

1 **Microbial education plays a crucial role in harnessing the**
2 **beneficial properties of microbiota for infectious disease**
3 **protection in *Crassostrea gigas***

4 **Luc Dantan^{1*}, Prunelle Carcassonne¹, Lionel Déremont², Benjamin Morga², Marie-**
5 **Agnès Travers³, Bruno Petton⁴, Mickael Mege², Elise Maurouard², Jean-François**
6 **Allienne¹, Gaëlle Courtay³, Océane Romatif³, Juliette Pouzadoux³, Raphaël Lami⁵,**
7 **Laurent Intertaglia⁶, Yannick Gueguen⁷, Jeremie Vidal-Dupiol³, Eve Toulza¹, Céline**
8 **Cosseau^{1*}**

9 ¹ IHPE, Univ. Montpellier, CNRS, IFREMER, Univ. Perpignan Via Domitia, Perpignan,
10 France

11 ² Ifremer, ASIM, F- 17390 La Tremblade, France

12 ³ IHPE, Univ. Montpellier, CNRS, IFREMER, Univ. Perpignan Via Domitia, Montpellier,
13 France

14 ⁴ Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France

15 ⁵ Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes,
16 Observatoire Océanologique de Banyuls-sur-Mer, Avenue Pierre Fabre, 66650, Banyuls-sur-
17 Mer, France

18 ⁶ Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650
19 Banyuls-sur-mer, France

20 ⁷ MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France

21 *Corresponding authors

22 luc.dantan@gmail.com

23 celine.cosseau@univ-perp.fr

24 Abstract

25 Background: Recently, the frequency and severity of marine diseases have increased in
26 association with global changes, and molluscs of economic interest are particularly concerned.
27 Among them, the Pacific oyster (*Crassostrea gigas*) production faces challenges from several
28 diseases such as the Pacific Oyster Mortality Syndrome (POMS) or vibriosis. Various strategies
29 such as genetic selection or immune priming have been developed to fight some of these
30 infectious diseases. The microbial education, which consist of exposing the host immune
31 system to beneficial microorganisms during early life stages is a promising approach against
32 diseases. This study explores the concept of microbial education using controlled and pathogen-
33 free bacterial communities and assesses its protective effects against POMS and *Vibrio*
34 *aestuarianus* infections, highlighting potential applications in oyster production.

35 Results: We demonstrate that it is possible to educate the oyster immune system by adding
36 microorganisms during the larval stage. Adding culture based bacterial mixes to larvae protects
37 only against the POMS disease while adding whole microbial communities from oyster donors
38 protects against both POMS and vibriosis. The efficiency of the immune protection depends
39 both on oyster origin and on the composition of the bacterial mixes used for exposure. No
40 preferential protection was observed when the oysters were stimulated with their sympatric
41 strains. We further show that the added bacteria were not maintained in the oyster microbiota
42 after the exposure, but this bacterial addition induced long term changes in the microbiota
43 composition and oyster immune gene expression.

44 Conclusion: Our study reveals successful immune system education of oysters by introducing
45 beneficial micro-organisms during the larval stage. We improved the long-term resistance of
46 oysters against critical diseases (POMS disease and *Vibrio aestuarianus* infections)
47 highlighting the potential of microbial education in aquaculture.

48

49 Key words:

50 *Crassostrea gigas*; Microbial education; Oyster holobiont; OsHV-1 μVar; *Vibrio aestuarianus*

51 **Introduction:**

52 The Pacific oyster *Crassostrea gigas* (also known as *Magallana gigas*) stands as the most
53 widely cultivated oyster species in the world, underpinning a substantial proportion of the
54 aquaculture industry (Food and Agriculture Organisation 2022). However, the production of *C.*
55 *gigas* faces significant challenges due to recurring infectious diseases, inflicting high
56 mortalities each year (Friedman et al. 2005; Cotter et al. 2010; Pernet et al. 2012; Azéma et al.
57 2015). Two prevalent infections - the Pacific Oyster Mortality Syndrome (POMS) caused by
58 the Ostreid herpesvirus type 1 μVariant (OsHV-1 μVar) and vibriosis initiated by *Vibrio*
59 *aestuarianus* infection - are primarily responsible for these alarming mortalities. POMS is a
60 complex and polymicrobial disease which preferentially affects younger oysters and can
61 decimate up to 100% of the spat in French farms (Segarra et al. 2010; Petton et al. 2021). The
62 infection by OsHV-1 μVar marks a critical step in the progression of POMS, inducing an
63 immunocompromised state in oysters by altering haemocytes physiology (de Lorgeril et al.
64 2018; Petton et al. 2021). This leads to a dysbiosis of oyster microbiota and results in
65 colonisation by opportunistic bacteria and death of the oyster (de Lorgeril et al. 2018; King et
66 al. 2019a; Petton et al. 2021). On the other hand, *V. aestuarianus* is another harmful primary
67 pathogen with chronic mortality reaching a cumulative mortality rate up to 30%. This loss
68 induces important economic consequences since it preferentially infects market size oysters
69 which have been raised for several years (Azéma et al. 2017; Lupo et al. 2019).

70 Efforts to combat these infectious diseases have spawned various approaches based on the
71 increasing knowledge and resources available on oysters. Genetic selection is a promising
72 avenue which aims at selecting pathogen-resistant oysters (Dégremont et al. 2015, 2020).
73 However, this approach exhibits limitations such as the potential selection of trade-offs which
74 could counter select traits important for the commercial value of *C. gigas*. Moreover, the
75 demonstration of the existence of immune priming in *C. gigas* has opened up a whole new field
76 of applications based on the use of viral mimics (Lafont et al. 2017, 2020; de Kantzow et al.
77 2023; Montagnani et al. 2024). However, this innovative approach only protects against POMS
78 infections (Green and Montagnani 2013; Lafont et al. 2017). A diversity of studies on oyster-
79 microbiota interactions have also opened a new field of investigations consisting in identifying
80 bacteria beneficial for their associated host during adverse conditions (King et al. 2019a;
81 Clerissi et al. 2020; Delisle et al. 2022; Fallet et al. 2022). Research on disease prevention in
82 molluscs based on the use of probiotics has been ongoing for decades but has yet to see
83 widespread applications in farms (Yeh et al. 2020; Takyi et al. 2023, 2024; Muñoz-Cerro et al.

84 2024). While several pre/probiotic-based methods to mitigate infectious diseases have
85 demonstrated success in shrimp hatcheries (Swain et al. 2009; Pham et al. 2014; Wen et al.
86 2014), their application in oyster farming, particularly in open-sea environments, faces distinct
87 challenges and limitations. Oysters, as filter-feeding organisms, often face complex microbial
88 interactions in their natural habitats (Lokmer et al. 2016). Consequently, achieving and
89 maintaining a precise balance of beneficial microorganisms through probiotics addition can be
90 challenging. Additionally, their culture in open-sea present limitations in the implementation
91 of probiotics.

92 The concept of microbial education, consists in exposing the host immune system to beneficial
93 microorganisms during early development (Arrieta et al. 2014; Gensollen et al. 2016). This is
94 because early life stages represent critical periods of growth and development where the host's
95 immune system is still maturing (Renz et al. 2017). This strategy offers significant advantages
96 on oysters, as it can confer a protective effect while allowing exposure in hatchery during the
97 larval phase in controlled environments (Dantan et al. 2024). Numerous studies have shown
98 that a proper host-microbiota interaction during the early development plays an important role
99 in the long term host immune responses in a wide range of marine organisms (Chung et al.
100 2012; Galindo-Villegas et al. 2012; Abt and Artis 2013; Sommer and Bäckhed 2013). In this
101 context, Fallet and colleagues (Fallet et al. 2022) explored the potential of using wild-
102 microbiota to educate the immune system of *C. gigas*. Through a ten-day exposure of *C. gigas*
103 larvae to a whole microbiota from donor oysters, they induced a long-term beneficial effect.
104 The microbiota-exposed oysters exhibited enhanced resistance to OsHV-1 μVar, resulting in
105 improved survival rates compared to non-exposed counterparts. This study underscored the
106 crucial role of microbiota on oyster immune system education, suggesting potential applications
107 in commercial hatcheries. However, concerns regarding exposure to hazardous uncontrolled
108 microbial communities transferred from donor oysters necessitate a cautious approach as it
109 might contain primary or opportunistic pathogens. Indeed, prior to the recipient larvae exposure
110 performed in Fallet *et al.* study, the donor oysters were placed in farming area during a non-
111 infectious period to allow oysters to capture the maximum diversity of field microorganisms.
112 Then, these donor oysters were placed in the rearing tanks during larval development where
113 they transmitted their highly diverse microbial community to the recipient larvae. Although the
114 donor oysters were considered healthy (Le Roux et al. 2016; Fleury et al. 2020), the presence
115 of undetectable pathogens cannot entirely be excluded

116 Here, our study aimed to explore the feasibility of microbial education in oyster larvae while
117 considering and mitigating the risks associated with uncontrolled transfer of hazardous
118 microorganisms found in wild-microbiota. We investigated whether exposing oyster larvae to
119 a controlled, pathogen-free bacterial community from donor oysters that had always been
120 maintained in biosecured facilities could confer the protective effects against POMS and *V.*
121 *aestuarianus* infection. Additionally, we examined the feasibility of microbial education using
122 a reduced synthetic bacterial community composed of cultivable bacteria isolated from disease
123 resistant oysters. For this purpose, we developed and tested multi-strain bacterial mixes
124 originating from the same geographical areas as the recipient oyster populations used in this
125 study. Our comprehensive assays encompassed three distinct oyster populations from the
126 Atlantic Ocean (Brest bay, La Tremblade in Marennes-Oleron bay, and Arcachon bay) and one
127 from the Mediterranean Sea (Thau lagoon), enabling an in-depth exploration of the potential
128 differential effects of bacterial exposure to either sympatric or allopatric oyster populations.

129

130 **Materials and methods:**

131 **Oyster sampling**

132 Oysters were collected along the French Atlantic coasts, during two different sampling
133 campaigns (in February 2020 and November 2020), while it was only in November 2020 for
134 the Mediterranean site due to covid restrictions arisen earlier in the year. For the Atlantic coast,
135 3 sites were selected: the Brest bay (Brittany, France; lat 48.3349572; long -4.3189134), La
136 Tremblade in Marennes-Oleron bay (Nouvelle-Aquitaine, France; lat 45.8029675; long -
137 1.1534223) and the Arcachon bay (Nouvelle-Aquitaine, France; lat 44.6813750; long -
138 1.1402178). For the Mediterranean coast, the selected site was the Thau lagoon (Occitanie,
139 France; lat 43.39404; long 3.58092). For each site, 5 oysters (average weight = 2.5 g) were
140 randomly sampled. Hence, the sampled oysters were located on sites with a high density of
141 oysters (wild and farmed) and have therefore survived an annual infectious episode of POMS
142 allowing us to assume they were resistant to the disease but also in the window of
143 permissiveness for *Vibrio aestuarianus* infection (Azéma et al. 2016). Based on these facts, we
144 hypothesized that sampling bacteria from these disease-resistant oysters increases the
145 likelihood of isolating beneficial bacteria.

146

147 **Isolation of cultivable bacteria from *Crassostrea gigas***

148 The five disease resistant oysters sampled on each site were carefully brushed and washed to
149 remove the sediments, epiphytes and epibionts present on the shell. The flesh of the animals
150 was then individually crushed with an Ultra-Turrax T25 mixer (5 x 5 sec) in 15 ml falcon tubes.
151 The homogenized tissues were then diluted at 1:10, 1:100 and 1:1000 in sterile artificial
152 seawater. A hundred μ L of each dilution were spread on two Marine Agar (MA) (Marine Agar
153 Difco 2216) plates and incubated at 15°C or 20°C.

154 After a minimum incubation period of 3 days, bacterial colonies were selected according to
155 their morphotypes. A maximum of different morphotypes were selected to maximise the
156 biodiversity in our sampling and isolated by streaking a colony on a new MA plate and purified
157 by two successive subculturing. Then, the pure cultures of individual bacteria were transferred
158 onto Marine Broth (MB) tube (Marine Broth Difco 2216) at 15°C or 20°C and under a constant
159 agitation. After 48h of growth, 500 μ L of these cultures was used for cryopreservation in 35%
160 glycerol (V/V) and put into a -80 °C freezer. About 1 ml of the liquid culture was pelleted for
161 further DNA extraction.

162

163 **DNA extraction and identification of the cultivable bacteria**

164 DNA extraction of the bacterial strains isolated from oysters and cultivated on agar plates was
165 carried with the Wizard® Genomic DNA Purification Kit (Promega) according to the
166 manufacturer instructions. 16S rRNA gene sequencing was performed on these samples to
167 identify each bacterium from the collection. The PCR and 16S rRNA gene sequencing was
168 performed by the Genoscreen sequencing facilities (<http://www.genoscreen.fr/fr/>). Briefly, two
169 pairs of primers P8/PC535 (P8 5'-AGAGTTGATCCTGGCTCAG; PC535 5'-
170 GTATTACCGCGGCTGCTGGCAC) and 338F/1040R (338F 5'-CTCCTACGGGAGGCAG;
171 1040R 5'-GACACGAGCTGACGACA) were used for the PCR to amplify the V1-V3 and V3-
172 V5 of the 16S rRNA gene. PCR products were then purified with Sephadex-G50 gel (GE
173 Healthcare) before analysis into ABI 3730XL capillary sequencer. The resulting sequences
174 were then assembled by using the DNA baser sequence assembly software (v4) (Heracle
175 BioSoft, www.DnaBaser.com) and then added in the Ezbiocloud database (Yoon et al. 2017)
176 in order to identify the taxonomy of the isolated bacteria composing the collection.

177

178 **Larval cytotoxic effect**

179 Two days old larvae (D stage) were distributed in wells of a 6-well plate filled with three ml of
180 sterile seawater at a density of 10 larvae per ml and maintained at a temperature of 20°C and a
181 12:12 day:night photoperiod. Treatment (bacterial challenge with a single bacterial strain) and
182 control (only sterile seawater) was each conducted in duplicate. The bacteria were cultivated
183 from glycerol stock in 10 ml of Marine Broth (MB) for 24h at 20°C and then, 1 ml of each
184 bacterial culture was inoculated into 10 ml fresh MB media and incubated at 20°C under
185 constant agitation. After 48 hours of incubation, the OD₆₀₀ was measured, and the right amount
186 of bacteria was collected before being centrifuged at 4000 rpm for 2 minutes and the supernatant
187 was discarded. The pellets were then resuspended in 10 ml sterile seawater. Larvae were
188 challenged by addition of a target concentration of 10⁷ CFU/ml of each bacterial strain
189 (Multiplicity of infection = 10⁶ bacteria per larvae). Larval mortality was recorded 48h post
190 addition of bacteria by evaluation of active swimming and/or gut and cilia movement under
191 binocular microscope.

192

193 **Multi-strain bacterial mixes preparation for interaction with oysters**

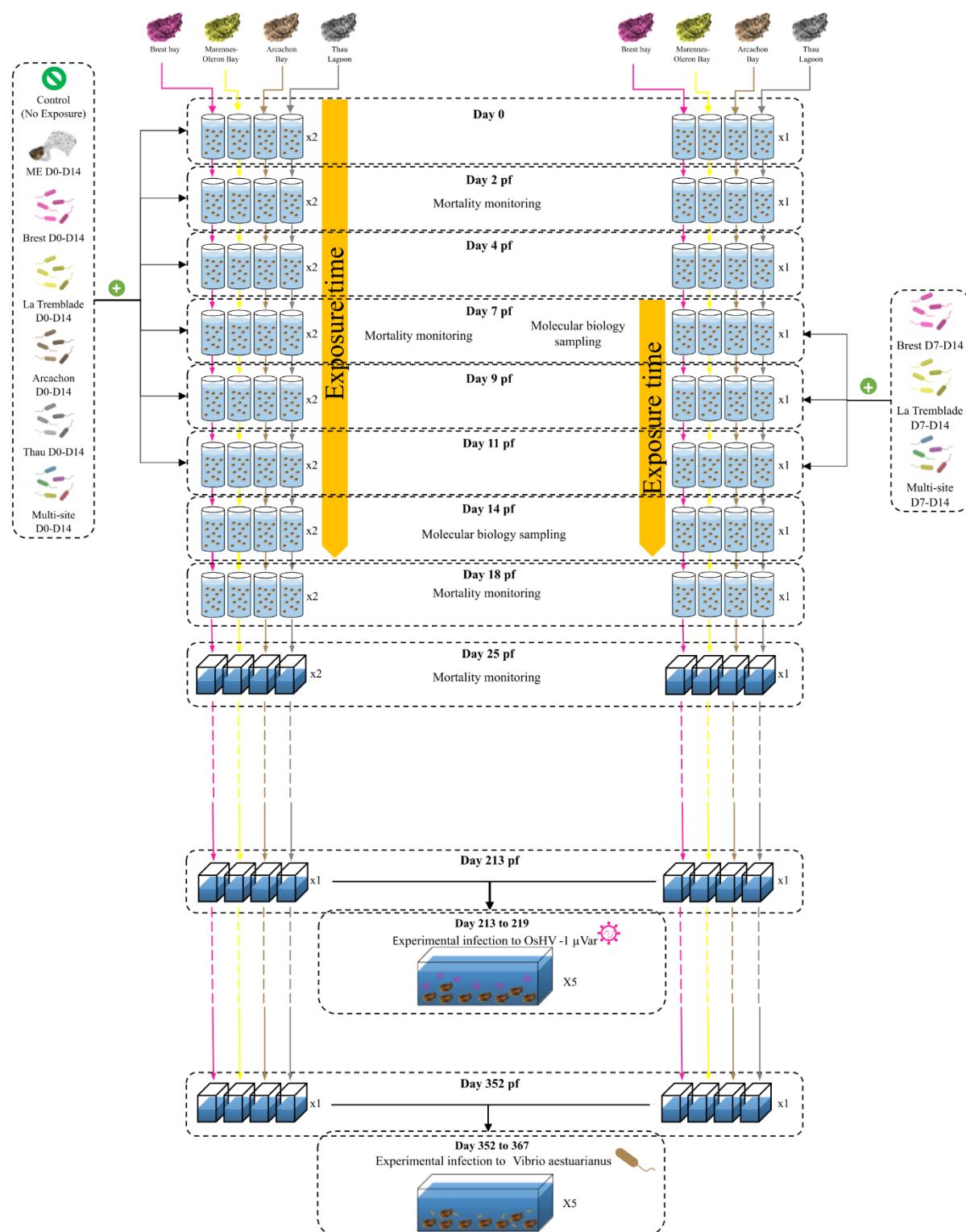
194 Five multi-strain bacterial mixes were tested (**Table 1**): four site-specific multi-strain bacterial
195 mixes composed of bacteria isolated from oysters sampled at each geographical site (Brest mix,
196 La Tremblade mix, Arcachon mix and Thau mix) and a multi-site bacterial composed of
197 bacteria isolated from oysters sampled on all the different sites. The bacteria were cultivated
198 from glycerol stock in 10 ml of Marine Broth (MB) for 24h at 20°C and then, 1 ml of each
199 bacterial culture was inoculated into 50 ml fresh MB media and incubated at 20°C under
200 constant agitation. After 48 hours of incubation, the OD₆₀₀ was measured, and a quantity of
201 3.10⁸ CFU was collected and pooled into a same mix for each cultivated bacterium. The mixes
202 were then centrifuged at 4000 rpm for 2 minutes and the supernatant was discarded. The pellets
203 were then resuspended in 10 ml sterile seawater and added immediately to 30 L larval rearing
204 tanks to a final concentration of 10⁴ CFU/ml for each bacterium.

205

206 **Oyster reproduction**

207 150 wild oysters were randomly sampled from each geographic site as described above (Brest
208 bay, La Tremblade in Marennes-Oleron bay, Arcachon bay, Thau lagoon) in order to generate
209 4 oyster populations (Brest, La Tremblade, Arcachon and Thau populations) accordingly to
210 commercial oyster hatchery practices. Briefly, oyster genitors were transferred into the Ifremer
211 hatchery facility in La Tremblade. To avoid eventual horizontal transmission of pathogens
212 among populations, each was placed in separate tanks of 250 L in a flow through system with
213 a water circulation of 500 L/h. Seawater temperature was gradually increased from 10 to 20°C
214 within one week and maintain to 20°C to favour the gametogenesis. Broodstock were fed *ad*
215 *libitum* with a mixture of phytoplankton (*Isochrysis galbana*, *Tetraselmis suecica*, and
216 *Skeletonema costatum*). After 2 months, oysters were shucked and sexed by microscopic
217 observation. Only fully mature oysters were used, representing between 20 to 23 genitors per
218 population (**Supplementary File 1, Table S1**). Spermatozoa and oocytes were collected by
219 stripping the gonad. For each population, sperm was collected individually for each male while
220 oocytes of all females were pooled. Eggs were sieved on a 20 µm and 100 µm screens to remove
221 small and large debris, respectively, the eggs being retained on the 20 µm screen. Then, the
222 pool of eggs was divided by the number of males, and each subgroup was fertilized by a male.
223 Fifteen minutes after fertilization, all subgroups were mixed, and all fertilized and unfertilized
224 eggs were placed in fourteen 30 L tanks at a density of 34 to 100 eggs per mL (**Supplementary**
225 **File 1, Table S2**). Thus, depending on the population, between one to three million eggs were
226 added into each 30 L conical tank. Tanks were in a batch system containing 26 °C filtered and
227 UV-treated seawater, supplemented with gentle air-bubbling. Larval farming density were 10
228 larvae per ml at day 2, and 3 larvae per ml at day 7. Seawater was changed three times per week,
229 and larvae were fed daily with *Isochrysis galbana*, supplemented with *Skeletonema costatum*
230 from day 7.

231


232 **Exposure of oyster larvae with microorganisms**

233 For each population, seven conditions were tested, each using two 30 L replicate tanks. Larvae
234 were either unexposed or exposed to microbiota from donor oysters (ME seawater D0-D14) or
235 to the five different multi-strains bacterial mixes at two different larval developmental window
236 (Brest D0-D14, Brest D7-D14, La Tremblade D0-D14, La Tremblade D7-D14, Arcachon D0-
237 D14, Thau D0-D14 and Multi-site D0-D14, Multi-site D7-D14 (**Figure 1**). For ME seawater

238 D0-D14, larvae were exposed to the whole natural microbiota coming from healthy donor
239 oysters (Microorganism-Enriched seawater = ME seawater). This microorganism community
240 was introduced thanks to donor oysters of microbiota which were placed into the rearing tanks.
241 Oyster donors of microbiota were NSI (Naissains Standardisés Ifremer, standardised Ifremer
242 spats) (Petton et al. 2013, 2015) which were always kept in controlled facilities using UV-
243 treated seawater, strict biosecurity zoning and management procedures. The oysters were tested
244 negative for the three main pathogens (*Vibrio coralliilyticus*, OsHV-1 μ Var and
245 *Haplosporidium costale*) of *C. gigas* from larvae to juveniles (Azéma et al. 2017; Dégremont
246 et al. 2021). The microorganisms were added to the larvae either 3 hours post-fertilization (pf)
247 and at each water change until day 14 pf or from day 7 pf to day 14 pf (**Figure 1**). The water
248 changes at day 14 was performed without addition of the bacterial mixes. In this sense, the
249 microbial exposure ended up at day 14.

250 Larval survival was determined by counting the larvae either at days 2, 7 and 18 for oysters
251 exposed from day 0 pf to day 14 pf or at day 18 for oysters exposed from day 7 pf to day 14 pf.
252 Fixation rate was determined at day 25 pf for all conditions. Larvae (Pools of 10000-20000
253 individuals) were sampled either at days 7 pf or at day 14 pf, flash frozen in liquid nitrogen
254 and stored at -80°C for subsequent molecular analysis. After the rearing steps, only one replicate
255 was kept to perform the experimental infections.

256 All oyster populations were kept in controlled facilities of the La Tremblade hatchery using
257 UV-treated seawater until experimental infections by OsHV-1 μ Var or *V. aestuarianus*.

258

259 **Figure 1: Overall experimental design for larval microbial exposure and experimental**
 260 **infections.**

261 Multi-parental reproduction was performed for the four oyster populations and the larvae were
 262 placed in 30 L tanks in a batch system containing 26°C filtered and UV-treated seawater,
 263 supplemented with gentle air-bubbling. Three hours post-fertilisation (pf), larvae remained

264 unexposed (2 tanks) or were exposed in duplicate to microbiota from donor oysters (ME
265 seawater D0-D14) or to the five different multi-strains bacterial mixes (Brest D0-D14, La
266 Tremblade D0-D14, Arcachon D0-D14, Thau D0-D14 and Multi-site D0-D14). This
267 microorganism exposure was renewed three times per week and lasted for 14 days. In parallel,
268 exposure to three multi-strains bacterial mixes (Brest D7-D14, La Tremblade D7-D14 and
269 Multi-site D7-D14) was performed on older larvae between D7 and D14 pf. During the larval
270 stage, seawater and larvae were sampled at days 2, 7, 11, 14, 18 and 25 pf to perform growth
271 and mortality monitoring, or to perform molecular analysis. After the larval stage, spat grew in
272 our controlled facility. At day 213 pf (approximatively seven months old), a first set was used
273 to carry out an experimental infection to OsHV-1 μVar and at day 352 pf (approximatively one
274 year), a second set was used to perform a *V. Aestuarianus* experimental infection.

275

276 **OsHV-1 μVar experimental infection by cohabitation**

277 OsHV-1 μVar experimental infection was performed either on control or microorganisms
278 exposed oysters (seven-month-old, mean individual weight = 2.80 ± 0.69 g). A randomized
279 complete block design composed of five 50 L tanks (replicates) filled with filtered and UV-
280 treated seawater and maintained at 20°C with adequate aeration and no food supply. Each tank
281 contained 12 oysters of each population exposed to each condition (total: 420 oysters per tank)
282 (**Supplementary File 2, Figure S1**). A cohabitation protocol, adapted from (Schikorski et al.
283 2011) was used as described. This approach starts with the injection of 100 μL of OsHV-1 μVar
284 suspension (10^5 OsHV-1 μVar genomic units) into the adductor muscle of pathogen-free
285 oysters donors. This protocol allows for pathogen transmission through the natural infectious
286 route to oysters of interest (recipient oysters). The OsHV-1 μVar donor oyster pool was
287 composed of 25% of F15 family oysters, 25% of F14 family oysters which are POMS
288 susceptible oysters (de Lorgeril et al. 2018) and 50% of genetically diversified NSI oysters
289 (~50% of susceptibility). The ratio was 1 donor oyster for 1 recipient oyster. Immediately after
290 OsHV-1 μVar injection into donors (adductor muscle), recipient and donor oysters were
291 uniformly distributed in each of the five experimental tanks. After 48 hours of cohabitation, all
292 donor oysters were removed from the tanks.

293 In each tank, one oyster of each population exposed to each condition was sampled just before
294 the beginning of the experimental infection (t=0h infection) and three hours post cohabitation
295 with OsHV-1 μVar donor oysters (t=3h infection) to perform molecular analysis on whole
296 tissue samples. The shell was removed, the whole flesh flash frozen into liquid nitrogen and
297 stored at -80°C until it was grounded in liquid nitrogen (Retsch MM400 mill) to a powder that
298 was then stored at -80°C until DNA and RNA extraction.

299 The mortality was recorded daily during eight days. Dead recipient oysters were removed daily
300 from the tanks.

301 During the mortality monitoring, 1 mL of water in each tank was sampled every day for the
302 detection and the quantification of OsHV-1 μ Var.

303

304 ***Vibrio aestuarianus* experimental infection by cohabitation**

305 *Vibrio aestuarianus* experimental infection was performed either on control or microorganisms
306 exposed oysters (12 months old ; mean individual weight = 9.42 ± 1.29 g) with a cohabitation
307 protocol previously described in (Azéma et al. 2017). A randomized complete block design
308 composed of five 100L replicate tanks filled with filtered and UV-treated seawater and
309 maintained at 20°C with adequate aeration and without food were used. Each tank contained
310 10 oysters of each population exposed to each condition (total: 350 oysters per tank). The *V.*
311 *aestuarianus* 02/041 strain (Garnier et al. 2008) was grown in Zobell medium at 22°C for 24h
312 under agitation. The bacterial concentration was determined by spectrophotometry at 600nm
313 and adjusted to an optical density (OD₆₀₀) of 1 representing 5.10^8 bacteria per mL. *V.*
314 *aestuarianus* donor oysters were injected in the adductor muscle with 100 μ L of the *V.*
315 *aestuarianus* 02/041 suspension and were then equally distributed among the five tanks. The *V.*
316 *aestuarianus* donor oyster population was composed of an equi-number of the four oyster
317 populations produced for this project (Brest, La Tremblade, Arcachon and Thau populations).
318 Immediately after *V. aestuarianus* injection into donors, donor oysters were added to the five
319 tanks containing the recipient oysters. A ratio of 1 *V. aestuarianus* donor oyster for 1.5 recipient
320 oyster was used. After 48 hours of cohabitation, *V. aestuarianus* donor oysters were removed
321 from the tanks.

322 The mortality was recorded daily during 15 days, and all the dead oysters were removed from
323 the tanks. During the mortality monitoring, 1 mL of water in each tank was sampled every day
324 for the detection and the quantification of *V. aestuarianus*.

325

326 **Statistical Analysis of oyster mortality**

327 Oyster mortality rates were compared between the different microorganisms exposure set using
328 survival analysis performed on R (v 4.2.1) (R Core Team 2022) with the package survminer (v
329 0.4.9) (<https://cran.r-project.org/web/packages/survminer/index.html>). The Kaplan-Meier
330 method was used to represent the cumulative survival rate and log-rank test to determine the
331 difference between conditions. A multivariate Cox proportional hazards regression model was
332 used to compute Hazard-Ratio (HR) with confidence intervals of 95%.

333

334 **Oysters and water Genomic DNA extraction and sequencing**

335 DNA extraction from larvae (pool of 10000 to 20000 individuals) collected during
336 microorganisms exposure was extracted with the DNA from the tissue Macherey-Nagel kit
337 according to the manufacturer's protocol. Prior to 90 min of proteinase K lysis, an additional
338 mechanical lysis was performed by vortexing samples with zirconia/silica beads (BioSpec).
339 DNA from individual juvenile oyster tissues collected just before and during experimental
340 infection was extracted from oyster powder with the DNA from tissue Macherey-Nagel kit
341 according to the manufacturer's protocol. Prior to 90 min of proteinase K lysis, an additional
342 12-min mechanical lysis (Retsch MM400 mill) was performed with zirconia/silica beads
343 (BioSpec). DNA extraction from water collected during microorganisms exposure and
344 experimental infections was extracted with the DNA from tissue Macherey-Nagel tissue kit
345 following the manufacturer support protocol for genomic DNA and viral DNA from blood
346 sample.

347 DNA concentration and purity were checked with a Nanodrop ND-1000 spectrometer (Thermo
348 Scientific).

349

350 **qPCR analysis**

351 Detection and quantification of OsHV-1 μ Var and *V. aestuarianus* was performed by real-time
352 quantitative PCR. All amplification reactions were performed on Roche LightCycler® 480
353 Real-Time thermocycler. Each reaction was carried out in triplicate in a total volume of 10 μ L
354 containing the DNA sample (2.5 μ L), 5 μ L of Takyon™ SYBER MasterMix blue dTTP
355 (Eurogentec, ref UF-NSMT-B0701) and 1 μ L at 500 nM of each primers for OsHV-1 μ Var
356 (OsHVDPFor5'-ATTGATGATGTGGATAATCTGTG and OsHVDPFor

357 5'-GGTAAATACCATTGGTCTTGTCC) (Webb et al. 2007) and for *V. aestuarianus*
358 (DNAj-F 5'-GTATGAAATTAACTGACCCACAA and DNAj-R
359 5'-CAATTCTTCGAACAAACCAC) (Saulnier et al. 2009). qPCR cycling conditions were as
360 follows: 3 min at 95°C, followed by 45 cycles of amplification at 95°C for 10 s, 60°C for 20 s,
361 and 72°C for 30s. After these PCR cycles a melting temperature curve of the amplicon was
362 generated to verify the specificity of the amplification. The DNA polymerase catalytic subunit
363 amplification product cloned into the pCR4-TOPO vector was used as a standard at 10-fold
364 dilutions ranging from 10³ to 10¹⁰ copies/ml for OsHV-1 μVar quantification and genomic
365 DNA from *V. aestuarianus* ranging from 10² to 10⁷ copies/ml for *V. aestuarianus*
366 quantification. Absolute quantification of OsHV-1 μVar or *V. aestuarianus* was calculated by
367 comparing the observed Cp values to standard curve.

368

369 **16S rDNA library construction and sequencing**

370 Library construction (with primers 341F 5'-CCTAYGGGRBGCASCAG and 806R 5'-
371 GGACTACNNGGTATCTAAT targeting the V3-V4 region of the 16S rRNA gene)
372 (Klindworth et al. 2013) and sequencing on a MiSeq v2 (2x250 bp) were performed by ADNid
373 (Montpellier, France).

374

375 **RNA extraction and sequencing**

376 RNA was extracted from oyster powder (individual) by using the Direct-Zol RNA miniprep kit
377 (Zymo Research) according to the manufacturer's protocol. RNA concentration and purity were
378 checked using a Nanodrop DN-1000 spectrometer (Thermo Scientific), and their integrity was
379 analysed by capillary electrophoresis on a BioAnalyzer 2100 (Agilent).

380

381 **RNAseq library construction and sequencing**

382 RNA-Seq experiments were performed on 3 individuals per condition. RNA-Seq library
383 construction and sequencing were performed by the Bio-Environment Platform (University of
384 Perpignan, France). Stranded libraries were constructed from 500 ng of total RNA using
385 NEBNext UltraII and sequenced on a NextSeq550 instrument (Illumina) in single-end reads of
386 75 bp.

387 **Bioinformatic pipelines for 16S rRNA gene barcoding analysis**

388 Previously published barcoding datasets (de Lorgeril et al. 2018; King et al. 2019b; Clerissi et
389 al. 2020, 2022; Fallet et al. 2022) from 687 POMS-resistant and 664 POMS-sensitive oysters
390 were re-analysed in this study in order to predict bacteria which were potentially associated
391 with oyster POMS resistant phenotypes. Datasets used for these analyses are in **Supplementary**
392 **File 1, Table S3**. These datasets were individually analysed under the Toulouse Galaxy instance
393 (<https://vm-galaxy-prod.toulouse.inra.fr/>) (Goecks et al. 2010) with the Find Rapidly OTU with
394 Galaxy Solution (FROGS) pipeline (Escudié et al. 2018). In brief, paired reads were merged
395 using FLASH (Magoč and Salzberg 2011). After denoising and primer/ adapter removal with
396 cutadapt (Martin 2011), clustering was performed using SWARM (Mahé et al. 2014), which
397 uses a novel clustering algorithm with a threshold (distance = 3) corresponding to the maximum
398 number of differences between two OTUs. Chimeras were removed using VSEARCH (Rognes
399 et al. 2016). We filtered out the data set for singletons and performed an affiliation using Blast
400 against the Silva 16S rDNA database (release 132) to produce an OTU and affiliation tables. In
401 order to identify bacterial taxa which were significantly overrepresented in the microbial
402 community associated to POMS resistant compared to POMS sensitive oysters, the “LDA
403 Effect Size” (LEfSe) method (Segata et al. 2011) was used with a normalized relative
404 abundance matrix. This method uses a Kruskal-Wallis followed by Wilcoxon tests ($pval \leq 0.05$)
405 and then performs a linear discriminant analysis (LDA) and evaluate the effect size. The taxa
406 with a LDA score greater than 2 were considered as significantly enriched in POMS resistant
407 compared to sensitive oysters.

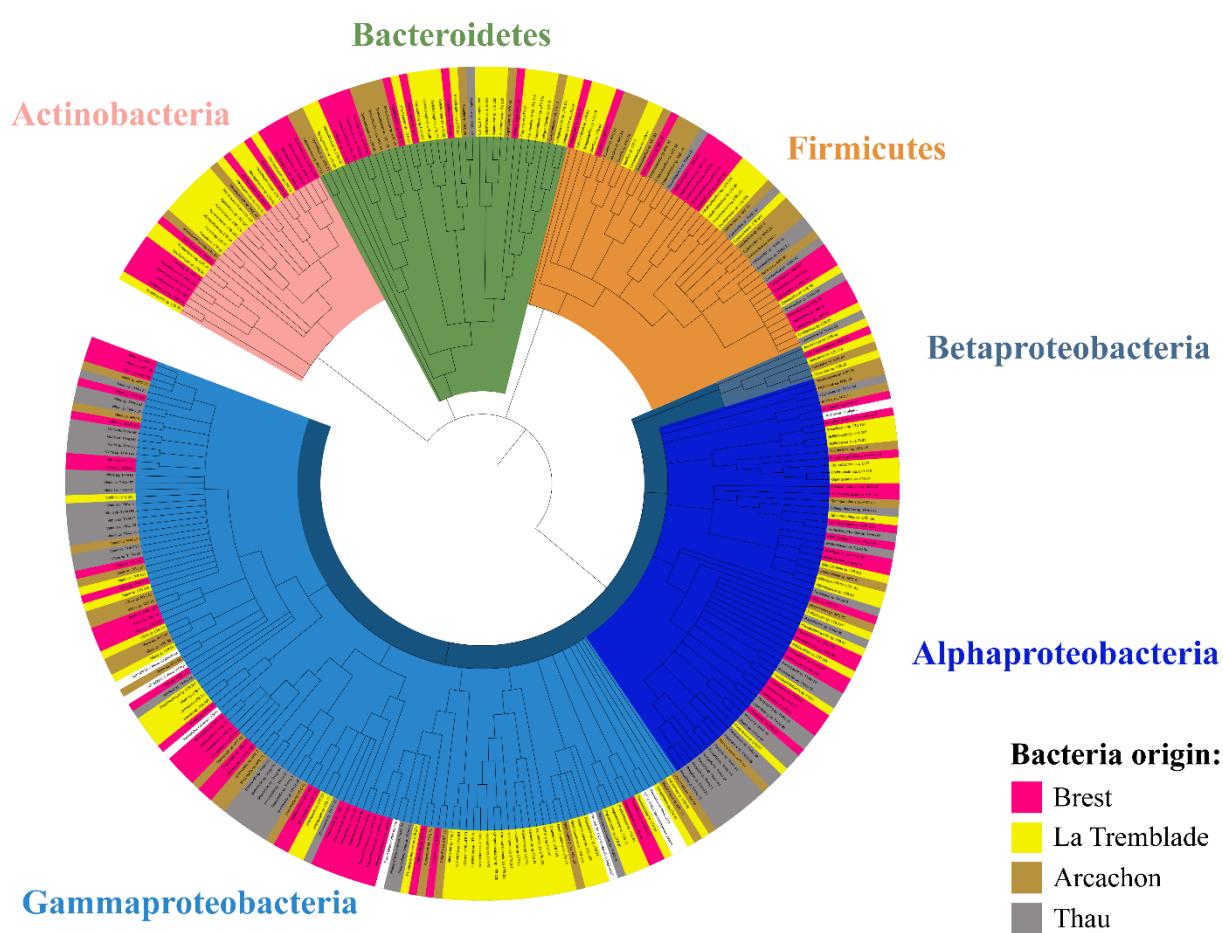
408 Sequencing data obtained on the samples from this study were processed with the SAMBA (v
409 3.0.2) workflow developed by the SeBiMER (Ifremer’s Bioinformatics Core Facility). Briefly,
410 Amplicon Sequence Variants (ASV) were constructed with DADA2 (Callahan et al. 2016) and
411 the QIIME2 dbOTU3 (v 2020.2) tools (Bolyen et al. 2019), then, contaminations were removed
412 with microDecon (v 1.0.2) (McKnight et al. 2019). Taxonomic assignment of ASVs was
413 performed using a Bayesian classifier trained with the Silva database v.138 using the QIIME
414 feature classifier (Wang et al. 2007). Finally, community analysis and statistics were performed
415 on R (R version 4.2.1) (R Core Team 2022) using the packages phyloseq (v 1.40.0) (McMurdie
416 and Holmes 2013) and Vegan (v 2.6-4) (Oksanen et al. 2022). Unique and overlapping ASVs
417 of each sample group were plotted using the UpsetR package (v 1.4.0) (Conway et al. 2017).
418 For beta-diversity, the ASVs counts were preliminary normalized with the “rarefy_even_depth”
419 function (rngseed = 711) from the package phyloseq (v 1.40.0) (McMurdie and Holmes 2013).

420 Principal Coordinates Analysis (PcoA) were computed to represent dissimilarities between the
421 samples using the Bray-Curtis distance matrix. Differences between groups were assessed by
422 statistical analyses (Permutational Multivariate Analysis of Variance) using the adonis2
423 function implemented in vegan (Oksanen et al. 2022).

424 In order to follow the long-term installation (or not) of each of the bacteria used in the multi-
425 strain bacterial mixes in the oyster microbiota, 16S rRNA genes sequences obtained during the
426 identification of each of the bacteria composing the multi-strain bacterial mixes were used as a
427 query for a similarity BLASTn search against all the ASVs sequence from the dataset (Altschul
428 et al. 1990). A mock community composed of equal amounts of DNA from the bacteria
429 composing the multi-strain bacterial mixes were also used as a positive control to validate our
430 search method. ASVs sequences with a percentage of identity higher than 99% were considered
431 present in the tested samples.

432

433 **Bioinformatic pipeline for RNA-Seq analysis**


434 All data treatments were carried out under a local galaxy instance (<http://bioinfo.univ-perp.fr>)
435 (Goecks et al. 2010). Reads quality was checked with FastQC (Babraham Bioinformatics) with
436 default parameters (Galaxy Version 0.72). Adapters were removed using Trim Galore (Galaxy
437 Version 0.6.3) (Babraham Bioinformatics). Reads were mapped on *C. gigas* genome (assembly
438 cgigas_uk_roslin_v1) using RNA STAR (Galaxy Version 2.7.8a) (**Supplementary File 3: RNAseq Mapping results**) and HTSeq-count (Anders et al. 2015) was used to count the
439 number of reads overlapping annotated genes (mode Union) (Galaxy Version 0.9.1). The
440 differential gene expression levels were analysed with the DESeq2 R package (v 1.36.0) (Love
441 et al. 2014). Finally, Rank-based Gene Ontology Analysis (GO_MWU package) was performed
442 using adaptive clustering and a rank-based statistical test (Mann–Whitney U-test combined with
443 adaptive clustering) with the following parameters: largest = 0.5; smallest = 10;
444 clusterCutHeight = 0.25. The signed “-Log(adj pval)” (obtained from the DESeq2 analysis) was
445 used as an input for the GO_MWU analysis. The R and Perl scripts used can be downloaded
446 [https://github.com/z0on/GO_MWU] (Wright et al. 2015).

448 **Results:**

449 **23 bacterial strains with potential beneficial effects were selected to generate the multi-**
450 **strain bacterial mixes.**

451 To isolate bacteria with potential beneficial effects against oyster infectious disease, we
452 hypothesised that bacteria should be isolated from disease resistant oysters. For this purpose,
453 wild oysters aged between 12 and 18 months were sampled closed to farming areas. Oysters
454 located in these areas are submitted to high pathogen pressure and have been shown to be
455 resistant to POMS disease (Gawra et al. 2023). To maximise the biodiversity of the bacterial
456 collection, oysters were sampled from 4 geographical French sites at two different seasons. A
457 total of 334 bacteria were isolated (**Supplementary File 1, Table S4**); from which 166 bacteria
458 were obtained from the February 2020 sampling campaign, and 168 bacteria from the
459 November 2020 sampling campaign. This corresponded to 97, 144, 56, and 67 bacteria isolated
460 from Brest, La Tremblade, Arcachon, and Thau sites, respectively. They were named according
461 to the sampling site (“ARG” for Brest bay, “LTB” for La Tremblade in Marennes Oleron bay,
462 “ARC” for Arcachon bay and “THAU” for Thau lagoon) followed by the number of the isolate.
463 The 16S rRNA gene sequence was obtained for 293 strains. The identified bacteria were divided
464 into the following phyla: *Proteobacteria* (62.8%), *Firmicutes* (15.3%), *Bacteroidetes* (12.3%)
465 and *Actinobacteria* (9.6%) (**Figure 2**). The three major genera were *Vibrio*, *Bacillus* and
466 *Shewanella* (**Figure 2**). The majority of the isolated species were found in all sites.

467

468

469 **Figure 2: 293 strains were identified in the bacterial collection sampled from POMS-
470 resistant oysters.**

471 Phylogenetic tree of the 293 identified bacteria composing the collection of bacteria isolated
472 from POMS-resistant oysters sampled in the Brest bay (pink), La Tremblade in Marennes-
473 Oleron bay (yellow), the Arcachon bay (brown) and the Thau lagoon (grey) based on the V1-
474 V5 loop alignment of bacterial 16S rDNA by a Maximum likelihood method with the Tamura-
475 Nei parameter model in MEGA X (301 sequences) and 1000 bootstrap replicates. The collection
476 is composed by 62.8% of Proteobacteria (different shades of blue), 15.3% of Firmicutes
477 (orange), 12.3% of Bacteroidetes (green) and 9.6% of Actinobacteria (salmon).

478

479 In parallel, *in silico* correlation analysis was performed to predict bacteria preferentially
480 associated with resistant or sensitive oysters. This LefSE analysis (Segata et al. 2011) was
481 performed based on previously published 16S rRNA genes barcoding datasets which describes
482 the bacterial part of the bacterial microbiota community isolated from 687 POMS-resistant and
483 664 POMS-sensitive oysters (**Supplementary File 1, Table S3**). Based on this analysis, 118
484 bacterial genera were shown as preferentially associated with POMS-resistant oysters
485 (**Supplementary File 1, Table S5**). By combining the data obtained from this predictive *in
486 silico* analysis and data from the scientific literature about bacteria shown to be beneficial in an

487 aquaculture context (Rengpipat et al. 2000; Zhang et al. 2009; Kesarcodi-Watson et al. 2012;
488 Touraki et al. 2012; Sun et al. 2013; Guzmán-Villanueva et al. 2014; Yan et al. 2014; Reda and
489 Selim 2015; Tan et al. 2016; Chauhan et al. 2017; Makled et al. 2017; Lv et al. 2019), we
490 selected 12, 17, 10 and 8 bacteria for the Brest, La Tremblade, Arcachon and Thau sites
491 respectively (**Table 1**). These bacterial strains were then tested for their cytotoxic effects on 2
492 days old larvae. The most cytotoxic bacteria were discarded. Based on these results, we kept
493 five, seven, five and five site-specific bacteria to produce the Brest, La Tremblade, Arcachon
494 and Thau multi-strain bacterial mixes respectively (**Table 1**). A fifth multi-site bacterial mix
495 was produced from bacteria isolated from oysters sampled on all sites. For this purpose, seven
496 different bacteria were chosen because they displayed the least cytotoxic effects on larvae
497 (**Table 1**).

498 In summary, we collected bacteria from disease-resistant oysters. We then combined our
499 findings with existing literature and utilized *in silico* predictive analysis. This allowed us to
500 create four site-specific and one multi-site multi-strain bacterial mixes, all of which have the
501 potential to benefit oyster health.

502 **Table 1: Composition of the 5 multi-strain bacterial mixes produced according to their**
503 **predictive beneficial properties.**

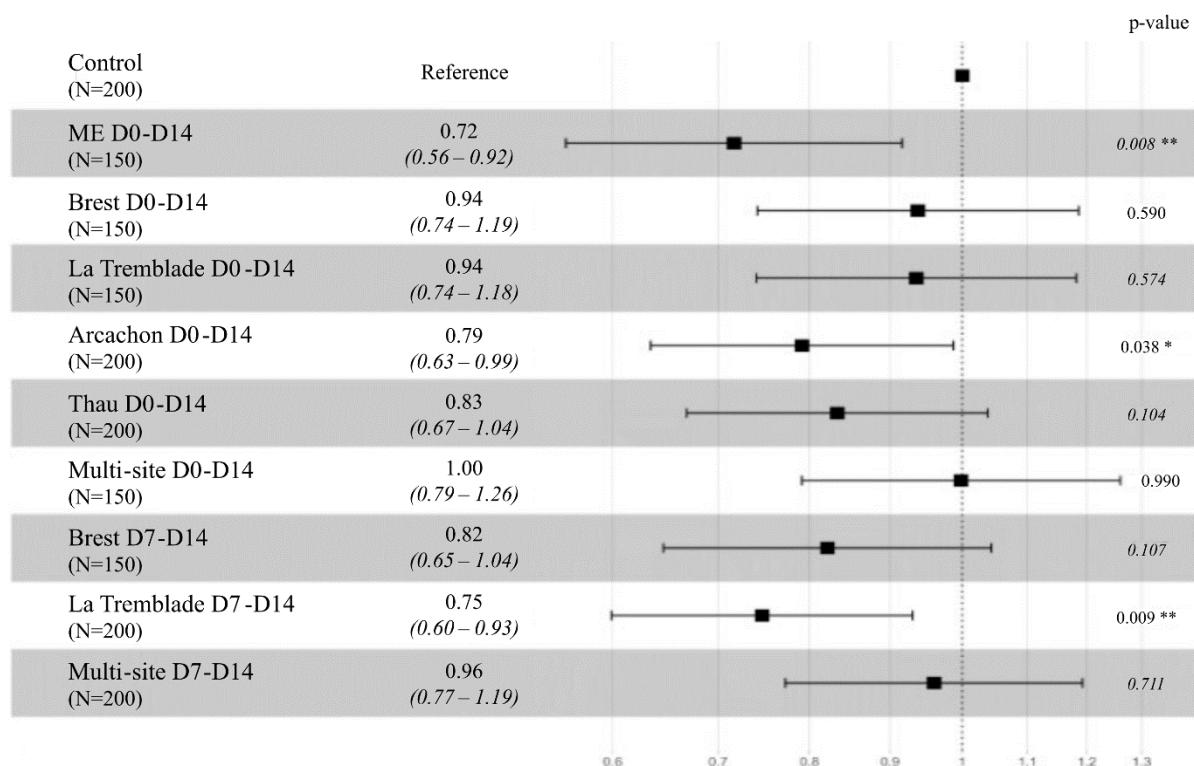
504

Environment	Collection of bacteria		Nb. of genera selected for cytotoxic assay on larvae	Nb. of bacteria selected after cytotoxic assay	Multi-strain bacterial mixes	
	Nb. of bacteria in the collection	Nb. of genera			Names	Strains
Brest	97	40	12	5	Brest Mix	<i>Shewanella</i> sp. ARG21
						<i>Marinibacterium</i> sp. ARG39
						<i>Shewanella</i> sp. ARG89
						<i>Shewanella</i> sp. ARG96
						<i>Shewanella</i> sp. ARG129
La Tremblade	144	45	17	8	La Tremblade Mix	<i>Halomonas</i> sp. LTB66
						<i>Neptunomonas</i> sp. LTB74
						<i>Psychrobacter</i> sp. LTB83
						<i>Paracoccus</i> sp. LTB95
						<i>Halomonas</i> sp. LTB102
Arcachon	56	26	10	5	Arcachon Mix	<i>Cobetia</i> sp. LTB109
						<i>Sulfitobacter</i> sp. LTB127
						<i>Shewanella</i> sp. ARC21
						<i>Bacillus</i> sp. ARC34
						<i>Colwellia</i> sp. ARC55
Thau	67	18	8	5	Thau Mix	<i>Neptunomonas</i> sp. ARC59
						<i>Tenacibaculum</i> sp. ARC64
						<i>Shewanella</i> sp. THAU5
						<i>Paracoccus</i> sp. THAU19
						<i>Ruegeria</i> sp. THAU28
505	Multi-site Mix					<i>Shewanella</i> sp. THAU34
						<i>Paracoccus</i> sp. THAU46
						<i>Marinibacterium</i> sp. ARG39
						<i>Shewanella</i> sp. ARG89
						<i>Halomonas</i> sp. LTB57
506						<i>Cobetia</i> sp. LTB109
						<i>Neptunomonas</i> sp. ARC59
						<i>Paracoccus</i> sp. THAU19
						<i>Paracoccus</i> sp. THAU46

507 **Microorganisms exposure during larval rearing induces long term protection against**
508 **POMS and Vibriosis which relies on bacterial mix composition and oyster origin.**

509 The multi-strain bacterial mixes were added to four oyster populations during the larval rearing.
510 The four populations were the sympatric oysters from which the bacteria were isolated (*i.e.*,
511 Brest, La Tremblade, Arcachon and Thau). An exposure with a whole microbiota community
512 coming from healthy hatchery donor oysters was also performed (ME seawater D0-D14). This
513 oysters were shown to be devoid of the three main pathogens (*V. corallilyticus*, OsHV-1 μ Var
514 and *Haplosporidium costale*) of *C. gigas* from larvae to juveniles (Azéma et al. 2017;
515 Dégremont et al. 2021). Oyster's larvae were exposed to bacterial mixes either from blastula
516 (3h post-fertilization (pf)) to pediveliger stage (14 days pf) (D0 to D14) or from veliger stage
517 (seven days pf) to pediveliger stage (14 days pf) (D7 to D14) (**Figure 1**). Overall, these
518 microorganisms exposures during larval rearing stages displayed from moderate to strong effect
519 on larval survival. These effects rely on oyster origins and, also, on the bacterial content of the
520 microorganism exposure (**Supplementary File 4 Effect of bacterial mixes on oyster larvae**
521 **and Supplementary File 2, Figure S2**).

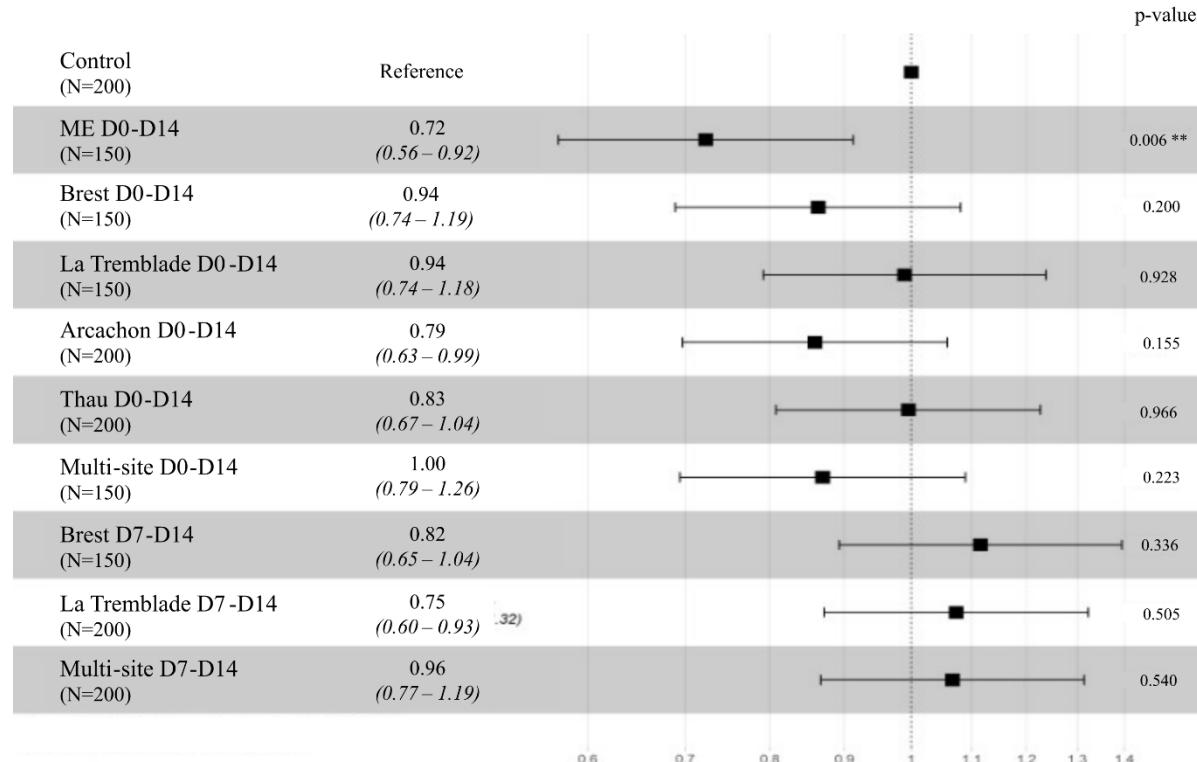
522


523 Subsequently, each oyster population (exposed and control) were challenged with OsHV-1
524 μ Var infection during juvenile stages or *V. aestuarianus* during adult stages. The success of the
525 experimental infection was verified by quantifying the viral or Vibrio DNA concentration in
526 the sea water of the experimental tanks (**Supplementary File 1, Table S6 and Table S7**).

527 In response to OsHV-1 μ Var infection, a significant reduction of the mortality risk of 21%
528 (Log-rank test: pval = 0.038), 25% (Log-rank test: pval = 0.009), and 28% (Log-rank test: pval
529 = 0.008) was observed in the oysters (all populations combined) exposed to the Arcachon D0-
530 D14, La Tremblade D7-D14 and D0-D14 ME seawater mixes, respectively (**Figure 3**). We
531 observed that the mortality started 3 days after the POMS disease induction, and differences
532 between the control and exposed samples appeared as soon as mortality started for oysters
533 exposed to the Arcachon D0-D14, La Tremblade D7-D14 and, ME seawater D0-D14 oysters
534 (**Supplementary File 2, Figure S3**).

535 In response to vibriosis, a significant reduction of the mortality risk of 28% (Log-rank test: pval
536 = 0.006) was observed for the ME seawater D0-D14 exposed oysters (**Figure 4**)
537 (**Supplementary File 2, Figure S4**). Other exposures did not lead to reduction of mortality.

538 For both Vibriosis and viral infection, the beneficial effect in response to each of the mixes
539 depended on the oyster origin (**Supplementary File 2, Figure S3**). Oysters originating from
540 Arcachon showed the best reduction in mortality in response to both infections regardless of
541 the bacterial exposure conditions during the larval stages. The effect of the microorganisms
542 exposure was intermediate on oysters from La Tremblade and less pronounced on oysters from
543 Brest and Thau (**Supplementary File 2, Figure S3**).


544 In summary, larval exposure to bacterial mixes or Microorganism-Enriched seawater (ME
545 seawater) conferred a beneficial effect on the survival of the oysters against the POMS disease
546 in juvenile oysters while only Microorganism-Enriched seawater (ME seawater) conferred a
547 beneficial effect against Vibriosis. No preferential beneficial effect was nevertheless observed
548 when the oysters were exposed to their sympatric compared to allopatric strains.

549

550 **Figure 3: Bacterial mixes and ME-seawater exposure during larval rearing reduce the**
551 **mortality risk induced by POMS**

552 Forest plot representing the Hazard-Ratio value of mortality risk during the OsHV-1 μ Var
553 experimental infection for oysters (all populations combined) exposed to microorganisms
554 compared to control oysters. The numbers into brackets under the different conditions
555 correspond to the number of oysters used during the experimental infection. The Hazard-Ratio
556 value is indicated to the right of the conditions, except for the control condition, which is
557 indicated as reference. The p-value of the log rank test is indicated on the right-hand side of
558 each row.

559

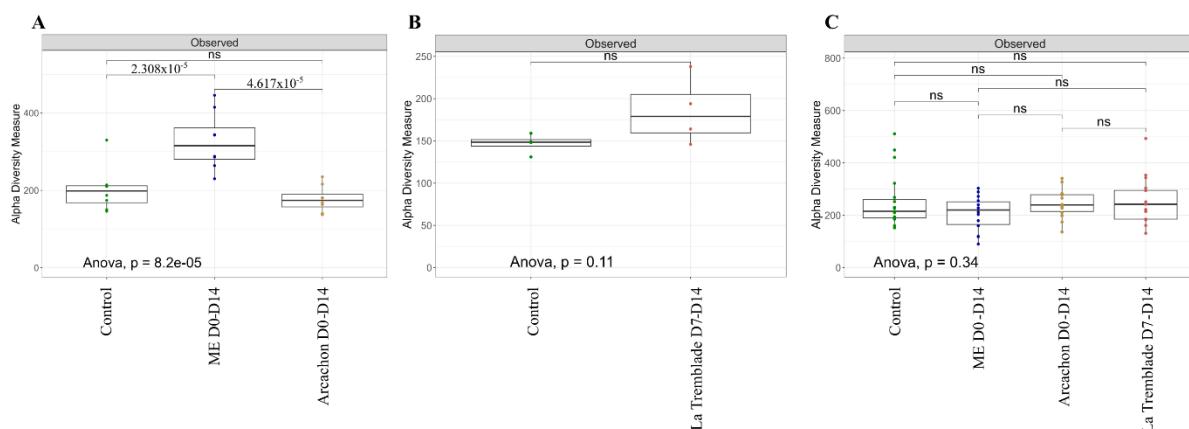
560 **Figure 4: ME-seawater exposure during oyster larval rearing can reduce the mortality**
561 **risk induced by *V. aestuarianus*.**

562 Forest plot representing the Hazard-Ratio value of mortality risk during the *V. aestuarianus*
563 experimental infection for oysters (All populations confounded) exposed to microorganisms
564 compared to control oysters. The numbers into brackets under the different conditions
565 correspond to the number of oysters used during the experimental infection. The Hazard-Ratio
566 value is indicated to the right of the conditions, except for the control condition, which is
567 indicated as reference. The p-value is indicated on the right-hand side of each row.

568

569 **Microorganism exposure during larval rearing induced long term changes of the**
570 **microbiota composition.**

571 To test the immediate and long-term effect of the microorganism exposure on the oyster
572 microbiota composition, we analysed the bacterial communities by 16S rRNA gene sequencing
573 during the larval stage after seven days of exposure and during the juvenile stage seven months
574 after the exposure. We focused our study on the three conditions of bacterial exposure that
575 conferred significant increase on the survival of oysters during OsHV-1 μVar and *V.*
576 *aestuarianus* experimental infection.


577 Sequencing of the V3-V4 hypervariable region of the 16S rRNA gene resulted in a total of
578 10,868,202 clusters. After quality check (deleting primers and low-quality sequences, merging,

579 and removing chimeras) and ASV clustering, 5,322,399 reads (49%) with an average of 35,962
580 reads per sample were retained for downstream analyses.

581 A higher species richness was observed seven days after the exposure for ME-seawater exposed
582 larvae but not after exposure to bacterial mixes (**Figure 5 A,B**). This difference was not
583 maintained at juvenile stage (**Figure 5 C**). Dissimilarity analysis, based on the Bray-Curtis
584 index, showed that the larvae microbiota composition differed between conditions after seven
585 days of microorganism exposure, whatever the condition (**Table 2**). This difference remained
586 statistically significant at juvenile stage for ME seawater D0-D14 and La Tremblade D7-D14
587 conditions (**Table 2**).

588 We additionally checked for the presence of the added bacteria, during the larval stage, after
589 seven days of exposure with the last addition of bacteria done 48 hours before sampling, and at
590 juvenile stage seven months post-exposure. Two bacterial strains out of the 5 added in larvae
591 exposed to Arcachon D0-D14 were retrieved and represented 3.3 to 25.9 % of the total bacterial
592 community (**Supplementary File 2, Figure S5A**). ASVs associated with the added bacteria of
593 the La Tremblade D7-D14 ranged from 0.09 to 0.96 % in the corresponding larvae samples
594 (**Supplementary File 2, Figure S5C**). None of the ASVs corresponding to bacteria used for
595 the exposure could be detected at the juvenile stages seven months post-exposure
596 (**Supplementary File 2, Figure S5B,D**). Furthermore, either for larvae or juvenile oysters,
597 bacterial strains did not show a preference for implantation in their sympatric host population
598 (**Supplementary File 2, Figure S5**). Using this pipeline of detection, we were able to detect
599 these ASVs on a mock control containing an artificial mix of bacteria in the same proportion
600 except for *Paracococcus* sp. LTB95 and *Psychrobacter* sp. LTB83 (**Supplementary File 2,**
601 **Figure S6**). This indicated that the lack of detection of the ASVs in exposed oyster is due to an
602 absence of the bacteria rather than a technical shortcoming in our detection pipeline, except for
603 *Paracococcus* sp. LTB95 and *Psychrobacter* sp. LTB83.

604 In summary, a few proportions of the different bacteria that were added during the larval rearing
605 were detected in the oyster microbiota 48h after the last addition of bacteria, and none of them
606 were maintained on a long-term basis. Despite this lack of bacterial colonization, the overall
607 composition of the microbiota was modified in response to the bacterial exposure and these
608 changes remained up to the juvenile stages.

609

610 **Figure 5: The richness of oyster microbiota is transiently increased after larval exposure**
 611 **to Microorganism-Enriched seawater.**

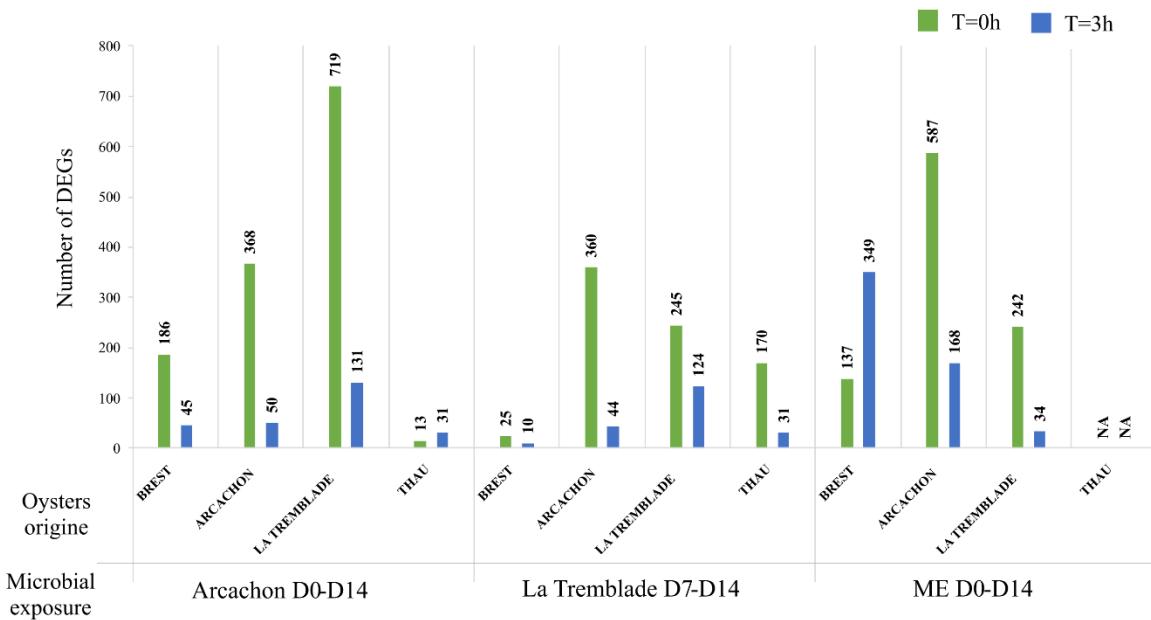
612 The alpha-diversity indexes (observed species richness) of larvae microbiota after seven days
 613 of exposure (A,B), or juvenile microbiota seven months after the exposure (C) are indicated.
 614 For larval stages (A) and (B), analyses were performed on all oyster populations confounded
 615 which represent eight pools of 10000-20000 larvae sampled in eight independent tanks for
 616 exposure to ME D0-D14 and Arcachon D0-D14 (A) and on four pools of 10000-20000 larvae
 617 sampled in four independent tanks for exposure to La Tremblade D7-D14 (B). For juvenile
 618 stages (C), analyses were performed on all oyster population confounded which represent 68
 619 individuals sampled in five independent tanks. Significant changes are indicated by their p-
 620 value and "ns" stands for "not significant".

621

622 **Table 2: Long-lasting modifications in *C. gigas* microbiota composition occurred**
 623 **following microorganisms exposure.**

624 Permanova (adonis2) on the Bray-Curtiss dissimilarity matrix showing the effects of microbial
 625 exposure on microbiota community compared to control condition for larvae after seven days
 626 of microbial exposure and for juveniles seven months after the microbial exposure. For larvae,
 627 analyses were performed on all oyster populations confounded which represent eight pools of
 628 10000-20000 larvae sampled in eight independent tanks for exposure to ME D0-D14 and
 629 Arcachon D0-D14 and on four pools of 10000-20000 larvae sampled in four independent tanks
 630 for exposure to La Tremblade D7-D14. For juvenile stages, analyses were performed on all
 631 oyster population confounded which represent 68 individuals sampled in five independent
 632 tanks.

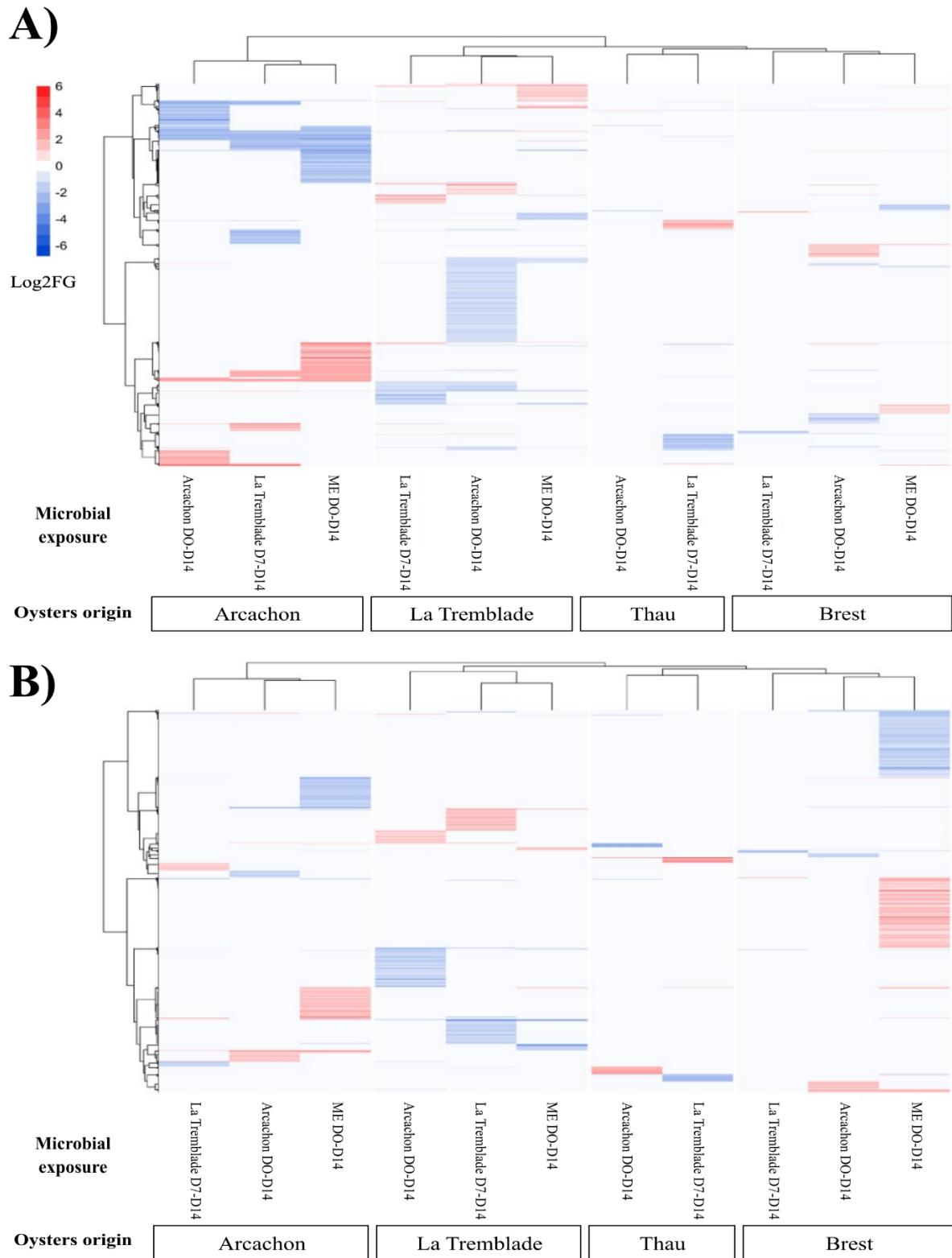
633


Conditions (Compared to control)	Larvae (after 7 days of exposure)				Juvenile (7 months)			
	Dum Sq	R ²	F	p	Dum Sq	R ²	F	p
ME D0-D14	0.75	0.18	4.46	0.001	0.19	0.04	1.45	0.026
Arcachon D0-D14	0.85	0.19	3.30	0.001	0.08	0.02	0.75	0.908
La Tremblade D7-D14	0.43	0.29	2.98	0.036	0.17	0.04	1.55	0.033

634 **Microorganisms exposure during larval rearing induced long-term changes in oyster
635 immunity.**

636 The long-term impact of the microorganisms exposure on oyster gene expression was analysed
637 by RNA-seq on juvenile oysters before and during POMS challenge. In total, RNA sequencing
638 produces between 15.1 and 36.6 million reads per sample (mean number of reads = 26 millions).
639 Among these reads, 67.28% to 77.52% were mapped on *C. gigas* reference genome (assembly
640 cgigas_uk_roslin_v1) (**Supplementary File 3: RNaseq Mapping result**).

641 For each of the four oyster populations, the number of differentially expressed genes (DEGs)
642 in oysters exposed to bacterial mixes or to ME seawater compared to control oysters, was higher
643 before the infection than 3h after the beginning of the infection except for the condition where
644 Brest oysters were exposed to ME seawater (**Figure 6**). Furthermore, each oyster population
645 displayed a specific transcriptomic response, which strongly varied according to the
646 microorganism exposure. (**Figure 7**).


647

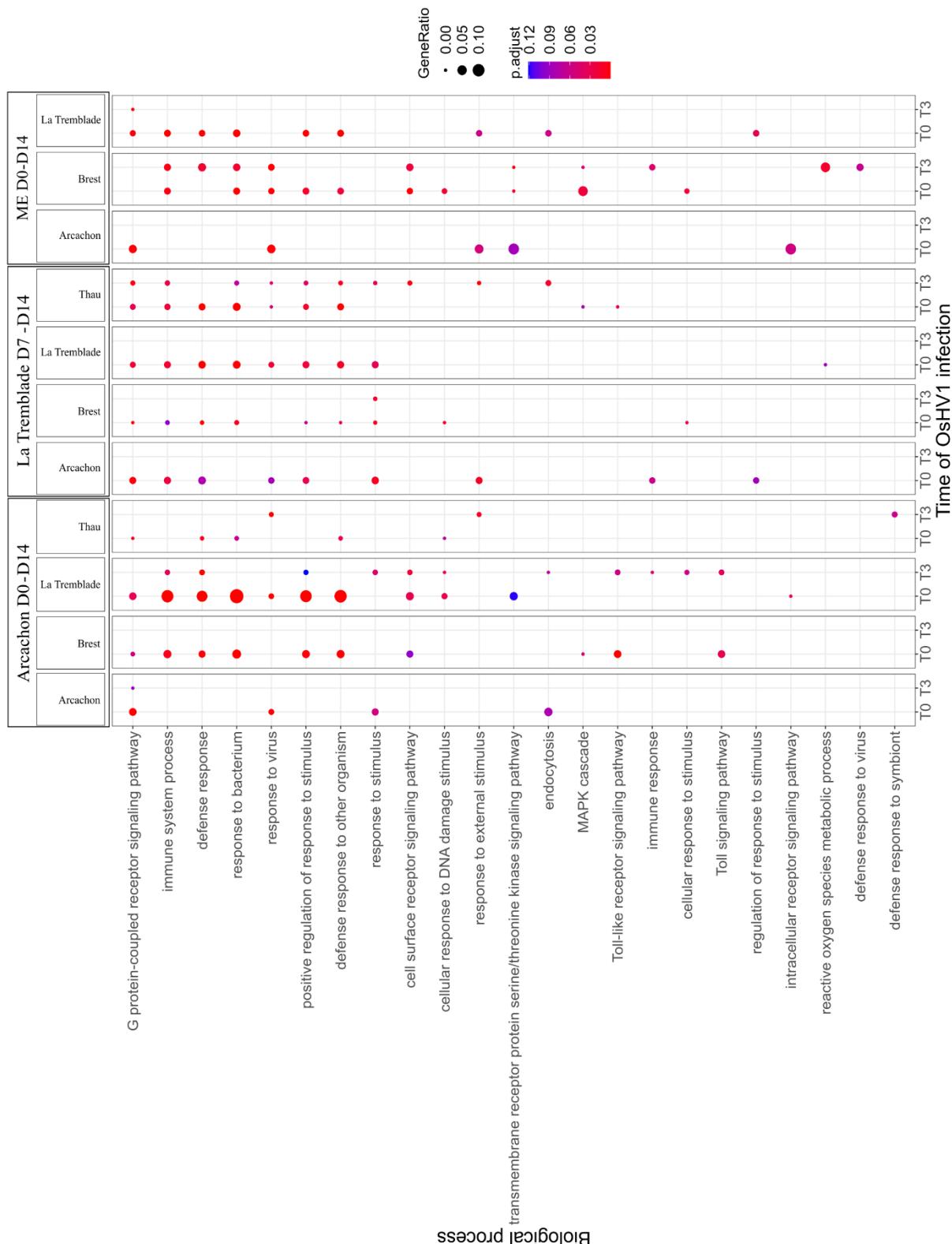
648

649 **Figure 6: Long-lasting changes in gene expression was observed in juvenile oysters seven
650 months after larval exposure.**

651 Histogram of differentially expressed genes (DEGs) in oysters exposed to Arcachon D0-D14,
652 La Tremblade D7-D14 or ME seawater D0-D14 compared to control oysters for the four oyster
653 populations (Brest, Arcachon, La Tremblade and Thau) prior to OsHV-1 μVar infection (green)
654 and 3h post infection (blue). n=3 individuals per condition.

656 **Figure 7: Specific gene expression profiles were observed in response to each**
657 **microorganism exposure.**

658 Heatmap of differentially expressed genes (DEGs) in oysters exposed to Arcachon D0-D14, La
659 Tremblade D7-D14 or ME seawater D0-D14 compared to control oysters for the four oyster
660 populations (Brest, Arcachon, La Tremblade and Thau) (A) prior to OsHV-1 μVar infection


661 and (B) 3h post OsHV-1 μ Var infection. The intensity of DEG ratios is represented by the Log2
662 Fold Changes (Log2FC) for over expressed DEGs (in red) and under expressed DEGs (in blue).
663 n=3 individuals per condition.

664

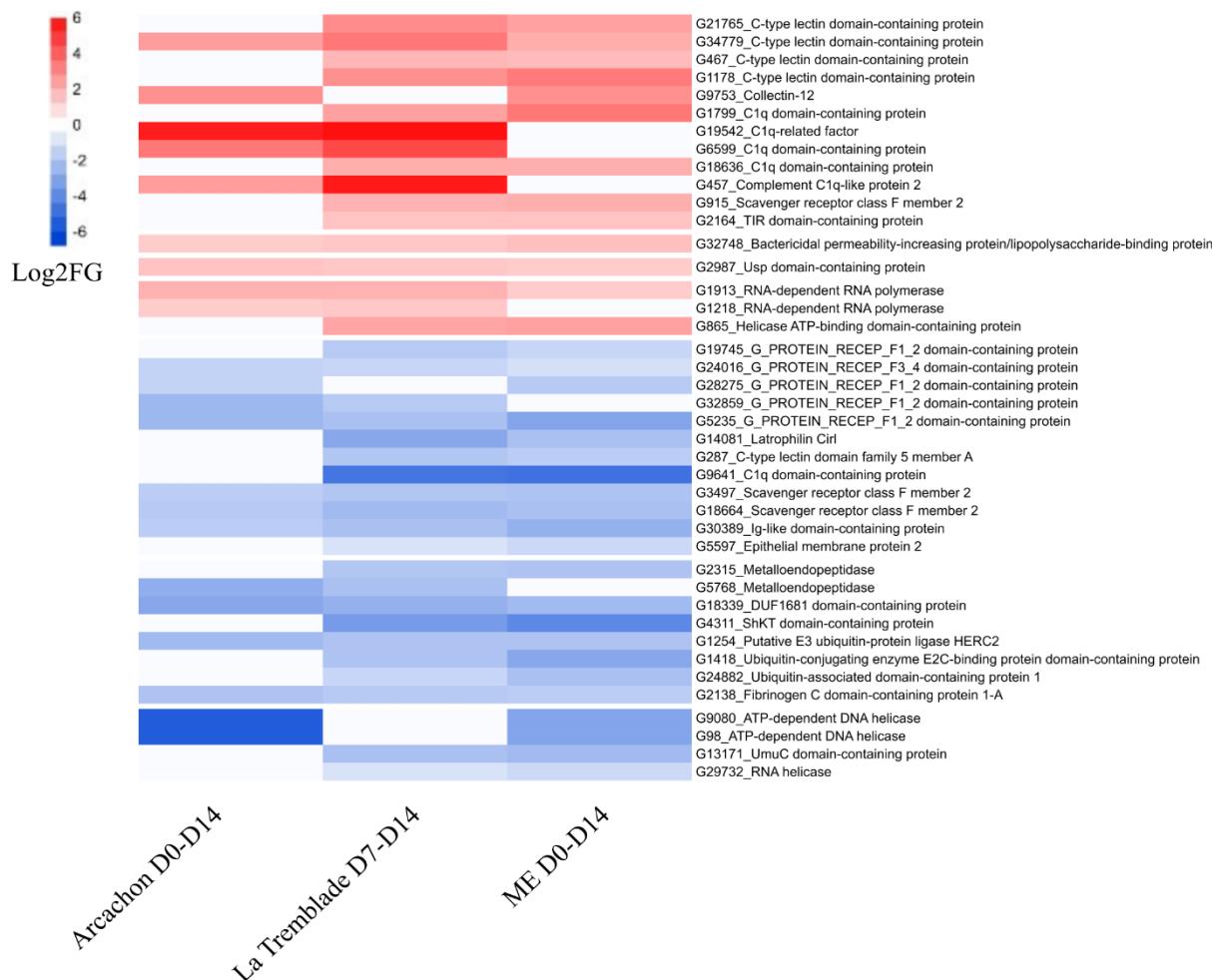
665 To identify which biological processes were affected by the microbial exposure, we conducted
666 a Rang-Based Gene Ontology Analysis (GO_MWU) (Wright et al. 2015). The range of
667 biological process enriched in DEGs (microorganisms exposed vs control) before and during
668 the onset of the POMS disease included many GO terms such as, metabolism, RNA and DNA
669 process, protein processing, signal transduction, transport, and immune functions. We then
670 focused on the enriched immune functions in oysters exposed to microorganisms compared to
671 the control oysters (**Figure 8**). The most significantly enriched functions related to immunity
672 across all oyster populations and all treatments were general functions of immunity (defence
673 response, immune system process), functions related to the response to organisms (response to
674 bacterium, response to virus), a function related to the positive regulation of response to
675 stimulus and a function related to G-protein signalling pathway (**Figure 8**). As the oysters from
676 Arcachon showed the greatest reduction in mortality risk in the face of viral infection and *V.*
677 *aestuarianus*, with all the microbial exposures, we then analysed, for these oysters only, the
678 individual DEGs for the main enriched functions linked to immunity described in (**Figure 8**).
679 This analysis revealed that before the infection (t=0), gene coding for Pattern Recognition
680 Receptor (PRRs) (C-type lectins, C1q domain containing protein), innate immune pathways
681 (toll-interleukin receptor (TIR), Complement pathway), interaction with bacteria (Bactericidal
682 permeability-increasing protein) and antiviral pathways (RNA and DNA Helicases, RNA-
683 dependent RNA polymerase) were found to be over-represented in microbial exposed oysters
684 compared to control oysters (**Figure 9**) (**Supplementary File 5 List of DEGs**).

685 In summary, long-lasting changes in gene expression were observed in juvenile oysters seven
686 months after they had been exposed to bacterial mixes or Microorganisms Enriched seawater
687 during larval stages. The long-lasting transcriptional responsiveness was found to be influenced
688 by the host's origin, was specific to the type of treatment and significantly impacts the host
689 immune response.

690

691

692 **Figure 8: GO term enrichment analysis revealed important immune pathways modified**
 693 **in response to the microorganism exposure.**


694 Dot plot showing the overrepresented GO terms (FDR <0.1) of biological process (BP) related
 695 to immune function identified using GO_MWU for the four oyster populations (Brest,
 696 Arcachon, La Tremblade and Thau) exposed to Arcachon D0-D14, La Tremblade D7-D14 or

697 ME seawater D0-D14 compared to control oysters at t=0 and t=3h OsHV-1 μ Var infection. The
698 dot size is proportional to the number of differentially expressed genes (DEG) in the biological
699 process compared to the control condition, and the colour of the dot shows the significance.

700

701

702

703

704 **Figure 9: Detailed immune-related gene expression revealed key genes modified in**
705 **Arcachon oysters in response to microorganism exposure.**

706 Transcriptomic response of immune related genes for oysters of the Arcachon population
707 exposed to Arcachon D0-D14, La Tremblade D7-D14 or ME seawater D0-D14 compared to
708 control condition before OsHV-1 μ Var experimental infection. Heatmap of DEGs associated
709 with immune processes. Only DEGs found under at least two conditions of exposure to micro-
710 organisms were shown. The intensity of DEG ratios is expressed in Log2 Fold changes
711 (Log2FC) for over expressed DEGs (in red) and under expressed DEGs (in blue).

712

713 **Discussion:**

714 OsHV-1 μVar, a threatening pathogen for oyster production, has spread not only in Europe
715 (Segarra et al. 2010; Petton et al. 2021) but also to the United States (Friedman et al. 2005),
716 Japan (Shimahara et al. 2012), Australia (Paul-Pont et al. 2013), China (Bai et al. 2015) and
717 New-Zealand (Delisle et al. 2022). On the other hand, the pathogenic bacterium *V. aestuarianus*
718 has been observed to spread across Europe (Mesnil et al. 2022). Innovative research and
719 concerted efforts are currently being explored for safeguarding *C. gigas* and ensuring the
720 sustainability of oyster farming on a global scale (Green and Montagnani 2013; Dégremont et
721 al. 2015, 2020; Lafont et al. 2017). One promising avenue of research involves education of the
722 oyster immune system through proper setting of the microbiota during early life. Similar to the
723 way early microbial colonization impacts human health (Gensollen et al. 2016; Renz et al.
724 2017), introducing specific microorganisms to oyster larvae can potentially educate their innate
725 immune systems and improve disease resistance (Galindo-Villegas et al. 2012; Fallet et al.
726 2022). The immune system in oysters is set up early during the development since the existence
727 of a primitive immune system has been detected in the trochophore larva (Tirapé et al. 2007;
728 Liu et al. 2015). This microbial education plan is a promising strategy as it is easy to implement,
729 not costly and, can be performed on numerous animals (several hundred million of larvae) at
730 the same time by bath or on their diet. However, a challenge arises in the form of current
731 hatchery practices, which aim to minimize the introduction of both non-pathogenic and
732 pathogenic microorganisms into larval tanks (Bourne et al. 1989; Helm et al. 2004; Eljaddi et
733 al. 2021; Cordier et al. 2021). Mortality issues, particularly during larval rearing, have led to
734 the use of antibiotics in hatcheries. Therefore, finding a balance between educating the immune
735 system and addressing concerns about uncontrolled microbiota transfer is crucial. Here, our
736 study explored the feasibility of microbial education in oyster larvae while considering and
737 mitigating the risks associated with uncontrolled transfer of hazardous microorganisms.

738 For this purpose, we investigated the long-term protection conferred by a larval exposure to a
739 controlled non-pathogenic whole microbiota transferred from donor oysters. The donor oysters
740 used in this study were always kept in biosecured facilities. In this way, the oysters were shown
741 to be devoid of the three main pathogens of *C. gigas* from larvae to juveniles (Azéma et al.
742 2017; Dégremont et al. 2021). In parallel, we performed the same assay using a reduced,
743 synthetic bacterial community composed of cultivable bacteria. The cultivable bacteria were
744 isolated from POMS-resistant oysters and selected according to their predictive beneficial effect

745 on POMS disease based on robust correlation analysis. The microbial exposures were
746 performed on 4 different oyster populations each exposed to either a sympatric or allopatric
747 multi-strain bacterial mixes. We showed that larval exposure to a whole microbiota from donor
748 oysters provided protection against both the POMS disease and *V. aestuarianus* infection. In a
749 different way, larvae exposed to multi-strains bacterial mixes showed improved survival against
750 OsHV-1 μ Var but no protection against *V. aestuarianus* infection. The host origin was
751 identified as a critical factor for the protection conferred and no preferential effect was observed
752 when sympatric multi-strains mixes were used. This work demonstrates the potential of
753 leveraging the oyster microbiota to enhance long-term disease resistance in oysters and sheds
754 light on the importance of considering the host origin in such protective mechanisms.

755

756 Targeting early developmental stages as a strategic window for probiotic application to induce
757 long-term protection has been proposed and explored in various animal models such as
758 mammals or humans (see review by Hashemi *et al.* 2016), but also those relevant to livestock
759 production (Wang *et al.* 2022; Villumsen *et al.* 2023). Introducing beneficial microorganisms
760 during these stages can influence both the host's microbiota composition and immune system
761 development, potentially leading to long-term beneficial immunomodulation. Our results are in
762 line with these findings since we observed a shift in both the transcriptional pattern and
763 microbiota composition of oysters exposed to beneficial microorganisms compared to their
764 non-exposed counterparts, even seven months after the exposure. The long-lasting
765 transcriptional responsiveness was found to be influenced by the host's origin and was specific
766 to the type of microbial treatment administered. A significant portion of the differentially
767 expressed genes in exposed oysters were associated with immune functions, with a particular
768 emphasis on pattern recognition receptors (PRRs). Intriguingly, the observed difference in
769 phenotype between oysters stimulated with the whole microbiota and those stimulated with
770 multi-strain bacterial mixes could not be fully explained through a thorough analysis of the
771 differentially expressed genes. This suggests that additional factors or intricate interactions
772 within the oyster's immune system and microbiota may contribute to the differential response.
773 Furthermore, when the oysters were challenged with OsHV-1 μ Var three hours after exposure,
774 changes in the transcriptional pattern were still evident in oysters exposed to beneficial
775 microorganisms compared to their non-exposed counterparts, albeit to a lesser extent than
776 before the infectious challenge. This indicates a dynamic interplay between the immune

777 response against the virus and the prior microbial stimulation, with the virus potentially exerting
778 a more pronounced effect on the transcriptional response.

779 Our findings further indicates that exposure to either bacterial mixes or whole microbiota, leads
780 to changes in the microbiota composition. This was observed during the exposure but also on a
781 long-term basis as previously observed in other studies (Padeniya et al. 2022; Villumsen et al.
782 2023; Takyi et al. 2024). Interestingly, the bacteria added as part of the bacterial mixes were
783 not detected using the employed method. This suggests that the added bacteria did not
784 effectively integrate the oyster microbiota, even shortly after the start of the exposure. Similar
785 studies indicate that administered bacteria fail to establish and only persist temporarily in the
786 microbiota of exposed animals. For instance, the *Aeromonas* sp. strain administered to oyster
787 larvae was undetectable 72 hours after addition (Gibson et al. 1998). Similarly, exposing the
788 European abalone (*Haliotis tuberculata*) to the *Pseudoalteromonas* sp. hCg-6 exogenous strain
789 resulted in a transient establishment of the probiotic strain in the haemolymph rather than a
790 sustained interaction (Offret et al. 2018). Additionally, Arctic Char (*Salvelinus alpinus*)
791 exposed to various probiotic strains did not show detectable levels of the administered strains
792 four weeks after probiotics administration (Knobloch et al. 2022). The change in microbiota
793 composition observed on long term basis might thus be linked to ongoing interactions between
794 the microbiota and the immune system, leading to a continuous reshaping of both elements and
795 explaining also the observed long-term transcriptional changes.

796

797 **Conclusion:**

798 Our study successfully investigated methods which aimed at exposing oysters to specific
799 beneficial microorganisms during larval rearing to educate their immune system. We took into
800 account the potential risks associated to this microbial exposure while ensuring that the oysters'
801 innate immune system was primed for improved disease resistance. We demonstrated the
802 potential of leveraging this microbial education to enhance disease resistance to two major
803 oyster pathogens, OsHV-1 μVar and *V. aestuarianus*, which are current critical threat for oyster
804 farming worldwide. Additionally, our findings emphasize the potential of using controlled
805 whole microbiota transfers as the best strategy to safeguard oyster health in aquaculture settings.

806 Additional optimizations will be required to identify the most effective settings for enhancing
807 the beneficial impact of microbial education. The timing, duration of exposure, and rearing
808 conditions are essential factors for the practical application of this approach in aquaculture
809 environments. Exploring combinations with other strategies, such as selecting oysters with
810 genetic backgrounds that are more receptive to microbial education, is another avenue that
811 certainly deserves further investigation.

812

813

814 **List of abbreviations**

815 ASV: Amplicon Sequence Variants
816 CFU: Colony-forming unit
817 DEG: Differentially expressed gene
818 HR: Hazard-Ratio
819 LEfSe: Linear discriminant analysis (LDA) Effect Size
820 MB: Marine Broth
821 NSI: Naissains Standardisés Ifremer or standardised Ifremer spats
822 OsHV-1 μVar: Ostreid Herpes Virus 1 μVar
823 OTU: Operational Taxonomic Unit
824 pf: post-fertilization
825 POMS: Pacific Oyster Mortality Syndrome
826 RNA-Seq: Sequencing of the polyadenylated ribonucleic acids
827

828 **Competing interests**

829 The authors declare that they have no competing interests.

830

831 **Acknowledgments**

832 The authors warmly thank the staff of the Ifremer stations of Argenton, La Tremblade and
833 Arcachon for their help and hospitality during the various oyster sampling campaigns. We are
834 grateful to Leo Duperret, Emily Kunselman, Nicole Faury, Cyrielle Lecadet and Delphine
835 Tourbiez for their help during the oyster experimental infections and Abdellah Benabdelmouna
836 and Christophe Ledu for their help during the larval rearing. We are grateful to Jean-François
837 Allienne, Margot Doberva and Michèle Laudié from the Bio-Environment platform (UPVD,
838 Région Occitanie, CPER 2007-2013 Technoviv, CPER 2015-2020 Technoviv2) for technical
839 support in library preparation and sequencing. We are grateful to the BIO2MAR platform
840 (<http://bio2mar.obs-banyuls.fr>) for access to instrumentation.

841

842 **Authors' contributions**

843 LDa, LDé, BM, BP, EM, GC and JVD contributed to oysters sampling. LDa, PC, RL and LI
844 contributed to bacteria collection. LDa, PC, LDé, BM, BP, MM, EM, JVD, ET and CC
845 performed oyster experiments. LDa, PC, JFA, CG, OR, JVD, ET and CC prepared samples and
846 performed DNA and RNA extraction on oysters samples for analyses. LDa, MAT, JFA, OR
847 and JP performed qPCR analyses. LDa, ET and CC performed microbiota analyses. LDa, JVD,
848 ET and CC performed RNAseq analyses. LDa, LDé, BM, MAT, BP, MM, YG, JVD, ET and
849 CC conceptualized and designed the experiments. LDa, LDé, BM, MAT, BP, YG, JVD, ET
850 and CC wrote the original draft. LDa, YG, JVD, ET and CC involved in funds acquisition. All
851 authors read and approved the final manuscript.

852

853 **Funding**

854 The present study was supported by the Ifremer project GT-huître and by the Fond Européen
855 pour les Affaires Maritimes et la Pêche (FEAMP, GESTINNOV project
856 n°PFEA470020FA1000007), the project "Microval" of the Bonus Qualité Recherche program
857 of the University of Perpignan, the project "gigantimic 1" from the federation de recherche of
858 the university of Perpignan, the project "gigantimic 2" from the kim food and health foundation
859 of MUSE and the project ANR DECICOMP (ANR-19-CE20-0004). This study is set within
860 the framework of the "Laboratoires d'Excellences (LABEX)": TULIP (ANR-10-LABX-41) and

861 “CeMEB” (ANR-10-LABX-04-01). Luc Dantan is a recipient of a PhD grant from the Region
862 Occitanie (Probiomic project) and the University of Perpignan Via Domitia graduate school
863 ED305.

864

865 **Availability of data and materials**

866 Raw sequence data for RNA-seq and 16S sequencing for metabarcoding analysis have been
867 made available through the SRA database (BioProject accession number PRJNA1078733).

868 R script for survival, DEseq2 and microbiota analyses are available by using the following link:
869 <https://zenodo.org/records/11200726>.

870

871 **Ethical approval**

872 The animal (oyster *Crassostrea gigas*) testing followed all european regulations concerning
873 animal experimentation. The authors declare that the use of genetic resources fulfill the French
874 and EU regulations on the Nagoya Protocol on Access and Benefit-Sharing (French legislation
875 2019-486).

876

877 **References**

878 Abt MC, Artis D (2013) The dynamic influence of commensal bacteria on the immune response
879 to pathogens. *Curr Opin Microbiol* 16:4–9. doi: 10.1016/j.mib.2012.12.002

880 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
881 tool. *J Mol Biol* 215:403–410. doi: 10.1016/S0022-2836(05)80360-2

882 Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput
883 sequencing data. *Bioinformatics* 31:166–169. doi: 10.1093/bioinformatics/btu638

884 Arrieta MC, Stiemsma LT, Amenyogbe N, Brown E, Finlay B (2014) The intestinal
885 microbiome in early life: Health and disease. *Front Immunol.* doi:
886 10.3389/fimmu.2014.00427

887 Azéma P, Travers M-A, De Lorgeril J, Tourbier D, Dégremont L (2015) Can selection for
888 resistance to OsHV-1 infection modify susceptibility to *Vibrio aestuarianus* infection in
889 *Crassostrea gigas*? First insights from experimental challenges using primary and
890 successive exposures. *Vet Res.* doi: 10.1186/s13567-015-0282-0

891 Azéma P, Travers M-A, Benabdelmouna A, Dégremont L (2016) Single or dual experimental

892 infections with *Vibrio aestuarianus* and OsHV-1 in diploid and triploid *Crassostrea gigas*
893 at the spat, juvenile and adult stages. *J Invertebr Pathol* 139:92–101. doi:
894 10.1016/j.jip.2016.08.002

895 Azéma P, Lamy JB, Boudry P, Renault T, Travers M-A, Dégremont L (2017) Genetic
896 parameters of resistance to *Vibrio aestuarianus*, and OsHV-1 infections in the Pacific
897 oyster, *Crassostrea gigas*, at three different life stages. *Genet Sel Evol* 49:1–16. doi:
898 10.1186/s12711-017-0297-2

899 Bai C, Wang C, Xia J, Sun H, Zhang S, Huang J (2015) Emerging and endemic types of Ostreid
900 herpesvirus 1 were detected in bivalves in China. *J Invertebr Pathol* 124:98–106. doi:
901 10.1016/j.jip.2014.11.007

902 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm
903 EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ,
904 Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener
905 C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki
906 M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J,
907 Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK,
908 Jiang L, Kaehler BD, Kang K Bin, Keefe CR, Keim P, Kelley ST, Knights D, Koester I,
909 Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C,
910 Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik A V., Metcalf JL,
911 Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB,
912 Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A,
913 Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR,
914 Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S,
915 van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W,
916 Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld
917 JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable
918 and extensible microbiome data science using QIIME 2. *Nat Biotechnol* 37:852–857. doi:
919 10.1038/s41587-019-0209-9

920 Bourne N, Hodgson CA, Whyte JNC (1989) A Manual for Scallop Culture in British Columbia.
921 Canadian Technical Report of Fisheries and Aquatic Sciences No. 1694.

922 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2:
923 High-resolution sample inference from Illumina amplicon data. *Nat Methods* 13:581–583.
924 doi: 10.1038/nmeth.3869

925 Chauhan R, Choudhuri A, Abraham J (2017) Evaluation of antimicrobial, cytotoxicity, and
926 dyeing properties of prodigiosin produced by *Serratia marcescens* strain JAR8. *Asian J
927 Pharm Clin Res* 10:279–283. doi: 10.22159/ajpcr.2017.v10i8.18173

928 Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ,
929 Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut
930 immune maturation depends on colonization with a host-specific microbiota. *Cell*
931 149:1578–1593. doi: 10.1016/j.cell.2012.04.037

932 Clerissi C, de Lörperil J, Petton B, Lucasson A, Escoubas J-M, Gueguen Y, Dégremont L, Mitta
933 G, Toulza E (2020) Microbiota Composition and Evenness Predict Survival Rate of
934 Oysters Confronted to Pacific Oyster Mortality Syndrome. *Front Microbiol* 11:1–11. doi:
935 10.3389/fmicb.2020.00311

936 Clerissi C, Luo X, Lucasson A, Mortaza S, de Lörperil J, Toulza E, Petton B, Escoubas J-M,
937 Degrémont L, Gueguen Y, Destoumieux-Garzón D, Jacq A, Mitta G (2022) A core of
938 functional complementary bacteria infects oysters in Pacific Oyster Mortality Syndrome.
939 *Anim Microbiome*. doi: 10.1186/s42523-023-00246-8

940 Conway JR, Lex A, Gehlenborg N (2017) UpSetR: An R package for the visualization of
941 intersecting sets and their properties. *Bioinformatics* 33:2938–2940. doi:
942 10.1093/bioinformatics/btx364

943 Cordier C, Voulgaris A, Stavrakakis C, Sauvade P, Coelho F, Moulin P (2021) Ultrafiltration
944 for environmental safety in shellfish production: A case of bloom emergence. *Water Sci
945 Eng* 14:46–53. doi: 10.1016/j.wse.2021.03.003

946 Cotter E, Malham SK, O’Keeffe S, Lynch SA, Latchford JW, King JW, Beaumont AR, Culloty
947 SC (2010) Summer mortality of the Pacific oyster, *Crassostrea gigas*, in the Irish Sea: The
948 influence of growth, biochemistry and gametogenesis. *Aquaculture* 303:8–21. doi:
949 10.1016/J.AQUACULTURE.2010.02.030

950 Dantan L, Toulza E, Petton B, Montagnani C, Degremont L, Morga B, Fleury Y, Mitta G,
951 Gueguen Y, Vidal-Dupiol J, Cosseau C (2024) Microbial education for marine
952 invertebrate disease prevention in aquaculture. *Rev Aquac* 1–15. doi: 10.1111/raq.12893

953 de Kantzow M, Hick PM, Whittington RJ (2023) Immune Priming of Pacific Oysters
954 (*Crassostrea gigas*) to Induce Resistance to Ostreid herpesvirus 1: Comparison of
955 Infectious and Inactivated OsHV-1 with Poly I:C. *Viruses* 15:1943. doi:
956 10.3390/v15091943

957 de Lörperil J, Lucasson A, Petton B, Toulza E, Montagnani C, Clerissi C, Vidal-Dupiol J,
958 Chaparro C, Galinier R, Escoubas J-M, Haffner P, Degrémont L, Charrière GM, Lafont
959 M, Delort A, Vergnes A, Chiarello M, Faury N, Rubio T, Leroy MA, Pérignon A, Régler
960 D, Morga B, Alunno-Bruscia M, Boudry P, Le Roux F, Destoumieux-Garzón D, Gueguen
961 Y, Mitta G (2018) Immune-suppression by OsHV-1 viral infection causes fatal
962 bacteraemia in Pacific oysters. *Nat Commun*. doi: 10.1038/s41467-018-06659-3

963 Degrémont L, Garcia C, Allen SK (2015) Genetic improvement for disease resistance in
964 oysters: A review. *J Invertebr Pathol* 131:226–241. doi: 10.1016/j.jip.2015.05.010

965 Degrémont L, Azéma P, Maurouard E, Travers M-A (2020) Enhancing resistance to *Vibrio*
966 *aestuarianus* in *Crassostrea gigas* by selection. *Aquaculture*. doi:
967 10.1016/j.aquaculture.2020.735429

968 Degrémont L, Morga B, Maurouard E, Travers M-A (2021) Susceptibility variation to the main
969 pathogens of *Crassostrea gigas* at the larval, spat and juvenile stages using unselected and
970 selected oysters to OsHV-1 and/or *V. aestuarianus*. *J Invertebr Pathol* 183:107601. doi:

971 10.1016/j.jip.2021.107601

972 Delisle L, Laroche O, Hilton Z, Burguin J-F, Rolton A, Berry J, Pochon X, Boudry P, Vignier
973 J (2022) Understanding the Dynamic of POMS Infection and the Role of Microbiota
974 Composition in the Survival of Pacific Oysters, *Crassostrea gigas*. *Microbiol Spectr*. doi:
975 10.1128/spectrum.01959-22

976 Eljaddi T, Ragueneau S, Cordier C, Lange A, Rabiller M, Stavrakakis C, Moulin P (2021)
977 Ultrafiltration to secure shellfish industrial activities: Culture of microalgae and oyster
978 fertilization. *Aquac Eng*. doi: 10.1016/j.aquaeng.2021.102204

979 Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, Maman S, Hernandez-
980 Raquet G, Combes S, Pascal G (2018) FROGS: Find, Rapidly, OTUs with Galaxy
981 Solution. *Bioinformatics* 34:1287–1294. doi: 10.1093/bioinformatics/btx791

982 Fallet M, Montagnani C, Petton B, Dantan L, de Lorgeril J, Comarmond S, Chaparro C, Toulza
983 E, Boitard S, Escoubas J-M, Vergnes A, Le Grand J, Bulla I, Gueguen Y, Vidal-Dupiol J,
984 Grunau C, Mitta G, Cosseau C (2022) Early life microbial exposures shape the *Crassostrea*
985 *gigas* immune system for lifelong and intergenerational disease protection. *Microbiome*.
986 doi: 10.1186/s40168-022-01280-5

987 Fleury E, Barbier P, Petton B, Normand J, Thomas Y, Pouvreau S, Daigle G, Pernet F (2020)
988 Latitudinal drivers of oyster mortality: deciphering host, pathogen and environmental risk
989 factors. *Sci Rep*. doi: 10.1038/s41598-020-64086-1

990 Food and Agriculture Organisation (2022) The State of World Fisheries and Aquaculture 2022.
991 State World Fish Aquac 2022. doi: 10.4060/cc0461en

992 Friedman CS, Estes RM, Stokes NA, Burge CA, Hargove JS, Barber BJ, Elston RA, Burreson
993 EM, Reece KS (2005) Herpes virus in juvenile Pacific oysters *Crassostrea gigas* from
994 Tomales Bay, California, coincides with summer mortality episodes. *Dis Aquat Organ*
995 63:33–41. doi: 10.3354/dao063033

996 Galindo-Villegas J, Garcíá-Moreno D, De Oliveira S, Meseguer J, Mulero V (2012) Regulation
997 of immunity and disease resistance by commensal microbes and chromatin modifications
998 during zebrafish development. *Proc Natl Acad Sci U S A*. doi: 10.1073/pnas.1209920109

999 Garnier M, Labreuche Y, Nicolas JL (2008) Molecular and phenotypic characterization of
1000 *Vibrio aestuarianus* subsp. *francensis* subsp. nov., a pathogen of the oyster *Crassostrea*
1001 *gigas*. *Syst Appl Microbiol* 31:358–365. doi: 10.1016/j.syapm.2008.06.003

1002 Gawra J, Valdivieso A, Roux F, Laporte M, de Lorgeril J, Gueguen Y, Saccas M, Escoubas J-
1003 M, Montagnani C, Destoumieux-Garzón D, Lagarde F, Leroy MA, Haffner P, Petton B,
1004 Cosseau C, Morga B, Degrémont L, Mitta G, Grunau C, Vidal-Dupiol J (2023) Epigenetic
1005 variations are more substantial than genetic variations in rapid adaptation of oyster to
1006 Pacific oyster mortality syndrome. *Sci Adv*. doi: 10.1126/sciadv.adh8990

1007 Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in
1008 early life shapes the immune system. *Science* (80-) 352:539–544. doi:

1009 10.1126/science.aad9378

1010 Gibson LF, Woodworth J, George AM (1998) Probiotic activity of *Aeromonas* media on the
1011 Pacific oyster, *Crassostrea gigas*, when challenged with *Vibrio tubiashii*. *Aquaculture*
1012 169:111–120. doi: 10.1016/S0044-8486(98)00369-X

1013 Goecks J, Nekrutenko A, Taylor J, Afgan E, Ananda G, Baker D, Blankenberg D, Chakrabarty
1014 R, Coraor N, Goecks J, Von Kuster G, Lazarus R, Li K, Taylor J, Vincent K (2010)
1015 Galaxy: a comprehensive approach for supporting accessible, reproducible, and
1016 transparent computational research in the life sciences. *Genome Biol.* doi: 10.1186/gb-
1017 2010-11-8-r86

1018 Green TJ, Montagnani C (2013) Poly I: C induces a protective antiviral immune response in
1019 the Pacific oyster (*Crassostrea gigas*) against subsequent challenge with Ostreid
1020 herpesvirus (OsHV-1 μvar). *Fish Shellfish Immunol* 35:382–388. doi:
1021 10.1016/j.fsi.2013.04.051

1022 Guzmán-Villanueva LT, Tovar-Ramírez D, Gisbert E, Cordero H, Guardiola FA, Cuesta A,
1023 Meseguer J, Ascencio-Valle F, Esteban MA (2014) Dietary administration of β-1,3/1,6-
1024 glucan and probiotic strain *Shewanella putrefaciens*, single or combined, on gilthead
1025 seabream growth, immune responses and gene expression. *Fish Shellfish Immunol* 39:34–
1026 41. doi: 10.1016/j.fsi.2014.04.024

1027 Hashemi A, Villa CR, Comelli EM (2016) Probiotics in early life: A preventative and treatment
1028 approach. *Food Funct.* 7:1752–1768.

1029 Helm MM, Bourne N, Lovatelli A (2004) Hatchery culture of bivalves. A practical manual.
1030 FAO Fish Tech Pap 471:203.

1031 Kesarcodi-Watson A, Miner P, Nicolas JL, Robert R (2012) Protective effect of four potential
1032 probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster
1033 (*Crassostrea gigas*), flat oyster (*Ostrea edulis*) and scallop (*Pecten maximus*). *Aquaculture*
1034 344–349:29–34. doi: 10.1016/j.aquaculture.2012.02.029

1035 King WL, Jenkins C, Go J, Siboni N, Seymour JR, Labbate M (2019a) Characterisation of the
1036 Pacific Oyster Microbiome During a Summer Mortality Event. *Microb Ecol* 77:502–512.
1037 doi: 10.1007/s00248-018-1226-9

1038 King WL, Siboni N, Williams NLR, Kahlke T, Nguyen KV, Jenkins C, Dove M, O'Connor W,
1039 Seymour JR, Labbate M (2019b) Variability in the composition of pacific oyster
1040 microbiomes across oyster families exhibiting different levels of susceptibility to OsHV-
1041 1 μvar disease. *Front Microbiol* 10:1–12. doi: 10.3389/fmicb.2019.00473

1042 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013)
1043 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-
1044 generation sequencing-based diversity studies. *Nucleic Acids Res.* doi:
1045 10.1093/nar/gks808

1046 Knobloch S, Skírnisdóttir S, Dubois M, Kolypczuk L, Leroi F, Leeper A, Passerini D,

1047 Marteinsson V (2022) Impact of Putative Probiotics on Growth, Behavior, and the Gut
1048 Microbiome of Farmed Arctic Char (*Salvelinus alpinus*). *Front Microbiol* 13:912473. doi:
1049 10.3389/fmicb.2022.912473

1050 Lafont M, Petton B, Vergnes A, Pauletto M, Segarra A, Gourbal B, Montagnani C (2017) Long-
1051 lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster,
1052 *Crassostrea gigas*. *Sci Rep*. doi: 10.1038/s41598-017-13564-0

1053 Lafont M, Vergnes A, Vidal-Dupiol J, De Lorgeril J, Gueguen Y, Haffner P, Petton B, Chaparro
1054 C, Barrachina C, Destoumieux-Garzón D, Mitta G, Gourbal B, Montagnani C (2020) A
1055 sustained immune response supports long-term antiviral immune priming in the pacific
1056 oyster, *Crassostrea gigas*. *MBio*. doi: 10.1128/mBio.02777-19

1057 Le Roux F, Wegner KM, Polz MF (2016) Oysters and Vibrios as a Model for Disease Dynamics
1058 in Wild Animals. *Trends Microbiol* 24:568–580. doi: 10.1016/j.tim.2016.03.006

1059 Liu Z, Zhou Z, Wang L, Song X, Chen H, Wang W, Liu R, Wang M, Wang H, Song L (2015)
1060 The enkephalinergic nervous system and its immunomodulation on the developing
1061 immune system during the ontogenesis of oyster *Crassostrea gigas*. *Fish Shellfish*
1062 *Immunol* 45:250–259. doi: 10.1016/j.fsi.2015.03.041

1063 Lokmer A, Kuenzel S, Baines JF, Wegner KM (2016) The role of tissue-specific microbiota in
1064 initial establishment success of Pacific oysters. *Environ Microbiol* 18:970–987. doi:
1065 10.1111/1462-2920.13163

1066 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for
1067 RNA-seq data with DESeq2. *Genome Biol* 15:1–21. doi: 10.1186/s13059-014-0550-8

1068 Lupo C, Travers M-A, Tourbiez D, Barthélémy CF, Beaunée G, Ezanno P (2019) Modeling the
1069 transmission of *Vibrio aestuarianus* in pacific oysters using experimental infection data.
1070 *Front Vet Sci*. doi: 10.3389/fvets.2019.00142

1071 Lv N, Pan L, Zhang J, Li Y, Zhang M (2019) A novel micro-organism for removing excess
1072 ammonia-N in seawater ponds and the effect of *Cobetia amphilecti* on the growth and
1073 immune parameters of *Litopenaeus vannamei*. *J World Aquac Soc* 50:448–459. doi:
1074 10.1111/jwas.12561

1075 Magoč T, Salzberg SL (2011) FLASH: Fast length adjustment of short reads to improve
1076 genome assemblies. *Bioinformatics* 27:2957–2963. doi: 10.1093/bioinformatics/btr507

1077 Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: Robust and fast
1078 clustering method for amplicon-based studies. *PeerJ* 2014:e593. doi: 10.7717/peerj.593

1079 Makled SO, Hamdan AM, El-Sayed AFM, Hafez EE (2017) Evaluation of marine psychrophile,
1080 *Psychrobacter namhaensis* SO89, as a probiotic in Nile tilapia (*Oreochromis niloticus*)
1081 diets. *Fish Shellfish Immunol* 61:194–200. doi: 10.1016/j.fsi.2017.01.001

1082 Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads.
1083 *EMBnet.journal* 17:10. doi: 10.14806/ej.17.1.200

1084 McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR (2019)
1085 microDecon: A highly accurate read-subtraction tool for the post-sequencing removal of
1086 contamination in metabarcoding studies. Environ DNA 1:14–25. doi: 10.1002/edn3.11

1087 McMurdie PJ, Holmes S (2013) Phyloseq: An R Package for Reproducible Interactive Analysis
1088 and Graphics of Microbiome Census Data. PLoS One. doi: 10.1371/journal.pone.0061217

1089 Mesnil A, Jacquot M, Garcia C, Tourbiez D, Canier L, Dégremont L, Cheslett D, Geary M,
1090 Vетri A, Roque A, Furones D, Garden A, Orozova P, Arzul I, Sicard M, Destoumieux-
1091 Garzón D, Travers M-A (2022) Emergence and clonal expansion of *Vibrio aestuarianus*
1092 lineages pathogenic for oysters in Europe. Mol Ecol 32:2896–2883. doi:
1093 10.1111/mec.16910

1094 Montagnani C, Morga B, Novoa B, Gourbal B, Saco A, Rey M, Bourhis M, Riera F, Vignal E,
1095 Corporeau C, Charrière GM, Travers M-A, Degrémont L, Gueguen Y, Cosseau C,
1096 Figueras A (2024) Trained immunity: perspectives for disease control strategy in marine
1097 mollusc aquaculture. Rev Aquac 1–34. doi: 10.1111/raq.12906

1098 Muñoz-Cerro K, González R, Mercado A, Lira G, Rojas R, Yáñez C, Cuadros F, Oyanedel D,
1099 Brokordt K, Schmitt P (2024) Scallop larvae resistant to a pathogenic *Vibrio* harbor host-
1100 associated bacteria with probiotic potential. Aquaculture. doi:
1101 10.1016/j.aquaculture.2023.740217

1102 Offret C, Rochard V, Laguerre H, Mounier J, Huchette S, Brillet B, Le Chevalier P, Fleury Y
1103 (2018) Protective Efficacy of a *Pseudoalteromonas* Strain in European Abalone, *Haliotis*
1104 *tuberculata*, Infected with *Vibrio harveyi* ORM4. Probiotics Antimicrob Proteins 11:239–
1105 247. doi: 10.1007/s12602-018-9389-8

1106 Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Solymos
1107 P, Stevens MHH, Szoeecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D,
1108 Carvalho G, Chirico M, Caceres M De, Durand S, Evangelista HBA, FitzJohn R, Friendly
1109 M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Cunha ER,
1110 Smith T, Stier A, Braak CJF Ter, Weedon J (2022) vegan: Community Ecology Package
1111 version 2.6-2. The Comprehensive R Archive Network

1112 Padeniya U, Larson ET, Septriani S, Pataueg A, Kafui AR, Hasan E, Mmaduakonam OS, Kim
1113 G Do, Kiddane AT, Brown CL (2022) Probiotic Treatment Enhances Pre-feeding Larval
1114 Development and Early Survival in Zebrafish *Danio rerio*. J Aquat Anim Health 34:3–11.
1115 doi: 10.1002/aah.10148

1116 Paul-Pont I, Dhand NK, Whittington RJ (2013) Spatial distribution of mortality in Pacific
1117 oysters *Crassostrea gigas*: Reflection on mechanisms of OsHV-1 transmission. Dis Aquat
1118 Organ 105:127–138. doi: 10.3354/dao02615

1119 Pernet F, Barret J, Le Gall P, Corporeau C, Dégremont L, Lagarde F, Pépin JF, Keck N (2012)
1120 Mass mortalities of Pacific oysters *Crassostrea gigas* reflect infectious diseases and vary
1121 with farming practices in the Mediterranean Thau lagoon, France. Aquac Environ Interact
1122 2:215–237. doi: 10.3354/aei00041

1123 Petton B, Pernet F, Robert R, Boudry P (2013) Temperature influence on pathogen transmission
1124 and subsequent mortalities in juvenile pacific oysters *Crassostrea gigas*. *Aquac Environ*
1125 *Interact* 3:257–273. doi: 10.3354/aei00070

1126 Petton B, Boudry P, Alunno-Bruscia M, Pernet F (2015) Factors influencing disease-induced
1127 mortality of Pacific oysters *Crassostrea gigas*. *Aquac Environ Interact* 6:205–222. doi:
1128 10.3354/aei00125

1129 Petton B, Destoumieux-Garzón D, Pernet F, Toulza E, de Lorgeril J, Degrémont L, Mitta G
1130 (2021) The Pacific Oyster Mortality Syndrome, a Polymicrobial and Multifactorial
1131 Disease: State of Knowledge and Future Directions. *Front Immunol*. doi:
1132 10.3389/fimmu.2021.630343

1133 Pham D, Ansquer D, Chevalier A, Dauga C, Peyramale A, Wabete N, Labreuche Y (2014)
1134 Selection and characterization of potential probiotic bacteria for *Litopenaeus stylirostris*
1135 shrimp hatcheries in New Caledonia. *Aquaculture* 432:475–482. doi:
1136 10.1016/j.aquaculture.2014.04.031

1137 R Core Team (2022) A language and environment for statistical computing. R Found Stat
1138 *Comput* 10:11–18.

1139 Reda RM, Selim KM (2015) Evaluation of *Bacillus amyloliquefaciens* on the growth
1140 performance, intestinal morphology, hematology and body composition of Nile tilapia,
1141 *Oreochromis niloticus*. *Aquac Int* 23:203–217. doi: 10.1007/s10499-014-9809-z

1142 Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity
1143 enhancement in black tiger shrimp (*Penaeus monodon*) by a probiont bacterium (*Bacillus*
1144 S11). *Aquaculture* 191:271–288. doi: 10.1016/S0044-8486(00)00440-3

1145 Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD (2017) An exposome perspective:
1146 Early-life events and immune development in a changing world. *J Allergy Clin Immunol*
1147 140:24–40. doi: 10.1016/j.jaci.2017.05.015

1148 Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: A versatile open source
1149 tool for metagenomics. *PeerJ*. doi: 10.7717/peerj.2584

1150 Saulnier D, De Decker S, Haffner P (2009) Real-time PCR assay for rapid detection and
1151 quantification of *Vibrio aestuarianus* in oyster and seawater: A useful tool for
1152 epidemiologic studies. *J Microbiol Methods* 77:191–197. doi:
1153 10.1016/j.mimet.2009.01.021

1154 Schikorski D, Faury N, Pepin J-F, Saulnier D, Tourbiez D, Renault T (2011) Experimental
1155 ostreid herpesvirus 1 infection of the Pacific oyster *Crassostrea gigas*: Kinetics of virus
1156 DNA detection by q-PCR in seawater and in oyster samples. *Virus Res* 155:28–34. doi:
1157 10.1016/j.virusres.2010.07.031

1158 Segarra A, Pépin JF, Arzul I, Morga B, Faury N, Renault T (2010) Detection and description
1159 of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks
1160 of Pacific oysters, *Crassostrea gigas*, in France in 2008. *Virus Res* 153:92–99. doi:

1161 10.1016/J.VIRUSRES.2010.07.011

1162 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011)
1163 Metagenomic biomarker discovery and explanation. *Genome Biol* 12:R60. doi:
1164 10.1186/gb-2011-12-6-r60

1165 Shimahara Y, Kurita J, Kiryu I, Nishioka T, Yuasa K, Kawana M, Kamaishi T, Oseko N (2012)
1166 Surveillance of Type 1 Ostreid Herpesvirus (OsHV-1) Variants in Japan. *Fish Pathol*
1167 47:129–136. doi: 10.3147/jsfp.47.129

1168 Sommer F, Bäckhed F (2013) The gut microbiota-masters of host development and physiology.
1169 *Nat Rev Microbiol* 11:227–238. doi: 10.1038/nrmicro2974

1170 Sun YZ, Yang HL, Huang KP, Ye JD, Zhang CX (2013) Application of autochthonous *Bacillus*
1171 bioencapsulated in copepod to grouper *Epinephelus coioides* larvae. *Aquaculture* 392–
1172 395:44–50. doi: 10.1016/j.aquaculture.2013.01.037

1173 Swain SM, Singh C, Arul V (2009) Inhibitory activity of probiotics *Streptococcus phocae* PI80
1174 and *Enterococcus faecium* MC13 against Vibriosis in shrimp *Penaeus monodon*. *World J*
1175 *Microbiol Biotechnol* 25:697–703. doi: 10.1007/s11274-008-9939-4

1176 Takyi E, LaPorte J, Sohn S, Stevick RJ, Witkop EM, Gregg LS, Chesler-Poole A, Small J,
1177 White MM, Giray C, Rowley DC, Nelson DR, Gomez-Chiarri M (2023) Development and
1178 evaluation of a formulation of probiont *Phaeobacter inhibens* S4 for the management of
1179 vibriosis in bivalve hatcheries. *Aquac Fish Fish* 3:256–267. doi: 10.1002/aff2.112

1180 Takyi E, Stevick RJ, Witkop EM, Gregg L, Chesler-Poole A, Small JM, White MM, Hudson
1181 R, Giray C, Rowley DC, Nelson DR, Gomez-Chiarri M (2024) Probiotic treatment
1182 modulates the bacterial microbiome of larval eastern oysters, *Crassostrea virginica*, in
1183 hatcheries. *Aquaculture*. doi: 10.1016/j.aquaculture.2024.740624

1184 Tan LTH, Chan KG, Lee LH, Goh BH (2016) Streptomyces bacteria as potential probiotics in
1185 aquaculture. *Front Microbiol* 7:1–8. doi: 10.3389/fmicb.2016.00079

1186 Tirapé A, Bacque C, Brizard R, Vandenbulcke F, Boulo V (2007) Expression of immune-
1187 related genes in the oyster *Crassostrea gigas* during ontogenesis. *Dev Comp Immunol*
1188 31:859–873. doi: 10.1016/j.dci.2007.01.005

1189 Touraki M, Karamanlidou G, Karavida P, Chrysi K (2012) Evaluation of the probiotics *Bacillus*
1190 *subtilis* and *Lactobacillus plantarum* bioencapsulated in Artemia nauplii against vibriosis
1191 in European sea bass larvae (*Dicentrarchus labrax*, L.). *World J Microbiol Biotechnol*
1192 28:2425–2433. doi: 10.1007/s11274-012-1052-z

1193 Villumsen KR, Sandvang D, Vestergård G, Olsen MSR, Juul J, Dencker M, Kudsk J, Poulsen
1194 LL (2023) Effects of a novel, non-invasive pre-hatch application of probiotic for broilers
1195 on development of cecum microbiota and production performance. *Anim Microbiome*.
1196 doi: 10.1186/s42523-023-00263-7

1197 Wang G, Wang X, Ma Y, Cai S, Yang L, Fan Y, Zeng X, Qiao S (2022) *Lactobacillus reuteri*
1198 improves the development and maturation of fecal microbiota in piglets through mother-

1199 to-infant microbe and metabolite vertical transmission. *Microbiome*. doi: 10.1186/s40168-
1200 022-01336-6

1201 Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid
1202 assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol*
1203 73:5261–5267. doi: 10.1128/AEM.00062-07

1204 Webb SC, Fidler A, Renault T (2007) Primers for PCR-based detection of ostreid herpes virus-
1205 1 (OsHV-1): Application in a survey of New Zealand molluscs. *Aquaculture* 272:126–
1206 139. doi: 10.1016/j.aquaculture.2007.07.224

1207 Wen C, Xue M, Liang H, Zhou S (2014) Evaluating the potential of marine *Bacteriovorax* sp.
1208 DA5 as a biocontrol agent against vibriosis in *Litopenaeus vannamei* larvae. *Vet Microbiol*
1209 173:84–91. doi: 10.1016/j.vetmic.2014.07.022

1210 Wright RM, Aglyamova G V, Meyer E, Matz M V (2015) Gene expression associated with
1211 white syndromes in a reef building coral, *Acropora hyacinthus*. *BMC Genomics*. doi:
1212 10.1186/s12864-015-1540-2

1213 Yan F jun, Tian X li, Dong S lin, Fang Z heng, Yang G (2014) Growth performance, immune
1214 response, and disease resistance against *Vibrio splendidus* infection in juvenile sea
1215 cucumber *Apostichopus japonicus* fed a supplementary diet of the potential probiotic
1216 *Paracoccus marcusii* DB11. *Aquaculture* 420–421:105–111. doi:
1217 10.1016/j.aquaculture.2013.10.045

1218 Yeh H, Skubel SA, Patel H, Cai Shi D, Bushek D, Chikindas ML (2020) From Farm to Fingers:
1219 an Exploration of Probiotics for Oysters, from Production to Human Consumption.
1220 *Probiotics Antimicrob Proteins*. doi: 10.1007/s12602-019-09629-3

1221 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: A
1222 taxonomically united database of 16S rRNA gene sequences and whole-genome
1223 assemblies. *Int J Syst Evol Microbiol* 67:1613–1617. doi: 10.1099/ijsem.0.001755

1224 Zhang L, Mai K, Tan B, Ai Q, Qi C, Xu W, Zhang W, Liufu Z, Wang X, Ma H (2009) Effects
1225 of dietary administration of probiotic *Halomonas* sp. B12 on the intestinal microflora,
1226 immunological parameters, and midgut histological structure of shrimp, *Fenneropenaeus*
1227 *chinensis*. *J World Aquac Soc* 40:58–66. doi: 10.1111/j.1749-7345.2008.00235.x

1228