

1 **Maternal Western-style diet programs skeletal muscle gene expression in lean adolescent Japanese**
2 **macaque offspring**

4 Emily A. Beck^{1,2*}, Byron Hetrick³, Luis Nassar⁴, Douglas W. Turnbull⁵, Tyler A. Dean⁶, Maureen Gannon⁷, Kjersti
5 M. Aagaard⁸, Stephanie R. Wesolowski⁹, Jacob E. Friedman¹⁰, Paul Kievit⁶ and Carrie E. McCurdy^{3*}

- 7 1. Data Science, University of Oregon, Eugene OR, USA
8 2. Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
9 3. Department of Human Physiology, University of Oregon, Eugene OR, USA
10 4. Phil & Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene OR, USA
11 5. Genomics and Cell Characterization Core Facility, University of Oregon, Eugene OR, USA
12 6. Division of Cardiometabolic Health, Oregon Health Science University, Oregon National Primate Research
13 Center, Beaverton, OR, USA
14 7. Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University
15 Medical Center, Nashville, TN USA
16 8. Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of
17 Medicine & Texas Children's Hospital, Houston, TX, USA
18 9. Department of Pediatrics, Perinatal Research Center, University of Colorado, Aurora, CO, USA
19 10. Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
20

21 ***Corresponding Authors:**

22 Carrie E. McCurdy (cmccurdy5@uoregon.edu)
23 181 Esslinger Hall, 1248 University of Oregon, Eugene, OR 97403

25 Emily A. Beck (ebbeck8@uoregon.edu)
26 203C Pacific Hall, 1248 University of Oregon, Eugene, OR 97403
27 After August 1, 2024:
28 5034 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS 66045

30 **ORCID IDs**

- 31 0000-0001-9810-5094 (EAB)
32 0000-0002-3082-7338 (BH)
33 0000-0001-7523-0394 (SRW)
34 0000-0003-1177-9040 (CEM)
35 0000-0002-2960-0371 (KMA)
36 0000-0002-6706-2586 (LN)
37 0000-0003-3287-8101 (MG)
38 0000-0003-1989-2478 (PK)

40 **Competing Interest Statement:** The authors declare no competing interests.

41
42 **Key Words:** metabolic programming, maternal diet, offspring, skeletal muscle, gene expression, maternal
43 obesity

44 **ABSTRACT**

45 Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly
46 associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic
47 dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese
48 macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet,
49 had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance
50 compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for
51 differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a
52 maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet. We included
53 offspring weaned to both a WSD or CTR diet to further account for differences in response to post-weaning diet
54 and interaction effects between diets. Overall, we found that a maternal WSD fed to dams during pregnancy and
55 lactation was the principal driver of differential gene expression (DEG) in offspring muscle at this time point. We
56 identified key gene pathways important in insulin signaling including PI3K-Akt and MAP-kinase, regulation of
57 muscle regeneration, and transcription-translation feedback loops, in both male and female offspring. Muscle
58 DEG showed no measurable difference between offspring of obese dams on WSD compared to those of lean
59 dams fed WSD. A post-weaning WSD effected offspring transcription only in individuals from the maternal CTR
60 diet group but not in maternal WSD group. Collectively, we identify that maternal diet composition has a
61 significant and lasting impact on offspring muscle transcriptome and influences later transcriptional response to
62 WSD in muscle, which may underlie the increased metabolic disease risk in offspring.

63

64

INTRODUCTION

65 The risk for the development of obesity and cardiometabolic disease, including type 2 diabetes in youth
66 is increased by in utero exposure to maternal malnutrition or, paradoxically, a maternal caloric dense and high
67 fat diet¹⁻⁴. As two thirds of women in the U.S. fall within or above the overweight BMI category⁵ and with many
68 individuals having limited access to optimal nutrition⁶⁻⁸, the consequences and root sources of these
69 developmental exposure(s) represent a substantial risk to the health of our population. Importantly, the
70 pathologic processes that underlie diabetes, insulin resistance and beta-cell dysfunction, progress more rapidly
71 in youth with type 2 diabetes (T2D) than in adults with the disease^{9,10}. These factors, and a poorer response to
72 treatment, result in overall worse glycemic control and in an increased risk of early diabetes-related
73 complications including hypertension, microvascular-related diseases, and dyslipidemia in youth with T2D¹¹.
74 Still, the genetic and molecular mechanisms linking early life exposures to the increased incidence of T2D later
75 in life remain a critical gap in knowledge.

76 Dysregulation of skeletal muscle insulin-signaling and metabolism is a hallmark of insulin resistance and
77 an underlying cause of cardiometabolic diseases and the progression of age-associated dysfunction¹². Prior
78 work in our Japanese macaque model of Western-style diet (WSD)-induced maternal obesity identified metabolic
79 dysregulation in multiple tissues of fetal, juvenile, and adolescent offspring¹³⁻¹⁸ including reduced insulin
80 sensitivity in skeletal muscle¹⁹ and decreased oxidative metabolism in fetal muscle²⁰. Adaptations to a maternal
81 WSD persisted in skeletal muscle in juvenile and adolescent macaque offspring²¹, and in rodents, the insulin
82 resistant phenotype persisted for multiple offspring generations²², even when offspring are switched to a healthy
83 diet. The persistence of these phenotypes in offspring exposed to a maternal WSD during pregnancy suggests
84 persistent and durable molecular reprogramming and modifications to the transcriptome²³.

85 Given the role of skeletal muscle in regulating peripheral insulin resistance during adolescence, we
86 sought to determine the impact of maternal WSD feeding during pregnancy and lactation on programming of
87 transcription along well-characterized pathways. Given the potential variation in adiposity deposition amongst
88 males and females during these key lifespan intervals leading up to reproductive competence, we further sought
89 to explore sex as a biologic factor using a nested experimental design. Specifically, in the current study, we
90 aimed to investigate the effects of maternal WSD vs. maternal obesity plus a WSD (OB) vs. post weaning WSD.
91 To this end, we compared effects of maternal (M) and/or post-weaning (PW) WSD feeding, compared to a
92 standard control diet (CTR), on skeletal muscle gene expression in early adolescent 3-year-old Japanese
93 macaques. This strategy resulted in 5 experimental treatment groups: Offspring from lean dams fed a M-CTR
94 that were fed a PW-CTR (Group 1; CTR/CTR) or a PW-WSD (Group 2; CTR/WSD) and offspring from lean
95 dams fed a M-WSD that were then fed a PW-CTR (Group 3; WSD/CTR) or a PW-WSD (Group 4; WSD/WSD)
96 (**Figure 1A-C**), and offspring from M-OB weaned to a PW-CTR (Group 5; obWSD/CTR). All experimental groups
97 consisted of both male and female offspring. (**Figure 1B**). Based on our prior work, we hypothesized that
98 pathways related to skeletal muscle metabolism, growth and insulin signaling would be differentially expressed
99 in offspring exposed to maternal or post-weaning WSD, when compared to those maintained on a CTR diet.

100 Additionally, we anticipated male offspring to have less favorable transcriptional adaptations to maternal WSD
101 than their female counterparts given reports of worse metabolic phenotypes in adult male offspring²⁴.
102

103

RESULTS

104 Offspring gene expression is significantly different based on experimental group.

105 To identify differences between skeletal muscle transcriptional profiles, we implemented a Principal
106 Component Analysis (PCA) combining all 40 samples across the five experimental groups (**Figure S1**). We
107 identified a clear outlier within WSD/CTR (Group 5). In assessing read count distributions, we did not identify
108 any difference in coverage for the outlier (**Figure S2**) and remove it from future analyses – only impacting tests
109 of M-obesity (**Figure 1D**). Removing this outlier resulted in retainment of only a single male in Group 5 and
110 therefore sex was not considered when assessing impacts of M-obesity on offspring gene expression. We then
111 assessed relatedness of transcriptional profiles of the remaining 39 samples in PC space. After removal of the
112 outlier, we observed a significant correlation between experimental group assignment and PC1 ($P < 0.00001$)
113 with PC1 accounting for 27% of the variance observed (**Figure 1D**). As groups are parsed by three main
114 variables (PW-diet, M-diet, and M-obesity) significant association of PC1 with experimental group warranted
115 further exploration into the causal variable(s) for this partition of experimental groups.

116 Maternal obesity does not significantly impact offspring gene expression.

117 To test for impacts of M-obesity on offspring gene expression, we compared individuals from M-WSD
118 and PW-CTR groups whose mothers were obese vs lean (Group 3 vs Group 5). Given the removal of an outlier
119 from Group 5, we only retained a single male offspring from an obese dam and therefore could only test for
120 effects of M-obesity with sexes combined (**Figure 2A**). We performed hierarchical clustering of the top 1000
121 differentially expressed genes which did not reveal any clustering by group (**Figure 2B**). The lack of clustering
122 was also observed using PCA where there was no significant correlation of group with any PC ($P > 0.05$) (**Figure**
123 **2C**). We then fit the data to a linear model accounting for maternal obesity and identified only a single significantly
124 upregulated gene (**Figure 2D**). These data suggest no significant effect of M-obesity on offspring skeletal muscle
125 gene expression.

126 Maternal WSD feeding significantly impacts gene expression.

127 To assess the impact of M-diet on offspring skeletal muscle gene expression, we performed three
128 comparisons. First, we compared PW-CTR groups exposed to either M-WSD or M-CTR diet (Group 1 vs. Group
129 3) (**Figure S3A**). As we did not observe any impact of M-obesity on offspring gene expression, we performed a
130 third comparison combining WSD/CTR groups (lean and obese mothers) to be compared to CTR/CTR (Group
131 1 vs Group 3 & 5) (**Figure 3A**). Combining Groups 3 & 5 allowed us to increase our sample sizes and account
132 for offspring sex. We performed hierarchical clustering of the top 1,000 differentially expressed genes –
133 regardless of significance – in comparison to assess partitioning of individuals. We observed clear separate
134 grouping of individuals from CTR/CTR vs. Lean WSD/CTR (**Figure S3B**). This pattern was consistent across
135 comparisons including and excluding obese mothers (**Figure 3B**). PCA of each comparison confirmed these
136 findings such that PC1 significantly correlated with group assignments in the Group 1 vs. Group 3 comparison
137 and Group 1 vs Groups 3 & 5 combined comparison ($P = 0.0001$; $P < 0.00001$ respectively) with PC1 accounting

138 for 32% of the observed variance (**Figure S3C; Figure 3C**). When combining Groups 3 and 5, we observed a
139 significant correlation of read count by group ($P = 0.042$). When fitting our data to a linear model accounting for
140 M-diet, we identified 272 significantly upregulated and 620 significantly downregulated genes in PW-CTR groups
141 comparing M-WSD to M-CTR diet (i.e. Group 1 vs. Group 3) (**Figure S3D**). The number of impacted genes
142 increased with inclusion of offspring from obese mothers to 338 significantly upregulated and 682 significantly
143 downregulated genes (**Figure 3D**).

144 We also investigated impacts of M-diet by sex with our increase in sample size by inclusion of Group 5.
145 We fit the data to a linear model accounting for M-diet, sex, and an interaction effect between M-diet and sex.
146 We did not identify strong signals of differential expression between sexes (**Figure 3D**) and instead only
147 identified a small number of genes differentially expressed based on sex alone. Interestingly, we identified strong
148 patterns of differential expression in both male and female offspring in CTR/CTR vs. WSD/CTR (Group 1 vs
149 Group 3 & 5). We identified 510 significantly upregulated and 808 significantly downregulated genes when
150 comparing M-WSD vs. M-CTR diet. In males fed a PW-CTR diet, we identified 185 significantly upregulated and
151 459 significantly downregulated genes when comparing M-WSD vs. M-CTR diet (**Table S4**). We did not detect
152 an interaction effect likely due to limited sample sizes (**Figure 3D**).

153 We next tested if males and females exhibited the same changes in expression by M-diet by looking at
154 overlapping sets of differentially expressed genes between the sexes (Group 1 vs Group 3&5). First, significantly
155 differentially expressed genes in offspring fed PW-CTR diets were visualized in a heat map for both sexes
156 (**Figure 3E**). We did not identify any genes significantly upregulated in one sex that were significantly
157 downregulated in the other, but instead detected significant differential expression in many genes only in one
158 sex (data not shown).

159 We then compared PW-WSD offspring groups exposed to M-CTR or M-WSD (Group 2 vs. Group 4)
160 (**Figure 3F**). Unlike data from PW-CTR offspring, we did not, observe distinct grouping when comparing
161 CTR/WSD vs. WSD/WSD (i.e., Group 2 vs. Group 4) (**Figure 3G**). Additionally, in the Group 2 vs. Group 4
162 comparison, there was no correlation with any PC ($P > 0.05$) (**Figure 3H**). When fitting these data to a linear
163 model accounting for M-diet, we identified only 1 significantly upregulated and 2 significantly downregulated
164 genes in the PW-WSD groups (Group 2 vs. Group 4) (**Figure 3I; Table S5**).

165 Post-weaning WSD feeding significantly impacts gene expression.

166 To assess the impact of PW-diet on skeletal muscle from male and female offspring respectively, we
167 first compared offspring fed a PW-WSD to those on a PW-CTR within the M-CTR Groups (Group 1 vs. Group
168 2) (**Figure 4A**). We again performed hierarchical clustering of the top 1,000 differentially expressed genes –
169 regardless of significance – in each group pair to assess partitioning of individuals. We observed clear separation
170 in clustering of individuals from Group 1 vs. Group 2, indicating a potential impact of PW diet on individuals from
171 M-CTR dams (**Figure 4B**). PCA mirrored these findings with PC1 significantly correlated with PW-diet group in
172 the Group 1 vs. Group 2 comparison ($P = 0.012$) accounting for 33% of the observed variance (**Figure 4C**).
173 These findings were further supported by fitting our data to a linear model accounting for PW-diet. When
174 comparing PW-diet treatments in individuals from dams fed a M-CTR (Group 1 vs. Group 2) diet, we identified

175 287 significantly upregulated and 497 significantly downregulated genes (**Figure 4D**). Unfortunately, limited
176 sample sizes prevented testing for differential expression by sex as we only had two females in the CTR/WSD
177 group. Upon further investigation, however, we found that both females and a single male in the CTR/WSD
178 group (Group 2) exhibited elevated fasting insulin levels (**Table S1**) consistent with previous studies¹⁶ and that
179 those with the highest fasting insulin (**Table S1**) exhibited the most extreme differential expression (**Figure 4E**).

180 We also compared offspring fed a PW-WSD to those on a PW-CTR within the M-WSD groups (Group
181 3 vs. Group 4) (**Figure 4F**). We did not observe distinct clusters comparing Group 3 vs. Group 4, no PC
182 significantly correlating with group ($P > 0.05$) (**Figure 4G**) and no differentially expressed genes were identified
183 (**Figure 4I**) suggesting PW-diet had little or no effect on offspring gene expression profiles when offspring were
184 exposed to M-WSD.

185 *Female offspring exhibit interaction effects between maternal and post-weaning diets.*

186 To test for interaction effects between PW and M diets, we combined all data from offspring born to lean
187 mothers (Groups 1-4) (**Figure 5A**). Using PCA, we identified distinct clustering by Group with PC1 significantly
188 correlated with experimental group ($P = 0.00007$) accounting for 28% of the variance (**Figure 5B**). When we fit
189 these data to a linear model accounting for M-diet, PW-diet, and interaction between PW and M diets, we
190 identified 121 significantly upregulated and 213 significantly downregulated genes due to the interaction between
191 diets (**Figure 5C**). When visualized as a heat map, there were clear cases of individuals not fitting the pattern of
192 DE between Group 1 (CTR/CTR) and the other three groups (CTR/WSD; WSD/CTR; WSD/WSD) (**Figure 5D**).
193 Combined, previous findings of increased variance in males by M-diet, correlation of read count with group in
194 this comparison, and the presence of outliers in our DE heatmap led us to assess impacts of diet interactions by
195 sex.

196 When separating groups by sex, we identified striking patterns of dissimilarity. In males, no clustering of
197 groups or significant correlations with any PC were observed ($P > 0.05$) (**Figure 5E**). In contrast, females
198 exhibited clear clustering by group and a significant correlation of Group with PC1 ($P = 0.00018$) (**Figure 5F**).
199 We then fit a linear model accounting for M-diet, PW-diet, and an interaction effect between M and PW- diets
200 (**Figure 4G**). While we did not identify many significantly differentially expressed genes (35 significantly
201 upregulated and 18 significantly downregulated in females), we did observe a clear clustering pattern in the
202 heatmap of differentially expressed genes (**Figure 5H**). In the heatmap, gene clusters presented in three groups
203 (CTR/CTR vs CTR/WSD or WSD/CTR or WSD/WSD) instead of the four treatment groups present in the
204 experimental design (**Figure 5D**). In female offspring, there were two different patterns of differential expression.
205 In the 18 significantly downregulated genes, patterns were consistent with those observed with sexes combined;
206 exposure to WSD either in M-diet or PW-diet resulted in downregulation compared to the CTR/CTR group. In
207 the 35 significantly upregulated genes, however, individuals exposed to WSD either in PW or M diet – but not
208 both – exhibited the strongest upregulation. Individuals from the WSD/WSD group exhibited patterns of
209 expression that were more similar to the CTR/CTR group (**Figure 5H**).

210 *Top gene analysis and KEGG enrichment of differentially expressed genes reveals targets of interest.*

211 Differential expression analyses based on M-diet in offspring fed PW-CTR yielded the strongest signal
212 (Group 1 vs Groups 3 & 5). To biologically assess the impacted genes/gene groups, we identified the most
213 differentially expressed genes in all animals and in each sex using (**Table 1**). While individual gene dysregulation
214 can have major biological consequences, we also performed KEGG pathway enrichment to identify biological
215 pathways enriched for differentially expressed genes. We used raw log-fold changes to identify pathways
216 significantly up- or downregulated. We performed this analysis on sexes separate and sexes combined (**Figure**
217 **6**). Top KEGG pathways included those pathways predicted to be different based on our prior work like insulin
218 signaling, PI3K-AKT signaling, metabolic pathways and fatty acid degradation. Female offspring had a stronger
219 influence on enrichment in these pathways than male offspring.

220

DISCUSSION

221 Fetal nutrient and growth factor availability during pregnancy significantly impacts muscle size, fiber
222 composition, and programs responsiveness of pathways important for muscle growth, repair, and
223 metabolism^{25,26} in mammals and avian species. Maternal diets that are both calorically dense²⁶⁻²⁸ or
224 calorie/protein insufficient²⁹⁻³¹ during pregnancy impair fetal myogenesis, resulting in smaller skeletal muscle
225 fibers and reduced downstream insulin signaling years after birth. Our previous findings in a Japanese macaque
226 model found impaired skeletal muscle metabolic flexibility and reduced insulin-stimulated glucose uptake in fetal
227 offspring from dams consuming a WSD¹⁹⁻²¹. Here, we find that persistent shifts in transcriptional response may
228 underlie these programmed changes in offspring skeletal muscle function and increase the risk of metabolic
229 disease.

230 Our differential expression analyses revealed several interesting and somewhat unexpected findings.
231 First, maternal diet was a major driver of transcriptional changes not maternal obesity (**Figure 2; Figure 3**).
232 Given multigenerational studies of maternal obesity in rodent models³², we anticipated finding transcriptional
233 changes but hypothesized that maternal obesity and insulin resistance, more so than maternal WSD, would
234 significantly impact offspring transcriptome in skeletal muscle. Evidence from several epidemiological studies
235 and clinical cohorts strongly supports that maternal obesity, potentially mediated through poor metabolic health
236 status³³⁻³⁵, increases infant adiposity and risk of offspring obesity^{1,36,37}. Additionally, in a cohort of greater than
237 30,000 adult offspring, maternal obesity was linked to higher all-cause mortality and greater risk of
238 cardiovascular disease in adult offspring³⁸. Therefore, the persistent impact of maternal WSD in the absence of
239 maternal obesity or maternal insulin resistance on the skeletal muscle gene expression, particularly when
240 offspring were switched to a healthy control diet, was unexpected (**Figure 2**). More so, the lack of a further effect
241 of maternal obesity as compared to maternal WSD alone on offspring gene expression suggests a poor quality
242 WSD is sufficient for metabolic reprogramming in offspring skeletal muscle, at least in a nonhuman primate
243 model (**Figure 3**). There are two caveats to these findings. First, given our small sample size, the lack of
244 difference with maternal obesity may be due to Type II error. Further exploration with an expanded sample sizes
245 is needed to thoroughly address the potential impacts of maternal body composition on offspring health.
246 Additionally, sex distribution was not matched in this analysis. Given other analyses showed difference in
247 response between males and females, the unbalanced sex distribution between the two groups may obscure
248 the findings.

249 Transcriptomic studies in liver, skeletal muscle and adipose tissue of fetal; or adult offspring in mouse
250 models identify differing transcriptional responses of male and female offspring to maternal obesity³⁹, offering a
251 probable explanation for sexually dimorphic metabolic outcomes as male offspring have been reported to have
252 worse metabolic adaptations than their female counterparts³⁹⁻⁴³; however, other studies show worse outcomes
253 in female offspring^{44,45}. While these studies in rodents suggest fetal exposure to maternal obesity alters offspring
254 metabolism through transcriptional mechanisms, factors such as degree of high fat diet exposure, housing
255 temperature, developmental stage/maturity at birth, and litter births may limit the relevance to human
256 populations. In our study, we also observed that male and female offspring were impacted differently by M-diet,

257 with females exhibiting more differentially expressed genes than males, but we were surprised to see few genes
258 differentially expressed based on sex alone (**Figure 3**). Increased transcriptional responses in females suggests
259 fetal adaptations to M-WSD allows for genetic and molecular compensations that may support greater resiliency
260 to later life environmental stressors compared to male offspring. In male offspring, we observed increased
261 variance that was most clearly demonstrated when assessing interaction effects between M and PW-diets.
262 Again, these inferences are not without caveats. Due to the limited sample size, we likely did not have the
263 statistical power to detect an interaction effect between treatment and sex. To understand the differences in
264 males and females, we relied on general global patterns of expression differing between the sexes, and
265 differences in significance across PC space to ascertain different responses between the sexes. Additionally,
266 given our observation that male and female offspring are affected differently by M-diet, it is surprising that we
267 have not yet observed differences in functional outcomes measures including insulin-stimulated glucose
268 uptake¹⁹, mitochondrial oxidative metabolism^{20,21}, in offspring skeletal muscle but speculate that dysregulation
269 of different pathways may lead to the same outcome. Thus, it is important for future work to account for sex
270 when assessing mechanisms for how maternal health or diet impacts on offspring.

271 In metabolically healthy individuals, switching to a higher fat WSD leads to adaptations in skeletal
272 muscle to promote fatty acids uptake, storage and oxidation in skeletal muscle^{46,47}, in part, through transcriptional
273 coordination of PPARs, PGC-1 α and ER α signaling⁴⁸⁻⁵⁰. In contrast, those with metabolic disorders, such as
274 obesity, insulin resistance, and type 2 diabetes, demonstrate reduced mitochondrial content and diminished
275 metabolic flexibility^{51,52} potentially driven by a blunted transcriptional response⁵². In our study, skeletal muscle
276 from offspring of M-CTR fed dams had a transcriptional shift in gene expression, but there was little to no
277 transcriptional response based on PW-diet in offspring of M-WSD dams (**Figure 4**). The lack of a robust
278 response in lean, healthy adolescent offspring from M-WSD dams is unexpected indicating that M-WSD
279 suppresses later transcriptional response to WSD. This may be due to either an early life activation and
280 programming of these pathways such that no additional adaptation is required, or perhaps M-WSD leads to a
281 down-regulation of nutrient sensing signals like AMPK, SIRT1 and mTOR⁵³ resulting in suppressed metabolic
282 fuel shifts as noted in adults with obesity. Regardless, these results suggest that returning to a healthy chow diet
283 (a postweaning diet intervention) may be insufficient in mitigating the effects of poor maternal diet.

284 An additional trend worth highlighting is the stark differences in interaction effects between M and PW-
285 diets observed in male vs. female offspring respectively (**Figure 5**). When assessing interaction effects directly,
286 we see clear clustering of individuals based on treatment group in female but not male offspring. In our analysis,
287 female offspring in the WSD/WSD group showed a distinct pattern of gene response that was different from
288 either the M-WSD or PW-WSD group alone. This suggests M-WSD may create a transcriptional pattern that
289 “primes” muscle to be compatible with continued WSD exposure and may accelerate disease risk. In contrast,
290 a mismatch between maternal and postweaning diet leads to unique transcriptional pattern from that observed
291 with the matched maternal and postweaning diet. Further investigation of these distinct gene sets may reveal
292 mechanisms or biomarkers for individuals with increased risk.

293 While we were most interested in general patterns observed in this study – namely the impact of
294 treatments (i.e. M-obesity, M-diet, and PW -diet) on transcription globally, there are a few interesting genes and
295 gene pathways identified that warrant further investigation in future studies. As M-diet exhibited the most major
296 effect on offspring gene expression, we investigated the top differentially expressed, and KEGG enriched
297 pathways significantly impacted by this treatment in both sexes independently and combined (**Table 1; Figure**
298 **6**). Within the group of top 15 differentially expressed genes, were several involved in stress-responsive mitogen-
299 activated protein kinases (MAPK) signaling pathway, *map3k6*, *map3k8*, and *pla2g4b*. In skeletal muscle,
300 activation of MAPK, most notably p38 MAPK, and c-Jun NH2-terminal kinase (JNK)⁵⁴ but also TPL2 (i.e.
301 *map3k8*)⁵⁵ is linked to insulin resistance. As noted, we have observed impaired glucose uptake in offspring
302 skeletal muscle, which was not linked to changes in insulin action typically associated with muscle insulin
303 resistance observed in obesity. Changes in MAPK may be a novel mechanism to explain offspring insulin
304 resistant phenotype. Downregulation of *ifi27* (IFN- α inducible protein 27) and *gadd45g* (growth arrest and DNA
305 damage inducible gamma) was most also consistent across sexes based on M-diet, with *ifi27* exhibiting the most
306 extreme downregulation in both sexes. In adipocytes, IFI27 localizes to inner mitochondria matrix, and promotes
307 fatty acid oxidation through interactions with the trifunctional protein (HADHA)^{56,57}. This is especially interesting
308 as we have observed impaired fat oxidation in skeletal muscle from M-WSD offspring²¹. The downregulation of
309 *gadd45g* was particularly surprising as it is typically upregulated due to stress⁵⁸, and in fetal muscle, we observed
310 *gadd45g* was upregulated in response to maternal obesity²⁰. The opposite augmentation in expression due to
311 maternal WSD in the postweaning period may be an adaptation that leaves muscle cells more vulnerable to
312 oxidative damage and may promote a proinflammatory phenotype as demonstrated in hematopoietic stem and
313 immune progenitor cells in these offspring¹³.

314 At the genetic pathway level, there were also some interesting trends (**Figure 6**). Differentially expressed
315 genes were enriched in KEGG pathways for “Ribosome” in both sexes independently and combined resulting in
316 significant upregulation of ribosomes. We also noted enrichment in downregulation of “Valine, leucine, isoleucine
317 degradation”. This is not surprising as skeletal muscle is in essence the primary storage site for amino acids.
318 This also aligns with dysregulation of mTOR signaling which is commonly observed in aged- or insulin resistant
319 muscles^{59,60}. Upregulation of “Ribosomes” combined with downregulation of “Valine, leucine, isoleucine
320 degradation” and with downregulation of “Spliceosomes” – also observed – suggests a potential breakdown of
321 transcription-translation feedback loops which could be impacting expression of other gene pathways. We also
322 noted upregulation of several pathway involved in glucose uptake including “PI3K-Akt signaling”, “insulin
323 resistance”, and “insulin signaling” with M-WSD as well as upregulation of “cGMP-PKG signaling pathway”
324 which is responsive to NO and is thought to mediate glucose uptake in basal or contraction-stimulated
325 conditions^{61,62}. The upregulation of these pathways may be compensatory to the reduced insulin responsiveness
326 measured in fetal and juvenile skeletal muscle of offspring exposed to M-WSD and/or may be elevated due to
327 the potential breakdown in transcription-translation feedback loops. Alternatively, there may be an upregulation
328 in genes within these pathways that negatively regulate insulin action. Overall, these data indicate a persistent
329 impact of maternal diet on offspring skeletal muscle transcriptome and regulation of glucose metabolism.

330 In summary, our results show that a maternal Western-style diet, even in the absence of maternal
331 obesity and insulin resistance, is sufficient to reprogram offspring skeletal muscle transcriptional response in
332 male and female offspring in a Japanese macaque model. The effects on gene expression were robust lasting
333 years after exposure and influenced offspring responsiveness to a postweaning western-style diet that was sex-
334 dependent. We propose that this persistence in transcriptional response based on maternal diet contributes to
335 the observed increased susceptibility to metabolic diseases in offspring. Future work will be aimed at identifying
336 the cellular mechanisms leading to persistent changes in gene networks.

337

338

METHODS

339 **Animals.** All animal procedures were approved by and conducted in accordance with the Institutional Animal
340 Care and Use Committee of the Oregon National Primate Research Center (ONPRC) and Oregon Health and
341 Science University. The ONPRC abides by the Animal Welfare Act and Regulations enforced by the USDA
342 and the Public Health Service Policy on Humane Care and Use of Laboratory Animals in accordance with the
343 Guide for the Care and Use of Laboratory Animals published by the NIH.

344

345 **Experimental Model.** Adult female Japanese macaques were group housed in indoor/outdoor pens with 1-2
346 males and were fed ad libitum either a CTR diet fed (15% calories from fat originating primarily from soybeans
347 and corn; Monkey Diet no. 5000; Purina Mills) or WSD (37% calories from fat primarily from corn oil, egg, and
348 animal fat; TAD Primate Diet no. 5LOP, Test Diet, Purina Mills) for at least 1.5 years prior to pregnancy.
349 Carbohydrate content differed between the two diets, with sugars (mainly sucrose and fructose) constituting
350 19% of the western-style diet but only 3% control diet. Monkeys on the WSD were also given calorically dense
351 treats (35.7% of calories from fat, 56.2% of calories from carbohydrates, and 8.1% of calories from protein) once
352 daily. A subset of dams in the WSD group remained lean and insulin-sensitive similar to females fed a CTR diet
353 while the others became obese (**Table S2**). Adult females were classified as lean or obese based on
354 percentage body fat obtained by dual-energy X-ray absorptiometry (DEXA) in the fall preceding the pregnancy
355 of interest²⁰. Adult females in the WSD group with increased body fat (M-obesity) were older, had been fed the
356 WSD for longer and were more insulin resistant (**Table S2**). An intravenous glucose tolerance test used to
357 assess insulin sensitivity prior to pregnancy determination (fall) and during the 3rd trimester as previously
358 described⁶³. Only singleton births were included in the cohort.

359 Offspring were born naturally and remained in their home colony until weaning. At 7-8 months of age, juvenile
360 offspring were weaned to new group housing with 6–10 similarly aged juveniles from both maternal diet groups
361 and 1–2 adult females. These new housing groups were then fed either CTR or WSD, creating four offspring
362 groups. Body weight and body composition by DEXA was taken at ~38 months of age. Insulin sensitivity was
363 measured by IV GTT at 36 months as previously described¹⁶. Sample size for each group (maternal diet/offspring
364 diet) included 12 CTR/CTR (7 female [F], 5 male [M]), 5 CTR/WSD (2 F, 3 M), 13 WSD/CTR (5 F, 8 M), and 8
365 WSD/WSD (5 F, 3 M), juvenile offspring from 9 CTR dams and 14 WSD dams were included in this study. In
366 male or female offspring, there was no increase in body weight or percent body fat across groups with PW-
367 WSD(**Table 2**); however, as previously shown in larger cohorts of offspring¹⁶, male and female CTR/WSD
368 offspring had higher fasting insulin and higher insulin area under the curve during iv GTT as compared to
369 CTR/CTR(**Table 2**). In females, fasting insulin and insulin AUC was also higher in CTR/WSD compared to
370 WSD/WSD (**Table 2**).

371 An initial concern with our experimental design was that variables unrelated to experimental group, and
372 their main variables, could be influencing transcriptional profiles, specifically, the cohort year in which offspring
373 were reared and the genetic relatedness of individuals (**Table S1**). For each cohort year (**Table S1**), we observed
374 a complete span of PC1 space, with no significant correlations between any PC and cohort year (**Figure S4**).

375 Importantly, while there is some variability in relatedness of our combined 40 Japanese macaque offspring, all
376 individuals are closely related. In all but one case, dams reared one or two offspring with one dam rearing three
377 offspring (**Table S1**). Offspring were randomized across treatment groups (i.e., one dam may have reared two
378 offspring in the same treatment group or in different treatment groups). The identity of sires is unknown; however,
379 the family structure of Japanese macaques limits the number of possible sires so in all cases there are one or
380 two sires possible within each harem. This means all offspring are likely at least half-siblings.

381
382 **Juvenile muscle collection.** Juvenile animals were sacrificed between 37 and 40 months of age with an
383 average age of 38 months for all groups. At time of necropsy, juvenile skeletal muscles including gastrocnemius,
384 soleus, vastus lateralis, and rectus femoris were rapidly dissected of fascia and portions were flash frozen in
385 liquid nitrogen. Frozen muscle was pulverized was pulverized on dry ice and stored at -80°C until analysis.

386
387 **RNA Extraction.** RNA was extracted from approximately 50 mg of pulverized gastrocnemius using PureLink
388 RNA mini kit (Thermofisher, Waltham, MA, USA) according to manufacturer's instructions except
389 homogenization in trizol was performed using an Omni bead mill with a CryoCool system. Each cryomill tube
390 had 5 x 2.8mm ceramic beads (Omni Inc, Kennesaw, GA, USA) and was run for 2 x 30 secs at 6 m/s with a 10
391 sec dwell period.

392
393 **RNA-seq Data Processing and Normalization.** RNA-seq library preps were generated using the Kapa
394 stranded mRNA-seq kit (Roche, Basel, Switzerland). Samples were individually barcoded sequenced on the
395 Illumina Hi-Seq 4000 (Illumina Inc, San Diego, CA, USA). Sequencing reads were demultiplexed via Illumina's
396 bcl2fastq software (Illumina Inc, San Diego, CA, USA) and trimmed and quality filtered using BBduk (BBMap-
397 Bushnell B. - sourceforge.net/projects/bbmap/). Reads were aligned to the rhesus macaque reference genome
398 version 8.0.1 using the STAR aligner⁶⁴ version 2.5.4b and read count tables generated using the -quantMode
399 gene counts function in STAR. Preprocessing of read counts was performed with integrated Differential
400 Expression and Pathway analysis (iDEP) version 0.93⁶⁵. This package implements R programming language
401 version 4.05⁶⁶ and Bioconductor^{67,68} version 3.12. Total read counts per gene were input and metadata for each
402 hypothesis tested separately into iDEP93. A cut-off of 0.5 CPM (copies per million) was used to filter genes with
403 low counts for all libraries prior to differential expression analyses. We normalized and log2 transformed gene
404 counts using EdgeR⁶⁹ in iDEP93⁶⁵. When assessing all 40 individuals for read count distributions, we identified
405 a correlation between read count and M-diet ($P = 0.00657$) (**Figure S2**). This correlation did not persist in any
406 of our hypothesis tests and no significant correlations between read count and other experimental variables were
407 found when assessing impacts of PW-diet, M-diet, or M-obesity, (with sexes combined or split). There were also
408 no correlations identified when testing for interaction effects between PW-diet and M-diet when groups were
409 split by sex. However, we did see a significant correlation of read count and Group ($P = 0.00729$) and read count
410 and M-diet ($P = 0.0067$) in testing for PW-diet and M-diet interaction effects with sexes combined.

411

412 **Differential Expression Analysis and Pathway Enrichment.** iDEP93⁶⁵ was used for differential expression
413 analyses. Multivariate patterns of gene expression between experimental groups were characterized with
414 Principal Component Analysis (PCA). Coordinates were exported from iDEP93 and visualized in RStudio using
415 Base R⁶⁶. Heatmaps were generated using data visualization in iDEP93 implementing hierarchical clustering of
416 the top 1,000 differentially expressed genes. Differential expression analyses were performed with DESeq2⁷⁰
417 with a minimum fold change of 1.5 and a False Discovery Rate (FDR) of 0.05. We selected main effects for each
418 comparison with interaction effects included when appropriate. We performed three iterations of KEGG Pathway
419 enrichment using Generally Applicable Gene set Enrichment (GAGE) and Gene Set Enrichment Analysis
420 (GSEA) with an FDR of 0.05. KEGG⁷¹ enrichment was performed using Ensembl Release 100.
421

422 **Table 1. Top 15 Differentially Expressed Genes by Maternal Diet.** Comparison of Group 1 vs Groups 3 & 5
 423 combined. Subsections separated by sexes combined, females only, and males only. Only elements with gene
 424 names included.

Sexes Combined					
Gene Name	log2fold Δ	Adj P-Value			
<i>ifi27</i>	-3.17	3.06E-33			
<i>gadd45g</i>	-2.31	9.16E-16			
<i>itih4</i>	-2.14	3.43E-09			
<i>pla2g4b</i>	-2.13	1.79E-14			
<i>leng8</i>	-2.04	7.33E-18			
<i>hsf4</i>	-1.98	6.91E-16			
<i>pan2</i>	-1.98	1.97E-20			
<i>otud1</i>	1.97	1.38E-03			
<i>map3k6</i>	-1.97	4.96E-19			
<i>neil1</i>	-1.88	6.86E-13			
<i>scarf1</i>	-1.86	3.28E-18			
<i>tmem82</i>	-1.79	1.39E-12			
<i>clasrp</i>	-1.75	2.16E-15			
<i>slc7a6</i>	-1.74	1.70E-18			
<i>znf7</i>	-1.73	2.65E-18			
Females Only		Males Only			
Gene Name	log2fold Δ	Adj P-Value	Gene Name	log2fold Δ	Adj P-Value
<i>ifi27</i>	-3.27	4.49E-15	<i>ifi27</i>	-2.99	1.10E-08
<i>myh4</i>	-3.09	1.02E-03	<i>spp1</i>	-2.84	4.95E-04
<i>otud1</i>	2.57	2.25E-03	<i>gadd45g</i>	-2.01	6.39E-05
<i>gadd45g</i>	-2.43	6.20E-10	<i>leng8</i>	-1.92	4.89E-06
<i>itih4</i>	-2.28	5.71E-06	<i>hsf4</i>	-1.86	2.12E-05
<i>plag4b</i>	-2.25	2.55E-09	<i>dsn1</i>	-1.85	1.97E-05
<i>map3k6</i>	-2.08	1.72E-11	<i>plxna3</i>	-1.85	6.59E-04
<i>pan2</i>	-2.08	1.82E-13	<i>pla2g4b</i>	-1.82	1.74E-04
<i>leng8</i>	-2.07	3.15E-10	<i>map3k6</i>	-1.76	8.03E-06
<i>hsf4</i>	-2.02	4.37E-09	<i>itih4</i>	-1.76	8.08E-03
<i>map3k8</i>	-2.01	3.15E-10	<i>pan2</i>	-1.72	2.51E-06
<i>neil1</i>	-1.97	1.97E-08	<i>nphp4</i>	-1.71	5.77E-05
<i>znf460</i>	1.96	1.13E-12	<i>scarf1</i>	-1.7	3.49E-06
<i>slc25a1</i>	-1.91	2.98E-08	<i>clasrp</i>	-1.7	1.42E-05
<i>slc7a6</i>	-1.9	2.17E-14	<i>mpz</i>	-1.66	5.30E-03

425

426

427 Table 2. Male and female offspring physiology at 3 years of age

		CTR/CTR (Group 1)	CTR/WSD (Group 2)	WSD/CTR (Group 3)	WSD/WSD (Group 4)	Obese/CTR (Group 5)			
Offspring number	Female	6	2	3	5	5	Main effects		
	Male	4	3	7	3	2	M	PW	INT
Weight (g)	All	5937 ± 263	5813 ± 360	6177 ± 302	5910 ± 275	6047 ± 99	ns	ns	ns
	F	5748 ± 423	5531 ± 298	5676 ± 729	5628 ± 341	6063 ± 114	ns	ns	ns
	M	6220 ± 162	6002 ± 599	6391 ± 306	6379 ± 378	6005 ± 270	ns	ns	ns
Lean Mass (g)	All	4772 ± 217	4745 ± 271	4985 ± 249	4880 ± 221	4836 ± 127	ns	ns	ns
	F	4607 ± 348	4469 ± 285	4515 ± 588	4681 ± 244	4915 ± 114	ns	ns	ns
	M	5018 ± 122	4928 ± 418	5187 ± 256	5213 ± 407	4640 ± 395	ns	ns	ns
Body Fat (%)	All	15.6 ± 0.7	14.1 ± 1.0	15.1 ± 0.5	13.2 ± 1.0	15.9 ± 1.1	ns	.04	ns
	F	15.8 ± 1.2	15.0 ± 0.9	15.9 ± 1.1	12.5 ± 1.0	14.8 ± 0.8	ns	ns	ns
	M	15.3 ± 0.5	13.5 ± 1.6	14.7 ± 0.6	14.3 ± 2.0	18.5 ± 3.1	ns	ns	ns
Insulin (μU/mL)	All	6.7 ± 1.6 ^a	20.9 ± 6.0 ^d	5.3 ± 1.0	9.9 ± 1.1	5.7 ± 1.3	.009	.0002	.04
	F	7.9 ± 2.6 ^a	28.4 ± 10.2 ^d	7.8 ± 2.9	9.3 ± 1.8	6.7 ± 1.6	.02	.02	.01
	M	5.0 ± 0.4 ^a	16.0 ± 7.4	4.2 ± 0.5	10.8 ± 0.7	3.2 ± 1.0	ns	.006	ns
Glucose (mg/dL)	All	55 ± 5	60 ± 4	55 ± 3	55 ± 1	48 ± 2	ns	ns	ns
	F	50 ± 6	63 ± 10	51 ± 5	55 ± 2	48 ± 3	ns	ns	ns
	M	62 ± 6	59 ± 4	56 ± 4	56 ± 2	47 ± 4	ns	ns	ns
Insulin AUC	All	1578 ± 213	2364 ± 345	1738 ± 222	2087 ± 190	1797 ± 398	ns	.03	ns
	F	2036 ± 364 ^a	3161 ± 192 ^d	2135 ± 288	1868 ± 135	1410 ± 169	ns	ns	.02
	M	1256 ± 109	1833 ± 180	1567 ± 279	2451 ± 410	2765 ± 1316	ns	.03	ns
Glucose AUC	All	10095 ± 467 ^c	8493 ± 449	8226 ± 444	8263 ± 427	8440 ± 561	.04	ns	ns
	F	9915 ± 582	7637 ± 815	8392 ± 372	7923 ± 558	8587 ± 779	ns	ns	ns
	M	10320 ± 843	9064 ± 207	8154 ± 631	8830 ± 638	8075 ± 601	ns	ns	ns

428 Data is shown as the mean ± SEM. For each measurement, group data is given for all animals, and then
429 separated by sex. Fasting glucose and insulin were measured in anesthetized animals. Body composition was
430 measured by DEXA and percent fat calculated from total mass. Data were analyzed by two-way ANOVA for
431 main effects of maternal (M) or postweaning (PW) diet or for an Interaction (INT) across groups 1-4. When
432 significant (p<0.05), post hoc comparison between groups is indicated by letters: ^agroup 1 vs. 2; ^bgroup 3 vs. 4;
433 ^cgroup 1 vs. 3; ^dgroup 2 vs. 4. A Student's t- test was used to compare offspring in group 3 and group 5; * p<0.05.
434 ns, not significant.

435

436 **FUNDING:**

437 This research was supported by NIH grants, R24 DK090964 (J.E.F., K.M.A., and A.C.P.), R01 DK128187
438 (K.M.A, P.K. and J.E.F.), and by a P51 OD011092 NIH Center Grant to Oregon National Primate Research.
439 E.A.B. was supported by the University of Oregon Office of the Vice President for Research and Innovation
440 (OVPRI) Incubating Interdisciplinary Initiatives award to C.E.M and E.A.B. The Endocrine Technologies Core at
441 Oregon National Primate Research Center (ONPRC) is supported, in part, by NIH grant P51 OD011092 for
442 operation of the Oregon National Primate Research Center. C.E.M. is the guarantor of this work and, as such,
443 had full access to the data included in this study and takes responsibility for the integrity of the data and the
444 accuracy of the data analysis.

445

446 **AUTHOR CONTRIBUTIONS:**

447 C.E.M. conceptualized and designed the study in collaboration with the NHP consortium including S.R.W.,
448 K.M.A., J.E.F., P.K., and M.G. Tissue acquisition was performed at Oregon Health Sciences University led by
449 P.K with T.A.D. Molecular work was performed by B.H. Bioinformatic analyses were performed by E.A.B. with
450 L.N. and D.W.T. Statistical analysis and data visualization were performed by E.A.B. Clayton M. Small provided
451 additional insights on statistical analyses. The manuscript was written by E.A.B and C.E.M. with all authors
452 contributing to the editing of the manuscript.

453

454 **DATA AVAILABILITY:**

455 All sequencing reads are available on the Sequencing Read Archive (SRA) under Submission ID
456 SUB13474614.

457

458 **DECLARATION OF COMPETING INTERESTS:**

459 The authors declare no competing interests.

460 **FIGURE LEGENDS:**

461 **Figure 1. Experimental Design and Hypotheses Tested.**

462 Schematic representation of experimental group composition, group metadata, hypotheses tested, and
463 visualization of total variance in transcriptional profiles. Color-coding of groups is consistent throughout the
464 manuscript. Yellow shading of the macaque indicates western-style diet (WSD), black indicates a control diet
465 (CTR). **(A)** Composition of the five experimental groups in this study. Group 1 (purple): offspring on a CTR diet
466 with lean dams fed a CTR diet. Group 2 (pink): offspring fed a WSD with lean dams fed a CTR diet. Group 3
467 (light blue): offspring fed a CTR diet with lean dams fed a WSD. Group 4 (green): offspring fed a WSD with lean
468 dams fed a WSD. Group 5 (dark blue): offspring fed a CTR diet with obese dams fed a WSD. **(B)** Stacked bar
469 chart representing total sample size in each group and sex composition of each group. Hatched lines indicate
470 number of males, solid fill indicates females. **(C)** Groups used for each hypothesis test. **(D)** PCA of all 39 offspring
471 included in the study.

472

473 **Figure 2. Impact of maternal obesity on offspring gene expression.**

474 Colors indicate experimental group with triangles representing males and circles representing females. **(A)**
475 Group composition and the number of genes retained post-filtering. **(B)** Hierarchical clustering of the top 1,000
476 differentially expressed genes. **(C)** PCA of filtered transcriptional profiles. **(D)** Linear models and number of
477 significantly differentially expressed genes by maternal obesity.

478

479 **Figure 3. Impact of maternal diet on offspring gene expression with obese and lean dams combined.**

480 Colors indicate experimental group with triangles representing males and circles representing females. Panels
481 A-E represent the Group 1 vs Group 3 &5 comparison. Panels F-I represent the Group 2 vs Group 4 comparison.
482 **(A and F)** Group composition and the number of genes retained post-filtering. **(B and G)** Hierarchical clustering
483 of the top 1,000 differentially expressed genes. **(C and H)** PCA of filtered transcriptional profiles. **(D and I)** Linear
484 models and number of significantly differentially expressed genes by comparison. **(E)** Heat map of significantly
485 differentially expressed genes based on maternal diet and venn-diagram showing overlap between significantly
486 up- or downregulated genes across the sexes. Consistent with the heat maps red indicated upregulation and
487 blue indicated down regulation.

488

489 **Figure 4. Impact of post-weaning diet on offspring gene expression.**

490 Colors indicate experimental group with triangles representing males and circles representing females. Panels
491 A-E represent the comparison of Group 1 vs Group 2. Panels F-I represent the comparison of Group 3 vs Group
492 4. **(A and F)** Group composition and the number of genes retained post-filtering. **(B and G)** Hierarchical
493 clustering of the top 1,000 differentially expressed genes. **(C and H)** PCA of filtered transcriptional profiles. **(D**
494 **and I)** Linear models and number of significantly differentially expressed genes by comparison. **(E)** Heat map of
495 significantly differentially expressed genes based. Asterisks indicate individuals with elevated fasting insulin.

496

497 **Figure 5. Interaction effects between maternal and post-weaning diets on offspring gene expression.**
498 Colors indicate experimental group with triangles representing males and circles representing females. **(A)**
499 Group composition and the number of genes retained post-filtering. **(B)** PCA of filtered transcriptional profiles
500 with sexes combined. **(C)** Linear model and number of significantly differentially expressed genes. **(D)** Heat map
501 of significantly differentially expressed genes with sexes combined. **(E)** PCA of male filtered transcriptional
502 profiles. **(F)** PCA of female filtered transcriptional profiles. **(G)** Linear model and number of significantly
503 differentially expressed genes in males and females separately. **(H)** Heat map of significantly differentially
504 expressed genes in female offspring. Brackets indicate groupings of observed patterns of differential expression
505 (CTR/CTR vs CTR/WSD or WSD/CTR or WSD/WSD) and (CTR/CTR vs CTR/WSD or WSD/CTR vs
506 WSD/WSD).

507

508 **Figure 6. Heatmap of KEGG Pathway enrichment based on maternal diet.**

509 Heat map represents KEGG pathways enrichment for significantly differentially expressed genes. GSEA
510 methods used for identification of upregulated and downregulated pathways. KEGG pathways are represented
511 alphabetically. Heat map columns represent sexes combined, females only, and males only. Intensity correlates
512 with significance level.

513

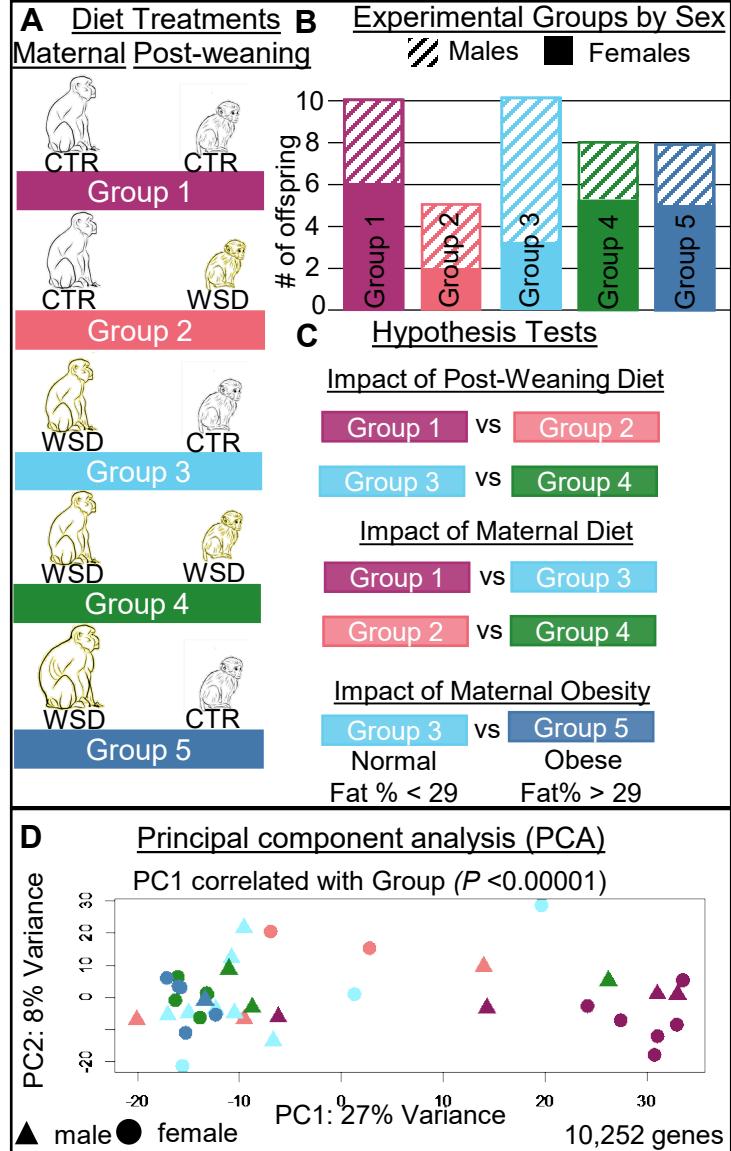
514

515

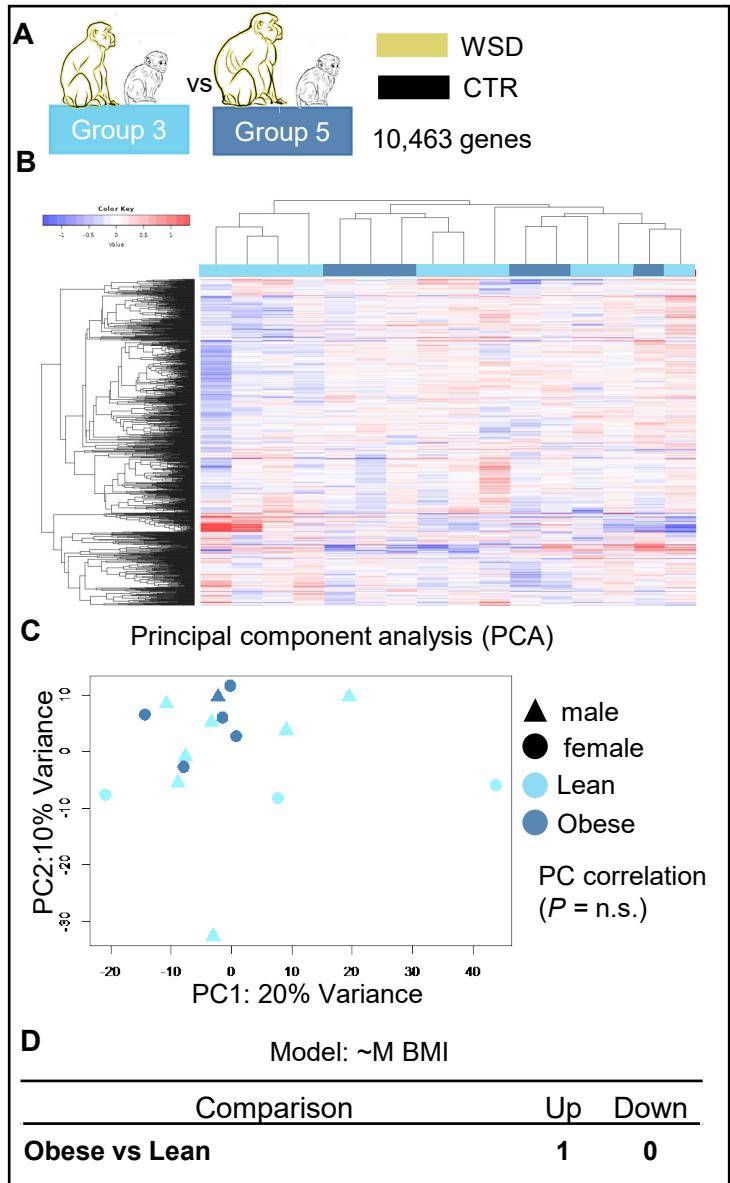
516 **References:**

- 517 1. Heslehurst, N. *et al.* The association between maternal body mass index and child obesity: A systematic
518 review and meta-analysis. *PLOS Med.* **16**, e1002817 (2019).
- 519 2. Barker, D. J. P. The origins of the developmental origins theory. *J. Intern. Med.* **261**, 412–417 (2007).
- 520 3. Barker, D. J. P. *et al.* Fetal nutrition and cardiovascular disease in adult life. *The Lancet* **341**, 938–941
521 (1993).
- 522 4. Bateson, P. *et al.* Developmental plasticity and human health. *Nature* **430**, 419–421 (2004).
- 523 5. CDC, Centers for Disease Control and Prevention. Obesity Data and Statistics. (2021).
- 524 6. Pan, L., Sherry, B., Njai, R. & Blanck, H. M. Food Insecurity Is Associated with Obesity among US Adults
525 in 12 States. *J. Acad. Nutr. Diet.* **112**, 1403–1409 (2012).
- 526 7. Coleman-Jensen, A., Rabbitt, M. P., Gregory, C. A. & Singh, A. *Household Food Security in the United*
527 *States in 2019.* <https://www.ers.usda.gov/webdocs/publications/99282/err-275.pdf>.
- 528 8. Ortiz-Marrón, H. *et al.* Household food insecurity and its association with overweight and obesity in
529 children aged 2 to 14 years. *BMC Public Health* **22**, 1930 (2022).
- 530 9. The RISE Consortium*. Effects of Treatment of Impaired Glucose Tolerance or Recently Diagnosed Type
531 2 Diabetes With Metformin Alone or in Combination With Insulin Glargine on β -Cell Function: Comparison
532 of Responses In Youth And Adults. *Diabetes* db190299 (2019) doi:10.2337/db19-0299.
- 533 10. Arslanian, S. *et al.* Evaluation and Management of Youth-Onset Type 2 Diabetes: A Position Statement by
534 the American Diabetes Association. *Diabetes Care* **41**, 2648–2668 (2018).
- 535 11. The RISE Consortium *et al.* Metabolic Contrasts Between Youth and Adults With Impaired Glucose
536 Tolerance or Recently Diagnosed Type 2 Diabetes: II. Observations Using the Oral Glucose Tolerance
537 Test. *Diabetes Care* **41**, 1707–1716 (2018).
- 538 12. DeFronzo, R. A. & Tripathy, D. Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2
539 Diabetes. *Diabetes Care* **32**, S157–S163 (2009).
- 540 13. Nash, M. J. *et al.* Maternal diet alters long-term innate immune cell memory in fetal and juvenile
541 hematopoietic stem and progenitor cells in nonhuman primate offspring. *Cell Rep.* **42**, 112393 (2023).
- 542 14. Prince, A. L. *et al.* The development and ecology of the Japanese macaque gut microbiome from weaning
543 to early adolescence in association with diet. *Am. J. Primatol.* **81**, e22980 (2019).

- 544 15. Elsakr, J. M. *et al.* Maternal Western-style diet affects offspring islet composition and function in a non-
545 human primate model of maternal over-nutrition. *Mol. Metab.* **25**, 73–82 (2019).
- 546 16. Nash, M. J. *et al.* Maternal Western diet is associated with distinct preclinical pediatric NAFLD phenotypes
547 in juvenile nonhuman primate offspring. *Hepatol. Commun.* **7**, e0014–e0014 (2023).
- 548 17. Carroll, D. T. *et al.* Maternal Western-style diet in nonhuman primates leads to offspring islet adaptations
549 including altered gene expression and insulin hypersecretion. *Am. J. Physiol.-Endocrinol. Metab.* **324**,
550 E577–E588 (2023).
- 551 18. Nash, M. J. *et al.* Maternal Western diet exposure increases periportal fibrosis beginning in utero in
552 nonhuman primate offspring. *JCI Insight* **6**, e154093 (2021).
- 553 19. Campodonico-Burnett, W. *et al.* Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile
554 Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates. *Diabetes* **69**,
555 1389–1400 (2020).
- 556 20. McCurdy, C. E. *et al.* Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese
557 macaques. *JCI Insight* **1**, (2016).
- 558 21. Greylak, K. T. *et al.* A maternal Western-style diet impairs skeletal muscle lipid metabolism in adolescent
559 Japanese macaques. *Diabetes* db230289 (2023) doi:10.2337/db23-0289.
- 560 22. Saben, J. L. *et al.* Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline
561 Changes across Three Generations. *Cell Rep.* **16**, 1–8 (2016).
- 562 23. Sales, V. M., Ferguson-Smith, A. C. & Patti, M.-E. Epigenetic Mechanisms of Transmission of Metabolic
563 Disease across Generations. *Cell Metab.* **25**, 559–571 (2017).
- 564 24. Sandovici, I., Fernandez-Twinn, D. S., Hufnagel, A., Constância, M. & Ozanne, S. E. Sex differences in
565 the intergenerational inheritance of metabolic traits. *Nat. Metab.* **4**, 507–523 (2022).
- 566 25. Yang, J. Enhanced Skeletal Muscle for Effective Glucose Homeostasis. in *Progress in Molecular Biology
567 and Translational Science* vol. 121 133–163 (Elsevier, 2014).
- 568 26. Reed, S. A., Raja, J. S., Hoffman, M. L., Zinn, S. A. & Govoni, K. E. Poor maternal nutrition inhibits muscle
569 development in ovine offspring. *J. Anim. Sci. Biotechnol.* **5**, 43 (2014).
- 570 27. Tong, J. F. *et al.* Maternal obesity downregulates myogenesis and β -catenin signaling in fetal skeletal
571 muscle. *Am. J. Physiol.-Endocrinol. Metab.* **296**, E917–E924 (2009).


- 572 28. Yan, X. *et al.* Maternal Obesity-Impaired Insulin Signaling in Sheep and Induced Lipid Accumulation and
573 Fibrosis in Skeletal Muscle of Offspring. *Biol. Reprod.* **85**, 172–178 (2011).
- 574 29. Ozanne, S. E. & Hales, C. N. The long-term consequences of intra-uterine protein malnutrition for glucose
575 metabolism. *Proc. Nutr. Soc.* **58**, 615–619 (1999).
- 576 30. Jensen, C. B., Storgaard, H., Madsbad, S., Richter, E. A. & Vaag, A. A. Altered Skeletal Muscle Fiber
577 Composition and Size Precede Whole-Body Insulin Resistance in Young Men with Low Birth Weight. *J.*
578 *Clin. Endocrinol. Metab.* **92**, 1530–1534 (2007).
- 579 31. Stremming, J. *et al.* Lower citrate synthase activity, mitochondrial complex expression, and fewer oxidative
580 myofibers characterize skeletal muscle from growth-restricted fetal sheep. *Am. J. Physiol.-Regul. Integr.*
581 *Comp. Physiol.* **322**, R228–R240 (2022).
- 582 32. Ferey, J. L. A. *et al.* A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial
583 dysfunction independently of maternal mitochondrial inheritance. *Am. J. Physiol.-Heart Circ. Physiol.* **316**,
584 H1202–H1210 (2019).
- 585 33. Chaves, A. B. *et al.* Infant Mesenchymal Stem Cell Insulin Action Is Associated With Maternal Plasma
586 Free Fatty Acids, Independent of Obesity Status: The Healthy Start Study. *Diabetes* **71**, 1649–1659
587 (2022).
- 588 34. Erickson, M. L. *et al.* Maternal metabolic health drives mesenchymal stem cell metabolism and infant fat
589 mass at birth. *JCI Insight* **6**, e146606 (2021).
- 590 35. Barbour, L. A. *et al.* Postprandial Triglycerides Predict Newborn Fat More Strongly than Glucose in
591 Women with Obesity in Early Pregnancy. *Obesity* **26**, 1347–1356 (2018).
- 592 36. Montazeri, P. *et al.* Maternal Metabolic Health Parameters During Pregnancy in Relation to Early
593 Childhood BMI Trajectories. *Obesity* **26**, 588–596 (2018).
- 594 37. Bowers, K. *et al.* Elevated Anthropometric and Metabolic Indicators among Young Adult Offspring of
595 Mothers with Pregestational Diabetes: Early Results from the Transgenerational Effect on Adult Morbidity
596 Study (the TEAM Study). *J. Diabetes Res.* **2021**, 1–10 (2021).
- 597 38. Reynolds, R. M. *et al.* Maternal obesity during pregnancy and premature mortality from cardiovascular
598 event in adult offspring: follow-up of 1 323 275 person years. *BMJ* **347**, f4539–f4539 (2013).

- 599 39. Kelly, A. C. *et al.* Transcriptomic responses are sex-dependent in the skeletal muscle and liver in offspring
600 of obese mice. *Am. J. Physiol.-Endocrinol. Metab.* **323**, E336–E353 (2022).
- 601 40. Lomas-Soria, C. *et al.* Maternal obesity has sex-dependent effects on insulin, glucose and lipid
602 metabolism and the liver transcriptome in young adult rat offspring: Maternal obesity programs liver
603 transcriptome changes in rat offspring. *J. Physiol.* **596**, 4611–4628 (2018).
- 604 41. Savva, C. *et al.* Maternal high-fat diet programs white and brown adipose tissue lipidome and
605 transcriptome in offspring in a sex- and tissue-dependent manner in mice. *Int. J. Obes.* **46**, 831–842
606 (2022).
- 607 42. Aiken, C. E. & Ozanne, S. E. Sex differences in developmental programming models. *REPRODUCTION*
608 **145**, R1–R13 (2013).
- 609 43. Liang, X. *et al.* Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring
610 mice. *J. Physiol.* **594**, 4453–4466 (2016).
- 611 44. Khan, I. Y. *et al.* A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in
612 adult offspring. *Am. J. Physiol.-Regul. Integr. Comp. Physiol.* **288**, R127–R133 (2005).
- 613 45. Bayol, S. A., Simbi, B. H., Bertrand, J. A. & Stickland, N. C. Offspring from mothers fed a 'junk food' diet in
614 pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females: Maternal junk
615 food diet and obesity in offspring. *J. Physiol.* **586**, 3219–3230 (2008).
- 616 46. Nemeth, P. M., Rosser, B. W., Choksi, R. M., Norris, B. J. & Baker, K. M. Metabolic response to a high-fat
617 diet in neonatal and adult rat muscle. *Am. J. Physiol.-Cell Physiol.* **262**, C282–C286 (1992).
- 618 47. Kelley, D. E., Mokan, M., Simoneau, J. A. & Mandarino, L. J. Interaction between glucose and free fatty
619 acid metabolism in human skeletal muscle. *J. Clin. Invest.* **92**, 91–98 (1993).
- 620 48. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription
621 coactivators. *Cell Metab.* **1**, 361–370 (2005).
- 622 49. Muoio, D. M. & Koves, T. R. Skeletal muscle adaptation to fatty acid depends on coordinated actions of
623 the PPARs and PGC1 alpha: implications for metabolic disease. *Appl. Physiol. Nutr. Metab. Physiol. Appl.*
624 *Nutr. Metab.* **32**, 874–883 (2007).
- 625 50. Hevener, A. L., Ribas, V., Moore, T. M. & Zhou, Z. The Impact of Skeletal Muscle ERα on Mitochondrial
626 Function and Metabolic Health. *Endocrinology* **161**, bqz017 (2020).


- 627 51. Boyle, K. E. *et al.* A High-Fat Diet Elicits Differential Responses in Genes Coordinating Oxidative
628 Metabolism in Skeletal Muscle of Lean and Obese Individuals. *J. Clin. Endocrinol. Metab.* **96**, 775–781
629 (2011).
- 630 52. Holloway, G. P., Bonen, A. & Spriet, L. L. Regulation of skeletal muscle mitochondrial fatty acid
631 metabolism in lean and obese individuals. *Am. J. Clin. Nutr.* **89**, 455S–62S (2009).
- 632 53. Schenk, S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. *J.*
633 *Clin. Invest.* **118**, 2992–3002 (2008).
- 634 54. Lawan, A. *et al.* Skeletal Muscle–Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling
635 Node That Regulates Obesity-Induced Insulin Resistance. *Diabetes* **67**, 624–635 (2018).
- 636 55. Perfield, J. W. *et al.* Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and
637 Insulin Resistance. *Diabetes* **60**, 1168–1176 (2011).
- 638 56. Jin, W., Jin, W. & Pan, D. Ifi27 is indispensable for mitochondrial function and browning in adipocytes.
639 *Biochem. Biophys. Res. Commun.* **501**, 273–279 (2018).
- 640 57. Cui, X. *et al.* IFI27 Integrates Succinate and Fatty Acid Oxidation to Promote Adipocyte Thermogenic
641 Adaption. *Adv. Sci.* **10**, 2301855 (2023).
- 642 58. Takekawa, M. & Saito, H. A Family of Stress-Inducible GADD45-like Proteins Mediate Activation of the
643 Stress-Responsive MTK1/MEKK4 MAPKKK. *Cell* **95**, 521–530 (1998).
- 644 59. Barclay, R. D., Burd, N. A., Tyler, C., Tillin, N. A. & Mackenzie, R. W. The Role of the IGF-1 Signaling
645 Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. *Front. Nutr.* **6**,
646 146 (2019).
- 647 60. Howell, J. J. & Manning, B. D. mTOR couples cellular nutrient sensing to organismal metabolic
648 homeostasis. *Trends Endocrinol. Metab.* **22**, 94–102 (2011).
- 649 61. Etgen, G. J., Fryburg, D. A. & Gibbs, E. M. Nitric Oxide Stimulates Skeletal Muscle Glucose Transport
650 Through a Calcium/Contraction– and Phosphatidylinositol-3-Kinase–Independent Pathway. *Diabetes* **46**,
651 1915–1919 (1997).
- 652 62. McConell, G. K. & Kingwell, B. A. Does Nitric Oxide Regulate Skeletal Muscle Glucose Uptake during
653 Exercise?: *Exerc. Sport Sci. Rev.* **34**, 36–41 (2006).

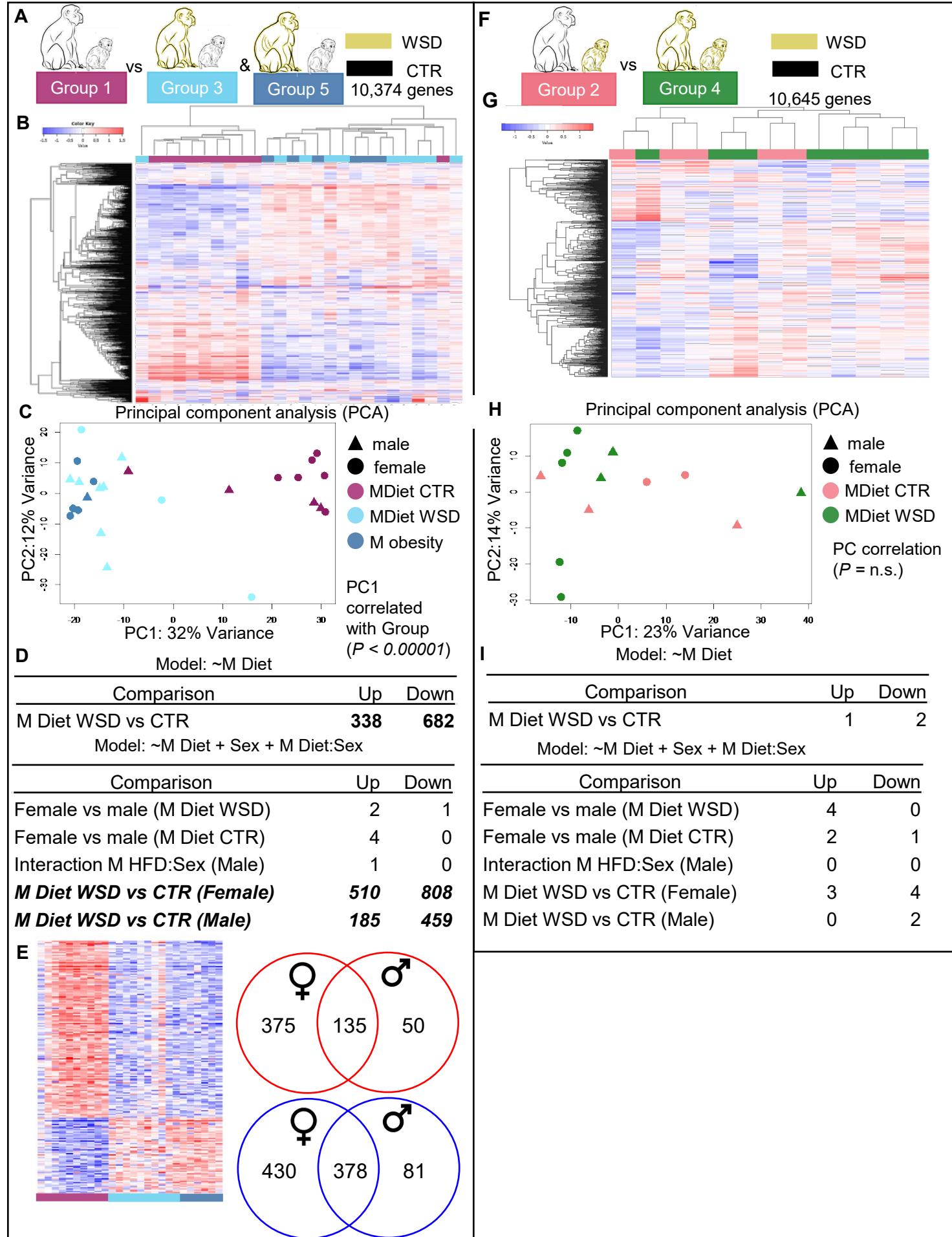

- 654 63. Elsakr, J. M. *et al.* Western-style diet consumption impairs maternal insulin sensitivity and glucose
655 metabolism during pregnancy in a Japanese macaque model. *Sci. Rep.* **11**, 12977 (2021).
- 656 64. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).
- 657 65. Ge, S. X., Son, E. W. & Yao, R. iDEP: an integrated web application for differential expression and
658 pathway analysis of RNA-Seq data. *BMC Bioinformatics* **19**, 534 (2018).
- 659 66. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
660 Computing, Vienna, Austria.
- 661 67. Gentleman, R. C. *et al.* Bioconductor: open software development for computational biology and
662 bioinformatics. *Genome Biol.* **5**, R80 (2004).
- 663 68. Huber, W. *et al.* Orchestrating high-throughput genomic analysis with Bioconductor. *Nat. Methods* **12**,
664 115–121 (2015).
- 665 69. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR : a Bioconductor package for differential
666 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).
- 667 70. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data
668 with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 669 71. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for
670 gene and protein annotation. *Nucleic Acids Res.* **44**, D457–D462 (2016).
- 671

Figure 1. Experimental Design and Hypotheses Tested.

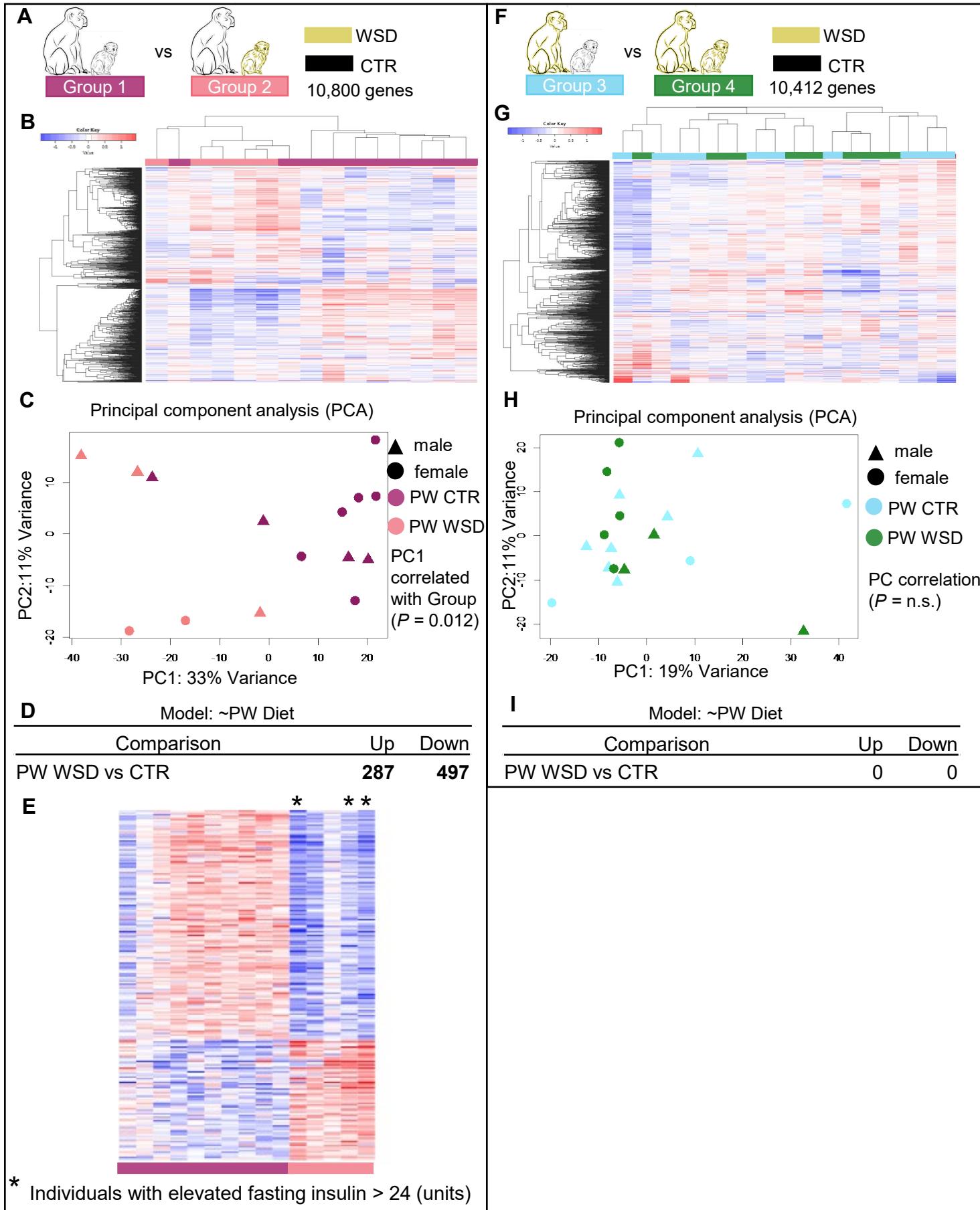
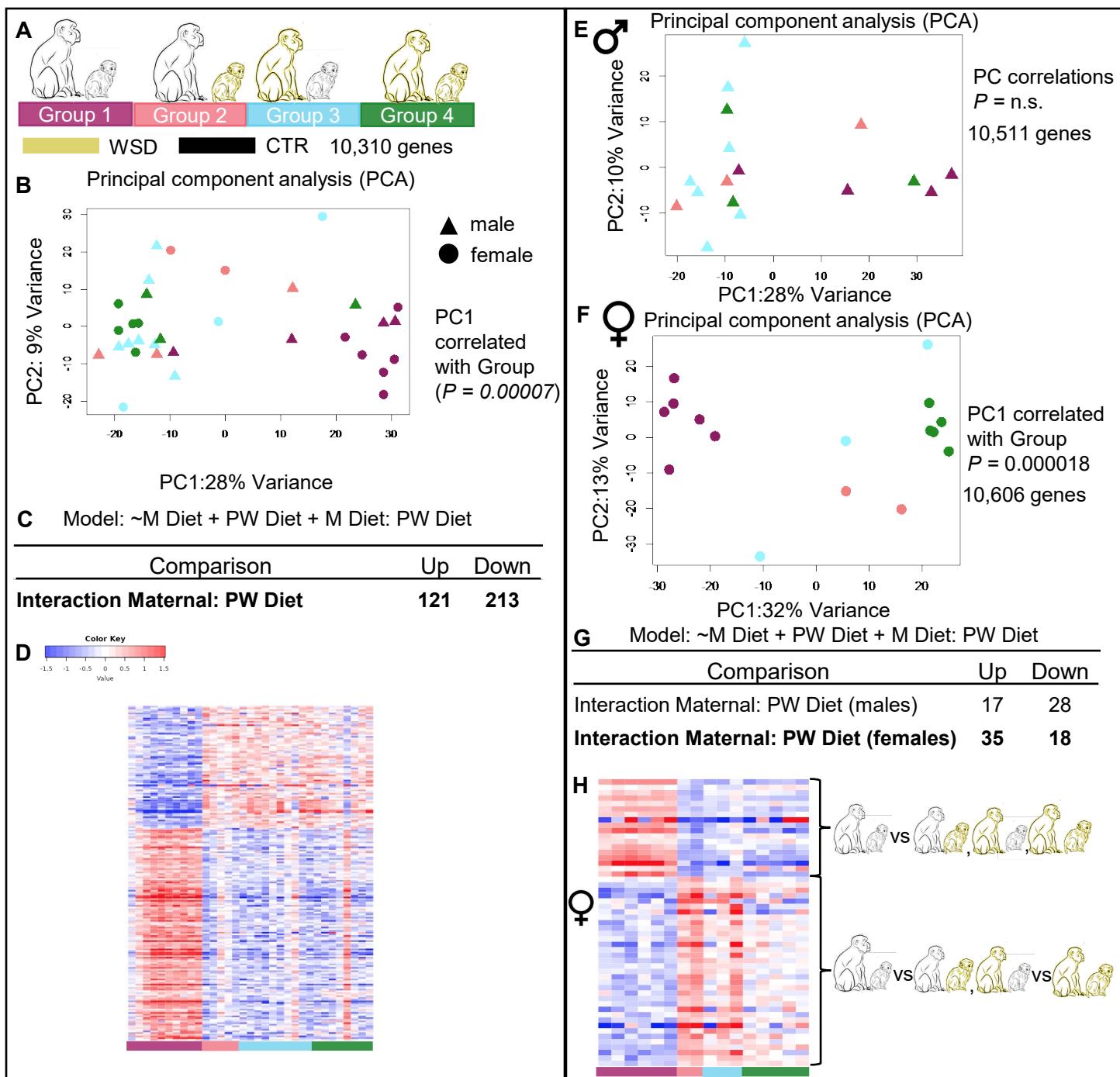


Figure 2. Impact of maternal obesity on offspring gene expression



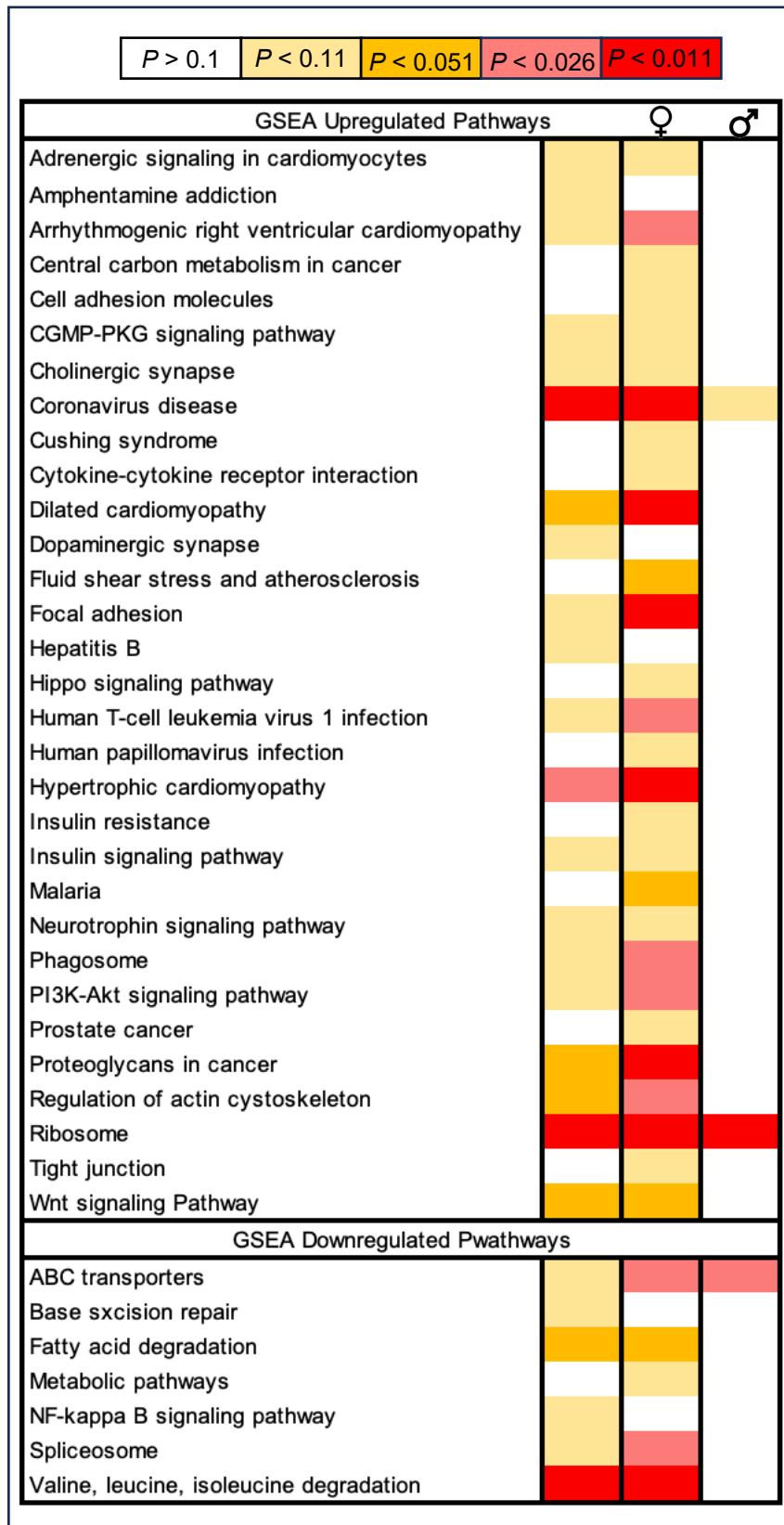

Figure 4. Impact of post-weaning diet on offspring gene expression

Figure 5. Interaction effects between maternal and post-weaning diets on offspring gene expression

Figure 6. KEGG Pathway Enrichment

