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Abstract

It is a challenging task to identify functional transcriptional regulators, which control expression of gene
sets via regulatory elements and epigenomic signals, involving context-specific studies such as
development and diseases. Integrating large-scale multi-omics epigenomic data enables the elucidation of
the complex epigenomic control patterns of regulatory elements and regulators. Here, we propose TRAPT,
a multi-modality deep learning framework that predicts functional transcriptional regulators from a queried
gene set by integrating large-scale multi-omics epigenomic data, including histone modifications, ATAC-
seq and TR-ChIP-seq. We design two-stage self-knowledge distillation model to learn nonlinear embedded
representation of upstream and downstream regulatory element activity, and merge multi-modality

epigenomic features from TR and the queried gene sets for inferring regulator activity. Experimental results
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on 1072 TR-related datasets demonstrate that TRAPT outperforms current state-of-the-art methods in
predicting transcriptional regulators, especially in the prediction of transcription co-factors and chromatin
regulators. Additionally, we have successfully identified key transcriptional regulators associated with the
disease, genetic variation, cell fate decisions, and tissues. Our method provides an innovative perspective
for integrating epigenomic data and has the potential to significantly assist researchers in deepening their

understanding of gene expression regulation mechanisms.

I ntroduction

The intricate patterns of gene regulation are programmed by multiple upstream transcriptional regulators
(TRs), such as transcription factors (TFs), transcription co-factors (TcoFs), and chromatin regulators (CRs),
which can mediate regulatory signals between promoters and distal enhancers'. The onset of diseases is
often associated with aberrant patterns of gene expression, underscoring the importance of identifying the
transcriptional regulators that control key gene expression programs. The advancements in ChIP-seq and
ATAC-seq techniques have enabled to effectively illustrate cis- and trans-regulatory landscapes. Genomic
TRs binding affinities in conjunction with epigenetic information, such as histone modifications and
chromatin openness, collectively determine the cell-specific regulatory activities of TRs? Additionally,
numerous studies have revealed that transcription factors bind to specific cis-regulatory sequences within
the genome, including enhancers and promoters, to modulate the expression of their target genes'3’4.
Therefore, integrating abundant epigenomic data to identify upstream synergistic regulatory features of
genes is imperative for predicting TRs. With the rapid advancement of high-throughput sequencing
technologies, a vast accumulation of epigenomic data has been amassed, spanning multiple modalities such
as ATAC-seq, DNase-seq, and ChlP-seq, due to differences in sequencing techniques. A major challenge
lies in comprehensively collecting and processing these datasets from various sources. Additionally,
datasets from different origins exhibit significant issues, including noise interference, batch effects, and
data redundancy. Consequently, constructing large-scale data models, developing effective data integration
algorithms, and capturing useful data representations while filtering out noise remain substantial

challenges.

Some methods have proposed to infer upstream transcriptional regulators using functional gene sets.
These include Enrichr®*, TFEA.ChIP®®, ChEA3°, MAGIC®, i-cisTarget’, BART?, and Lisa”. Enrichr,
TFEA.ChIP, ChEA3 and MAGIC use gene sets as input, predicting TRs through enrichment analysis with
gene sets related to TFs. These approaches essentially involve statistical testing based on the overlaps
between the target genes of TRs and the input genes. Although these methods demonstrate notably faster
analysis speeds, they do not take into consideration the detailed information of cis-regulatory elements
(CREs). As transcription factors function by binding to regulatory elements, information on the cis-

regulatory profile is crucial for the accurate inference of regulators. i-cisTarget matches CREs on the
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genome to predict TF activity through enrichment analysis. i-cisTarget uses CREs instead of merely gene
set data, more accurately simulating TF binding, thereby significantly improving the performance of TF
activity prediction. However, this algorithm only used CREs associated with input gene set, which is
insufficient to simulate the entire genome's cis-regulatory profile. BART solves the incomplete cis-
regulatory profile coverage problem well by inferring the cis-regulatory profile from a large amount of
H3K27ac ChlP-seq data using the regression-based MARGE™ algorithm. Lisa, known as "MARGE second
generation”, further utilizes an extensive array of DNase-seq data, in addition to H3K27ac ChlP-seq data,
to enhance the predictive performance of gene-related cis-regulatory profiles. Although BART and Lisa
solve the incomplete cis-regulatory profile coverage problem, there is an inherent bias in TR binding,
which we refer to as Transcriptional Regulator Binding Preference (TRBP). Essentially, TRs exhibit a
predisposition towards associating with regions of active chromatin. More importantly, all existing methods
are limited to inferring upstream regulatory elements using gene sets, but no methods are available for
deducing the downstream regulatory elements of transcriptional regulators. There is a pressing need to
develop approaches that take into account the bidirectional regulatory relationships of cis-regulatory

elements.

The integration of epigenomic multi-omics data is fraught with complexity, including the presence of
cross-model and noise, as well as potential non-linear relationships between samples. Existing algorithms
only use traditional regression-based methods, such as Lisa, and do not consider the effects of cross-model
and noise when integrating multi-omics data. Moreover, the relationships between multi-omics data are not
simple linear problems, but a complex network. Deep learning algorithms have achieved great success in
solving these specific biological problems*2. The initial step in employing data-driven deep learning
approaches involves the extensive collection and processing of epigenetic data. Previously, we developed
several epigenetic regulatory databases, such as TcoFBase', CRdb', TFTG™, SEdb™, and ATACdb",
which can extend the scope of epigenomic data. TcoFBase, CRdb, and TFTG, as transcription regulation
databases, have collected a large amount of transcription regulator data, while SEdb and ATACdb, as
epigenomic databases, have collected the most comprehensive enhancer and chromatin accessibility data.
By integrating a large amount of epigenomic resources, we have constructed the most comprehensive
epigenomic feature library. Integrating such rich epigenomic data with cutting-edge deep learning

techniques presents an unprecedented opportunity to unravel the complex landscapes of the epigenome.

In this study, we proposed a novel data-inspired deep learning framework termed TRAPT (Transcription
Regulator Activity Prediction Tool), which can leverage large-scale epigenomic datasets, assimilating
advanced knowledge distillation models and graph convolutional neural networks. We have designed a
multi-stage fusion deep learning approach to concurrently integrate the signals from upstream regulatory
elements within gene sets and the downstream regulatory elements of transcriptional regulators (TRs), in
order to obtain an optimal representation of TRs activity and predict key TRs for gene sets with context-

specific regulation. To assess the effectiveness of our method, we predicted transcription factors, co-factors
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and chromatin regulators on up to 570 TR knockdown/knockout datasets from KnockTF*® database and 502
TF binding datasets from GTRD. Benchmark tests were conducted against established tools such as Lisa,
BART, i-cisTarget and ChEA3, and our results demonstrated that TRAPT outperforms these in predicting
TR activity. We also leveraged TRAPT in the study of Alzheimer's disease, successfully identifying key
transcriptional regulators such as REST. We ultimately applied TRAPT to datasets from human cell
development and normal human tissues. TRAPT successfully predicted critical regulatory factors

controlling cell fate determination as well as tissue-specific regulators.

Resaults

TRAPT overview.

TRAPT is a multi-omics integration framework designed for inferring transcriptional regulator activity
from a set of query genes. TRAPT employs a multi-stage fusion strategy to address the issues of incomplete
cis-regulatory profile coverage and TRBP problems. By leveraging two-stage self-knowledge distillation to
extract the activity embedding of regulatory elements, TRAPT can predicts key regulatory factors for sets
of query genes through a fusion strategy. The TRAPT framework comprises four main steps: (1)
Calculating the epigenomic regulatory potential (Epi-RP) and transcriptional regulator regulatory potential
(TR-RP) (Fig. le); (2) Predicting downstream regulatory element activity of each TR (Fig. 1a); (3)
Predicting the context-specific upstream regulatory element activity of the queried gene set (Fig. 1b); (4)
Integrating the predicted regulatory element activity from steps 2 and 3 for predicting the activity of TRs
(Fig. 1c, d).

To calculate the regulatory potential of epigenomes and TRs, we collected over 20,000 epigenomic
sample datasets, including a substantial number of ATAC-seq, H3K27ac ChlP-seq, and TR ChIP-seq
datasets, followed by rigorous data preprocessing. Compared to previous methods, TRAPT possesses a
more comprehensive and high-quality dataset, with TR data numbering 17,227, which is 2.49 times the
amount of Lisa's dataset and 2.16 times that of BART's. Furthermore, the chromatin accessibility data we
collected and processed exceed the coverage of the largest existing methods by 1.47 times (TRAPT: 1,329;
Lisa: 904), and the H3K27ac data is 1.44 times more than that of Lisa (TRAPT: 1,465; Lisa: 1,014)
(Supplementary Fig. 1a, b). Based on the large-scale epigenome and TR background knowledge library,
we calculated the regulatory potential from the epigenome and TR datasets. For epigenomic data, we
implemented a uniform weight decay strategy. To effectively differentiate the regulatory scope of various
TRs and to provide information on specific regulatory patterns for each TR, we applied a specific weight
decay strategy to each TR. (Fig. 1€). This effectively differentiates the regulatory scope of different TRs
and provides information on specific regulatory patterns for each TR. For a single epigenomic sample, the
regulatory potential of a given gene fundamentally represents the aggregated activity of regulatory elements

within 100kb of that gene. For a single transcriptional regulator sample, the regulatory potential of a given
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gene indicates the aggregated activity of transcriptional regulators bound within 100kb of that gene (see

Materials and Methods section).

To effectively integrate activities from transcriptional regulators downstream and genes upstream
regulatory elements, we divided the activity prediction of regulatory elements into two phases. In the first
phase, our goal is to predict the activities of downstream regulatory elements of TRs through integrating
Epi-RP and TR-RP. How to effectively aggregate TR-context-specific epigenomic sample signals to predict
TR epigenomic activity is a challenge. Meanwhile, methods based on graph convolutional neural networks
have demonstrated excellent performance in aggregating neighbor sample information. Therefore, we
reformulated the activity prediction problem into a network optimization task. Initially, we use k-nearest
neighbours™ to construct a heterogeneous network between TRs and epigenomic samples (e.g., CD4+,
CD8+ H3K27ac samples) as the initial epigenomic regulatory network (ERN), where the edges of the
network represent potential tissue/cell type-specific downstream regulation of TRs. Based on the network,
we developed a multi-modal epigenome guided self-knowledge distillation model, named the D-REA
model, to optimize the initial ERN. D-REA model can integrate Epi-RP and TR-RP to predict tissue/cell
type-specific gene activity of each TR. The teacher model guides the student model to optimize the ERN by
extracting low-dimensional embeddings of multi-modal regulatory potential in a self-knowledge distillation
manner. Specifically, we input the constructed regulatory potential matrix into a teacher model to learn the
joint embedding representations of TR and epigenome samples. We use the teacher model based on a
conditional variational autoencoder (CVAE) to effectively integrate regulatory potential features from
different modalities. Concurrently, the constructed ERN serves as input for the student model, which learns
the low noise cross-modal regulatory potential embedding representations of each TR and epigenomic
sample through a variational graph autoencoder (VGAE). During learning, the student model's parameters
are constrained by the omics discrimination knowledge from the teacher model. This enables the student
model to reconstructs the ERN as well as amalgamate differential modal features from multiple omics. This
approach provides a constrained training environment for the student model, enhancing its resistance to
overfitting and generalization performance. The output of the D-REA model is determined by aggregating
the activities of regulatory elements in epigenomic samples proximal to the transcriptional regulators. The
activity matrix represents the aggregated activity of transcriptional regulators’ downstream regulatory
elements near genes, with higher values signifying a more intense level of transcriptional activity in the

vicinity of the genes.

In the second phase, our objective is to predict the activities of context-specific upstream regulatory
elements of query genes. To accomplish this, an effective strategy is to select significant epigenomic
samples from data with noisy and integrate these chosen samples®®®. The ultimate integration of Epi-RP
signifies the activities of upstream regulatory elements of genes. Therefore, we constructed a self-
knowledge distillation model constrained by low-dimensional epigenomic embeddings, named the U-REA

model, to infer the activities of upstream regulatory elements of genes. The U-REA model generates low-
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dimensional nonlinear representations of epigenomic data through a teacher model, while the student model
learns these low noise representations and constrains their weights, thereby endowing the U-REA model
with the ability to select key epigenomic samples. More specifically, the Epi-RP matrix is used as the
model's input, with a set of query genes and background genes serving as labels for the teacher model. As
the model trains, the teacher network is able to extract features of regulatory elements potentially
associated with the query genes, and these extracted features are used as softening labels for the student
model. The student model learns this low-dimensional epigenomic embedding representation extracted by
the teacher model using a network architecture equipped with sparse group lasso (SGL)*. By grouping the
regulatory potential matrix based on sparse group lasso according to its relevance to the query genes, the
student model can impose sparsity constraints both within and between groups. Samples within a group
represent highly similar regulatory element profiles, which may contain highly redundant samples. Note

that compared to most linear epigenomic sample selection methods®*°

, the U-REA model employs a non-
linear deep learning strategy with accounting for redundant information present in similar epigenomic
samples by incorporating a constraint scheme based on sample similarity. This approach allows for more
precise selection of non-redundant and non-linearly combined epigenomic samples. Based on the
regulatory elements in the selected epigenomic samples, we ultimately constructed another multi-layer
neural network model, and the fitted activities of these elements serve as the output of the U-REA model.
The output of the final model contains activity vectors that encompass context-dependent information,
originating from a specific content-specific gene set. The variation in the values within these vectors
represents the specificity of chromatin accessibility (ATAC) and activity (H3K27ac) states associated with

the genes' locations.

By integrating the outputs of the D-REA and U-REA models, we obtain combined regulatory element
activities that encapsulate information from both context-free upstream transcriptional regulators and
context-specific downstream target genes. We normalized the outputs of both stages' models. we obtained
the integrated regulatory element activity (I-REA) for both modalities by element-wise addition of the
normalized TR-RP matrix to the D-REA matrix, followed by an element-wise multiplication with the U-
REA vector. Subsequently, for each TR within both models, we quantified its association with the query
gene set using the area under the ROC curve (AUC) score®. Finally, we merged the activity scores of the
corresponding TRs from both modalities to obtain the final combined activity score. In summary, TRAPT
integrates downstream regulatory element activity of transcriptional regulators and upstream regulatory
element activity of genes to infer the key transcriptional regulators that regulate the queried gene set. We
have outlined the overall architecture and concept of the model; specific implementation details can be

found in the Materials and Methods section.

TRAPT demonstrates state-of-the-art performance on benchmark datasets
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To comprehensively evaluate the performance of TRAPT, we utilized 570 TR knockdown/knockout
datasets from the KnockTF database and 502 TF binding datasets from GTRD for integrated assessments.
After quality control, processing, and differential expression analysis, we retained the top-ranked
upregulated and downregulated genes of each RNA-seq data as inputs for TRAPT and ultimately evaluated

the performance of TRAPT based on the ranking of the target transcription regulatory factors.

We compared TRAPT with several methods that use gene sets as inputs, including Lisa, BART, and i-
cisTarget, which utilize TR-ChlIP-seq data as a background. Additionally, we evaluated the conventional
enrichment analysis method ChEAS3, which primarily uses TR-related gene set data as its background.
Using various evaluation criteria, such as the number of top 10 TFs recovered, the number of top N TFs
recovered, and the overall TF recovery performance, we conducted a comprehensive performance
assessment of the models. Based on the metric of the number of top 10 TFs recovered, TRAPT's
performance improved by 13% compared to the second-best method (i.e., Lisa) (Fig. 2a). Compared to the
classic i-cisTarget method, TRAPT's performance in predicting the top 10 TFs improved by over 200%.
Moreover, compared to conventional enrichment approaches such as ChEA3, TRAPT demonstrates a
marked superiority in performance, underscoring the advantages of models predicated on transcription
regulator binding. We subsequently calculating the number of correctly predicted transcription factors from
cutoff rank 1 to 10 at various thresholds and measuring model performance using the area under the curve
(AUC) (Fig. 2a). Clearly, TRAPT exhibited the best predictive performance (AUC 0.643). Finally, to
evaluate the overall performance of all methods, we calculated the mean reciprocal rank (MRR) scores, a
metric used to measure the overall performance of ranking algorithms?. The results (Fig. 2a) show that
TRAPT (MRR 0.067) improved overall model performance by 18% compared to Lisa (MRR 0.057) and by
76% compared to BART (MRR 0.038). Meanwhile, we found that TRAPT significantly outperforms other
methods in overall ranking for predicting TRs (Fig. 2g). These findings demonstrate TRAPT's exceptional
performance in predicting transcription factors, surpassing previous methods.

Compared to previous methods, which primarily focused on predicting the activity of TFs, our approach,
through targeted collection of high-quality ChIP-seq data for TcoFs and CRs (see Materials and Methods
section), further predicts the activity of TcoFs and CRs. Although existing methods can predict some TcoFs
and CRs, they often conflate these concepts without distinguishing between TFs, TcoFs, and CRs. Our
method, however, effectively differentiates among these types of transcriptional regulators. While other
methods do not specifically predict non-TF entities, we also benchmarked them and found that TRAPT
significantly outperforms existing methods in predicting transcription co-factors and chromatin regulators
(Fig. 2b, c). We observed a significant decline in Lisa's performance in predicting TcoFs compared to its
second-best performance in TF prediction (Fig. 2b), potentially due to Lisa's collection of extensive data on
TFs and CRs but lacking in TcoF data. Moreover, TRAPT's performance in predicting chromatin regulators
far surpasses that of Lisa (Fig. 2c). TRAPT's significant advantages in predicting transcription factors,

chromatin regulators and transcription co-factors can be attributed to its use of a multi-stage fusion strategy
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and its extensive library of transcription regulators and epigenomic backgrounds.

To further test TRAPT's ability in predicting transcriptional regulators that directly affect genes, we used
target genes of 502 TFs from GTRD?* (target gene sets bound by transcription factors based on ChIP-seq
studies) as inputs for TRAPT, Lisa, BART, i-cisTarget, and ChEA3. The results demonstrated TRAPT's
exceptionally high performance (Fig 2g). We also found that the BART method significantly
underperformed on the TF-ChIP-seq target gene datasets compared to its performance on the TF
knockdown datasets. Conversely, our method demonstrated enhanced predictive performance on the TF-
ChlP-seq target gene datasets, even surpassing the combined scores of four other methods in the top ten
performance metrics (TRAPT: 272, other methods total: 182) (Fig. 2e€). TRAPT also significantly

outperformed similar methods in both local and overall performance assessments (Fig. 2€).

Subsequently, we explored the performance of different methods across various protein families. The
results showed that TRAPT significantly outperformed other methods (Fig. 2d, f). Additionally, we found
that for certain protein families, TRAPT's predictive performance completely contrasted between different
types of data. For example, the performance on TR knockdown/knockout datasets was notably superior for
CP2 and RXR-like compared to TF binding datasets, whereas for families such as zf-C2H2, IRF, THR-like,
and CSD, the opposite was true. This indicates the potential for substantial impacts from secondary effects.
Finally, a potential issue that may arise from the vast amount of transcription regulators and epigenomic
data is the impact on algorithm speed. We have benchmarked the runtime of the TRAP, Lisa, and BART
tools (Supplementary Fig. 1c). TRAPT's speed surpasses that of the Lisa and BART algorithms,

particularly in predicting the activity of individual transcription regulators (Supplementary Fig. 1d).

Multi-stage fusion strategy booststranscriptional regulator prediction

To investigate the potential benefits of a multi-stage fusion strategy for predicting transcription regulators,
we implemented extensive ablation tests. The U-REA model simulates the activity of upstream regulatory
elements for a specific set of input genes, effectively capturing the current epigenetic state of context-
specific genes. When the U-REA model was removed from our method, a significant decline in the overall
model performance was observed (Fig. 3a, b and Supplementary Fig. 2a), showing that the U-REA
model reasonably represents the epigenetic state of the input gene set. The D-REA model can predict the
epigenomic profile corresponding to the TR, which considers the TR's preference for the genome under
specific conditions. Our approach uniquely considers the activity of downstream regulatory elements
associated with TRs. By integrating the binding activity of TRs with the activity of the regulatory elements
they bind, our method provides a more comprehensive context-specific insight into TR function. To test
usefulness of the model, we removed the D-REA model and observed a significant decline in the overall
model performance. This result further demonstrates that considering the specificity of TR binding in

regulating element activity is highly effective in enhancing predictive performance. Additionally, by
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calculating the ratios of transcriptional regulator binding to distal and proximal enhancers, we were able to
discern the regulatory preferences of each TR. Consequently, we have developed specific regulatory
potential models for each TR to describe their unique regulatory patterns (details in Supplementary
Materials). Upon removing the TR-specific regulatory potential model, we observed a decline in the overall

performance of the model.

We input TR-RP matrix and Epi-RP matrix and generated a ground real network of TR and epigenome
using k-nearest neighbours. The D-REA model is designed to optimize the links between TR and the
epigenome based on observed links, while also restoring missing links. Therefore, we evaluated the D-REA
model from the perspective of link prediction. We divided the observed links into training, validation, and
test sets to simulate missing links. By training the model on the training set and then checking the recovery
of missing links on the test set, we evaluated the ability of the D-REA model to infer the relationship
between TR and the epigenome. We observed that the losses on the validation set of both the teacher and
student networks decreased rapidly during the training process (Supplementary Fig. 2b), and the area
under the receiver operating characteristic curve (auROC) and area under the precision-recall curve
(auPRC) values finally reached 0.81 and 0.84 on the test set, respectively (Supplementary Fig. 2c). Given
the potential for a significant number of false-negative connections in actual scenarios, we masked varying
proportions of links to evaluate the stability of the model under different conditions of missing data. The
results demonstrated that as the number of masked edges increased (up to 15% maximum), the model's
recovery performance remained robust, with the auPRC exceeding 0.82 and average accuracy (AP) greater
than 0.8 (Supplementary Fig. 2d). The recovery effect of the model was satisfactory, indicating the
stability of the D-REA model in the face of missing disturbances. We subsequently conducted performance
testing on the U-REA model. The purpose of the U-REA model is to predict cis-regulatory profiles based
on queried gene sets and the Epi-RP matrix. A key challenge is to select crucial epigenomic samples, which
are expected to best represent the epigenetic state of the current context-dependent gene set, from
redundant data. To tackle this, we computed the model's performance under different sample selection
scenarios. We observed that the rate of performance improvement significantly slowed down after selecting

10 features. This finding aligns with the conclusions of existing research'® (Supplementary Fig. 2€).

Finally, we compared the performance of TRAPT on upregulated and downregulated gene sets and found
that the prediction for downregulated gene sets was better than that for upregulated gene sets (Fig. 3c). The
result indirectly proved that transcriptional activators are more common than transcriptional repressors®
(Supplementary Fig. 2f, g). We also found that most transcriptional regulator either act as transcriptional
activators or as transcriptional repressors, with a few, such as CTCF, NANOG, FOXAL, and ESR1, having
dual functions (Fig. 3d). In conclusion, TRAPT can accurately predict transcriptional activators, repressors,

and dual functions.

TRAPT predictskey transcriptional regulatorsin ESR1 knockdown study
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Activating mutations of estrogen receptor alpha (ER/ESR1) are found in approximately 40% of endocrine-
resistant ER-positive (ER+) breast cancer cases, making it the most prevalent subtype among breast
cancers. As a TF, ESR1 can mediate aberrant expression of a large number of downstream risk genes. To
validate the capability of TRAPT in identifying key transcriptional regulators in disease contexts, we
applied it to a gene set derived from human MCF7 ER+ breast cancer cells subjected to siRNA-mediated
ESR1 knockdown. Upon submitting the differential gene set before and after ESR1 knockdown, TRAPT
accurately predicted the transcription factor ESR1 as ranks 1 in the downregulated gene set and 17 in the
upregulated gene set (Fig. 4a), indicated that ESR1 may possess dual functions of activating and repressing
genes in breast cancer’’. Moreover, TRAPT also identified top-ranked other ESR1 associated cancer
transcription factors, transcription co-factors and chromatin regulators such as FOXAL, EP300, and MED1
etc. (Fig. 4d and Supplementary Fig. 3a). For example, the transcription factor GATA3 is a key
determinant of mammary luminal cell fate’®. The pioneer factor FOXAL influences the onset and
progression of breast cancer by modulating genomic accessibilityz‘s. The histone acetyltransferase EP300
acetylates ESR1 enhances the expression of ESR1 target genes in breast cancer cells®’. Furthermore, the
interactions among the top-ranked TRs from the STRING* database showed that they have high-frequency
interactions with each other (Fig. 4b). The co-expression analysis from the TCGA? breast cancer dataset
also reveals a tight relationship among transcriptional regulators (Fig. 4c), notably demonstrating a clear
co-expression pattern between GATA3, FOXA1 and ESR1. Overall, TRAPT successfully identified ESR1
along with its associated transcriptional cofactors and chromatin regulators. We meticulously explored the
potential interactions among these proteins and their genomic binding patterns, demonstrating the efficacy
of TRAPT.

The D-REA score effectively reflects the epigenetic status of TR, which we combine with its regulatory
potential to optimize the activity representation of TR. In theory, representations of transcriptional
regulators that incorporate epigenetic information should clearly distinguish the genes they regulate. To
validate this, we categorized the identified transcriptional regulators' D-REA scores into query genes and a
background gene set. We found indicate that the top-ranked transcriptional regulators, including the
transcription factor ESR1 along with its associated cofactors and chromatin regulators, scored significantly
higher in the query gene set compared to the background gene set. ESR1 emerges as the most significant
among the transcriptional regulators in both the ATAC and H3K27ac contexts (ATAC: p=3.31e-38,
H3K27ac: p=8.55e-34). This indicates that the epigenetic information of ESR1 in cancer can be effectively
captured by the representation module of the TRAPT D-REA model. Moreover, we also found that the
significance of other top-ranked TRs decreases with their descending rank order, such as NCOAS3, NIPBL,
and FOXAL. (Fig. 4e and Supplementary Fig. 3b). Notably, HDGF was positioned at the bottom in the
predictive rankings, and its corresponding significance was substantially reduced compared to other TRs
(ATAC: p-value=0.449, H3K27ac: p-value=0.046). These findings underscore the ability of the D-REA

scores of transcriptional regulators to effectively discriminate between the genes they regulate.
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Concurrently, to validate the superior predictive capability of the interpolated I-REA scores over the non-
interpolated original regulatory potential scores, we constructed activity profiles for both interpolated and
non-interpolated transcriptional regulators. We observed that the top-ranked TRs with high I-REA scores

exhibit stronger signals for the corresponding query gene sets (Fig. 49).

ESR1 is capable of binding to enhancer elements that regulate distal target genes, such as ERa-occupied
super-enhancers (ERSEs)®®, while TRAPT adeptly leverages distal information via specialized models of
regulatory potential. In order to further investigate and predict the genomic binding characteristics of TRs,
we categorized enhancers near the query genes as distal and proximal enhancers and plot the enhancer
mark profiles for each predicted transcriptional regulator. We discovered that the predicted upstream
transcriptional regulators bind significantly more in enhancer regions near the query genes compared to
background enhancer regions (Fig. 4f). Conversely, the predicted downstream HDGF binds less in
enhancer regions near the query genes than in background enhancer regions. Notably, our analysis
demonstrates a strong inclination of GATA3 (Proximal p-value = 9.7e-120 < Distal p-value = 1.4e-62) and
FOXAL (Proximal p-value = 2.0e-51 < Distal p-value = 5.4e-22) to bind proximal to genes, whereas ESR1
and EP300 did not exhibit a comparable preference. Lastly, we visualized the tracks near several
significantly downregulated differentially expressed genes for ESR1, GATA3, FOXA1, EP300, and HDGF
(Fig. 4h). All the predicted upstream transcriptional regulators exhibited conspicuous binding patterns near
the genes, and the top ten predicted epigenomic sample tracks highlighted a significant enrichment of
regulatory elements near ESR1 binding sites. Additionally, we discerned similar genomic binding patterns
for the predicted top transcriptional regulators, while no such pattern was evident for the predicted bottom
HDGF (Fig. 4f). These findings further substantiate the reliability of TRAPT in predicting transcription

factors and their associated transcriptional cofactors and chromatin regulators.

TRAPT predicts functional transcriptional regulators in post-GWAS
analysis of Alzheimer'sdisease

Genetic variations at specific DNA positions within transcription factor binding sites can alter the binding
affinity or activity of transcription factors, consequently affecting gene expression and cellular processes.
Therefore, we applied TRAPT to Alzheimer's disease (AD) with the aim of identifying key transcriptional
regulators impacted by causal variants. To accomplish this, we utilized gene sets associated with AD, as
predicted by MAGMAZ®, a tool designed to generate inferred disease gene sets from GWAS summary
statistics, as inputs for our algorithm. We then conducted a binding analysis of the disease-associated TRs
predicted by TRAPT with the significant causal variants detected by GWAS fine mapping (Fig. 5a).
Through integrating GWAS data and TR results of TRAPT in AD, we display usefulness of TRAPT in
identifying key transcriptional regulators impacted by causal variants.

Specifically, we initially retrieved a GWAS dataset from causaldb?®, comprising a European population
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sample of 408,942 as input for fine-mapping. Subsequently, we performed co-localization analysis on
disease-associated TRs and predicted causal variants (Fig. 5a). Among the 305 SNPs bound by the top 25
predicted TRs of TRAPT, 68.2% belongs to AD-related causal variants (Hypergeometric test p-
value=2.48e-12). Conversely, among 106 SNPs bound by the bottom 25 TRs, fewer than half are causal
variants (Hypergeometric test p-value=0.971) (Fig. 5b). This indicates that TRs ranked highly by TRAPT
are more closely associated with AD. Subsequently, to further investigate the relationship between
individual TRs and AD, we conducted a more detailed co-localization analysis of each AD-related TR's
binding to causal variants (Fig. 5¢). The results revealed that the top-ranked TRs such as SPI11, RELA and
REST generally had a higher binding affinity to causal variants compared to background variants. For
example, SPI1, ranked first by TRAPT predictions, intersected with 71 causal variants, compared to an
overlap with only 24 background variants (Hypergeometric test, p=3.6e-4). RELA, ranked second in
TRAPT predictions, intersected with 75 causal variants, while overlapping with only 33 background
variants (Hypergeometric test, p=2.7e-3) (see Supplementary Table 2). We observed that top-ranking TRs
generally exhibit stronger associations with AD-related causal variants. To validate this observation,
inspired by the GSEA? algorithm, we developed a new statistical test to verify the reliability of our
predicted top-ranked TRs from a statistical standpoint (see Materials and Methods section). Ultimately, we
found that the top-ranked TRs were significantly enriched at the top (Fig. 5d) (p-value=2e-3),
demonstrating that TRs ranked higher were more likely to bind to causal variants compared to those ranked

lower.

Next, to identify disease-associated causal variants bound by TRs identified using TRAPT, and to
explore their potential associations, we performed co-localization analysis between causal variants and
predicted TR binding sites. We retained the overlapping causal variants and ranked them based on
FINEMAP scores. Among the selected 1,000 causal variants, 208 are associated with TR binding, with
rs10119 ranking as the top variant. (Fig. 5¢). The functional annotation analysis using VARAdb? revealed
that rs10119 is regulated by multiple super-enhancers covering several important genes nearby, such as
APOE, TOMMA40, and APOC1, and is a risk SNP for Alzheimer's disease®®. Subsequently, we conducted a
co-localization analysis between rs10119 and the predicted TRs. Notably, in the 1kb region upstream and
downstream of rs10119, we observed binding in 9 out of the top-ranked 25 TRs, whereas lower-ranked TRs
did not exhibit any binding in these regions. (Fig. 5€). A previous study thoroughly validated the effect of
REST, a transcription factor, as a universal feature of normal aging in human cortical and hippocampal
neurons. It can also potently protect neurons from oxidative stress and amyloid B-protein toxicity. We
observed that REST ranks high in TRAPT predictions, and previous studies have already demonstrated that
REST plays a crucial role in the development of AD. It inhibits genes that promote cell death and AD
pathology, while simultaneously inducing the expression of stress response genes®. TRAPT predicts other
top-ranked TRs such as SPI1, STAT1, RELA, HDAC2, JUND and HNF4A, which have been previously

implicated in the causal relationship with Alzheimer's disease through prior research **-34. We found that


https://doi.org/10.1101/2024.05.17.594242
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.17.594242; this version posted May 20, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

rs10119 is located exactly at a critical position in the chromatin loop structure, with many important TRs
predicted by TRAPT binding upstream and downstream. Notably, we observed a substantial number of
binding sites from our predicted TRs on TOMM40, APOC1, APOE and CEACAM16 (Fig. 5f and
Supplementary Fig. 4b). These genes have been proven to significantly influence the onset of Alzheimer's

disease *°-%. Meanwhile, by analyzing AD-related H3K27ac ChIP-seq datasets™, we discovered that the

H3K27ac signal at the rs10119 site is markedly higher in the disease and elderly groups than in the young,
disease-free group. This observation suggests that changes in epigenetics could be a key factor influencing
the onset of Alzheimer's disease. Moreover, several transcriptional regulators we predicted are closely

associated with epigenetics, such as HDAC2 and ZBTB33 (also known as Kaiso).

TRAPT identifies transcriptional regulators associated with cell fate and
tissue identity

TRs are crucial in coordinating gene expression programs, driving cell fate decisions, and orchestrating
intricate biological processes during cellular differentiation and development. The binding affinity of TRs
to proximal or distal cis-regulatory elements of downstream marker genes plays a crucial role in
maintaining cell identity. To highlight the applicability of TRAPT in cellular development, we employed
TRAPT to capture key regulators for marker gene sets of single cell dataset. Briefly, we reprocessed the

scCRNA-seq data from human hematopoietic stem cell*

, visualized the first two principal components (Fig.
6a), and identified marker genes between different differentiation lineages using the classic model of
hematopoietic differentiation landscapes (Fig. 6b). We then used TRAPT to identify the top five driving
regulatory factors for different cell fate commitment directions (Fig. 6¢). Notably, among the 42 TRs we
identified, 24 were also differentially expressed genes (DEGs). Moreover, we observed multiple TRs
appearing across various differentiation lineages, such as EP300, SMADL1, LYL1, SPI1, LMO2, and TAL1
(Supplementary Fig. 5a). In addition, some transcriptional regulators were found exclusively in single
lineage branches, for example, STAT4 in the LMPs—NK cells lineage branch, a well-known gene regulating
intracellular signaling, with STAT4 deletion in NCR1 expressing cells leading to impaired terminal
differentiation of NK cells*. In the LMPs-pDCs lineage branch, TCF4 is a transcription factor essential for
pDC development™. We also applied TRAPT to human embryonic stem cells*. Following dimensionality
reduction and clustering, the cells were categorized into 6 main subgroups (Supplementary Fig. 5b). We
identified marker genes for each differentiated cluster as well as for the undifferentiated H1 and H9
clusters. These marker genes were then analyzed using TRAPT, resulting in the identification of key
transcriptional regulators that cell fate decisions for each differentiated cluster (Supplementary Fig. 5c). In
the differentiation of H1 into trophoblast-like cells (TB cells), transcriptional regulators such as GATAS3,
TFAP2A, and GATA2 exhibited higher activity. Notably, GATA2 and GATA3 have been previously

validated to be selectively expressed in the trophoblast progenitor cells during early mouse development,
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where they directly regulate key genes*. In the differentiation of H1 into definitive endoderm cells (DE
cells), transcriptional regulators like GATA6, SMAD2, and EOMES showed elevated activity. Past studies
have revealed that GATAG works in conjunction with EOMES and SMAD?2 to regulate the gene regulatory
network associated with human definitive endoderm®. TRAPT is capable of effectively identifying driver
regulators of cell fate decisions, with the majority of these being cell-lineage-specific transcriptional

regulators that have been validated in the literature.

Subsequently, we analyzed RNA-seq data from 30 distinct normal human tissues retrieved from GTEx*®
and utilized limma*’ to identify the top 500 differentially expressed genes for each tissue, which
subsequently were deployed to predict key transcriptional regulators, respectively. Notably, based on the
ranks of TRs, most tissue-specific marker regulators were predicted out as expected. For instance, MED1,
TBX5, and GATA4 were enriched in heart tissue. MED1 is demonstrated to play an important role in super
enhancer formation and activity maintenance. GATA4 broadly co-occupied cardiac super enhancers with
TBX5 determine the contractility, calcium handling, and metabolic activity of cardiomyocyte48. AR,
FOXAL, and HOXB13 have been identified as the top three TRs in prostate, which is consistent with the
role of FOXA1 and HOXBL13 in regulating normal AR transcription during prostate epithelial development,
as well as their involvement in oncogenic AR transcription during prostate carcinogenesis49. Furthermore,
the results indicated that certain tissues exhibited shared TRs, such as PPARG and CEBPA in breast and

adipose tissues*®“°, TP63 and GRHL2 in skin, esophagus, and vagina tissues™-52, suggesting a similarity in

the predominant cell types across these tissues. We then integrated the predicted scores of the top 10 TRs
from each tissue for hierarchical clustering. Intriguingly, results indicated that TRAPT effectively discerns
similarities between tissues (Fig. 6¢). For instance, breast and adipose tissues formed a cluster due to their
predominant composition of adipocytes. Uterus, ovary, and cervix tissues formed a cluster due to their
surface and interior being covered by epithelial cells. In addition, we offered a list of predicted top 10 key

transcriptional regulators for each tissue (Supplementary Table 4).

In conclusion, TRAPT efficiently predicted key transcriptional regulators in cell fate and across 30
human normal tissues, indicating the capability of TRAPT in processing gene sets yielded from multiple
phenotype or conditions data, such as cohort data. A substantial number of these predicted transcriptional
regulators have been experimentally validated in the literature for their specific roles in these tissues,
further solidifying the reliability of our predictions. TRAPT serves as a potent instrument for exploring and

comprehending the functions of key transcriptional regulators in human.

Discussion
Transcriptional regulators play a crucial role in regulating gene transcription programs, orchestrating the

precise timing and spatial distribution of thousands of genes to ensure normal cellular function and

development. Importantly, TR-mediated gene programs have distinct epigenetic landscape and are
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demonstrated as the switch in the changes of cell states and disease phenotypes'®°. However, due to the
lack of epigenomic data of TRs in many cell types, accurately predicting upstream TRs for given gene sets
with biological meanings (i.e., differentially expressed genes or marker genes in single cell studies) remains
difficult. To address this issue, we propose a novel deep learning framework named TRAPT that leveraging
two-stage self-knowledge distillation to extract the activity embedding of regulatory elements, TRAPT can
predicts key TRs for context-dependent gene sets from over 20,000 large-scale epigenomes and TRs
background knowledge library. We have demonstrated that TRAPT has improved the accuracy of
transcriptional regulator prediction in multiple benchmark datasets. Moreover, TRAPT significantly
outperforms the existing methods in overall ranking for predicting TRs such as Lisa, BART, i-cisTarget and
ChEA3. We also have successfully identified key transcriptional regulators associated with the disease,

genetic variation, cell fate decisions and tissues.

Existing TR prediction methods can be classified into two main categories. The first category is gene set-
based methods such as Enrichr, TFEA.ChIP, ChEA3 and MAGIC. These methods use TR-related gene sets
as background data and employ statistical tests like hypergeometric distribution to calculate TR
significance. However, these methods do not accurately simulate the real binding of TRs and CREs. The
second category is based on CREs, which indeed address this issue. They simulate the actual binding
scenarios of TRs with CREs near genes to predict TR activity, as seen in methods like i-cisTarget, BART,
and Lisa. Nonetheless, these methods still have limitations, primarily due to their neglect of TR binding
preferences. TRAPT represents the third category, simultaneously integrating the upstream regulatory
elements of gene sets with the downstream regulatory elements of TRs. Based on 1072 TR-related datasets
of knockout/silencing/ChlIP-seq experiment and multiple evaluation criteria, we found that TRAPT, as the
third category method, significantly outperforms other methods in overall ranking for predicting TRs.
TRAPT's significant advantage in predicting transcription factors, chromatin regulators and transcription
co-factors can be attributed to its use of multi-stage fusion strategy and its extensive transcription regulator
background library. Specially, our method has several advantages and methodological highlights: (1)
TRAPT uses a multi-stage fusion to simultaneously address the incomplete cis-regulatory profile coverage
and TRBP problems. (2) To mitigate the effects of noisy data, TRAPT employs a feature-based offline
knowledge distillation framework®” at two stages. During the prediction of D-REA, the teacher network
optimizes the student network by extracting embedded representations of cis-regulatory element activities
near genes. By grouping the regulatory potential matrix based on sparse group lasso according to its
relevance to the query genes, the student model can impose sparsity constraints both within and between
groups to treat highly redundant samples. In the prediction phase of upstream regulatory element activity,
the teacher network extracts low-dimensional embedded representations of epigenomic information related
to the query gene set, guiding the student network in choosing the optimal epigenetic sample set. The KD
model is robust to noisy data, significantly enhancing the prediction capability of TR activity.

Simultaneously, it maintains the algorithm's prediction speed even when the amount of TR data is more
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than double that covered by the existing algorithm with the highest coverage (Supplementary Fig. 1a, b).
(3) We propose leveraging graph theory to address the challenge of predicting the activity of downstream
regulatory elements of transcriptional regulators, which is particularly well-suited for epigenomic datasets
with small sample sizes. To investigate the potential benefits of a multi-stage fusion strategy for predicting
transcription regulators, we implemented extensive ablation tests. When the U-REA and D-REA model was
removed from our method respectively, a significant decline in the overall model performance was
observed. We evaluated the D-REA model from the perspective of link prediction. Through validation
using test datasets, the D-REA model demonstrated its capability to effectively reconstruct unseen links.
Moreover, the D-REA model maintains stable performance even when various proportions of links are
masked. These results indicate that the D-REA model can effectively optimize the epigenetic regulatory
network.

Through 1072 TR-related datasets, we extensively demonstrated that TRAPT outperforms the current
state-of-the-art methods in inferring transcription regulators, especially in the prediction of transcription co-
factors and chromatin regulators. We discovered that chromatin regulators, transcription co-factors, and
transcription factors exhibit different genomic binding preferences, implying the necessity to consider
different transcriptional regulators in transcription regulation studies. In the ESR1 knockout experiment,
TRAPT successfully identified ESR1 as top 1 and its associated transcription co-factors and chromatin
regulators, such as EP300. We found that the top-ranked transcriptional regulators, including the
transcription factor ESR1 along with its associated cofactors and chromatin regulators, scored significantly
higher in the query gene set. ESR1, binding distal and proximal enhancers, emerges as the most significant
among the transcriptional regulators in both the ATAC and H3K27ac contexts. This indicates that the
representation module of the TRAPT D-REA model can capture the epigenetic information of ESR1 in
cancer. TRAPT have identified TRs causally related to Alzheimer's disease near rs10119. Additionally, we
observed that TRs ranked higher are more likely to be located near the causal SNPs. We ultimately applied
TRAPT to datasets from human hematopoietic stem cells, human embryonic stem cells, and normal human
tissues. TRAPT successfully predicted critical regulatory factors controlling cell fate, such as STAT4,
TCF4, and GATA, as well as tissue-specific regulators, including MED1, TBX5 and GATA4.

TRAPT offers an enlightening perspective for integrating the epigenetic landscape of transcriptional
regulators. However, its performance is still constrained by the quantity of both epigenomic samples. To
date, TRAPT encompasses 17,227 datasets related to transcriptional regulators (Supplementary Table 1),
and over 3000 sets of H3K27ac ChlP-seq and ATAC-seq samples. This stands as the most comprehensive
collection of epigenomic samples to date. However, it does not guarantee that each transcriptional regulator
can be paired with its corresponding epigenomic samples. Transcription factors recruit cofactors to perform
their functions; the affinity of cofactors can either enhance or reduce the transcription factors' activity,
depending on the co-factor's role as an activator or inhibitor. Chromatin regulators also influence the
activity of transcription factors via chromatin structure modifications. Despite accumulating an extensive
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amount of data on cofactors and chromatin regulators, we have not yet fully understood the complex effects
that arise from interactions between transcriptional regulators, a process that is inherently complex.

In conclusion, TRAPT employs a novel strategy for integrate the epigenetic landscape to predict key
transcriptional regulators, and is anticipated to provide instrumental guidance for ensuing research and
related computational analysis in the field of transcriptional regulation.

Materials and methods

Epigenome and transcriptional regulator datasets and data preprocessing

Gene transcription programs are primarily regulated by the biological activities of transcription regulators
and coordinated upstream epigenetic marks, such as histone modifications, and open chromatin states,
which can establish and maintain the transcriptional landscape of a cell in response to various internal and
external signals. Additionally, studies have demonstrated that epigenetic marks can partially simulate the
regulatory shapes of transcription regulators, which can fulfill the gap of transcription regulators coverages.
Hence, integrating large scale epigenomic data is beneficial to understand the cell-specific transcription
mechanism of genes. In this study, we manually collected and processed ~20,000 raw epigenomic data of
multiple types from numerous data sources, covering more than 1000 tissue/cell types. All these epigenome
and transcriptional regulator datasets provide comprehensive regulatory cues to infer gene expression

patterns. Detailed processing was described as following contents:

H3K27ac ChlP-seq data. The H3K27ac ChlP-seq datasets were obtained from SEdb2.0, which was the
previous job of our research group. Briefly, we manually collected 1,739 samples, including experimental
and control groups, from NCBI GEO/SRA>"*®, ENCODE®, Roadmap®, Genomics of Gene Regulation
Project (GGR)* and National Genomics Data Center Genome Sequence Archive (NGDC GSA)**®% We
obtained H3K27ac peaks signal data by using Bowtie®® and BEDTools®* multicov tools to process the raw
data.

Chromatin accessibility data. The chromatin accessibility datasets were obtained from ATACdb, which
was the previous job of our research group. Briefly, we manually collected 2,723 samples to cover multiple
tissues or cell types from NCBI GEO/SRA and used Bowtie and BEDTools multicov tools to identify
chromatin accessibility peaks signal data.

Transcription factors data. The transcription factors ChIP-seq datasets were obtained from TFTG, which
was the previous job of our research group. Briefly, we manually collected 11,056 samples, cataloguing a
total of 1218 human TFs. Utilizing ChIPseeker®™ R package and BEDTools, we computed the distribution

of various genomic composition and UDHS coverage for each TF.

transcription co-factors data. The transcription co-factors ChIP-seq datasets were obtained from

TcoFBase, which was the previous job of our research group. Briefly, we manually collected a list of TcoFs
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in mammals from TcoF-DB v2*° and AnimalTFDB 3.0%", Meanwhile, we collected 4,246 TcoF-related
ChlP-seq datasets in different human cell and tissue types from ReMap, ENCODE, Cistrome®, and ChiP-
Atlas®. We used the liftOver’ tool from UCSC to convert all ChIP-seq peak data to the hg38 genome
assembly. Utilizing ChlPseeker R package and BEDTools, we computed the distribution of various

genomic composition and UDHS coverage for each TcoFs.

Chromatin regulators data. The chromatin regulators ChIP-seq datasets were obtained from CRdb, which
was the previous job of our research group. Briefly, we processed 2,591 CR-associated ChlIP-seq datasets
from GEO and ENCODE. We identified the CR binding region using Bowtie, SAMtools’*, and MACS2",
and calculated the distribution of various genomic composition and UDHS coverage for each TcoF using
ChlPseeker R package and BEDTools.

Given the large volume of data collected, redundancies originating from the same source may be present.
We calculated the peak correlation of all TRs, retaining only one of the samples in cases of a correlation
value of 1. Through this filtering process, we ultimately maintained 17,227 unique peak files of

transcriptional regulators (Supplementary Table 1).

TR and epigenome regulatory potential model

The regulatory potential of a gene can be determined by calculating the activity of CREs near the genelz.
To compute the TR-RP matrix, where rows represent TR samples and columns represent genes, we
collected peak data for 17,227 TRs from our earlier-established databases: CRdb, TcoFBase, and TFTG.
TRs influence gene expression by binding to CREs located upstream or downstream of the gene. Therefore,
we only considered CREs that overlap with the binding sites of TRs for the calculation of gene regulatory
potential. The BEDTools was employed to identify regions overlapped with CREs for each TR, which we
refer to as potential regulatory elements (PREs). By aggregating the signal values of PREs within 100 kb
range upstream and downstream of target genes, we computed the regulatory potential of each gene in each
sample, resulting in the TR-RP matrix, where each row corresponds to a TR and each column corresponds

to a gene. The regulatory potential of the i-th gene in the j-th sample is defined as:
1
Ri; = X z Wik Sik (1)
kES;
where wyy, is the regulatory influence of the k-th PRE, located within a 100 kb range of gene j, and s;, is

the signal value of this specific PRE. The weight of each PRE is defined as:

1 x € (Okb, 10kb]

.= 2 )
o T oats X € (10kb, 100kb] )
e

where x,, is the distance between the current PRE and the gene, with the hyperparameter d set to 10 kb.
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The parameter a controls the decay rate of regulatory influence. The hyperparameters is defined as:

_Im(@2m-1)
“= r—d

3)

where r is set to 100 kb, and m represents the weight of the regulatory element at distance d. In this case,

the weight is determined as the proportion of distal enhancers.

To compute the Epi-RP matrix, where rows represent epigenomic samples and columns represent genes,
we used the BAM files from H3K27ac ChIP-seq and ATAC-seq data obtained from SEdb and ATACdb,
respectively, and employed the BEDTools multicov tool for counting the reads on the PREs, which
produced read signals for all PREs. The computation was performed using the same method, but for each
epigenomic sample, we set its m value to 0.01. Furthermore, we used read signals instead of peak signals to

compute the gene regulatory potential.

Ultimately, we applied logarithmic standardization on the regulatory potential corresponding to each

gene:

Predicting the regulatory element activity via upstream transcriptional
regulators

In our current module, we leveraged a self-knowledge distillation (KD) model to guide the student model in
learning multi-modal epigenomic features and optimizing the epigenomic relationship network. KD
originally aimed to compress and accelerate a model by transferring the knowledge from a complex model
to a simplified one. In the inference of epigenomic relationship networks, the phenomenon of overfitting
frequently occurs. However, recent studies showed that employing self-knowledge distillation significantly
enhances the performance of student models and reduces model hallucination issues>. Therefore, we
propose using KD to infer the downstream regulatory element activity for each TR. Given the distributional
differences between TRs and epigenomes, a simple merger is not feasible. To more appropriately extract
joint embedding representations of TRs and epigenomes, we utilized conditional variational autoencoders®®
(CVAEs) as the teacher network. CVAEs have been demonstrated to not only master complex data
representations but also outperform at integrating multi-modal data*’. By incorporating reconstruction error
and regularization terms on latent variables during the training phase, CVAESs can learn distinguish feature

representations. The model is actualized by minimizing the following loss function:
L=MSE(X,f(Z,Y)) +KL[q(z®1X,Y) Il p(Z®X)] (5)

where X € R™*™ (where m is the number of TR and epigenome samples, and n is the number of genes)
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represents the feature matrix, assembled by integrating the TR-RP matrix and Epi-RP matrix, ¥ € R™*? is
a one-hot matrix signifies the labels of the two types of omics data, and KL[q(-) Il p(-)] denotes the
Kullback-Leibler divergence between the reconstruction network and the (conditional) prior network. Upon
inputting the feature matrix and the conditional matrix, we procure a low-dimensional, joint embedding
representation H® e Rmxh (where h is the dimension of the hidden layer) for TRs and epigenomic
samples:

H® = Relu(f(X, YWD + p1) (6)

where W@ e R and b € R1*" represent the weights and biases of the encoder's initial layer,
respectively. The complex network presented by the relationship between TR and the epigenome. In order
to model this network, we employ VGAE® as the student network and select the nearest 10 epigenomic
samples for each TR to construct the adjacency matrix A using k-nearest neighbours™, with cosine

similarity serving as the distance metric:
Yhe=1 X Xjk

B G [T xR

Dij =

(7)

where D;; € R™*™ represents the cosine similarity between the i-th TR and the j-th epigenomic sample,
where N equals the number of features (genes). By feeding X and A into the model, we first pass them

through the first layer of the GCN encoder to learn the low-dimensional node representations H® e
R™*" These node representations not only contain information of a single modality but also encapsulate

the relationship information between TR and epigenomic samples. Given that the input is a heterogeneous
network, it does not contain any relationship information of a single modality with itself. Subsequently, via
the second layer graph convolution, we generate the mean and variance, and ultimately, using the
reparameterization trick, we derive the new node feature representation 7() g gmxz (where z is the

dimension of the hidden layer in the GCN module). The representation of GCN is expressed as follows:

H® = Relu(GCN(4,X)) (8)

Z, = GCN(A,H®) 9)

Z,2 = GCN(AH®) (10)

76 = Reparametrize(Z#,ZJz) (11)

Finally, by utilizing an inner product decoder, VGAE produces a reconstructed adjacency matrix:
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A' = Sigmoid (24 - 79") (12)
The distillation loss function L, is defined as:
Ly = —[[H® = HO)| (13)
2n
Where ||-|| stands for the Euclidean norm. The final loss function L for the student network is defined as:
L=1Lp+Lc+KL[g(Z®X,A) | p(2©)] (14)

where L. is the expectation of minimizing the discrepancy between the input and output networks using
cross-entropy. KL[q(+) Il p(+)] represents the Kullback-Leibler divergence between the reconstruction
distribution and the Gaussian prior distribution. For each TR, we predict its corresponding downstream

regulatory element activity (D-REA).

27 w; Xij

15
{—Eﬂ”X?j (19)

where X;; denotes the i-th TR corresponding to the j-th neighboring sample, and w;; signifies

DREA; =

normalized weight of the network edge for the j-th epigenomic sample of the i-th TR. M stands for the
number of epigenomic samples. The D-REA matrix represents the aggregated activity of transcriptional
regulators’ downstream regulatory elements near genes, with higher values signifying a more intense level

of transcriptional activity in the vicinity of the genes.

Predicting the regulatory element activity via downstream gene sets

There are mainly two methods for predicting upstream regulatory elements of genes. The first method
involves using distance to infer regulatory elements near the gene, such as the i-cisTarget approach. The
second method employs regression to select epigenomic samples and predict the regulatory element
landscape across the whole genome, such as the MARGE method. However, it does not account for the
redundancy in epigenomic data and the complex non-linear relationships between samples within the

epigenome. Inspired by this and several recent works®*®*

, We propose to use a KD-based strategy to select
the most probable epigenomic samples associated with the current query gene set. Initially, we calculate the
correlation between the Epi-RP matrix and the query gene set. Subsequently, we ranked the epigenomic
samples in descending order based on the magnitude of their correlations. Owing to an accumulation of a
large number of epigenomic samples, there may be a plethora of sequencing samples originating from the

same tissue. These samples are highly redundant. Consequently, we empirically partition the matrix into
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sets of 10 samples each. The aim is to group similar epigenomic samples, and enforce sparsity both within
and between groups, thus effectively preventing feature redundancy and model overfitting. The grouped
Epi-RP matrix is fed into the teacher network. The teacher network is a neural network comprised of three
fully connected layers. We predict the query binary gene vector Z € R™*! by using the transposed matrix
X € R™? (where n signifies the number of genes and d denotes the number of TR samples) of the Epi-RP
matrix. In this process, the query gene set is used as the positive set, and we randomly select 6000
background genes as the negative set. To retain more information, we implement the temperature-scaled

sigmoid (TSS) as the activation function in the output layer:

1
TSS(x) = —— (16)
1+et

where x denotes the input and t represents the temperature parameter. This function maps the input
values to an output value ranging from 0 to 1. As the value of the temperature parameter gravitates towards
infinity, the output of the function approximates the output of a standard sigmoid function. Conversely,
when the temperature parameter is small, the function's output alters more gradually within the vicinity of 0

and 1. In this case, we set t=5. The final teacher model is represented as follows:

Y ® = Relu(xw® + pW) (17)
7O =1ss(yOw®@ + p@) (18)

Here, Y& € R™" (where h denotes the dimension of the hidden layer) signifies the extracted the

feature representation of the latent cis-regulatory profiles associated with the query gene set. Between each
pair of layers, corresponding weight matrices W) € R%*" w2 € Rh*d and biases b1 € R1¥"

b@ e R4 exist. We train the student network to predict the low-dimensional feature representation

extracted from the intermediate layer of the teacher network by feeding it the same data:

H® = Relu(Xw® + p3)) (19)

Y® = Relu(HOW® + p®) (20)

In the first layer of the student network, SGL constraint is used to select important features of cis-
regulatory profile by sparsifying the weight matrix through L2 regularization within groups and L1

regularization between groups:

geG

saL= WOl +2, )" [n 1w, (1)
g
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The distillation loss function L, is defined as follows:
Ly = —[[v® - y®|| (22)
b 2n
The final loss function L for the student network is defined as follows:
1
L=Lp+SGL+— |2 — 2@ (23)

Here, 1, and 4, represent regularization parameters. We squared and summed the weights of the first

layer W 3) € REX" of the student network:
¢ = Diag (WO (W ®)") (24)

Where C represents the weights of all epigenomic samples. The choice of different sample sizes may
impact the prediction results. We selected varying quantities of epigenomic samples based on the weights
of the student network model. The aim was to select the most appropriate sample size. We conducted
multiple training sessions for the model by selecting varying numbers of epigenomic sample sizes and
calculated the auROC to assess the performance of each candidate model. Finally, we found that 10
epigenomic samples were a reasonable number of choices (Supplementary Fig. 2h). Utilizing the chosen
epigenomic samples, we trained a neural network model, where the input, represented as, X' € R’

corresponds to the TR-RP matrix of the selected epigenomic samples, denoted as d'. The resulting output is

the gene vector Z®) € R™*1;
Z® = Sigmoid(Relu(Xw™ + bM)W @ 4 p@) (25)

Here we define the loss function as:
L=z ] (26)
2n

Ultimately, we input X into the previously trained model to derive the predicted gene vector Z, which
corresponds to gene upstream regulatory element activity (U-REA). The U-REA vectors encompass
context-dependent information, originating from a specific content-specific gene set. The variation in the
values within these vectors represents the specificity of chromatin accessibility (ATAC) and activity

(H3K27ac) states associated with the genes' locations.

Integrating regulatory element activity and predicting transcriptional

regulator activity
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After obtaining the downstream regulatory element activity and upstream regulatory element activity, we
concurrently acquire the downstream regulatory profile information corresponding to TRs and the upstream
regulatory profile information corresponding to the queried gene set. Our goal is to obtain the integrated TR
regulatory activity that best represents the current gene transcription regulation status. Accordingly, we
computed the I-REA for each TR:

!

R:
IREA; = <”Rﬁ” + DREAL-) X UREA (27)

The AUC score has been demonstrated to effectively represent the measurement of transcription factor
enrichment”®. Hence, by transforming the query gene set into binary from and computing the AUC for each
TR based on its I-REA score, we amalgamated the TRs activity from the H3K27ac and ATAC epigenomes.

The resulting activity score was then computed as:

s _i AUC;
- &lavg]

Here, AS; signifies the final activity of the i-th TR sample, AUC;; denotes the j-th epigenomic sample

(28)

AUC score of the i-th TR sample, and M represents the total number of scores.

Calculate enrichment score and significance in post-GWAS analysis

Transcriptional regulator significance: (1) Randomly select 1,000 causal and 1,000 non-causal variants to
serve as background variants. Concurrently, select the top 25 and bottom 25 TRs predicted by TRAPT. (2)
Utilize the BEDTools intersect tool to compute the number of overlaps between the selected variants and
the binding sites of each TR. (3) Calculate the significance p-value of each TR using the hypergeometric
test:

<902 "

Here, x is the number of causal variants bound by TR, Kk is the number of variants bound by TR, n is the

number of background variants, and s is the number of causal variants in the background.
Enrichment score (ES): (1) Rank the TRs in descending order of activity. (2) ES score calculation:
k

k
ES = max(score),score, = scale Emin(logp) - Z logp; (30)

=1
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Here, k is the k-th transcriptional regulator, and K is the number of selected TRs. The score is the

standard Kolmogorov-Smirnov statistic.

Edtimating significance: (1) Randomly shuffle the TRs and recalculate the enrichment score as ESyy; .-
(2) Repeat the shuffle 1000 times and create a corresponding histogram of the enrichment score ESyy..

distribution. (3) Estimate the p-value by calculating the distribution greater than the observed ES.

Compare TRAPT to similar TR ranking tools

We have collected an extensive array of TR knockdown/knockout datasets from KnockTF, selecting the top
500 upregulated and downregulated differentially expressed genes for analysis. Additionally, we have also
curated TF binding datasets from GTRD, retaining all target genes. When comparing TF binding datasets,
we removed the data originating from the GTRD in the background TRs ChIP-seq libraries of TRAPT. For
the BART algorithm, we utilized the offline toolkit available on their official repository
(https://github.com/zanglab/bart2). In a similar vein, for the Lisa algorithm, we employed the offline toolkit
accessible on their official repository (https://github.com/gingian/lisa). For i-cisTarget, we made use of the
online analysis tool they provide (https://gbiomed.kuleuven.be/apps/Ich/i-cisTarget/), while for ChEA3, we
procured the analysis results via the APl online interface available on their official website
(https://amp.pharm.mssm.edu/ChEA3).

Module ablation study

Without disrupting the overall execution of the model, we individually removed the "U-REA model", "D-
REA model”, and "TR-RP model". We then computed the MRR score for the model after each modification
to observe any decline in model performance. The aim was to verify the efficacy of each distinct part. The

calculation for the MRR is as follows:

N
1 1
MRR =—z— (31)
Ni=1 T

Here, N refers to the number of predicted TRs, and r; denotes the rank of the current predicted TR.

Module stability study

Based on the network constructed by k-nearest neighbours, we generated perturbed datasets by masking
2%, 5%, 8%, 10%, 12%, and 15% of the links within the network. These masked links were randomly
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distributed throughout the entire dataset to simulate real-world scenarios, where we typically cannot
determine which interactions are indeed present. During the training phase of the model, we treated these
masked positive data as negatives for training purposes. Once the model finished training, we calculated the
average precision (AP) to evaluate the model's predictive performance on the test set. This process helps
simulate unknown information in the data, providing a more comprehensive evaluation of the model's

performance. The calculation for the AP is as follows:

n

AP = Z(Rn —R,_1)P, (32)

i=1

Here, B, and R,, represent the precision and recall, respectively, sorted by threshold n.

Softwar e and web tool

TRAPT software was developed using Python 3.11 and has been uploaded to GitHub
(https://github.com/LicLab-bio/TRAPT) for user download and utilization. The current iteration of the
TRAPT online analysis tool is architected with Python 3.11 and operates on a Linux-based Apache Web
server (http://www.apache.org). We employ Django v4.1.3 (https://www.djangoproject.com/) for server-
side scripting. The interactive interface is designed and constructed utilizing Bootstrap v4.3.1
(https://getbootstrap.com/) and jQuery v3.2.1 (http://jquery.com). ECharts v5.4 (https://echarts.apache.org/)
and DataTables v1.13.2 (https://datatables.net/) are implemented as graphical visualization frameworks, and

the sqglite3 lightweight database is deployed for data table storage.

Furthermore, we have developed a corresponding web service (https://bio.liclab.net/ TRAPT). The
website is designed to accepts gene sets input by users for analysis, allowing easy retrieval of analytical
results. We've also thoughtfully included an email notification feature. On the results page, the website
displays all TR activity scores, as well as the ranking and all individual scores of TRs. Concurrently, the
website provides annotation details and relevant quality control information for each transcriptional
regulator. Compared to offline tools, online analysis tools offer additional features on the browsing and
result analysis pages. The online tools facilitate visualization of the predicted 3D protein structure for each
TR, leveraging AlphaFold's™ predictions. Additionally, the online tools incorporate a genome browser™ to

facilitate user interaction with the genomic tracks associated with each TR.

Data availability

All the datasets analyzed in this study are publicly available. TR knockdown/knockout datasets from
KnockTF and TF binding datasets from GTRD. The protein-protein interaction (PPI) networks from the
STRING database (https://string-db.org/). The breast cancer sScRNA-seq expression profiles from TCGA
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(https://portal.gdc.cancer.gov/). The ESR1 knockdown RNA-seq datasets are available in the Gene
Expression Omnibus (GEO) repository under accession number GSE37820
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37820). The GWAS dataset from causaldb
(http://www.mulinlab.org/causaldb) and the Alzheimer's disease-related H3K27ac data are available under
GSE65159 (https://www.nchi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65159). The human hematopoietic
stem cell dataset is available on GitHub (https://gitlab.com/cvejic-group/integrative-scrna-scatac-
humanfoetal#data), the human embryonic stem cells dataset is available under GSE75748
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748), and the normal human tissues

expression profiles from GTEx (https://www.gtexportal.org/home/).

Code availability

The TRAPT algorithm is implemented in Python. The source code of TRAPT is available at
https://github.com/LicLab-bio/TRAPT.
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Fig. 1| Overview TRAPT. a TRAPT predicts downstream regulatory elements activity associated with the
TRs. The inputs for TRAPT consist of preprocessed TR-RP matrix and Epi-RP matrix, which are integrated
to form an integrated regulatory potential matrix and an adjacency graph. Firstly, we use a conditional
variational autoencoder as the teacher network to learn the latent representation h. Then, we employ a graph
variational autoencoder as the student network to reconstruct the TR-epigenome adjacency graph by
learning its own network structure information and latent feature representation from the teacher network.
Finally, we perform an aggregation operation using the reconstructed TR-epigenome adjacency graph and
the input Epi-RP matrix to obtain the downstream regulatory element activity matrix. b TRAPT predicts
upstream regulatory elements activity associated with the queried genes. Firstly, the query gene vector is
correlated with each epigenomic sample using Pearson correlation. The samples are grouped based on their
correlation values, and the grouped regulatory potential matrix is used as the input for the model. Then,
self-KD model is used to select important epigenomic samples. We use a teacher model to extract feature
maps, then employ a student model accompanied by SGL constraints to select non-redundant epigenomic
samples. Finally, by retraining a nonlinear neural network model with the selected features, we obtain the
upstream regulatory element activity matrix. ¢ The predicted downstream regulatory element activity
matrix, upstream regulatory element activity matrix, and TR regulatory potential matrix are integrated
through matrix operations to obtain the I-REA matrix. d Firstly, for each TR sample in the I-REA matrix,
the AUC score is computed with the query gene set, and the TR AUC scores from all epigenetic groups are

integrated to obtain the final activity score for each TR. e The epigenomic data is sourced from our
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previously developed ATACdb and SEdb databases; the TFs, CRs and TcoFs data come from our previously
developed TFTG, CRdb and TcoFBase databases. We used the TR-RP regulatory potential model to
calculate the TR-RP matrix, and the Epigenome-RP regulatory potential model to calculate the Epi-RP

matrix.

Fig. 2 | Evaluation of TRAPT and compar ative methods on TR knockdown/knockout and TF binding
datasets. a (1) Shows the number of top 10 TFs accurately identified by five methods: TRAPT, Lisa,
BART, i-cisTarget, and ChEA3. (2) Line graph depicting the accurate prediction of TFs from
knockdown/knockout experiments across various computational models. (3) Bar graph indicating the MRR
scores for TFs, with higher scores reflecting superior performance. b-c Subsequent panels maintain the
formats of panels (a), extending the analysis to TcoFs and CRs, demonstrating each method’s predictive
capability and accuracy. d The MRR scores for protein families from TR knockdown/knockout datasets are
displayed, with red indicating the upregulated set and blue denoting the downregulated set. The intensity of
the color signifies the level of the score. e Assess the performance of five methods on TF target genes from
the GTRD database, using the same formats as (a). f The MRR scores for protein families from TF binding
datasets are displayed, where the depth of the color indicates the magnitude of the scores. g The box plot
illustrates the target TR scaled ranks of across different models in TR knockdown/knockout and TF binding

datasets.

Fig. 3 | Using the differential gene sets from TR knockdown/knockout experiments by KnockTF, we
evaluated the performance of TRAPT. a The bar chart represents the MRR scores of the model after
gradually removing each submodule. Higher scores indicate better performance for TRs. b The grouped bar
chart shows the number of correctly predicted top 1, top 5, and top 10 TRs. We progressively removed U-
REA, D-REA and the specific TR-RP model to assess the impact of each submodule on the model's
performance. ¢ The sunburst chart displays the MRR for all TRs in the upregulated and downregulated
gene sets. The top-ranked TR is indicated. The prediction performance is notably better for the
downregulated gene set, but the upregulated gene set can also correctly predict transcriptional repressors
such as REST. d The scatter plot illustrates the ranking of transcriptional regulators in the prediction. The
left side represents upregulated gene sets, while the right side represents downregulated gene sets. CTCF,
NANOG, FOXAL, and ESR1 have high rankings in both upregulated and downregulated gene sets,

indicating their potential dual functions as transcriptional activators and repressors.

Fig. 4 | lllugtration of the TRAPT framewor k using downregulated genes from ESR1 gene knockout
experiments in gastric cancer and KMCF7 breast cancer. a The scatter plot displays the average

normalized activity values of 1,358 TRs for upregulated and downregulated gene sets. The size of each data
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point represents the magnitude of the average normalized activity value, while the colors represent different
categories of transcriptional regulators: TFs (blue), TcoFs (green), and CRs (yellow). b The network
diagram is derived from protein-protein interaction predictions from the STRING database. The size of the
nodes represents the degree of the nodes, and the thickness of the edges represents the probability of
interaction. ¢ The heatmap is derived from the co-expression analysis results of TCGA breast cancer, with
the depth of color indicating the degree of correlation. d The bar heights represent the current TR
normalized activity scores, where ESR1, GATA3, FOXAL, and EP300 are among the top 10 TRs, while
HDGF is ranked last. Except for HDGF, with ESR1 having the highest score and HDGF having the lowest
score. e Comparison of D-REA scores between query genes and background genes revealed significant
differences for all TRs, with the exception of HDGF. f Aggregated profiles of enhancer marks. Except for
HDGF, all TRs marks near the query gene are significantly higher than the background gene. g Heatmap of
the activity matrix before and after integrating REA scores, demonstrating the differentiation between the
query gene and background gene sets. Here, we randomly selected 10,000 genes for visualization. h The
genome browser displays the tracks of ESR1, GATA3, FOXAL, EP300, and HDGF near the genes ESR1,
GREBL1, TFF1, and CCND1. We selected the tracks of the top ten epigenomic samples with the highest
weights in the reconstructed network for ESR1 and displayed them below, represented by ATAC (in blue)
and H3K27ac (in green) tracks.

Fig. 5| Prediction of functional transcriptional regulators for Alzheimer's disease using post-GWAS
analysis. a Alzheimer's disease analysis workflow. b The Venn diagram shows the number of causal SNPs
bound near the predicted Top TRs and predicted Tail TRs. ¢ The scatter plot displays casual variants bound
by top-ranked TRs, with the size of the points indicating the magnitude of FINEMAP scores. d The bar
chart displays the results from co-localization analysis. The yellow bars represent the number of TRs
binding to significant causal variants from fine-mapping, while the gray bars represent the number of TRs
binding to background variants. Here, we selected the top 25 and bottom 25 ranked TRs for demonstration.
The enrichment line plot represents the binding enrichment of the top 25 and bottom 25 ranked TRs. It can
be observed that causal variants tend to co-occur with TRs predicted by TRAPT. e Manhattan plot showing
the top-ranked causal variant rs10119 obtained from fine-mapping. Additionally, significant gene sets
analyzed using the MAGMA software were used as input for TRAPT. The bottom tracks represent
transcriptional regulators binding peaks, where EGR1, RELA, REST, and STAT1 are predicted to be ranked
in the top 10, while other TRs are predicted to be ranked in the top 25. The bottom 25 TRs in ranking do
not show any binding near rs10119. f The genome browser displays the chromatin interactions, eQTLs
relationships, Top-ranked TRs binding, and the H3K27ac epigenetic landscape from both normal and

disease groups.

Fig. 6 | TRAPT identifies transcriptional regulators associated with cell fate and tissue identity. a
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Visualization of principal component analysis (PCA) derived from scRNA-seq data. b Classic model of
hematopoietic differentiation landscape. ¢ Heatmap displays the lineage-specific transcriptional regulator
MRR scores of TRAPT across different cell differentiation pathways. d The heatmap presents the top 100
TRs by MRR scores, predicted using TRAPT across 30 human tissues. To the right, the top 10 pivotal TRs
predicted for each of the 30 tissues by TRAPT are shown. TRs for each tissue are ranked in descending
order by their MRR scores, with different colors denoting distinct tissues. Below the heatmap, TRs in
varying colors represent tissue-specific TRs from the top 10 predictive TRs. The three smaller heatmaps

below highlight the significant TRs within their respective tissues.
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