Figure
310 7A), while the negative control strains (i.e., *L2hgdh*^{12/14}; *C42-GAL4*+/+ and *L2hgdh*^{12/14};
311 +/*UAS-L2hgdh*) died at the same rate as *L2hgdh*^{12/14} mutants (Figure 7A). In contrast,
312 *L2hgdh*^{12/14}; *elav-GAL4* +/*UAS-L2hgdh* (now referred to as *L2hgdh*; *elav-L2hgdh*) died
313 at the same rate as the negative control strains (Figure S12A).

314 Beyond the viability phenotype, *C42-L2hgdh* expression in hypoxia-exposed
315 *L2hgdh* mutants also partially restored whole body 2HG, lactate, citrate, and succinate
316 levels (Figure 7B-D). Moreover, although fumarate and malate levels were not
317 significantly rescued in *L2hgdh*; *C42-L2hgdh* animals when compared with mutants, the
318 abundance of both metabolites trended higher in the rescued animals. In contrast,

319 *L2hgdh; elav-L2hgdh* expression failed to significantly rescue the abundance of any of
320 the assayed metabolites (Figure S12B-D). These findings indicate that L2hgdh activity
321 within the renal system is sufficient to maintain systemic mitochondrial activity and
322 enable successful recovery from hypoxia exposure.

323

324 **Renal L2hgdh activity controls L-2HG excretion and catabolism**

325 The ability of *C42-L2hgdh* expression to rescue the *L2hgdh* mutant phenotypes
326 raises the question of how renal L2hgdh activity can have such profound effects on
327 organismal physiology and metabolism. A clue towards answering this question comes
328 from the observation that urinary L-2HG levels are elevated in both *L2hgdh* KO mice
329 and individuals suffering from L-2HG aciduria (Rzem et al., 2015, Ma et al., 2017, Duran
330 et al., 1980, Kranendijk et al., 2012) (Figure S13). These observations highlight how the
331 renal system responds to loss of L2hgdh activity by attempting to excrete excess L-
332 2HG. Considering that the PCs are a key site of L2hgdh function, and that these cells
333 are responsible for transport of organic metabolites (Cohen et al., 2020), we used two
334 approaches to determine if the fly renal system also excretes L-2HG:

335 (i) We used GC-MS to quantify L-2HG within the excreta of *L2hgdh* mutants.
336 Consistent with previous mammalian observations, the excrement of *L2hgdh*^{12/14} mutant
337 male flies contained significantly elevated L-2HG levels when compared with the control
338 strain (Figure 8B), indicating that flies, like mammals, excrete accumulated L-2HG upon
339 loss of L2hgdh activity.

340 (ii) We measured the secretion rate of isolated Malpighian tubules using a
341 Ramsay assay to determine if loss of L2hgdh alters renal activity. Our analysis revealed

342 that the secretion rate of *L2hgdh*^{12/14} mutant MTs was significantly higher than that
343 measured in either the control or rescue line (Figure 8A), suggesting that the elevated
344 levels of L-2HG in *L2hgdh* mutants induce increased excretion.

345 Our findings raise the question as to whether the primary purpose of renal
346 *L2hgdh* activity is to promote L-2HG catabolism or excretion. If *L2hgdh* promotes L-2HG
347 excretion, we would expect to see increased L-2HG levels in the excreta of *L2hgdh*;
348 *C42-L2hgdh* compared with the mutant strain. In contrast, if *L2hgdh* modulates systemic
349 L-2HG levels by converting L-2HG to α KG, then the excreta of *L2hgdh*; *C42-L2hgdh*
350 should contain L-2HG levels comparable to the control strains. We observed the latter,
351 as GC-MS analysis of excreta from the *L2hgdh*; *C42-L2hgdh* strain contained the same
352 amount of L-2HG as the heterozygous controls (Figure 8B). This observation indicates
353 that renal *L2hgdh* activity catabolizes the majority of the normoxic L-2HG pool while loss
354 of this enzyme results in increased L-2HG excretion.

355 The ability of renal *L2hgdh* activity to influence both steady state L-2HG levels
356 and MT secretion rate motivated us to determine if human *L2hgdh* also influences L-
357 2HG excretion from the human renal carcinoma cell lines 786-O and OSRC-2. While
358 previous studies demonstrated that *L2hgdh* activity regulates intracellular L-2HG
359 accumulation within these cells, the influence of *L2hgdh* on L-2HG excretions is
360 unknown. We found that while L-2HG concentration in the media of 786-O cells was
361 similar between those transfected with either the control vector or the L2HGDH
362 expressing plasmid, the media of OSRC-2 cells expressing the empty vector control
363 contained significantly higher levels of L-2HG than the media of cells expressing

364 L2HGDH (Figure 8C). Together, our findings suggest that L-2HG transport could play
365 an important role in ccRCC.

366

367 **L2hgdh functions within PCs to maintain mitochondrial metabolism**

368 Our results indicate that ectopic L-2HG accumulation inhibits mitochondrial
369 metabolism and highlight the PCs as a key site of L2hgdh activity. To further explore the
370 role of L2hgdh within these cells, we used the dye JC1, which stains both mitochondria
371 (JC1 Green) and mitochondrial membrane potential (JC1 Red), to determine how loss
372 of L2hgdh activity influences cell autonomous mitochondrial metabolism. Our study
373 revealed that, even under normoxic conditions, staining of JC1 Red relative to JC1
374 Green was significantly reduced in the PCs of *L2hgdh* mutant MTs (Figure 9A and A')
375 when compared with *L2hgdh*^{14/+} controls (Figure 9B and B'). Moreover, the decreased
376 JC1 Red staining observed in *L2hgdh* mutant MTs was completely rescued by
377 expression of a *UAS-L2hgdh* transgene using the PC-specific C42-Ga4 driver (C42-
378 *L2hgdh*; Figure 9C and C'). Unfortunately, we were unable to conduct these assays
379 after hypoxia treatment due to the extreme fragility of hypoxia-exposed *L2hgdh* mutant
380 MTs. Together, our observations suggest that even under normoxic conditions, L2hgdh
381 functions within the PCs to promote mitochondrial metabolism in a cell autonomous
382 manner.

383 As a complement to these dye-based assays, we used RNA-seq to determine if
384 the observed mitochondrial defects stem from changes in MT gene expression. Similar
385 to the whole animal analyses, only 124 genes were up-regulated and 90 genes were
386 down-regulated in *L2hgdh* mutant MTs when compared with the controls (Figure S14A,

387 Table S14 and S15). We again observed no significant link between loss of L2hgdh
388 activity and expression of genes associated with glycolysis, mitochondrial metabolism,
389 or HIF1 α signaling— one gene involved in glycolysis was upregulated in mutant MTs,
390 and there were no significant changes in expression among those genes involved in the
391 TCA cycle or electron transport chain (Figure S14B-D, Table S15). Further analysis
392 using PANGEA revealed that the only metabolic pathways significantly altered in
393 *L2hgdh* mutants were sulfur metabolism ([GO:0006790](#)) and cofactor metabolic
394 processes ([GO:0051186](#); Table S16). These enrichments, however, were driven entirely
395 by changes in genes encoding glutathione S-transferases (GSTs; Table S16).
396 Considering that *L2hgdh* mutant MTs exhibit elevated secretion rates while also
397 experiencing compromised mitochondrial metabolism, increased GST expression could
398 be indicative of elevated ROS production. Indeed, the MTs of *L2hgdh* mutants exhibited
399 higher levels of ROS, as determined by DHE staining, when compared with controls
400 (Figure 9D,E), and these metabolic phenotypes were rescued by expressing C42-
401 *L2hgdh* in *L2hgdh* mutant PCs (Figure 9E). Thus, loss of L2hgdh expression within the
402 PCs results in an aberrant metabolic state that leads to elevated ROS production.
403

404 ***L2hgdh* mutant MTs are sensitized towards aberrant tissue growth**

405 The decreased mitochondrial activity and elevated ROS levels present within
406 *L2hgdh* mutant MTs mirror the metabolic state of ccRCC tumors, which are highly
407 glycolytic, display decreased mitochondrial respiration, and exhibit elevated ROS
408 production (Courtney et al., 2018). Based on the metabolic phenotypes shared between
409 the *Drosophila* *L2hgdh* mutant MTs and ccRCCs, as well as the fact that L2hgdh

410 functions as a tumor suppressor in renal cells, we hypothesized that *L2hgdh* mutant
411 MTs are sensitized toward aberrant growth upon manipulation of genes involved in
412 ccRCC. We initially evaluated this possibility by expressing a *UAS-Vhl-RNAi* construct
413 in the PCs of adult *L2hgdh* mutants using *C42-GAL4* under the control of *Gal80ts*
414 (*L2hgdh; C42-Vhl-RNAi; Gal80ts*). Considering that *Vhl* is mutated in nearly 90% of
415 ccRCCs (Gossage et al., 2015), we predicted that *Vhl-RNAi* would interact with *L2hgdh*
416 mutations to induce synthetic MT phenotypes. The resulting genetic combination,
417 however, was extremely sick and we were unable generate *L2hgdh; C42-Vhl-RNAi; Gal80ts* adult males, even when reared at the permissive temperature for *Gal80ts*.
418 While the few resulting adults showed no MT abnormalities (data not shown), these
419 analyses inevitably reflect a survivor bias, as we hypothesize that only those animals
420 with inefficient *Vhl* knockdown completed development. This observation demonstrates
421 a genetic interaction between *L2hgdh* and *Vhl* that will be explored in future studies.

423 As an alternative approach, we focused on *Egfr* signaling, which was recently
424 implicated in ccRCC progression (Liu et al., 2023, Courtney et al., 2018). Intriguingly,
425 while expression of a *UAS-Egfr* transgene in the adult PCs of control males (*C42-Gal4; tub-Gal80ts; UAS-Egfr*) had minimal effects on MT growth and morphology (Figure
426 10A), expression of this same transgene in the PCs of adult *L2hgdh* mutant males
427 induced significant defects within the lower segment of the MTs, both in terms of tissue
428 organization and ectopic growth (Figure 10B-D). These abnormal cellular structures
429 included small protuberances (Figure 10B), cyst-shaped masses composed of unknown
430 cells attached to MT exterior (Figure 10C,G), and increased cell density within the MT
431 (Figure 10D,G). Moreover, the *Egfr*-induced ectopic growths readily stained with the

433 lipophilic dye Nile Red (Figure 10 E-G) – an intriguing result considering that human
434 ccRCCs also accumulate elevated amounts of triglycerides. We would also note that the
435 cells within these abnormal masses were of decreased ploidy compared with the PCs
436 and stellate cells (Figure 10B-D,F,G). Considering that we primarily observe these
437 abnormal cell populations in the lower tubule, which contains a population of quiescent
438 renal stem cells (RSCs) that are reactivated in response MT damage (Wang and
439 Spradling, 2020), future studies should examine the possibility that *L2hgdh* mutations
440 alter the proliferation and differentiation of RSCs. Together, these observations
441 demonstrate that loss of *L2hgdh* activity sensitizes the MTs towards experiencing
442 aberrant growth and suggest that this system can be used to evaluate genetic
443 interactions between *L2hgdh* mutations and other genes implicated in both renal cancer
444 and tissue growth.

445 **DISCUSSION**

446 Here we use the fruit fly *Drosophila melanogaster* to demonstrate that renal
447 L2hgdh activity is sufficient to regulate systemic L-2HG accumulation. In the absence of
448 this enzyme, the resulting elevation in L-2HG levels correlates with increased lactate
449 production and aberrant mitochondrial metabolism. While *L2hgdh* mutants are able to
450 tolerate this metabolic imbalance under standard growth conditions, hypoxia-exposed
451 adult mutant males accumulate far more L-2HG than controls, resulting in a systemic
452 decrease in mitochondrial function and enhanced glycolysis. Moreover, hypoxia-
453 exposed *L2hgdh* mutants are unable to clear the L-2HG buildup and subsequently die
454 during reoxygenation, thus revealing an essential role for L2hgdh in moderating L-2HG
455 levels during hypoxia exposure.

456 Overall, these results highlight an intimate relationship between L-2HG and
457 oxidative stress. As noted above, animal cells accumulate L-2HG in response to
458 hypoxia, oxidative stress, and mitochondrial dysfunction (Intlekofer et al., 2015, Oldham
459 et al., 2015, Li et al., 2017, Mahmoudzadeh et al., 2020, Hunt et al., 2019, Li and
460 Tennesen, 2019) – findings which suggest that circumstantial L-2HG production might
461 serve a beneficial role. Consistent with these observations, L2hgdh inhibition not only
462 protects cardiac cells against ischemia-reperfusion injury (He et al., 2022), but Dipteron
463 larvae also generate very high L-2HG concentrations during the growth phase (Li et al.,
464 2017). When considered within this context, our findings that *L2hgdh* mutant male
465 adults die following hypoxia exposure seem at odds with a model in which L-2HG
466 benefits the organism. We would note, however, that *L2hgdh* mutants survive hypoxia
467 treatment and specifically die during the reoxygenation phase, suggesting that

468 extremely high L-2HG accumulation in and of itself is not toxic in a low oxygen
469 environment.

470 When these data are considered in sum with our observation that mitochondrial
471 membrane potential is reduced in *L2hgdh* mutant MTs, a model emerges in which L-
472 2HG accumulation is potentially beneficial. Upon encountering hypoxia, decreased
473 electron transport chain activity results in α KG being shunted into L-2HG production. In
474 turn, L-2HG inhibits α KG dehydrogenase, thus acting as a metabolic failsafe by (i)
475 attenuating mitochondrial metabolism, (ii) shifting cellular metabolism towards a more
476 glycolytic state, and (iii) enhancing oxygen-independent ATP production. Upon return to
477 a normoxic state, however, L-2HG levels must be reduced to properly restore oxidative
478 metabolism. Such a model explains why *L2hgdh* mutant flies die during the
479 reoxygenation phase, as the persistent L-2HG pool would continue to inappropriately
480 suppress oxidative metabolism under aerobic conditions. We would also note that the
481 hypoxia-induced *L2hgdh* mutant phenotypes appear to be independent of altered
482 Hif1 α /sima activity, as the very high L-2HG levels present with *L2hgdh* mutants have
483 negligible effects on Hif1 α /sima target gene expression.

484 Our model also provides an explanation for why Dipteran larvae accumulate high
485 levels of L-2HG. Dipteran larvae grow within moist environments that are often hypoxic;
486 however, larvae require aerobic conditions to support growth and development. Based
487 on our current study, we propose that the larval L-2HG pool serves to modulate the
488 swings in mitochondrial metabolism that would inevitably occur as the growing larva
489 moves between hypoxic and normoxic environments. An important test of this model

490 would be to eliminate the larval L-2HG pool and determine if the resulting animals are
491 unable to thrive in their standard food sources.

492 Our study also raises important questions regarding the role of L2hgdh in renal
493 cancers. Here we demonstrate that the renal system is a key site of L2hgdh activity –
494 not only is renal *L2hgdh* expression sufficient for regulating systemic L-2HG
495 metabolism, but loss of this enzyme within the PCs results in a decrease in
496 mitochondrial membrane potential and elevated ROS production. These results suggest
497 that renal L2hgdh activity restricts organismal L-2HG accumulation – presumably by
498 catalyzing the conversion of L-2HG to α KG. Based on these observations, L-2HG is
499 most likely imported into the PCs for degradation, and in the *L2hgdh* mutant, increased
500 L-2HG levels within these cells directly interferes with PC mitochondrial metabolism.
501 Moreover, *L2hgdh* mutants respond to elevated L-2HG levels by increasing the MT
502 secretion rate, which likely places increased metabolic demands on an already
503 compromised system. One could imagine how a similar scenario would promote the
504 development and growth of ccRCCs. L-2HG inhibits the TCA cycle in renal cells
505 (Brinkley et al., 2020), and if a cell lacking L2hgdh activity were to experience a sudden
506 bout of hypoxia or oxidative stress, the resulting increase in L-2HG concentrations
507 would shift cellular metabolism from oxidative metabolism towards a more glycolytic
508 state. Considering that ccRCCs are highly glycolytic (Courtney et al., 2018), such a
509 mechanism would further drive the growth and development of these tumors. Our model
510 would also predict that the yet-to-be described L-2HG transporter(s) might also be
511 misregulated in ccRCCs, and future studies should examine this possibility.

512 In addition to the potential implications for understanding the role of *L2hgdh* in
513 ccRCCs, our results highlight how environmental conditions could influence the
514 symptoms of individuals experiencing L-2HG aciduria. As noted above, *L2hgdh* mutant
515 flies exhibit few phenotypes when raised under ideal culture conditions. Moreover, the
516 three described *L2hgdh* knockout mouse models are homozygous viable and display a
517 range of metabolic and neurological phenotypes that vary in severity (Rzem et al., 2015,
518 Ma et al., 2017, Brinkley et al., 2020). Such phenotypic variability is also noted in case
519 studies of human L-2HG aciduria patients, where some individuals experience severe
520 neurodevelopmental symptoms in early childhood while other patients experience a
521 milder form of the disease, with disease onset occasionally delayed until middle age.
522 Our study suggests that environmental stress could, in part, be a cause for this
523 phenotypic variability, as bouts of oxidative stress in L-2HG aciduria patients would
524 induce a hypothetical metabolic feedforward loop where increased L-2HG production
525 inhibits mitochondrial metabolism, which would lead to even more L-2HG production.
526 Considering that L-2HG aciduria is an orphan disease, future studies should examine
527 the role of environmental stress in the etiology of this disease.

528 One of the most well studied aspects of L-2HG is its role in disrupting the gene
529 expression program (Du and Hu, 2021). Tumors with high levels of L-2HG demonstrate
530 lower levels of genomic 5hmC consistent with TET inhibition (Brinkley et al., 2020, Shim
531 et al., 2014). Similarly, L-2HG can promote Hif1 α stability, thus activating gene
532 expression programs that shift the balance of cellular metabolism (Intlekofer et al.,
533 2017, Williams et al., 2022). Our studies suggest that L-2HG has minimal influence on
534 *Drosophila* gene expression – after all, flies exhibit very little DNA methylation, and the

535 three RNAseq experiments described herein failed to identify any gene expression
536 signatures that would be indicative of elevated Hif1 α /sima activity. We speculate that
537 the minimal effect of L-2HG on *Drosophila* gene expression is the result of the unique
538 life history of this animal. Since larvae accumulate millimolar concentrations of L-2HG
539 during normal larval development, we hypothesize that *Drosophila* gene regulatory
540 mechanisms have evolved to tolerate high L-2HG levels. Consistent with this
541 hypothesis, Dipteran genomes have lost the gene that encodes DMNT1, and as a
542 result, possess very little DNA methylation (Bewick et al., 2016, Provataris et al., 2018).
543 Thus, the fly provides an ideal model to study how L-2HG influences cellular processes
544 that are often overshadowed by experimental approaches focused on mechanisms that
545 control gene expression.

546 Finally, our study highlights the ability of L-2HG to influence glycolytic and
547 mitochondrial metabolism, as well as catabolic pathways for lysine and other amino
548 acids that are sensitive to L-2HG abundance. These metabolic pathways are highly
549 conserved between *Drosophila* and humans and the *L2hgdh* mutants provide an ideal
550 genetic platform for studying the interaction between L-2HG and central carbon
551 metabolism. In this regard, our observation that *L2hgdh* mutant MTs accumulate lipids
552 upon *C42-Egfr* expression is of particular interest, as this phenotype mirrors the
553 accumulation of lipids in ccRCCs. These findings, when considered in light of a recent
554 study linking mitochondrial impairment with lipid accumulation in *Drosophila*
555 nephrocytes (the functional equivalent of mammalian proximal tubules)(Lubojecka et
556 al., 2021), establish the fly as a premier system for modeling the metabolic factors that
557 contribute to human renal diseases.

559 **METHODS**

560 ***Drosophila* husbandry and genetics**

561 Fly stocks were maintained on Bloomington *Drosophila* Stock Center (BDSC) food at
562 25°C. The strains harboring *L2hgdh*¹² (RRID:BDSC_94700) and *L2hgdh*¹⁴
563 (RRID:BDSC_94701) were previously described (Li et al., 2017). For our studies,
564 *L2hgdh*¹⁴ was backcrossed six times to a *w*¹¹¹⁸ strain (RRID:BDSC_5905). Unless
565 noted, all experiments were setup by mating 50 virgin *w*¹¹¹⁸; *L2hgdh*¹⁴ females with 25
566 males of either *w*¹¹¹⁸, *w*¹¹¹⁸; *L2hgdh*¹², or *w*¹¹¹⁸; *L2hgdh*¹²; *p{L2hgdh}* in glass bottles
567 containing BDSC food as previously described (Li and Tennessen, 2017). Male progeny
568 were collected within 8 hrs of eclosion and aged in glass bottles containing BDSC food
569 for 7-10 days at 25°C. Tissue-specific rescue experiments were conducted by crossing
570 *C42-Gal4* (RRID:BDSC_30835) and *elav-Gal4* (RRID:BDSC_8765) into the *L2hgdh*¹²
571 background and crossing males containing these GAL4 drivers with *w*¹¹¹⁸; *L2hgdh*¹⁴;
572 *UAS-L2hgdh*. The *UAS-L2hgdh* transgene (RRID:BDSC_78053) was previously
573 demonstrated to rescue the *L2hgdh* mutant phenotype (Li et al., 2017). Egfr expression
574 studies were conducted using *UAS-Egfr* (RRID:BDSC_5368) (Zettervall et al., 2004)
575 under the control of *tubP-Gal80^{ts}* (RRID:BDSC_7016). Flybase was used throughout
576 this study (Öztürk-Çolak et al., 2024, Gramates et al., 2022).

577

578 **Analysis of larval development and pupal mass**

579 White prepupae were individually placed into a pre-tared 1.5 mL microfuge tube and
580 weighed using a Mettler Toledo XS105 balance.

581

582 **Climbing Assay**

583 The climbing ability of newly eclosed males was assayed as previously described
584 (Sokol et al., 2008).

585

586 **Lactate Dehydrogenase Activity Assays**

587 Ldh activity was measured as previously described with little modification (Rechsteiner,
588 1970). Briefly, *Drosophila* lysate was prepared from 5-day old flies with the heads
589 removed. Ldh activity was determined at 25°C by monitoring NADH consumption at
590 OD₃₄₀ using a plate reader (BioTek).

591

592 **Hypoxia treatment**

593 One day old male flies were put in groups of 20 in vials containing Bloomington
594 *Drosophila* Stock Center standard media, aged for 7-8 days, and incubated in a 1% O₂
595 environment as previously described (Mahmoudzadeh et al., 2020). Briefly, the vials
596 were directly placed in a sealed plexiglass chamber that was housed within a 25°C
597 temperature-controlled room. O₂ concentration within the chamber was controlled and
598 monitored using a ROXY-4 gas regulator (Sable Systems). Nitrogen gas was allowed to
599 flow through a water bubbler and into the chamber until the O₂ concentration reached
600 1%. The exhaust valve was then sealed. Relative humidity was maintained at ~70% by
601 placing 1 L of a saturated NaCl solution (36% NaCl) within the chamber.

602

603 **GC-MS analysis**

604 Targeted metabolomics studies were conducted as previously described (Li and
605 Tennessen, 2018, Cox et al., 2017). Briefly, flies were collected in 1.5 mL microfuge
606 tubes and immediately frozen in liquid nitrogen. Samples were transferred to tared 2 mL
607 screwcap tubes containing 1.4 mm ceramic beads that had been pre-chilled in liquid
608 nitrogen. The sample mass was recorded, and tubes were immediately placed back in
609 liquid nitrogen. 800 μ L of prechilled (-20 °C) 90% methanol containing 2 μ g/mL succinic-
610 d4 acid was added to each sample tube and the sample homogenized in an Omni
611 Beadruptor 24 for 30 seconds at 6.4 m/s. The samples were removed from the
612 homogenizer, incubated at -20°C for 1 hr, and centrifuged at 20,000 x g for 5 min at
613 4°C. 600 μ l of the supernatant was transferred into a new 1.5 mL microcentrifuge tube
614 and dried overnight in a vacuum centrifuge. Dried samples were resuspended in 40 μ L
615 of 40 mg/mL methoxylamine hydrochloride (MOX) dissolved in anhydrous pyridine and
616 incubated at 37°C for 1 hour in a thermal mixer shaking at 600 rpm. Samples were then
617 centrifuged for 5 minutes at 20,000 x g and 25 μ L of supernatant was transferred into an
618 autosampler vial with a 250 μ L deactivated glass microvolume insert (Agilent 5181-
619 8872). 40 μ L of N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA) containing 1%
620 TMCS was then added to the sample, at which point the autosampler vial was capped
621 and placed at 37°C for 1 hour with shaking (250 rpm).

622 1 μ L of sample was injected an Agilent GC7890-5977 mass spectrometer
623 equipped with a Gerstel MPS autosampler. Samples were injected with a 10:1 split ratio
624 and an inlet temperature of 300°C. Chromatographic separation was achieved using a
625 0.25 mm x 30 m Agilent HP-5ms Ultra Insert GC column with a helium carrier gas flow
626 rate of 1.98 mL/min. The GC temperature gradient was as follows: (1) Hold at 95°C for 1

627 min. (2) Increase temperature to 110°C with a 40°C/min ramp. Hold 2 min. (3) Increase
628 temperature to 250°C with a 25°C/min ramp. (4) Increase temperature to 330°C with a
629 25°C/min ramp and hold for 4 minutes.

630

631 **D-L-2HG Quantification**

632 Sample collection, homogenization, and 2HG quantification were conducted as
633 previously described (Li and Tennessen, 2019). Briefly, 800 µL of extraction buffer (90%
634 MeOH containing 8 mg of 2,2,3-d3-R,S-2-hydroxyglutarate) was added to each sample
635 tube (kept in -20°C enzyme caddies). Tubes were then placed in a Omni Bead Ruptor
636 24 and the sample homogenized for 30 seconds at 6.4 m/s. Samples were
637 subsequently incubated at -20°C for 1 hr. After the incubation, samples were centrifuged
638 at 20,000 x g for 5 min at 4°C. 600 µl of the supernatant was then transferred into a 1.5
639 mL microfuge tube and dried overnight using a vacuum centrifuge.

640 Dried samples were resuspended in 50 µl of R-2-Butanol and 5 µl of HCL and
641 incubated at 90°C for three hours with shaking at 300 rpm using an Eppendorf
642 ThermoMixer F1.5. After cooling, 200 µl of water and 500 µl of hexane was added to
643 each tube. The organic phase (hexane) was then transferred to a new tube and dried
644 for 30 minutes using a vacuum centrifuge. The dried samples were resuspended in 60
645 µl of acetic anhydride and 60 µl of pyridine and incubated at 80°C for 1 hr with shaking
646 at 300 rpm. Samples were then dried for 3 hrs using a vacuum centrifuge and
647 resuspended in 60 µl of hexane.

648 Derivatized samples were analyzed using a 7890B-5977B MSD Agilent GC-MS.
649 1 µl of the sample was injected into a 30m DB-5MS column with a 0.25 mm inner

650 diameter. The GC temperature gradient was as follows: (1) Initial oven temperature was
651 set to 95°C with a 1 min hold time. (2) Increased temperature to 110°C at a rate of
652 40°C/min. (3) Increase temperature to 200°C at a rate of 5°C/min. (4) Increase
653 temperature to 330°C at a rate of 40°C/min. The GC-MS was set to Selected Ion
654 Monitoring (SIM) dwelling on 173 and 176 m/z value. MassHunter Quantitative software
655 was used to measure the amount of D-/L-2HG present within each sample.

656

657 **Ultra High-pressure Liquid Chromatography - Mass Spectrometry (UHPLC-MS)-**
658 **based Metabolomics** UHPLC-MS metabolomics analyses were performed at the
659 University of Colorado Anschutz Medical Campus, as previously described (Nemkov et
660 al., 2019). Briefly, the analytical platform employs a Vanquish UHPLC system (Thermo
661 Fisher Scientific, San Jose, CA, USA) coupled online to a Q Exactive mass spectrometer
662 (Thermo Fisher Scientific, San Jose, CA, USA). The (semi)polar extracts were resolved
663 over a Kinetex C18 column, 2.1 x 150 mm, 1.7 µm particle size (Phenomenex, Torrance,
664 CA, USA) equipped with a guard column (SecurityGuard™ Ultracartridge – UHPLC C18
665 for 2.1 mm ID Columns – AJO-8782 – Phenomenex, Torrance, CA, USA) using an
666 aqueous phase (A) of water and 0.1% formic acid and a mobile phase (B) of acetonitrile
667 and 0.1% formic acid for positive ion polarity mode, and an aqueous phase (A) of
668 water:acetonitrile (95:5) with 1 mM ammonium acetate and a mobile phase (B) of
669 acetonitrile:water (95:5) with 1 mM ammonium acetate for negative ion polarity mode.
670 The Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) was
671 operated independently in positive or negative ion mode, scanning in Full MS mode (2
672 µscans) from 60 to 900 m/z at 70,000 resolution, with 4 kV spray voltage, 45 sheath gas,

673 15 auxiliary gas. Calibration was performed prior to analysis using the Pierce™ Positive
674 and Negative Ion Calibration Solutions (Thermo Fisher Scientific).

675

676 **Statistical Analysis of Metabolomics Data**

677 All metabolomics datasets were analyzed using Metaboanalyst 5.0 (Pang et al.,
678 2021), with data normalized to sample mass and preprocessed using log normalization
679 and Pareto scaling. Data generated by GC-MS analysis of individual compounds was
680 analyzed using GraphPad Prism 10.

681

682 **Collection of *Drosophila* Excreta for GC-MS analysis**

683 Male flies were collected within one day of eclosion, transferred into vials with
684 Bloomington food, and aged for 7 days. Groups of 10 male flies were then placed into a
685 1.5 mL microfuge tube with a hole poked in the lid to allow gas exchange. Tubes were
686 put in an incubator (25°C, relative humidity ~80%) for 24 hours. After the 24 hr
687 incubation period, flies were discarded and the sides of the tubes were rinsed using
688 chilled extraction buffer. The extraction buffer was then processed for D/L-2HG
689 quantification.

690

691 **RNA-seq data analysis**

692 For all genotypes, RNA-seq was performed on 3 whole-fly biological replicates for each
693 condition/genotype, with each sample containing either 20 adult flies or 100 dissected
694 MTs. Samples were paired-end sequenced on the NextSeq 75 platform to a depth of

695 15-20 million reads each, using standard Illumina TruSeq Stranded mRNA libraries, at
696 the IU Center for Bioinformatics and Genomics (CGB).

697 *L2hgdh whole body and Malpighian Tubule datasets:* Analysis was performed as
698 described previously using a python based in-house pipeline
699 (<https://github.com/jkkbuddika/RNA-Seq-Data-Analyzer>) (Buddika et al., 2021). First, the
700 quality of raw sequencing files was assessed using FastQC version 0.11.9 (Andrews,
701 2010), and reads with low quality were removed using Cutadapt version 2.9 (Martin,
702 2011). Subsequently, the remaining high-quality reads were aligned to the Berkeley
703 *Drosophila* Genome Project (BDGP) assembly release 6.32 (Ensembl release 103)
704 reference genome using STAR genome aligner version 2.7.3a (Dobin et al., 2013).
705 Additionally, duplicated reads were eliminated using SAMtools (Li et al., 2009) version
706 1.10. Finally, the Subread version 2.0.0 (Liao et al., 2019), function *featureCounts*, was
707 used to count the number of aligned reads to the nearest overlapping feature. All
708 subsequent downstream analyses and data visualization steps were performed using
709 custom scripts written in R. To identify differentially expressed genes in different genetic
710 backgrounds the Bioconductor package DESeq2
711 (<https://bioconductor.org/packages/release/bioc/html/DESeq2.html>) version 1.26.0 was
712 used (Love et al., 2014). Unless otherwise noted, significantly upregulated and
713 downregulated genes were defined as FDR < 0.05; Log₂ fold change > 1 and FDR <
714 0.05; Log₂ fold change < -1.

715 *Hypoxia timecourse experiments:* RNA-seq read quality was assessed with
716 FastQC (Andrews, 2010) and MultiQC (Ewels et al., 2016), with adequate reads and no
717 significant issues noted. Reads were pseudo-aligned and quantified using Kallisto

718 v0.46.0 (Bray et al., 2016), the *D. melanogaster* BDGP6.32 reference assembly and
719 annotation retrieved through Ensembl (Cunningham et al., 2022), and the gffread utility
720 from the Cufflinks suite (Trapnell et al., 2010) to generate the transcriptome from the
721 assembly and annotation.

722 Differential expression analysis was performed with DESeq2 v1.30.1 (Love et al.,
723 2014) running in RStudio v1.4.1717 on R v4.0.4. Genes with average expression below
724 2 counts per sample (i.e. 48 counts per row) were filtered out before determining genes
725 with significant expression difference in at least one sample with the likelihood-ratio test
726 (LRT) and cutting off at LRT $p \leq 0.05$. All subsequent experiment-wide analyses were
727 applied to this set of normalized, significant gene counts, which were ranked by
728 variance and further cutoff as noted in the figures.

729 Subsequent analysis and visualization were performed in R using a variety of
730 tools and packages. Correlation plots were generated using base R and the corrplot
731 package (Wei and Simko, 2021). Principal components were analyzed and visualized
732 with PCAtools v2.2.0 (Blighe and Lun, 2022). Heatmaps, including clustering analysis
733 performed by the hclust method (from base R stats package), were generated by
734 pheatmap (Kolde, 2019).

735

736 **PANGEA Analysis**

737 All RNAseq data were analyzed using PANGEA (Hu et al., 2023). Genes that were
738 significantly down- or up-regulated were analyzed for Gene Ontology Enrichment using

739 the SLIM2 GO BP and FlyBase signaling pathway (experimental evidence) sets
740 (Consortium et al., 2023).

741

742 **Ramsay Assay**

743 The following genotypes were used: w^{1118} ; $L2hgdh^{14/+}$ (control), w^{1118} ;
744 $L2hgdh^{12/14}$ (experimental), and w^{1118} ; $L2hgdh^{12/14}$; $p\{L2hgdh\}$ (rescue). Mated adult
745 females were collected and maintained at 25°C and fed with standard fly food prepared
746 in a central kitchen at the University of Utah and supplemented with yeast. Flies were
747 transferred to fresh food every 2-4 days. Anterior Malpighian tubules were isolated on
748 days 3-9 post-eclosion. Fluid secretion over 2 hours in standard bathing medium was
749 measured using the Ramsay assay as described previously (Schellinger and Rodan,
750 2015). Standard bathing medium consists of a 1:1 mixture of Schneider's medium
751 (Gibco, 21720024) and *Drosophila* saline (composition in mM: NaCl 117.5, KCl 20,
752 CaCl₂ 2, MgCl₂ 8.5, NaHCO₃ 10.2, NaH₂PO₄ 4.3, HEPES 15, and glucose 20, pH 7.0).
753 Statistical testing was performed using GraphPad Prism 10.

754

755 **JC-1 Staining**

756 Adult Malpighian tubules were dissected in Schneider's medium. Immediately following
757 dissection, JC-1 was added to the media at a 1:1000 dilution and Malpighian tubules
758 were incubated for 10 minutes. Samples were then washed twice with Schneider's
759 medium, mounted immediately in VECTASHIELD, and visualized using the Leica SP8
760 confocal microscope housed within the Indiana Light Microscopy Facility.

761

762 **ROS (DHE) Staining**

763 Flies were collected and Malpighian tubules were dissected in Schneider's medium.
764 DHE 30mM stock solution was freshly made. Dissected samples were incubated in
765 Schneider's medium containing 60uM DHE for 5 minutes. Samples were washed three
766 times in Schneider's medium for 5 minutes and were mounted immediately in
767 vectashield. Confocal microscopy was performed immediately.

768

769 ***Egfr* expression and Nile Red Staining**

770 Malpighian tubules of adult flies were dissected in 1X PBS and fixed in 4%
771 formaldehyde in 1X PBS for 30 minutes. Tissues were washed with 1X PBS for 10
772 minutes after which they were incubated in 1:2000 dilution of 0.5 mg/ml Nile Red (Sigma
773 Aldrich- N3013) with PBS for 30 minutes. Subsequently, tissues were rinsed three times
774 with 1X PBS and mounted in Vectashield mounting medium with DAPI (Vector Labs) for
775 nuclei staining. Samples were examined under SP8 fluorescence microscope.

776

777 **Renal Cell Culture Experiments**

778 786-O and OS-RC-2 cells were maintained in RPMI media (Corning #10041CV)
779 supplemented with 10% FBS (R&D system #S11150) and 1X penicillin-streptomycin
780 (Gibco #15140122). Cells were periodically tested and confirmed to be free of
781 mycoplasma contamination. Lentiviral particles harboring control vector or L2HGDH
782 construct were used to transduce the cells and selected by puromycin (1 ug/ ml) as
783 described (Shelar et al., 2018). The selected polyclonal pools were verified for L2HGDH
784 overexpression by immunoblot. ~1.5 million control/L2HGDH cells (n=6, each) were

785 cultured for 24 hrs. After 24 hrs, the spent media was aspirated out after aliquoting and
786 rapidly freezing (in LN2) 1 ml media from each condition. The aliquoted spent media
787 were stored in -80 deg C until used for the L-2HG assays.

788 **ACKNOWLEDGEMENTS**

789 Thanks to the Bloomington *Drosophila* Stock Center (NIH P40OD018537) for providing
790 fly stocks, the *Drosophila* Genomics Resource Center (NIH 2P40OD010949) for
791 genomic reagents, and Flybase (NIH 5U41HG000739). Metabolomics analysis
792 performed at the Metabolomics Core Facility at the University of Utah is supported by
793 spectrometry equipment obtained through NCRR Shared Instrumentation Grants
794 1OD016232-01, 1S10OD018210-01A1 and 1S10OD021505-01. Sequencing was
795 performed at Indiana University's Center for Genomics and Bioinformatics. All
796 computation was performed on Indiana University's Carbonate and Research Desktop
797 HPC clusters. S.S. is supported by NCI R01CA200653 and NCI F30CA232397. A.K.
798 was supported in part by a Research Scholar Award from the Urology Care Foundation
799 (Award No.669279) and a concept award from the Department of Defense (Award No.
800 HT9425-23-1-0339). GC acknowledges support from the DBT/Wellcome Trust India
801 Alliance Fellowship/Grant [grant number IA/I(S)/17/1/503085]. A.R.R. is supported by
802 the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK110358).
803 J.M.T. is supported by the National Institute of General Medical Sciences of the National
804 Institutes of Health under a R35 Maximizing Investigators' Research Award (MIRA;
805 1R35GM119557).

806

807

808 **FIGURE LEGENDS**

809 **Figure 1. Metabolomic analysis of *L2hgdh* mutant adult males.** (A) A schematic
810 diagram representing the enzymatic reactions controlling L-2HG accumulation.
811 Abbreviations are as follows: Lactate Dehydrogenase (LDH), L-2-hydroxyglutarate
812 dehydrogenase (L2HGDH), L-2-hydroxyglutarate (L-2HG), α -ketoglutarate (α KG). (B) L-
813 2HG levels were quantified in *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14};
814 *p{L2hgdh}* rescued animals. (C-E) Data from GC-MS metabolomic analysis comparing
815 *L2hgdh*^{14/+} controls and *L2hgdh*^{12/14} mutants analyzed with Metaboanalyst 5.0. (C) A
816 volcano plot highlighting metabolites that exhibited a >1.5-fold change and $P < 0.01$.
817 The relative abundance of (D) 2HG and (E) lysine (Lys), pyruvate (Pyr), and lactate
818 (Lac) in *L2hgdh*^{14/+} controls and *L2hgdh*^{12/14} mutants presented as a scatter plot with the
819 center line representing the mean and error bars representing the standard deviation.
820 Genotype contrasts were performed with the Mann-Whitney test. *** $P < 0.001$.

821

822 **Figure 2. *L2hgdh* adult mutant males are hypersensitive to hypoxia exposure.**

823 *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued adult male
824 flies were exposed to 1% O₂ for (A) 6 hrs, (B) 12 hrs, or (C) 24 hrs and monitored for
825 recovery over a 90-minute period. n=6 vials containing 10 adult male flies for each
826 genotype. For (A-C), the data were subject to repeated measures ANOVA with a
827 Geisser-Greenhouse correction, followed by a Holm-Sidak's multiple comparison test.
828 *** $P > 0.001$. (D) Flies were removed from the hypoxia chamber and the ability of
829 individual animals to respond to mechanical stimulation was assessed. (E) L-2HG levels
830 in normoxic and hypoxic conditions across genotypes. For (D,E), data analyzed using

831 Brown-Forsythe ANOVA test followed by a Dunnett's multiple comparison test.

832 ** $P>0.01$. *** $P>0.001$.

833

834 **Figure 3. Metabolomic analysis of hypoxia-exposed *L2hgdh* mutants.** *L2hgdh*^{14/+}
835 controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p*{*L2hgdh*} rescued adult male flies were
836 analyzed using a semi-targeted LC-based metabolomics following either (i) a 12 hr
837 incubation in 1% O₂ (H), (ii) a 12 hr incubation in 1% O₂ followed by a 1 hr recovery in
838 normoxic conditions (H+1 hr), (iii) a 12 hr incubation in normoxic conditions. (A) PCA
839 analysis of the nine groups of analyzed samples. Each genotype abbreviated as follows:
840 *L2hgdh*^{14/+} (Control), *L2hgdh*^{12/14} (Mutant), *L2hgdh*^{12/14}; *p*{*L2hgdh*} (Rescue). (B) Top 25
841 metabolites correlated with 2HG levels across all samples. (C) A volcano plot
842 highlighting metabolites that exhibited a >2-fold change and $P<0.01$ in control vs.
843 mutant samples immediately following the 12 hr hypoxia exposure. (D) As in (C) but
844 following a 12 hr hypoxia exposure and 1 hr recovery. For all genotypes and conditions,
845 n=6 biological replicates containing 20 adult males. All panels generated with
846 Metaboanalyst 5.0.

847

848 **Figure 4. 2HG and lactate levels remain elevated in *L2hgdh* mutants following**
849 **hypoxia exposure.** The relative abundance of (A-C) 2-hydroxyglutarate (2HG) and (D-
850 F) lactate were measured using GC-MS in *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and
851 *L2hgdh*^{12/14}; *p*{*L2hgdh*} rescued adult male flies following either (i) a 12 hr incubation in
852 1% O₂ (H), (ii) a 12 hr incubation in 1% O₂ followed by a 1 hr recovery in normoxic
853 conditions (H+1 hr), (iii) a 12 hr incubation in 1% O₂ followed by a 12 hr recovery in

854 normoxic conditions (H+12 hr). A set of normoxic control samples were collected at
855 each timepoint. For all genotypes and conditions, n=6 biological replicates containing 20
856 adult males. Data in all panels was statistically analyzed by comparing the normoxic
857 and hypoxic samples for each genotype using a Mann-Whitney test. **P>0.01. n.s. (not
858 significant).

859

860 **Figure 5. *L2hgdh* mutants display defects in mitochondrial metabolism during**
861 **reoxygenation.** (A-C) The relative abundance of the TCA cycle metabolites citrate, α -
862 ketoglutarate (α KG), succinate, fumarate, and malate was measured using GC-MS in
863 *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p*{*L2hgdh*} rescued adult male flies following
864 either (i) a 12 hr incubation in 1% O₂ (H), (ii) a 12 hr incubation in 1% O₂ followed by a 1
865 hr recovery in normoxic conditions (H+1 hr), (iii) a 12 hr incubation in 1% O₂ followed by
866 a 12 hr recovery in normoxic conditions (H+12 hr). A set of normoxic control samples
867 were collected at each timepoint. Data in all panels were analyzed by comparing the
868 normoxic and hypoxic samples for each genotype using the Mann-Whitney test.
869 **P>0.01. n.s. (not significant).

870

871 **Figure 6. RNAseq analysis of hypoxia exposed *L2hgdh* mutants.** (A) PCA biplot of
872 mutant and control normoxic, hypoxic, and recovered replicates, PC1 vs. PC2. (B)
873 Complete hierarchical clustering of the top 2,000 genes by variance with LRT adjusted
874 p-value < 0.05 across all samples. Upper bars denote sample annotations.

875

876 **Figure 7. *L2hgdh* expression in the renal system is sufficient to support viability**
877 **during reoxygenation.** (A) Adult male flies were exposed to 1% O₂ for 12 hours and
878 monitored for recovery over the course of 90 minutes. n=6 vials containing 10 adult
879 male flies for each genotype. Data analyzed using a repeated measures ANOVA with a
880 Geisser-Greenhouse correction followed by a Holm-Sidak's multiple comparison test.
881 ***P>0.001. n=3 vials with 10 adult male flies per vial. (B-D) GC-MS was used to
882 measure (B) 2HG, (C) lactate, and (D) the TCA cycle intermediates citrate, succinate,
883 fumarate, and malate in *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; C42-
884 *Gal4 UAS-L2hgdh* rescued animals. For (B-D), data analyzed using Brown-Forsythe
885 ANOVA test followed by a Dunnett's multiple comparison test. **P>0.01. ***P>0.001.
886

887 **Figure 8. *L2hgdh* mutants exhibit higher rates of renal activity.** (A) L-2HG levels
888 quantified in the excreta of *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14};
889 C42-*Gal4 UAS-L2hgdh* rescued animals. (B) A Ramsay assay was used to measure the
890 secretion rate of MTs isolated from *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and
891 *L2hgdh*^{12/14}; p{*L2hgdh*} rescued animals. (C) L-2HG levels were significantly elevated in
892 the culture media of OSRC-2 cells when compared with 786 cells. L2hgdh transfection
893 into OSRC-2 cells, but not 786 cells, significantly reduced L-2HG levels in media.
894 Statistical analysis of all panels conducted using a Mann-Whitney test. ***P<0.001.
895

896 **Figure 9. *L2hgdh* supports mitochondrial metabolism in PCs.** MTs from *L2hgdh*^{14/+}
897 controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; C42-*Gal4 UAS-L2hgdh* rescued animals
898 were stained using either (A-C) JC1 or (D-F) DHE. (A-C) While JC1 green was present

899 at similar levels in PCs of all genotypes, (A'-C') JC1 red staining was lower in
900 *L2hgdh*^{12/14} mutant principal cells as compared with either the control or *L2hgdh*^{12/14};
901 *C42-Gal4 UAS-L2hgdh* rescue strain. (D,E) DHE staining of adult male MTs revealed
902 that ROS levels were elevated in *L2hgdh*^{12/14} mutant principal cells as compared with
903 *L2hgdh*^{14/+} controls. Meanwhile, (F) PCs of the *L2hgdh*^{12/14}; *C42-Gal4 UAS-L2hgdh*
904 rescue strain exhibit ROS levels comparable to those observed in (D) the control strain.
905 40 μ m scale bar in (A) also applies to (B) and (C). 40 μ m scale bar in (D) also applies to
906 (E) and (F).

907

908 **Figure 10. *Egfr* expression induces aberrant tissue growth in *L2hgdh* mutant MTs.**
909 Adult male flies were raised at 18°C and shifted to the Gal80ts restrictive temperature
910 (29°C) within 24 hours after eclosion. After 10 days, (A) the lower tubule of *C42-Egfr*
911 adult control male MTs appeared morphologically normal. In contrast, (B-D) *C42-Egfr*
912 expression in a *L2hgdh* mutant background induced (B,C) cysts and (D) abnormal
913 cellular organization. (E-G) MTs expressing *Egfr* in either the control (E) or *L2hgdh*
914 mutant background were stained for (E,F,G) DAPI and (E', F', G') Nile Red to visualize
915 genomic DNA and neutral lipids. Scale bar in (A) applies to (B-D). Scale bar in (E)
916 applies to (F and G).

917

918 **TABLES**

919

920 **Table 1.** Number of genes significantly changed in hypoxia-treated *L2hgdh*^{14/+} controls

921 and *L2hgdh*^{12/14} mutants samples relative to normoxia control samples.

922 **SUPPLEMENTAL FIGURE LEGENDS**

923

924 **Figure S1. *L2hgdh* mutant larvae and pupae grow at the same rate as controls**

925 **strains.** *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued

926 animals exhibit no significant differences in (A) the duration of larval development or the

927 body mass of (B) white prepupae, (C) newly eclosed males, or (D) newly eclosed

928 females.

929

930 **Figure S2. *L2hgdh* mutant adult males exhibit normal climbing behavior and**

931 **lifespan.** (A) *L2hgdh*^{14/+} control, *L2hgdh*^{12/14} mutant, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued

932 adult males exhibit similar climbing abilities. (B) Adult male *w*¹¹¹⁸ controls and

933 genetically-matched *L2hgdh*¹⁴ mutants show no difference in lifespan.

934

935 **Figure S3. RNAseq analysis of *L2hgdh* mutant adult males.** RNA isolated from

936 *L2hgdh*^{14/+} control and *L2hgdh*^{12/14} mutant adult males was analyzed using RNAseq. 240

937 genes were significantly down-regulated and 119 genes were up-regulated. (A) Of these

938 significantly altered genes, 35 metabolic genes were down-regulated and 9 metabolic

939 genes were up-regulated. In addition, mutant males exhibited no significant changes in

940 the expression of genes involved in (A) glycolysis or (B) the TCA cycle. Only one gene

941 involved in (D) the electron transport chain (ETC) was significantly mis-regulated in

942 *L2hgdh*^{12/14} mutants.

943

944 **Figure S4. A comparison of the metabolomic data from *L2hgdh*^{14/+} control and**

945 ***L2hgdh*^{12/14} mutant samples using principal component analysis (PCA).**

946 Metaboanalyst was used to analyze the metabolomics data from *L2hgdh*^{14/+} control and
947 *L2hgdh*^{12/14} mutant adult male samples using PCA.

948

949 **Figure S5. Targeted GC-MS analysis of *L2hgdh* mutants.** GC-MS analysis of
950 *L2hgdh*^{14/+} control, *L2hgdh*^{12/14} mutant, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued adult males
951 revealed that (A) 2HG, (B) lactate, and (D) lysine levels were elevated in mutant
952 samples. However, (C) pyruvate levels were unchanged in these experiments. Similarly,
953 GC-MS analysis of hemolymph extracted adult males of the same genotypes contained
954 elevated levels of (E) 2HG and (F) lactate (Lac). Data presented as a scatter plot with
955 the center line representing the mean and error bars representing the standard
956 deviation. ****P*<0.001. Statistical analysis conducted using an ordinary one-way ANOVA
957 followed by a Dunnett's multiple comparison test.

958

959
960 **Figure S6. *L2hgdh* mutant exhibit normal levels of LDH activity.** Lactate
961 dehydrogenase (LDH) activity was assessed in whole animal extracts of *L2hgdh*^{14/+}
962 controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued animals. (A,B)
963 Extracts from both control and mutant animals possess similar levels of LDH activity.
964 However, LDH activity in extracts from rescued animals were significantly altered. (A)
965 Extracts from rescued animals converted pyruvate-to-lactate at a lower rate than
966 extracts from either the heterozygous control or *L2hgdh* mutant strain. (B) Extracts from
967 rescued animals converted lactate-to-pyruvate at a higher rate than extracts from either
968 the heterozygous control or *L2hgdh* mutant strain. Histograms represent the mean and
969 error bars represent standard deviation. **P*<0.01, ****P*<0.001.

970

971 **Figure S7. Hierarchical clustering analysis reveals that *L2hgdh* mutant**
972 **metabolome is significantly disrupted by hypoxia exposure.** A Hierarchical
973 Clustering Dendrogram of the metabolomics samples from Table S4. All normoxia
974 samples, regardless of genotype cluster in a single clade. Following hypoxia exposure,
975 however, the control and rescue samples cluster into distinct clades – one representing
976 the H+0 timepoint and the second representing the H+1 timepoint. In contrast, the H+0
977 and H+1 mutant samples cluster together, thus illustrating the similarities between the
978 mutant metabolomes at these two timepoints. MetaboAnalyst 5.0 was used to analyze
979 the data and the dendrogram was generated using Euclidean Distance and Ward's
980 method for the Clustering Algorithm.

981

982 **Figure S8 Metabolites associated with glycolysis are elevated in *L2hgdh* mutants**
983 **following hypoxia exposure.** The relative abundance of (A) 2-hydroxyglutarate (2HG),
984 (B) glucose, (C) pyruvate and (D) lactate in *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14};
985 *p{L2hgdh}* rescued adult male flies following either (i) a 12 hr incubation under normoxic
986 conditions, (ii) a 12 hr incubation in 1% O₂ (H), or (iii) a 12 hr incubation in 1% O₂
987 followed by a 1 hr recovery in normoxic conditions (H+1 hr). While only (A) 2HG levels
988 were elevated in *L2hgdh*^{12/14} mutants under normoxia relative to the heterozygous
989 control and *L2hgdh*^{12/14}; *p{L2hgdh}* rescue line, all four metabolites (A-D) were
990 significantly elevated in mutant samples at the H+0 and H+1 timepoint. Data
991 normalization and statistical analysis conducted using an ANOVA followed by a Fisher's
992 least significant difference test in MetaboAnalyst 5.0.

993

994 **Figure S9. *L2hgdh* mutants exhibit significant decreases in TCA cycle metabolites**
995 **following hypoxia exposure.** The relative abundance of (A) citrate, (B) succinate, (C)
996 fumarate and (D) malate in *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued
997 adult male flies following either (i) a 12 hr incubation under normoxic conditions, (ii) a 12
998 hr incubation in 1% O₂ (H), or (iii) a 12 hr incubation in 1% O₂ followed by a 1 hr
999 recovery in normoxic conditions (H+1 hr). Under normoxic conditions, all four
1000 metabolites were present at similar levels in *L2hgdh*^{12/14} mutants, heterozygous controls,
1001 and *L2hgdh*^{12/14}; *p{L2hgdh}* rescue animals. In contrast, all four metabolites were
1002 present at significantly lower levels in *L2hgdh*^{12/14} mutants at the H+0 and H+1
1003 timepoints when compared with the control and rescue samples. Data normalization
1004 and statistical analysis conducted using an ANOVA followed by a Fisher's least
1005 significant difference test in MetaboAnalyst 5.0.

1006

1007 **Figure S10. *L2hgdh* mutants exhibit significant changes in amino acid levels**
1008 **following hypoxia exposure.** The relative abundance of (A) glutamate, (B) aspartate,
1009 (C) proline and (D) serine in *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p{L2hgdh}* rescued
1010 adult male flies following either (i) a 12 hr incubation under normoxic conditions, (ii) a 12
1011 hr incubation in 1% O₂ (H), or (iii) a 12 hr incubation in 1% O₂ followed by a 1 hr
1012 recovery in normoxic conditions (H+1 hr). Under normoxic conditions, all four amino
1013 acids were present at similar levels in *L2hgdh*^{12/14} mutants, heterozygous controls, and
1014 *L2hgdh*^{12/14}; *p{L2hgdh}* rescue animals. In contrast, all four metabolites were present at
1015 significantly lower levels in *L2hgdh*^{12/14} mutants at the H+0 and H+1 timepoints when

1016 compared with the control and rescue samples. In addition, (D) serine levels were
1017 elevated at the H+0 and H+1 timepoint for both the control and rescue strain relative
1018 when compared with normoxic samples, but decreased in mutant samples at the H+0
1019 and H+1 timepoints. Data normalization and statistical analysis conducted using an
1020 ANOVA followed by a Fisher's least significant difference test in MetaboAnalyst 5.0.

1021

1022 **Figure S11. Additional analysis of RNAseq data from hypoxia exposed *L2hgdh***
1023 **mutants.** (A) Eigencor plot of PC correlations with experimental variables (Kendall's
1024 tau). Asterisks after correlation value denote statistical significance. (B-D) Expression
1025 levels of *Hph*, *Ldh*, and *Thor* for each genotype across the timecourse. Values are
1026 mean linearized expression derived from the normalized, transformed log counts of
1027 each set of replicates. Error bars represent standard error of the mean. Each gene
1028 presented has LRT adjusted p-value << 0.05.

1029

1030 **Figure S12. *L2hgdh* expression in the nervous system does not prevent *L2hgdh***
1031 **mutants from dying during reoxygenation.** Adult male flies were exposed to 1% O₂
1032 for 12 hours and monitored for recovery over the course of 90 minutes. While nearly all
1033 *L2hgdh*^{14/+} control flies recovered from hypoxia treatment, over 75% of *L2hgdh*^{12/14}
1034 mutant failed to recover. *L2hgdh*^{12/14}; *elav-Gal4* +/ *UAS-L2hgdh*, which express
1035 *L2hgdh* within the nervous system, exhibit no increase in survival when compared with
1036 the negative control genotypes *L2hgdh*^{12/14}; *elav-Gal4*/+ and *L2hgdh*^{12/14}; *UAS-*
1037 *L2hgdh*/+. n=6 vials containing 10 adult male flies for each genotype.

1038

1039 **Figure S13. L-2HG levels are elevated in the urine of *L2hgdh* mutant mice.** L-2HG
1040 levels were quantified in urine from control and *L2hgdh* mutant mice, as described in
1041 Brinkley, et al., 2020.

1042

1043 **Figure S14. RNAseq analysis of MTs from *L2hgdh* mutant males.** RNA isolated
1044 from the MTs of *L2hgdh*^{14/+} control and *L2hgdh*^{12/14} mutant adult males was analyzed
1045 using RNAseq. (A) A volcano plot illustrating comparing RNA abundance in *L2hgdh*^{12/14}
1046 mutants relative to *L2hgdh*^{14/+} controls. 90 genes were significantly down-regulated and
1047 124 genes were up-regulated. (B-C) Only one gene involved in (B) glycolysis, (C) the
1048 TCA cycle, or (D) the electron transport chain (ETC) was significantly mis-regulated in
1049 *L2hgdh*^{12/14} mutants.

1050

1051 **Supplemental Tables**

1052
1053 **Table S1.** RNA-seq results comparing gene expression between adult male *L2hgdh*^{12/14}
1054 mutants and *L2hgdh*^{14/+} controls. All genes are included in this table, regardless of
1055 whether the change in gene expression was significant.

1056

1057 **Table S2.** RNA-seq results comparing gene expression between adult male *L2hgdh*^{12/14}
1058 mutants and *L2hgdh*^{14/+} controls. Only genes displaying significant changes in gene
1059 express are included in this table.

1060

1061 **Table S3.** A list of metabolic genes that were significantly up- or downregulated in Table
1062 S2.
1063

1064 **Table S4.** PANGEA analysis of significantly misregulated genes in *L2hgdh*^{12/14} mutants
1065 as compared with *L2hgdh*^{14/+} controls (see Table S3 for list of genes used in the
1066 analysis. PANGEA default settings (FlyBase signaling pathway; SLIM2 GO BP) were
1067 used to analyze for enrichment. Only Gene Set IDs with a *P*-value of less than 0.1 are
1068 included in the table.

1069

1070 **Table S5.** Metabolomic analysis of *L2hgdh*^{12/14} mutants as compared with *L2hgdh*^{14/+}
1071 controls. All values normalized to sample mass and a d4-succinic acid standard. n=6
1072 samples per genotype; 20 adult males per sample.

1073

1074 **Table S6.** Metabolomic Analysis of L2hgdh mutants following hypoxia treatment.
1075 *L2hgdh*^{14/+} controls, *L2hgdh*^{12/14} mutants, and *L2hgdh*^{12/14}; *p*{*L2hgdh*} rescued adult

1076 males were exposed to either normoxic or hypoxic conditions and collected at the
1077 following three timepoints: (i) 12 hr incubation in normoxic conditions (Norm), (ii)
1078 immediately following a 12 hr hypoxia exposure (H+0 hr), and (iii) following a 1 hr
1079 recovery period in the presence of atmospheric oxygen (H+1 hr). All samples contained
1080 20 adult males. Data are normalized to sample mass and an internal d4-succinic acid
1081 standard.

1082

1083 **Table S7.** RNAseq analysis of *L2hgdh* mutants following hypoxia treatment. *L2hgdh*^{14/+}
1084 controls and *L2hgdh*^{12/14} mutants adult males were exposed to either normoxic or
1085 hypoxic conditions and collected at the following four timepoints: (i) 12 hr incubation in
1086 normoxic conditions (Norm), (ii) immediately following a 12 hr hypoxia exposure (H+0
1087 hr), (iii) following a 1 hr recovery period in the presence of atmospheric oxygen (H+1
1088 hr), and (iv) following a 12 hr recovery period in the presence of atmospheric oxygen
1089 (H+12 hr). All genes are included in this table, regardless of whether the change in gene
1090 expression was significant.

1091

1092 **Table S8.** RNAseq analysis of *L2hgdh*^{12/14} mutants following hypoxia treatment.
1093 *L2hgdh*^{14/+} controls and *L2hgdh*^{12/14} mutants adult males were exposed to either
1094 normoxic or hypoxic conditions and collected at the following four timepoints: (i) 12 hr
1095 incubation in normoxic conditions (Norm), (ii) immediately following a 12 hr hypoxia
1096 exposure (H+0 hr), (iii) following a 1 hr recovery period in the presence of atmospheric
1097 oxygen (H+1 hr), and (iv) following a 12 hr recovery period in the presence of

1098 atmospheric oxygen (H+12 hr). Only genes displaying significant changes in gene
1099 express are included in this table.

1100

1101 **Table S9.** RNAseq analysis of *L2hgdh*^{14/+} controls exposed to either normoxic or
1102 hypoxic conditions and collected at the following four timepoints: (i) 12 hr incubation in
1103 normoxic conditions (Norm), (ii) immediately following a 12 hr hypoxia exposure (H+0
1104 hr), (iii) following a 1 hr recovery period in the presence of atmospheric oxygen (H+1
1105 hr), and (iv) following a 12 hr recovery period in the presence of atmospheric oxygen
1106 (H+12 hr). All genes are included in this table, regardless of whether the change in gene
1107 expression was significant.

1108

1109 **Table S10.** RNAseq analysis of *L2hgdh*^{14/+} controls exposed to either normoxic or
1110 hypoxic conditions and collected at the following four timepoints: (i) 12 hr incubation in
1111 normoxic conditions (Norm), (ii) immediately following a 12 hr hypoxia exposure (H+0
1112 hr), (iii) following a 1 hr recovery period in the presence of atmospheric oxygen (H+1
1113 hr), and (iv) following a 12 hr recovery period in the presence of atmospheric oxygen
1114 (H+12 hr). Only genes displaying significant changes in gene express are included in
1115 this table.

1116

1117 **Table S11.** RNAseq analysis of *L2hgdh*^{12/14} mutants exposed to either normoxic or
1118 hypoxic conditions and collected at the following four timepoints: (i) 12 hr incubation in
1119 normoxic conditions (Norm), (ii) immediately following a 12 hr hypoxia exposure (H+0
1120 hr), (iii) following a 1 hr recovery period in the presence of atmospheric oxygen (H+1

1121 hr), and (iv) following a 12 hr recovery period in the presence of atmospheric oxygen
1122 (H+12 hr). All genes are included in this table, regardless of whether the change in gene
1123 expression was significant.

1124

1125 **Table S12.** RNAseq analysis of *L2hgdh*^{12/14} mutants exposed to either normoxic or
1126 hypoxic conditions and collected at the following four timepoints: (i) 12 hr incubation in
1127 normoxic conditions (Norm), (ii) immediately following a 12 hr hypoxia exposure (H+0
1128 hr), (iii) following a 1 hr recovery period in the presence of atmospheric oxygen (H+1
1129 hr), and (iv) following a 12 hr recovery period in the presence of atmospheric oxygen
1130 (H+12 hr). Only genes displaying significant changes in gene express are included in
1131 this table.

1132

1133 **Table S13.** PANGEA analysis of significantly misregulated genes in *L2hgdh*^{12/14} mutants
1134 as compared with *L2hgdh*^{14/+} controls. Experiment 1 = Norm_Mutant_vs_Control;
1135 Experiment 2 = H+0_Mutant_vs_Control; Experiment 3 = H+1_Mutant_vs_Control;
1136 Experiment 4 = H+12_Mutant_vs_Control;

1137

1138 **Table S14.** RNA-seq results comparing Malpighian tubule gene expression between
1139 adult male *L2hgdh*^{12/14} mutants and *L2hgdh*^{14/+} controls. All genes are included in this
1140 table, regardless of whether the change in gene expression was significant.

1141

1142 **Table S15.** RNA-seq results comparing Malpighian tubule gene expression between
1143 adult male *L2hgdh*^{12/14} mutants and *L2hgdh*^{14/+} controls. Only genes displaying
1144 significant changes in gene express are included in this table.

1145

1146 **Table S16.** PANGEA analysis of significantly misregulated genes in the MTs of
1147 *L2hgdh*^{12/14} mutants as compared with *L2hgdh*^{14/+} controls. (see Table S15 for list of
1148 genes used in the analysis. PANGEA default settings (FlyBase signaling pathway;
1149 SLIM2 GO BP) were used to analyze for enrichment. Only Gene Set IDs with a *P*-value
1150 of less than 0.1 are included in the table.

1151 **LITERATURE CITED**

1152
1153
1154
1155 ACEVEDO, J. M., CENTANIN, L., DEKANTY, A. & WAPPNER, P. 2010. Oxygen sensing in
1156 Drosophila: multiple isoforms of the prolyl hydroxylase fatiga have different capacity to
1157 regulate HIFalpha/Sima. *PLoS One*, 5, e12390.

1158 ANDREWS, S. 2010. *FastQC: a quality control tool for high throughput sequence data*.
1159 [Online]. Available: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>
1160 [Accessed].

1161 BARRETTO, E. C., POLAN, D. M., BEEVOR-POTTS, A. N., LEE, B. & GREWAL, S. S.
1162 2020. Tolerance to Hypoxia Is Promoted by FOXO Regulation of the Innate Immunity
1163 Transcription Factor NF- κ B/Relish in Drosophila. *Genetics*, 215, 1013-1025.

1164 BEWICK, A. J., VOGEL, K. J., MOORE, A. J. & SCHMITZ, R. J. 2016. Evolution of DNA
1165 Methylation across Insects. *Molecular Biology and Evolution*, 34, 654-665.

1166 BLIGHE, K. & LUN, A. 2022. *PCAtools: Everything Principal Components Analysis*. R
1167 package version 2.8.0 [Online]. Available: <https://github.com/kevinblighe/PCAtools>
1168 [Accessed].

1169 BRAY, N. L., PIMENTEL, H., MELSTED, P. & PACHTER, L. 2016. Near-optimal
1170 probabilistic RNA-seq quantification. *Nat Biotechnol*, 34, 525-7.

1171 BRINKLEY, G., NAM, H., SHIM, E., KIRKMAN, R., KUNDU, A., KARKI, S., HEIDARIAN,
1172 Y., TENNESSEN, J. M., LIU, J., LOCASALE, J. W., GUO, T., WEI, S., GORDETSKY,
1173 J., JOHNSON-PAIS, T. L., ABSHER, D., RAKHEJA, D., CHALLA, A. K. &
1174 SUDARSHAN, S. 2020. Teleological role of L-2-hydroxyglutarate dehydrogenase in the
1175 kidney. *Dis Model Mech*, 13.

1176 BUDDIKA, K., XU, J., ARIYAPALA, I. S. & SOKOL, N. S. 2021. I-KCKT allows dissection-
1177 free RNA profiling of adult Drosophila intestinal progenitor cells. *Development*, 148.

1178 CHOWDHURY, R., YEOH, K. K., TIAN, Y. M., HILLRINGHAUS, L., BAGG, E. A., ROSE,
1179 N. R., LEUNG, I. K., LI, X. S., WOON, E. C., YANG, M., McDONOUGH, M. A.,
1180 KING, O. N., CLIFTON, I. J., KLOSE, R. J., CLARIDGE, T. D., RATCLIFFE, P. J.,
1181 SCHOFIELD, C. J. & KAWAMURA, A. 2011. The oncometabolite 2-hydroxyglutarate
1182 inhibits histone lysine demethylases. *EMBO Rep*, 12, 463-9.

1183 CHRISTEN, M., GONZALO-NADAL, V., KACZMarska, A., DYRKA, M., GUEVAR, J.,
1184 JAGANNATHAN, V., LEEB, T. & GUTIERREZ-QUINTANA, R. 2023. A novel
1185 missense variant in the L2HGDH gene in a cat with L-2-hydroxyglutaric aciduria and
1186 multicystic cerebral lesions. *J Vet Intern Med*, 37, 676-680.

1187 CHRISTEN, M., JANZEN, N., FRASER, A., SEWELL, A. C., JAGANNATHAN, V.,
1188 GUEVAR, J., LEEB, T. & SANCHEZ-MASIAN, D. 2021. L2HGDH Missense Variant
1189 in a Cat with L-2-Hydroxyglutaric Aciduria. *Genes (Basel)*, 12.

1190 COHEN, E., SAWYER, J. K., PETERSON, N. G., DOW, J. A. T. & FOX, D. T. 2020.
1191 Physiology, Development, and Disease Modeling in the Drosophila Excretory System.
1192 *Genetics*, 214, 235-264.

1193 CONSORTIUM, T. G. O., ALEKSANDER, S. A., BALHOFF, J., CARBON, S., CHERRY, J.
1194 M., DRABKIN, H. J., EBERT, D., FEUERMANN, M., GAUDET, P., HARRIS, N. L.,
1195 HILL, D. P., LEE, R., MI, H., MOXON, S., MUNGALL, C. J., MURUGANUGAN, A.,
1196 MUSHAYAHAMA, T., STERNBERG, P. W., THOMAS, P. D., VAN AUKEN, K.,

1197 RAMSEY, J., SIEGELE, D. A., CHISHOLM, R. L., FEY, P., ASPROMONTE, M. C.,
1198 NUGNES, M. V., QUAGLIA, F., TOSATTO, S., GIGLIO, M., NADENDLA, S.,
1199 ANTONAZZO, G., ATTRILL, H., DOS SANTOS, G., MARYGOLD, S., STRELETS,
1200 V., TABONE, C. J., THURMOND, J., ZHOU, P., AHMED, S. H., ASANITTHONG, P.,
1201 LUNA BUITRAGO, D., ERDOL, M. N., GAGE, M. C., ALI KADHUM, M., LI, K. Y.
1202 C., LONG, M., MICHALAK, A., PESALA, A., PRITAZAHRA, A., SAVERIMUTTU,
1203 S. C. C., SU, R., THURLOW, K. E., LOVERING, R. C., LOGIE, C., OLIFERENKO, S.,
1204 BLAKE, J., CHRISTIE, K., CORBANI, L., DOLAN, M. E., DRABKIN, H. J., HILL, D.
1205 P., NI, L., SITNIKOV, D., SMITH, C., CUZICK, A., SEAGER, J., COOPER, L.,
1206 ELSER, J., JAISWAL, P., GUPTA, P., JAISWAL, P., NAITHANI, S., LERA-
1207 RAMIREZ, M., RUTHERFORD, K., WOOD, V., DE PONS, J. L., DWINELL, M. R.,
1208 HAYMAN, G. T., KALDUNSKI, M. L., KWITEK, A. E., LAULEDERKIND, S. J. F.,
1209 TUTAJ, M. A., VEDI, M., WANG, S.-J., D'EUSTACHIO, P., AIMO, L., AXELSEN,
1210 K., BRIDGE, A., HYKA-NOUSPIKEL, N., MORGAT, A., ALEKSANDER, S. A.,
1211 CHERRY, J. M., ENGEL, S. R., KARRA, K., MIYASATO, S. R., NASH, R. S.,
1212 SKRZYPEK, M. S., WENG, S., WONG, E. D., BAKKER, E., et al. 2023. The Gene
1213 Ontology knowledgebase in 2023. *Genetics*, 224.
1214 COURTNEY, K. D., BEZWADA, D., MASHIMO, T., PICHUMANI, K., VEMIREDDY, V.,
1215 FUNK, A. M., WIMBERLY, J., MCNEIL, S. S., KAPUR, P., LOTAN, Y., MARGULIS,
1216 V., CADEDDU, J. A., PEDROSA, I., DEBERARDINIS, R. J., MALLOY, C. R.,
1217 BACHOO, R. M. & MAHER, E. A. 2018. Isotope Tracing of Human Clear Cell Renal
1218 Cell Carcinomas Demonstrates Suppressed Glucose Oxidation In Vivo. *Cell Metab*, 28,
1219 793-800.e2.
1220 COX, J. E., THUMMEL, C. S. & TENNESSEN, J. M. 2017. Metabolomic Studies in
1221 *Drosophila*. *Genetics*, 206, 1169-1185.
1222 CUNNINGHAM, F., ALLEN, J. E., ALLEN, J., ALVAREZ-JARRETA, J., AMODE, M. R.,
1223 ARMEAN, I. M., AUSTINE-ORIMOLOYE, O., AZOV, A. G., BARNES, I.,
1224 BENNETT, R., BERRY, A., BHAI, J., BIGNELL, A., BILLIS, K., BODDU, S.,
1225 BROOKS, L., CHARKHCHI, M., CUMMINS, C., DA RIN FIORETTA, L.,
1226 DAVIDSON, C., DODIYA, K., DONALDSON, S., EL HOUDAIGUI, B., EL
1227 NABOULSI, T., FATIMA, R., GIRON, C. G., GENEZ, T., MARTINEZ, J. G.,
1228 GUIJARRO-CLARKE, C., GYMER, A., HARDY, M., HOLLIS, Z., HOURLIER, T.,
1229 HUNT, T., JUETTEMANN, T., KAIKALA, V., KAY, M., LAVIDAS, I., LE, T.,
1230 LEMOS, D., MARUGÁN, J. C., MOHANAN, S., MUSHTAQ, A., NAVEN, M., OGEH,
1231 D. N., PARKER, A., PARTON, A., PERRY, M., PILIŽOTA, I., PROSOVETSKAIA, I.,
1232 SAKTHIVEL, M. P., SALAM, A. I. A., SCHMITT, B. M., SCHUILENBURG, H.,
1233 SHEPPARD, D., PÉREZ-SILVA, J. G., STARK, W., STEED, E., SUTINEN, K.,
1234 SUKUMARAN, R., SUMATHIPALA, D., SUNER, M. M., SZPAK, M., THORMANN,
1235 A., TRICOMI, F. F., URBINA-GÓMEZ, D., VEIDENBERG, A., WALSH, T. A.,
1236 WALTS, B., WILLHOFT, N., WINTERBOTTOM, A., WASS, E., CHAKIACHVILI,
1237 M., FLINT, B., FRANKISH, A., GIORGETTI, S., HAGGERTY, L., HUNT, S. E., GR,
1238 I. I., LOVELAND, J. E., MARTIN, F. J., MOORE, B., MUDGE, J. M., MUFFATO, M.,
1239 PERRY, E., RUFFIER, M., TATE, J., THYBERT, D., TREVANION, S. J., DYER, S.,
1240 HARRISON, P. W., HOWE, K. L., YATES, A. D., ZERBINO, D. R. & FLICEK, P.
1241 2022. Ensembl 2022. *Nucleic Acids Res*, 50, D988-d995.

1242 DOBIN, A., DAVIS, C. A., SCHLESINGER, F., DRENKOW, J., ZALESKI, C., JHA, S.,
1243 BATUT, P., CHAISSON, M. & GINGERAS, T. R. 2013. STAR: ultrafast universal
1244 RNA-seq aligner. *Bioinformatics*, 29, 15-21.

1245 DU, X. & HU, H. 2021. The Roles of 2-Hydroxyglutarate. *Front Cell Dev Biol*, 9, 651317.

1246 DURAN, M., KAMERLING, J. P., BAKKER, H. D., VAN GENNIP, A. H. & WADMAN, S.
1247 K. 1980. L-2-Hydroxyglutaric aciduria: an inborn error of metabolism? *J Inherit Metab
1248 Dis*, 3, 109-12.

1249 EWELS, P., MAGNUSSON, M., LUNDIN, S. & KÄLLER, M. 2016. MultiQC: summarize
1250 analysis results for multiple tools and samples in a single report. *Bioinformatics*, 32,
1251 3047-8.

1252 FARIAS, F. H., ZENG, R., JOHNSON, G. S., SHELTON, G. D., PAQUETTE, D. & O'BRIEN,
1253 D. P. 2012. A L2HGDH initiator methionine codon mutation in a Yorkshire terrier with
1254 L-2-hydroxyglutaric aciduria. *BMC Vet Res*, 8, 124.

1255 GOSSAGE, L., EISEN, T. & MAHER, E. R. 2015. VHL, the story of a tumour suppressor gene.
1256 *Nat Rev Cancer*, 15, 55-64.

1257 GRAMATES, L. S., AGAPITE, J., ATTRILL, H., CALVI, B. R., CROSBY, M. A., DOS
1258 SANTOS, G., GOODMAN, J. L., GOUTTE-GATTAT, D., JENKINS, V. K.,
1259 KAUFMAN, T., LARKIN, A., MATTHEWS, B. B., MILLBURN, G., STRELETS, V.
1260 B. & CONSORTIUM, T. F. 2022. FlyBase: a guided tour of highlighted features.
1261 *Genetics*, 220.

1262 HE, H., MULHERN, R. M., OLDHAM, W. M., XIAO, W., LIN, Y. D., LIAO, R. &
1263 LOSCALZO, J. 2022. L-2-Hydroxyglutarate Protects Against Cardiac Injury via
1264 Metabolic Remodeling. *Circ Res*, 131, 562-579.

1265 HU, Y., COMJEAN, A., ATTRILL, H., ANTONAZZO, G., THURMOND, J., CHEN, W., LI,
1266 F., CHAO, T., MOHR, S. E., BROWN, N. H. & PERRIMON, N. 2023. PANGEA: a new
1267 gene set enrichment tool for Drosophila and common research organisms. *Nucleic Acids
1268 Research*, 51, W419-W426.

1269 HUNT, R. J., GRANAT, L., MCELROY, G. S., RANGANATHAN, R., CHANDEL, N. S. &
1270 BATEMAN, J. M. 2019. Mitochondrial stress causes neuronal dysfunction via an ATF4-
1271 dependent increase in L-2-hydroxyglutarate. *J Cell Biol*, 218, 4007-4016.

1272 INTLEKOFER, A. M., DEMATTEO, R. G., VENNETI, S., FINLEY, L. W., LU, C., JUDKINS,
1273 A. R., RUSTENBURG, A. S., GRINAWAY, P. B., CHODERA, J. D., CROSS, J. R. &
1274 THOMPSON, C. B. 2015. Hypoxia Induces Production of L-2-Hydroxyglutarate. *Cell
1275 Metab*, 22, 304-11.

1276 INTLEKOFER, A. M., WANG, B., LIU, H., SHAH, H., CARMONA-FONTAINE, C.,
1277 RUSTENBURG, A. S., SALAH, S., GUNNER, M. R., CHODERA, J. D., CROSS, J. R.
1278 & THOMPSON, C. B. 2017. L-2-Hydroxyglutarate production arises from noncanonical
1279 enzyme function at acidic pH. *Nat Chem Biol*, 13, 494-500.

1280 KOLDE, R. 2019. *pheatmap: Pretty Heatmaps – an implementation of heatmaps that offers
1281 more control over dimensions and appearance. (Version 1.0.12)* [Online]. Available:
1282 <https://cran.r-project.org/web/packages/pheatmap/index.html> [Accessed].

1283 KRANENDIJK, M., STRUYS, E. A., SALOMONS, G. S., VAN DER KNAAP, M. S. &
1284 JAKOBS, C. 2012. Progress in understanding 2-hydroxyglutaric acidurias. *J Inherit
1285 Metab Dis*, 35, 571-87.

1286 KUNDU, A., BRINKLEY, G. J., NAM, H., KARKI, S., KIRKMAN, R., PANDIT, M., SHIM,
1287 E., WIDDEN, H., LIU, J., HEIDARIAN, Y., MAHMOUDZADEH, N. H., FITT, A. J.,

1288 ABSHER, D., DING, H.-F., CROSSMAN, D. K., PLACZEK, W. J., LOCASALE, J. W.,
1289 RAKHEJA, D., MCCONATHY, J. E., RAMACHANDRAN, R., BAE, S.,
1290 TENNESSEN, J. M. & SUDARSHAN, S. 2024. L-2-hydroxyglutarate remodeling of the
1291 epigenome and epitranscriptome creates a metabolic vulnerability in kidney cancer
1292 models. *The Journal of Clinical Investigation*.

1293 LI, F., SAMI, A., NORISTANI, H. N., SLATTERY, K., QIU, J., GROVES, T., WANG, S.,
1294 VEERASAMMY, K., CHEN, Y. X., MORALES, J., HAYNES, P., SEHGAL, A., HE,
1295 Y., LI, S. & SONG, Y. 2020. Glial Metabolic Rewiring Promotes Axon Regeneration and
1296 Functional Recovery in the Central Nervous System. *Cell Metab*, 32, 767-785.e7.

1297 LI, H., CHAWLA, G., HURLBURT, A. J., STERRETT, M. C., ZASLAVER, O., COX, J.,
1298 KARTY, J. A., ROSEBROCK, A. P., CAUDY, A. A. & TENNESSEN, J. M. 2017.
1299 Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during
1300 normal developmental growth. *Proc Natl Acad Sci U S A*, 114, 1353-1358.

1301 LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T., RUAN, J., HOMER, N., MARTH,
1302 G., ABECASIS, G. & DURBIN, R. 2009. The Sequence Alignment/Map format and
1303 SAMtools. *Bioinformatics*, 25, 2078-9.

1304 LI, H., HURLBURT, A. J. & TENNESSEN, J. M. 2018. A Drosophila model of combined D-2-
1305 and L-2-hydroxyglutaric aciduria reveals a mechanism linking mitochondrial citrate
1306 export with oncometabolite accumulation. *Dis Model Mech*, 11.

1307 LI, H., JANSSENS, J., DE WAEGENEER, M., KOLLURU, S. S., DAVIE, K., GARDEUX, V.,
1308 SAELENS, W., DAVID, F. P. A., BRBIĆ, M., SPANIER, K., LESKOVEC, J.,
1309 MCLAUGHLIN, C. N., XIE, Q., JONES, R. C., BRUECKNER, K., SHIM, J.,
1310 TATTIKOTA, S. G., SCHNORRER, F., RUST, K., NYSTUL, T. G., CARVALHO-
1311 SANTOS, Z., RIBEIRO, C., PAL, S., MAHADEVARAJU, S., PRZYTYCKA, T. M.,
1312 ALLEN, A. M., GOODWIN, S. F., BERRY, C. W., FULLER, M. T., WHITE-COOPER,
1313 H., MATUNIS, E. L., DINARDO, S., GALENZA, A., O'BRIEN, L. E., DOW, J. A. T.,
1314 JASPER, H., OLIVER, B., PERRIMON, N., DEPLANCKE, B., QUAKE, S. R., LUO,
1315 L., AERTS, S., AGARWAL, D., AHMED-BRAIMAH, Y., ARBEITMAN, M., ARISS,
1316 M. M., AUGSBURGER, J., AYUSH, K., BAKER, C. C., BANISCH, T., BIRKER, K.,
1317 BODMER, R., BOLIVAL, B., BRANTLEY, S. E., BRILL, J. A., BROWN, N. C.,
1318 BUEHNER, N. A., CAI, X. T., CARDOSO-FIGUEIREDO, R., CASARES, F., CHANG,
1319 A., CLANDININ, T. R., CRASTA, S., DESPLAN, C., DETWEILER, A. M., DHAKAN,
1320 D. B., DONÀ, E., ENGERT, S., FLOC'HLAY, S., GEORGE, N., GONZÁLEZ-
1321 SEGARRA, A. J., GROVES, A. K., GUMBIN, S., GUO, Y., HARRIS, D. E., HEIFETZ,
1322 Y., HOLTZ, S. L., HORNS, F., HUDRY, B., HUNG, R. J., JAN, Y. N., JASZCZAK, J.,
1323 S., JEFFERIS, G., KARKANIAS, J., KARR, T. L., KATHEDER, N. S., KEZOS, J.,
1324 KIM, A. A., KIM, S. K., KOCKEL, L., KONSTANTINIDES, N., KORNBERG, T. B.,
1325 KRAUSE, H. M., LABOTT, A. T., LATURNEY, M., LEHMANN, R., LEINWAND, S.,
1326 LI, J., LI, J. S. S., LI, K., et al. 2022. Fly Cell Atlas: A single-nucleus transcriptomic atlas
1327 of the adult fruit fly. *Science*, 375, eabk2432.

1328 LI, H. & TENNESSEN, J. M. 2017. Methods for studying the metabolic basis of Drosophila
1329 development. *Wiley Interdiscip Rev Dev Biol*, 6.

1330 LI, H. & TENNESSEN, J. M. 2018. Preparation of Drosophila Larval Samples for Gas
1331 Chromatography-Mass Spectrometry (GC-MS)-based Metabolomics. *J Vis Exp*.

1332 LI, H. & TENNESSEN, J. M. 2019. Quantification of D- and L-2-Hydroxyglutarate in
1333 Drosophila melanogaster Tissue Samples Using Gas Chromatography-Mass
1334 Spectrometry. *Methods Mol Biol*, 1978, 155-165.

1335 LIAO, Y., SMYTH, G. K. & SHI, W. 2019. The R package Rsubread is easier, faster, cheaper
1336 and better for alignment and quantification of RNA sequencing reads. *Nucleic Acids Res*,
1337 47, e47.

1338 LIU, T., XIANG, W., CHEN, Z., WANG, G., CAO, R., ZHOU, F., MENG, Z., LUO, Y. &
1339 CHEN, L. 2023. Hypoxia-induced PLOD2 promotes clear cell renal cell carcinoma
1340 progression via modulating EGFR-dependent AKT pathway activation. *Cell Death Dis*,
1341 14, 774.

1342 LOVE, M. I., HUBER, W. & ANDERS, S. 2014. Moderated estimation of fold change and
1343 dispersion for RNA-seq data with DESeq2. *Genome Biol*, 15, 550.

1344 LUBOJEMSKA, A., STEFANA, M. I., SORGE, S., BAILEY, A. P., LAMPE, L.,
1345 YOSHIMURA, A., BURRELL, A., COLLINSON, L. & GOULD, A. P. 2021. Adipose
1346 triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of
1347 chronic kidney disease. *PLoS Biol*, 19, e3001230.

1348 MA, S., SUN, R., JIANG, B., GAO, J., DENG, W., LIU, P., HE, R., CUI, J., JI, M., YI, W.,
1349 YANG, P., WU, X., XIONG, Y., QIU, Z., YE, D. & GUAN, K. L. 2017. L2hgdh
1350 Deficiency Accumulates L-2-Hydroxyglutarate with Progressive Leukoencephalopathy
1351 and Neurodegeneration. *Mol Cell Biol*, 37.

1352 MAHMOUDZADEH, N. H., FITT, A. J., SCHWAB, D. B., MARTENIS, W. E., NEASE, L. M.,
1353 OWINGS, C. G., BRINKLEY, G. J., LI, H., KARTY, J. A., SUDARSHAN, S.,
1354 HARDY, R. W., MOCZEK, A. P., PICARD, C. J. & TENNESSEN, J. M. 2020. The
1355 oncometabolite L-2-hydroxyglutarate is a common product of dipteran larval
1356 development. *Insect Biochem Mol Biol*, 127, 103493.

1357 MARTIN, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing
1358 reads. *2011*, 17, 3.

1359 MULLEN, A. R., HU, Z., SHI, X., JIANG, L., BOROUGH, L. K., KOVACS, Z., BORIACK,
1360 R., RAKHEJA, D., SULLIVAN, L. B., LINEHAN, W. M., CHANDEL, N. S. &
1361 DEBERARDINIS, R. J. 2014. Oxidation of alpha-ketoglutarate is required for reductive
1362 carboxylation in cancer cells with mitochondrial defects. *Cell Rep*, 7, 1679-1690.

1363 NADTOCHIY, S. M., SCHAFER, X., FU, D., NEHRKE, K., MUNGER, J. & BROOKES, P. S.
1364 2016. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling.
1365 *J Biol Chem*, 291, 20188-97.

1366 NEMKOV, T., REISZ, J. A., GEHRKE, S., HANSEN, K. C. & D'ALESSANDRO, A. 2019.
1367 High-Throughput Metabolomics: Isocratic and Gradient Mass Spectrometry-Based
1368 Methods. *Methods Mol Biol*, 1978, 13-26.

1369 OLDHAM, W. M., CLISH, C. B., YANG, Y. & LOSCALZO, J. 2015. Hypoxia-Mediated
1370 Increases in L-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive
1371 Stress. *Cell Metab*, 22, 291-303.

1372 ÖZTÜRK-ÇOLAK, A., MARYGOLD, S. J., ANTONAZZO, G., ATTRILL, H., GOUTTE-
1373 GATTAT, D., JENKINS, V. K., MATTHEWS, B. B., MILLBURN, G., DOS SANTOS,
1374 G., TABONE, C. J. & CONSORTIUM, T. F. 2024. FlyBase: updates to the Drosophila
1375 genes and genomes database. *Genetics*.

1376 PANG, Z., CHONG, J., ZHOU, G., DE LIMA MORAIS, D. A., CHANG, L., BARRETTE, M.,
1377 GAUTHIER, C., JACQUES, P., LI, S. & XIA, J. 2021. MetaboAnalyst 5.0: narrowing
1378 the gap between raw spectra and functional insights. *Nucleic Acids Res*, 49, W388-w396.

1379 PROVATARIS, P., MEUSEMANN, K., NIEHUIS, O., GRATH, S. & MISOF, B. 2018.
1380 Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation
1381 Levels in Holometabola. *Genome Biology and Evolution*, 10, 1185-1197.

1382 RECHSTEINER, M. C. 1970. Drosophila lactate dehydrogenase: Partial purification and
1383 characterization. *Journal of Insect Physiology*, 16, 957-977.

1384 REINECKE, C. J., KOEKEMOER, G., VAN DER WESTHUIZEN, F. H., LOUW, R.,
1385 LINDEQUIE, J. Z., MIENIE, L. J. & SMUTS, I. 2012. Metabolomics of urinary organic
1386 acids in respiratory chain deficiencies in children. *Metabolomics*, 8, 264-283.

1387 ROSAY, P., DAVIES, S. A., YU, Y., SÖZEN, M. A., KAISER, K. & DOW, J. A. 1997. Cell-
1388 type specific calcium signalling in a Drosophila epithelium. *J Cell Sci*, 110 (Pt 15),
1389 1683-92.

1390 RZEM, R., ACHOURI, Y., MARBAIX, E., SCHAKMAN, O., WIAME, E., MARIE, S.,
1391 GAILLY, P., VINCENT, M. F., VEIGA-DA-CUNHA, M. & VAN SCHAFTINGEN, E.
1392 2015. A mouse model of L-2-hydroxyglutaric aciduria, a disorder of metabolite repair.
1393 *PLoS One*, 10, e0119540.

1394 RZEM, R., VEIGA-DA-CUNHA, M., NOËL, G., GOFFETTE, S., NASSOGNE, M. C.,
1395 TABARKI, B., SCHÖLLER, C., MARQUARDT, T., VIKKULA, M. & VAN
1396 SCHAFTINGEN, E. 2004. A gene encoding a putative FAD-dependent L-2-
1397 hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. *Proc Natl
1398 Acad Sci U S A*, 101, 16849-54.

1399 RZEM, R., VINCENT, M. F., VAN SCHAFTINGEN, E. & VEIGA-DA-CUNHA, M. 2007. L-
1400 2-hydroxyglutaric aciduria, a defect of metabolite repair. *J Inherit Metab Dis*, 30, 681-9.

1401 SANCHEZ-MASIAN, D. F., ARTUCH, R., MASCORT, J., JAKOBS, C., SALOMONS, G.,
1402 ZAMORA, A., CASADO, M., FERNANDEZ, M., RECIO, A. & LUJAN, A. 2012. L-2-
1403 hydroxyglutaric aciduria in two female Yorkshire terriers. *J Am Anim Hosp Assoc*, 48,
1404 366-71.

1405 SCHELLINGER, J. N. & RODAN, A. R. 2015. Use of the Ramsay Assay to Measure Fluid
1406 Secretion and Ion Flux Rates in the Drosophila melanogaster Malpighian Tubule. *J Vis
1407 Exp.*

1408 SHELAR, S., SHIM, E. H., BRINKLEY, G. J., KUNDU, A., CAROBBIO, F., POSTON, T.,
1409 TAN, J., PAREKH, V., BENSON, D., CROSSMAN, D. K., BUCKHAULTS, P. J.,
1410 RAKHEJA, D., KIRKMAN, R., SATO, Y., OGAWA, S., DUTTA, S., VELU, S. E.,
1411 EMBERLEY, E., PAN, A., CHEN, J., HUANG, T., ABSHER, D., BECKER, A.,
1412 KUNICK, C. & SUDARSHAN, S. 2018. Biochemical and Epigenetic Insights into L-2-
1413 Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer. *Clin Cancer Res*, 24,
1414 6433-6446.

1415 SHIM, E. H., LIVI, C. B., RAKHEJA, D., TAN, J., BENSON, D., PAREKH, V., KHO, E. Y.,
1416 GHOSH, A. P., KIRKMAN, R., VELU, S., DUTTA, S., CHENNA, B., REA, S. L.,
1417 MISHUR, R. J., LI, Q., JOHNSON-PAIS, T. L., GUO, L., BAE, S., WEI, S., BLOCK,
1418 K. & SUDARSHAN, S. 2014. L-2-Hydroxyglutarate: an epigenetic modifier and putative
1419 oncometabolite in renal cancer. *Cancer Discov*, 4, 1290-8.

1420 SOKOL, N. S., XU, P., JAN, Y. N. & AMBROS, V. 2008. *Drosophila* let-7 microRNA is
1421 required for remodeling of the neuromusculature during metamorphosis. *Genes Dev*, 22,
1422 1591-6.

1423 STRUYS, E. A., GIBSON, K. M. & JAKOBS, C. 2007. Novel insights into L-2-hydroxyglutaric
1424 aciduria: mass isotopomer studies reveal 2-oxoglutaric acid as the metabolic precursor of
1425 L-2-hydroxyglutaric acid. *J Inherit Metab Dis*, 30, 690-3.

1426 TAUB, M., MAHMOUDZADEH, N. H., TENNESSEN, J. M. & SUDARSHAN, S. 2022. Renal
1427 oncometabolite L-2-hydroxyglutarate imposes a block in kidney tubulogenesis: Evidence
1428 for an epigenetic basis for the L-2HG-induced impairment of differentiation. *Front
1429 Endocrinol (Lausanne)*, 13, 932286.

1430 TENG, X., EMMETT, M. J., LAZAR, M. A., GOLDBERG, E. & RABINOWITZ, J. D. 2016.
1431 Lactate Dehydrogenase C Produces S-2-Hydroxyglutarate in Mouse Testis. *ACS Chem
1432 Biol*, 11, 2420-7.

1433 TRAPNELL, C., WILLIAMS, B. A., PERTEA, G., MORTAZAVI, A., KWAN, G., VAN
1434 BAREN, M. J., SALZBERG, S. L., WOLD, B. J. & PACHTER, L. 2010. Transcript
1435 assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform
1436 switching during cell differentiation. *Nat Biotechnol*, 28, 511-5.

1437 TYRAKIS, P. A., PALAZON, A., MACIAS, D., LEE, K. L., PHAN, A. T., VELIÇA, P., YOU,
1438 J., CHIA, G. S., SIM, J., DOEDENS, A., ABELANET, A., EVANS, C. E., GRIFFITHS,
1439 J. R., POELLINGER, L., GOLDRATH, A. W. & JOHNSON, R. S. 2016. S-2-
1440 hydroxyglutarate regulates CD8(+) T-lymphocyte fate. *Nature*, 540, 236-241.

1441 WANG, C. & SPRADLING, A. C. 2020. An abundant quiescent stem cell population in
1442 *Drosophila* Malpighian tubules protects principal cells from kidney stones. *Elife*, 9.

1443 WANG, C.-W., PURKAYASTHA, A., JONES, K. T., THAKER, S. K. & BANERJEE, U. 2016.
1444 In vivo genetic dissection of tumor growth and the Warburg effect. *Elife*, 5, e18126.

1445 WEI, T. & SIMKO, V. 2021. *R* package 'corrplot': *Visualization of a Correlation Matrix*.
1446 (Version 0.92) [Online]. Available: <https://github.com/taiyun/corrplot> [Accessed].

1447 WILLIAMS, N. C., RYAN, D. G., COSTA, A. S. H., MILLS, E. L., JEDRYCHOWSKI, M. P.,
1448 CLOONAN, S. M., FREZZA, C. & O'NEILL, L. A. 2022. Signaling metabolite L-2-
1449 hydroxyglutarate activates the transcription factor HIF-1 α in lipopolysaccharide-activated
1450 macrophages. *J Biol Chem*, 298, 101501.

1451 XU, W., YANG, H., LIU, Y., YANG, Y., WANG, P., KIM, S. H., ITO, S., YANG, C., WANG,
1452 P., XIAO, M. T., LIU, L. X., JIANG, W. Q., LIU, J., ZHANG, J. Y., WANG, B., FRYE,
1453 S., ZHANG, Y., XU, Y. H., LEI, Q. Y., GUAN, K. L., ZHAO, S. M. & XIONG, Y.
1454 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α -ketoglutarate-
1455 dependent dioxygenases. *Cancer Cell*, 19, 17-30.

1456 YANG, J., CHEN, X., JIN, S. & DING, J. 2023. Structure and biochemical characterization of l-
1457 2-hydroxyglutarate dehydrogenase and its role in the pathogenesis of l-2-hydroxyglutaric
1458 aciduria. *J Biol Chem*, 300, 105491.

1459 YANNONI, Y. M. & WHITE, K. 1997. Association of the neuron-specific RNA binding
1460 domain-containing protein ELAV with the coiled body in *Drosophila* neurons.
1461 *Chromosoma*, 105, 332-41.

1462 ZETTERVALL, C. J., ANDERL, I., WILLIAMS, M. J., PALMER, R., KURUCZ, E., ANDO, I.
1463 & HULTMARK, D. 2004. A directed screen for genes involved in *Drosophila* blood cell
1464 activation. *Proc Natl Acad Sci U S A*, 101, 14192-7.

1465

Table 1. Number of genes significantly changed in hypoxia-treated *L2hgdn*^{14/+} controls and *L2hgdn*^{12/14} mutants samples relative to Normoxia Control Samples.

Condition	Normoxia				Hypoxia + 0 hr recovery				Hypoxia + 1 hr recovery				Hypoxia + 12 hr recovery			
	Genotype		Mutant	Control	Genotype		Mutant	Control	Genotype		Mutant	Control	Genotype		Mutant	Control
Direction of gene expression	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down
# genes significantly changed	47	57	636	1139	633	1070	626	1288	586	1099	310	747	258	349		

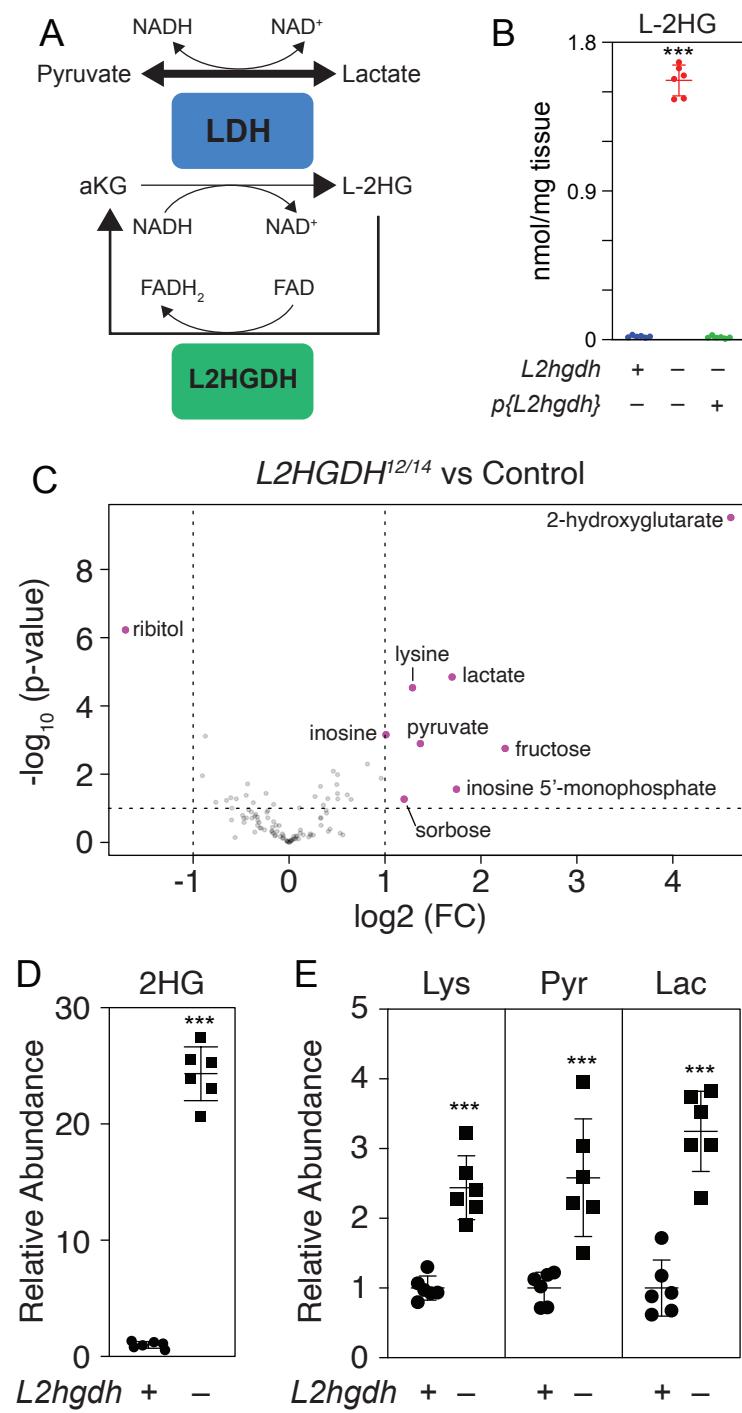


Figure 1

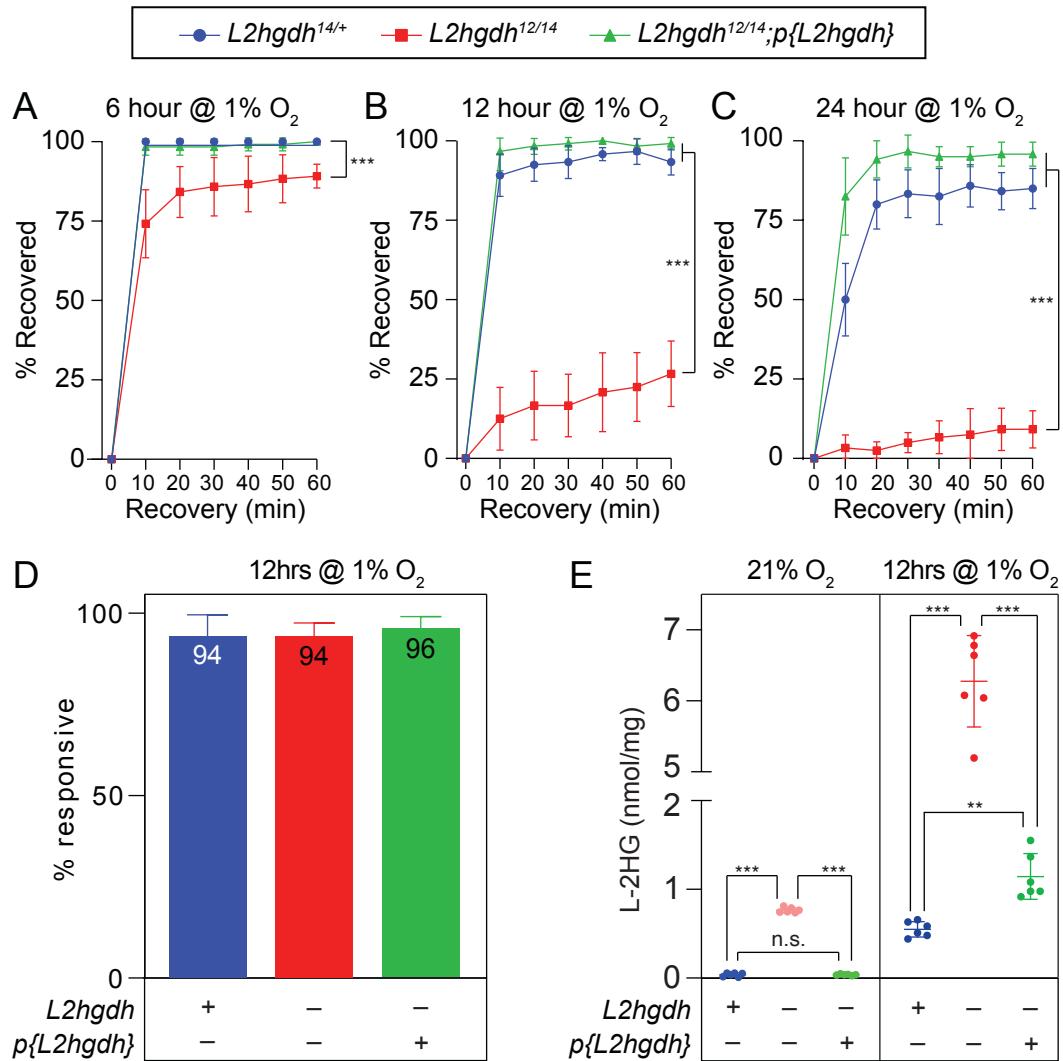


Figure 2

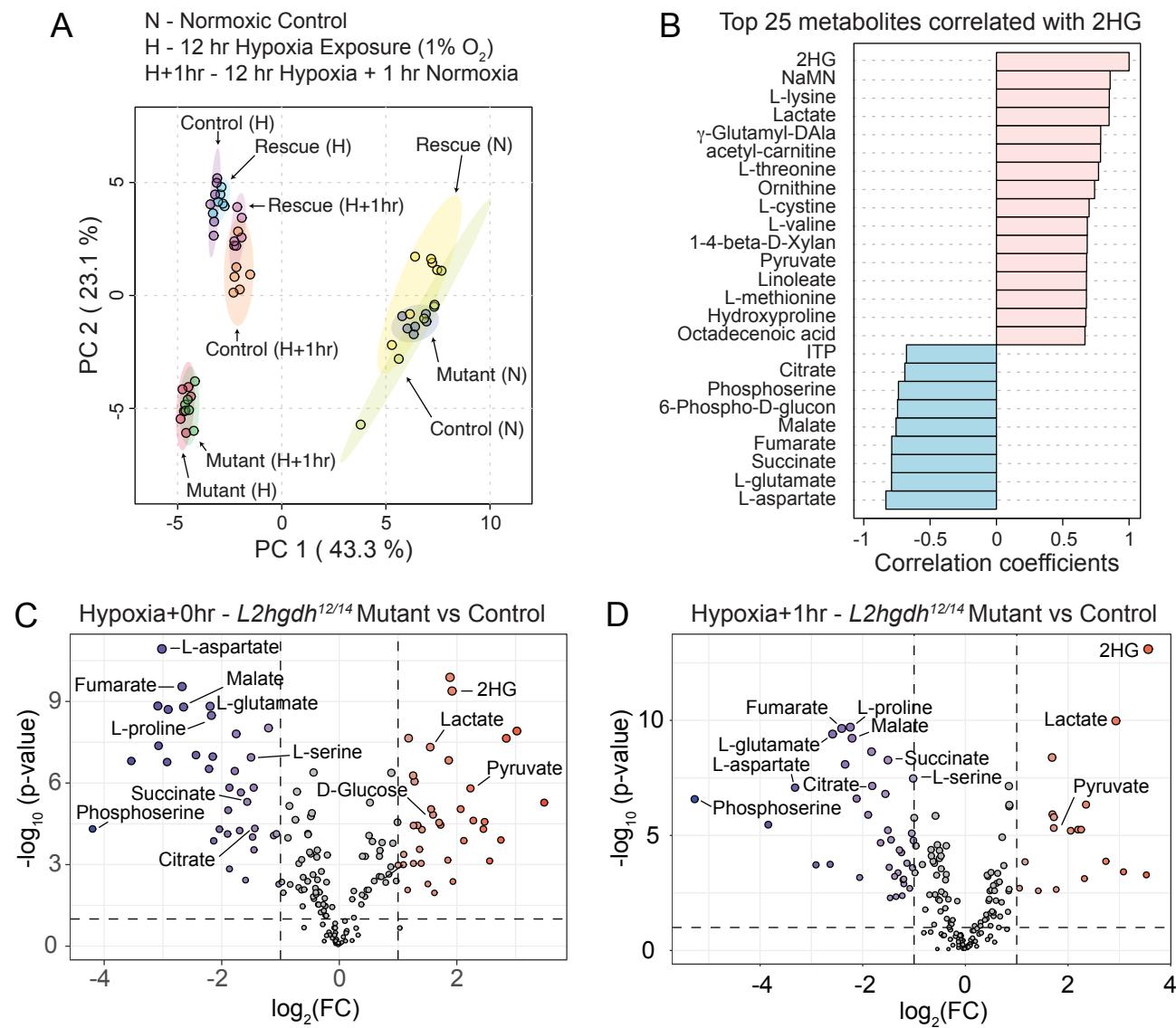
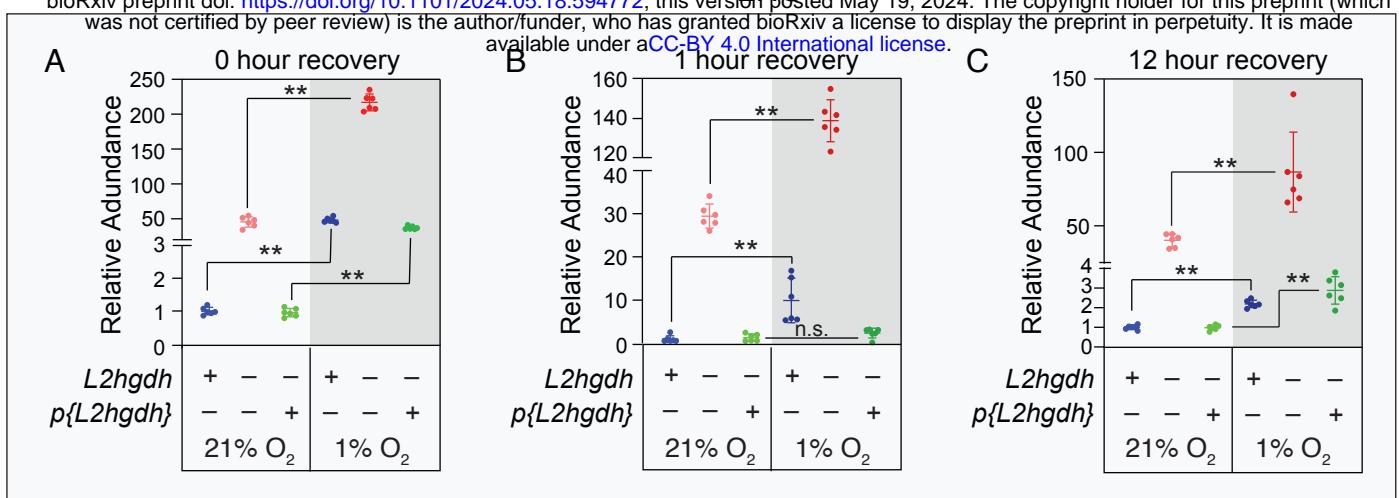



Figure 3

2HG

Lactate

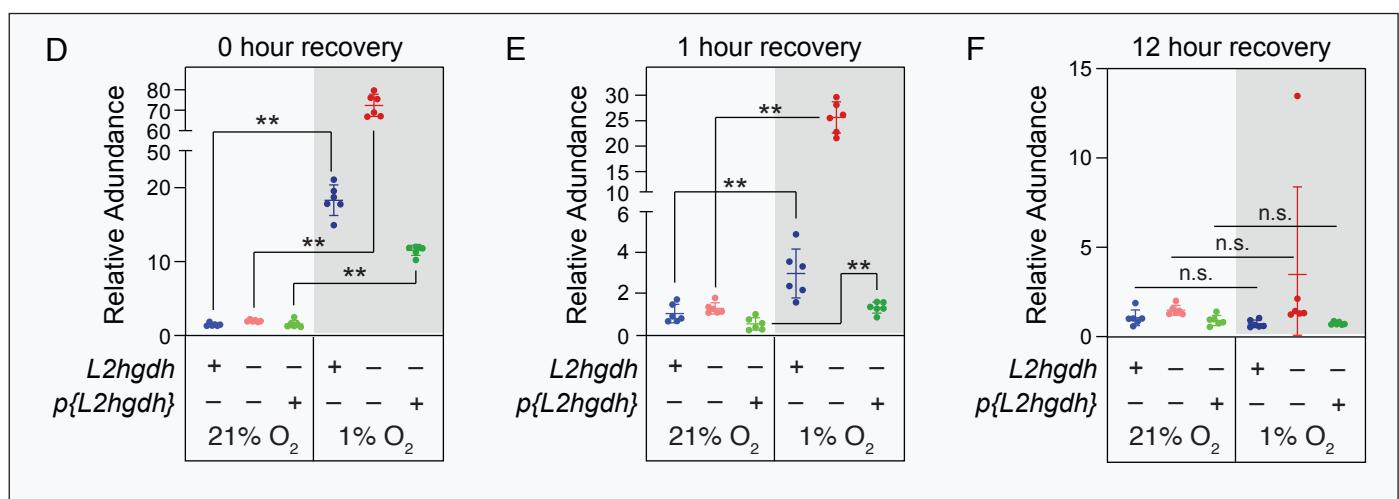


Figure 4

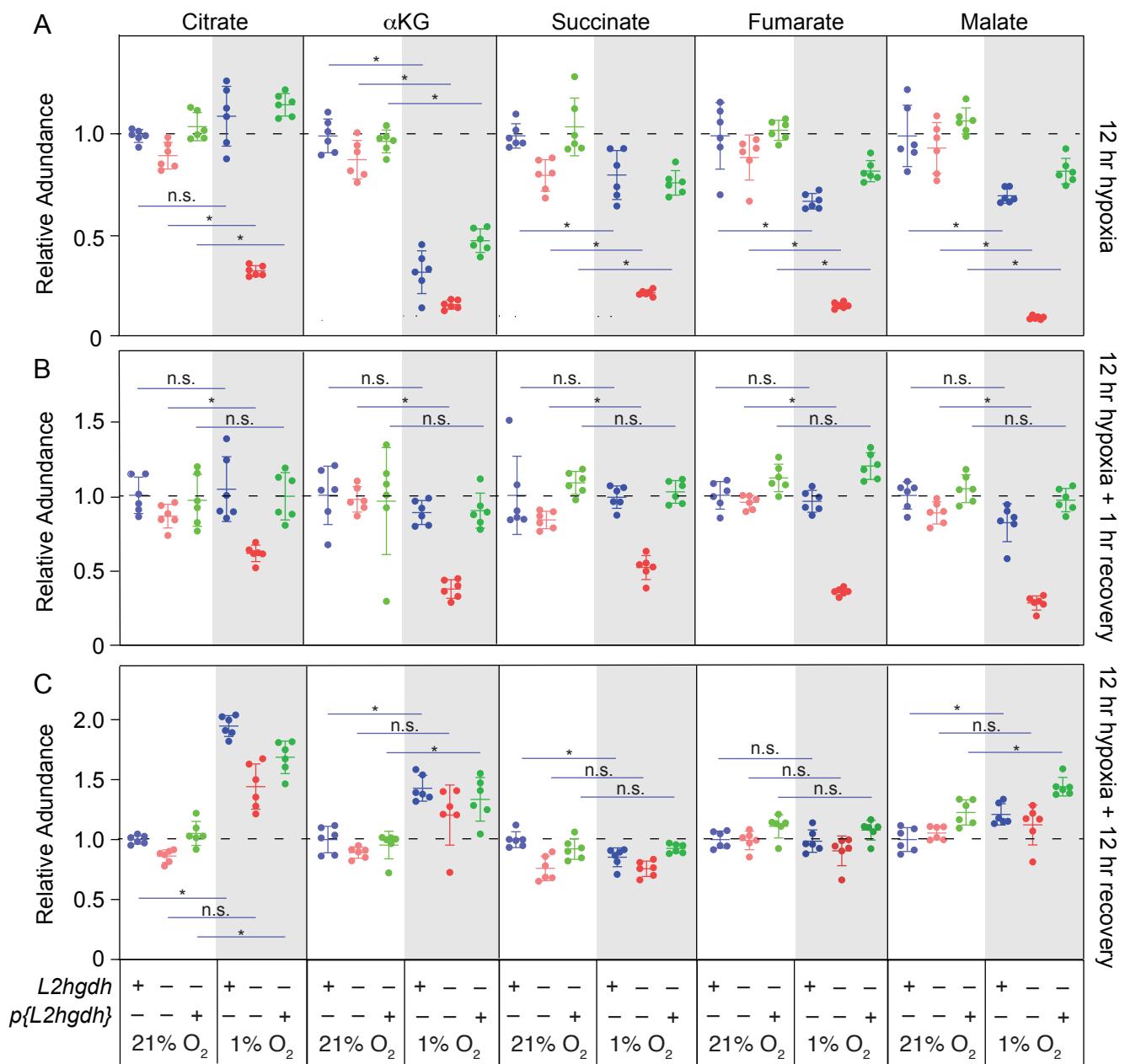


Figure 5

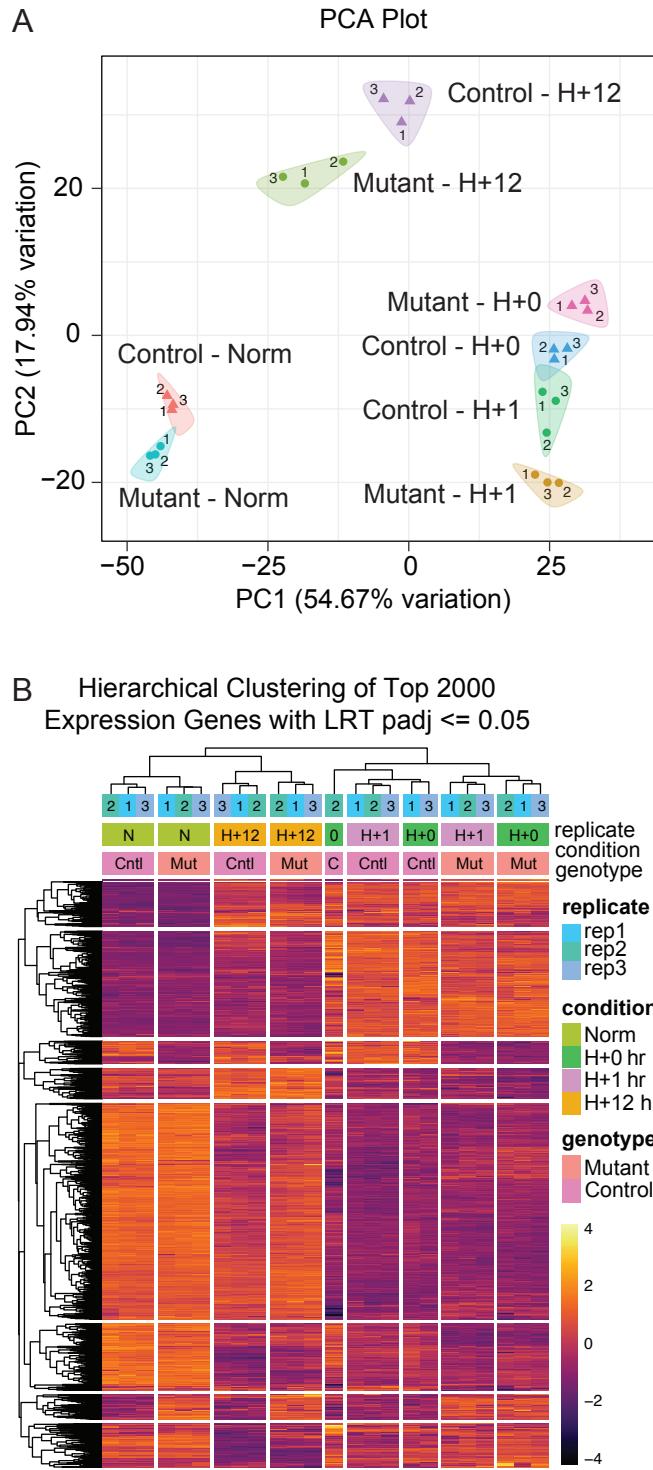


Figure 6

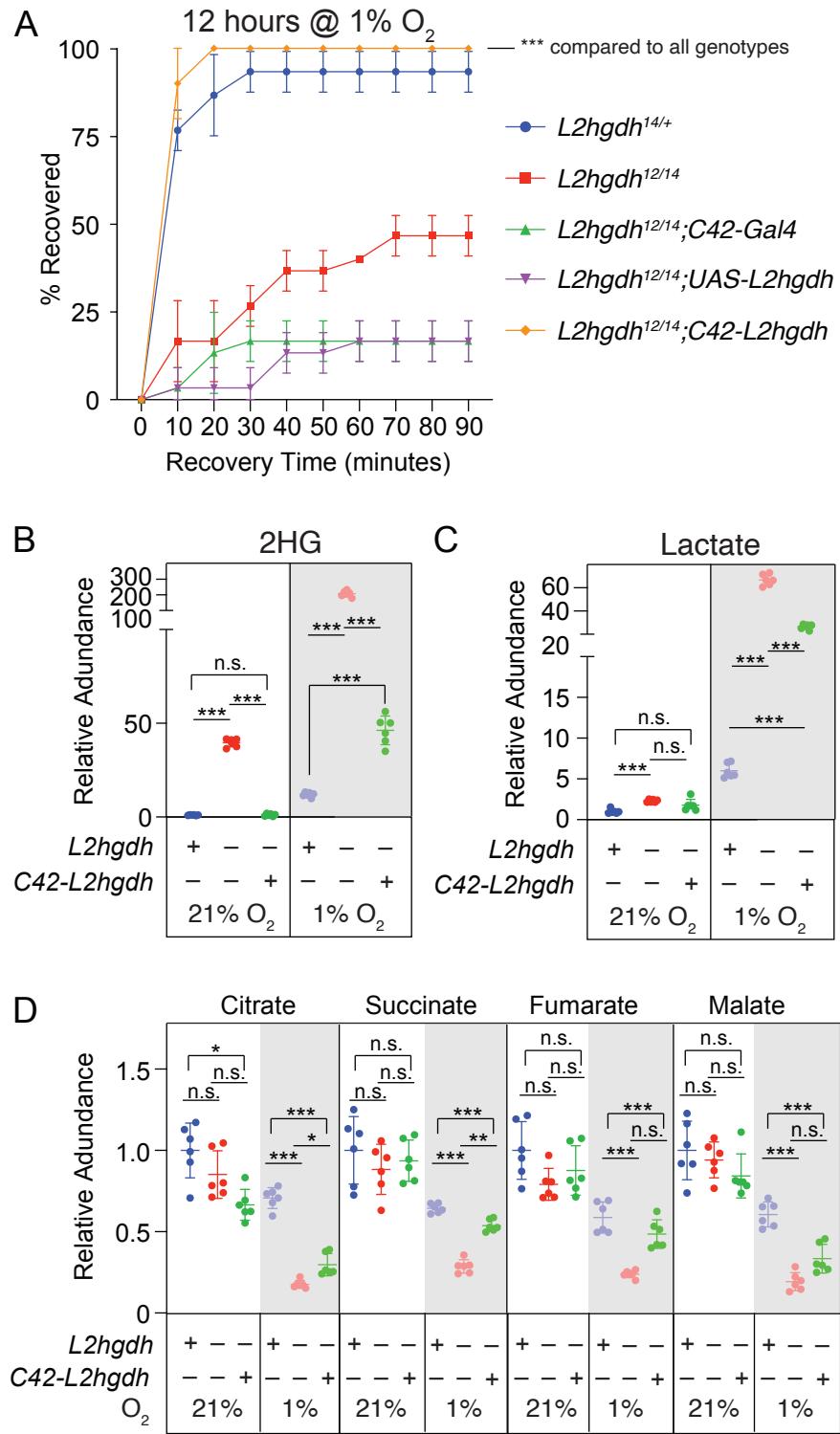


Figure 7

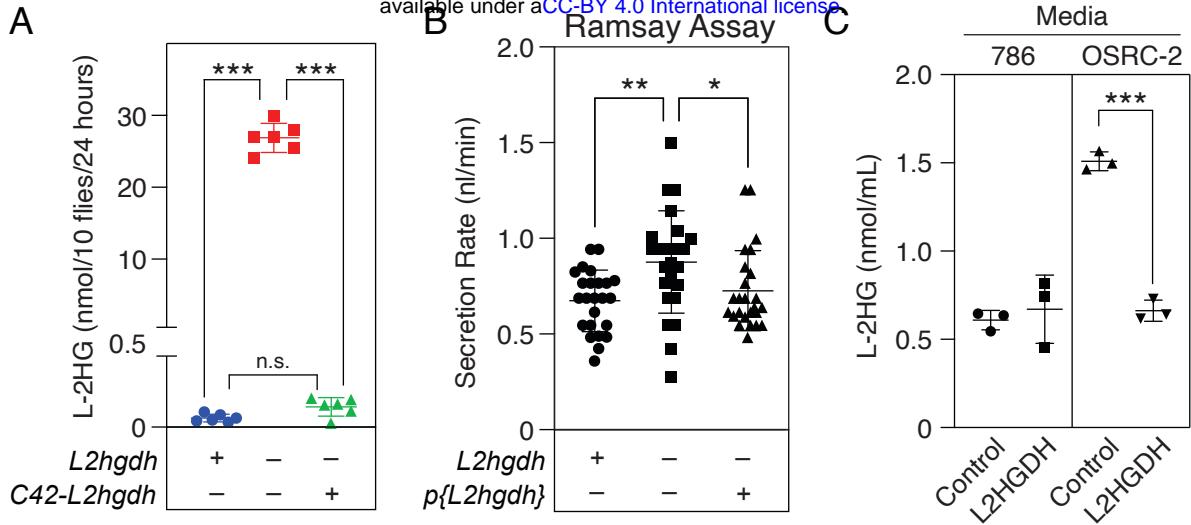


Figure 8

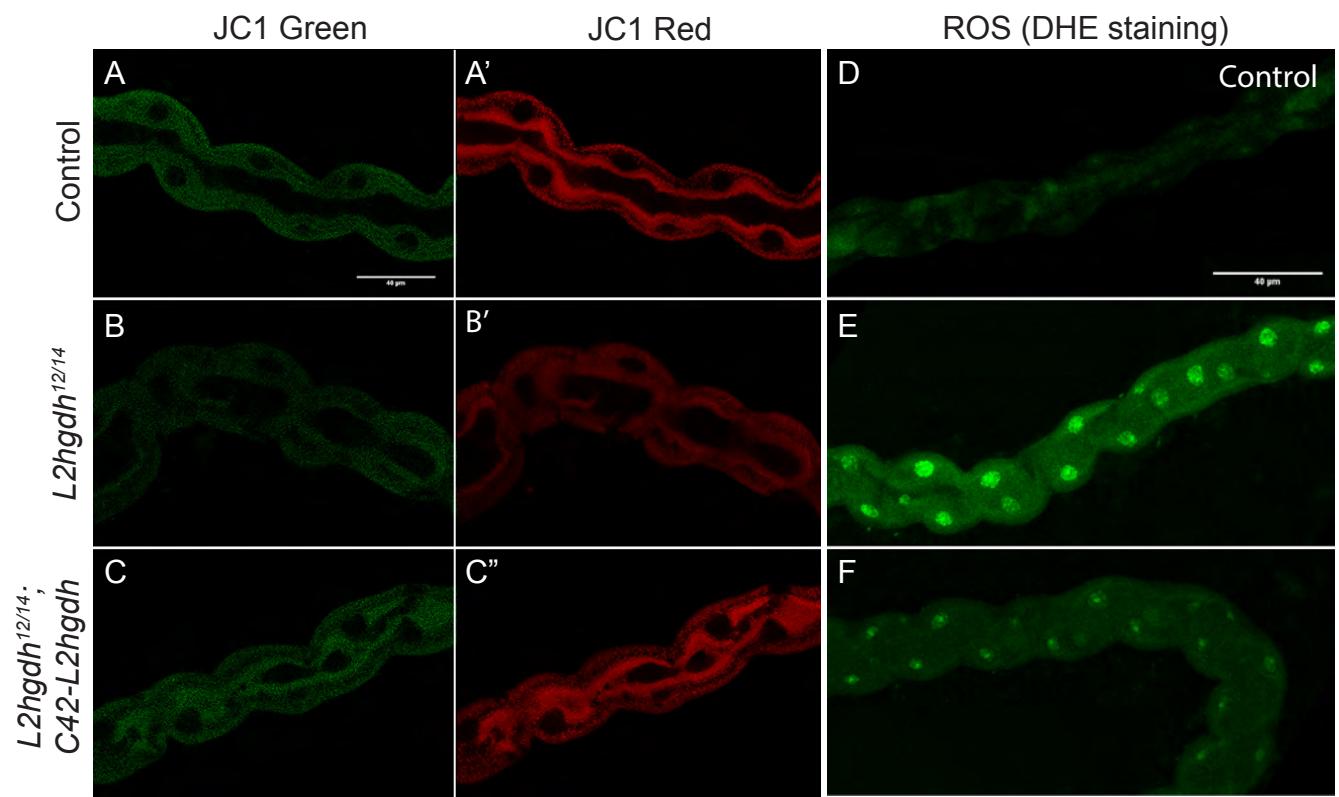


Figure 9

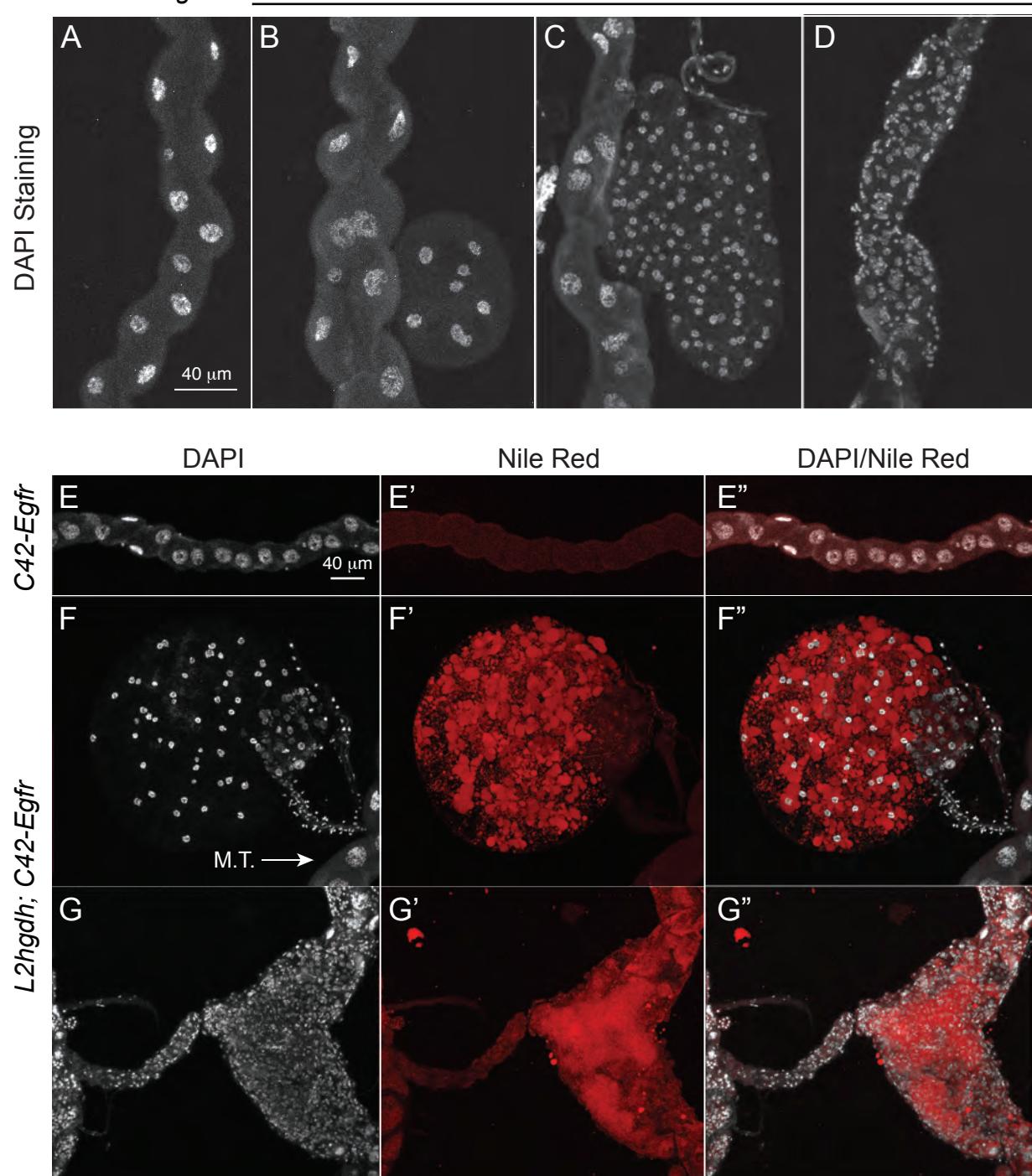


Figure 10