

1 Sex-specific single cell-level transcriptomic signatures of Rett syndrome disease
2 progression
3

4 Osman Sharifi^{1,3,4}, Viktoria Haghani^{1,3,4}, Kari E. Neier^{1,3,4}, Keith J. Fraga^{2,3}, Ian Korf^{2,3},
5 Sophia M. Hakam^{1,3,4}, Gerald Quon^{2,3}, Nelson Johansen^{2,3}, Dag H. Yasui^{1,3,4#}, Janine
6 M. LaSalle^{1,3,4#*}

7
8 ¹Medical Microbiology and Immunology, School of Medicine, ²Cellular and Molecular
9 Biology, College of Biological Sciences, ³Genome Center, ⁴MIND Institute, University of
10 California, Davis, CA 95616

11 *corresponding author, jmlasalle@ucdavis.edu

12 #equal contribution

13 ORCID OS 0000-0002-4630-2587, VH000-0002-3700-4027, KEN 0000-0002-9700-
14 4045, KF 0000-0002-8930-6510, IFK 0000-0002-3480-2031, SH 0009-0006-1465-6571
15 JQ 0000-0002-1716-0153, NJ 0000-0002-4436-969X, DHY0000-0003-1178-988X, JML
16 0000-0002-3480-2031

17
18
19 **Abstract (150 word limit)**

20
21 Dominant X-linked diseases are uncommon due to female X chromosome inactivation
22 (XCI). While random XCI usually protects females against X-linked mutations, Rett
23 syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous
24 *MECP2* mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo
25 poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex
26 in a construct-relevant *Mecp2e1* mutant mouse model of RTT, revealing transcriptional
27 effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell
28 types, we observed sex differences in the number of differentially expressed genes
29 (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs
30 emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct
31 cell types over time, and correlated with disease phenotypes and human RTT cortical
32 cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across
33 disease progression of *Mecp2e1* mutant females, indicating wild-type-expressing cells
34 normalizing transcriptional homeostasis. These results improve understanding of RTT
35 progression and treatment.

36
37 **Introduction**

38 Rett syndrome is a neurodevelopmental disorder primarily affecting females and
39 is characterized by a range of symptoms such as loss of speech, motor abnormalities,
40 and developmental regression at about 6-18 months of age¹. Rett syndrome most often
41 occurs through spontaneous germline mutations in the X linked gene *MECP2* that are
42 mostly missense or truncation mutations². *MECP2* encodes the DNA binding protein,
43 methyl CpG binding protein 2 (MeCP2), which is a critical regulator of neuronal gene
44 expression in the brain³. Among the two alternatively spliced *MECP2* transcripts, only
45 the MeCP2e1 isoform contributes to RTT disease phenotypes⁴. However, most mouse
46 studies of RTT utilize the exon 3-4 knockout model in *Mecp2*^{-/-} males⁵, which is a null

47 model effective for studying MeCP2 function, but not a construct- or sex-relevant model
48 for human RTT. RTT females are heterozygous for *MECP2* (*MECP2*^{+/−}) mutations and
49 are therefore mosaic for both *MECP2* wild-type and mutant cells in brain. Prior studies
50 in Rett syndrome have suggested potential non-cell-autonomous effects of MeCP2
51 deficiency on wild-type expressing cells in brain, but these effects have been poorly
52 characterized at a cellular and molecular level^{6–8}. RTT is characterized by a seemingly
53 typical development in infancy, followed by progressive stages of regression in
54 developmental milestones beginning around 6–18 months of age and lasting through
55 early adulthood⁸. We have previously demonstrated that the *Mecp2e1* deficient mouse
56 model of RTT, modeled after a human mutation, recapitulates the RTT-relevant
57 extended period of disease symptom progression^{4,9}. However, it is not known when and
58 in which cell types the molecular changes responsible for disease progression occur in
59 *MECP2* mutant females versus males.

60 To explore the effects of cellular mosaicism, sex, and cell type on the
61 progression of disease in Rett syndrome, we employed single nuclei RNA-seq (sn-RNA-
62 seq 5') analysis in the cerebral cortex of the *Mecp2e1* mutant mouse model. We
63 examined the influence of sex, cell type, cellular mosaicism, and disease stage,
64 correlated with progressive disease phenotypes using a systems-level perspective.
65 These results demonstrate that MeCP2 deficiency in females results shows an
66 inherently different disease progression at the cellular and molecular level compared to
67 males, involving non-cell-autonomous transcriptional changes to homeostatic gene
68 pathways that correlate with disease phenotypes and stages.
69

70 **Results**

72 **Experimental design to test longitudinal, cellular, and sex-specific transcriptional** 73 **dysregulation in a symptomatically progressive mouse model of Rett syndrome**

74 To identify sex, cell type, and disease stage specific transcriptional differences in
75 *Mecp2e1* deficient mouse cortex, single nuclei RNA sequencing (sn-RNA seq 5')
76 analysis was performed to include the engineered mutation at the 5' translational start
77 site of the *Mecp2e1* isoform⁴. Three longitudinal post-natal time points were chosen to
78 correspond to pre-symptomatic (PND 30), disease onset (PND 60) and late disease
79 stages (PND 120 for *Mecp2e1*^{−/y} males, PND 150 for *Mecp2e1*^{+/−} females) compared to
80 sex-matched wild-type (WT) littermates^{9–11} (**Figure 1a**). Cortical nuclei were assigned to
81 14 different cell types based on 3,000 cell marker genes from the Allen brain atlas
82 cortex transcriptomics data¹². 93,798 cells from both sexes, four genotypes and three
83 time points were all clustered unsupervised (**Figure 1b**). Four excitatory neuron cell
84 types were identified, corresponding with cortical layers 2 to 6 (L2-6), as well as six
85 inhibitory cell types (Pvalb, Vip, Sst, Sncg, Lamp5) and four non-neuronal cell types
86 (pericytes, endothelial, oligodendrocytes, astrocytes, non-neuronal including microglia).
87 Unbiased marker genes for all 14 cell types were identified, supporting the distinction of
88 our candidate cell types (**Figure 1c**).

89 Five separate hypotheses were tested, comparing cells across different
90 genotypes and expression phenotypes (mutant vs wild-type-expressing cells within
91 females). In addition to comparing cells from *Mecp2e1*^{−/y} to *Mecp2e1*^{+/y} (experiment 1)
92 and *Mecp2e1*^{+/−} to *Mecp2e1*^{+/+} (experiment 2), wild-type *Mecp2e1* expressing cells from

93 the *Mecp2e1^{-/-}* females were compared to the wild-type expressing cells from the
94 *Mecp2e1^{+/+}* (experiment 3) and mutant *Mecp2e1* expressing cells from the *Mecp2e1^{+/+}*
95 females were compared to either wild-type expressing cells from the *Mecp2e1^{+/+}*
96 (experiment 4) or wild-type expressing cells within *Mecp2e1^{+/+}* females (experiment 5) to
97 test for cell non-autonomous effects (**Figure 1d**).
98

99 **Sexually dimorphic trajectories of transcriptional dysregulation across cortical**
100 **cell types**

101 To accurately characterize alterations in gene transcript abundance, four
102 computational methods for identifying differentially expressed genes (DEGs) from single
103 nucleus RNA sequencing (snRNA-seq) data were evaluated with single cell data sets
104 (Limma-VoomCC, Limma, EdgeR, and DESeq2) with partial overlap (**Supplemental**
105 **Figure 1**). Ultimately, Limma-Voom Consensus Correlation (Limma-VoomCC) was
106 selected for DEG analysis based on the ability to reveal high expressing DEGs amongst
107 diverse gene transcripts expressed¹³. Further, Limma-VoomCC controlled for the inter-
108 correlations of cells from the same animals^{14,15}. Overall, Limma-VoomCC analyses of all
109 cell types in experiments 1 and 2 revealed a total of 1436 significant DEGs after
110 adjusting for false discovery (**Supplemental Table 1**). In males from experiment 1, 169
111 or 85% showed higher and 30 or 15% showed lower transcript levels in *Mecp2e1*
112 mutant cortical cells compared to wild-type controls across the three time points, with
113 fold changes ranging from a low of -1.99 for *Sst* to a high of +2.31 for *Cst3*. In females
114 from experiment 2, 282 or 22% showed higher and 959 or 77% showed lower transcript
115 levels in *Mecp2e1* mutant cortical cells compared to wild-type controls across the three
116 time points, with fold changes ranging from a low of -2.69 for *Snhg11* to a high of +3.47
117 for *Ay036118* (**Supplemental Table 1**). DEsingle was also used as a complementary
118 approach to identify lower confidence DEGs for transcripts expressed at low levels
119 (**Supplemental Figure 2**). To ensure that DEGs detected were not due to changes in
120 cell types, we examined cell proportions which did not show changes over time
121 (**Supplemental Figure 3**). Cell clustering based on cell type, time point, sex and
122 *Mecp2e1* genotype did not show evidence of batch effects (**Supplemental Figure 4a-d**).
123 Futher, an analysis of the top high and low expressing genes showed that brain
124 samples from replicate mice were consistent (**Supplemental Figure 5**).
125

126 Analysis of DEGs by both Limma-VoomCC and DEsingle revealed that cell type
127 transcriptional changes associated with *Mecp2e1* deficiency were markedly different by
128 sex and disease stage in multiple cortical cell types (**Figure 2, Supplemental Figure**
129 **2**). At the pre-symptomatic stage, *Mecp2e1^{-/-}* male P30 from experiment 1 cortical cells
130 had only 9 DEGs compared with wild-type, including 3 DEGs in L2/3 neurons, 4 DEGs
131 in L4 neurons (including immediate early genes *Arc* and *Junb*), and 1 DEG
132 (AC149090.1) in *Lamp5* and *Vip* neurons (**Figure 2a**). In contrast, *Mecp2e1^{-/-}* female
133 from experiment 2 single cortical cells showed the strongest transcriptional
134 dysregulation, for a total of 1215 DEGs at P30 (Limma-VoomCC). Interestingly,
135 *Mecp2e1^{-/-}* female *Pvalb* DEGs at P30 had a significant (*p*-value ≤ 0.00075) enrichment
136 of imprinted genes, including *Meg3*, *Xist*, *Gnas*, *Kcnq1ot1*, *Np1l5*, *Ntm*, *Peg3* and *Snrpn*
(**Figure 2b**), a result that was not observed in males.

137 At the disease onset P60 timepoint, 73 DEGs were identified in *Mecp2e1^{-/-}*
138 males, predominated by 56 DEGs in L2/3 neurons, but also including 7 DEGs in

139 astrocytes, 4 DEGs in L4 and 6 in Scng neurons and 1 DEG in L6 and Sst neurons
140 (**Figure 2c**). *Mecp2e1^{+/}* female cortical cells had 47 DEGs, with 46 in L6 excitatory
141 neurons and 1 DEG in Sncg inhibitory neurons (**Figure 2d**). Further, *Mecp2e1^{+/}* female
142 DEGs at P60 included *AY036118* (+3.47-fold change), *Ptprd*, *Edil3*, *Ptgds*, *Plp1*,
143 *Atp6v0b*, *Kcn11ot1*, *Gria2*, *Nrxn1*, *Arpp21*, *Snhg11*. *Mecp2e1^{+/}* females had 3 DEGs
144 with 2 in VIP inhibitory neurons and 1 DEG in Pvalb inhibitory neurons.

145 By the late disease P150 time point, only VIP interneurons contained DEGs in
146 *Mecp2e1^{+/}* cortical cell types, including long non-coding RNAs *Snhg11* (p value =
147 0.0043) and *Meg3* (p value = 0.017). Remarkably, *Mecp2e1^{+/}* female cortical cells were
148 most transcriptionally dysregulated prior to the onset of symptoms, as the number of
149 DEGs decreased in number as disease symptoms progressed (**Figure 2d**). Overall,
150 *Mecp2e1^{+/}* male DEGs increased in number with disease progression, but *Mecp2e1^{+/}*
151 male cortical cell types had only 199 DEGs across all three time points, which was only
152 16.3% of the total *Mecp2e1^{+/}* female DEGs (**Figure 2c, d**).

153 To identify enriched functional pathways connecting RTT transcriptional
154 progression, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was
155 performed using DEGs (Limma-VoomCC, p-value ≤ 0.05) from each each cell type.
156 KEGG pathways that were persistent over P30, P60, and P120 in *Mecp2e1^{+/}* male
157 cortical cells or P30, P60 and P150 in *Mecp2e1^{+/}* female cortical cells are shown
158 (**Figure 2e-f, Supplemental Table 2**). Distinctly different pathway dysregulation was
159 observed between *Mecp2e1^{+/}* females and *Mecp2e1^{+/}* male cortical cells by two key
160 metrics. First, *Mecp2e1^{+/}* cortical cell DEGs were enriched for 18 different pathways
161 consistently across time points, compared to only two in *Mecp2e1^{+/}* males, of which
162 only gastric acid secretion overlaps with *Mecp2e1^{+/}* pathways. Second, specifically in
163 pre-symptomatic P30 *Mecp2e1^{+/}* females, Pvalb and Sst neurons shared 14 enriched
164 pathways including synaptic vesicle cycle, retrograde endocannabinoid signaling,
165 oxytocin signaling, morphine addiction, long-term potentiation, insulin secretion,
166 glutamatergic synapse, gastric acid secretion, dopaminergic synapse, circadian
167 entrainment, cAMP signaling pathway, amphetamine addiction, Alzheimer's disease,
168 and aldosterone synthesis and secretion (**Figure 2f**) compared to only the gastric acid
169 secretion pathway at the disease onset P60 and late disease P120 time point in
170 *Mecp2e1^{+/}* males (**Figure 2e**). Interestingly, by symptom onset at P60 in *Mecp2e1^{+/}*
171 females, 6 dysregulated KEGG pathways including nicotine addiction, long-term
172 potentiation, insulin secretion, glutamatergic synapse, cAMP signaling, and
173 amphetamine addiction (found in P30 Pvalb and Sst neurons) were distinctly
174 significantly enriched in L5 and L6 excitatory neurons (**Figure 2f**). At the late disease
175 P150 timepoint, *Mecp2e1^{+/}* female cortical astrocytes remarkably and distinctly were
176 significantly enriched for 15 out of the 18 total convergent KEGG pathways (**Figure 2f**).
177 While some of the reduced KEGG pathway enrichment in *Mecp2e1* deficient males
178 compared to females could be due to fewer DEGs observed overall and especially at
179 the pre-symptomatic stage in *Mecp2e1^{+/}* cortical cells, the significant enrichment of
180 ubiquitin mediated proteolysis specifically at *Mecp2e1^{+/}* P30 when DEGs were fewest
181 (**Figure 2e**) suggests that DEG number is less important than the specificity of gene
182 pathways dysregulated in the female mouse model. We also performed an enrichment

183 analysis for DEGs based on gene length, but did not find evidence to support the
184 previously reported repression of long genes in *Mecp2* deficient neurons¹⁶ of either sex
185 (**Supplemental Figure 6**).

186

187 **Co-expression networks of dysregulated genes within cortical cell types correlate**
188 **with *Mecp2e1* genotype, time point, sex, body weight, and disease score**

189 To complement the DEG analysis, we performed a systems-biology based approach,
190 High-Definition Weighted Gene Co-expression Network Analysis (hdWGCNA) which is
191 specifically designed for analysis of high dimensional data such as snRNA-seq^{17,18}
192 (**Figure 3**). hdWGCNA groups genes that are co-expressed together into colored
193 modules based on scale-free topology¹⁷⁻¹⁹ and was used to define nine distinct modules
194 based on co-expression within a network built from transcriptomes of all detected genes
195 from all cell types and experimental conditions. Genes in each module were compared
196 to cell type marker genes to identify modules that uniquely correlate with phenotype
197 (**Supplemental Figure 7**). In co-expression network analysis, we focus on the hub
198 genes, those which are highly connected within each module. Therefore, we determine
199 the eigengene-based connectivity, also known as kME, of each gene. The top 10
200 ranked co-expressed hub genes were identified per module (**Figure 3a**) and expression
201 enrichment for each cortical cell type was determined, which was distinct from cell type
202 markers (**Figure 3b**). The blue hdWGCNA module corresponded to genes enriched in
203 oligodendrocytes, while the magenta module genes were enriched in L5 and L6
204 neurons, with *Sez6* and *Nrp1* as hub genes. The brown module included *Grin2a*,
205 *Grin2b*, and *Camk2a* and the black module included *Slit3* and *Gabrb3* enriched in
206 excitatory neurons (L2-3, L4, L5, L6) showed similar cellular patterns of expression. The
207 green module genes like *Grik1* and *Adarb2* were most highly expressed in inhibitory
208 neurons. In contrast, the turquoise, pink, red and yellow modules are more cell type
209 independent, being enriched in all neuronal subtypes (**Figure 3b**).

210 To explore the relationship between cortical co-expression gene networks and
211 disease progression in Rett syndrome, the eigengene value of each sample within each
212 module was correlated with the body weight, disease score, genotype, sex, and disease
213 time point of each mouse. Eigengene values were calculated for all cortical cells, as well
214 as each cell type individually, so that correlations with each variable of interest could be
215 examined for each cell type (**Figure 3c, Supplemental Figure 7**). While the genes
216 within each module partially overlapped with those that served as cell type markers, the
217 genes within modules were independent from those that defined cell type specificity
218 (**Supplemental Figure 7**). For all cell types, 6 out of the 9 gene modules significantly
219 correlated with all phenotypes and experimental variables, and all modules showed at
220 least one significant correlation (**Figure 3c, top row**). Yet, certain gene set modules
221 such as green correlated with phenotypes in L4, L6 and Sst neurons while the turquoise
222 and blue modules correlated most strongly with phenotypes in all neuronal subtypes
223 (**Figure 3c**). Interestingly, magenta module genes only correlated with genotype in
224 neurons. Astrocytes were distinct in that only blue and yellow modules correlated with
225 both disease score and genotype. While most module-genotype correlations were
226 positive (red), meaning that co-expressed genes in these modules were upregulated in
227 mutant animals, the blue module uniquely was inversely correlated (blue), representing
228 downregulated genes. Interestingly, module-sex associations were frequent but

229 sometimes were absent in specific cell types or time points with strong module-
230 genotype correlations, such as the blue module in L6. Pvalb, and Sst neurons (**Figure**
231 **3c**). Further, genes from each module were tested for KEGG pathway enrichment to
232 identify phenotype correlated dysregulated pathways. Many RTT disease progression
233 relevant pathways such as glutamatergic synapse, gabaergic synapse, circadian rhythm
234 and axon guidance were identified (**Supplemental Figure 8**). KEGG analysis for the
235 turquoise module showed enrichment in neurological pathways such as Alzheimer
236 disease and metabolic pathways such as choline metabolism (**Supplemental Figure 8**).
237

238 **X chromosome expression mosaicism in female cortical cell populations reveals**
239 **dynamic non-cell-autonomous transcriptional homeostasis**

240 To examine non-cell-autonomous effects, we considered all *Mecp2* expressing cells
241 within *Mecp2e1^{+/}* mosaic female cortical cells. Within *Mecp2e1^{+/}* female snRNA-seq
242 data, we identified 1,146 *Mecp2* expressing cells, of which 539 could be genotyped as
243 WT-expressing and 607 were expressing the *Mecp2e1* mutation (**Supplemental Figure**
244 **9**). These cells were clustered based on expression and thus twelve different cell types
245 were identified (**Figure 4a**). To reduce the impact of lower cell counts on DEG calling
246 following parsing, we further grouped the *Mecp2* expressing cells into two broad
247 categories of GABAergic neurons and glutamatergic neurons (**Figure 4b**). A summary
248 of the number of DEGs in each of these three broader cell type categories
249 (glutamatergic, GABAergic, non-neuronal for each of the five experimental comparisons
250 (**Fig 1d**) is shown in **Table 1**. LimmaVoom was used for DEG calling of experiments 3,
251 4 and 5. As expected based on random XCI, both cell populations (*Mecp2_MUT* and
252 *Mecp2_WT*), were randomly represented in all cell types (**Figure 4a, b, c**). Cells from
253 the males were also parsed, showing 184 *Mecp2_MUT* in the *Mecp2e1^{+/}* and 175
254 *Mecp2_WT* in the *Mecp2e1^{+/}* (**Supplemental Figure 9**).

255 In order to examine non-cell-autonomous effects over the disease progression in
256 a cell category specific manner, we followed the third experiment design (**Figure 1d**)
257 and compared the WT expressing cells from the *Mecp2e1^{+/}* mosaic females to the WT
258 expressing cells from the *Mecp2e1^{+/}* females (**Figure 4d, Table 1**). At P30, both
259 glutamatergic and GABAergic WT-expressing cells from *Mecp2e1^{+/}* showed a large
260 number of significant downregulated genes (blue) but a low number of upregulated
261 genes (red), despite these cell populations being WT-expressing. These differences in
262 gene expression were likely due to non-cell-autonomous effects of the *Mecp2e1*
263 mutation on nearby WT-expressing cells. Further evidence was obtained from the
264 experimental comparison from experiment 5, where mutant-expressing glutamatergic
265 and GABAergic neurons from female *Mecp2e1^{+/}* were compared to WT-expressing
266 cells from female *Mecp2e1^{+/}*, resulting in only 10 DEGs, compared to 862 in experiment
267 3 (non-cell-autonomous WT vs WT) (**Table 1**). This non-cell-autonomous effect was
268 dynamic over time, as glutamatergic cells showed mostly upregulated genes with only a
269 few downregulated genes at P60, while GABAergic cells only showed upregulated
270 genes (**Figure 4d**). Interestingly, at the late disease stage P150, the number of
271 dysregulated genes were diminished and primarily back to being downregulated,
272 indicating a dynamic process of non-cell-autonomous effects across disease
273 progression. In order to test this hypothesis, we overlapped the significant (LimmaVoom

274 adjusted p-value ≤ 0.05) DEGs from each cell type and time point (**Figure 4e, 4f**). In
275 glutamatergic cells, the largest overlap (129 DEGs) was between P60 and P150 and
276 only 3 DEGs in common to all three time points (**Figure 4e**). Similar results were seen
277 in GABAergic neurons, where DEGs were predominantly unique to each time point
278 (**Figure 4f**).

279 In order to look for functional pathway enrichments of non-cell-autonomous
280 effects of *Mecp2e*^{1/+} mosaicism, KEGG analysis on significant DEGs (p-value ≤ 0.05)
281 from glutamatergic and GABAergic neurons was performed and significant (adjusted p-
282 value ≤ 0.05) terms overlapped across time (**Figure 4g, 4i**). Non-cell-autonomous
283 DEGs from glutamatergic cells were enriched for 8 terms that were shared across all
284 disease stages which include Parkinson, Alzheimer, and Huntington diseases, as well
285 as homeostatic pathways of retrograde endocannabinoid signaling, ubiquitin mediated
286 proteolysis, oxidative phosphorylation, and protein processing in endoplasmic reticulum,
287 while the P60 time point was uniquely enriched for terms such as GABAergic synapse
288 and SNARE interactions in vesicular transport (**Figure 4h**). Further, glutamatergic cells
289 showed molecular dysregulation associated with MeCP2 activity such as mRNA
290 surveillance pathway, cholinergic synapse, and AMPK signaling pathway (**Figure 4h**).
291 In contrast, GABAergic cells shared axon guidance as an enriched pathway common
292 across all time points (**Figure 4i**). Other interesting RTT related pathways included
293 metabolism and energy related terms such as riboflavin metabolism, phosphonate and
294 phosphinate metabolism, choline metabolism, and alanine, aspartate, and glutamate
295 metabolism (**Figure 4j**).

296 In order to compare these non-cell-autonomous effects to cell-autonomous
297 effects over the disease progression in a cell category specific manner, we followed the
298 fourth experiment design (**Figure 1d**) and compared the MUT *Mecp2* expressing cells
299 from the *Mecp2e*^{1/+} mosaic females to the WT *Mecp2* expressing cells from the
300 *Mecp2e*^{1/+} females (**Supplemental Figure 10a**). Similar to the results of experiment 3,
301 glutamatergic and GABAergic significant DEGs were predominantly time point specific
302 (**Supplemental Figure 10b-c**). Glutamatergic cells had 12 significant KEGG pathways
303 shared over time while GABAergic cells had 6 significant terms both containing RTT
304 related pathways such as mRNA surveillance and circadian rhythm (**Supplemental**
305 **Figure 10d-g**). In order to examine if the dysregulated KEGG pathways are shared
306 between experiment 3 and experiment 4, a comprehensive overlap test was performed
307 showing majority of the pathways are unique to each experiment and each time, with
308 the glutamatergic P150 KEGG pathways from non-cell-autonomous DEGs
309 outnumbering those of cell-autonomous (17 in exp 3 vs 1 in exp 4) (**Supplemental**
310 **Figure 11**).

311 Lastly, we examined non-cell-autonomous effects by comparing MUT-expressing
312 to WT-expressing cells within the mosaic *Mecp2e*^{1/+} females, as described in
313 experiment 5 (**Figure 1d**). Overall, glutamatergic and GABAergic had only a few genes
314 dysregulated which were mostly at P150 when analyzed separately (**Supplemental**
315 **Figure 12a**). For higher statistical power in KEGG term enrichment, DEGs glutamateric
316 and GABAergic cells were each combined across time points, revealing dysregulated
317 retrograde endocannabinoid signaling and other pathways (**Supplemental Figure 12b-**
318 **c**). The top10 enriched KEGG pathways when both glutamatergic and GABAergic cells
319 were combined across all time points included pathways involved in cell signaling and

320 addiction (**Supplemental Figure 12d**). The differences between WT-expressing and
321 MUT-expressing cells within mosaic females in experiment 5 were far less than the
322 differences between WT-expressing cells in mosaic *Mecp2e1^{+/+}* females compared to
323 WT cells in *Mecp2e1^{+/+}* females in experiment 4. Together, these analyses demonstrate
324 that transcriptional dysregulation across disease progression in mosaic *Mecp2e1^{+/+}*
325 females is dynamic and predominated by non-cell-autonomous effects on homeostatic
326 gene pathways.
327

328 **Human RTT cortical cell transcriptional dysregulation is recapitulated by the** 329 **female but not the male RTT mouse model**

330 To examine how closely *Mecp2e1^{+/+}* mice phenocopy Rett syndrome (RTT) at the
331 cellular transcriptome level, we examined the relationship between altered transcript
332 levels by cell type in *Mecp2e1* deficient and human *MECP2^{+/+}* cortices. Thus sn-RNA
333 seq analysis was performed on eight *MECP2^{+/+}* (RTT) and eight age matched control
334 female cortex samples from post-mortem human brains (**Figure 5a**). Nine neuronal and
335 six non-neuronal cell type clusters could be assigned from these human cortices based
336 on 3,000 gene markers from the Bakken Trygve et al. dataset²⁰ (**Figure 5b**). Cell type
337 labeling based on scTransform containing elevated expression of at least three cell
338 marker genes was validated (**Figure 5c**). DEG analysis via limmaVoomCC compared
339 *MECP2^{+/+}* to *MECP2^{+/+}* cortical cells, resulting in cell type-specific dysregulated genes
340 (**Figure 5d**). Importantly, the top 20 upregulated DEGs identified by LimmaVoomCC at
341 the adjusted *p*-value ≤ 0.05 level in female *MECP2^{+/+}* cortical cells were also significant
342 DEGs (adjusted *p* value ≤ 0.05) in *Mecp2e1^{+/+}* female mouse cortices with 14 gene
343 transcripts out of 20 upregulated (**Figure 5e**). Similarly, of the top 20 Rett female mouse
344 cortical LimmaVoomCC DEGs that were significantly downregulated (adjusted *p* value \leq
345 0.05), the homologous *Mecp2e1^{+/+}* female gene transcripts were also downregulated
346 (**Figure 5e**). In contrast, there were very few overlapping DEGs between human RTT
347 and *Mecp2e1^{+/+}* male cortical cell transcriptomes (**Figure 5f**). This demonstrates that
348 *Mecp2e1^{+/+}* female mice are a better model for the dynamic transcriptomic dysregulation
349 due to cellular complexities in Rett syndrome disease progression.
350

351 **Discussion**

353 This study advances our understanding of RTT, offering insights into sex-
354 specific, cell type-dependent, and disease stage-associated transcriptional
355 dysregulation resulting from the cellular complexities related to the X-linked dominant
356 inheritance of *MECP2/Mecp2* mutation. This longitudinal analysis of single cortical cell
357 transcriptomes during the gradual progression of disease symptoms in the *Mecp2e1^{+/+}*
358 mouse model of RTT provided several new findings critical to understanding and
359 treatment of human RTT. First, we demonstrated that the female *Mecp2e1^{+/+}* mice are
360 inherently different, not simply less severe, in their transcriptional dysregulation
361 compared to mutant *Mecp2^{+/+}* males that completely lack *Mecp2e1*. Second, we
362 identified transcriptionally dysregulated gene pathways across cell types in female
363 *Mecp2e1^{+/+}* cortices that were significantly associated with progression of multiple
364 disease phenotypes over time. Third, we showed that non-cell-autonomous effects in
365 mosaic female *Mecp2e1^{+/+}* mice are responsible for the homeostatic gene pathway

366 dysregulations observed dynamically over time. Lastly, and most important for
367 translational relevance, we showed that female mosaic *Mecp2e1* mutant mice better
368 recapitulate the transcriptional dysregulation observed in human RTT cortical cells than
369 *Mecp2* null males, and may help explain the complexities of progressive and regressive
370 stages of disease in RTT girls.

371 The earliest studies examining the effect of MeCP2 levels on transcription in
372 brain relied on bulk RNA-seq comparing male *Mecp2* null to wild-type controls yielded
373 few differentially expressed gene (DEG) transcripts²¹⁻²⁴. However, bulk analyses of
374 transcript levels in *Mecp2* null compared to *Mecp2* duplication mouse brain revealed
375 2582 altered DEGs in hypothalamus²⁵, 1180 DEG transcripts in cerebellum²⁶, and 1060
376 DEGs in amygdala²⁷. Interestingly, analysis of transcripts in individual brain cell types
377 yielded non-overlapping lists of DEGs suggesting that bulk tissue DEG analysis suffers
378 from a “dilution effect” potentially masking DEGs²⁸. While these initial studies comparing
379 *Mecp2* null to wild-type and *Mecp2* duplication control male brains can reveal gene
380 targets of MeCP2 *in vivo*, *Mecp2*^{+/+} female mice are the relevant model for
381 understanding RTT, where brain cell autonomous and non-autonomous effects require
382 analysis of individual cells and cell types.

383 For autosomal genes, heterozygous mutations are expected to show reduced
384 phenotypic severity than the homozygous state, but for X-linked genes, there is the
385 added complication of random XCI that creates epigenetic mosaicism within cell
386 populations. We were able to utilize sn-RNA seq 5' in the *Mecp2e1* mouse model to
387 parse by both cortical cell type and mutation to improve understanding of transcriptional
388 dysregulation in RTT. Our results can both help confirm certain aspects of previous bulk
389 transcriptomic studies and help explain some of the prior discrepancies between bulk
390 transcriptomic studies in RTT mouse models. A study using bulk RNA-seq on 7 week-
391 old *Mecp2* null mice showed 48 genes upregulated and 32 genes down-regulated in
392 pathways such as circadian entrainment that are consistent with our single nucleus
393 data, despite the lower overall number of DEGs identified²⁹. We identified circadian
394 entrainment as a homeostatic gene pathway dynamically dysregulated in *Pvalb* and *Sst*
395 at P30, L5 excitatory neurons at P60, and astrocytes at P150. To date, there has been
396 one prior study conducted using single nucleus RNA-seq in both RTT brain and a
397 mouse model¹⁶. Renthal *et al* used *Mecp2* null cortex at a single time point (8 weeks for
398 males, 12-20 weeks for females) and compared to human RTT cortex with *MECP2*
399 255X¹⁶. Our studies were consistent in finding both up- and down-regulated genes with
400 MeCP2 deficiency across cell types and in finding evidence for non-cell-autonomous
401 gene dysregulation, but inconsistent in demonstrating a significant effect of MeCP2
402 deficiency on repression of long genes. Differences between the study designs,
403 including genetic mouse model, time points, statistical approaches for DEGs, and single
404 cell technology (iDrops versus 5' V2 technology) could explain the discrepancies. We
405 specifically designed the current study to overcome some of the prior technical
406 limitations, including improvement in signal to noise ratio³⁰, higher number of genes
407 detected per nucleus, higher UMI per nucleus, and higher number of cells analyzed³¹.
408 Further, we used 3,000 marker genes from the Allen brain atlas cortex single nucleus
409 dataset to label cell types (compared to one marker gene per cell) and used five
410 different statistical approaches to robustly identify differentially expressed genes.

411 To understand how transcriptional dysregulation in RTT cortex was related to
412 symptom progression, our study uniquely utilized a longitudinal study design and
413 systems biology approaches to correlate networks of dysregulated gene expression
414 patterns with disease phenotypes over time. Remarkably, these disease-relevant gene
415 networks were not specific to individual cell types, but instead were enriched in
416 pathways also dysregulated in neurodegenerative disorders and addiction pathways
417 that regulate brain homeostasis across cell types, including metabolism, circadian
418 entrainment, and retrograde endocannabinoid signaling. Previous studies had shown a
419 link between MeCP2 and addiction³² that involve *Arc* and *Junb* transcription consistent
420 with our results in *Mecp2e1^{-/-}* cortical cells³³ and KEGG pathways enriched in *Mecp2e1^{-/-}*
421 cortical cells. A prior study showing that selective deletion of *Mecp2* from excitatory
422 neurons had no effect on excitatory transmission, but reduced inhibitory synapse
423 numbers and neurotransmission in the somatosensory and prefrontal cortex³⁴ is
424 consistent with our results showing a spread of dysregulated gene pathways from
425 excitatory to inhibitory neurons. A more recent study investigating neurons and
426 astrocytes found KEGG pathways such as calcium signaling pathway and Rap1
427 signaling pathway were enriched in RTT, consistent with our findings³⁵.

428 While non-cell autonomous effects have been previously noted in RTT mouse
429 models⁶⁻⁸, our comprehensive analyses of cellular transcriptomes over disease
430 progression implicates these effects as a central and defining feature of transcriptional
431 dysregulation in RTT mosaic females. Sun et al. argue that the abnormal morphologies
432 of neurons and astrocytes in human RTT are caused by non-cell-autonomous effects
433 driven by altered gene expression and enriched energy related KEGG pathways
434 consistent with our findings from experiment 2²⁹. Defects in signaling pathways
435 suggests RTT disease progression is not caused exclusively by autonomous
436 transcriptional changes in individual cells, but rather due to a failure of wild-type *MECP2*
437 expressing cells to compensate for mutant *MECP2* expressing cells.

438 Since RTT in humans almost exclusively affects females, our results have
439 important implications for translational medicine. First, pre-clinical models for testing
440 new therapies should be female and construct-relevant, ideally modeling actual human
441 RTT mutations. While male *Mecp2* null models provide important basic insights into
442 MeCP2 function⁵, we clearly demonstrate that the *Mecp2e1* deficient males do not
443 recapitulate the transcriptional dysregulation observed in RTT human cortical cells as
444 well as their female mutant littermates. Furthermore, the non-cell-autonomous dynamic
445 waves of dysregulation in WT-expressing cortical neurons may help explain why human
446 RTT symptoms appear gradually and are staggered in a series of regressions followed
447 by plateaus. Our results showing that transcriptional dysregulation appears pre-
448 symptomatic in female *Mecp2e1* mutant across multiple cortical cell types suggest that
449 diagnosis and treatment should ideally begin as early as possible, potentially by
450 including *MECP2* mutations in newborn screening panels. To date the only drug in the
451 market for RTT is trofenotide which is based on IGF-1³⁶ a growth factor previously used
452 for diseases such as Laron syndrome and liver cirrhosis³⁷. The overlap with other
453 neurologic disease pathways including oxidative phosphorylation suggests that some
454 existing drugs for neurodegenerative disorders could potentially be repurposed to
455 counteract some of the RTT non-cell-autonomous transcriptional dysregulations in
456 pathways regulating homeostasis. Conversely, the molecular pathogenesis of RTT may

457 provide insights for understanding epigenetic regulation of transcriptional homeostasis
458 of gene pathways relevant to common neurodegenerative and addiction disorders.

459

460 **Methods**

461

462 **Single nuclei isolation for mouse and human post-mortem cortex**

463 Mecp2-e1 and control mice were sacrificed by carbon dioxide inhalation just prior to
464 brain removal. Cerebral cortex was removed from each brain from the mice. About
465 10mg of cerebral cortex tissue was isolated from human post-mortem and control
466 samples. Single nuclei were prepared from the left hemisphere cortex according to a
467 previously established protocol Martelotto
(https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000124_Demonstrated_Protocol_Nuclei_isolation_RevF.pdf). Briefly, a
470 3.0 mm² section of cortex was removed from each mouse brain. Both mouse and
471 human brain tissue were minced with a scalpel then homogenized in 0.5 mls of nuclei
472 lysis buffer with RNase inhibitor (Roche, Indianapolis, ID) then transferred to a larger
473 tube with an additional 1.0 ml of nuclei lysis buffer, mixed then incubated on ice for 5
474 minutes. Nuclei were filtered from the lysate using a 70 µM FlowMi cell strainer (Sp-
475 Belart, Wayne, NJ). Nuclei were pelleted at 4°C for 5 minutes at 500xG, resuspended in
476 1.5 ml of nuclei wash buffer, incubated for 5 minutes. Nuclei were then pelleted again as
477 above then washed twice in nuclei wash and resuspension buffer then filtered with a 35
478 µM FlowMi filter (Sp-Belart, Wayne, NJ) then resuspended in nuclei wash and
479 resuspension buffer with 5 ugs/ml DAPI and assayed on a Countess cell counter to
480 determine concentration and nuclear integrity (Fisher Scientific, Waltham, MA). Nuclei
481 were then sorted to remove debris and nuclear aggregates on a MoFlow Astrios cell
482 sorter (Beckman-Coulter, Brea, CA). Approximately,150,000 nuclei per sample were
483 sorted and stored on ice prior to sn-RNA seq 5' library generation.

484

485 **Single nuclei-RNA sequencing**

486 Single Cell 5' Library & Gel Bead Kits (10x Genomics, Pleasanton, CA) were used to
487 prepare cDNA and generate bar coded and indexed snRNA-seq 5' libraries according to
488 the manufacturers protocol. 10,000 nuclei per sample were targeted. snRNA-seq 5'
489 libraries were balanced using a Kapa library quantification kit (Roche, Indianapolis, IN)
490 and pooled to generate 150 base pair, paired end sequences from using a NovaSeq S4
491 sequencer (Illumina, San Diego, CA). Mouse cortices had about 75,000 reads per cell
492 on average and 240,437,728 reads per sample on average. Human cortices had about
493 50,000 reads per cell on average and 300,000,000 reads per sample on average.

494

495 **Pre-processing and quality control**

496 Cellranger v.2.0.2 was used to aligned the mouse raw reads to mm10-1.2.0 reference
497 genome and the human raw reads to GRCh38 human reference genome. Cell by gene
498 count matrices were used to create a Seurat object using Seurat_4.3.0.1 in R 4.2.2.
499 Mouse samples were filtered with the criteria that cells should have less than 7%
500 mitochondrial, greater than 200 and less than 5,625 genes and greater than 208 and
501 less than 16,300 UMI respectively.

502

503 **Cell type identification by dimentionality reduction**
504 The expression counts were log transformed and normalized via Seurat 4.3.0.1.
505 Information about the samples such as sex, genotype, time point, disease score, body
506 weight and *Mecp2e1* expression allele were all added to the metadata. Single cell
507 mouse and human cortex data from the Allen brain institute were used as a reference
508 for cell type labeling^{38,39} both data sets separately. scTransform was used to align cell
509 types and transfer labels over to the Rett data. Cell marker test was performed for
510 validating the cell type labeling. Dot plots showing validation of the cell type markers
511 were created via scCustomize 2.1.1 (10.5281/zenodo.5706430).
512

513 **DEG analysis**
514 A total of five different DEG analysis methods were used to evaluate the best method
515 for comparing mutant samples to WT samples in a cell-type-specific manner. EdgeR,
516 Limma, and DeSeq2 yielded inconsistent DEGs (**Supplemental Figure 1**). For
517 experiments 1 and 2, low expressing genes were filtered out. Low expressing was
518 defined by expression in less than 25% of cells of a given cell type. LimmaVoomCC was
519 used on the remaining high expressing genes to determine differentially expressed
520 genes while considering cells from the same mouse will have correlated expression. For
521 the low expressing genes, DEsingle was used for DEG analysis on genes that are not
522 as robustly expressed (expressed in <25% of cells of type). For experiments 3, 4, and 5,
523 LimmaVoom was exclusively used to identify differentially expressed genes. For each of
524 the DEG experiments, the number of cells were normalized by downsampling.
525 Parameters for all DEG analysis are available in the github repository.
526

527 **KEGG analysis**
528 DEGs with a p-value of ≤0.05 from each of the experiments were used as the input for
529 KEGG analysis. This was performed using the R package enrichR 3.2. The top 10
530 KEGG terms were determined based on p-value for all experiments. We also included
531 gene ontology analysis using the same DEGs.
532

533 **hdWGCNA analysis**
534 Cells from both males and females in the processed Seurat object were used as the
535 input for hdWGCNA analysis. We also included phenotype data such as disease score.
536 The criteria for the fraction of cells that a gene needs to be expressed in order to be
537 included was set at 5%. The network type used is signed with a softpower of 0.8. A total
538 of 9 modules were produced and scores for each module was computed using UCell
539 method. Standard pipeline for hdWGCNA 0.2.4 were followed and the parameters are
540 available in the github repository.
541

542 **WT and mutant cell parsing in mosaic female mouse corticies**
543 All *Mecp2* reads were extracted from the raw fastq files generated from each individual
544 sample. abBLAST 3.0 and BWA 0.7.17 mem were used in conjunction to extract *Mecp2*
545 reads (alleler.py). The reference used for alignment was 100 bp of the *Mecp2* gene; 50
546 bp upstream of the exon1 start codon and 50 bp downstream. With the aligned reads,
547 the number of mutant (TTG) and wild type (ATG) start codons were counted using
548 alleler.py. Each read also contains the cell barcode and UMI information which was

549 used to add the mutant cell and wild-type cell information back to the Seurat object as
550 metadata.

551

552 **Overlap of human and mouse DEGs and KEGG pathways**

553 LimmaVoomCC DEGs from both human cell types and mouse cell types were filtered at
554 adjusted p-value ≤ 0.05 . Significant human DEGs were overlapped with female mouse
555 and male mouse respectively. GeneOverlap 1.38.0 package was used to perform a
556 Fisher's exact test to determine the significance of overlapped genes. The same overlap
557 approach was performed to determine the significant overlapping mouse and human
558 KEGG pathways.

559

560 **Data availability**

561 Raw data is in the process of being uploaded to GEO

562

563 **Code availability**

564 The analysis pipeline for the study is available at:

565 <https://github.com/osmansharifi/snRNA-seq-pipeline>

566 (currently set to private)

567

568 **References**

- 569 1. Amir, R. E. *et al.* Rett syndrome is caused by mutations in X-linked MECP2,
570 encoding methyl- CpG-binding protein 2. *Nat. Genet.* **23**, 185–188 (1999).
- 571 2. Zoghbi, H. Y. MeCP2 dysfunction in humans and mice. *J. Child Neurol.* **20**, 736–
572 740 (2005).
- 573 3. Sharifi, O. & Yasui, D. H. The Molecular Functions of MeCP2 in Rett Syndrome
574 Pathology. *Front. Genet.* **12**, (2021).
- 575 4. Yasui, D. H. *et al.* Mice with an isoform-ablating Mecp2exon 1 mutation
576 recapitulate the neurologic deficits of Rett syndrome. *Hum. Mol. Genet.* **23**, 2447–
577 2458 (2014).
- 578 5. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null
579 mutation causes neurological symptoms that mimic rett syndrome. *Nat. Genet.*
580 **27**, 322–326 (2001).
- 581 6. Braunschweig, D., Simcox, T., Samaco, R. C. & LaSalle, J. M. X-chromosome
582 inactivation ratios affect wild-type MeCP2 expression within mosaic Rett
583 syndrome and Mecp2-/+ mouse brain. *Hum. Mol. Genet.* (2004).
584 doi:10.1093/hmg/ddh142
- 585 7. Ballas, N., Liou, D. T., Grunseich, C. & Mandel, G. Non-cell autonomous influence
586 of MeCP2-deficient glia on neuronal dendritic morphology. *Nat. Neurosci.* (2009).
587 doi:10.1038/nn.2275
- 588 8. Belichenko, P. V *et al.* Widespread Changes in Dendritic and Axonal Morphology
589 in Mecp2-Mutant Mouse Models of Rett Syndrome: Evidence for Disruption of
590 Neuronal Networks. *J. Comp. Neurol.* **514**, 240–258 (2009).
- 591 9. Neier, K. *et al.* Sex disparate gut microbiome and metabolome perturbations
592 precede disease progression in a mouse model of Rett syndrome.
593 doi:10.1038/s42003-021-02915-3
- 594 10. Yasui, D. H. *et al.* Mice with an isoform-ablating Mecp2exon 1 mutation

595 recapitulate the neurologic deficits of Rett syndrome. *Hum. Mol. Genet.* **23**, 2447–
596 2458 (2014).

597 11. Vogel Ciernia, A. *et al.* Early motor phenotype detection in a female mouse model
598 of Rett syndrome is improved by cross-fostering. *Hum. Mol. Genet.* **26**, 1839–
599 1854 (2017).

600 12. tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical
601 areas. *Nature* (2018). doi:10.1038/s41586-018-0654-5

602 13. Mou, T., Deng, W., Gu, F., Pawitan, Y. & Nghia Vu, T. Reproducibility of Methods
603 to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing.
604 doi:10.3389/fgene.2019.01331

605 14. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell
606 differential expression analysis. *Nat. Methods* **15**, (2018).

607 15. Liu, Y. *et al.* iDESC: identifying differential expression in single-cell RNA
608 sequencing data with multiple subjects. *BMC Bioinformatics* **24**, (2023).

609 16. Renthal, W. *et al.* Characterization of human mosaic Rett syndrome brain tissue
610 by single-nucleus RNA sequencing. *Nat. Neurosci.* (2018). doi:10.1038/s41593-
611 018-0270-6

612 17. Morabito, S. *et al.* Single-nucleus chromatin accessibility and transcriptomic
613 characterization of Alzheimer's disease. *Nat. Genet.* doi:10.1038/s41588-021-
614 00894-z

615 18. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA
616 identifies co-expression networks in high-dimensional transcriptomics data.
617 doi:10.1016/j.crmeth.2023.100498

618 19. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
619 network analysis. (2008). doi:10.1186/1471-2105-9-559

620 20. Bakken, T. E. *et al.* Comparative cellular analysis of motor cortex in human,
621 marmoset and mouse. doi:10.1038/s41586-021-03465-8

622 21. Tudor, M., Akbarian, S., Chen, R. Z. & Jaenisch, R. Transcriptional profiling of a
623 mouse model for Rett syndrome reveals subtle transcriptional changes in the
624 brain. *Proc. Natl. Acad. Sci. U. S. A.* **99**, (2002).

625 22. Nuber, U. A. *et al.* Up-regulation of glucocorticoid-regulated genes in a mouse
626 model of Rett syndrome. *Hum. Mol. Genet.* **14**, (2005).

627 23. Kriaucionis, S. *et al.* Gene Expression Analysis Exposes Mitochondrial
628 Abnormalities in a Mouse Model of Rett Syndrome. *Mol. Cell. Biol.* **26**, (2006).

629 24. Urdinguio, R. G. *et al.* Mecp2-null mice provide new neuronal targets for rett
630 syndrome. *PLoS One* **3**, (2008).

631 25. Chahrour, M. *et al.* MeCP2, a key contributor to neurological disease, activates
632 and represses transcription. *Science (80-)* (2008). doi:10.1126/science.1153252

633 26. Ben-Shachar, S., Chahrour, M., Thaller, C., Shaw, C. A. & Zoghbi, H. Y. Mouse
634 models of MeCP2 disorders share gene expression changes in the cerebellum
635 and hypothalamus. *Hum. Mol. Genet.* **18**, (2009).

636 27. Samaco, R. C. *et al.* Crh and Oprm1 mediate anxiety-related behavior and social
637 approach in a mouse model of MECP2 duplication syndrome. *Nat. Genet.* **44**,
638 (2012).

639 28. Sugino, K. *et al.* Cell-type-specific repression by methyl-CpG-binding protein 2 is
640 biased toward long genes. *J. Neurosci.* **34**, (2014).

641 29. Osenberg, S. *et al.* Activity-dependent aberrations in gene expression and
642 alternative splicing in a mouse model of Rett syndrome. *Proc. Natl. Acad. Sci. U.*
643 *S. A.* **115**, (2018).

644 30. Zilionis, R. *et al.* Single-cell barcoding and sequencing using droplet microfluidics.
645 *Nat. Publ. Gr.* (2016). doi:10.1038/nprot.2016.154

646 31. Zhang, X. *et al.* Comparative Analysis of Droplet-Based Ultra-High-Throughput
647 Single-Cell RNA-Seq Systems Molecular Cell Comparative Analysis of Droplet-
648 Based Ultra-High-Throughput Single-Cell RNA-Seq Systems. *Mol. Cell* **73**, 130–
649 142 (2019).

650 32. Deng, J. V. *et al.* MeCP2 in the nucleus accumbens contributes to neural and
651 behavioral responses to psychostimulants. *Nat. Neurosci.* **13**, (2010).

652 33. Su, D., Cha, Y. M. & West, A. E. Mutation of Mecp2 alters transcriptional
653 regulation of select immediate-early genes. *Epigenetics* **7**, (2012).

654 34. Zhang, W., Peterson, M., Beyer, B., Frankel, W. N. & Zhang, Z. W. Loss of
655 MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and
656 seizures. *J. Neurosci.* **34**, 2754–2763 (2014).

657 35. Sun, J. *et al.* Mutations in the transcriptional regulator MeCP2 severely impact key
658 cellular and molecular signatures of human astrocytes during maturation. *Cell*
659 *Rep.* **42**, 111942 (2023).

660 36. Neul, J. L. *et al.* nature medicine Trofinetide for the treatment of Rett syndrome: a
661 randomized phase 3 study. *Nat. Med.* **1** **29**, 1468–1475 (2023).

662 37. Puche, J. E. & Castilla-Cortázar, I. *Human conditions of insulin-like growth factor-I*
663 (*IGF-I*) deficiency. *Journal of Translational Medicine* **10**, (2012).

664 38. Yao, Z. *et al.* A taxonomy of transcriptomic cell types across the isocortex and
665 hippocampal formation. (2021). doi:10.1016/j.cell.2021.04.021

666 39. tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical
667 areas. *Nature* (2018). doi:10.1038/s41586-018-0654-5

668

669

670

671

672 Acknowledgements

673 We would like to thank Bridget McLaughlin, for her expertise in flow cytometry analysis
674 and cell sorting, Lutz Froenische, and Diana Burkart-Waco, for their expertise with 10X
675 genomics sn-RNA seq protocols.

676

677 Funding: NIH NIAA grant 1R01AA027075 to Janine M. LaSalle, and NIH Shared
678 Instrumentation Grant 1S10OD010786-01 to the UC Davis DNA technologies core. This
679 project was supported by the University of California Davis Flow Cytometry Shared
680 Resource Laboratory with funding from the NCI P30 CA093373 (Comprehensive
681 Cancer Center), and S10 OD018223 (Astrios Cell Sorter) grants, with technical
682 assistance from Bridget McLaughlin and Jonathan Van Dyke. This has been made
683 possible in part by grants from the National Institute of Child Health and Human
684 Development (P50 HD103526).

685

686

687
688
689

Table 1. Summary of LimmaVoom DEG numbers resulting from the parsing of mutant- and WT-expressing cell type categories in all comparison experiments

Exp #	Cell type	#UP DEGs	#DOWN DEGs	Time point	Animal (n)	Total sig DEGs	Notes
1	Glutamatergic	7	0	P30	4	7	Comparing all cortical glutamatergic cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	GABAergic	2	0	P30	4	2	Comparing all cortical GABAergic cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	Non-neuronal	0	0	P30	4	0	Comparing all cortical non-neuronal cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	Glutamatergic	0	27	P60	4	27	Comparing all cortical glutamatergic cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	GABAergic	4	1	P60	4	5	Comparing all cortical GABAergic cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	Non-neuronal	2	1	P60	4	3	Comparing all cortical non-neuronal cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	Glutamatergic	21	0	P120	4	21	Comparing all cortical glutamatergic cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	GABAergic	121	1	P120	4	126	Comparing all cortical GABAergic cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	Non-neuronal	8	0	P120	4	8	Comparing all cortical non-neuronal cells between mutant male <i>Mecp2e1-/y</i> to WT male <i>Mecp2e1+/y</i>
1	Total	165	30		32	195	
2	Glutamatergic	31	913	P30	4	944	Comparing all cortical glutamatergic cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	GABAergic	236	35	P30	4	271	Comparing all cortical GABAergic cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	Non-neuronal	0	0	P30	4	0	Comparing all cortical non-neuronal cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	Glutamatergic	13	11	P60	4	24	Comparing all cortical glutamatergic cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	GABAergic	0	0	P60	4	0	Comparing all cortical GABAergic cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	Non-neuronal	0	0	P60	4	0	Comparing all cortical non-neuronal cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	Glutamatergic	0	0	P150	8	0	Comparing all cortical glutamatergic cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	GABAergic	2	0	P150	8	2	Comparing all cortical GABAergic cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	Non-neuronal	0	0	P150	8	0	Comparing all cortical non-neuronal cells between mutant female <i>Mecp2e1-/+</i> to WT female <i>Mecp2e1-/+</i>
2	Total	282	959		32	1241	
3	Glutamatergic	17	782	P30	4	799	Comparing WT-expressing glutamatergic cells from mutant female <i>Mecp2e1-/+</i> to WT-expressing cells from WT female <i>Mecp2e1-/+</i>
3	GABAergic	2	393	P30	4	395	Comparing WT-expressing GABAergic cells from mutant female <i>Mecp2e1-/+</i> to WT-expressing cells from WT female <i>Mecp2e1-/+</i>
3	Glutamatergic	835	5	P60	4	840	Comparing WT-expressing glutamatergic cells from mutant female <i>Mecp2e1-/+</i> to WT-expressing cells from WT female <i>Mecp2e1-/+</i>
3	GABAergic	5	0	P60	4	5	Comparing WT-expressing GABAergic cells from mutant female <i>Mecp2e1-/+</i> to WT-expressing cells from WT female <i>Mecp2e1-/+</i>
3	Glutamatergic	2	41	P150	8	43	Comparing WT-expressing glutamatergic cells from mutant female <i>Mecp2e1-/+</i> to WT-expressing cells from WT female <i>Mecp2e1-/+</i>

3	GABAergic	1	43	P150	8	44	Comparing WT-expressing GABAergic cells from mutant female <i>Mecp2e1-/+</i> to WT-expressing cells from WT female <i>Mecp2e1-/+</i>
3	Total	862	1264		32	2126	
4	Glutamatergic	3	574	P30	4	577	Comparing mutant-expressing glutamatergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female WT <i>Mecp2e1-/+</i>
4	GABAergic	9	984	P30	4	993	Comparing mutant-expressing GABAergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female WT <i>Mecp2e1-/+</i>
4	Glutamatergic	1251	8	P60	4	1259	Comparing mutant-expressing glutamatergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female WT <i>Mecp2e1-/+</i>
4	GABAergic	0	0	P60	4	0	Comparing mutant-expressing GABAergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female WT <i>Mecp2e1-/+</i>
4	Glutamatergic	4	8	P150	8	12	Comparing mutant-expressing glutamatergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female WT <i>Mecp2e1-/+</i>
4	GABAergic	0	4	P150	8	4	Comparing mutant-expressing GABAergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female WT <i>Mecp2e1-/+</i>
4	Total	1267	1578	0	32	2845	
5	Glutamatergic	0	0	P30	2	0	Comparing mutant-expressing glutamatergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female <i>Mecp2e1-/-</i>
5	GABAergic	0	0	P30	2	0	Comparing mutant-expressing GABAergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female <i>Mecp2e1-/-</i>
5	Glutamatergic	3	0	P60	2	3	Comparing mutant-expressing glutamatergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female <i>Mecp2e1-/-</i>
5	GABAergic	0	0	P60	2	0	Comparing mutant-expressing GABAergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female <i>Mecp2e1-/-</i>
5	Glutamatergic	6	0	P150	4	6	Comparing mutant-expressing glutamatergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female <i>Mecp2e1-/-</i>
5	GABAergic	1	0	P150	4	1	Comparing mutant-expressing GABAergic cells from female <i>Mecp2e1-/+</i> to WT-expressing cells from female <i>Mecp2e1-/-</i>
5	Total	10	0	0	16	10	

690

691

692 **Figure 1.**

693 **A scheme showing the overall mouse study design.** **a.** Cortical samples were
 694 collected from postnatal mice at four different timepoints corresponding to three different
 695 disease stages (n = 28). Four different *Mecp2e1* genotypes were considered that
 696 include both sexes. **B.** UMAP of the unsupervised clustering of cell types (n = 93,798
 697 cells post QC) identified. Cell type labels were transferred from³⁸ Van, Yao *et al.* 2021.
 698 **c.** Top gene markers for each cell type are shown on y-axis. The color refers to the
 699 average expression of genes in a cell type and the percent expressed describes the
 700 percentage of cells within a cell type that express each gene marker. **d.** Design of
 701 computational experiments comparing mutant to WT cells from mice of both sexes.
 702 Experiments 3 to 5 are comparing subtypes of cells in females due to X chromosome
 703 inactivation to examine potential non-cell-autonomous effects of *Mecp2e1* mutation.

704

705 **Figure 2. Sexually-dimorphic dynamic patterns of DEGs and KEGG pathway**
706 **terms across time and cell type.** **a.** Heatmap of top 5 differentially expressed genes
707 (DEGs) based on the lowest adjusted p-value ≤ 0.05 comparing male *Mecp2e* $1^{-/y}$ and
708 *Mecp2e* $1^{+/y}$ cortical cells across timepoints (experiment 1). **b.** Heatmap of top 5 DEGs
709 comparing female *Mecp2e* $1^{-/y}$ and *Mecp2e* $1^{+/y}$ cortical cells across timepoints
710 (experiment 2). *indicates adjusted p-value ≤ 0.05 (corrected via Benjamini and
711 Hochberg method). **c, d.** Number of DEGs over time at adjusted p-value ≤ 0.05 for
712 experiments 1 and 2, respectively. **e, f.** Dot plots showing the KEGG pathway terms for
713 DEGs (adjusted p-value ≤ 0.1) from each cell type, selected for terms that are persistent
714 over time for experiments 1 and 2, respectively.

715

716 **Figure 3. hdWGCNA identifies co-expression networks for each cell type in the**
717 **mouse cortex that correlated with *Mecp2e1* genotype, disease phenotypes, and**
718 **sex.** **a.** Top 10 hub genes identified for each of the 9 modules generated by hdWGCNA
719 on entire snRNASeq dataset, identified by color. The x-axis are all the genes in each
720 module and the y-axis is the corresponding kME value. **b.** Dot plot of the average gene
721 expression of the top 10 hub genes in each module generated for each cortical cell
722 type. **c.** A heat map of correlations between experimental phenotypes and variables
723 (body weight, disease score, genotype, time point, sex) and averaged gene expression
724 (eigenmode value) for each cell type (cell types not shown are in **Supplemental Figure**
725 **7a**). * , **, *** indicates FDR-corrected p-value $\leq 0.05, 0.01$, and 0.001 , respectively.
726 The color bar shows the Pearson correlation coefficient.

727

728 **Figure 4. Dynamic non-cell-autonomous effects on differentially expressed genes**
729 **and KEGG pathways over disease progression.** As shown in Experiment #3 (Fig.
730 1d), we compared WT cells from *Mecp2e1* $1^{-/y}$ female with WT cells from *Mecp2e1* $1^{+/y}$
731 glutamatergic and GABAergic neurons longitudinally. **a.** UMAP plot of cell types
732 identified in the mosaic females **b.** UMAP plot of the female cortices showing the
733 clustering of the broad cell type categories. **c.** UMAP plot of mosaic female cells parsed
734 by *Mecp2* allele **d.** Volcano plots showing differentially expressed genes (DEGs) of the
735 mouse cortical neurons contrasting WT cells from WT *Mecp2e1* $1^{+/y}$ females and WT cells
736 from *Mecp2e1* $1^{-/y}$ mosaic females. **e,f.** Venn diagrams of overlapping glutamatergic and
737 GABAergic DEGs respectfully over time. **g,i.** Venn diagrams of significant KEGG terms
738 of glutamatergic and GABAergic neurons over time. **H.** Top 10 KEGG terms of
739 glutamatergic neurons over time. **j** Top 10 KEGG terms of GABAergic neurons over
740 time.

741

742 **Figure 5. Human RTT cortical neurons share transcriptional dysregulation**
743 **specifically with *Mecp2e1* $1^{-/y}$ mosaic female mice.** **a.** A schematic of postmortem
744 human RTT cortices and age/sex matched control cortices. **b.** UMAP of the
745 unsupervised clustering of cell types identified in the human cortices (n = 39336 cells
746 post QC). Cell type labels were transferred from Bakken Trygve et al. 2021²⁰. **c.** Top
747 gene markers for each cell type in the human cortex. **d.** Heatmap of top differentially
748 expressed genes (DEGs) for human female cortices. *indicates adjusted p-value ≤ 0.05 .
749 **e.** Bar graph showing overlapping of the top significant upregulated and downregulated

750 genes by logFC in female mouse and female human. **f** Upset plot showing overlap of
751 the significant DEGs from both GABAergic and glutamatergic neurons in female human,
752 female mouse, and male mouse.

753

754 **Table 1.** Summary of LimmaVoom DEG numbers resulting from the parsing of mutant-
755 and WT-expressing cell type categories in all comparison experiments

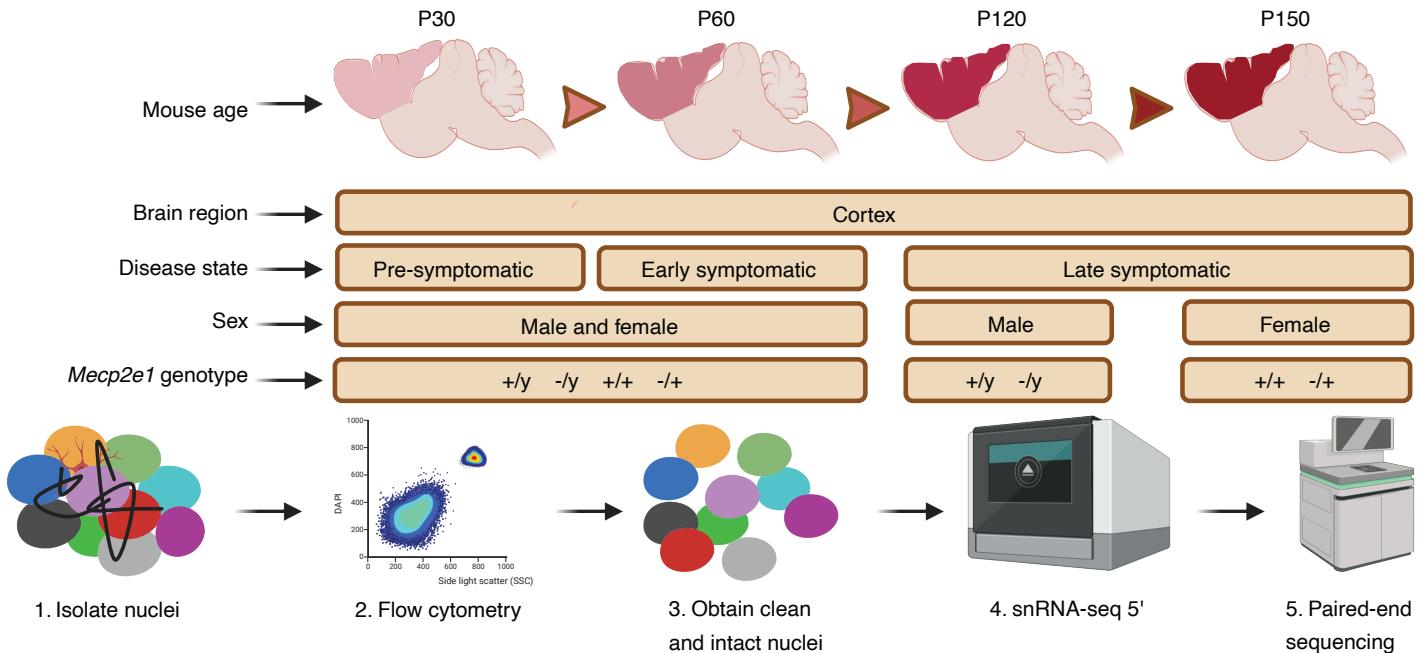
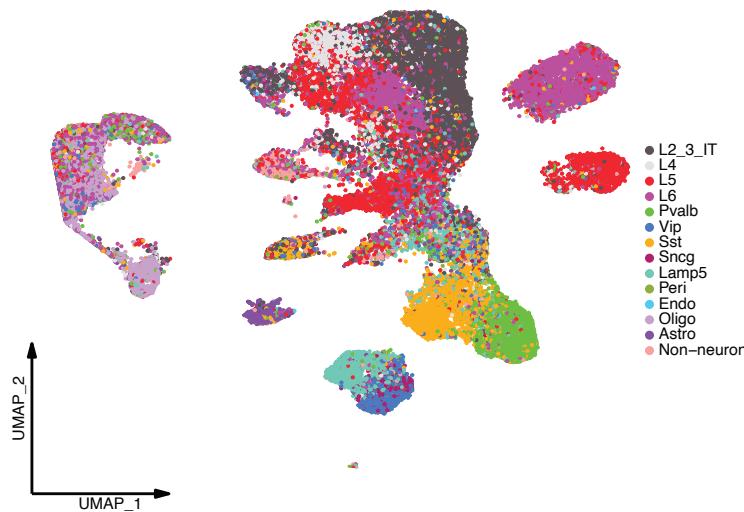
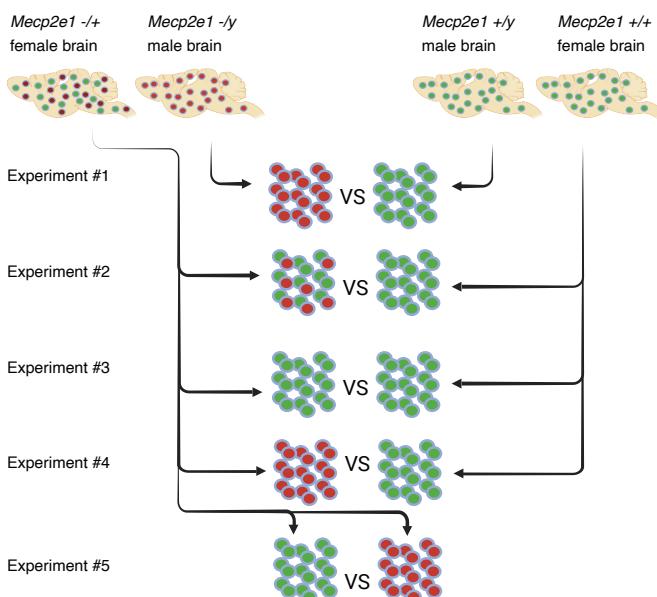
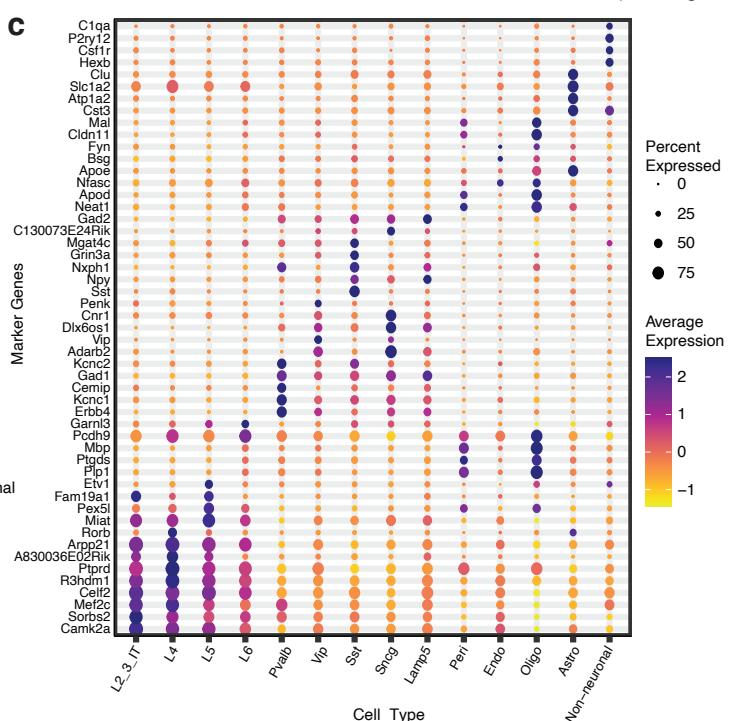
756

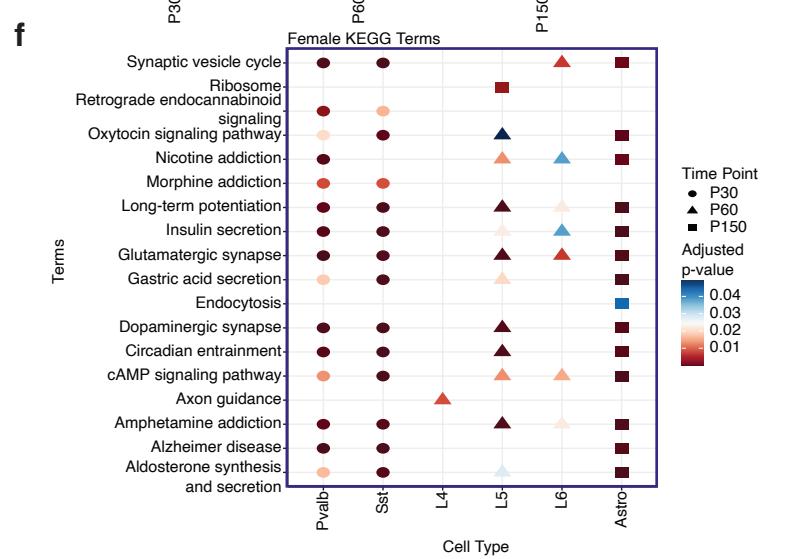
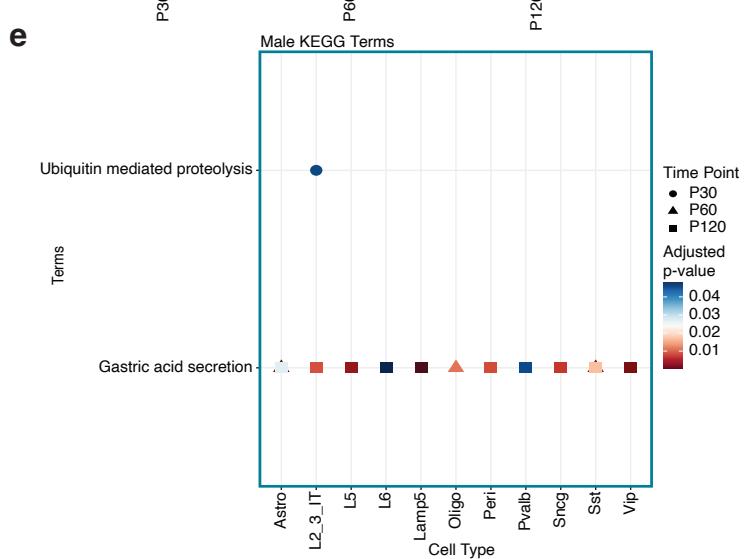
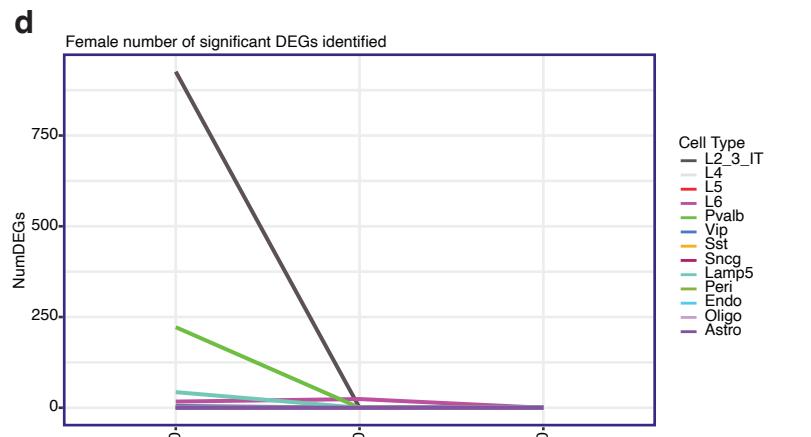
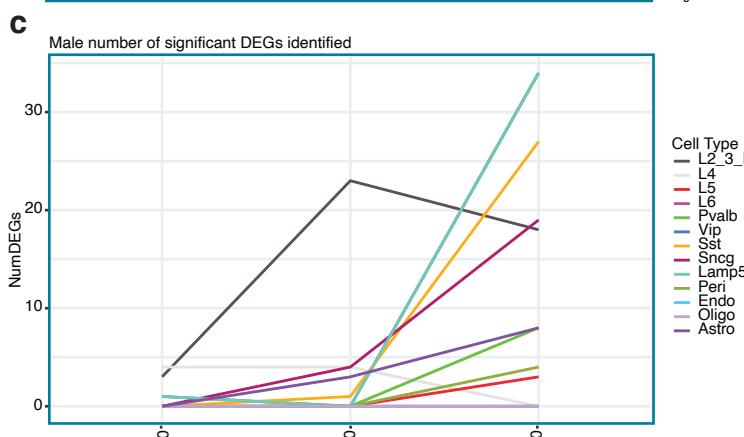
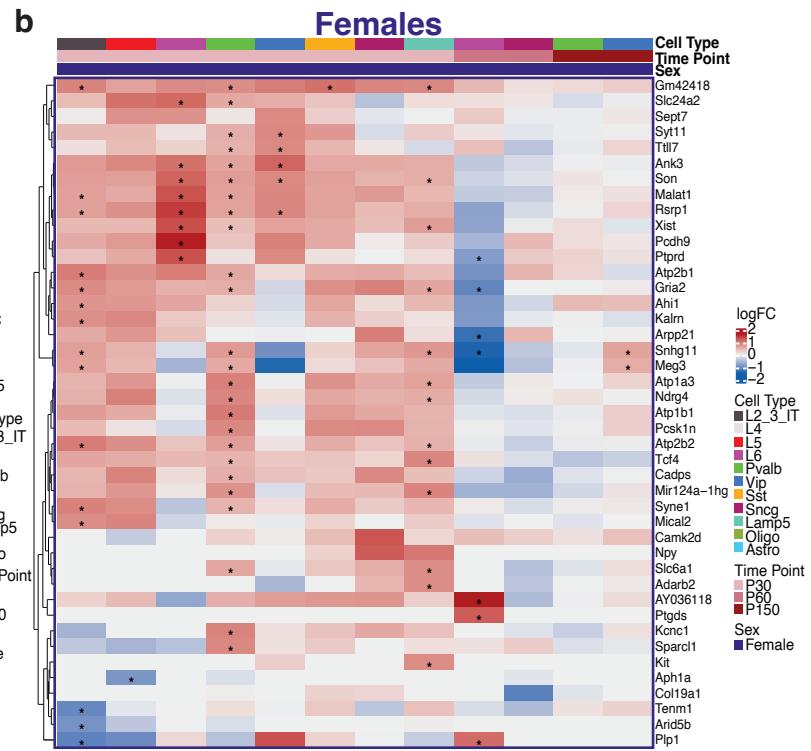
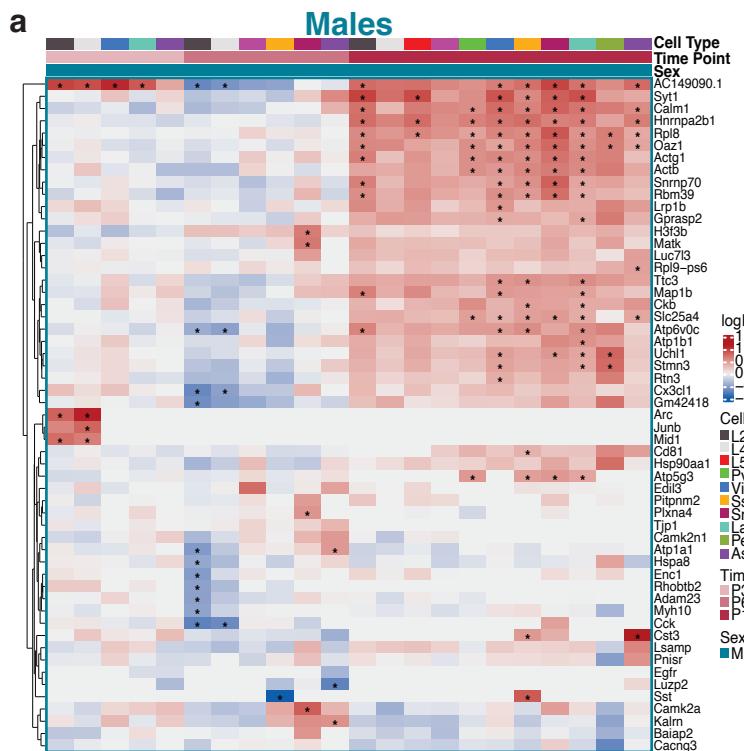
757 **Supplemental Table 1.** Table containing all significant up and down regulated DEGs
758 (LimmaVoomCC) from experiment 1 and 2. Table contains gene name, logFC, adjusted
759 p-value, sex, cell type and time point information.

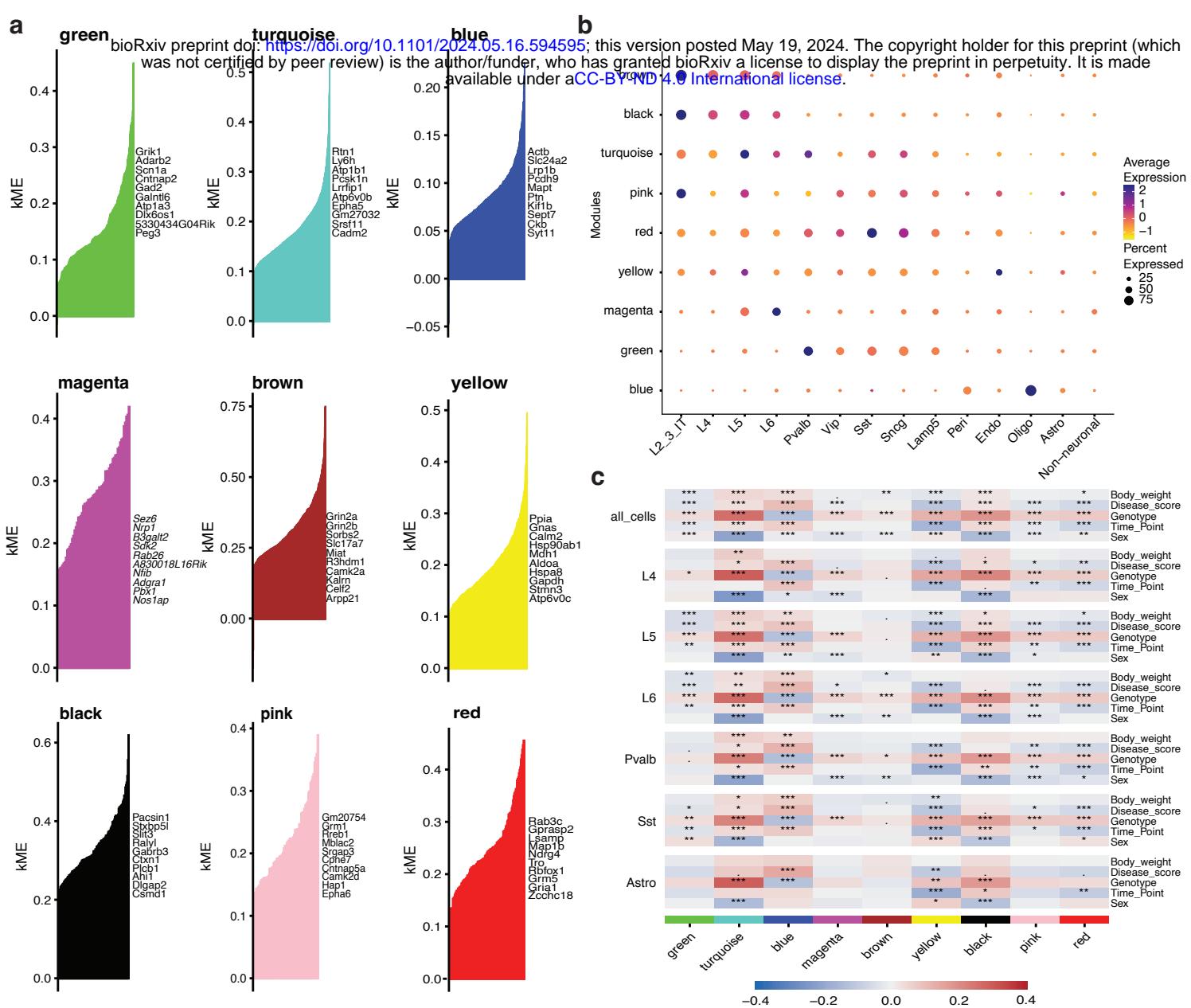
760

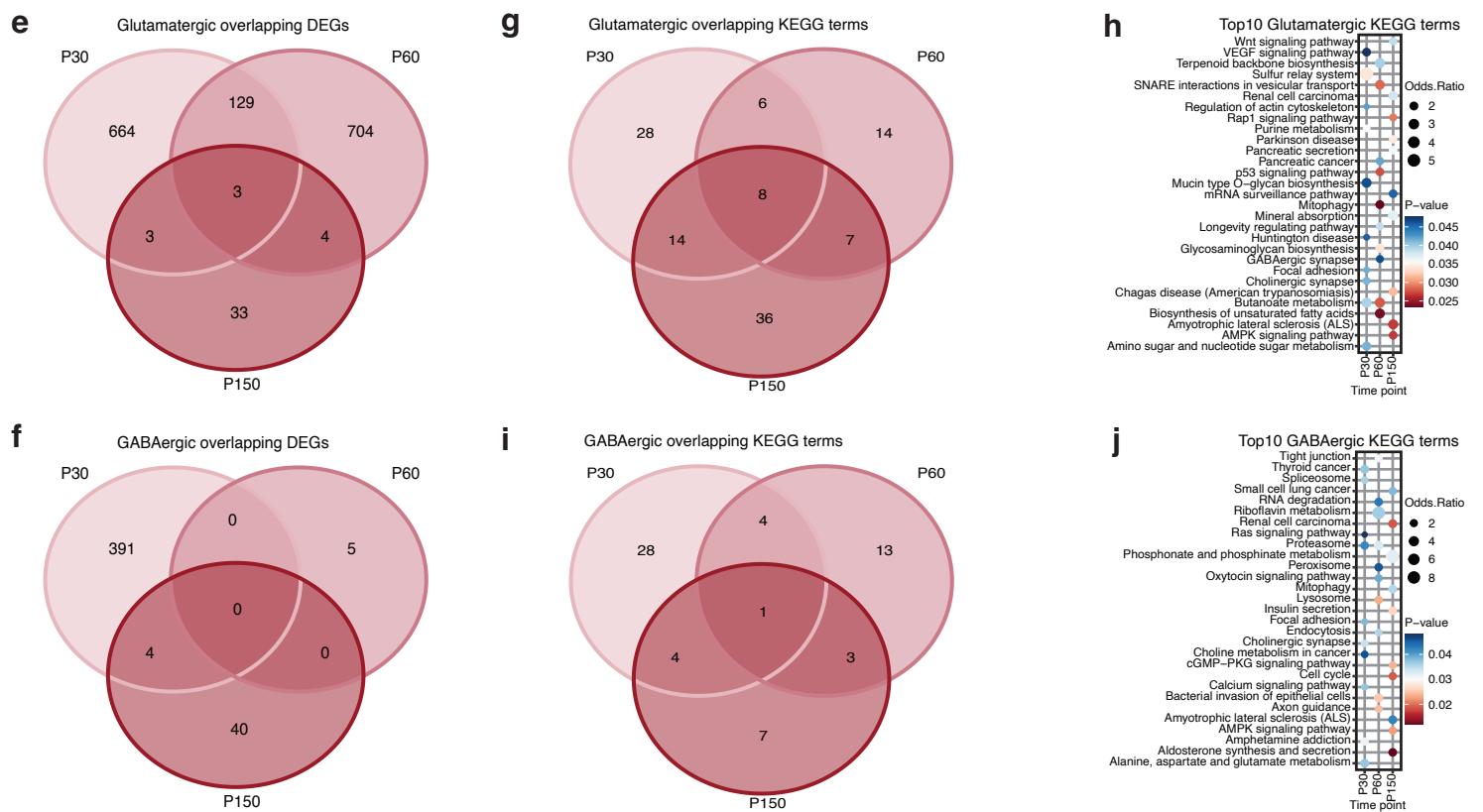
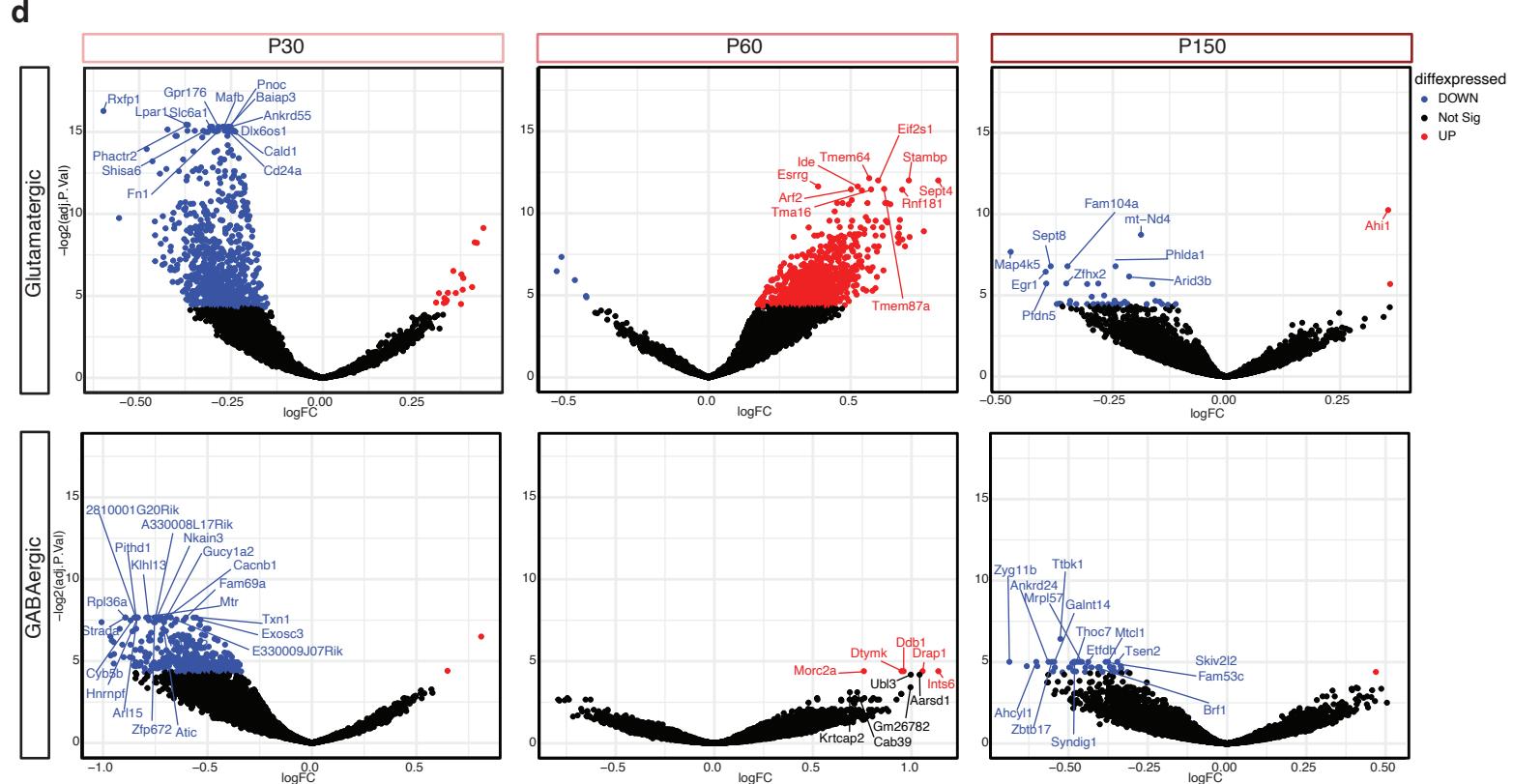
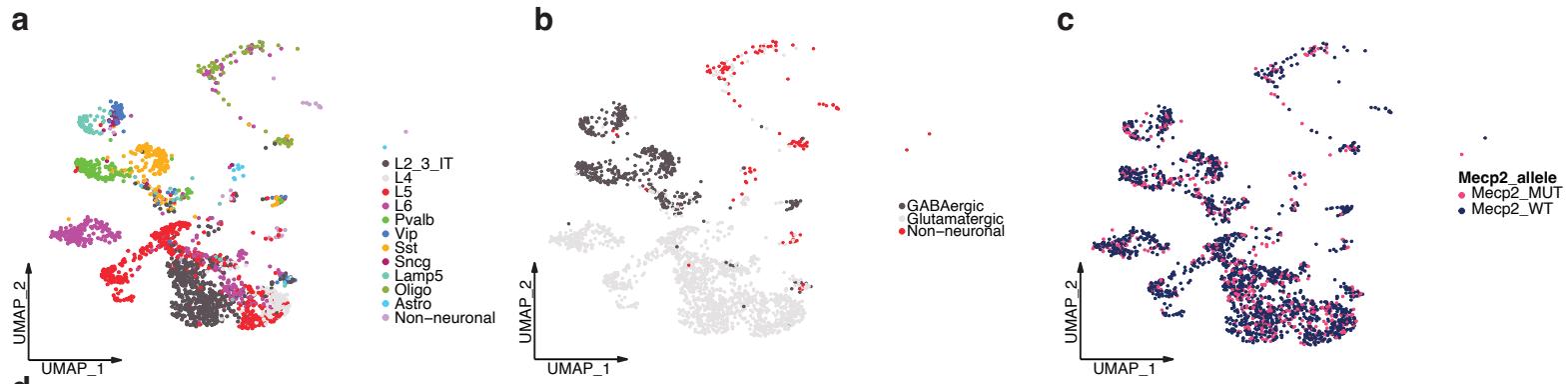
761 **Supplemental Table 2.** Table containing all significant KEGG pathways from
762 experiment 1 and 2. Table contains Term, overlap, odds ratio, adjusted p-value, Genes
763 contained in the pathway, sex, cell type and metadata information.

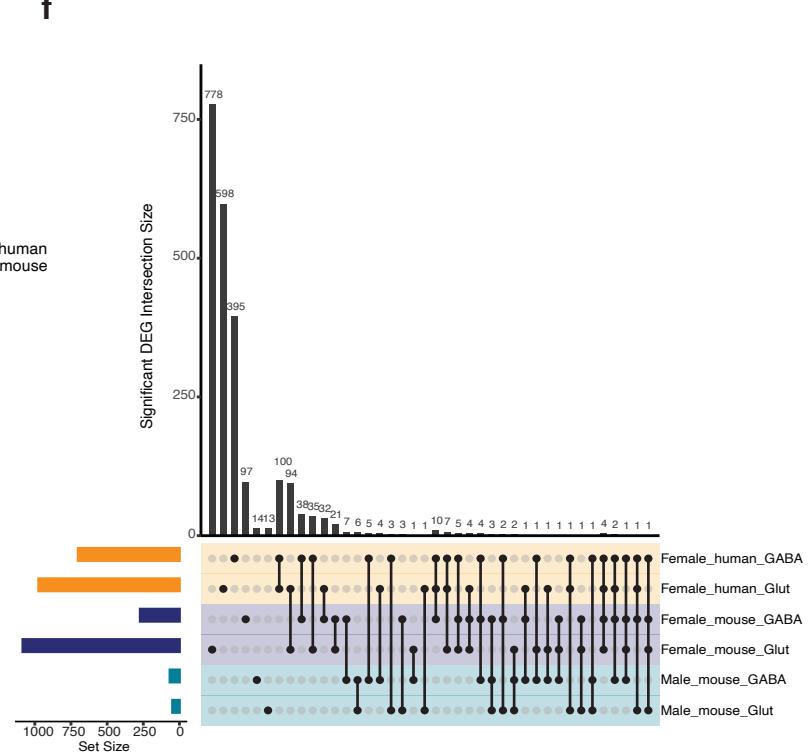
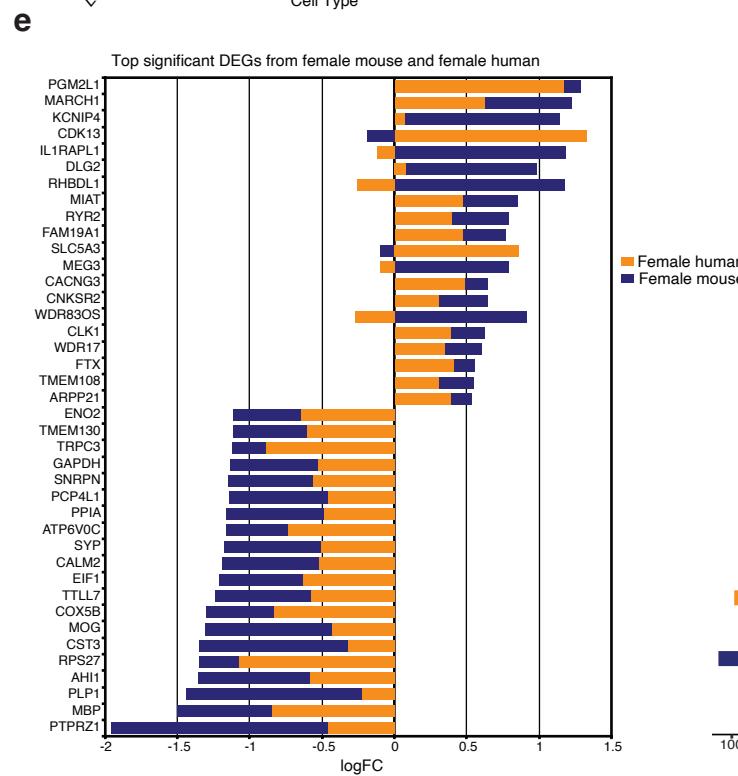
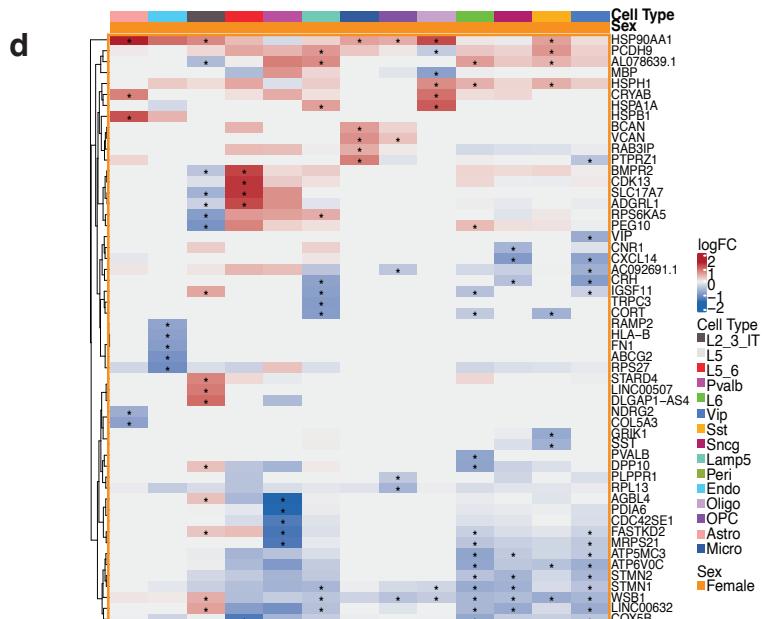
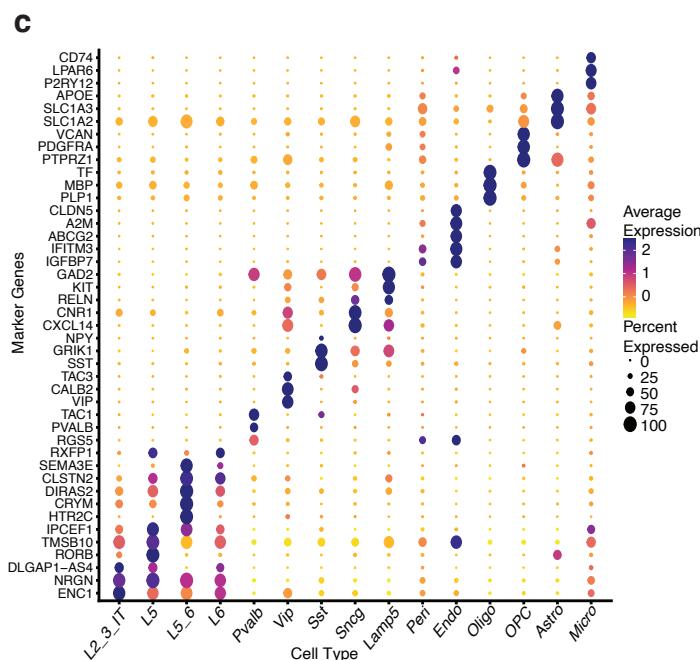
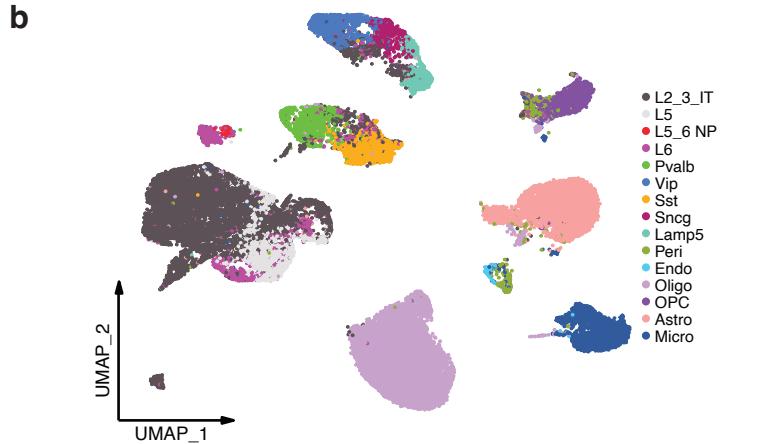
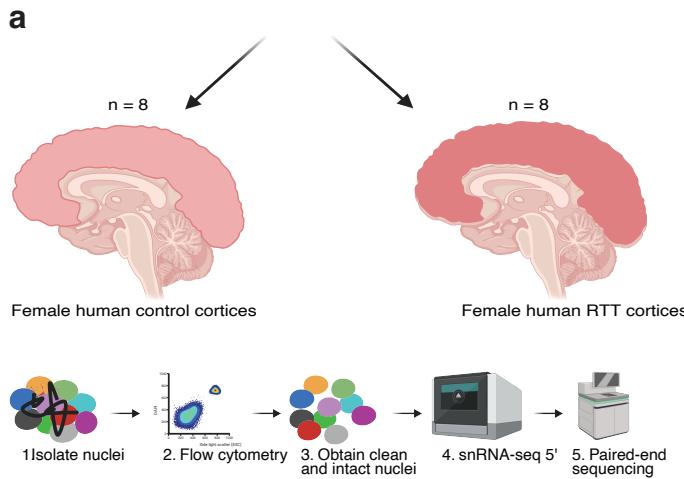
764





765







766


767




768







769

a**b****d****c**

