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ABSTRACT: Chemical space exploration has gained significant interest with the increase in available building blocks, which ena-
bles the creation of ultra-large virtual libraries containing billions or even trillions of compounds. However, the challenge of select-
ing most suitable compounds for synthesis arises, and one such challenge is hit expansion. Recently, Thompson sampling, a proba-
bilistic search approach, has been proposed by Walters et al. to achieve efficiency gains by operating in the reagent space rather
than the product space. Here, we aim to address some of its shortcomings and propose optimizations. We introduce a warmup rou-
tine to ensure that initial probabilities are set for all reagents with a minimum number of molecules evaluated. Additionally, a rou-
lette wheel selection is proposed with adapted stop criteria to improve sampling efficiency, and belief distributions of reagents are
only updated when they appear in new molecules. We demonstrate that a 100% recovery rate can be achieved by sampling 0.1% of
the fully enumerated library, showcasing the effectiveness of our proposed optimizations.
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High attrition rates plague drug discovery at all stages and can
often be traced back to the quality of the chemical leads, driv-
ing the need to explore a greater chemical space.! Parallel to
high-throughput screening,2 DNA-encoded library technology®
and fragment-based lead discovery,! virtual screening offers a
cost-effective and time-efficient means for hit identification,
typically applied to collections of a few millions molecules.*
As the library grows, better-fitting molecules are found and
the score improves log-linearly with the library size.5

The ultra-large virtual libraries, on the scale of billions or
even trillions, can be constructed from much smaller sets of
reagents. The number of available building blocks has grown
to hundreds of thousands. For instance, the three-component
Niementowski quinazoline reaction yields a fully enumerated
library of 94 million products, for a reagent pool of having 376
aminobenzoic acids, 500 primary amines, and 500 carboxylic
acids (Figure 1).” To screen ultra-large virtual libraries in a
brute-force fashion is costly and requires special computing
infrastructures as well.® ® Harnessing the combinatorial nature
of ultra-large libraries, the V-SYNTHES approach decompos-
es the library into sets of scaffolds and synthons from which a
minimal enumeration library is constructed by attaching a
single synthon to a scaffold at one R-group position.1® ** The
remaining attachment points on the scaffold are capped with
methyl or phenyl groups. The most promising fragments are
identified upon docking, and their capped R-groups are itera-
tively enumerated until the molecules are fully elaborated.

Alternatively, Thompson sampling, a probabilistic search
approach, has recently been proposed to achieve efficiency
gains by working in the reagent space rather than the product
space.” It can be applied to hit expansion in drug discovery.
This exploitation is focused on a specific chemical space and
measures the relevance of reagents by a scoring or similarity
function. Remarkably, upon screening 0.1% of the library, it

discovers 90 out of the 100 top-scoring molecules, which have
been identified from an exhaustive search of the above 94
million quinazoline molecules by measuring their Tanimoto
similarity to a query molecule. However, the recovery rate has
plateaued at 90% even by concatenating the results from mul-
tiple searches. Notably, it identifies only the most prevalent
one of the six R! building blocks contained in the 100 top-
scoring molecules (Figure 1). In this letter, we show that the
stochastic roulette wheel selection can improve the Thompson
sampling efficiency and lead to a 100% recovery rate upon
screening 0.1% library, in comparison with the original greedy
selection approach.
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Figure 1. The combinatorial library based on Niementowski
quinazoline synthesis. (A) The three-component reaction scheme;
(B) the query molecule and (C) the six R? reagents in the 100 top-
scoring hits from an exhaustive similarity search of the 94 million
molecules enumerated with 376 R?, 500 R? and 500 R® reagents.
The number in the bracket is the frequency of occurrence in the
top 100 molecules.
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Thompson sampling lies in Bayesian inference by approxi-
mating the actual likelihoods as normal distributions which are
justified by the central limit theorem.? Consider a single ob-
servation y; of scores associated with a reagent i from a normal
distribution parameterized by an unknown mean 6; and known
variance o2, the sampling distribution is

¥, ~N(;, 7 ©))
Take @i as an exponential of a quadratic form, the family of
conjugate prior densities is
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where uio and 7o are the prior mean and variance for reagent i,
respectively. Given a sample of independent and identically
distributed observations y = (ys, ..., yn) for reagent i, its poste-
rior mean and variance are
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where y = Zyi/n. The posterior predictive distribution p(yily) of
a future observation y; for reagent i is
Bl ~ N, o7) (%)

The initial belief distributions are produced from a warmup
procedure.” In a warmup cycle, the reagents of each reaction
component are placed into a corresponding column of the ma-
triX Mmxn by repeating themself until that column is filled up,
wherein m is the number of components in the reaction and n
is the largest number of reagents among all components. This
ensures that each reagent will be selected at least once in the
minimum n molecules. Each row of Mmx, is then selected for
making and scoring the molecules. The warmup cycle is re-
peated three times, with the reagents being shuffled each
round. The empirical mean 3, and variance oy are calculated
from all scores observed during warmup. The known variance
o? as well as the prior mean uio and variance ;o> for all rea-
gents are set as follows’
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Following the warmup, the posterior distribution of each re-
agent is updated with its scores seen during warmup by Eqg. 3
and 4. Next, repeat the search cycle which consists of the fol-
lowing steps:

Step 1: Sample one i for each reagent i by Eq. 5, and con-
vert it into a probability p; among the reagents of its corre-
sponding component

e}'i/T
P= SO ©)
T=axf(t)*o, (10)

where the summation runs over all reagents in that component;
T is the Boltzmann temperature parameter; « is a scaling factor
which is positive if higher y is preferred and negative other-
wise; A(t) is a time-dependent dumping coefficient and t is the
number of search cycles performed. Throughout the manu-
script, a = B(t) = 1.

Step 2: Sample n reagents from each reaction component by
roulette wheel selection according to their probability distribu-

tion. Similar to the warmup procedure, n molecules are select-
ed for making. If the molecules are new, make and score them;
otherwise, skip the subsequent step for those made in the pre-
vious rounds.

Step 3: Update the posterior distributions of the selected re-
agents. The posterior mean of reagent i for a three-component
reaction converges according to
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wherein m and n are the number of reagents in the other two
components, respectively; and S« is the score of the molecule
made from reagents i, j and k. Its variance converges to
ow?l(mxn+1).

The search is aborted if one of the two stop criteria has been
satisfied: the maximum number of iterations being reached or
failure to sample a new molecule for the given number of
search cycles in a row (default 100).
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Figure 2. Prior and posterior distributions of the six R? reagents.
(A) Distribution of the warmup scores (i.e., Tanimoto coefficients
to the query using the 2048-bit ECFP4 fingerprint); (B) posterior
distributions of the six R! reagents following the warmup; and
evolution of their standard deviations (C) and mean values (D)
over the search with one molecule per cycle. The color scheme is
consistent from B to D.
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To illustrate its sampling efficiency, the new method is ap-
plied to identify molecules in the abovementioned quinazoline
combinatorial library most similar to the query (Figure 1).
The warmup scores of the 1500 molecules resulting from 3
cycles show a normal distribution of the Tanimoto coefficients
with a fitted mean of 0.2 and standard deviation of 0.04 (Fig-
ure 2). Following the warmup procedure, the posterior distri-
butions of the six R* reagents have a mean of 0.326 and stand-
ard deviation of 0.02 for R 1, 0.291 + 0.016 for R* 2, 0.229 +
0.018 for R!_3, 0.249 + 0.018 for Rt 4, 0.247 + 0.02 for R_5,
0.284 + 0.016 for R! 6. The probability of selecting R* 2 or
R! 3 over R! 1 by the greedy selection (i.e., taking the maxi-
mum of the sampled values) is 8% and 0.01%, respectively,
calculated by
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where i indicates one of the other five R! reagents. Note that
R! 2 is closest to R 1 while Rt 3 is furthest with regard to
the initial posterior distributions of the six R* reagents (Figure
2B). Consequently, R* 1 would be prioritized and matched
with high-score reagents from the other two components,
shifting its mean toward the high-score region (Figure 2D).
Concomitantly, its posterior variance decreases quickly as it is
inversely proportional to the number of times being sampled
(Figure 2C). Combined, it explains the failure to sample the
other five R* reagents by the greedy selection.”

In comparison, the probability by roulette wheel selection is
47.4%, 19.4% and 4.0% for selecting R* 1, R 2 and R 3
among the six R? reagents, respectively. Note that the tempera-
ture parameter T is controllable by Eq. 10. As shown in Fig-
ure 2C, R! 1 has been selected in the first 10 search cycles,
followed by R 2, R* 4, R! 5and R 6 within a few hundreds
of cycles; while R 3 is selected for the first time at around 20
000 cycles. Note that if a reagent is not selected during a
search cycle, its variance remains unchanged. Intriguingly, the
posterior mean of all six R* reagents increase rapidly to a peak
upon being sampled, and then decrease gradually, which is
due to an unchanged belief distribution for reagents of a mole-
cule that has been sampled previously. After exhausting high-
score reagents from the other two components, the pairing of a
high-score reagent with low-score ones over the search drives
its mean toward convergence in the low-score region. This
would then increase sampling of initially low-score but intrin-
sically high-score reagents such as R 3. For example, the
difference in the mean among the five R? reagents (2-6) after
around 100, 000 cycles is much smaller than that at the begin-
ning of the search, consistent with their equal frequency of
occurrence in the 100 top-scoring hits (Figure 1).
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Figure 3. Performance of the enhanced TS sampling averaged
over the 10 replicates. (A) Recovery of the 100 top-scoring hits
and (B) efficiency of sampling new molecules.

The performance of recovering the 100 top-scoring hits av-
eraged over the 10 replicates is shown in Figure 3A. Around
60% of the 100 top-scoring hits could be retrieved by screen-
ing only 0.01% of the library, and all the 100 hits can be dis-
covered upon screening 0.1% of the library. The efficiency of
sampling new molecules, measured by the ratio of the unique
molecules to the total, decreases sharply to around 40% within
0.01% of the library being screened, suggesting that initially
high-score reagents are oversampled (Figure 3B). Afterwards,
the sampling efficiency increases quickly when initially low-
score but intrinsically high-score reagents begin to be selected.
The sampling efficiency is around 80% at the 0.1% of the li-
brary when all the 100 hits have been recovered. It continues
to increase as the mean of those high-score reagents start to
drop, suggesting that it navigates into the largely uncharted
chemical space rather than being trapped in the already
mapped-out regions. There is no significant difference in the
performance between sampling one and three molecules per
cycle. However, it is computationally efficient to sample three
molecules since y of all reagents only need to be sampled
once. As in silico make and the subsequent similarity compari-
son is relatively fast, the step of sampling 7 is rate-limiting.
The computational time by sampling three molecules is rough-
ly one-third of that by sampling one molecule per search cy-
cle. In case of time-consuming scoring methods such as dock-
ing, sampling multiple molecules per search cycle allows for
parallelization which is critical to dock even 0.1% of ultra-
large libraries.

In summary, the Thompson sampling efficiency can be en-
hanced by roulette wheel selection and the passive penaliza-
tion of high-score reagents over the search. Furthermore, the
roulette wheel selection allows for sampling multiple mole-
cules per search cycle, which is critical to parallelization of
scoring multiple molecules. In addition, we introduce a new
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warmup approach to ensure that each reagent will be selected
within a minimum number of molecules.
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