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Abstract 
Psilocybin has shown promise as a novel pharmacological intervention for treatment of depression, 
where post-acute effects of psilocybin treatment have been associated with increased positive mood 
and decreased pessimism. Although psilocybin is proving to be effective in clinical trials for treatment 
of psychiatric disorders, the information processing mechanisms affected by psilocybin are not well 
understood. Here, we fit computational models of underlying decision-making mechanisms to 
behaviour in rats. The model revealed that rats treated with psilocybin achieve more rewards through 
increased task engagement, mediated by modification of forgetting rates and reduced loss aversion. 
These findings suggest that psilocybin may afford an optimism bias that arises through altered belief 
updating, with translational potential for clinical populations characterised by lack of optimism. 
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Introduction  
Psilocybin has shown promise as a novel pharmacological intervention for treatment of depression, 
where post-acute effects of psilocybin treatment have been associated with increased positive mood 
and decreased pessimism (1–3). Although accumulating evidence indicates that psilocybin is 
effective for treatment of psychiatric disorders, the information processing mechanisms underlying 
the effects of psilocybin are not well understood (4,5). Establishing the information processing 
mechanisms of psilocybin could significantly benefit our understanding of the drug’s therapeutic 
actions, potentially helping to improve its efficacy and specificity, which could assist in informing 
clinical decisions. One way we can investigate the post-acute effects of psilocybin is with animal 
models (6,7), which has a number of benefits, including the ability to collect many data points in 
controlled environments and over sustained periods after treatment, as well as circumventing issues 
with expectancy effects that may confound the results from clinical trials in humans (8). 

To understand the information processing mechanisms of psilocybin, computational modeling 
approaches allow us to investigate the change in specific model parameters over time, providing 
insight into how psilocybin may help treat depression. Such computational modeling approaches fall 
into the burgeoning field of computational psychiatry that aims to develop precise treatments for 
psychiatric disorders, based on the specific information processing mechanisms of a particular 
individual, with an understanding that shared symptoms may arise from different computational 
processes (9–13). Here, we employed a novel two-armed bandit reversal learning task capable of 
capturing engagement behaviour in rats. Measuring engagement behaviour has translational 
potential for individuals with depression, who often choose to withdraw from the world rather than 
engage in rewarding activities (14,15). In fact, modifying such behaviour is a primary target of existing 
behavioural activation interventions within cognitive-behavioural therapies (16,17). In our 
experiment, two groups of rats were administered psilocybin (n=12) or saline (n=10) 24 hours before 
the initiation of the task. The rats could engage with the task for three hours each day for 14 days 
and completed the task in their home cage such that they could decide to either engage in the task 
or stay in the cage without engaging.  

The present study used both behavioural measures and computational modelling methods to 
distinguish the mechanisms underlying task engagement. The space of models included both 
reinforcement learning (RL) (18) and active inference (AI) (19–21) models, with a range of possible 
parameters motivated by prior research on depression. As optimism bias is associated with 
increased engagement with the world and depression is linked to diminished optimism, we include 
parameters related to optimism, allowing us to investigate if increased engagement in the task can 
be account for by increased optimism (22–26). We hypothesized that psilocybin would increase 
subsequent task engagement through discrete changes in information processing in rats.  

Methods 

Animals 

All animals were obtained from the Monash Animal Research Platform. Female Sprague-Dawley 
rats (n=22) arrived at 6 weeks of age and were allowed to acclimate to the reverse light cycle (lights 
off at 11AM) for 7 days prior to any intervention. Young female rats were used in these studies to 
compare outcomes to previous studies in the laboratory investigating the role of psilocybin on 
cognitive flexibility (27). Because reinforcement learning motivation is known to fluctuate over the 
estrous cycle (28), a male rat was housed in all experimental rooms at least 7 days prior to 
experimentation, synchronizing cycling (cf. the Whitten Effect (29)). Before training, rats were housed 
individually in specialized cages (26cm W x 21cm H 47.5cm D) and were habituated to sucrose 
pellets (20 mg, AS5TUT, CA, USA) sprinkled into the cage for two consecutive days. Pre-training 
involved first training animals to take pellets from the magazine (magazine training) on a “free-
feeding” schedule, and subsequently training animals to make nose-poke responses to obtain a 
pellet (nose-poke training), a nose-poke into either port delivered a pellet at a fixed ratio (FR) 1 
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schedule (See Supplementary Figure 1). At the completion of pre-training, when rats were between 
8-9 weeks of age, a single dose of psilocybin (1.5 mg/kg; USONA institute, dissolved in saline) or 
saline alone (control) was administered intraperitoneally and reversal learning training commenced 
the following day. Psilocybin efficacy was confirmed by the adoption of hind limb abduction, a 
stereotypical posture. All experimental procedures were conducted in accordance with the Australian 
Code for the care and use of animals for scientific purposes and approved by the Monash Animal 
Resource Platform Ethics Committee (ERM 29143).   

Reversal Learning Task  

For the reversal learning task, Feeding Experiment Devices (version 3; FED3) (30) were placed in 
the home cage of the rat for 3 hours a day (Figure 1). The rats were maintained on ad libitum access 
to food (standard rat and mouse chow; Barastoc, Australia) throughout the entire experimental 
paradigm in order to rule out hunger as a motivating factor for performance. The reversal learning 
task was a modified two-arm bandit designed so that 10 pokes on the rewarded side of the FED3, 
with each poke resulting in a reward, triggered the reversal of the rewarded side. This continued on 
a deterministic schedule of reinforcement (i.e., “active” pokes delivered a reward 100% of the time) 
over 14 experimental sessions on separate and consecutive days, where the left side was active 
first. There were three outcomes from the rats' actions in the reversal learning task. If the rat poked 
the active side and received a sucrose pellet, the outcome was a ‘reward’. If the rat poked the non-
active side of the FED3 the outcome was a ‘loss’, as they exerted energy without reward. If the rat 
did not engage in the task, the outcome was ‘null’, which was considered a better outcome than a 
loss as the rat did not exert energy without reward. 

Locomotor activity and anxiety-like behavior  

To examine potential influences of general locomotor and anxiety-like behavior that may contribute 
to task performance, a separate cohort of female Sprague-Dawley rats (age-matched to 8-9 weeks 
old) were administered psilocybin (n=8) or saline (n=8) and 24h later were tested in the open field 
(OF) and elevated plus maze (EPM). Behavioral tests were recorded with an overhead camera 
connected to a computer and analyzed with Ethovision XT (V3.0; Noldus, NL) tracking software using 
center of mass. The EPM consisted of an elevated 4-arm platform made of grey Perspex (70 cm 
long × 10 cm wide × 90 cm high) with two closed (40 cm high walls) and two open arms. Rats were 
placed in the centre platform (10 × 10 cm) facing an open arm and the proportion of time spent in the 
closed arms relative to the open arms in each 10-min trial, was used as the primary measure of 
anxiety-like behaviour (31). The OF test consisted of a deep open topped box (60 x 60 x 55 cm deep) 
in which distance travelled in each 10-min trial was used as the primary measure of locomotor activity 
and the proportion of time spent in the aversive centre zone (middle square of a 3 x 3 grid; 
20 × 20 cm) was used as a secondary measure of anxiety-related behaviour, although it is shown to 
be less sensitive to the effects of anxiolytic drugs (32). 
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Figure 1. Treatment and reversal learning task design. Rats completed a reversal learning task 
over 14 experimental sessions on separate consecutive days in their cage, with the first session 
beginning 24 hours after treatment with psilocybin (n=12) or saline (n=10). The reversal learning task 
had a deterministic reinforcement schedule and was designed so that 10 pokes on the rewarded 
side, with each poke resulting in a reward, triggered the reversal of the rewarded side. The rat could 
select from three actions: poke left, poke right, or stay in the cage. Created with biorender.com 

Computational Modelling methods 

We considered reinforcement learning (RL) (18) and active inference (AI) (19–21,33) models as 
possible explanations of observed choice behavior. For all computational models, the rat had three 
actions to choose from: ‘poke left’, ‘poke right’, or ‘stay in cage’, and three outcomes: ‘reward’, ‘loss’, 
or ‘null’. A reward was modelled as a positive outcome, loss as a negative outcome, and null as a 
neutral outcome (i.e., less aversive than a loss, as the rat conserved energy).  

Reinforcement Learning models 

Four different RL models were considered that reflect hypotheses about how optimism bias might 
be computationally implemented. We hypothesized psilocybin increased optimism by asymmetric 
belief updating, which was the main focus of these models; however, other parameters that have 
been associated with depression or optimism were also considered. Note that, we only include the 
most common RL modeling approaches here that do not include explicit beliefs about state transition 
probabilities (i.e., so-called “model-free” RL). However, more complex models with explicit transition 
beliefs (i.e., “model-based” RL) could also be considered (33). 

All models included, 𝑉0, which is the initial value of the expected reward for each action, ‘stay in 
cage’, ‘poke left’, ‘poke right’. The initial value of the expected reward was restricted to positive 
values. The value of the expected reward was transformed into a discrete probability distribution 
using a softmax function, which included a standard inverse temperature parameter (𝛽) controlling 

randomness (value insensitivity) in choice, as follows where 𝑎 is set of possible actions.  

𝑝(𝑎(𝑡)) =  
𝑒𝑥𝑝(𝛽𝑄𝑎(𝑡))

∑ 𝑒𝑥𝑝(𝛽𝑄𝑎(𝑡))
𝑎
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Here, trial is denoted by t. Expected values (Q) were updated based on reward prediction errors 
(𝑅𝑃𝐸).  These prediction errors reflect the difference between the current (𝑟) and the expected 
reward, as follows:  

 

𝑅𝑃𝐸(𝑡) = 𝑟(𝑡) − 𝑄𝑎(𝑡) 

 

The reward value was coded as 1 for a reward, -1 for a loss, and 0 for the null outcome.  

 

Simple Rescorla-Wagner  

The simplest RL (Rescorla-Wagner) model included one learning rate parameter, 𝛼, in addition to 𝑉0  
and 𝛽, The expected reward was here updated at the same rate regardless of whether the rat 
observed a reward or a loss.  

 

 𝑄𝑎(𝑡 +  1)  =  𝑄𝑎( 𝑡 )   +  𝛼 ⋅  𝑅𝑃𝐸(𝑡) 

 

𝑄𝑎(𝑡 =  1)  =  𝑉𝑂 

 

Pessimistic Rescorla-Wagner  

The pessimistic Rescorla-Wagner model aimed to account for a pessimism bias the rat might 
possess. For this model, we fixed the initial value for the expected reward for the 'stay in cage’ action 
to be 0. During fitting, the estimated initial values of 𝑉0  for the ‘poke left’ and ‘poke right’ actions were 
then permitted to take negative or positive values. This allowed the rat to potentially begin the trial 
with a pessimism bias, in which it initially believed that selecting left or right sides would lead to a 
negative outcome (promoting avoidance), which would need to be unlearned through subsequent 
task engagement.  

 

Asymmetric Learning model Loss Aversion  

As depression and optimism has been associated with differences in belief updating to good versus 
bad outcomes (34), we tested a Rescorla-Wagner model with separate learning rates for rewards 
and losses.  

 

𝑖𝑓 𝑟(𝑡) >  0 

 

 𝑄𝑎( 𝑡 +  1)  =  𝑄𝑎( 𝑡 )   + 𝛼𝑤𝑖𝑛  ⋅  𝑅𝑃𝐸(𝑡) 

 

𝑖𝑓 𝑟(𝑡) <  0 

 

 𝑄𝑎( 𝑡 +  1)  =  𝑄𝑎( 𝑡 )   + 𝛼𝑙𝑜𝑠𝑠  ⋅  𝑅𝑃𝐸(𝑡) 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.16.594614doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594614
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

Additionally, as depression is related to increased loss aversion, this model included a loss aversion 
parameter (22). This parameter was implemented as the negative reward value assigned to the loss 
outcome. Instead of being encoded as a -1 (as in the other models above), this negative reward 
could take larger values if a rat was more loss averse. Thus, under a loss outcome, the negative 
reward was scaled by a loss aversion (LA) parameter as follows: 

 

𝑅𝑃𝐸(𝑡) = 𝐿𝐴 ⋅ 𝑟(𝑡) − 𝑄𝑎(𝑡) 

 

Dynamic Learning Rate (Associability)  

Theoretically, learning rate should be greater when the environment is expected to be 
volatile/unpredictable, while learning rate should decrease in a stable/predictable environment. Prior 
work suggests this learning rate adjustment may be altered in affective disorders (35). To evaluate 
the possibility that differences in learning rate adjustment could account for differences in optimistic 
behavior, we included an ‘associability’ RL model that allows learning rate to be adjusted on a trial-
by-trial basis, based on the magnitude of previous prediction errors (i.e., larger prediction errors 
effectively increase learning rates, as they suggest confidence in current expectations should be 
low). This model includes a parameter (η), which modulates how strongly the strength of learning 

rate can change after each trial. The update equations for associability (κ), which is used to modulate 
the baseline learning rate on each trial, are as follows:  

 

κ𝑎(𝑡 + 1) = (1 − η) ⋅ κ𝑎(𝑡) + η|𝑅𝑃𝐸(𝑡)| 

κ𝑎(𝑡 + 1) = max (κ𝑎(𝑡 + 1), 𝐿) 

 

Note that a lower bound (L) on the value of κ is required, which we fit as an additional parameter. 
The expected reward is then calculated by the following equation: 

 

 𝑄𝑎( 𝑡 +  1)  =  𝑄𝑎( 𝑡)  +  𝛼 ⋅ κ𝑎(𝑡)  ⋅  𝑅𝑃𝐸 

Active Inference models  

In addition to RL models, we consider active inference (AI) models, which incorporate Bayesian 
learning and an intrinsic information-seeking drive that could play a role in promoting engagement 
behavior (Figure 2). The categories of actions and outcomes (𝑜) were set in the same manner here 
as in the RL models. The main differences from RL, as described further below, are that: 1) the 
model explicitly learns probabilities of each outcome under each action and estimates its confidence 
in current beliefs about those probabilities; 2) the reward value of each outcome is encoded in the 
form of a probability distribution, 𝑝(𝑜|𝐶), where higher probabilities correspond to greater subjective 

reward; and 3) action selection is driven by an objective function called expected free energy (𝑄), 
which jointly maximizes expected reward and expected reductions in uncertainty about outcome 
probabilities. 

Expected free energy is calculated by the following equation: 

 

𝑄𝑎𝑐𝑡𝑖𝑜𝑛 =  −𝐸𝑞(𝑜, 𝑠, 𝐀|𝑎𝑐𝑡𝑖𝑜𝑛)[In𝑞(𝐀|𝑠, 𝑜, 𝑎𝑐𝑡𝑖𝑜𝑛) − In𝑞(𝐀)] − 𝐸𝑞(𝑜, 𝑠, 𝐀|𝑎𝑐𝑡𝑖𝑜𝑛)[In(σ(𝐂))] 
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Figure 2 Active inference model. 2A: A graphical depiction of the active inference model. 2B: 
Active inference model equations for learning and action selection. C is the subjective reward value 
for each outcome. 𝑄𝑎𝑐𝑡𝑖𝑜𝑛 is the action value for each action. s is the action states. B is the state 
transition probabilities. A is the reward probabilities of states and outcomes in the task and a is the 
prior beliefs about the reward probabilities. o is the action observations. The 𝜎 symbol indicates a 
softmax function. The right two panels show the model equations for action selection and learning. 
See Methods for more details on the model and equations. 

 

Here, 𝐀 is a matrix that encodes the reward probabilities, 𝑝(𝑜|𝑠), as the relationship between action 

states (𝑠) and observations (𝑜). 𝐂 is a vector that encodes the reward values for the rat. The 𝜎 symbol 
indicates a softmax function. The first term in the expected free energy equation calculates how 
much information about the reward probabilities would be gained by taking an action. In other words, 
if the rat selects a certain action, the magnitude of this term indicates how much it expects to increase 
its confidence in the best action. In this model actions are considered observable. Note here that the 
symbol 𝑞 indicates an approximate probability distribution. The second term in 𝑄𝑎𝑐𝑡𝑖𝑜𝑛 calculates the 
expected probability of reward under each action, based on current beliefs.  

The first AI model included five parameters with theoretical links to depression and optimism, similar 
to those in the RL models. To investigate the differences in belief updating from positive and negative 
outcomes associated with depression and optimism (34), we included separate forgetting rate 
parameters (𝛼𝑑𝑒𝑐𝑎𝑦) for rewards and losses. In the AI framework, forgetting rates are conceptually 

similar to (but mathematically distinct from) learning rates in RL, as they indicate how strongly the 
rat forgets its prior beliefs before observing a new reward or loss. The higher the value for the 
forgetting rate, the more the rat updates its beliefs after a new observation (i.e., larger values down-
weight prior beliefs before each update). Learning specifically involves updating the parameters of a 
Dirichlet distribution (𝐚) over the likelihood matrix 𝐀 after each observation, as shown in the equation 
below. We included a fixed value (0.5) for learning rate (𝛼𝑢𝑝𝑑𝑎𝑡𝑒). 
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𝑝(𝐀)  =  𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝐚)  

 

𝑆𝑡𝑎𝑦 𝑖𝑛 𝐶𝑎𝑔𝑒, 𝑃𝑜𝑘𝑒 𝐿𝑒𝑓𝑡, 𝑃𝑜𝑘𝑒 𝑅𝑖𝑔ℎ𝑡 

 

𝐚 =  𝑞(𝑜𝑡
𝑟𝑒𝑤𝑎𝑟𝑑|𝑠𝑡

𝑐ℎ𝑜𝑖𝑐𝑒) =  [

1 0 0
0 𝑝𝑟 𝑝𝑟
0 (1 − 𝑝𝑟) (1 − 𝑝𝑟)

]
𝑆𝑡𝑎𝑦 𝑖𝑛 𝐶𝑎𝑔𝑒

𝑅𝑒𝑤𝑎𝑟𝑑
𝐿𝑜𝑠𝑠

 

 

𝐚𝑡𝑟𝑖𝑎𝑙+1 =  (1 − 𝛼𝑑𝑒𝑐𝑎𝑦)  ⋅   𝐚𝑡𝑟𝑖𝑎𝑙 +  𝛼𝑢𝑝𝑑𝑎𝑡𝑒  ⋅  ∑ 𝑜𝑡 

𝑡

⊗ 𝑠𝑡    

 

We included an initial prior value for probability of receiving a positive outcome as an additional 
parameter (𝑝𝑟) (i.e., the initial expected probability of a reward under both actions at the start of the 
task, prior to learning). As optimism is associated with expectations of a good outcome (26,36). 

Similar to the RL model space, we included a loss aversion parameter (𝐿𝐴) encoding the value of a 
loss, assigning a fixed positive value of 2 for observing reward:  

 

𝐂 =  [
0
2

−𝐿𝐴
]

𝑆𝑡𝑎𝑦 𝑖𝑛 𝐶𝑎𝑔𝑒
𝑅𝑒𝑤𝑎𝑟𝑑

𝐿𝑜𝑠𝑠
 

 

We included an inverse temperature (action precision) parameter (𝛽) that controlled the level of 
randomness in action selection: 

 

𝑝(𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)|𝛽)  =  𝜎(𝛽 ⋅  In𝑝(𝑄𝑎𝑐𝑡𝑖𝑜𝑛(𝑡))) 

 

Finally, we compared this model to a simpler four-parameter AI model that omitted the prior reward 
probability (𝑝𝑟) parameter, where 𝑝𝑟 is fixed at 0.5. 

 

Model comparison  

Model simulations for the AI and RL models were run in MATLAB (v.9.12.0, (R2022a)).  To estimate 
the parameters for all models, a variational Bayes algorithm (variational Laplace) was used, which 
maximizes the likelihood of the rat’s actions while incorporating a complexity cost to deter overfitting 
(37).To find the best model, we then used Bayesian model comparison across the 4 RL models and 
2 AI models (38). To confirm the recoverability of parameters in the best model, we then simulated 
behavioral data using the parameters we estimated for each rat (based on the same number of trials 
each rat performed in the task). Using this simulated behavioral data, we then estimated these 
parameters and evaluated how strongly the estimates correlated with the true generative values. 
Recoverability was acceptable for all parameters in the winning model (see Supplementary 
Materials). 
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Statistical analysis  

All analyses were performed in R (v4.1.1) using functions from the Tidyverse package (v1.3.2; (39)). 
To explore whether model parameters might jointly differentiate groups, we performed logistic 
regression analyses with the parameters as predictors and group classification as the outcome 
variable. Interactions between each parameter and time (day) were included. This was carried out 
using the glm() function in R with the ‘binomial’ family and the ‘logit’ link function. 

Behavioral performance and computational model parameters were modelled using generalized 
additive mixed-effects models (GAMMs), a semiparametric extension of the generalized linear 
mixed-effects modelling framework that enables the fitting of nonparametric curves (splines) 
describing how the mean of an outcome variable 𝑦 varies as a smooth function 𝑓 of explanatory 
variable(s) 𝑥 (40–42). A smoothing penalty is applied during the fitting of smooth terms, ensuring 

that the complexity (i.e., ‘wiggliness’) of 𝑓(𝑥) is appropriately constrained (e.g., reducing 𝑓(𝑥) to a 
linear function in the event there is insufficient evidence of nonlinearity in the mapping between 𝑦 

and 𝑥). 

GAMMs were estimated using restricted maximum likelihood via the gam() function of the mgcv 
package (v1.8-40; (42)). All GAMMs took the following generic form: 

 

𝑔(𝐸(𝑦)) = β0 + 𝛽1𝐺𝑟𝑜𝑢𝑝 + 𝑓(𝐷𝑎𝑦, 𝑏𝑦 = 𝐺𝑟𝑜𝑢𝑝) + 𝑓𝐼𝐷(𝐷𝑎𝑦) + 𝜖, 

 

where Group encoded a two-level factor variable reflecting treatment allocation (psilocybin, control) 
and Day encoded the consecutive sequence of test sessions (1-14). Thin-plate regression splines 
(43) were used to model changes in 𝑦 over Day for each level of Group. Factor smooths on Day 
were implemented for each individual rat (ID) to capture random fluctuations in behaviour over 
successive sessions (this term essentially functions as a time-varying random intercept; for similar 
approaches, see Corcoran et al. (44); Cross et al. (45)). The selection of link function 𝑔(. ) was 
informed by the distribution of 𝑦 and quality of model fit, which was evaluated using functions from 
the mgcViz (v0.1.9; (46)) and itsadug (v2.4.1;  (47)) packages. 

 

To understand the relationship between the behavioral outcomes and the winning model parameters, 
we ran Pearson correlations between each model parameter and behavioral outcome measure.  

Results 

Behavioral Results  

Rats treated with psilocybin tended to achieve more rewards in the reversal learning task than those 
treated with saline (b=36.1, t(239)=1.92, p=.056). There was a significant difference between 
smoothers; rats in the psilocybin group achieved significantly more rewards on days 7 - 14 compared 
to those in the control group (Figure 3A). Rats in the psilocybin group showed significantly more 
losses on average than the control group (b=15.60, t(218)=2.04, p=.042). Comparison of smoothers 
indicated that this difference was driven by fewer losses in the control group on days 4 – 6 (Figure 
3B). As task engagement was optional, one group could have both more wins and more losses than 
another group due to more frequent engagement. 

We found no difference in win-stay or lose-shift behavior between the two groups (Figures 3C, 3D). 
In contrast, the control group selected the action of ‘staying in the cage’ significantly more than the 
psilocybin group (i.e., reflecting less frequent task engagement; b=-0.11, t(221)=-1.99, p=.048). 
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Comparison of smoothing splines further revealed significant reductions in psilocybin group stay-in-
cage times on days 5 - 7 and 12 - 14 (Figure 3E). 

Rewards showed a strong positive association with the amount of time rats chose to engage in the 
task (r=0.93, p<.001). Rewards were positively associated with losses (r=0.69, p<.001). This was 
because the chances of reward and loss both increased with greater task engagement (Figure 3F). 

 

 

Figure 3. Effects of psilocybin on behavioral measures across days of reversal learning. The 
first 5 panels in this figure illustrate pairwise comparisons of the behavioral measures across days 
including (A) rewards, (B) losses, (C) win-stay strategies (logit-scaled), (D) lose-shift strategies (logit-
scaled), and (E) stay in cage behavior (log-scaled). Estimated marginal means are represented with 
dotted lines (psilocybin group) or solid lines (saline group) with shading indicating SEM. Solid red 
lines indicate significant differences between groups (p < .05). Correlations between behavioral 
measures presented in (F). *p < .05, **p < .01, ***p < .001. 
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Model Comparisons 

When comparing four reinforcement learning (RL) and two active inference (AI) models with 
Bayesian model comparison we found the winning model to be the five parameter AI model 
(protected exceedance probability = 1). Model validation and parameter recoverability analyses 
confirmed the validity and reliability of this model (see Supplementary Materials). 

Active Inference Model Results  

The inter-correlations for the winning AI model parameters and behavioral results showed several 
associations in expected directions (Figure 4F). The strongest association was with number of 
rewards received and the loss aversion parameter, where lower loss aversion was correlated with 
more rewards. Rewards were associated with both forgetting rates in the expected directions.  

The logistic regression capturing the variance among all parameters found forgetting rate for rewards 
was significantly higher in the psilocybin group (b=.62, z(295)=2.034, p = .042) and forgetting rate 
for losses was significantly lower in the psilocybin group (b=.57, z(295)=-2.053, p=.040). We found 
a significant interaction between forgetting rate for rewards and day (b=-.080, z(295)=2.294, p=.022), 
indicating that the forgetting rate for rewards for the psilocybin group increased more over time. 
There was a significant interaction between loss aversion and day (b=-.11, z(295)=-2.580, p=.010), 
indicating that the psilocybin group had smaller loss aversion on the later days of testing. Taken 
together, the logistic regression found that parameter space change for psilocybin group compared 
to saline group was as follows: forgetting rates for rewards were higher, forgetting rates for losses 
were lower, forgetting rate for rewards increased more over time, and loss aversion was lower for 
the psilocybin group over time.  
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Figure 4: Effects of psilocybin on model parameters across days of reversal learning. The first 
5 panels in this figure illustrate pairwise comparisons of the model parameters across days including 
(A) forgetting rate for losses (logit-scaled), (B) forgetting rate for rewards (logit-scaled), (C) loss 
aversion (log-scaled), (D) action precision (log-scaled), and (E) prior reward probability (logit-scaled). 
Estimated marginal means are represented with dotted lines (psilocybin group) or solid lines (saline 
group) with shading indicating SEM. Solid red lines indicate significant differences between groups 
(p < .05 Correlations between parameters in the best-fit computational (AI) model and behavioral 
results measures (F). *p < .05, **p < .01, ***p < .001. 

Results for the GAMMS, which did not take into account the other parameters in the parameter 
space, showed forgetting rates for losses were significantly lower on average in the psilocybin group 
(b=0.18, z(267)=-1.99, p=.046). This between-group difference was most pronounced on day 1, but 
remained present across the experiment (Figure 4A). Although there was no main effect of group 
for the forgetting rate for rewards, comparison of smoothers revealed this parameter to be 
significantly higher in the psilocybin group on day 14 (Figure 4B).   

None of the remaining model parameters showed significant between-group main effects. However, 
smoothing splines differed significantly between groups for both the loss aversion and action 
precision parameters on specific days. Loss aversion was lower in the psilocybin group on day 13 
and 14, suggesting that this reduced anticipated aversiveness of losses over time (Figure 4C). 
Action precision was significantly lower for the smoothing splines in the psilocybin group on days 4 
and 5 (Figure 4D). As action precision indicates less randomness in choice, this most likely reflected 
the fact that rats in this group less deterministically chose to stay in their cage and not perform the 
task on those days. 
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Other aspects of behavior relevant to task performance  

Because engagement during the reversal task could be influenced by prior experience with sucrose 
rewards, response vigor, general locomotor activity and anxiety-like behavior, we assessed these 
aspects of behavior separately. During pre-training (Figure 5A), where poking into either side of the 
FED3 resulted in a pellet, there was no effect on psilocybin overall (Figure 5B; p=.102) and while 
both groups preferred the right over the left nose-poke (Figure 5C-D), initial group differences in 
sucrose collection did not contribute to performance after treatment with psilocybin or saline. In 
contrast, we found that during the reversal task (Figure 5E), the rate of responding (response vigor) 
showed a trend toward increase vigor after psilocybin treatment for the target (rewarded) nose-poke 
over the 14 days (Figure 5F; p=.096) but this was not the case for non-target (incorrect) responses 
(Figure 5E-G).  

We found that post-administration day-to-day performance variability, as measured by reversal rate, 
had stabilized by the late reversal learning period (Figure 5J; sessions 12-14, p=.681), where 
significantly higher rates of reversal were observed for the psilocybin treatment group (Figure 5K; 
p>.001)This improvement in reversal ability in the later sessions also coincided withthe greatest trend 
towards an effect of psilocybin on total number of rewards received (p=.083) Taken together, this 
suggests that psilocybin could enhance reversal learning to improve reward outcomes (i.e., goal-
directed action) over time, rather than a generalized increase in engagement with the operant device. 
An effect of psilocybin in early learning was not observed but this may be due to performance 
instability during this initial period (Figure 5H-I; p=.0657 and p<.05, respectively).  

We have previously shown that psilocybin administered at this same dose did not affect effortful 
responding in rats using a progressive ratio of reinforcement as a measure of incentive motivation 
(27). However, to rule out possible contributions to task performance from general locomotor activity 
and anxiety-like behavior in the present study, we examined the effects of psilocybin on behavior in 
the OF (Figure 5L) and EPM (Figure 5P) in a separate cohort of animals. Psilocybin did not alter 
locomotor activity or change the duration spent in risky or safe zones of either the OF (Figure 5M-
O) or EPM (Figure 5Q-R; all ps >.3217), indicating that these behavioral features did not explain the 
increase in task performance observed.  
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Figure 5: Raw behavioral data A-D: Nose-poke training results prior to psilocybin or saline 
administration. E-G: Response rates for psilocybin and saline groups in the reversal learning task. 
H-K: Reversal rates for psilocybin and saline groups during initial and stable performance periods 
L-O: Open field data for rats treated with psilocybin and saline aged matched to cohort in current 
study. P-R: Elevated plus maze data for rats treated with psilocybin and saline aged matched to 
cohort in current study. PSI; psilocybin, SAL; saline. Data presented are mean ±SEM. 
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Discussion  

This study explored the enduring effects of psilocybin on behavior and information processing in rats, 
in an effort to further understand the mechanisms of how psilocybin may treat conditions such as 
depression. Our results support the notion that post-acute effects of psilocybin increase engagement 
in a reversal learning task, and suggest this may be explained by altered forgetting rates and reduced 
loss aversion. These results could have translational/clinical relevance to conditions, such as major 
depression, which are linked to a withdrawal from the world, and indeed existing (e.g., behavioral 
activation) treatments often specifically aim to promote greater engagement. Our results show the 
increased engagement could be due to increased optimism via an asymmetry in belief updating, 
highlighting optimism as a possible treatment target.  

Our computational results show that psilocybin reduced belief updating rates after losses and 
increased belief updating rates after wins; that is, over time, the rats treated with psilocybin vs. 
controls forgot more about their previous beliefs when receiving a reward compared to when 
receiving a loss. These results are in line with an optimism bias, which relates to an asymmetry in 
belief updating in which individuals learn more from positive than negative outcomes (26,34,48,49). 
Interestingly, this biased belief updating manifests as more engagement in the environment. If an 
individual holds the (biased) belief that an action will lead to a positive outcome, they are more likely 
to choose that action – engaging more, and enabling themselves to minimize missed opportunities. 
Through this increased engagement with the world, optimism has been associated with improved 
quality of life and is suggested to be adaptive (26,50–58). As the psilocybin-treated rats increase the 
asymmetry in their belief updating, they also increase their engagement with the task. These results, 
along with complementary behavioral findings ruling out other explanations of increased 
engagement, support this optimism-based interpretation. Additionally, our results complement recent 
work showing that the antidepressant properties of ketamine treatment may be due to increased 
optimism from asymmetry in belief updating (59).  

It is important to note that the rats given the saline control also showed asymmetry in their belief 
updating, where they had a lower forgetting rate for losses vs. rewards. This is not surprising, since 
research shows that some optimism in rats is widely present in healthy animals, and is absent mainly 
in rat models of depression (60,61). Our control group did not undergo any additional experimental 
interventions to develop pessimism, and would therefore be expected to show some optimism bias 
(62). Our findings suggest that psilocybin amplifies the asymmetry in updating seen in wild type rats. 
Future research on optimism should test the effects of psilocybin in a depression model cohort, such 
as in a model of chronic mild stress (63). 

Our computational results also show that psilocybin reduced loss aversion in rats. The rats treated 
with psilocybin received more losses than the control group, but still engaged more with the task. As 
the rats had reduced loss aversion, they expected to dislike losses less. This means they were less 
deterred from engaging in the task than the control group, despite the possibility of a loss. As 
expected, this was also associated with more rewards. Our results thus suggest that, in addition to 
asymmetric belief updating, psilocybin may further increase engagement by reducing loss aversion. 
As loss aversion and pessimism are elevated in depression, these results are potentially promising 
in understanding how psilocybin may counter these crucial features of this disorder (22,34,64–66). 
Notably, these differences in loss aversion were seen in the later days of the task. This is consistent 
with human studies showing positive psilocybin effects weeks or months after treatment (67,68). 

Previous studies on psilocybin and decision-making indicate that psilocybin may improve cognitive 
flexibility (69–71); a further study found that psilocybin may reduce punishment by changing one’s 
concerns for the outcome of their game partner in a social decision-making task (70). The current 
findings add to a growing literature in this area highlighting a range of effects that emerge in different 
task contexts, and which perhaps have similar underlying mechanisms. Additionally, our finding that 
changes in task engagement occur post-acutely complement research showing that after psilocybin 
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treatment in mice, increases in dendritic spine peaked 7 days post-administration (72). The 
increased dendritic spine density may thus be required for the increased engagement.   

Although it is beyond the scope of this paper to extend research on serotonin and psilocybin, our 
findings might also be relevant to existing theories on the role of serotonin. For example, one theory 
suggests that increased serotonin promotes exploration in order to identify new polices that can then 
be exploited (73). As female rats are expected to have increased serotonin (at least acutely) after 
treatment with psilocybin (27), and also explored their environment more, this could suggest a neural 
mechanism underlying our computational and other behavioral results. In our task increased 
engagement resulted in more rewards so the rat can then exploit increased engagement when 
serotonin levels reduce. This increased engagement policy results in optimistic learning of the task 
as the rat continues to receive reward. If serotonin does increase exploration after psilocybin 
treatment, it may have clinical implications when considering the environment within which a patient 
will explore and learn their new polices after treatment. In our task, performance also benefited from 
increased engagement; however, it should be noted that it is unknown at present whether this will 
generalize to other experimental or real-world contexts in which patients might benefit. Future studies 
should therefore extend our modeling approach to other environments and test potential links to 
underlying neurobiology.  

Taken together, these results further support a way in which psilocybin treatment has potential to 
improve core symptoms of depression, associated with anhedonic, apathetic withdrawal, and 
diminished optimism, by altering specific computational mechanisms that lead to improved optimism 
and greater engagement with the world (14,15,34,64–66,74,75). Further research should consider if 
these effects on task engagement are specific to psilocybin, or if they can occur for other 
psychoactive agents (such as opiates), including how such psychoactive agents might manifest in 
the model parameters. This would be informative not only about the mechanism of psilocybin but 
also about different intervention targets; for example, even if opiates increase engagement, the 
underlying model might not reveal the same kind of belief updating asymmetry found here, which 
could have additional clinical relevance. Other relevant future research would include testing relevant 
antagonists and dose-dependence trials. It is also important to highlight that, as the clinical potential 
of these results depends on translatability to human participants, it will be crucial to find ways to 
ensure this is feasible. The current paradigm used here in rats required gathering behavior over a 
large number of sequential days, which could be challenging, especially in patient samples. Thus, 
adapted study procedures will likely need to be explored. 

Conclusion  

In summary, we find that, in rats, psilocybin increases engagement with the environment consistent 
with an amplified optimism bias. Computational modelling suggests the psilocybin-treated rats have 
heightened expectations of reward as a result of changes in relative rates of belief updating from 
rewards and losses, as well as reduced loss aversion. This result has translational potential, and 
should motivate confirmation of these effects in human studies.  
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Supplementary Materials 
Data availability   

Code and data used presented in this paper are openly available on the Open Science Framework 
repository (DOI 10.17605/OSF.IO/EU8KH). Note: The original FED3 recordings did not include ‘Stay 
in Cage’ trials. The original data along with the code implemented to include ‘Stay in Cage’ trials, 
and processed data are available online.  

Model validation and comparison  

When assessing the accuracy (percentage of trials where the model assigned the highest probability 
to the true actions) and average action probability (average probability the model assigned to the 
true actions) of each model, the 5-parameter AI model showed the best performance (see Table 
S1). Bayesian model comparison also confirmed this to be the winning model (protected exceedance 
probability = 1). For the winning model, recoverability analyses confirmed that generative and 
estimated parameters were significantly correlated: action precision (r=0.85, p<.001), forgetting rate 
for losses (r=0.57, p<.001), forgetting rate for rewards (r=0.94, p<.001), loss aversion (r=0.77, 
p<.001), and prior reward probability (r=0.84, p<.001). These results suggest that the winning model 
was reliable and accounted well for the behavioral data.  

 

Table S1. Accuracy and average action probability of each model. 

Model Accuracy Average action probability  

RL simple 32.76% 0.37 

RL pessimism  44.76% 0.46 

RL associability 21.06% 0.33 

RL extended  34.22% 0.30 

AI 5  79.00% 0.62 

AI 4 77.12% 0.60 

*Note that chance accuracy is 33.33% 
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Raw behavioral data 

Supplementary Figure 1 shows the unsmoothed behavioral data. The mean for each group is 
shown for each day with standard error bars.   

 

 

Supplementary Figure 1: Effects of psilocybin on behavioral measures across days of 
reversal learning with unsmoothed data. The panels in this figure illustrate the mean of the 
behavioral measures with standard error bars across days including (A) rewards, (B) losses, (C) win-
stay strategies, (D) lose-shift strategies and (E) stay in cage behavior.  
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Raw model parameter data 

Supplementary Figure 2 shows the unsmoothed model parameter data. The mean for each group is 
shown for each day with standard error bars.   

 

 

 

Supplementary Figure 2: Effects of psilocybin on model parameters across days of reversal 
learning with unsmoothed data. The panels in this figure illustrate the mean of the model 
parameters with standard error bars across days including (A) forgetting rate for losses, (B) 
forgetting rate for rewards, (C) loss aversion, (D) action precision and (E) prior reward probability.  
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