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ABSTRACT: Chemical space exploration has gained significant interest with the increase in available building blocks, which ena-

bles the creation of ultra-large virtual libraries containing billions or even trillions of compounds. However, the challenge of select-

ing most suitable compounds for synthesis arises, and one such challenge is hit expansion. Recently, Thompson sampling, a proba-

bilistic search approach, has been proposed by Walters et al. to achieve efficiency gains by operating in the reagent space rather 

than the product space. Here, we aim to address some of its shortcomings and propose optimizations. We introduce a warmup rou-

tine to ensure that initial probabilities are set for all reagents with a minimum number of molecules evaluated. Additionally, a rou-

lette wheel selection is proposed with adapted stop criteria to improve sampling efficiency, and belief distributions of reagents are 

only updated when they appear in new molecules. We demonstrate that a 100% recovery rate can be achieved by sampling 0.1% of 

the fully enumerated library, showcasing the effectiveness of our proposed optimizations. 
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High attrition rates plague drug discovery at all stages and can 

often be traced back to the quality of the chemical leads, driv-

ing the need to explore a greater chemical space.1 Parallel to 

high-throughput screening,2 DNA-encoded library technology3 

and fragment-based lead discovery,1 virtual screening offers a 

cost-effective and time-efficient means for hit identification, 

typically applied to collections of a few millions molecules.4 

As the library grows, better-fitting molecules are found and 

the score improves log-linearly with the library size.5, 6 

The ultra-large virtual libraries, on the scale of billions or 

even trillions, can be constructed from much smaller sets of 

reagents. The number of available building blocks has grown 

to hundreds of thousands. For instance, the three-component 

Niementowski quinazoline reaction yields a fully enumerated 

library of 94 million products, for a reagent pool of having 376 

aminobenzoic acids, 500 primary amines, and 500 carboxylic 

acids (Figure 1).7 To screen ultra-large virtual libraries in a 

brute-force fashion is costly and requires special computing 

infrastructures as well.8, 9 Harnessing the combinatorial nature 

of ultra-large libraries, the V-SYNTHES approach decompos-

es the library into sets of scaffolds and synthons from which a 

minimal enumeration library is constructed by attaching a 

single synthon to a scaffold at one R-group position.10, 11 The 

remaining attachment points on the scaffold are capped with 

methyl or phenyl groups. The most promising fragments are 

identified upon docking, and their capped R-groups are itera-

tively enumerated until the molecules are fully elaborated.  

Alternatively, Thompson sampling, a probabilistic search 

approach, has recently been proposed to achieve efficiency 

gains by working in the reagent space rather than the product 

space.7 It can be applied to hit expansion in drug discovery. 

This exploitation is focused on a specific chemical space and 

measures the relevance of reagents by a scoring or similarity 

function. Remarkably, upon screening 0.1% of the library, it 

discovers 90 out of the 100 top-scoring molecules, which have 

been identified from an exhaustive search of the above 94 

million quinazoline molecules by measuring their Tanimoto 

similarity to a query molecule. However, the recovery rate has 

plateaued at 90% even by concatenating the results from mul-

tiple searches. Notably, it identifies only the most prevalent 

one of the six R1 building blocks contained in the 100 top-

scoring molecules (Figure 1). In this letter, we show that the 

stochastic roulette wheel selection can improve the Thompson 

sampling efficiency and lead to a 100% recovery rate upon 

screening 0.1% library, in comparison with the original greedy 

selection approach. 

 

Figure 1. The combinatorial library based on Niementowski 

quinazoline synthesis. (A) The three-component reaction scheme; 

(B) the query molecule and (C) the six R1 reagents in the 100 top-

scoring  hits from an exhaustive similarity search of the 94 million 

molecules enumerated with 376 R1, 500 R2 and 500 R3 reagents. 

The number in the bracket is the frequency of occurrence in the 

top 100 molecules. 
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Thompson sampling lies in Bayesian inference by approxi-

mating the actual likelihoods as normal distributions which are 

justified by the central limit theorem.12 Consider a single ob-

servation yi of scores associated with a reagent i from a normal 

distribution parameterized by an unknown mean θi and  known 

variance σ2, the sampling distribution is 

y
i
 ~ N(θi, σ

2)                      (1) 

Take θi as an exponential of a quadratic form, the family of 

conjugate prior densities is 

θi ~ N(μ
i,0

, τi,0
2 )                 (2) 

where μi,0 and τi,0 are the prior mean and variance for reagent i, 

respectively. Given a sample of independent and identically 

distributed observations y = (y1, …, yn) for reagent i, its poste-

rior mean and variance are 

μ
i
=
μ

i,0
σ2+ny̅τi,0

2

σ2+nτi,0
2

               (3) 

σi
2=

σ2τi,0
2

σ2+nτi,0
2

                     (4) 

where y̅ = Σyi/n. The posterior predictive distribution p(ỹi|y) of 

a future observation ỹi for reagent i is 

ỹ
i
|y ~ N(μ

i
, σi

2)                 (5) 

The initial belief distributions are produced from a warmup 

procedure.7 In a warmup cycle, the reagents of each reaction 

component are placed into a corresponding column of the ma-

trix Mm×n by repeating themself until that column is filled up, 

wherein m is the number of components in the reaction and n 

is the largest number of reagents among all components. This 

ensures that each reagent will be selected at least once in the 

minimum n molecules. Each row of Mm×n is then selected for 

making and scoring the molecules. The warmup cycle is re-

peated three times, with the reagents being shuffled each 

round. The empirical mean ỹw and variance σw are calculated 

from all scores observed during warmup. The known variance 

σ2 as well as the prior mean μi,0 and variance τi,0
2  for all rea-

gents are set as follows7 

σ2=σw
2                             (6) 

σi,0
2 =σw

2                            (7) 

μ
i,0

=ỹ
w

                           (8) 

Following the warmup, the posterior distribution of each re-

agent is updated with its scores seen during warmup by Eq. 3 

and 4. Next, repeat the search cycle which consists of the fol-

lowing steps: 

Step 1: Sample one ỹi for each reagent i by Eq. 5, and con-

vert it into a probability pi among the reagents of its corre-

sponding component 

p
i
=

eỹi
/T

∑ eỹi
/T

                       (9) 

T=α×β(t)×σw                  (10) 

where the summation runs over all reagents in that component; 

T is the Boltzmann temperature parameter; α is a scaling factor 

which is positive if higher y is preferred and negative other-

wise; β(t) is a time-dependent dumping coefficient and t is the 

number of search cycles performed. Throughout the manu-

script, α = β(t) = 1.  

Step 2: Sample n reagents from each reaction component by 

roulette wheel selection according to their probability distribu-

tion. Similar to the warmup procedure, n molecules are select-

ed for making. If the molecules are new, make and score them; 

otherwise, skip the subsequent step for those made in the pre-

vious rounds. 

Step 3: Update the posterior distributions of the selected re-

agents. The posterior mean of reagent i for a three-component 

reaction converges according to 

μ
i
→

∑ ∑ Si-j-k
n
k=1

m
j=1

m×n
        (11) 

wherein m and n are the number of reagents in the other two 

components, respectively; and Si-j-k is the score of the molecule 

made from reagents i, j and k. Its variance converges to 

σw
2/(m×n+1). 

The search is aborted if one of the two stop criteria has been 

satisfied: the maximum number of iterations being reached or 

failure to sample a new molecule for the given number of 

search cycles in a row (default 100). 

 

Figure 2. Prior and posterior distributions of the six R1 reagents. 

(A) Distribution of the warmup scores (i.e., Tanimoto coefficients 

to the query using the 2048-bit ECFP4 fingerprint); (B) posterior 

distributions of the six R1 reagents following the warmup; and 

evolution of their standard deviations (C) and mean values (D) 

over the search with one molecule per cycle. The color scheme is 

consistent from B to D. 
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To illustrate its sampling efficiency, the new method is ap-

plied to identify molecules in the abovementioned quinazoline 

combinatorial library most similar to the query (Figure 1). 

The warmup scores of the 1500 molecules resulting from 3 

cycles show a normal distribution of the Tanimoto coefficients 

with a fitted mean of 0.2 and standard deviation of 0.04 (Fig-

ure 2). Following the warmup procedure, the posterior distri-

butions of the six R1 reagents have a mean of 0.326 and stand-

ard deviation of 0.02 for R1_1, 0.291 ± 0.016 for R1_2, 0.229 ± 

0.018 for R1_3, 0.249 ± 0.018 for R1_4, 0.247 ± 0.02 for R1_5, 

0.284 ± 0.016 for R1_6. The probability of selecting R1_2 or 

R1_3 over R1_1 by the greedy selection (i.e., taking the maxi-

mum of the sampled values)7 is 8% and 0.01%, respectively, 

calculated by 

Pr(y
i
>y

1
)= ∫ ρ(1)dy

1

0

∫ ρ(i)dy

1

y
1

       (12)  

where i indicates one of the other five R1 reagents. Note that 

R1_2 is closest to R1_1 while R1_3 is furthest with regard to 

the initial posterior distributions of the six R1 reagents (Figure 

2B). Consequently, R1_1 would be prioritized and matched 

with high-score reagents from the other two components, 

shifting its mean toward the high-score region (Figure 2D). 

Concomitantly, its posterior variance decreases quickly as it is 

inversely proportional to the number of times being sampled 

(Figure 2C). Combined, it explains the failure to sample the 

other five R1 reagents by the greedy selection.7 

In comparison, the probability by roulette wheel selection is 

47.4%, 19.4% and 4.0% for selecting R1_1, R1_2 and R1_3 

among the six R1 reagents, respectively. Note that the tempera-

ture parameter T is controllable by Eq. 10. As shown in Fig-

ure 2C, R1_1 has been selected in the first 10 search cycles, 

followed by R1_2, R1_4, R1_5 and R1_6 within a few hundreds 

of cycles; while R1_3 is selected for the first time at around 20 

000 cycles. Note that if a reagent is not selected during a 

search cycle, its variance remains unchanged. Intriguingly, the 

posterior mean of all six R1 reagents increase rapidly to a peak 

upon being sampled, and then decrease gradually, which is 

due to an unchanged belief distribution for reagents of a mole-

cule that has been sampled previously. After exhausting high-

score reagents from the other two components, the pairing of a 

high-score reagent with low-score ones over the search drives 

its mean toward convergence in the low-score region. This 

would then increase sampling of initially low-score but intrin-

sically high-score reagents such as R1_3. For example, the 

difference in the mean among the five R1 reagents (2-6) after 

around 100, 000 cycles is much smaller than that at the begin-

ning of the search, consistent with their equal frequency of 

occurrence in the 100 top-scoring hits (Figure 1). 

 

Figure 3. Performance of the enhanced TS sampling averaged 

over the 10 replicates. (A) Recovery of the 100 top-scoring hits 

and (B) efficiency of sampling new molecules. 

The performance of recovering the 100 top-scoring hits av-

eraged over the 10 replicates is shown in Figure 3A. Around 

60% of the 100 top-scoring hits could be retrieved by screen-

ing only 0.01% of the library, and all the 100 hits can be dis-

covered upon screening 0.1% of the library. The efficiency of 

sampling new molecules, measured by the ratio of the unique 

molecules to the total, decreases sharply to around 40% within 

0.01% of the library being screened, suggesting that initially 

high-score reagents are oversampled (Figure 3B). Afterwards, 

the sampling efficiency increases quickly when initially low-

score but intrinsically high-score reagents begin to be selected. 

The sampling efficiency is around 80% at the 0.1% of the li-

brary when all the 100 hits have been recovered. It continues 

to increase as the mean of those high-score reagents start to 

drop, suggesting that it navigates into the largely uncharted 

chemical space rather than being trapped in the already 

mapped-out regions. There is no significant difference in the 

performance between sampling one and three molecules per 

cycle. However, it is computationally efficient to sample three 

molecules since ỹ of all reagents only need to be sampled 

once. As in silico make and the subsequent similarity compari-

son is relatively fast, the step of sampling ỹ is rate-limiting. 

The computational time by sampling three molecules is rough-

ly one-third of that by sampling one molecule per search cy-

cle. In case of time-consuming scoring methods such as dock-

ing, sampling multiple molecules per search cycle allows for 

parallelization which is critical to dock even 0.1% of ultra-

large libraries. 

In summary, the Thompson sampling efficiency can be en-

hanced by roulette wheel selection and the passive penaliza-

tion of high-score reagents over the search. Furthermore, the 

roulette wheel selection allows for sampling multiple mole-

cules per search cycle, which is critical to parallelization of 

scoring multiple molecules. In addition, we introduce a new 
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warmup approach to ensure that each reagent will be selected 

within a minimum number of molecules.  
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