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Abstract

The functional connectome changes with aging. We systematically evaluated
aging related alterations in the functional connectome using a whole-brain
connectome network analysis in 39,675 participants in UK Biobank project. We
used adaptive dense network discovery tools to identify networks directly
associated with aging from resting-state fMRI data. We replicated our findings in
499 participants from the Lifespan Human Connectome Project in Aging study.
The results consistently revealed two motor-related subnetworks (both
permutation test p-values <0.001) that showed a decline in resting-state
functional connectivity (rsFC) with increasing age. The first network primarily
comprises sensorimotor and dorsal/ventral attention regions from precentral
gyrus, postcentral gyrus, superior temporal gyrus, and insular gyrus, while the
second network is exclusively composed of basal ganglia regions, namely the
caudate, putamen, and globus pallidus. Path analysis indicates that white matter
fractional anisotropy mediates 19.6% (p<0.001, 95% CI [7.6% 36.0%]) and
11.5% (p<0.001, 95% CI [6.3% 17.0%]) of the age-related decrease in both
networks, respectively. The total volume of white matter hyperintensity mediates
32.1% (p<0.001, 95% CI [16.8% 53.0%]) of the aging-related effect on rsFC in
the first subnetwork.
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1 Introduction

Age affects the intrinsic organization of the brain (Damoiseaux, 2017). The
alterations in functional and structural connectivity are often linked to upstream
and downstream disease processes in major neurodegenerative illnesses
(Pievani et al., 2014). Functional connectivity (FC) refers to the temporal
correlations in neural activity between brain regions, relying on the underlying
anatomical connections established by structural connectivity and providing
insights into the integration of brain networks (E. Bullmore & Sporns, 2009;
Friston et al., 1993). It is hypothesized that functional brain organization changes
precede the structural changes (Jack et al., 2010). Therefore, understanding the
pattern of FC change in aging may help identify biomarkers for tracking early
disease progression and informing interventions for cognitive health. Among the
functional neuroimaging techniques that allow researchers to study human brains
in vivo, resting-state functional magnetic resonance imaging (rfMRI) has become
a widely used tool due to the discovery of the blood oxygen level-dependent
(BOLD) signal, which measures temporal correlations across different brain
regions and are robustly correlated during the resting state, hence enabling non-
invasive mapping of functional organization of human brains in the absence of
specific tasks or stimuli (Attwell et al., 2010; Biswal et al., 1995; Fox & Raichle,
2007; Logothetis, 2002).

Previous rfMRI studies show an overall picture of age-related reduction of
resting-state functional connectivity (rsFC) within a few higher-order brain
networks, including the default mode network (DMN), salience network (SN),
cognitive control network (CCN), and dorsal attention network (DAN) (Andrews-
Hanna et al., 2007; Damoiseaux et al., 2008; Ferreira et al., 2016; Ferreira &
Busatto, 2013; Geerligs et al., 2015; Grady et al., 2016; Ng et al., 2016;
Zonneveld et al., 2019). Interestingly, increase of rsFC between networks and
decreased segregation with advancing age were also commonly
reported(Andrews-Hanna et al., 2007; Chan et al., 2014; Ferreira et al., 2016;
Geerligs et al., 2015; Grady et al., 2016). Meanwhile, motor and subcortical
networks showed more conflicting results (Deery et al., 2023; Ferreira & Busatto,
2013). Some evidence showed that the FC within sensorimotor or somatomotor
network declines with aging (Bernard et al., 2013; Jockwitz & Caspers, 2021;
Zonneveld et al., 2019); some, on the other hand, indicated an increase within
these regions or no significant changes (Cao et al., 2014; Geerligs et al., 2015;
King et al., 2018; Song et al., 2014). The age-related alterations in rsFC, both
within and between networks, have been observed in studies related to cognitive
performance (e.g., conditions marked by cognitive decline such as Alzheimer’'s
disease) and motor ability (Andrews-Hanna et al., 2007; Ferreira & Busatto,
2013; Lin et al., 2018; Szewczyk-Krolikowski et al., 2014; Yoshimura et al.,
2020). Additionally, some investigations have showcased the promising prospect
of predicting cognitive capabilities through comprehensive whole-brain FC (Finn
et al., 2015; Rosenberg et al., 2016; Shen et al., 2017). Therefore, elucidating the
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systematic age-related rsFC changes could offer exciting opportunities for
understanding the neural processes underlying the decline in both cognitive and
motor performance observed during the natural aging trajectory.

Network analysis of age-related rsFC is commonly used to study the complex
connectome variables. Existing studies typically adopted predefined functional
networks (Nichols et al., 2017; Yeo et al., 2011) to examine the impact of aging
on FC. However, connections that show aging effects may not be fully
constrained within a predefined functional network. In practice, age-related edges
(i.e., functional connections between brain region pairs) often involve nodes (i.e.,
brain regions) from two distinct predefined functional networks. The age-related
edges may also consolidate into previously unknown and age-related
subnetworks. Therefore, relying solely on predefined networks to study the age
effect could consequently lead to increased risks of i) low sensitivity and inflated
type Il error by missing age-related edges not in predefined networks; and ii)
increased false positive findings by claiming that a predefined network is age-
related when only a small proportion of intra-network edges are age-related.

To address this challenge, we combine data-driven network analysis with
predefined networks to investigate age-related connectome patterns. We first
employ data-driven network analysis methods to examine whether age
influences any rsFC edges and whether the rsFC edges with age-related
differences can consolidate into organized dense subnetworks (Bullmore &
Bassett, 2011; Wu et al., 2022). We define an age-related subnetwork as dense
when the proportion of age-related intra-network connections (i.e., network
density) is high (Tsourakakis et al., 2013). Since age-related subnetworks
extracted by data-driven methods are not constrained by predefined networks,
they may consist of brain regions from multiple predefined networks. Therefore,
we further identify (parts of) predefined networks corresponding to each age-
related subnetwork extracted through data-driven network analysis. This
approach enables us to simultaneously: i) improve sensitivity by capturing age-
related edges from both inter- and intra-predefined networks; ii) reduce the false
positive error rate through shrinkage (i.e., densification); and iii) yield
interpretable network findings by linking with predefined networks. The probability
of a data-driven age-related subnetwork being false positive is exponentially
determined by its size and density. The probability approaches zero for a
subnetwork of 10 nodes and a density of 50% (Chen et al., 2023). However,
interpreting data-driven age-related subnetworks may not be straightforward as
they can consist of nodes from multiple networks. Hence, identifying predefined
subnetworks within each data-driven network can assist understanding the
systematic effects of aging.

In the present study, we investigated age-related rsFC differences across the

entire brain leveraging a large sample, the UK Biobank (UKB) cohort (Sudlow et
al., 2015) (n=39,675). We modeled the relationship between measured rsFC and
age, and then adopted an adaptive dense subnetwork extraction procedure to to
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maximize the coverage of age-related rsFC edges throughout the entire brain
within subnetworks predominantly composed of these edges (Tsourakakis et al.,
2013; Wu et al., 2022) (see Figure 1A). Extracted subnetworks were mapped
onto Yeo's 7 resting-state networks for functional interpretation (Yeo et al., 2011).
To ensure reproducibility, we further replicated the analysis with an independent
validation sample that includes 499 participants from the Lifespan Human
Connectome Project in Aging (HCP-A) cohort (Bookheimer et al., 2019). The
utilization of two large population-based samples provides compelling evidence
for the robustness of the findings.

(a) Network analysis (b) Study samples
Step1: Regression analysis
NXN FC matrices NXN inference matrix UKE HCP-A
I am
waa
I All subjects with All subjects free of
i available rfMRI data that cognitive impairment with
passed suromated QC, available fMRI cata.
n=40.923 ) n=725
Step2: Age-related
subnetwork detection Excludad: individuals Excluded: irdividusls
diagnosed with demertia, 5 who did not pass
Subnetwork, Erain diseases, brain imaging data quality
injuries, or mental illnesses, contral (n=226)
E Subnetwork, n-1.296
N,
Submetworks
Identify significant subnetworks i ” X
b inal sample, Final sample,
based on test statistics. n=39.627 0
Step4: Map to predefined functional
networks

Figure 1. Study design and cohort flow chart. Panel (a) illustrates the data-
driven network analysis design in this study. Panel (b) presents the cohort
inclusion flowchart.

2 Methods

2.1 Study samples

We utilized two independent population-based cohorts. The first cohort is the UK
Biobank (Sudlow et al., 2015) (UKB, http://www.ukbiobank.ac.uk/), a large
prospective study with approximately 500k participants aged 40-69 years at
recruitment between 2006-2010 across 22 assessment centers in the UK. Ethical
approval for the UKB study was obtained from the National Information
Governance Board for Health and Social Care and the National Health Service
North West Multicenter Research Ethics Committee (REC reference
21/NW/0157). Written informed consent was obtained from all UKB participants.
A total of ~100k participants underwent brain magnetic resonance imaging (MRI)
assessments(Alfaro-Almagro et al., 2018; Miller et al., 2016). In our analysis, we
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utilized resting-state functional MRI (rfMRI) data from the v1.8 December 2020
release that measured ~43k participants starting from 2014. The second cohort
that served as the validation set is the Lifespan Human Connectome Project in
Aging (Bookheimer et al., 2019) (HCP-A,
https://www.humanconnectome.org/study/hcp-lifespan-aging). HCP-A is a large
sample comprising approximately 1,200 healthy adults aged 36-100+ years,
providing extensive data on structural and functional connectivity, with a specific
focus on factors influenced by advanced aging. For our study, we utilized the
HCP-A rfMRI data from the 2.0 release, consisting of 725 subjects who
underwent imaging assessment sessions starting from 2019.

To specifically investigate the effects of aging, participants in the UKB cohort with
various forms of dementia, brain diseases, brain injuries, and mental illnesses
(n=1,248) were excluded based on ICD-10 codes (refer to Table S1 in the
supplementary material for the complete list of excluded conditions). The initial
HCP-A cohort consisted of individuals who had not been diagnosed with
pathological causes of cognitive decline, and consequently, no exclusion criteria
were applied. Figure 1B shows the cohort flowchart.

2.2 rfMRI preprocessing

The details of UKB rfMRI data acquisition parameters and artefact removal
procedures were described in Sl.1 in the supplementary material and elsewhere
(Alfaro-Almagro et al., 2018). The downloaded pre-processed rfMRI data were
registered to a 2mm MNI152-template (Grabner et al., 2006) using FSL (the
FMRIB Software Library) (Jenkinson et al., 2012), in order to normalize the brain
images to a standard space and discard non-brain regions. We then used AFNI
(Analysis of Functional Neurolmages) (Cox & Hyde, 1997) to extract time series
from the normalized rfMRI data for each of 246 ROIs based on The Human
Brainnetome Atlas (Fan et al., 2016).

For HCP-A, we aligned the preprocessed rfMRI data across subjects using
MSMAII multi-modal surface registration, registered the data to a 2mm MNI152-
template using FSL, and extracted time series from 246 Human Brainnetome
ROIls using AFNI. Besides the standard quality control during the HCP-A rfMRI
data acquisition, we further performed quality control after downloading the
preprocessed data and retained a total of 499 participants whose rsFC data had
a low missing ratio and an acceptable variation (refer to SI1.1.4 in the
supplementary material for definition). Missing rsFC data were imputed with the
mean rskFC value.

2.4 Imaging confounding measures

Previous studies have suggested the adjustment of several potential imaging
confounders when conducting research on imaging derived phenotypes (Elliott et
al., 2018). Therefore, we controlled for variables that addressed diverse
dimensions of imaging confounds during the rsfMRI session, which had the
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potential to introduce bias into the imaging outcomes. In the UKB, we included
the following variables as covariates: 1) mean head motion, quantified through
the mean displacement (mm) between consecutive time points across all regions
(data-field 25741); 2) scanner lateral brain position, the X-coordinate (left-right) of
the center of the brain mask within the scanner (data-field 25756); 3) scanner
transverse brain position, the Y-coordinate (front-back) of the back of the brain
mask within the scanner (data-field 25757); 4) scanner longitudinal brain position,
the Z-coordinate of the center of the brain mask within the scanner (data-field
25758); and 5) scanner table position, the Z-coordinate of the coil within the
scanner. The latter four covariates were a set of positioning variables that
accounted for variations in the precise head and coil placement within the
scanner across different scanned individuals.

2.5 Connectivity analysis

Pearson's correlation of the rfMRI timeseries between each pair of the 246
Human Brainnetome Atlas ROIs was used to quantify the rsFC. This resulted in
the quantification of subject-specific rsFC, yielding a total of 30,135 edges for
each subject s, where s = 1, ..., S; with § = 39,675 in UKB and S = 499 in HCP-A.
The rsFC was denoted as a weighted adjacency matrix Y € R¥Y*N  where each
entry Y;; represents the connection strength between the i-th and j-th ROIs. A

graph model ¢ = {V,E} was then adopted to describe the topological structure of
the brain connectome, with V denoting the set of ROIs and E denoting the set of
rsFC edges within and between ROIs. The data-driven brain connectome
analysis involves three main steps: 1) regression analysis on individual rsFC
edges, 2) extraction of subnetworks, and 3) statistical inference on the detected
subnetworks. These analyses are conducted separately for the UKB and HCP-A
cohorts. Lastly, we identified predefined networks within each data-driven
subnetwork.

2.5.1 Regression analysis

In the first step, a generalized matrix response regression model was applied to
the whole-brain connectome matrix Y* € R¥*" to determine the age-associated
changes in each of the FC edges, adjusting for sex and imaging confounding
measures:

g (E(Y5)) = Bos + Buyages + Boyage? + Byysex, + By_gylmgConfounders (1)

where g is the identity link function for continuous connectivity measures and
logistic link function for binary connectivity measures. The mass-univariate
testing thus yielded an N x N weighted inference matrix W associated with 3,
where each element w;; denotes the association of age and FC between the i-th
and j-th ROIs. In addition, the quadratic term of age was included only if it was
statistically significant with a non-trivial effect size (a partial r* of 1%). We used
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both —log,, (pi j) values and t;; statistics to characterize the strength and
magnitude of the associations. For simplicity, we denoted B;; as the regression
coefficient associated with age in the following analysis.

2.5.2 Subnetwork extraction

We performed age-related subnetwork extraction and inference based on dense
subnetwork detection methods developed recently(Chen et al., 2023; Wu et al.,
2022). In these models, we consider edges e;; € E with B;; # 0 primarily
concentrated within dense subgraphs G, ¢ G rather than uniformly distributed
throughout the whole-brain connectome G. Let G, € G denote a subnetwork

comprising |V,| ROIs and |E,| = ("¢') FC edges, such that G, is associated with
ageif P(B; #0|i,j€G,)>»P(B;; #0]|ij¢G. ). These identified subgraphs,
G, signify age-related connectome patterns. Herein, we used adaptive dense

subgraph extraction algorithms(Tsourakakis et al., 2013) to extract G, which is
an estimate of G. from W.

2.5.3 Permutation test

For each extracted age-related subgraph G, we evaluated its statistical
significance through a permutation test with subgraph-tailored test statistics that
control the family-wise error rate(Chen et al., 2023). This procedure was carried
out to derive a p-value for each extracted subnetwork. Specifically, we
randomized the subjects' ages and performed regression as per Equation 1. This
yielded age-related p-values, which together formed the inference matrix WPe™,
After applying the subnetwork extraction algorithm, we designated the test
statistic T, for the k-th iteration of the permutation test as the maximum value of
the test statistics evaluated for each extracted subnetwork, G*"™. Following M
iterations of the permutation test, the p-value associated with G. was
approximated as the percentile rank of T(G, ) within the set Ty, T,, ..., Ty,. For a
more detailed explanation of the test statistics formulation, please refer to
another work (Chen et al., 2023).

2.6 Path analysis

To test if brain white matter microstructure changes or white matter lesion could
explain the age-related rsFC declines, we modeled two paths for each
subnetwork using linear structural equation models: 1) age - white matter FA >
rsFC, 2) age - white matter hyperintensities - rsFC. The FA (UKB data-field
25056) was averaged across the whole-brain for each participant. The total
volume of white matter hyperintensities (UKB data-field 25781) was log-
transformed. rsFC was averaged across each extracted subnetwork. All models
were adjusted for sex.
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To evaluate the influence of age-related declines in functional connectivity on
cognitive functions, we used linear regression to establish the association
between the mean rsFC of both subnetworks and a general cognitive score,
while controlling for age. The general cognitive score represented a latent
construct of general intelligence, capturing approximately 70% of the total
variance across nine cognitive assessments corresponding to seven distinct
domains, namely processing speed, perceptual reasoning, visuospatial learning
and memory, cognitive flexibility, executive function and planning, working
memory, and fluid intelligence. Prior to conducting the analysis, a quality control
procedure was executed on the cognitive data (as detailed in Table S3 in the
supplementary material). Missing data were imputed using the predictive mean
matching (PMM) method. This composite cognitive score serves as a
comprehensive metric for assessing overall cognitive performance.

3 Results

3.1 Participant demographics

The mean age of UKB participants was 63.9 years (range 44-82, standard
deviation [SD] 7.7); in contrast, HCP-A had a lower mean, but wider range of
ages (mean 60.2 years, range 36-100, SD 15.9). In the UKB cohort, 54.4% of
participants were female, while in the HCP-A cohort, the percentage of females
was 58.5%.

3.2 Age-rsFC association

A heterogeneous pattern of age-related rsFC changes throughout the entire brain
was observed (Figure 2). These changes encompassed a mixture of increase
and decrease in rsFC. T-statistics of the aging effect on rsFC in both cohorts
showed a negative-centering and bell-shaped distribution, suggesting a
predominance of age-related decreases rather than increases. The resulting
30,135 t-statistics and —log,, transformed p-values associated with the main
effect of age were formed into a 246 X 246 inference matrices for each of the two
cohorts respectively.

In Figure 2, it appeared that certain latent subnetworks may be systematically
influenced by aging, that is, a significant proportion of intra-network edges shows
aging effects while only a minor fraction of connections beyond the networks are
age-related. Identifying these subnetworks has the potential to enhance our
understanding of how aging impacts the brain's connectome at a network level.
Nevertheless, individual age-related connections alone are insufficient to reveal
these brain subnetworks. Therefore, it is imperative to employ a data-driven
method to extract subnetworks capable of capturing the underlying structure of
age-related differences in rsFC.
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Figure 2. Pattern of age-related rsFC change. The top row shows the
inference matrices of -logio(p-values) indicating the significance of age-
related effects on individual rsFC edges. Higher values (red colors) denote
greater significance. The middle row displays the inference matrices of
t-statistics that represents the effect size and direction of age-related effects on
individual rsFC edges. Negative values (blue colors) indicate age-related
declines; positive values (red colors) mean age-related increases. The third row
demonstrates the distribution of the t-statistics of the effect of aging on all
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individual edges. The prevalence of age-related declines in rsFC shift both
histograms to the left.

3.3 Subnetworks showing aging effects

The clique-forming regions that show age-related decreases were identified
using an adaptive dense subnetwork extraction method (Figure 3). We focused
on characterizing rsFC decreases in the following subnetwork analysis. In UKB,
the first subnetwork (permutation p-value<0.001) consisted of 59 brain regions.
Mapped onto Yeo's 7 resting-state network, the first dense subnetwork contains
31 regions from sensorimotor network and 13 from ventral and dorsal attention
network. The second subnetwork (permutation p-value<0.001) comprised 9 brain
regions exclusively from the basal ganglia. Similarly, in HCP-A, the first
subnetwork (permutation p-value<0.001) contained 55 brain regions, with 27
regions from the sensorimotor network and 24 regions from ventral and dorsal
attention network. The second subnetwork (permutation p-value<0.001) from
HCP-A also consisted of 10 brain regions solely from the basal ganglia. Since the
sample size of HCP-A is smaller, the noise level of statistical inference (e.g., -
logio(p) is higher (Figure 3B).

AL UK BIOBANK (B) HCP-AGING
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Figure 3. Subnetworks of age-related rsFC differences. Figures on the left in
both panels display the dense subnetworks extracted using the data-driven
subnetwork detection method, highlighted with red boxes. Each matrix element is
-logio(p-values) (top left) and corresponding t-statistic (bottom left) obtained from
association analysis between each rsFC edge and age. The top right figures in
both panels represent the mapping of the large sensorimotor-and-attention-
related subnetwork onto Yeo’s 7 resting-state functional networks. The red boxed
regions are the hubs consisting of hypergranular insula and dorsal granular
insula that have decreased rsFC with the all other sensorimotor-and-attention-
related regions in the subnetwork. The bottom right figures in both panels present
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the systematic differences between the t-statistics within and beyond the
extracted subnetworks.

3.3.1 Replicable subnetworks by UKB and HCP-A

The data-driven age-related subnetworks identified in UKB and HCP-A are highly
consistent. The sensorimotor-and-attention-related subnetworks from both
cohorts had an overlap of 40 brain regions. Within the overlap, 24 distinct regions
were ascribed to the sensorimotor network, constituting approximately 73% of all
regions characterized as being pertinent to sensorimotor functions. Anatomically,
this sensorimotor-and-attention-related subnetwork included the majority
(containing = 50% of the total regions in the gyrus) of the precentral gyrus,
postcentral gyrus, superior temporal gyrus, paracentral lobule, and insular gyrus -
remarkably close to the central sulcus. Furthermore, the secondary subnetworks
extracted from both cohorts have an overlap of 9 regions exclusively within the
basal ganglia, encompassing 9 out of the total 12 basal ganglia regions, including
bilateral putamen, bilateral globus pallidus, bilateral dorsal caudate, and left
ventral caudate. The results suggested a systematic age-related decrease in
rsFC within the sensorimotor network, dorsal/ventral attention network, and the
basal ganglia. The full list of brain regions that showed age-related decreases in
rsFC can be found in Table S2 in the supplementary material. Moreover, 4
regions from the insula (bilateral hypergranular insula and bilateral dorsal
granular insula) consistently functioned as a hub in the age-related subnetworks.
These 4 insula regions showed an age-related decreased connection with all
regions from the sensorimotor and dorsal/ventral attention networks (Figure 3).
Figure 4 shows the 3-D axial and sagittal representations of the intersection of
the subnetworks identified from both UKB and HCP-A.
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Figure 4. 3-D representation of the intersection of extracted age-related
connectomic subnetworks. The left row demonstrates the axial and sagittal
view of the intersection of the sensorimotor-and-attention-related subnetwork
extracted using the data-driven method. The right row shows the axial and
sagittal view of the intersection of the basal ganglia subnetwork. Node colors are
labeled by cerebral cortex lobes. The 3-D demonstration of individual extracted
subnetworks from both UKB and HCP-A are displayed in Figure S3 in the
supplementary material.

Additionally, we performed a sensitivity analysis to assess the robustness of the
primary analysis results. We conducted the same set of analyses on the entire
UKB cohort that passed imaging data quality control (n=40,923), regardless of
health status, including participants with neurological diseases, brain injuries, or
mental illnesses (n=1,248) who were excluded from the primary analysis. The
patterns of age-related declines in rsFC showed negligible variations as
compared to the primary result (Figure S2 in the supplementary material). We
also conducted a subgroup analysis based on the biological variable of sex. Our
analysis revealed no systematic differences in the patterns of rsFC changes
between sexes, as illustrated in Figure S1 in the supplementary material.
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3.5 Structural changes related to age-related functional declines by path
analysis

Linear structural equation modeling analysis showed that in the sensorimotor-
and-attention-related subnetwork, 19.6% (p<0.001, 95% CI [7.6% 36.0%]) of the
total effect of aging on rsFC is mediated through FA, while in the basal ganglia
subnetwork, this proportion is 11.5% (p<0.001, 95% CI [6.3% 17.0%)]). Moreover,
in the sensorimotor-and-attention-related subnetwork, a substantial 32.1%
(p<0.001, 95% CI [16.8% 53.0%]) of the aging-related effect on rsFC is mediated
by the total volume of white matter hyperintensities, whereas the mediation effect
of white matter hyperintensities was found to be statistically insignificant in the
basal ganglia subnetwork (model results shown in Figure S4 in the
supplementary material). To further understand how the changes in functional
connectivity may be linked to differences in cognitive functioning, we modeled the
relationship between the average rsFC of each subnetwork and the general
cognitive score. The results showed that one unit decrease of rsFC in the
sensorimotor-and-attention-related subnetwork is associated with 0.38 unit
(p<0.001, 95% CI [0.28 0.49]) decrease of cognitive score, while one unit
decrease of rsFC in the basal ganglia subnetwork is associated with 0.13
(p<0.001, 95% CI [0.06 0.19]) unit decrease of cognitive score.

4 Discussion

In this population-based study, we used rfMRI data from two large independent
cohorts to investigate the brain-wide rsFC showing age-related differences and
extracted functional networks exhibiting heightened susceptibility to the aging
process. We employed a novel data-driven network analysis method to improve
the specificity of predefined network analysis. The neurofunctional findings
provided compelling evidence of a significant decrease in rsFC within the
sensorimotor network and within basal ganglia as age advances. Our findings
were consistent with the consensus in literature that brain networks experience
age-related reorganization changes in modularity (Bassett et al., 2010; Geerligs
et al., 2015; Meunier, Achard, et al., 2009; Meunier, Lambiotte, et al., 2009; Song
et al., 2014). Modularity refers to the organization of brain regions into distinct
modules or communities based on their patterns of connectivity. As the
organization of brain networks shifts with age, pre-defined networks may no
longer accurately describe the dynamic interactions and connectivity patterns
that emerge during the aging process. Therefore, our likelihood-based
community detection algorithm was able to provide a more holistic
characterization of functional reorganization of aging brains based on the latent
pattern. This study contributes empirical evidence that can help reconcile
conflicting findings in the past studies and shed light on the underlying
mechanisms driving the complex relationship between brain function and the
aging process.
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Previous studies reported conflicting results on age-related rsFC changes within
the sensorimotor network(Jockwitz & Caspers, 2021). Some studies showed an
increase of connectivity strength in the sensorimotor regions during aging,
especially the left supplementary motor area (leftSMA)(Cao et al., 2014; Seidler
et al., 2015; Song et al., 2014; Tomasi & Volkow, 2012). In contrast, certain
studies have revealed a notable decline in resting-state functional connectivity
(rsFC) within the sensorimotor network as individuals age. This finding was
observed either across the entirety of the sensorimotor network or specifically
within regions such as the cortico-cerebellar or mid-posterior insula regions that
are part of the sensorimotor network(Bernard et al., 2013; He et al., 2017;
Zonneveld et al., 2019). Additionally, one study reported no changes observed in
rsFC within the somatomotor network(Geerligs et al., 2015). One study found a
slight decrease of rsFC in the sensorimotor network before 80 years old followed
by a slight increase after 80 years old(Farras-Permanyer et al., 2019). The
current controversy regarding how rsFC in sensorimotor changes in the normal
aging process could partly be due to the relatively small sample size of all
existing studies, most of them conducted with 50 to 200 subjects. The largest
study on age-related rsFC alterations to our knowledge was conducted by
Zonneveld et al. with a study sample of 2,878 non-demented subjects(Zonneveld
et al., 2019). Their findings were consistent with our results, indicating a
significantly reduced rsFC in the sensorimotor network at older age. Similarly,
age-related functional changes within the basal ganglia also remain a subject of
knowledge gaps in current literature. Our age-related FC reduction findings was
consistent with a recent large size resting state fMRI study showing age-related
brain entropy increase in the motor cortex (Wang, 2020). Increased entropy
indicates higher randomness of the fMRI time courses, which would lead to
reduced FC. Our result was also consistent with a study that focused on older
adults and revealed a negative association between FC and age(Griffanti et al.,
2018), whereas it contradicted studies that focused on development or the entire
lifespan(Allen et al., 2011; Solé-Padullés et al., 2016). This suggests that the
change of FC within the basal ganglia across the lifespan could be U-shaped
instead of linear.

We observed the wide-spread age-related rsFC decrease between dorsal
granular/hypergranular insula and the rest of the sensorimotor-and-attention-
related subnetwork. Conventionally, insular cytoarchitectonic parcellation is
divided into the posterior granular section, mid dysgranular section, and anterior
agranular section, while the dorsal and posterior part of the insula contains the
highest amount of the granule neurons (Morel et al., 2013; Uddin et al., 2017).
The posterior granular section (including dorsal granular and hypergranular
insula) was found to be functionally connected with the primary and secondary
sensorimotor cortices (Deen et al., 2011). The observed age-related decrease in
functional connection may indicate decreased sensorimotor network integration
and may be linked to declines in motor coordination and cognitive processes
commonly observed in the older adult population. The sensorimotor network
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integration plays a vital role in both regulating motor control and facilitating the
learning process, operating across different levels of the central nervous
system(Schwartz, 2016). Research demonstrated that changes in sensorimotor
function at the cortical level due to aging were linked to shifts in rsFC rather than
structural modifications, and proposed that heightened rsFC could be indicative
of improved sensorimotor function, exemplified by enhanced performance in arm-
reaching tests measuring gap-detection ability(Yoshimura et al., 2020).
Additionally, substantial evidence showed that altered sensorimotor integration is
associated with the pathophysiology of neurological disorders and movement-
related conditions(Dietz & Sinkjaer, 2007; Patel et al., 2014). For example,
decreased functional connectivity within the sensorimotor network was found in
Parkinson’s disease(Caspers et al., 2021), reinforcing the significance of intact
sensorimotor integration for normal motor function and cognitive processes.
Interestingly, sensorimotor attenuation, which refers to reduced brain responses
to self-movement compared with external stimuli(Weiskrantz et al., 1971), is not
only prevalent in the older adult population but also increases with age(Wolpe et
al., 2016). The escalating sensorimotor attenuation with age suggests that the
neural circuits responsible for self-generated movement perception become less
robust, which may in turn lead to a weakening of the synchronized neural activity
and connectivity, contributing to the age-related decline in rsFC within the
sensorimotor region. This intricate relationship underscores the complex interplay
between age-related changes in neural processing, self-perception, and
connectivity alterations, collectively shaping the motor and cognitive changes
observed in older adults.

The basal ganglia also harbor nuclei responsible primarily for modulating motor
control, as well as learning, executive functions, and emotions. Functional
connectivity within the basal ganglia has been reported to be associated with
many pathological changes and motor functional changes. Just as observed in
the sensorimotor network, individuals diagnosed with Parkinson's disease
exhibited reduced rsFC within the basal ganglia when compared to the control
group(Szewczyk-Krolikowski et al., 2014; Tan et al., 2015). The age-related
reduction in rsFC might represent a vulnerability or predisposition to such
disorders. Specifically, our study revealed a decrease in rsFC within bilateral
putamen-caudate and bilateral globus pallidus in the aging process, but no
change was observed in bilateral nucleus accumbens. The absence of
observable changes in the nucleus accumbens raises intriguing questions about
the differential effects of aging on distinct components of the basal ganglia
network. The nucleus accumbens, a key component of the ventral striatum, is
recognized for its involvement in reward processing, motivation, and
reinforcement learning(Shirayama & Chaki, 2006). The lack of observable
changes could reflect the unique functional role of the nucleus accumbens
compared to other basal ganglia nuclei. The nucleus accumbens is particularly
linked to motivational processes and the integration of reward-related
information, while the other basal ganglia nuclei, such as the putamen and
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globus pallidus, are primarily involved in motor control and cognitive functions.
The nucleus accumbens' involvement in reward processing and socioemotional
functions could render it less sensitive to the same patterns of connectivity
alterations observed in other components of the basal ganglia network. Future
research incorporating a multimodal approach and task-based connectivity
analysis could provide deeper insights into the distinct effects of aging on various
components of the basal ganglia.

The path analysis revealed that in the subnetwork with sensorimotor-related
regions, both white matter FA and white matter hyperintensities mediate aging's
impact on the functional connectome. The results suggested that the age-related
changes in functional connectivity within sensorimotor regions are influenced by
a combination of microstructural white matter changes and the burden of white
matter hyperintensities, which are often associated with small vessel
disease(Kynast et al., 2018). However, in the subnetwork exclusively composed
of basal ganglia regions, FA mediates the age-related decline in rsFC, whereas
white matter hyperintensities do not. This could imply a specialization in the
aging process for different brain regions. The sensorimotor-related regions might
be more vulnerable to vascular burden (white matter hyperintensities). In
contrast, the basal ganglia regions could have a different response to aging,
where microstructural changes in the white matter are more important
determinants of functional decline. Additionally, the impact of these two
subnetworks on cognitive outcomes appears to be quite different, with the first
network having a threefold greater effect on cognitive performance compared to
the second network. It's possible that changes in the sensorimotor network have
broader implications for general cognitive function because these regions play a
fundamental role in various motor and sensory processes, which, in turn, are
essential for cognitive tasks and overall cognitive health. These path analysis
findings highlight the region-specific nature of aging effects in the brain.

Replicable findings between UKB and HCP. The age-related rsFC patterns
identified in the UK Biobank (UKB) data were highly replicable in the HCP-A
dataset. This high level of replicability stems from recent advancements in
imaging acquisition, preprocessing, quality control, and analytical techniques.
Under the multiple testing setting, our data-driven network analysis applied [,
shrinkage to age-related connections in subnetworks, which improved sensitivity
and reduced false positive rate in both the UKB and HCP-A datasets resulted in
a substantial overlap in findings. The probability for the overlapped findings being
false positive (e.g., random noise) in both datasets is < 1071¢ .

Compared to existing studies, our present study mainly demonstrated two
strengths that significantly contributed to its robustness and scientific value.
Firstly, we used a large sample and validated our findings with an independent
large cohort, which enhanced the study's statistical power and increases the
generalizability of the findings. Secondly, the study utilized data-driven
subnetwork extraction algorithm to enhance the findings from pre-defined
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network analysis. Age-related changes in rsFC were largely heterogeneous in
pre-defined networks, challenging the sufficiency of using average results across
the pre-defined networks to draw conclusions, possibly reflecting how networks
change with age. Therefore, our methodological choice was advantageous as it
allowed for novel identification of specific age-related functional subnetworks
based on latent structures present within the data itself. This data-driven
approach is particularly valuable in complex systems like the brain, where pre-
defined networks may not fully capture the intricacies of functional changes.

In summary, using two large independent samples and a data-driven subnetwork
detection method, we found that the rsFC of motor-related networks, including
the sensorimotor network and the basal ganglia network, could serve as reliable
biomarkers for the aging process. These findings underscore the potential of
using these networks as early indicators of age-related cognitive and motor
decline. This speculation not only provides insight into the intricacies of neural
aging but may also pave the way for developing diagnostic tools and
interventions aimed at mitigating the impact of age-related motor function
changes.

Data and Code Availability
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(https://www.ukbiobank.ac.uk/) and the Lifespan Human Connectome Project in
Aging study (https://www.humanconnectome.org/study/hcp-lifespan-aging). The
code will be made publicly available on GitHub.
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